xref: /openbmc/linux/drivers/input/input.c (revision 643d1f7f)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/input.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/major.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/poll.h>
21 #include <linux/device.h>
22 #include <linux/mutex.h>
23 #include <linux/rcupdate.h>
24 
25 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
26 MODULE_DESCRIPTION("Input core");
27 MODULE_LICENSE("GPL");
28 
29 #define INPUT_DEVICES	256
30 
31 static LIST_HEAD(input_dev_list);
32 static LIST_HEAD(input_handler_list);
33 
34 /*
35  * input_mutex protects access to both input_dev_list and input_handler_list.
36  * This also causes input_[un]register_device and input_[un]register_handler
37  * be mutually exclusive which simplifies locking in drivers implementing
38  * input handlers.
39  */
40 static DEFINE_MUTEX(input_mutex);
41 
42 static struct input_handler *input_table[8];
43 
44 static inline int is_event_supported(unsigned int code,
45 				     unsigned long *bm, unsigned int max)
46 {
47 	return code <= max && test_bit(code, bm);
48 }
49 
50 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
51 {
52 	if (fuzz) {
53 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
54 			return old_val;
55 
56 		if (value > old_val - fuzz && value < old_val + fuzz)
57 			return (old_val * 3 + value) / 4;
58 
59 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
60 			return (old_val + value) / 2;
61 	}
62 
63 	return value;
64 }
65 
66 /*
67  * Pass event through all open handles. This function is called with
68  * dev->event_lock held and interrupts disabled.
69  */
70 static void input_pass_event(struct input_dev *dev,
71 			     unsigned int type, unsigned int code, int value)
72 {
73 	struct input_handle *handle;
74 
75 	rcu_read_lock();
76 
77 	handle = rcu_dereference(dev->grab);
78 	if (handle)
79 		handle->handler->event(handle, type, code, value);
80 	else
81 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
82 			if (handle->open)
83 				handle->handler->event(handle,
84 							type, code, value);
85 	rcu_read_unlock();
86 }
87 
88 /*
89  * Generate software autorepeat event. Note that we take
90  * dev->event_lock here to avoid racing with input_event
91  * which may cause keys get "stuck".
92  */
93 static void input_repeat_key(unsigned long data)
94 {
95 	struct input_dev *dev = (void *) data;
96 	unsigned long flags;
97 
98 	spin_lock_irqsave(&dev->event_lock, flags);
99 
100 	if (test_bit(dev->repeat_key, dev->key) &&
101 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
102 
103 		input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
104 
105 		if (dev->sync) {
106 			/*
107 			 * Only send SYN_REPORT if we are not in a middle
108 			 * of driver parsing a new hardware packet.
109 			 * Otherwise assume that the driver will send
110 			 * SYN_REPORT once it's done.
111 			 */
112 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
113 		}
114 
115 		if (dev->rep[REP_PERIOD])
116 			mod_timer(&dev->timer, jiffies +
117 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
118 	}
119 
120 	spin_unlock_irqrestore(&dev->event_lock, flags);
121 }
122 
123 static void input_start_autorepeat(struct input_dev *dev, int code)
124 {
125 	if (test_bit(EV_REP, dev->evbit) &&
126 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
127 	    dev->timer.data) {
128 		dev->repeat_key = code;
129 		mod_timer(&dev->timer,
130 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
131 	}
132 }
133 
134 #define INPUT_IGNORE_EVENT	0
135 #define INPUT_PASS_TO_HANDLERS	1
136 #define INPUT_PASS_TO_DEVICE	2
137 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
138 
139 static void input_handle_event(struct input_dev *dev,
140 			       unsigned int type, unsigned int code, int value)
141 {
142 	int disposition = INPUT_IGNORE_EVENT;
143 
144 	switch (type) {
145 
146 	case EV_SYN:
147 		switch (code) {
148 		case SYN_CONFIG:
149 			disposition = INPUT_PASS_TO_ALL;
150 			break;
151 
152 		case SYN_REPORT:
153 			if (!dev->sync) {
154 				dev->sync = 1;
155 				disposition = INPUT_PASS_TO_HANDLERS;
156 			}
157 			break;
158 		}
159 		break;
160 
161 	case EV_KEY:
162 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
163 		    !!test_bit(code, dev->key) != value) {
