1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 14 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/idr.h> 18 #include <linux/input/mt.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/random.h> 22 #include <linux/major.h> 23 #include <linux/proc_fs.h> 24 #include <linux/sched.h> 25 #include <linux/seq_file.h> 26 #include <linux/poll.h> 27 #include <linux/device.h> 28 #include <linux/mutex.h> 29 #include <linux/rcupdate.h> 30 #include "input-compat.h" 31 32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 33 MODULE_DESCRIPTION("Input core"); 34 MODULE_LICENSE("GPL"); 35 36 #define INPUT_MAX_CHAR_DEVICES 1024 37 #define INPUT_FIRST_DYNAMIC_DEV 256 38 static DEFINE_IDA(input_ida); 39 40 static LIST_HEAD(input_dev_list); 41 static LIST_HEAD(input_handler_list); 42 43 /* 44 * input_mutex protects access to both input_dev_list and input_handler_list. 45 * This also causes input_[un]register_device and input_[un]register_handler 46 * be mutually exclusive which simplifies locking in drivers implementing 47 * input handlers. 48 */ 49 static DEFINE_MUTEX(input_mutex); 50 51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; 52 53 static inline int is_event_supported(unsigned int code, 54 unsigned long *bm, unsigned int max) 55 { 56 return code <= max && test_bit(code, bm); 57 } 58 59 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 60 { 61 if (fuzz) { 62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 63 return old_val; 64 65 if (value > old_val - fuzz && value < old_val + fuzz) 66 return (old_val * 3 + value) / 4; 67 68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 69 return (old_val + value) / 2; 70 } 71 72 return value; 73 } 74 75 static void input_start_autorepeat(struct input_dev *dev, int code) 76 { 77 if (test_bit(EV_REP, dev->evbit) && 78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 79 dev->timer.data) { 80 dev->repeat_key = code; 81 mod_timer(&dev->timer, 82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 83 } 84 } 85 86 static void input_stop_autorepeat(struct input_dev *dev) 87 { 88 del_timer(&dev->timer); 89 } 90 91 /* 92 * Pass event first through all filters and then, if event has not been 93 * filtered out, through all open handles. This function is called with 94 * dev->event_lock held and interrupts disabled. 95 */ 96 static unsigned int input_to_handler(struct input_handle *handle, 97 struct input_value *vals, unsigned int count) 98 { 99 struct input_handler *handler = handle->handler; 100 struct input_value *end = vals; 101 struct input_value *v; 102 103 if (handler->filter) { 104 for (v = vals; v != vals + count; v++) { 105 if (handler->filter(handle, v->type, v->code, v->value)) 106 continue; 107 if (end != v) 108 *end = *v; 109 end++; 110 } 111 count = end - vals; 112 } 113 114 if (!count) 115 return 0; 116 117 if (handler->events) 118 handler->events(handle, vals, count); 119 else if (handler->event) 120 for (v = vals; v != vals + count; v++) 121 handler->event(handle, v->type, v->code, v->value); 122 123 return count; 124 } 125 126 /* 127 * Pass values first through all filters and then, if event has not been 128 * filtered out, through all open handles. This function is called with 129 * dev->event_lock held and interrupts disabled. 130 */ 131 static void input_pass_values(struct input_dev *dev, 132 struct input_value *vals, unsigned int count) 133 { 134 struct input_handle *handle; 135 struct input_value *v; 136 137 if (!count) 138 return; 139 140 rcu_read_lock(); 141 142 handle = rcu_dereference(dev->grab); 143 if (handle) { 144 count = input_to_handler(handle, vals, count); 145 } else { 146 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 147 if (handle->open) { 148 count = input_to_handler(handle, vals, count); 149 if (!count) 150 break; 151 } 152 } 153 154 rcu_read_unlock(); 155 156 add_input_randomness(vals->type, vals->code, vals->value); 157 158 /* trigger auto repeat for key events */ 159 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) { 160 for (v = vals; v != vals + count; v++) { 161 if (v->type == EV_KEY && v->value != 2) { 162 if (v->value) 163 input_start_autorepeat(dev, v->code); 164 else 165 input_stop_autorepeat(dev); 166 } 167 } 168 } 169 } 170 171 static void input_pass_event(struct input_dev *dev, 172 unsigned int type, unsigned int code, int value) 173 { 174 struct input_value vals[] = { { type, code, value } }; 175 176 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 177 } 178 179 /* 180 * Generate software autorepeat event. Note that we take 181 * dev->event_lock here to avoid racing with input_event 182 * which may cause keys get "stuck". 183 */ 184 static void input_repeat_key(unsigned long data) 185 { 186 struct input_dev *dev = (void *) data; 187 unsigned long flags; 188 189 spin_lock_irqsave(&dev->event_lock, flags); 190 191 if (test_bit(dev->repeat_key, dev->key) && 192 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 193 struct input_value vals[] = { 194 { EV_KEY, dev->repeat_key, 2 }, 195 input_value_sync 196 }; 197 198 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 199 200 if (dev->rep[REP_PERIOD]) 201 mod_timer(&dev->timer, jiffies + 202 msecs_to_jiffies(dev->rep[REP_PERIOD])); 203 } 204 205 spin_unlock_irqrestore(&dev->event_lock, flags); 206 } 207 208 #define INPUT_IGNORE_EVENT 0 209 #define INPUT_PASS_TO_HANDLERS 1 210 #define INPUT_PASS_TO_DEVICE 2 211 #define INPUT_SLOT 4 212 #define INPUT_FLUSH 8 213 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 214 215 static int input_handle_abs_event(struct input_dev *dev, 216 unsigned int code, int *pval) 217 { 218 struct input_mt *mt = dev->mt; 219 bool is_mt_event; 220 int *pold; 221 222 if (code == ABS_MT_SLOT) { 223 /* 224 * "Stage" the event; we'll flush it later, when we 225 * get actual touch data. 226 */ 227 if (mt && *pval >= 0 && *pval < mt->num_slots) 228 mt->slot = *pval; 229 230 return INPUT_IGNORE_EVENT; 231 } 232 233 is_mt_event = input_is_mt_value(code); 234 235 if (!is_mt_event) { 236 pold = &dev->absinfo[code].value; 237 } else if (mt) { 238 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; 239 } else { 240 /* 241 * Bypass filtering for multi-touch events when 242 * not employing slots. 243 */ 244 pold = NULL; 245 } 246 247 if (pold) { 248 *pval = input_defuzz_abs_event(*pval, *pold, 249 dev->absinfo[code].fuzz); 250 if (*pold == *pval) 251 return INPUT_IGNORE_EVENT; 252 253 *pold = *pval; 254 } 255 256 /* Flush pending "slot" event */ 257 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 258 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot); 259 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; 260 } 261 262 return INPUT_PASS_TO_HANDLERS; 263 } 264 265 static int input_get_disposition(struct input_dev *dev, 266 unsigned int type, unsigned int code, int *pval) 267 { 268 int disposition = INPUT_IGNORE_EVENT; 269 int value = *pval; 270 271 switch (type) { 272 273 case EV_SYN: 274 switch (code) { 275 case SYN_CONFIG: 276 disposition = INPUT_PASS_TO_ALL; 277 break; 278 279 case SYN_REPORT: 280 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; 281 break; 282 case SYN_MT_REPORT: 283 disposition = INPUT_PASS_TO_HANDLERS; 284 break; 285 } 286 break; 287 288 case EV_KEY: 289 if (is_event_supported(code, dev->keybit, KEY_MAX)) { 290 291 /* auto-repeat bypasses state updates */ 292 if (value == 2) { 293 disposition = INPUT_PASS_TO_HANDLERS; 294 break; 295 } 296 297 if (!!test_bit(code, dev->key) != !!value) { 298 299 __change_bit(code, dev->key); 300 disposition = INPUT_PASS_TO_HANDLERS; 301 } 302 } 303 break; 304 305 case EV_SW: 306 if (is_event_supported(code, dev->swbit, SW_MAX) && 307 !!test_bit(code, dev->sw) != !!value) { 308 309 __change_bit(code, dev->sw); 310 disposition = INPUT_PASS_TO_HANDLERS; 311 } 312 break; 313 314 case EV_ABS: 315 if (is_event_supported(code, dev->absbit, ABS_MAX)) 316 disposition = input_handle_abs_event(dev, code, &value); 317 318 break; 319 320 case EV_REL: 321 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 322 disposition = INPUT_PASS_TO_HANDLERS; 323 324 break; 325 326 case EV_MSC: 327 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 328 disposition = INPUT_PASS_TO_ALL; 329 330 break; 331 332 case EV_LED: 333 if (is_event_supported(code, dev->ledbit, LED_MAX) && 334 !!test_bit(code, dev->led) != !!value) { 335 336 __change_bit(code, dev->led); 337 disposition = INPUT_PASS_TO_ALL; 338 } 339 break; 340 341 case EV_SND: 342 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 343 