1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #include <linux/init.h> 14 #include <linux/input.h> 15 #include <linux/module.h> 16 #include <linux/random.h> 17 #include <linux/major.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/interrupt.h> 21 #include <linux/poll.h> 22 #include <linux/device.h> 23 #include <linux/mutex.h> 24 25 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 26 MODULE_DESCRIPTION("Input core"); 27 MODULE_LICENSE("GPL"); 28 29 #define INPUT_DEVICES 256 30 31 static LIST_HEAD(input_dev_list); 32 static LIST_HEAD(input_handler_list); 33 34 static struct input_handler *input_table[8]; 35 36 /** 37 * input_event() - report new input event 38 * @dev: device that generated the event 39 * @type: type of the event 40 * @code: event code 41 * @value: value of the event 42 * 43 * This function should be used by drivers implementing various input devices 44 * See also input_inject_event() 45 */ 46 void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value) 47 { 48 struct input_handle *handle; 49 50 if (type > EV_MAX || !test_bit(type, dev->evbit)) 51 return; 52 53 add_input_randomness(type, code, value); 54 55 switch (type) { 56 57 case EV_SYN: 58 switch (code) { 59 case SYN_CONFIG: 60 if (dev->event) 61 dev->event(dev, type, code, value); 62 break; 63 64 case SYN_REPORT: 65 if (dev->sync) 66 return; 67 dev->sync = 1; 68 break; 69 } 70 break; 71 72 case EV_KEY: 73 74 if (code > KEY_MAX || !test_bit(code, dev->keybit) || !!test_bit(code, dev->key) == value) 75 return; 76 77 if (value == 2) 78 break; 79 80 change_bit(code, dev->key); 81 82 if (test_bit(EV_REP, dev->evbit) && dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && dev->timer.data && value) { 83 dev->repeat_key = code; 84 mod_timer(&dev->timer, jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 85 } 86 87 break; 88 89 case EV_SW: 90 91 if (code > SW_MAX || !test_bit(code, dev->swbit) || !!test_bit(code, dev->sw) == value) 92 return; 93 94 change_bit(code, dev->sw); 95 96 break; 97 98 case EV_ABS: 99 100 if (code > ABS_MAX || !test_bit(code, dev->absbit)) 101 return; 102 103 if (dev->absfuzz[code]) { 104 if ((value > dev->abs[code] - (dev->absfuzz[code] >> 1)) && 105 (value < dev->abs[code] + (dev->absfuzz[code] >> 1))) 106 return; 107 108 if ((value > dev->abs[code] - dev->absfuzz[code]) && 109 (value < dev->abs[code] + dev->absfuzz[code])) 110 value = (dev->abs[code] * 3 + value) >> 2; 111 112 if ((value > dev->abs[code] - (dev->absfuzz[code] << 1)) && 113 (value < dev->abs[code] + (dev->absfuzz[code] << 1))) 114 value = (dev->abs[code] + value) >> 1; 115 } 116 117 if (dev->abs[code] == value) 118 return; 119 120 dev->abs[code] = value; 121 break; 122 123 case EV_REL: 124 125 if (code > REL_MAX || !test_bit(code, dev->relbit) || (value == 0)) 126 return; 127 128 break; 129 130 case EV_MSC: 131 132 if (code > MSC_MAX || !test_bit(code, dev->mscbit)) 133 return; 134 135 if (dev->event) 136 dev->event(dev, type, code, value); 137 138 break; 139 140 case EV_LED: 141 142 if (code > LED_MAX || !test_bit(code, dev->ledbit) || !!test_bit(code, dev->led) == value) 143 return; 144 145 change_bit(code, dev->led); 146 147 if (dev->event) 148 dev->event(dev, type, code, value); 149 150 break; 151 152 case EV_SND: 153 154 if (code > SND_MAX || !test_bit(code, dev->sndbit)) 155 return; 156 157 if (!!test_bit(code, dev->snd) != !!value) 158 change_bit(code, dev->snd); 159 160 if (dev->event) 161 dev->event(dev, type, code, value); 162 163 break; 164 165 case EV_REP: 166 167 if (code > REP_MAX || value < 0 || dev->rep[code] == value) 168 return; 169 170 dev->rep[code] = value; 171 if (dev->event) 172 dev->event(dev, type, code, value); 173 174 break; 175 176 case EV_FF: 177 178 if (value < 0) 179 return; 180 181 if (dev->event) 182 dev->event(dev, type, code, value); 183 break; 184 } 185 186 if (type != EV_SYN) 187 dev->sync = 0; 188 189 if (dev->grab) 190 dev->grab->handler->event(dev->grab, type, code, value); 191 else 192 list_for_each_entry(handle, &dev->h_list, d_node) 193 if (handle->open) 194 handle->handler->event(handle, type, code, value); 195 } 196 EXPORT_SYMBOL(input_event); 197 198 /** 199 * input_inject_event() - send input event from input handler 200 * @handle: input handle to send event through 201 * @type: type of the event 202 * @code: event code 203 * @value: value of the event 204 * 205 * Similar to input_event() but will ignore event if device is "grabbed" and handle 206 * injecting event is not the one that owns the device. 