164 
165 			if (value != 2) {
166 				__change_bit(code, dev->key);
167 				if (value)
168 					input_start_autorepeat(dev, code);
169 			}
170 
171 			disposition = INPUT_PASS_TO_HANDLERS;
172 		}
173 		break;
174 
175 	case EV_SW:
176 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
177 		    !!test_bit(code, dev->sw) != value) {
178 
179 			__change_bit(code, dev->sw);
180 			disposition = INPUT_PASS_TO_HANDLERS;
181 		}
182 		break;
183 
184 	case EV_ABS:
185 		if (is_event_supported(code, dev->absbit, ABS_MAX)) {
186 
187 			value = input_defuzz_abs_event(value,
188 					dev->abs[code], dev->absfuzz[code]);
189 
190 			if (dev->abs[code] != value) {
191 				dev->abs[code] = value;
192 				disposition = INPUT_PASS_TO_HANDLERS;
193 			}
194 		}
195 		break;
196 
197 	case EV_REL:
198 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
199 			disposition = INPUT_PASS_TO_HANDLERS;
200 
201 		break;
202 
203 	case EV_MSC:
204 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
205 			disposition = INPUT_PASS_TO_ALL;
206 
207 		break;
208 
209 	case EV_LED:
210 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
211 		    !!test_bit(code, dev->led) != value) {
212 
213 			__change_bit(code, dev->led);
214 			disposition = INPUT_PASS_TO_ALL;
215 		}
216 		break;
217 
218 	case EV_SND:
219 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
220 
221 			if (!!test_bit(code, dev->snd) != !!value)
222 				__change_bit(code, dev->snd);
223 			disposition = INPUT_PASS_TO_ALL;
224 		}
225 		break;
226 
227 	case EV_REP:
228 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
229 			dev->rep[code] = value;
230 			disposition = INPUT_PASS_TO_ALL;
231 		}
232 		break;
233 
234 	case EV_FF:
235 		if (value >= 0)
236 			disposition = INPUT_PASS_TO_ALL;
237 		break;
238 
239 	case EV_PWR:
240 		disposition = INPUT_PASS_TO_ALL;
241 		break;
242 	}
243 
244 	if (type != EV_SYN)
245 		dev->sync = 0;
246 
247 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
248 		dev->event(dev, type, code, value);
249 
250 	if (disposition & INPUT_PASS_TO_HANDLERS)
251 		input_pass_event(dev, type, code, value);
252 }
253 
254 /**
255  * input_event() - report new input event
256  * @dev: device that generated the event
257  * @type: type of the event
258  * @code: event code
259  * @value: value of the event
260  *
261  * This function should be used by drivers implementing various input
262  * devices. See also input_inject_event().
263  */
264 
265 void input_event(struct input_dev *dev,
266 		 unsigned int type, unsigned int code, int value)
267 {
268 	unsigned long flags;
269 
270 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
271 
272 		spin_lock_irqsave(&dev->event_lock, flags);
273 		add_input_randomness(type, code, value);
274 		input_handle_event(dev, type, code, value);
275 		spin_unlock_irqrestore(&dev->event_lock, flags);
276 	}
277 }
278 EXPORT_SYMBOL(input_event);
279 
280 /**
281  * input_inject_event() - send input event from input handler
282  * @handle: input handle to send event through
283  * @type: type of the event
284  * @code: event code
285  * @value: value of the event
286  *
287  * Similar to input_event() but will ignore event if device is
288  * "grabbed" and handle injecting event is not the one that owns
289  * the device.
290  */
291 void input_inject_event(struct input_handle *handle,
292 			unsigned int type, unsigned int code, int value)
293 {
294 	struct input_dev *dev = handle->dev;
295 	struct input_handle *grab;
296 	unsigned long flags;
297 
298 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
299 		spin_lock_irqsave(&dev->event_lock, flags);
300 
301 		rcu_read_lock();
302 		grab = rcu_dereference(dev->grab);
303 		if (!grab || grab == handle)
304 			input_handle_event(dev, type, code, value);
305 		rcu_read_unlock();
306 
307 		spin_unlock_irqrestore(&dev->event_lock, flags);
308 	}
309 }
310 EXPORT_SYMBOL(input_inject_event);
311 
312 /**
313  * input_grab_device - grabs device for exclusive use
314  * @handle: input handle that wants to own the device
315  *
316  * When a device is grabbed by an input handle all events generated by
317  * the device are delivered only to this handle. Also events injected
318  * by other input handles are ignored while device is grabbed.