344 if (!!test_bit(code, dev->snd) != !!value) 345 __change_bit(code, dev->snd); 346 disposition = INPUT_PASS_TO_ALL; 347 } 348 break; 349 350 case EV_REP: 351 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 352 dev->rep[code] = value; 353 disposition = INPUT_PASS_TO_ALL; 354 } 355 break; 356 357 case EV_FF: 358 if (value >= 0) 359 disposition = INPUT_PASS_TO_ALL; 360 break; 361 362 case EV_PWR: 363 disposition = INPUT_PASS_TO_ALL; 364 break; 365 } 366 367 *pval = value; 368 return disposition; 369 } 370 371 static void input_handle_event(struct input_dev *dev, 372 unsigned int type, unsigned int code, int value) 373 { 374 int disposition; 375 376 disposition = input_get_disposition(dev, type, code, &value); 377 378 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 379 dev->event(dev, type, code, value); 380 381 if (!dev->vals) 382 return; 383 384 if (disposition & INPUT_PASS_TO_HANDLERS) { 385 struct input_value *v; 386 387 if (disposition & INPUT_SLOT) { 388 v = &dev->vals[dev->num_vals++]; 389 v->type = EV_ABS; 390 v->code = ABS_MT_SLOT; 391 v->value = dev->mt->slot; 392 } 393 394 v = &dev->vals[dev->num_vals++]; 395 v->type = type; 396 v->code = code; 397 v->value = value; 398 } 399 400 if (disposition & INPUT_FLUSH) { 401 if (dev->num_vals >= 2) 402 input_pass_values(dev, dev->vals, dev->num_vals); 403 dev->num_vals = 0; 404 } else if (dev->num_vals >= dev->max_vals - 2) { 405 dev->vals[dev->num_vals++] = input_value_sync; 406 input_pass_values(dev, dev->vals, dev->num_vals); 407 dev->num_vals = 0; 408 } 409 410 } 411 412 /** 413 * input_event() - report new input event 414 * @dev: device that generated the event 415 * @type: type of the event 416 * @code: event code 417 * @value: value of the event 418 * 419 * This function should be used by drivers implementing various input 420 * devices to report input events. See also input_inject_event(). 421 * 422 * NOTE: input_event() may be safely used right after input device was 423 * allocated with input_allocate_device(), even before it is registered 424 * with input_register_device(), but the event will not reach any of the 425 * input handlers. Such early invocation of input_event() may be used 426 * to 'seed' initial state of a switch or initial position of absolute 427 * axis, etc. 428 */ 429 void input_event(struct input_dev *dev, 430 unsigned int type, unsigned int code, int value) 431 { 432 unsigned long flags; 433 434 if (is_event_supported(type, dev->evbit, EV_MAX)) { 435 436 spin_lock_irqsave(&dev->event_lock, flags); 437 input_handle_event(dev, type, code, value); 438 spin_unlock_irqrestore(&dev->event_lock, flags); 439 } 440 } 441 EXPORT_SYMBOL(input_event); 442 443 /** 444 * input_inject_event() - send input event from input handler 445 * @handle: input handle to send event through 446 * @type: type of the event 447 * @code: event code 448 * @value: value of the event 449 * 450 * Similar to input_event() but will ignore event if device is 451 * "grabbed" and handle injecting event is not the one that owns 452 * the device. 453 */ 454 void input_inject_event(struct input_handle *handle, 455 unsigned int type, unsigned int code, int value) 456 { 457 struct input_dev *dev = handle->dev; 458 struct input_handle *grab; 459 unsigned long flags; 460 461 if (is_event_supported(type, dev->evbit, EV_MAX)) { 462 spin_lock_irqsave(&dev->event_lock, flags); 463 464 rcu_read_lock(); 465 grab = rcu_dereference(dev->grab); 466 if (!grab || grab == handle) 467 input_handle_event(dev, type, code, value); 468 rcu_read_unlock(); 469 470 spin_unlock_irqrestore(&dev->event_lock, flags); 471 } 472 } 473 EXPORT_SYMBOL(input_inject_event); 474 475 /** 476 * input_alloc_absinfo - allocates array of input_absinfo structs 477 * @dev: the input device emitting absolute events 478 * 479 * If the absinfo struct the caller asked for is already allocated, this 480 * functions will not do anything. 481 */ 482 void input_alloc_absinfo(struct input_dev *dev) 483 { 484 if (!dev->absinfo) 485 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo), 486 GFP_KERNEL); 487 488 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__); 489 } 490 EXPORT_SYMBOL(input_alloc_absinfo); 491 492 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 493 int min, int max, int fuzz, int flat) 494 { 495 struct input_absinfo *absinfo; 496 497 input_alloc_absinfo(dev); 498 if (!dev->absinfo) 499 return; 500 501 absinfo = &dev->absinfo[axis]; 502 absinfo->minimum = min; 503 absinfo->maximum = max; 504 absinfo->fuzz = fuzz; 505 absinfo->flat = flat; 506 507 __set_bit(EV_ABS, dev->evbit); 508 __set_bit(axis, dev->absbit); 509 } 510 EXPORT_SYMBOL(input_set_abs_params); 511 512 513 /** 514 * input_grab_device - grabs device for exclusive use 515 * @handle: input handle that wants to own the device 516 * 517 * When a device is grabbed by an input handle all events generated by 518 * the device are delivered only to this handle. Also events injected 519 * by other input handles are ignored while device is grabbed. 520 */ 521 int input_grab_device(struct input_handle *handle) 522 { 523 struct input_dev *dev = handle->dev; 524 int retval; 525 526 retval = mutex_lock_interruptible(&dev->mutex); 527 if (retval) 528 return retval; 529 530 if (dev->grab) { 531 retval = -EBUSY; 532 goto out; 533 } 534 535 rcu_assign_pointer(dev->grab, handle); 536 537 out: 538 mutex_unlock(&dev->mutex); 539 return retval; 540 } 541 EXPORT_SYMBOL(input_grab_device); 542 543 static void __input_release_device(struct input_handle *handle) 544 { 545 struct input_dev *dev = handle->dev; 546 struct input_handle *grabber; 547 548 grabber = rcu_dereference_protected(dev->grab, 549 lockdep_is_held(&dev->mutex)); 550 if (grabber == handle) { 551 rcu_assign_pointer(dev->grab, NULL); 552 /* Make sure input_pass_event() notices that grab is gone */ 553 synchronize_rcu(); 554 555 list_for_each_entry(handle, &dev->h_list, d_node) 556 if (handle->open && handle->handler->start) 557 handle->handler->start(handle); 558 } 559 } 560 561 /** 562 * input_release_device - release previously grabbed device 563 * @handle: input handle that owns the device 564 * 565 * Releases previously grabbed device so that other input handles can 566 * start receiving input events. Upon release all handlers attached 567 * to the device have their start() method called so they have a change 568 * to synchronize device state with the rest of the system. 569 */ 570 void input_release_device(struct input_handle *handle) 571 { 572 struct input_dev *dev = handle->dev; 573 574 mutex_lock(&dev->mutex); 575 __input_release_device(handle); 576 mutex_unlock(&dev->mutex); 577 } 578 EXPORT_SYMBOL(input_release_device); 579 580 /** 581 * input_open_device - open input device 582 * @handle: handle through which device is being accessed 583 * 584 * This function should be called by input handlers when they 585 * want to start receive events from given input device. 586 */ 587 int input_open_device(struct input_handle *handle) 588 { 589 struct input_dev *dev = handle->dev; 590 int retval; 591 592 retval = mutex_lock_interruptible(&dev->mutex); 593 if (retval) 594 return retval; 595 596 if (dev->going_away) { 597 retval = -ENODEV; 598 goto out; 599 } 600 601 handle->open++; 602 603 if (!dev->users++ && dev->open) 604 retval = dev->open(dev); 605 606 if (retval) { 607 dev->users--; 608 if (!--handle->open) { 609 /* 610 * Make sure we are not delivering any more events 611 * through this handle 612 */ 613 synchronize_rcu(); 614 } 615 } 616 617 out: 618 mutex_unlock(&dev->mutex); 619 return retval; 620 } 621 EXPORT_SYMBOL(input_open_device); 622 623 int input_flush_device(struct input_handle *handle, struct file *file) 624 { 625 struct input_dev *dev = handle->dev; 626 int retval; 627 628 retval = mutex_lock_interruptible(&dev->mutex); 629 if (retval) 630 return retval; 631 632 if (dev->flush) 633 retval = dev->flush(dev, file); 634 635 mutex_unlock(&dev->mutex); 636 return retval; 637 } 638 EXPORT_SYMBOL(input_flush_device); 639 640 /** 641 * input_close_device - close input device 642 * @handle: handle through which device is being accessed 643 * 644 * This function should be called by input handlers when they 645 * want to stop receive events from given input device. 646 */ 647 void input_close_device(struct input_handle *handle) 648 { 649 struct input_dev *dev = handle->dev; 650 651 mutex_lock(&dev->mutex); 652 653 __input_release_device(handle); 654 655 if (!--dev->users && dev->close) 656 dev->close(dev); 657 658 if (!