207 */ 208 void input_inject_event(struct input_handle *handle, unsigned int type, unsigned int code, int value) 209 { 210 if (!handle->dev->grab || handle->dev->grab == handle) 211 input_event(handle->dev, type, code, value); 212 } 213 EXPORT_SYMBOL(input_inject_event); 214 215 static void input_repeat_key(unsigned long data) 216 { 217 struct input_dev *dev = (void *) data; 218 219 if (!test_bit(dev->repeat_key, dev->key)) 220 return; 221 222 input_event(dev, EV_KEY, dev->repeat_key, 2); 223 input_sync(dev); 224 225 if (dev->rep[REP_PERIOD]) 226 mod_timer(&dev->timer, jiffies + msecs_to_jiffies(dev->rep[REP_PERIOD])); 227 } 228 229 int input_grab_device(struct input_handle *handle) 230 { 231 if (handle->dev->grab) 232 return -EBUSY; 233 234 handle->dev->grab = handle; 235 return 0; 236 } 237 EXPORT_SYMBOL(input_grab_device); 238 239 void input_release_device(struct input_handle *handle) 240 { 241 struct input_dev *dev = handle->dev; 242 243 if (dev->grab == handle) { 244 dev->grab = NULL; 245 246 list_for_each_entry(handle, &dev->h_list, d_node) 247 if (handle->handler->start) 248 handle->handler->start(handle); 249 } 250 } 251 EXPORT_SYMBOL(input_release_device); 252 253 int input_open_device(struct input_handle *handle) 254 { 255 struct input_dev *dev = handle->dev; 256 int err; 257 258 err = mutex_lock_interruptible(&dev->mutex); 259 if (err) 260 return err; 261 262 handle->open++; 263 264 if (!dev->users++ && dev->open) 265 err = dev->open(dev); 266 267 if (err) 268 handle->open--; 269 270 mutex_unlock(&dev->mutex); 271 272 return err; 273 } 274 EXPORT_SYMBOL(input_open_device); 275 276 int input_flush_device(struct input_handle* handle, struct file* file) 277 { 278 if (handle->dev->flush) 279 return handle->dev->flush(handle->dev, file); 280 281 return 0; 282 } 283 EXPORT_SYMBOL(input_flush_device); 284 285 void input_close_device(struct input_handle *handle) 286 { 287 struct input_dev *dev = handle->dev; 288 289 input_release_device(handle); 290 291 mutex_lock(&dev->mutex); 292 293 if (!--dev->users && dev->close) 294 dev->close(dev); 295 handle->open--; 296 297 mutex_unlock(&dev->mutex); 298 } 299 EXPORT_SYMBOL(input_close_device); 300 301 static int input_fetch_keycode(struct input_dev *dev, int scancode) 302 { 303 switch (dev->keycodesize) { 304 case 1: 305 return ((u8 *)dev->keycode)[scancode]; 306 307 case 2: 308 return ((u16 *)dev->keycode)[scancode]; 309 310 default: 311 return ((u32 *)dev->keycode)[scancode]; 312 } 313 } 314 315 static int input_default_getkeycode(struct input_dev *dev, 316 int scancode, int *keycode) 317 { 318 if (!dev->keycodesize) 319 return -EINVAL; 320 321 if (scancode < 0 || scancode >= dev->keycodemax) 322 return -EINVAL; 323 324 *keycode = input_fetch_keycode(dev, scancode); 325 326 return 0; 327 } 328 329 static int input_default_setkeycode(struct input_dev *dev, 330 int scancode, int keycode) 331 { 332 int old_keycode; 333 int i; 334 335 if (scancode < 0 || scancode >= dev->keycodemax) 336 return -EINVAL; 337 338 if (keycode < 0 || keycode > KEY_MAX) 339 return -EINVAL; 340 341 if (!dev->keycodesize) 342 return -EINVAL; 343 344 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8))) 345 return -EINVAL; 346 347 switch (dev->keycodesize) { 348 case 1: { 349 u8 *k = (u8 *)dev->keycode; 350 old_keycode = k[scancode]; 351 k[scancode] = keycode; 352 break; 353 } 354 case 2: { 355 u16 *k = (u16 *)dev->keycode; 356 old_keycode = k[scancode]; 357 k[scancode] = keycode; 358 break; 359 } 360 default: { 361 u32 *k = (u32 *)dev->keycode; 362 old_keycode = k[scancode]; 363 k[scancode] = keycode; 364 break; 365 } 366 } 367 368 clear_bit(old_keycode, dev->keybit); 369 set_bit(keycode, dev->keybit); 370 371 for (i = 0; i < dev->keycodemax; i++) { 372 if (input_fetch_keycode(dev, i) == old_keycode) { 373 set_bit(old_keycode, dev->keybit); 374 break; /* Setting the bit twice is useless, so break */ 375 } 376 } 377 378 return 0; 379 } 380 381 382 #define MATCH_BIT(bit, max) \ 383 for (i = 0; i < NBITS(max); i++) \ 384 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ 385 break; \ 386 if (i != NBITS(max)) \ 387 continue; 388 389 static const struct input_device_id *input_match_device(const