319  */
320 int input_grab_device(struct input_handle *handle)
321 {
322 	struct input_dev *dev = handle->dev;
323 	int retval;
324 
325 	retval = mutex_lock_interruptible(&dev->mutex);
326 	if (retval)
327 		return retval;
328 
329 	if (dev->grab) {
330 		retval = -EBUSY;
331 		goto out;
332 	}
333 
334 	rcu_assign_pointer(dev->grab, handle);
335 	synchronize_rcu();
336 
337  out:
338 	mutex_unlock(&dev->mutex);
339 	return retval;
340 }
341 EXPORT_SYMBOL(input_grab_device);
342 
343 static void __input_release_device(struct input_handle *handle)
344 {
345 	struct input_dev *dev = handle->dev;
346 
347 	if (dev->grab == handle) {
348 		rcu_assign_pointer(dev->grab, NULL);
349 		/* Make sure input_pass_event() notices that grab is gone */
350 		synchronize_rcu();
351 
352 		list_for_each_entry(handle, &dev->h_list, d_node)
353 			if (handle->open && handle->handler->start)
354 				handle->handler->start(handle);
355 	}
356 }
357 
358 /**
359  * input_release_device - release previously grabbed device
360  * @handle: input handle that owns the device
361  *
362  * Releases previously grabbed device so that other input handles can
363  * start receiving input events. Upon release all handlers attached
364  * to the device have their start() method called so they have a change
365  * to synchronize device state with the rest of the system.
366  */
367 void input_release_device(struct input_handle *handle)
368 {
369 	struct input_dev *dev = handle->dev;
370 
371 	mutex_lock(&dev->mutex);
372 	__input_release_device(handle);
373 	mutex_unlock(&dev->mutex);
374 }
375 EXPORT_SYMBOL(input_release_device);
376 
377 /**
378  * input_open_device - open input device
379  * @handle: handle through which device is being accessed
380  *
381  * This function should be called by input handlers when they
382  * want to start receive events from given input device.
383  */
384 int input_open_device(struct input_handle *handle)
385 {
386 	struct input_dev *dev = handle->dev;
387 	int retval;
388 
389 	retval = mutex_lock_interruptible(&dev->mutex);
390 	if (retval)
391 		return retval;
392 
393 	if (dev->going_away) {
394 		retval = -ENODEV;
395 		goto out;
396 	}
397 
398 	handle->open++;
399 
400 	if (!dev->users++ && dev->open)
401 		retval = dev->open(dev);
402 
403 	if (retval) {
404 		dev->users--;
405 		if (!--handle->open) {
406 			/*
407 			 * Make sure we are not delivering any more events
408 			 * through this handle
409 			 */
410 			synchronize_rcu();
411 		}
412 	}
413 
414  out:
415 	mutex_unlock(&dev->mutex);
416 	return retval;
417 }
418 EXPORT_SYMBOL(input_open_device);
419 
420 int input_flush_device(struct input_handle *handle, struct file *file)
421 {
422 	struct input_dev *dev = handle->dev;
423 	int retval;
424 
425 	retval = mutex_lock_interruptible(&dev->mutex);
426 	if (retval)
427 		return retval;
428 
429 	if (dev->flush)
430 		retval = dev->flush(dev, file);
431 
432 	mutex_unlock(&dev->mutex);
433 	return retval;
434 }
435 EXPORT_SYMBOL(input_flush_device);
436 
437 /**
438  * input_close_device - close input device
439  * @handle: handle through which device is being accessed
440  *
441  * This function should be called by input handlers when they
442  * want to stop receive events from given input device.
443  */
444 void input_close_device(struct input_handle *handle)
445 {
446 	struct input_dev *dev = handle->dev;
447 
448 	mutex_lock(&dev->mutex);
449 
450 	__input_release_device(handle);
451 
452 	if (!--dev->users && dev->close)
453 		dev->close(dev);
454 
455 	if (!--handle->open) {
456 		/*
457 		 * synchronize_rcu() makes sure that input_pass_event()
458 		 * completed and that no more input events are delivered
459 		 * through this handle
460 		 */
461 		synchronize_rcu();
462 	}
463 
464 	mutex_unlock(&dev->mutex);
465 }
466 EXPORT_SYMBOL(input_close_device);
467 
468 /*
469  * Prepare device for unregistering
470  */
471 static void input_disconnect_device(struct input_dev *dev)
472 {
473 	struct input_handle *handle;
474 	int code;
475 
476 	/*
477 	 * Mark device as going away. Note that we take dev->mutex here
478 	 * not to protect access to dev->going_away but rather to ensure
479 	 * that there are no threads in the middle of input_open_device()
480 	 */
481 	mutex_lock(&dev->mutex);
482 	dev->going_away = 1;
483 	mutex_unlock(&dev->mutex);
484 
485 	spin_lock_irq(&dev->event_lock);
486 
487 	/*
488 	 * Simulate keyup events for all pressed keys so that handlers
489 	 * are not left with "stuck" keys. The driver may continue
490 	 * generate events even after we done here but they will not
491 	 * reach any handlers.