--handle->open) { 659 /* 660 * synchronize_rcu() makes sure that input_pass_event() 661 * completed and that no more input events are delivered 662 * through this handle 663 */ 664 synchronize_rcu(); 665 } 666 667 mutex_unlock(&dev->mutex); 668 } 669 EXPORT_SYMBOL(input_close_device); 670 671 /* 672 * Simulate keyup events for all keys that are marked as pressed. 673 * The function must be called with dev->event_lock held. 674 */ 675 static void input_dev_release_keys(struct input_dev *dev) 676 { 677 int code; 678 679 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 680 for (code = 0; code <= KEY_MAX; code++) { 681 if (is_event_supported(code, dev->keybit, KEY_MAX) && 682 __test_and_clear_bit(code, dev->key)) { 683 input_pass_event(dev, EV_KEY, code, 0); 684 } 685 } 686 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 687 } 688 } 689 690 /* 691 * Prepare device for unregistering 692 */ 693 static void input_disconnect_device(struct input_dev *dev) 694 { 695 struct input_handle *handle; 696 697 /* 698 * Mark device as going away. Note that we take dev->mutex here 699 * not to protect access to dev->going_away but rather to ensure 700 * that there are no threads in the middle of input_open_device() 701 */ 702 mutex_lock(&dev->mutex); 703 dev->going_away = true; 704 mutex_unlock(&dev->mutex); 705 706 spin_lock_irq(&dev->event_lock); 707 708 /* 709 * Simulate keyup events for all pressed keys so that handlers 710 * are not left with "stuck" keys. The driver may continue 711 * generate events even after we done here but they will not 712 * reach any handlers. 713 */ 714 input_dev_release_keys(dev); 715 716 list_for_each_entry(handle, &dev->h_list, d_node) 717 handle->open = 0; 718 719 spin_unlock_irq(&dev->event_lock); 720 } 721 722 /** 723 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 724 * @ke: keymap entry containing scancode to be converted. 725 * @scancode: pointer to the location where converted scancode should 726 * be stored. 727 * 728 * This function is used to convert scancode stored in &struct keymap_entry 729 * into scalar form understood by legacy keymap handling methods. These 730 * methods expect scancodes to be represented as 'unsigned int'. 731 */ 732 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 733 unsigned int *scancode) 734 { 735 switch (ke->len) { 736 case 1: 737 *scancode = *((u8 *)ke->scancode); 738 break; 739 740 case 2: 741 *scancode = *((u16 *)ke->scancode); 742 break; 743 744 case 4: 745 *scancode = *((u32 *)ke->scancode); 746 break; 747 748 default: 749 return -EINVAL; 750 } 751 752 return 0; 753 } 754 EXPORT_SYMBOL(input_scancode_to_scalar); 755 756 /* 757 * Those routines handle the default case where no [gs]etkeycode() is 758 * defined. In this case, an array indexed by the scancode is used. 759 */ 760 761 static unsigned int input_fetch_keycode(struct input_dev *dev, 762 unsigned int index) 763 { 764 switch (dev->keycodesize) { 765 case 1: 766 return ((u8 *)dev->keycode)[index]; 767 768 case 2: 769 return ((u16 *)dev->keycode)[index]; 770 771 default: 772 return ((u32 *)dev->keycode)[index]; 773 } 774 } 775 776 static int input_default_getkeycode(struct input_dev *dev, 777 struct input_keymap_entry *ke) 778 { 779 unsigned int index; 780 int error; 781 782 if (!dev->keycodesize) 783 return -EINVAL; 784 785 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 786 index = ke->index; 787 else { 788 error = input_scancode_to_scalar(ke, &index); 789 if (error) 790 return error; 791 } 792 793 if (index >= dev->keycodemax) 794 return -EINVAL; 795 796 ke->keycode = input_fetch_keycode(dev, index); 797 ke->index = index; 798 ke->len = sizeof(index); 799 memcpy(ke->scancode, &index, sizeof(index)); 800 801 return 0; 802 } 803 804 static int input_default_setkeycode(struct input_dev *dev, 805 const struct input_keymap_entry *ke, 806 unsigned int *old_keycode) 807 { 808 unsigned int index; 809 int error; 810 int i; 811 812 if (!dev->keycodesize) 813 return -EINVAL; 814 815 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 816 index = ke->index; 817 } else { 818 error = input_scancode_to_scalar(ke, &index); 819 if (error) 820 return error; 821 } 822 823 if (index >= dev->keycodemax) 824 return -EINVAL; 825 826 if (dev->keycodesize < sizeof(ke->keycode) && 827 (ke->keycode >> (dev->keycodesize * 8))) 828 return -EINVAL; 829 830 switch (dev->keycodesize) { 831 case 1: { 832 u8 *k = (u8 *)dev->keycode; 833 *old_keycode = k[index]; 834 k[index] = ke->keycode; 835 break; 836 } 837 case 2: { 838 u16 *k = (u16 *)dev->keycode; 839 *old_keycode = k[index]; 840 k[index] = ke->keycode; 841 break; 842 } 843 default: { 844 u32 *k = (u32 *)dev->keycode; 845 *old_keycode = k[index]; 846 k[index] = ke->keycode; 847 break; 848 } 849 } 850 851 __clear_bit(*old_keycode, dev->keybit); 852 __set_bit(ke->keycode, dev->keybit); 853 854 for (i = 0; i < dev->keycodemax; i++) { 855 if (input_fetch_keycode(dev, i) == *old_keycode) { 856 __set_bit(*old_keycode, dev->keybit); 857 break; /* Setting the bit twice is useless, so break */ 858 } 859 } 860 861 return 0; 862 } 863 864 /** 865 * input_get_keycode - retrieve keycode currently mapped to a given scancode 866 * @dev: input device which keymap is being queried 867 * @ke: keymap entry 868 * 869 * This function should be called by anyone interested in retrieving current 870 * keymap. Presently evdev handlers use it. 871 */ 872 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 873 { 874 unsigned long flags; 875 int retval; 876 877 spin_lock_irqsave(&dev->event_lock, flags); 878 retval = dev->getkeycode(dev, ke); 879 spin_unlock_irqrestore(&dev->event_lock, flags); 880 881 return retval; 882 } 883 EXPORT_SYMBOL(input_get_keycode); 884 885 /** 886 * input_set_keycode - attribute a keycode to a given scancode 887 * @dev: input device which keymap is being updated 888 * @ke: new keymap entry 889 * 890 * This function should be called by anyone needing to update current 891 * keymap. Presently keyboard and evdev handlers use it. 892 */ 893 int input_set_keycode(struct input_dev *dev, 894 const struct input_keymap_entry *ke) 895 { 896 unsigned long flags; 897 unsigned int old_keycode; 898 int retval; 899 900 if (ke->keycode > KEY_MAX) 901 return -EINVAL; 902 903 spin_lock_irqsave(&dev->event_lock, flags); 904 905 retval = dev->setkeycode(dev, ke, &old_keycode); 906 if (retval) 907 goto out; 908 909 /* Make sure KEY_RESERVED did not get enabled. */ 910 __clear_bit(KEY_RESERVED, dev->keybit); 911 912 /* 913 * Simulate keyup event if keycode is not present 914 * in the keymap anymore 915 */ 916 if (test_bit(EV_KEY, dev->evbit) && 917 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 918 __test_and_clear_bit(old_keycode, dev->key)) { 919 struct input_value vals[] = { 920 { EV_KEY, old_keycode, 0 }, 921 input_value_sync 922 }; 923 924 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 925 } 926 927 out: 928 spin_unlock_irqrestore(&dev->event_lock, flags); 929 930 return retval; 931 } 932 EXPORT_SYMBOL(input_set_keycode); 933 934 static const struct input_device_id *input_match_device(struct input_handler *handler, 935 struct input_dev *dev) 936 { 937 const struct input_device_id *id; 938 939 for (id = handler->id_table; id->flags || id->driver_info; id++) { 940 941 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 942 if (id->bustype != dev->id.bustype) 943 continue; 944 945 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 946 if (id->vendor != dev->id.vendor) 947 continue; 948 949 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 950 if (id->product != dev->id.product) 951 continue; 952 953 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 954 if (id->version != dev->id.version) 955 continue; 956 957 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX)) 958 continue; 959 960 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX)) 961 continue; 962 963 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX)) 964 continue; 965 966 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX)) 967 continue; 968 969 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX)) 970 continue; 971 972 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX)) 973 continue; 974 975 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX)) 976 continue; 977 978 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX)) 979 continue; 980 981 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX)) 982 continue; 983 984 if (!handler->match || handler->match(handler, dev)) 