struct input_device_id *id, 390 struct input_dev *dev) 391 { 392 int i; 393 394 for (; id->flags || id->driver_info; id++) { 395 396 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 397 if (id->bustype != dev->id.bustype) 398 continue; 399 400 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 401 if (id->vendor != dev->id.vendor) 402 continue; 403 404 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 405 if (id->product != dev->id.product) 406 continue; 407 408 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 409 if (id->version != dev->id.version) 410 continue; 411 412 MATCH_BIT(evbit, EV_MAX); 413 MATCH_BIT(keybit, KEY_MAX); 414 MATCH_BIT(relbit, REL_MAX); 415 MATCH_BIT(absbit, ABS_MAX); 416 MATCH_BIT(mscbit, MSC_MAX); 417 MATCH_BIT(ledbit, LED_MAX); 418 MATCH_BIT(sndbit, SND_MAX); 419 MATCH_BIT(ffbit, FF_MAX); 420 MATCH_BIT(swbit, SW_MAX); 421 422 return id; 423 } 424 425 return NULL; 426 } 427 428 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 429 { 430 const struct input_device_id *id; 431 int error; 432 433 if (handler->blacklist && input_match_device(handler->blacklist, dev)) 434 return -ENODEV; 435 436 id = input_match_device(handler->id_table, dev); 437 if (!id) 438 return -ENODEV; 439 440 error = handler->connect(handler, dev, id); 441 if (error && error != -ENODEV) 442 printk(KERN_ERR 443 "input: failed to attach handler %s to device %s, " 444 "error: %d\n", 445 handler->name, kobject_name(&dev->dev.kobj), error); 446 447 return error; 448 } 449 450 451 #ifdef CONFIG_PROC_FS 452 453 static struct proc_dir_entry *proc_bus_input_dir; 454 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 455 static int input_devices_state; 456 457 static inline void input_wakeup_procfs_readers(void) 458 { 459 input_devices_state++; 460 wake_up(&input_devices_poll_wait); 461 } 462 463 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 464 { 465 int state = input_devices_state; 466 467 poll_wait(file, &input_devices_poll_wait, wait); 468 if (state != input_devices_state) 469 return POLLIN | POLLRDNORM; 470 471 return 0; 472 } 473 474 static struct list_head *list_get_nth_element(struct list_head *list, loff_t *pos) 475 { 476 struct list_head *node; 477 loff_t i = 0; 478 479 list_for_each(node, list) 480 if (i++ == *pos) 481 return node; 482 483 return NULL; 484 } 485 486 static struct list_head *list_get_next_element(struct list_head *list, struct list_head *element, loff_t *pos) 487 { 488 if (element->next == list) 489 return NULL; 490 491 ++(*pos); 492 return element->next; 493 } 494 495 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 496 { 497 /* acquire lock here ... Yes, we do need locking, I knowi, I know... */ 498 499 return list_get_nth_element(&input_dev_list, pos); 500 } 501 502 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 503 { 504 return list_get_next_element(&input_dev_list, v, pos); 505 } 506 507 static void input_devices_seq_stop(struct seq_file *seq, void *v) 508 { 509 /* release lock here */ 510 } 511 512 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 513 unsigned long *bitmap, int max) 514 { 515 int i; 516 517 for (i = NBITS(max) - 1; i > 0; i--) 518 if (bitmap[i]) 519 break; 520 521 seq_printf(seq, "B: %s=", name); 522 for (; i >= 0; i--) 523 seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : ""); 524 seq_putc(seq, '\n'); 525 } 526 527 static int input_devices_seq_show(struct seq_file *seq, void *v) 528 { 529 struct input_dev *dev = container_of(v, struct input_dev, node); 530 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 531 struct input_handle *handle; 532 533 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 534 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 535 536 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 537 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 538 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 539 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 540 seq_printf(seq, "H: Handlers="); 541 542 list_for_each_entry(handle, &dev->h_list, d_node) 543 seq_printf(seq, "%s ", handle->name); 544 seq_putc(seq, '\n'); 545 546 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 547 if (test_bit(EV_KEY, dev->evbit)) 548 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 549 if (test_bit(EV_REL, dev->evbit)) 550 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 