492 	 */
493 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
494 		for (code = 0; code <= KEY_MAX; code++) {
495 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
496 			    test_bit(code, dev->key)) {
497 				input_pass_event(dev, EV_KEY, code, 0);
498 			}
499 		}
500 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
501 	}
502 
503 	list_for_each_entry(handle, &dev->h_list, d_node)
504 		handle->open = 0;
505 
506 	spin_unlock_irq(&dev->event_lock);
507 }
508 
509 static int input_fetch_keycode(struct input_dev *dev, int scancode)
510 {
511 	switch (dev->keycodesize) {
512 		case 1:
513 			return ((u8 *)dev->keycode)[scancode];
514 
515 		case 2:
516 			return ((u16 *)dev->keycode)[scancode];
517 
518 		default:
519 			return ((u32 *)dev->keycode)[scancode];
520 	}
521 }
522 
523 static int input_default_getkeycode(struct input_dev *dev,
524 				    int scancode, int *keycode)
525 {
526 	if (!dev->keycodesize)
527 		return -EINVAL;
528 
529 	if (scancode < 0 || scancode >= dev->keycodemax)
530 		return -EINVAL;
531 
532 	*keycode = input_fetch_keycode(dev, scancode);
533 
534 	return 0;
535 }
536 
537 static int input_default_setkeycode(struct input_dev *dev,
538 				    int scancode, int keycode)
539 {
540 	int old_keycode;
541 	int i;
542 
543 	if (scancode < 0 || scancode >= dev->keycodemax)
544 		return -EINVAL;
545 
546 	if (keycode < 0 || keycode > KEY_MAX)
547 		return -EINVAL;
548 
549 	if (!dev->keycodesize)
550 		return -EINVAL;
551 
552 	if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
553 		return -EINVAL;
554 
555 	switch (dev->keycodesize) {
556 		case 1: {
557 			u8 *k = (u8 *)dev->keycode;
558 			old_keycode = k[scancode];
559 			k[scancode] = keycode;
560 			break;
561 		}
562 		case 2: {
563 			u16 *k = (u16 *)dev->keycode;
564 			old_keycode = k[scancode];
565 			k[scancode] = keycode;
566 			break;
567 		}
568 		default: {
569 			u32 *k = (u32 *)dev->keycode;
570 			old_keycode = k[scancode];
571 			k[scancode] = keycode;
572 			break;
573 		}
574 	}
575 
576 	clear_bit(old_keycode, dev->keybit);
577 	set_bit(keycode, dev->keybit);
578 
579 	for (i = 0; i < dev->keycodemax; i++) {
580 		if (input_fetch_keycode(dev, i) == old_keycode) {
581 			set_bit(old_keycode, dev->keybit);
582 			break; /* Setting the bit twice is useless, so break */
583 		}
584 	}
585 
586 	return 0;
587 }
588 
589 
590 #define MATCH_BIT(bit, max) \
591 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
592 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
593 				break; \
594 		if (i != BITS_TO_LONGS(max)) \
595 			continue;
596 
597 static const struct input_device_id *input_match_device(const struct input_device_id *id,
598 							struct input_dev *dev)
599 {
600 	int i;
601 
602 	for (; id->flags || id->driver_info; id++) {
603 
604 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
605 			if (id->bustype != dev->id.bustype)
606 				continue;
607 
608 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
609 			if (id->vendor != dev->id.vendor)
610 				continue;
611 
612 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
613 			if (id->product != dev->id.product)
614 				continue;
615 
616 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
617 			if (id->version != dev->id.version)
618 				continue;
619 
620 		MATCH_BIT(evbit,  EV_MAX);
621 		MATCH_BIT(keybit, KEY_MAX);
622 		MATCH_BIT(relbit, REL_MAX);
623 		MATCH_BIT(absbit, ABS_MAX);
624 		MATCH_BIT(mscbit, MSC_MAX);
625 		MATCH_BIT(ledbit, LED_MAX);
626 		MATCH_BIT(sndbit, SND_MAX);
627 		MATCH_BIT(ffbit,  FF_MAX);
628 		MATCH_BIT(swbit,  SW_MAX);
629 
630 		return id;
631 	}
632 
633 	return NULL;
634 }
635 
636 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
637 {
638 	const struct input_device_id *id;
639 	int error;
640 
641 	if (handler->blacklist && input_match_device(handler->blacklist, dev))
642 		return -ENODEV;
643 
644 	id = input_match_device(handler->id_table, dev);
645 	if (!id)
646 		return -ENODEV;
647 
648 	error = handler->connect(handler, dev, id);