985 return id; 986 } 987 988 return NULL; 989 } 990 991 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 992 { 993 const struct input_device_id *id; 994 int error; 995 996 id = input_match_device(handler, dev); 997 if (!id) 998 return -ENODEV; 999 1000 error = handler->connect(handler, dev, id); 1001 if (error && error != -ENODEV) 1002 pr_err("failed to attach handler %s to device %s, error: %d\n", 1003 handler->name, kobject_name(&dev->dev.kobj), error); 1004 1005 return error; 1006 } 1007 1008 #ifdef CONFIG_COMPAT 1009 1010 static int input_bits_to_string(char *buf, int buf_size, 1011 unsigned long bits, bool skip_empty) 1012 { 1013 int len = 0; 1014 1015 if (INPUT_COMPAT_TEST) { 1016 u32 dword = bits >> 32; 1017 if (dword || !skip_empty) 1018 len += snprintf(buf, buf_size, "%x ", dword); 1019 1020 dword = bits & 0xffffffffUL; 1021 if (dword || !skip_empty || len) 1022 len += snprintf(buf + len, max(buf_size - len, 0), 1023 "%x", dword); 1024 } else { 1025 if (bits || !skip_empty) 1026 len += snprintf(buf, buf_size, "%lx", bits); 1027 } 1028 1029 return len; 1030 } 1031 1032 #else /* !CONFIG_COMPAT */ 1033 1034 static int input_bits_to_string(char *buf, int buf_size, 1035 unsigned long bits, bool skip_empty) 1036 { 1037 return bits || !skip_empty ? 1038 snprintf(buf, buf_size, "%lx", bits) : 0; 1039 } 1040 1041 #endif 1042 1043 #ifdef CONFIG_PROC_FS 1044 1045 static struct proc_dir_entry *proc_bus_input_dir; 1046 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 1047 static int input_devices_state; 1048 1049 static inline void input_wakeup_procfs_readers(void) 1050 { 1051 input_devices_state++; 1052 wake_up(&input_devices_poll_wait); 1053 } 1054 1055 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 1056 { 1057 poll_wait(file, &input_devices_poll_wait, wait); 1058 if (file->f_version != input_devices_state) { 1059 file->f_version = input_devices_state; 1060 return POLLIN | POLLRDNORM; 1061 } 1062 1063 return 0; 1064 } 1065 1066 union input_seq_state { 1067 struct { 1068 unsigned short pos; 1069 bool mutex_acquired; 1070 }; 1071 void *p; 1072 }; 1073 1074 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1075 { 1076 union input_seq_state *state = (union input_seq_state *)&seq->private; 1077 int error; 1078 1079 /* We need to fit into seq->private pointer */ 1080 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1081 1082 error = mutex_lock_interruptible(&input_mutex); 1083 if (error) { 1084 state->mutex_acquired = false; 1085 return ERR_PTR(error); 1086 } 1087 1088 state->mutex_acquired = true; 1089 1090 return seq_list_start(&input_dev_list, *pos); 1091 } 1092 1093 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1094 { 1095 return seq_list_next(v, &input_dev_list, pos); 1096 } 1097 1098 static void input_seq_stop(struct seq_file *seq, void *v) 1099 { 1100 union input_seq_state *state = (union input_seq_state *)&seq->private; 1101 1102 if (state->mutex_acquired) 1103 mutex_unlock(&input_mutex); 1104 } 1105 1106 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1107 unsigned long *bitmap, int max) 1108 { 1109 int i; 1110 bool skip_empty = true; 1111 char buf[18]; 1112 1113 seq_printf(seq, "B: %s=", name); 1114 1115 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1116 if (input_bits_to_string(buf, sizeof(buf), 1117 bitmap[i], skip_empty)) { 1118 skip_empty = false; 1119 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1120 } 1121 } 1122 1123 /* 1124 * If no output was produced print a single 0. 1125 */ 1126 if (skip_empty) 1127 seq_puts(seq, "0"); 1128 1129 seq_putc(seq, '\n'); 1130 } 1131 1132 static int input_devices_seq_show(struct seq_file *seq, void *v) 1133 { 1134 struct input_dev *dev = container_of(v, struct input_dev, node); 1135 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1136 struct input_handle *handle; 1137 1138 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1139 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1140 1141 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1142 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1143 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1144 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1145 seq_printf(seq, "H: Handlers="); 1146 1147 list_for_each_entry(handle, &dev->h_list, d_node) 1148 seq_printf(seq, "%s ", handle->name); 1149 seq_putc(seq, '\n'); 1150 1151 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1152 1153 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1154 if (test_bit(EV_KEY, dev->evbit)) 1155 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1156 if (test_bit(EV_REL, dev->evbit)) 1157 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1158 if (test_bit(EV_ABS, dev->evbit)) 1159 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1160 if (test_bit(EV_MSC, dev->evbit)) 1161 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1162 if (test_bit(EV_LED, dev->evbit)) 1163 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1164 if (test_bit(EV_SND, dev->evbit)) 1165 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1166 if (test_bit(EV_FF, dev->evbit)) 1167 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1168 if (test_bit(EV_SW, dev->evbit)) 1169 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1170 1171 seq_putc(seq, '\n'); 1172 1173 kfree(path); 1174 return 0; 1175 } 1176 1177 static const struct seq_operations input_devices_seq_ops = { 1178 .start = input_devices_seq_start, 1179 .next = input_devices_seq_next, 1180 .stop = input_seq_stop, 1181 .show = input_devices_seq_show, 1182 }; 1183 1184 static int input_proc_devices_open(struct inode *inode, struct file *file) 1185 { 1186 return seq_open(file, &input_devices_seq_ops); 1187 } 1188 1189 static const struct file_operations input_devices_fileops = { 1190 .owner = THIS_MODULE, 1191 .open = input_proc_devices_open, 1192 .poll = input_proc_devices_poll, 1193 .read = seq_read, 1194 .llseek = seq_lseek, 1195 .release = seq_release, 1196 }; 1197 1198 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1199 { 1200 union input_seq_state *state = (union input_seq_state *)&seq->private; 1201 int error; 1202 1203 /* We need to fit into seq->private pointer */ 1204 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1205 1206 error = mutex_lock_interruptible(&input_mutex); 1207 if (error) { 1208 state->mutex_acquired = false; 1209 return ERR_PTR(error); 1210 } 1211 1212 state->mutex_acquired = true; 1213 state->pos = *pos; 1214 1215 return seq_list_start(&input_handler_list, *pos); 1216 } 1217 1218 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1219 { 1220 union input_seq_state *state = (union input_seq_state *)&seq->private; 1221 1222 state->pos = *pos + 1; 1223 return seq_list_next(v, &input_handler_list, pos); 1224 } 1225 1226 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1227 { 1228 struct input_handler *handler = container_of(v, struct input_handler, node); 1229 union input_seq_state *state = (union input_seq_state *)&seq->private; 1230 1231 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1232 if (handler->filter) 1233 seq_puts(seq, " (filter)"); 1234 if (handler->legacy_minors) 1235 seq_printf(seq, " Minor=%d", handler->minor); 1236 seq_putc(seq, '\n'); 1237 1238 return 0; 1239 } 1240 1241 static const struct seq_operations input_handlers_seq_ops = { 1242 .start = input_handlers_seq_start, 1243 .next = input_handlers_seq_next, 1244 .stop = input_seq_stop, 1245 .show = input_handlers_seq_show, 1246 }; 1247 1248 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1249 { 1250 return seq_open(file, &input_handlers_seq_ops); 1251 } 1252 1253 static const struct file_operations input_handlers_fileops = { 1254 .owner = THIS_MODULE, 1255 .open = input_proc_handlers_open, 1256 .read = seq_read, 1257 .llseek = seq_lseek, 1258 .release = seq_release, 1259 }; 1260 1261 static int __init input_proc_init(void) 1262 { 1263 struct proc_dir_entry *entry; 1264 1265 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1266 if (!proc_bus_input_dir) 1267 return -ENOMEM; 1268 1269 entry = proc_create("devices", 0, proc_bus_input_dir, 1270 &input_devices_fileops); 1271 if (!entry) 1272 goto fail1; 1273 1274 entry = proc_create("handlers", 0, proc_bus_input_dir, 1275 &input_handlers_fileops); 1276 if (!entry) 1277 goto fail2; 1278 1279 return 0; 1280 1281 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1282 fail1: remove_proc_entry("bus/input", NULL); 1283 return -ENOMEM; 1284 } 1285 1286 static void input_proc_exit(void) 