551 if (test_bit(EV_ABS, dev->evbit)) 552 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 553 if (test_bit(EV_MSC, dev->evbit)) 554 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 555 if (test_bit(EV_LED, dev->evbit)) 556 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 557 if (test_bit(EV_SND, dev->evbit)) 558 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 559 if (test_bit(EV_FF, dev->evbit)) 560 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 561 if (test_bit(EV_SW, dev->evbit)) 562 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 563 564 seq_putc(seq, '\n'); 565 566 kfree(path); 567 return 0; 568 } 569 570 static struct seq_operations input_devices_seq_ops = { 571 .start = input_devices_seq_start, 572 .next = input_devices_seq_next, 573 .stop = input_devices_seq_stop, 574 .show = input_devices_seq_show, 575 }; 576 577 static int input_proc_devices_open(struct inode *inode, struct file *file) 578 { 579 return seq_open(file, &input_devices_seq_ops); 580 } 581 582 static const struct file_operations input_devices_fileops = { 583 .owner = THIS_MODULE, 584 .open = input_proc_devices_open, 585 .poll = input_proc_devices_poll, 586 .read = seq_read, 587 .llseek = seq_lseek, 588 .release = seq_release, 589 }; 590 591 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 592 { 593 /* acquire lock here ... Yes, we do need locking, I knowi, I know... */ 594 seq->private = (void *)(unsigned long)*pos; 595 return list_get_nth_element(&input_handler_list, pos); 596 } 597 598 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 599 { 600 seq->private = (void *)(unsigned long)(*pos + 1); 601 return list_get_next_element(&input_handler_list, v, pos); 602 } 603 604 static void input_handlers_seq_stop(struct seq_file *seq, void *v) 605 { 606 /* release lock here */ 607 } 608 609 static int input_handlers_seq_show(struct seq_file *seq, void *v) 610 { 611 struct input_handler *handler = container_of(v, struct input_handler, node); 612 613 seq_printf(seq, "N: Number=%ld Name=%s", 614 (unsigned long)seq->private, handler->name); 615 if (handler->fops) 616 seq_printf(seq, " Minor=%d", handler->minor); 617 seq_putc(seq, '\n'); 618 619 return 0; 620 } 621 static struct seq_operations input_handlers_seq_ops = { 622 .start = input_handlers_seq_start, 623 .next = input_handlers_seq_next, 624 .stop = input_handlers_seq_stop, 625 .show = input_handlers_seq_show, 626 }; 627 628 static int input_proc_handlers_open(struct inode *inode, struct file *file) 629 { 630 return seq_open(file, &input_handlers_seq_ops); 631 } 632 633 static const struct file_operations input_handlers_fileops = { 634 .owner = THIS_MODULE, 635 .open = input_proc_handlers_open, 636 .read = seq_read, 637 .llseek = seq_lseek, 638 .release = seq_release, 639 }; 640 641 static int __init input_proc_init(void) 642 { 643 struct proc_dir_entry *entry; 644 645 proc_bus_input_dir = proc_mkdir("input", proc_bus); 646 if (!proc_bus_input_dir) 647 return -ENOMEM; 648 649 proc_bus_input_dir->owner = THIS_MODULE; 650 651 entry = create_proc_entry("devices", 0, proc_bus_input_dir); 652 if (!entry) 653 goto fail1; 654 655 entry->owner = THIS_MODULE; 656 entry->proc_fops = &input_devices_fileops; 657 658 entry = create_proc_entry("handlers", 0, proc_bus_input_dir); 659 if (!entry) 660 goto fail2; 661 662 entry->owner = THIS_MODULE; 663 entry->proc_fops = &input_handlers_fileops; 664 665 return 0; 666 667 fail2: remove_proc_entry("devices", proc_bus_input_dir); 668 fail1: remove_proc_entry("input", proc_bus); 669 return -ENOMEM; 670 } 671 672 static void input_proc_exit(void) 673 { 674 remove_proc_entry("devices", proc_bus_input_dir); 675 remove_proc_entry("handlers", proc_bus_input_dir); 676 remove_proc_entry("input", proc_bus); 677 } 678 679 #else /* !CONFIG_PROC_FS */ 680 static inline void input_wakeup_procfs_readers(void) { } 681 static inline int input_proc_init(void) { return 0; } 682 static inline void input_proc_exit(void) { } 683 #endif 684 685 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 686 static ssize_t input_dev_show_##name(struct device *dev, \ 687 struct device_attribute *attr, \ 688 char *buf) \ 689 { \ 690 struct input_dev *input_dev = to_input_dev(dev); \ 691 \ 692 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 693 input_dev->name ? input_dev->name : ""); \ 694 } \ 