649 	if (error && error != -ENODEV)
650 		printk(KERN_ERR
651 			"input: failed to attach handler %s to device %s, "
652 			"error: %d\n",
653 			handler->name, kobject_name(&dev->dev.kobj), error);
654 
655 	return error;
656 }
657 
658 
659 #ifdef CONFIG_PROC_FS
660 
661 static struct proc_dir_entry *proc_bus_input_dir;
662 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
663 static int input_devices_state;
664 
665 static inline void input_wakeup_procfs_readers(void)
666 {
667 	input_devices_state++;
668 	wake_up(&input_devices_poll_wait);
669 }
670 
671 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
672 {
673 	int state = input_devices_state;
674 
675 	poll_wait(file, &input_devices_poll_wait, wait);
676 	if (state != input_devices_state)
677 		return POLLIN | POLLRDNORM;
678 
679 	return 0;
680 }
681 
682 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
683 {
684 	if (mutex_lock_interruptible(&input_mutex))
685 		return NULL;
686 
687 	return seq_list_start(&input_dev_list, *pos);
688 }
689 
690 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
691 {
692 	return seq_list_next(v, &input_dev_list, pos);
693 }
694 
695 static void input_devices_seq_stop(struct seq_file *seq, void *v)
696 {
697 	mutex_unlock(&input_mutex);
698 }
699 
700 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
701 				   unsigned long *bitmap, int max)
702 {
703 	int i;
704 
705 	for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
706 		if (bitmap[i])
707 			break;
708 
709 	seq_printf(seq, "B: %s=", name);
710 	for (; i >= 0; i--)
711 		seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
712 	seq_putc(seq, '\n');
713 }
714 
715 static int input_devices_seq_show(struct seq_file *seq, void *v)
716 {
717 	struct input_dev *dev = container_of(v, struct input_dev, node);
718 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
719 	struct input_handle *handle;
720 
721 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
722 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
723 
724 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
725 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
726 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
727 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
728 	seq_printf(seq, "H: Handlers=");
729 
730 	list_for_each_entry(handle, &dev->h_list, d_node)
731 		seq_printf(seq, "%s ", handle->name);
732 	seq_putc(seq, '\n');
733 
734 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
735 	if (test_bit(EV_KEY, dev->evbit))
736 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
737 	if (test_bit(EV_REL, dev->evbit))
738 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
739 	if (test_bit(EV_ABS, dev->evbit))
740 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
741 	if (test_bit(EV_MSC, dev->evbit))
742 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
743 	if (test_bit(EV_LED, dev->evbit))
744 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
745 	if (test_bit(EV_SND, dev->evbit))
746 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
747 	if (test_bit(EV_FF, dev->evbit))
748 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
749 	if (test_bit(EV_SW, dev->evbit))
750 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
751 
752 	seq_putc(seq, '\n');
753 
754 	kfree(path);
755 	return 0;
756 }
757 
758 static struct seq_operations input_devices_seq_ops = {
759 	.start	= input_devices_seq_start,
760 	.next	= input_devices_seq_next,
761 	.stop	= input_devices_seq_stop,
762 	.show	= input_devices_seq_show,
763 };
764 
765 static int input_proc_devices_open(struct inode *inode, struct file *file)
766 {
767 	return seq_open(file, &input_devices_seq_ops);
768 }
769 
770 static const struct file_operations input_devices_fileops = {
771 	.owner		= THIS_MODULE,
772 	.open		= input_proc_devices_open,
773 	.poll		= input_proc_devices_poll,
774 	.read		= seq_read,
775 	.llseek		= seq_lseek,
776 	.release	= seq_release,
777 };
778 
779 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