1287 { 1288 remove_proc_entry("devices", proc_bus_input_dir); 1289 remove_proc_entry("handlers", proc_bus_input_dir); 1290 remove_proc_entry("bus/input", NULL); 1291 } 1292 1293 #else /* !CONFIG_PROC_FS */ 1294 static inline void input_wakeup_procfs_readers(void) { } 1295 static inline int input_proc_init(void) { return 0; } 1296 static inline void input_proc_exit(void) { } 1297 #endif 1298 1299 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1300 static ssize_t input_dev_show_##name(struct device *dev, \ 1301 struct device_attribute *attr, \ 1302 char *buf) \ 1303 { \ 1304 struct input_dev *input_dev = to_input_dev(dev); \ 1305 \ 1306 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1307 input_dev->name ? input_dev->name : ""); \ 1308 } \ 1309 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1310 1311 INPUT_DEV_STRING_ATTR_SHOW(name); 1312 INPUT_DEV_STRING_ATTR_SHOW(phys); 1313 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1314 1315 static int input_print_modalias_bits(char *buf, int size, 1316 char name, unsigned long *bm, 1317 unsigned int min_bit, unsigned int max_bit) 1318 { 1319 int len = 0, i; 1320 1321 len += snprintf(buf, max(size, 0), "%c", name); 1322 for (i = min_bit; i < max_bit; i++) 1323 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1324 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1325 return len; 1326 } 1327 1328 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1329 int add_cr) 1330 { 1331 int len; 1332 1333 len = snprintf(buf, max(size, 0), 1334 "input:b%04Xv%04Xp%04Xe%04X-", 1335 id->id.bustype, id->id.vendor, 1336 id->id.product, id->id.version); 1337 1338 len += input_print_modalias_bits(buf + len, size - len, 1339 'e', id->evbit, 0, EV_MAX); 1340 len += input_print_modalias_bits(buf + len, size - len, 1341 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1342 len += input_print_modalias_bits(buf + len, size - len, 1343 'r', id->relbit, 0, REL_MAX); 1344 len += input_print_modalias_bits(buf + len, size - len, 1345 'a', id->absbit, 0, ABS_MAX); 1346 len += input_print_modalias_bits(buf + len, size - len, 1347 'm', id->mscbit, 0, MSC_MAX); 1348 len += input_print_modalias_bits(buf + len, size - len, 1349 'l', id->ledbit, 0, LED_MAX); 1350 len += input_print_modalias_bits(buf + len, size - len, 1351 's', id->sndbit, 0, SND_MAX); 1352 len += input_print_modalias_bits(buf + len, size - len, 1353 'f', id->ffbit, 0, FF_MAX); 1354 len += input_print_modalias_bits(buf + len, size - len, 1355 'w', id->swbit, 0, SW_MAX); 1356 1357 if (add_cr) 1358 len += snprintf(buf + len, max(size - len, 0), "\n"); 1359 1360 return len; 1361 } 1362 1363 static ssize_t input_dev_show_modalias(struct device *dev, 1364 struct device_attribute *attr, 1365 char *buf) 1366 { 1367 struct input_dev *id = to_input_dev(dev); 1368 ssize_t len; 1369 1370 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1371 1372 return min_t(int, len, PAGE_SIZE); 1373 } 1374 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1375 1376 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1377 int max, int add_cr); 1378 1379 static ssize_t input_dev_show_properties(struct device *dev, 1380 struct device_attribute *attr, 1381 char *buf) 1382 { 1383 struct input_dev *input_dev = to_input_dev(dev); 1384 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1385 INPUT_PROP_MAX, true); 1386 return min_t(int, len, PAGE_SIZE); 1387 } 1388 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1389 1390 static struct attribute *input_dev_attrs[] = { 1391 &dev_attr_name.attr, 1392 &dev_attr_phys.attr, 1393 &dev_attr_uniq.attr, 1394 &dev_attr_modalias.attr, 1395 &dev_attr_properties.attr, 1396 NULL 1397 }; 1398 1399 static struct attribute_group input_dev_attr_group = { 1400 .attrs = input_dev_attrs, 1401 }; 1402 1403 #define INPUT_DEV_ID_ATTR(name) \ 1404 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1405 struct device_attribute *attr, \ 1406 char *buf) \ 1407 { \ 1408 struct input_dev *input_dev = to_input_dev(dev); \ 1409 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1410 } \ 1411 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1412 1413 INPUT_DEV_ID_ATTR(bustype); 1414 INPUT_DEV_ID_ATTR(vendor); 1415 INPUT_DEV_ID_ATTR(product); 1416 INPUT_DEV_ID_ATTR(version); 1417 1418 static struct attribute *input_dev_id_attrs[] = { 1419 &dev_attr_bustype.attr, 1420 &dev_attr_vendor.attr, 1421 &dev_attr_product.attr, 1422 &dev_attr_version.attr, 1423 NULL 1424 }; 1425 1426 static struct attribute_group input_dev_id_attr_group = { 1427 .name = "id", 1428 .attrs = input_dev_id_attrs, 1429 }; 1430 1431 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1432 int max, int add_cr) 1433 { 1434 int i; 1435 int len = 0; 1436 bool skip_empty = true; 1437 1438 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1439 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1440 bitmap[i], skip_empty); 1441 if (len) { 1442 skip_empty = false; 1443 if (i > 0) 1444 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1445 } 1446 } 1447 1448 /* 1449 * If no output was produced print a single 0. 1450 */ 1451 if (len == 0) 1452 len = snprintf(buf, buf_size, "%d", 0); 1453 1454 if (add_cr) 1455 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1456 1457 return len; 1458 } 1459 1460 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1461 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1462 struct device_attribute *attr, \ 1463 char *buf) \ 1464 { \ 1465 struct input_dev *input_dev = to_input_dev(dev); \ 1466 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1467 input_dev->bm##bit, ev##_MAX, \ 1468 true); \ 1469 return min_t(int, len, PAGE_SIZE); \ 1470 } \ 1471 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1472 1473 INPUT_DEV_CAP_ATTR(EV, ev); 1474 INPUT_DEV_CAP_ATTR(KEY, key); 1475 INPUT_DEV_CAP_ATTR(REL, rel); 1476 INPUT_DEV_CAP_ATTR(ABS, abs); 1477 INPUT_DEV_CAP_ATTR(MSC, msc); 1478 INPUT_DEV_CAP_ATTR(LED, led); 1479 INPUT_DEV_CAP_ATTR(SND, snd); 1480 INPUT_DEV_CAP_ATTR(FF, ff); 1481 INPUT_DEV_CAP_ATTR(SW, sw); 1482 1483 static struct attribute *input_dev_caps_attrs[] = { 1484 &dev_attr_ev.attr, 1485 &dev_attr_key.attr, 1486 &dev_attr_rel.attr, 1487 &dev_attr_abs.attr, 1488 &dev_attr_msc.attr, 1489 &dev_attr_led.attr, 1490 &dev_attr_snd.attr, 1491 &dev_attr_ff.attr, 1492 &dev_attr_sw.attr, 1493 NULL 1494 }; 1495 1496 static struct attribute_group input_dev_caps_attr_group = { 1497 .name = "capabilities", 1498 .attrs = input_dev_caps_attrs, 1499 }; 1500 1501 static const struct attribute_group *input_dev_attr_groups[] = { 1502 &input_dev_attr_group, 1503 &input_dev_id_attr_group, 1504 &input_dev_caps_attr_group, 1505 NULL 1506 }; 1507 1508 static void input_dev_release(struct device *device) 1509 { 1510 struct input_dev *dev = to_input_dev(device); 1511 1512 input_ff_destroy(dev); 1513 input_mt_destroy_slots(dev); 1514 kfree(dev->absinfo); 1515 kfree(dev->vals); 1516 kfree(dev); 1517 1518 module_put(THIS_MODULE); 1519 } 1520 1521 /* 1522 * Input uevent interface - loading event handlers based on 1523 * device bitfields. 1524 */ 1525 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1526 const char *name, unsigned long *bitmap, int max) 1527 { 1528 int len; 1529 1530 if (add_uevent_var(env, "%s", name)) 1531 return -ENOMEM; 1532 1533 len = input_print_bitmap(&env->buf[env->buflen - 1], 1534 sizeof(env->buf) - env->buflen, 1535 bitmap, max, false); 1536 if (len >= (sizeof(env->buf) - env->buflen)) 1537 return -ENOMEM; 1538 1539 env->buflen += len; 1540 return 0; 1541 } 1542 1543 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1544 struct input_dev *dev) 1545 { 1546 int len; 1547 1548 if (add_uevent_var(env, "MODALIAS=")) 1549 return -ENOMEM; 1550 1551 len = input_print_modalias(&env->buf[env->buflen - 1], 1552 sizeof(env->buf) - env->buflen, 1553 dev, 0); 1554 if (len >= (sizeof(env->buf) - env->buflen)) 1555 return -ENOMEM; 1556 1557 env->buflen += len; 1558 return 0; 1559 } 1560 1561 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1562 do { \ 1563 int err = add_uevent_var(env, fmt, val); \ 1564 if (err) \ 1565 return err; \ 1566 } while (0) 1567 1568 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1569 do { \ 1570 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1571 if (err) \ 1572 return err; \ 1573 } while (0) 1574 1575 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1576 do { \ 1577 int err = input_add_uevent_modalias_var(env, dev); \ 1578 if (err) \ 1579 return err; \ 1580 } while (0) 1581 1582 