695 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 696 697 INPUT_DEV_STRING_ATTR_SHOW(name); 698 INPUT_DEV_STRING_ATTR_SHOW(phys); 699 INPUT_DEV_STRING_ATTR_SHOW(uniq); 700 701 static int input_print_modalias_bits(char *buf, int size, 702 char name, unsigned long *bm, 703 unsigned int min_bit, unsigned int max_bit) 704 { 705 int len = 0, i; 706 707 len += snprintf(buf, max(size, 0), "%c", name); 708 for (i = min_bit; i < max_bit; i++) 709 if (bm[LONG(i)] & BIT(i)) 710 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 711 return len; 712 } 713 714 static int input_print_modalias(char *buf, int size, struct input_dev *id, 715 int add_cr) 716 { 717 int len; 718 719 len = snprintf(buf, max(size, 0), 720 "input:b%04Xv%04Xp%04Xe%04X-", 721 id->id.bustype, id->id.vendor, 722 id->id.product, id->id.version); 723 724 len += input_print_modalias_bits(buf + len, size - len, 725 'e', id->evbit, 0, EV_MAX); 726 len += input_print_modalias_bits(buf + len, size - len, 727 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 728 len += input_print_modalias_bits(buf + len, size - len, 729 'r', id->relbit, 0, REL_MAX); 730 len += input_print_modalias_bits(buf + len, size - len, 731 'a', id->absbit, 0, ABS_MAX); 732 len += input_print_modalias_bits(buf + len, size - len, 733 'm', id->mscbit, 0, MSC_MAX); 734 len += input_print_modalias_bits(buf + len, size - len, 735 'l', id->ledbit, 0, LED_MAX); 736 len += input_print_modalias_bits(buf + len, size - len, 737 's', id->sndbit, 0, SND_MAX); 738 len += input_print_modalias_bits(buf + len, size - len, 739 'f', id->ffbit, 0, FF_MAX); 740 len += input_print_modalias_bits(buf + len, size - len, 741 'w', id->swbit, 0, SW_MAX); 742 743 if (add_cr) 744 len += snprintf(buf + len, max(size - len, 0), "\n"); 745 746 return len; 747 } 748 749 static ssize_t input_dev_show_modalias(struct device *dev, 750 struct device_attribute *attr, 751 char *buf) 752 { 753 struct input_dev *id = to_input_dev(dev); 754 ssize_t len; 755 756 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 757 758 return min_t(int, len, PAGE_SIZE); 759 } 760 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 761 762 static struct attribute *input_dev_attrs[] = { 763 &dev_attr_name.attr, 764 &dev_attr_phys.attr, 765 &dev_attr_uniq.attr, 766 &dev_attr_modalias.attr, 767 NULL 768 }; 769 770 static struct attribute_group input_dev_attr_group = { 771 .attrs = input_dev_attrs, 772 }; 773 774 #define INPUT_DEV_ID_ATTR(name) \ 775 static ssize_t input_dev_show_id_##name(struct device *dev, \ 776 struct device_attribute *attr, \ 777 char *buf) \ 778 { \ 779 struct input_dev *input_dev = to_input_dev(dev); \ 780 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 781 } \ 782 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 783 784 INPUT_DEV_ID_ATTR(bustype); 785 INPUT_DEV_ID_ATTR(vendor); 786 INPUT_DEV_ID_ATTR(product); 787 INPUT_DEV_ID_ATTR(version); 788 789 static struct attribute *input_dev_id_attrs[] = { 790 &dev_attr_bustype.attr, 791 &dev_attr_vendor.attr, 792 &dev_attr_product.attr, 793 &dev_attr_version.attr, 794 NULL 795 }; 796 797 static struct attribute_group input_dev_id_attr_group = { 798 .name = "id", 799 .attrs = input_dev_id_attrs, 800 }; 801 802 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 803 int max, int add_cr) 804 { 805 int i; 806 int len = 0; 807 808 for (i = NBITS(max) - 1; i > 0; i--) 809 if (bitmap[i]) 810 break; 811 812 for (; i >= 0; i--) 813 len += snprintf(buf + len, max(buf_size - len, 0), 814 "%lx%s", bitmap[i], i > 0 ? " " : ""); 815 816 if (add_cr) 817 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 818 819 return len; 820 } 821 822 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 823 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 824 struct device_attribute *attr, \ 825 char *buf) \ 826 { \ 827 struct input_dev *input_dev = to_input_dev(dev); \ 828 int len = input_print_bitmap(buf, PAGE_SIZE, \ 829 input_dev->bm##bit, ev##_MAX, 1); \ 830 return min_t(int, len, PAGE_SIZE); \ 831 } \ 832 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 833 834 INPUT_DEV_CAP_ATTR(EV, ev); 835 INPUT_DEV_CAP_ATTR(KEY, key); 836 INPUT_DEV_CAP_ATTR(REL, rel); 837 INPUT_DEV_CAP_ATTR(ABS, abs); 838 INPUT_DEV_CAP_ATTR(MSC, msc); 839 INPUT_DEV_CAP_ATTR(LED, led); 840 INPUT_DEV_CAP_ATTR(SND, snd); 841 INPUT_DEV_CAP_ATTR(FF, ff); 842 