780 {
781 	if (mutex_lock_interruptible(&input_mutex))
782 		return NULL;
783 
784 	seq->private = (void *)(unsigned long)*pos;
785 	return seq_list_start(&input_handler_list, *pos);
786 }
787 
788 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
789 {
790 	seq->private = (void *)(unsigned long)(*pos + 1);
791 	return seq_list_next(v, &input_handler_list, pos);
792 }
793 
794 static void input_handlers_seq_stop(struct seq_file *seq, void *v)
795 {
796 	mutex_unlock(&input_mutex);
797 }
798 
799 static int input_handlers_seq_show(struct seq_file *seq, void *v)
800 {
801 	struct input_handler *handler = container_of(v, struct input_handler, node);
802 
803 	seq_printf(seq, "N: Number=%ld Name=%s",
804 		   (unsigned long)seq->private, handler->name);
805 	if (handler->fops)
806 		seq_printf(seq, " Minor=%d", handler->minor);
807 	seq_putc(seq, '\n');
808 
809 	return 0;
810 }
811 static struct seq_operations input_handlers_seq_ops = {
812 	.start	= input_handlers_seq_start,
813 	.next	= input_handlers_seq_next,
814 	.stop	= input_handlers_seq_stop,
815 	.show	= input_handlers_seq_show,
816 };
817 
818 static int input_proc_handlers_open(struct inode *inode, struct file *file)
819 {
820 	return seq_open(file, &input_handlers_seq_ops);
821 }
822 
823 static const struct file_operations input_handlers_fileops = {
824 	.owner		= THIS_MODULE,
825 	.open		= input_proc_handlers_open,
826 	.read		= seq_read,
827 	.llseek		= seq_lseek,
828 	.release	= seq_release,
829 };
830 
831 static int __init input_proc_init(void)
832 {
833 	struct proc_dir_entry *entry;
834 
835 	proc_bus_input_dir = proc_mkdir("input", proc_bus);
836 	if (!proc_bus_input_dir)
837 		return -ENOMEM;
838 
839 	proc_bus_input_dir->owner = THIS_MODULE;
840 
841 	entry = create_proc_entry("devices", 0, proc_bus_input_dir);
842 	if (!entry)
843 		goto fail1;
844 
845 	entry->owner = THIS_MODULE;
846 	entry->proc_fops = &input_devices_fileops;
847 
848 	entry = create_proc_entry("handlers", 0, proc_bus_input_dir);
849 	if (!entry)
850 		goto fail2;
851 
852 	entry->owner = THIS_MODULE;
853 	entry->proc_fops = &input_handlers_fileops;
854 
855 	return 0;
856 
857  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
858  fail1: remove_proc_entry("input", proc_bus);
859 	return -ENOMEM;
860 }
861 
862 static void input_proc_exit(void)
863 {
864 	remove_proc_entry("devices", proc_bus_input_dir);
865 	remove_proc_entry("handlers", proc_bus_input_dir);
866 	remove_proc_entry("input", proc_bus);
867 }
868 
869 #else /* !CONFIG_PROC_FS */
870 static inline void input_wakeup_procfs_readers(void) { }
871 static inline int input_proc_init(void) { return 0; }
872 static inline void input_proc_exit(void) { }
873 #endif
874 
875 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
876 static ssize_t input_dev_show_##name(struct device *dev,		\
877 				     struct device_attribute *attr,	\
878 				     char *buf)				\
879 {									\
880 	struct input_dev *input_dev = to_input_dev(dev);		\
881 									\
882 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
883 			 input_dev->name ? input_dev->name : "");	\
884 }									\
885 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
886 
887 INPUT_DEV_STRING_ATTR_SHOW(name);
888 INPUT_DEV_STRING_ATTR_SHOW(phys);
889 INPUT_DEV_STRING_ATTR_SHOW(uniq);
890 
891 static int input_print_modalias_bits(char *buf, int size,
892 				     char name, unsigned long *bm,
893 				     unsigned int min_bit, unsigned int max_bit)
894 {
895 	int len = 0, i;
896 
897 	len += snprintf(buf, max(size, 0), "%c", name);
898 	for (i = min_bit; i < max_bit; i++)
899 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
900 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
901 	return len;
902 }
903 
904 static int input_print_modalias(char *buf, int size, struct input_dev *id,
905 				int add_cr)
906 {
907 	int len;
908 
909 	len = snprintf(buf, max(size, 0),
910 		       "input:b%04Xv%04Xp%04Xe%04X-",
911 		       id->id.bustype, id->id.vendor,
912 		       id->id.product, id->id.version);