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1583 { 1584 struct input_dev *dev = to_input_dev(device); 1585 1586 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1587 dev->id.bustype, dev->id.vendor, 1588 dev->id.product, dev->id.version); 1589 if (dev->name) 1590 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1591 if (dev->phys) 1592 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1593 if (dev->uniq) 1594 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1595 1596 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1597 1598 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1599 if (test_bit(EV_KEY, dev->evbit)) 1600 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1601 if (test_bit(EV_REL, dev->evbit)) 1602 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1603 if (test_bit(EV_ABS, dev->evbit)) 1604 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1605 if (test_bit(EV_MSC, dev->evbit)) 1606 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1607 if (test_bit(EV_LED, dev->evbit)) 1608 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1609 if (test_bit(EV_SND, dev->evbit)) 1610 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1611 if (test_bit(EV_FF, dev->evbit)) 1612 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1613 if (test_bit(EV_SW, dev->evbit)) 1614 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1615 1616 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1617 1618 return 0; 1619 } 1620 1621 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1622 do { \ 1623 int i; \ 1624 bool active; \ 1625 \ 1626 if (!test_bit(EV_##type, dev->evbit)) \ 1627 break; \ 1628 \ 1629 for (i = 0; i < type##_MAX; i++) { \ 1630 if (!test_bit(i, dev->bits##bit)) \ 1631 continue; \ 1632 \ 1633 active = test_bit(i, dev->bits); \ 1634 if (!active && !on) \ 1635 continue; \ 1636 \ 1637 dev->event(dev, EV_##type, i, on ? active : 0); \ 1638 } \ 1639 } while (0) 1640 1641 static void input_dev_toggle(struct input_dev *dev, bool activate) 1642 { 1643 if (!dev->event) 1644 return; 1645 1646 INPUT_DO_TOGGLE(dev, LED, led, activate); 1647 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1648 1649 if (activate && test_bit(EV_REP, dev->evbit)) { 1650 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1651 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1652 } 1653 } 1654 1655 /** 1656 * input_reset_device() - reset/restore the state of input device 1657 * @dev: input device whose state needs to be reset 1658 * 1659 * This function tries to reset the state of an opened input device and 1660 * bring internal state and state if the hardware in sync with each other. 1661 * We mark all keys as released, restore LED state, repeat rate, etc. 1662 */ 1663 void input_reset_device(struct input_dev *dev) 1664 { 1665 unsigned long flags; 1666 1667 mutex_lock(&dev->mutex); 1668 spin_lock_irqsave(&dev->event_lock, flags); 1669 1670 input_dev_toggle(dev, true); 1671 input_dev_release_keys(dev); 1672 1673 spin_unlock_irqrestore(&dev->event_lock, flags); 1674 mutex_unlock(&dev->mutex); 1675 } 1676 EXPORT_SYMBOL(input_reset_device); 1677 1678 #ifdef CONFIG_PM_SLEEP 1679 static int input_dev_suspend(struct device *dev) 1680 { 1681 struct input_dev *input_dev = to_input_dev(dev); 1682 1683 spin_lock_irq(&input_dev->event_lock); 1684 1685 /* 1686 * Keys that are pressed now are unlikely to be 1687 * still pressed when we resume. 1688 */ 1689 input_dev_release_keys(input_dev); 1690 1691 /* Turn off LEDs and sounds, if any are active. */ 1692 input_dev_toggle(input_dev, false); 1693 1694 spin_unlock_irq(&input_dev->event_lock); 1695 1696 return 0; 1697 } 1698 1699 static int input_dev_resume(struct device *dev) 1700 { 1701 struct input_dev *input_dev = to_input_dev(dev); 1702 1703 spin_lock_irq(&input_dev->event_lock); 1704 1705 /* Restore state of LEDs and sounds, if any were active. */ 1706 input_dev_toggle(input_dev, true); 1707 1708 spin_unlock_irq(&input_dev->event_lock); 1709 1710 return 0; 1711 } 1712 1713 static int input_dev_freeze(struct device *dev) 1714 { 1715 struct input_dev *input_dev = to_input_dev(dev); 1716 1717 spin_lock_irq(&input_dev->event_lock); 1718 1719 /* 1720 * Keys that are pressed now are unlikely to be 1721 * still pressed when we resume. 1722 */ 1723 input_dev_release_keys(input_dev); 1724 1725 spin_unlock_irq(&input_dev->event_lock); 1726 1727 return 0; 1728 } 1729 1730 static int input_dev_poweroff(struct device *dev) 1731 { 1732 struct input_dev *input_dev = to_input_dev(dev); 1733 1734 spin_lock_irq(&input_dev->event_lock); 1735 1736 /* Turn off LEDs and sounds, if any are active. */ 1737 input_dev_toggle(input_dev, false); 1738 1739 spin_unlock_irq(&input_dev->event_lock); 1740 1741 return 0; 1742 } 1743 1744 static const struct dev_pm_ops input_dev_pm_ops = { 1745 .suspend = input_dev_suspend, 1746 .resume = input_dev_resume, 1747 .freeze = input_dev_freeze, 1748 .poweroff = input_dev_poweroff, 1749 .restore = input_dev_resume, 1750 }; 1751 #endif /* CONFIG_PM */ 1752 1753 static struct device_type input_dev_type = { 1754 .groups = input_dev_attr_groups, 1755 .release = input_dev_release, 1756 .uevent = input_dev_uevent, 1757 #ifdef CONFIG_PM_SLEEP 1758 .pm = &input_dev_pm_ops, 1759 #endif 1760 }; 1761 1762 static char *input_devnode(struct device *dev, umode_t *mode) 1763 { 1764 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1765 } 1766 1767 struct class input_class = { 1768 .name = "input", 1769 .devnode = input_devnode, 1770 }; 1771 EXPORT_SYMBOL_GPL(input_class); 1772 1773 /** 1774 * input_allocate_device - allocate memory for new input device 1775 * 1776 * Returns prepared struct input_dev or %NULL. 1777 * 1778 * NOTE: Use input_free_device() to free devices that have not been 1779 * registered; input_unregister_device() should be used for already 1780 * registered devices. 1781 */ 1782 struct input_dev *input_allocate_device(void) 1783 { 1784 static atomic_t input_no = ATOMIC_INIT(-1); 1785 struct input_dev *dev; 1786 1787 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1788 if (dev) { 1789 dev->dev.type = &input_dev_type; 1790 dev->dev.class = &input_class; 1791 device_initialize(&dev->dev); 1792 mutex_init(&dev->mutex); 1793 spin_lock_init(&dev->event_lock); 1794 init_timer(&dev->timer); 1795 INIT_LIST_HEAD(&dev->h_list); 1796 INIT_LIST_HEAD(&dev->node); 1797 1798 dev_set_name(&dev->dev, "input%lu", 1799 (unsigned long)atomic_inc_return(&input_no)); 1800 1801 __module_get(THIS_MODULE); 1802 } 1803 1804 return dev; 1805 } 1806 EXPORT_SYMBOL(input_allocate_device); 1807 1808 struct input_devres { 1809 struct input_dev *input; 1810 }; 1811 1812 static int devm_input_device_match(struct device *dev, void *res, void *data) 1813 { 1814 struct input_devres *devres = res; 1815 1816 return devres->input == data; 1817 } 1818 1819 static void devm_input_device_release(struct device *dev, void *res) 1820 { 1821 struct input_devres *devres = res; 1822 struct input_dev *input = devres->input; 1823 1824 dev_dbg(dev, "%s: dropping reference to %s\n", 1825 __func__, dev_name(&input->dev)); 1826 input_put_device(input); 1827 } 1828 1829 /** 1830 * devm_input_allocate_device - allocate managed input device 1831 * @dev: device owning the input device being created 1832 * 1833 * Returns prepared struct input_dev or %NULL. 1834 * 1835 * Managed input devices do not need to be explicitly unregistered or 1836 * freed as it will be done automatically when owner device unbinds from 1837 * its driver (or binding fails). Once managed input device is allocated, 1838 * it is ready to be set up and registered in the same fashion as regular 1839 * input device. There are no special devm_input_device_[un]register() 1840 * variants, regular ones work with both managed and unmanaged devices, 1841 * should you need them. In most cases however, managed input device need 1842 * not be explicitly unregistered or freed. 1843 * 1844 * NOTE: the owner device is set up as parent of input device and users 1845 * should not override it. 1846 */ 1847 struct input_dev *devm_input_allocate_device(struct device *dev) 1848 { 1849 struct input_dev *input; 1850 struct input_devres *devres; 1851 1852 devres = devres_alloc(devm_input_device_release, 1853 sizeof(struct input_devres), GFP_KERNEL); 1854 if (!devres) 1855 return NULL; 1856 1857 input = input_allocate_device(); 1858 if (!input) { 1859 devres_free(devres); 1860 return NULL; 1861 } 1862 1863 input->dev.parent = dev; 1864 input->devres_managed = true; 1865 1866 devres->input = input; 1867 devres_add(dev, devres); 1868 1869 return input; 1870 } 1871 EXPORT_SYMBOL(devm_input_allocate_device); 1872 1873 /** 1874 * input_free_device - free memory occupied by input_dev structure 1875 * @dev: input device to free 1876 * 1877 * This function should only be used if input_register_device() 1878 * was not called yet or if it failed. Once device was registered 1879 * use input_unregister_device() and memory will be freed once last 1880 * reference to the device is dropped. 