INPUT_DEV_CAP_ATTR(SW, sw); 843 844 static struct attribute *input_dev_caps_attrs[] = { 845 &dev_attr_ev.attr, 846 &dev_attr_key.attr, 847 &dev_attr_rel.attr, 848 &dev_attr_abs.attr, 849 &dev_attr_msc.attr, 850 &dev_attr_led.attr, 851 &dev_attr_snd.attr, 852 &dev_attr_ff.attr, 853 &dev_attr_sw.attr, 854 NULL 855 }; 856 857 static struct attribute_group input_dev_caps_attr_group = { 858 .name = "capabilities", 859 .attrs = input_dev_caps_attrs, 860 }; 861 862 static struct attribute_group *input_dev_attr_groups[] = { 863 &input_dev_attr_group, 864 &input_dev_id_attr_group, 865 &input_dev_caps_attr_group, 866 NULL 867 }; 868 869 static void input_dev_release(struct device *device) 870 { 871 struct input_dev *dev = to_input_dev(device); 872 873 input_ff_destroy(dev); 874 kfree(dev); 875 876 module_put(THIS_MODULE); 877 } 878 879 /* 880 * Input uevent interface - loading event handlers based on 881 * device bitfields. 882 */ 883 static int input_add_uevent_bm_var(char **envp, int num_envp, int *cur_index, 884 char *buffer, int buffer_size, int *cur_len, 885 const char *name, unsigned long *bitmap, int max) 886 { 887 if (*cur_index >= num_envp - 1) 888 return -ENOMEM; 889 890 envp[*cur_index] = buffer + *cur_len; 891 892 *cur_len += snprintf(buffer + *cur_len, max(buffer_size - *cur_len, 0), name); 893 if (*cur_len >= buffer_size) 894 return -ENOMEM; 895 896 *cur_len += input_print_bitmap(buffer + *cur_len, 897 max(buffer_size - *cur_len, 0), 898 bitmap, max, 0) + 1; 899 if (*cur_len > buffer_size) 900 return -ENOMEM; 901 902 (*cur_index)++; 903 return 0; 904 } 905 906 static int input_add_uevent_modalias_var(char **envp, int num_envp, int *cur_index, 907 char *buffer, int buffer_size, int *cur_len, 908 struct input_dev *dev) 909 { 910 if (*cur_index >= num_envp - 1) 911 return -ENOMEM; 912 913 envp[*cur_index] = buffer + *cur_len; 914 915 *cur_len += snprintf(buffer + *cur_len, max(buffer_size - *cur_len, 0), 916 "MODALIAS="); 917 if (*cur_len >= buffer_size) 918 return -ENOMEM; 919 920 *cur_len += input_print_modalias(buffer + *cur_len, 921 max(buffer_size - *cur_len, 0), 922 dev, 0) + 1; 923 if (*cur_len > buffer_size) 924 return -ENOMEM; 925 926 (*cur_index)++; 927 return 0; 928 } 929 930 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 931 do { \ 932 int err = add_uevent_var(envp, num_envp, &i, \ 933 buffer, buffer_size, &len, \ 934 fmt, val); \ 935 if (err) \ 936 return err; \ 937 } while (0) 938 939 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 940 do { \ 941 int err = input_add_uevent_bm_var(envp, num_envp, &i, \ 942 buffer, buffer_size, &len, \ 943 name, bm, max); \ 944 if (err) \ 945 return err; \ 946 } while (0) 947 948 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 949 do { \ 950 int err = input_add_uevent_modalias_var(envp, \ 951 num_envp, &i, \ 952 buffer, buffer_size, &len, \ 953 dev); \ 954 if (err) \ 955 return err; \ 956 } while (0) 957 958 static int input_dev_uevent(struct device *device, char **envp, 959 int num_envp, char *buffer, int buffer_size) 960 { 961 struct input_dev *dev = to_input_dev(device); 962 int i = 0; 963 int len = 0; 964 965 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 966 dev->id.bustype, dev->id.vendor, 967 dev->id.product, dev->id.version); 968 if (dev->name) 969 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 970 if (dev->phys) 971 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 972 if (dev->uniq) 973 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 974 975 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 976 if (test_bit(EV_KEY, dev->evbit)) 977 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 978 if (test_bit(EV_REL, dev->evbit)) 979 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 980 if (test_bit(EV_ABS, dev->evbit)) 981 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 982 if (test_bit(EV_MSC, dev->evbit)) 983 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 984 if (test_bit(EV_LED, dev->evbit)) 985 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 986 if (test_bit(EV_SND, dev->evbit)) 987 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 988 if (test_bit(EV_FF, dev->evbit)) 989 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 990 if (test_bit(EV_SW, dev->evbit)) 991 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 992 993 