913 
914 	len += input_print_modalias_bits(buf + len, size - len,
915 				'e', id->evbit, 0, EV_MAX);
916 	len += input_print_modalias_bits(buf + len, size - len,
917 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
918 	len += input_print_modalias_bits(buf + len, size - len,
919 				'r', id->relbit, 0, REL_MAX);
920 	len += input_print_modalias_bits(buf + len, size - len,
921 				'a', id->absbit, 0, ABS_MAX);
922 	len += input_print_modalias_bits(buf + len, size - len,
923 				'm', id->mscbit, 0, MSC_MAX);
924 	len += input_print_modalias_bits(buf + len, size - len,
925 				'l', id->ledbit, 0, LED_MAX);
926 	len += input_print_modalias_bits(buf + len, size - len,
927 				's', id->sndbit, 0, SND_MAX);
928 	len += input_print_modalias_bits(buf + len, size - len,
929 				'f', id->ffbit, 0, FF_MAX);
930 	len += input_print_modalias_bits(buf + len, size - len,
931 				'w', id->swbit, 0, SW_MAX);
932 
933 	if (add_cr)
934 		len += snprintf(buf + len, max(size - len, 0), "\n");
935 
936 	return len;
937 }
938 
939 static ssize_t input_dev_show_modalias(struct device *dev,
940 				       struct device_attribute *attr,
941 				       char *buf)
942 {
943 	struct input_dev *id = to_input_dev(dev);
944 	ssize_t len;
945 
946 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
947 
948 	return min_t(int, len, PAGE_SIZE);
949 }
950 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
951 
952 static struct attribute *input_dev_attrs[] = {
953 	&dev_attr_name.attr,
954 	&dev_attr_phys.attr,
955 	&dev_attr_uniq.attr,
956 	&dev_attr_modalias.attr,
957 	NULL
958 };
959 
960 static struct attribute_group input_dev_attr_group = {
961 	.attrs	= input_dev_attrs,
962 };
963 
964 #define INPUT_DEV_ID_ATTR(name)						\
965 static ssize_t input_dev_show_id_##name(struct device *dev,		\
966 					struct device_attribute *attr,	\
967 					char *buf)			\
968 {									\
969 	struct input_dev *input_dev = to_input_dev(dev);		\
970 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
971 }									\
972 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
973 
974 INPUT_DEV_ID_ATTR(bustype);
975 INPUT_DEV_ID_ATTR(vendor);
976 INPUT_DEV_ID_ATTR(product);
977 INPUT_DEV_ID_ATTR(version);
978 
979 static struct attribute *input_dev_id_attrs[] = {
980 	&dev_attr_bustype.attr,
981 	&dev_attr_vendor.attr,
982 	&dev_attr_product.attr,
983 	&dev_attr_version.attr,
984 	NULL
985 };
986 
987 static struct attribute_group input_dev_id_attr_group = {
988 	.name	= "id",
989 	.attrs	= input_dev_id_attrs,
990 };
991 
992 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
993 			      int max, int add_cr)
994 {
995 	int i;
996 	int len = 0;
997 
998 	for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
999 		if (bitmap[i])
1000 			break;
1001 
1002 	for (; i >= 0; i--)
1003 		len += snprintf(buf + len, max(buf_size - len, 0),
1004 				"%lx%s", bitmap[i], i > 0 ? " " : "");
1005 
1006 	if (add_cr)
1007 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1008 
1009 	return len;
1010 }
1011 
1012 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1013 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1014 				       struct device_attribute *attr,	\
1015 				       char *buf)			\
1016 {									\
1017 	struct input_dev *input_dev = to_input_dev(dev);		\
1018 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1019 				     input_dev->bm##bit, ev##_MAX, 1);	\
1020 	return min_t(int, len, PAGE_SIZE);				\
1021 }									\
1022 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1023 
1024 INPUT_DEV_CAP_ATTR(EV, ev);
1025 INPUT_DEV_CAP_ATTR(KEY, key);
1026 INPUT_DEV_CAP_ATTR(REL, rel);
1027 INPUT_DEV_CAP_ATTR(ABS, abs);
1028 INPUT_DEV_CAP_ATTR(MSC, msc);
1029 INPUT_DEV_CAP_ATTR(LED, led);
1030 INPUT_DEV_CAP_ATTR(SND, snd);
1031 INPUT_DEV_CAP_ATTR(FF, ff);
1032 INPUT_DEV_CAP_ATTR(SW, sw);
1033 
1034 static struct attribute *input_dev_caps_attrs[] = {
1035 	&dev_attr_ev.attr,
1036 	&dev_attr_key.attr,
1037 	&dev_attr_rel.attr,
1038 	&dev_attr_abs.attr,
1039 	&dev_attr_msc.attr,