1881 * 1882 * Device should be allocated by input_allocate_device(). 1883 * 1884 * NOTE: If there are references to the input device then memory 1885 * will not be freed until last reference is dropped. 1886 */ 1887 void input_free_device(struct input_dev *dev) 1888 { 1889 if (dev) { 1890 if (dev->devres_managed) 1891 WARN_ON(devres_destroy(dev->dev.parent, 1892 devm_input_device_release, 1893 devm_input_device_match, 1894 dev)); 1895 input_put_device(dev); 1896 } 1897 } 1898 EXPORT_SYMBOL(input_free_device); 1899 1900 /** 1901 * input_set_capability - mark device as capable of a certain event 1902 * @dev: device that is capable of emitting or accepting event 1903 * @type: type of the event (EV_KEY, EV_REL, etc...) 1904 * @code: event code 1905 * 1906 * In addition to setting up corresponding bit in appropriate capability 1907 * bitmap the function also adjusts dev->evbit. 1908 */ 1909 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1910 { 1911 switch (type) { 1912 case EV_KEY: 1913 __set_bit(code, dev->keybit); 1914 break; 1915 1916 case EV_REL: 1917 __set_bit(code, dev->relbit); 1918 break; 1919 1920 case EV_ABS: 1921 input_alloc_absinfo(dev); 1922 if (!dev->absinfo) 1923 return; 1924 1925 __set_bit(code, dev->absbit); 1926 break; 1927 1928 case EV_MSC: 1929 __set_bit(code, dev->mscbit); 1930 break; 1931 1932 case EV_SW: 1933 __set_bit(code, dev->swbit); 1934 break; 1935 1936 case EV_LED: 1937 __set_bit(code, dev->ledbit); 1938 break; 1939 1940 case EV_SND: 1941 __set_bit(code, dev->sndbit); 1942 break; 1943 1944 case EV_FF: 1945 __set_bit(code, dev->ffbit); 1946 break; 1947 1948 case EV_PWR: 1949 /* do nothing */ 1950 break; 1951 1952 default: 1953 pr_err("input_set_capability: unknown type %u (code %u)\n", 1954 type, code); 1955 dump_stack(); 1956 return; 1957 } 1958 1959 __set_bit(type, dev->evbit); 1960 } 1961 EXPORT_SYMBOL(input_set_capability); 1962 1963 static unsigned int input_estimate_events_per_packet(struct input_dev *dev) 1964 { 1965 int mt_slots; 1966 int i; 1967 unsigned int events; 1968 1969 if (dev->mt) { 1970 mt_slots = dev->mt->num_slots; 1971 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { 1972 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - 1973 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, 1974 mt_slots = clamp(mt_slots, 2, 32); 1975 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { 1976 mt_slots = 2; 1977 } else { 1978 mt_slots = 0; 1979 } 1980 1981 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ 1982 1983 if (test_bit(EV_ABS, dev->evbit)) { 1984 for (i = 0; i < ABS_CNT; i++) { 1985 if (test_bit(i, dev->absbit)) { 1986 if (input_is_mt_axis(i)) 1987 events += mt_slots; 1988 else 1989 events++; 1990 } 1991 } 1992 } 1993 1994 if (test_bit(EV_REL, dev->evbit)) { 1995 for (i = 0; i < REL_CNT; i++) 1996 if (test_bit(i, dev->relbit)) 1997 events++; 1998 } 1999 2000 /* Make room for KEY and MSC events */ 2001 events += 7; 2002 2003 return events; 2004 } 2005 2006 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 2007 do { \ 2008 if (!test_bit(EV_##type, dev->evbit)) \ 2009 memset(dev->bits##bit, 0, \ 2010 sizeof(dev->bits##bit)); \ 2011 } while (0) 2012 2013 static void input_cleanse_bitmasks(struct input_dev *dev) 2014 { 2015 INPUT_CLEANSE_BITMASK(dev, KEY, key); 2016 INPUT_CLEANSE_BITMASK(dev, REL, rel); 2017 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 2018 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 2019 INPUT_CLEANSE_BITMASK(dev, LED, led); 2020 INPUT_CLEANSE_BITMASK(dev, SND, snd); 2021 INPUT_CLEANSE_BITMASK(dev, FF, ff); 2022 INPUT_CLEANSE_BITMASK(dev, SW, sw); 2023 } 2024 2025 static void __input_unregister_device(struct input_dev *dev) 2026 { 2027 struct input_handle *handle, *next; 2028 2029 input_disconnect_device(dev); 2030 2031 mutex_lock(&input_mutex); 2032 2033 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 2034 handle->handler->disconnect(handle); 2035 WARN_ON(!list_empty(&dev->h_list)); 2036 2037 del_timer_sync(&dev->timer); 2038 list_del_init(&dev->node); 2039 2040 input_wakeup_procfs_readers(); 2041 2042 mutex_unlock(&input_mutex); 2043 2044 device_del(&dev->dev); 2045 } 2046 2047 static void devm_input_device_unregister(struct device *dev, void *res) 2048 { 2049 struct input_devres *devres = res; 2050 struct input_dev *input = devres->input; 2051 2052 dev_dbg(dev, "%s: unregistering device %s\n", 2053 __func__, dev_name(&input->dev)); 2054 __input_unregister_device(input); 2055 } 2056 2057 /** 2058 * input_register_device - register device with input core 2059 * @dev: device to be registered 2060 * 2061 * This function registers device with input core. The device must be 2062 * allocated with input_allocate_device() and all it's capabilities 2063 * set up before registering. 2064 * If function fails the device must be freed with input_free_device(). 2065 * Once device has been successfully registered it can be unregistered 2066 * with input_unregister_device(); input_free_device() should not be 2067 * called in this case. 2068 * 2069 * Note that this function is also used to register managed input devices 2070 * (ones allocated with devm_input_allocate_device()). Such managed input 2071 * devices need not be explicitly unregistered or freed, their tear down 2072 * is controlled by the devres infrastructure. It is also worth noting 2073 * that tear down of managed input devices is internally a 2-step process: 2074 * registered managed input device is first unregistered, but stays in 2075 * memory and can still handle input_event() calls (although events will 2076 * not be delivered anywhere). The freeing of managed input device will 2077 * happen later, when devres stack is unwound to the point where device 2078 * allocation was made. 2079 */ 2080 int input_register_device(struct input_dev *dev) 2081 { 2082 struct input_devres *devres = NULL; 2083 struct input_handler *handler; 2084 unsigned int packet_size; 2085 const char *path; 2086 int error; 2087 2088 if (dev->devres_managed) { 2089 devres = devres_alloc(devm_input_device_unregister, 2090 sizeof(struct input_devres), GFP_KERNEL); 2091 if (!devres) 2092 return -ENOMEM; 2093 2094 devres->input = dev; 2095 } 2096 2097 /* Every input device generates EV_SYN/SYN_REPORT events. */ 2098 __set_bit(EV_SYN, dev->evbit); 2099 2100 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 2101 __clear_bit(KEY_RESERVED, dev->keybit); 2102 2103 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 2104 input_cleanse_bitmasks(dev); 2105 2106 packet_size = input_estimate_events_per_packet(dev); 2107 if (dev->hint_events_per_packet < packet_size) 2108 dev->hint_events_per_packet = packet_size; 2109 2110 dev->max_vals = dev->hint_events_per_packet + 2; 2111 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); 2112 if (!dev->vals) { 2113 error = -ENOMEM; 2114 goto err_devres_free; 2115 } 2116 2117 /* 2118 * If delay and period are pre-set by the driver, then autorepeating 2119 * is handled by the driver itself and we don't do it in input.c. 2120 */ 2121 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 2122 dev->timer.data = (long) dev; 2123 dev->timer.function = input_repeat_key; 2124 dev->rep[REP_DELAY] = 250; 2125 dev->rep[REP_PERIOD] = 33; 2126 } 2127 2128 if (!dev->getkeycode) 2129 dev->getkeycode = input_default_getkeycode; 2130 2131 if (!dev->setkeycode) 2132 dev->setkeycode = input_default_setkeycode; 2133 2134 error = device_add(&dev->dev); 2135 if (error) 2136 goto err_free_vals; 2137 2138 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 2139 pr_info("%s as %s\n", 2140 dev->name ? dev->name : "Unspecified device", 2141 path ? path : "N/A"); 2142 kfree(path); 2143 2144 error = mutex_lock_interruptible(&input_mutex); 2145 if (error) 2146 goto err_device_del; 2147 2148 list_add_tail(&dev->node, &input_dev_list); 2149 2150 list_for_each_entry(handler, &input_handler_list, node) 2151 input_attach_handler(dev, handler); 2152 2153 input_wakeup_procfs_readers(); 2154 2155 mutex_unlock(&input_mutex); 2156 2157 if (dev->devres_managed) { 2158 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n", 2159 __func__, dev_name(&dev->dev)); 2160 devres_add(dev->dev.parent, devres); 2161 } 2162 return 0; 2163 2164 err_device_del: 2165 device_del(&dev->dev); 2166 err_free_vals: 2167 kfree(dev->vals); 2168 dev->vals = NULL; 2169 err_devres_free: 2170 devres_free(devres); 2171 return error; 2172 } 2173 EXPORT_SYMBOL(input_register_device); 2174 2175 /** 2176 * input_unregister_device - unregister previously registered device 2177 * @dev: device to be unregistered 2178 * 2179 * This function unregisters an input device. Once device is unregistered 2180 * the caller should not try to access it as it may get freed at any moment. 