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 994 995 envp[i] = NULL; 996 return 0; 997 } 998 999 static struct device_type input_dev_type = { 1000 .groups = input_dev_attr_groups, 1001 .release = input_dev_release, 1002 .uevent = input_dev_uevent, 1003 }; 1004 1005 struct class input_class = { 1006 .name = "input", 1007 }; 1008 EXPORT_SYMBOL_GPL(input_class); 1009 1010 /** 1011 * input_allocate_device - allocate memory for new input device 1012 * 1013 * Returns prepared struct input_dev or NULL. 1014 * 1015 * NOTE: Use input_free_device() to free devices that have not been 1016 * registered; input_unregister_device() should be used for already 1017 * registered devices. 1018 */ 1019 struct input_dev *input_allocate_device(void) 1020 { 1021 struct input_dev *dev; 1022 1023 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1024 if (dev) { 1025 dev->dev.type = &input_dev_type; 1026 dev->dev.class = &input_class; 1027 device_initialize(&dev->dev); 1028 mutex_init(&dev->mutex); 1029 INIT_LIST_HEAD(&dev->h_list); 1030 INIT_LIST_HEAD(&dev->node); 1031 1032 __module_get(THIS_MODULE); 1033 } 1034 1035 return dev; 1036 } 1037 EXPORT_SYMBOL(input_allocate_device); 1038 1039 /** 1040 * input_free_device - free memory occupied by input_dev structure 1041 * @dev: input device to free 1042 * 1043 * This function should only be used if input_register_device() 1044 * was not called yet or if it failed. Once device was registered 1045 * use input_unregister_device() and memory will be freed once last 1046 * refrence to the device is dropped. 1047 * 1048 * Device should be allocated by input_allocate_device(). 1049 * 1050 * NOTE: If there are references to the input device then memory 1051 * will not be freed until last reference is dropped. 1052 */ 1053 void input_free_device(struct input_dev *dev) 1054 { 1055 if (dev) 1056 input_put_device(dev); 1057 } 1058 EXPORT_SYMBOL(input_free_device); 1059 1060 /** 1061 * input_set_capability - mark device as capable of a certain event 1062 * @dev: device that is capable of emitting or accepting event 1063 * @type: type of the event (EV_KEY, EV_REL, etc...) 1064 * @code: event code 1065 * 1066 * In addition to setting up corresponding bit in appropriate capability 1067 * bitmap the function also adjusts dev->evbit. 1068 */ 1069 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1070 { 1071 switch (type) { 1072 case EV_KEY: 1073 __set_bit(code, dev->keybit); 1074 break; 1075 1076 case EV_REL: 1077 __set_bit(code, dev->relbit); 1078 break; 1079 1080 case EV_ABS: 1081 __set_bit(code, dev->absbit); 1082 break; 1083 1084 case EV_MSC: 1085 __set_bit(code, dev->mscbit); 1086 break; 1087 1088 case EV_SW: 1089 __set_bit(code, dev->swbit); 1090 break; 1091 1092 case EV_LED: 1093 __set_bit(code, dev->ledbit); 1094 break; 1095 1096 case EV_SND: 1097 __set_bit(code, dev->sndbit); 1098 break; 1099 1100 case EV_FF: 1101 __set_bit(code, dev->ffbit); 1102 break; 1103 1104 default: 1105 printk(KERN_ERR 1106 "input_set_capability: unknown type %u (code %u)\n", 1107 type, code); 1108 dump_stack(); 1109 return; 1110 } 1111 1112 __set_bit(type, dev->evbit); 1113 } 1114 EXPORT_SYMBOL(input_set_capability); 1115 1116 int input_register_device(struct input_dev *dev) 1117 { 1118 static atomic_t input_no = ATOMIC_INIT(0); 1119 struct input_handler *handler; 1120 const char *path; 1121 int error; 1122 1123 set_bit(EV_SYN, dev->evbit); 1124 1125 /* 1126 * If delay and period are pre-set by the driver, then autorepeating 1127 * is handled by the driver itself and we don't do it in input.c. 1128 */ 1129 1130 init_timer(&dev->timer); 1131 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1132 dev->timer.data = (long) dev; 1133 dev->timer.function = input_repeat_key; 1134 dev->rep[REP_DELAY] = 250; 1135 dev->rep[REP_PERIOD] = 33; 1136 } 1137 1138 if (!dev->getkeycode) 1139 dev->getkeycode = input_default_getkeycode; 1140 1141 if (!dev->setkeycode) 1142 dev->setkeycode = input_default_setkeycode; 1143 1144 list_add_tail(&dev->node, &input_dev_list); 1145 1146 snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id), 1147 "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1); 1148 1149 if (dev->cdev.dev) 1150 dev->dev.parent = dev->cdev.dev; 1151 1152 error = device_add(&dev->dev); 1153 if (error) 1154 return error; 1155 1156 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1157 printk(KERN_INFO "input: %s as %s\n", 1158 dev->name ? dev->name : "Unspecified device", path ? path : "N/A"); 1159 kfree(path); 1160 1161 list_for_each_entry(handler, &input_handler_list, node) 1162 input_attach_handler(dev, handler); 1163 1164 input_wakeup_procfs_readers(); 1165 1166 return 0; 1167 } 1168 EXPORT_SYMBOL(input_register_device); 1169 1170 void input_unregister_device(struct input_dev *dev) 1171 { 1172 struct input_handle *handle, *next; 1173 int code; 1174 1175 for (code = 0; code <= KEY_MAX; code++) 1176 if (test_bit(code, dev->key)) 1177 input_report_key(dev, code, 0); 1178 input_sync(dev); 1179 1180 del_timer_sync(&dev->timer); 1181 1182 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1183 handle->handler->disconnect(handle); 1184 WARN_ON(!list_empty(&dev->h_list)); 1185 1186 list_del_init(&dev->node); 1187 1188 device_unregister(&dev->dev); 1189 1190 input_wakeup_procfs_readers(); 1191 } 1192 EXPORT_SYMBOL(input_unregister_device); 1193 1194 int input_register_handler(struct input_handler *handler) 1195 { 1196 struct input_dev *dev; 1197 1198 INIT_LIST_HEAD(&handler->h_list); 1199 1200 if (handler->fops != NULL) { 1201 if (input_table[handler->minor >> 5]) 1202 return -EBUSY; 1203 1204 input_table[handler->minor >> 5] = handler; 1205 } 1206 1207 list_add_tail(&handler->node, &input_handler_list); 1208 1209 list_for_each_entry(dev, &input_dev_list, node) 1210 input_attach_handler(dev, handler); 1211 1212 input_wakeup_procfs_readers(); 1213 return 0; 1214 } 1215 EXPORT_SYMBOL(input_register_handler); 1216 1217 void input_unregister_handler(struct input_handler *handler) 1218 { 1219 struct input_handle *handle, *next; 1220 1221 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 1222 handler->disconnect(handle); 1223 WARN_ON(!list_empty(&handler->h_list)); 1224 1225 list_del_init(&handler->node); 1226 1227 if (handler->fops != NULL) 1228 input_table[handler->minor >> 5] = NULL; 1229 1230 input_wakeup_procfs_readers(); 1231 } 1232 EXPORT_SYMBOL(input_unregister_handler); 1233 1234 int input_register_handle(struct input_handle *handle) 1235 { 1236 struct input_handler *handler = handle->handler; 1237 1238 list_add_tail(&handle->d_node, &handle->dev->h_list); 1239 list_add_tail(&handle->h_node, &handler->h_list); 1240 1241 if (handler->start) 1242 handler->start(handle); 1243 1244 return 0; 1245 } 1246 EXPORT_SYMBOL(input_register_handle); 1247 1248 void input_unregister_handle(struct input_handle *handle) 1249 { 1250 list_del_init(&handle->h_node); 1251 list_del_init(&handle->d_node); 1252 } 1253 EXPORT_SYMBOL(input_unregister_handle); 1254 1255 static int input_open_file(struct inode *inode, struct file *file) 1256 { 1257 struct input_handler *handler = input_table[iminor(inode) >> 5]; 1258 const struct file_operations *old_fops, *new_fops = NULL; 1259 int err; 1260 1261 /* No load-on-demand here? */ 1262 if (!handler || !(new_fops = fops_get(handler->fops))) 1263 return -ENODEV; 1264 1265 /* 1266 * That's _really_ odd. Usually NULL ->open means "nothing special", 1267 * not "no device". Oh, well... 1268 */ 1269 if (!new_fops->open) { 1270 fops_put(new_fops); 1271 return -ENODEV; 1272 } 1273 old_fops = file->f_op; 1274 file->f_op = new_fops; 1275 1276 err = new_fops->open(inode, file); 1277 1278 if (err) { 1279 fops_put(file->f_op); 1280 file->f_op = fops_get(old_fops); 1281 } 1282 fops_put(old_fops); 1283 return err; 1284 } 1285 1286 static const struct file_operations input_fops = { 1287 .owner = THIS_MODULE, 1288 .open = input_open_file, 1289 }; 1290 1291 static int __init input_init(void) 1292 { 1293 int err; 1294 1295 err = class_register(&input_class); 1296 if (err) { 1297 printk(KERN_ERR "input: unable to register input_dev class\n"); 1298 return err; 1299 } 1300 1301 err = input_proc_init(); 1302 if (err) 1303 goto fail1; 1304 1305 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 1306 if (err) { 1307 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR); 1308 goto fail2; 1309 } 1310 1311 return 0; 1312 1313 fail2: input_proc_exit(); 1314 fail1: class_unregister(&input_class); 1315 return err; 1316 } 1317 1318 static void __exit input_exit(void) 1319 { 1320 input_proc_exit(); 1321 unregister_chrdev(INPUT_MAJOR, "input"); 1322 class_unregister(&input_class); 1323 } 1324 1325 subsys_initcall(input_init); 1326 module_exit(input_exit); 1327