2181 */ 2182 void input_unregister_device(struct input_dev *dev) 2183 { 2184 if (dev->devres_managed) { 2185 WARN_ON(devres_destroy(dev->dev.parent, 2186 devm_input_device_unregister, 2187 devm_input_device_match, 2188 dev)); 2189 __input_unregister_device(dev); 2190 /* 2191 * We do not do input_put_device() here because it will be done 2192 * when 2nd devres fires up. 2193 */ 2194 } else { 2195 __input_unregister_device(dev); 2196 input_put_device(dev); 2197 } 2198 } 2199 EXPORT_SYMBOL(input_unregister_device); 2200 2201 /** 2202 * input_register_handler - register a new input handler 2203 * @handler: handler to be registered 2204 * 2205 * This function registers a new input handler (interface) for input 2206 * devices in the system and attaches it to all input devices that 2207 * are compatible with the handler. 2208 */ 2209 int input_register_handler(struct input_handler *handler) 2210 { 2211 struct input_dev *dev; 2212 int error; 2213 2214 error = mutex_lock_interruptible(&input_mutex); 2215 if (error) 2216 return error; 2217 2218 INIT_LIST_HEAD(&handler->h_list); 2219 2220 list_add_tail(&handler->node, &input_handler_list); 2221 2222 list_for_each_entry(dev, &input_dev_list, node) 2223 input_attach_handler(dev, handler); 2224 2225 input_wakeup_procfs_readers(); 2226 2227 mutex_unlock(&input_mutex); 2228 return 0; 2229 } 2230 EXPORT_SYMBOL(input_register_handler); 2231 2232 /** 2233 * input_unregister_handler - unregisters an input handler 2234 * @handler: handler to be unregistered 2235 * 2236 * This function disconnects a handler from its input devices and 2237 * removes it from lists of known handlers. 2238 */ 2239 void input_unregister_handler(struct input_handler *handler) 2240 { 2241 struct input_handle *handle, *next; 2242 2243 mutex_lock(&input_mutex); 2244 2245 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 2246 handler->disconnect(handle); 2247 WARN_ON(!list_empty(&handler->h_list)); 2248 2249 list_del_init(&handler->node); 2250 2251 input_wakeup_procfs_readers(); 2252 2253 mutex_unlock(&input_mutex); 2254 } 2255 EXPORT_SYMBOL(input_unregister_handler); 2256 2257 /** 2258 * input_handler_for_each_handle - handle iterator 2259 * @handler: input handler to iterate 2260 * @data: data for the callback 2261 * @fn: function to be called for each handle 2262 * 2263 * Iterate over @bus's list of devices, and call @fn for each, passing 2264 * it @data and stop when @fn returns a non-zero value. The function is 2265 * using RCU to traverse the list and therefore may be usind in atonic 2266 * contexts. The @fn callback is invoked from RCU critical section and 2267 * thus must not sleep. 2268 */ 2269 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2270 int (*fn)(struct input_handle *, void *)) 2271 { 2272 struct input_handle *handle; 2273 int retval = 0; 2274 2275 rcu_read_lock(); 2276 2277 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2278 retval = fn(handle, data); 2279 if (retval) 2280 break; 2281 } 2282 2283 rcu_read_unlock(); 2284 2285 return retval; 2286 } 2287 EXPORT_SYMBOL(input_handler_for_each_handle); 2288 2289 /** 2290 * input_register_handle - register a new input handle 2291 * @handle: handle to register 2292 * 2293 * This function puts a new input handle onto device's 2294 * and handler's lists so that events can flow through 2295 * it once it is opened using input_open_device(). 2296 * 2297 * This function is supposed to be called from handler's 2298 * connect() method. 2299 */ 2300 int input_register_handle(struct input_handle *handle) 2301 { 2302 struct input_handler *handler = handle->handler; 2303 struct input_dev *dev = handle->dev; 2304 int error; 2305 2306 /* 2307 * We take dev->mutex here to prevent race with 2308 * input_release_device(). 2309 */ 2310 error = mutex_lock_interruptible(&dev->mutex); 2311 if (error) 2312 return error; 2313 2314 /* 2315 * Filters go to the head of the list, normal handlers 2316 * to the tail. 2317 */ 2318 if (handler->filter) 2319 list_add_rcu(&handle->d_node, &dev->h_list); 2320 else 2321 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2322 2323 mutex_unlock(&dev->mutex); 2324 2325 /* 2326 * Since we are supposed to be called from ->connect() 2327 * which is mutually exclusive with ->disconnect() 2328 * we can't be racing with input_unregister_handle() 2329 * and so separate lock is not needed here. 2330 */ 2331 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2332 2333 if (handler->start) 2334 handler->start(handle); 2335 2336 return 0; 2337 } 2338 EXPORT_SYMBOL(input_register_handle); 2339 2340 /** 2341 * input_unregister_handle - unregister an input handle 2342 * @handle: handle to unregister 2343 * 2344 * This function removes input handle from device's 2345 * and handler's lists. 2346 * 2347 * This function is supposed to be called from handler's 2348 * disconnect() method. 2349 */ 2350 void input_unregister_handle(struct input_handle *handle) 2351 { 2352 struct input_dev *dev = handle->dev; 2353 2354 list_del_rcu(&handle->h_node); 2355 2356 /* 2357 * Take dev->mutex to prevent race with input_release_device(). 2358 */ 2359 mutex_lock(&dev->mutex); 2360 list_del_rcu(&handle->d_node); 2361 mutex_unlock(&dev->mutex); 2362 2363 synchronize_rcu(); 2364 } 2365 EXPORT_SYMBOL(input_unregister_handle); 2366 2367 /** 2368 * input_get_new_minor - allocates a new input minor number 2369 * @legacy_base: beginning or the legacy range to be searched 2370 * @legacy_num: size of legacy range 2371 * @allow_dynamic: whether we can also take ID from the dynamic range 2372 * 2373 * This function allocates a new device minor for from input major namespace. 2374 * Caller can request legacy minor by specifying @legacy_base and @legacy_num 2375 * parameters and whether ID can be allocated from dynamic range if there are 2376 * no free IDs in legacy range. 2377 */ 2378 int input_get_new_minor(int legacy_base, unsigned int legacy_num, 2379 bool allow_dynamic) 2380 { 2381 /* 2382 * This function should be called from input handler's ->connect() 2383 * methods, which are serialized with input_mutex, so no additional 2384 * locking is needed here. 2385 */ 2386 if (legacy_base >= 0) { 2387 int minor = ida_simple_get(&input_ida, 2388 legacy_base, 2389 legacy_base + legacy_num, 2390 GFP_KERNEL); 2391 if (minor >= 0 || !allow_dynamic) 2392 return minor; 2393 } 2394 2395 return ida_simple_get(&input_ida, 2396 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES, 2397 GFP_KERNEL); 2398 } 2399 EXPORT_SYMBOL(input_get_new_minor); 2400 2401 /** 2402 * input_free_minor - release previously allocated minor 2403 * @minor: minor to be released 2404 * 2405 * This function releases previously allocated input minor so that it can be 2406 * reused later. 2407 */ 2408 void input_free_minor(unsigned int minor) 2409 { 2410 ida_simple_remove(&input_ida, minor); 2411 } 2412 EXPORT_SYMBOL(input_free_minor); 2413 2414 static int __init input_init(void) 2415 { 2416 int err; 2417 2418 err = class_register(&input_class); 2419 if (err) { 2420 pr_err("unable to register input_dev class\n"); 2421 return err; 2422 } 2423 2424 err = input_proc_init(); 2425 if (err) 2426 goto fail1; 2427 2428 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2429 INPUT_MAX_CHAR_DEVICES, "input"); 2430 if (err) { 2431 pr_err("unable to register char major %d", INPUT_MAJOR); 2432 goto fail2; 2433 } 2434 2435 return 0; 2436 2437 fail2: input_proc_exit(); 2438 fail1: class_unregister(&input_class); 2439 return err; 2440 } 2441 2442 static void __exit input_exit(void) 2443 { 2444 input_proc_exit(); 2445 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2446 INPUT_MAX_CHAR_DEVICES); 2447 class_unregister(&input_class); 2448 } 2449 2450 subsys_initcall(input_init); 2451 module_exit(input_exit); 2452