1040 	&dev_attr_led.attr,
1041 	&dev_attr_snd.attr,
1042 	&dev_attr_ff.attr,
1043 	&dev_attr_sw.attr,
1044 	NULL
1045 };
1046 
1047 static struct attribute_group input_dev_caps_attr_group = {
1048 	.name	= "capabilities",
1049 	.attrs	= input_dev_caps_attrs,
1050 };
1051 
1052 static struct attribute_group *input_dev_attr_groups[] = {
1053 	&input_dev_attr_group,
1054 	&input_dev_id_attr_group,
1055 	&input_dev_caps_attr_group,
1056 	NULL
1057 };
1058 
1059 static void input_dev_release(struct device *device)
1060 {
1061 	struct input_dev *dev = to_input_dev(device);
1062 
1063 	input_ff_destroy(dev);
1064 	kfree(dev);
1065 
1066 	module_put(THIS_MODULE);
1067 }
1068 
1069 /*
1070  * Input uevent interface - loading event handlers based on
1071  * device bitfields.
1072  */
1073 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1074 				   const char *name, unsigned long *bitmap, int max)
1075 {
1076 	int len;
1077 
1078 	if (add_uevent_var(env, "%s=", name))
1079 		return -ENOMEM;
1080 
1081 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1082 				 sizeof(env->buf) - env->buflen,
1083 				 bitmap, max, 0);
1084 	if (len >= (sizeof(env->buf) - env->buflen))
1085 		return -ENOMEM;
1086 
1087 	env->buflen += len;
1088 	return 0;
1089 }
1090 
1091 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1092 					 struct input_dev *dev)
1093 {
1094 	int len;
1095 
1096 	if (add_uevent_var(env, "MODALIAS="))
1097 		return -ENOMEM;
1098 
1099 	len = input_print_modalias(&env->buf[env->buflen - 1],
1100 				   sizeof(env->buf) - env->buflen,
1101 				   dev, 0);
1102 	if (len >= (sizeof(env->buf) - env->buflen))
1103 		return -ENOMEM;
1104 
1105 	env->buflen += len;
1106 	return 0;
1107 }
1108 
1109 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1110 	do {								\
1111 		int err = add_uevent_var(env, fmt, val);		\
1112 		if (err)						\
1113 			return err;					\
1114 	} while (0)
1115 
1116 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1117 	do {								\
1118 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1119 		if (err)						\
1120 			return err;					\
1121 	} while (0)
1122 
1123 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1124 	do {								\
1125 		int err = input_add_uevent_modalias_var(env, dev);	\
1126 		if (err)						\
1127 			return err;					\
1128 	} while (0)
1129 
1130 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1131 {
1132 	struct input_dev *dev = to_input_dev(device);
1133 
1134 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1135 				dev->id.bustype, dev->id.vendor,
1136 				dev->id.product, dev->id.version);
1137 	if (dev->name)
1138 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1139 	if (dev->phys)
1140 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1141 	if (dev->uniq)
1142 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1143 
1144 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1145 	if (test_bit(EV_KEY, dev->evbit))
1146 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1147 	if (test_bit(EV_REL, dev->evbit))
1148 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1149 	if (test_bit(EV_ABS, dev->evbit))
1150 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1151 	if (test_bit(EV_MSC, dev->evbit))
1152 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1153 	if (test_bit(EV_LED, dev->evbit))
1154 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1155 	if (test_bit(EV_SND, dev->evbit))
1156 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1157 	if (test_bit(EV_FF, dev->evbit))
1158 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1159 	if (test_bit(EV_SW, dev->evbit))
1160 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1161 
1162 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1163 
1164 	return 0;
1165 }
1166 
1167 static struct device_type input_dev_type = {
1168 	.groups		= input_dev_attr_groups,
1169 	.release	= input_dev_release,
1170 	.uevent		= input_dev_uevent,
1171 };
1172 
1173 struct class input_class = {
1174 	.name		= "input",
1175 };
1176 EXPORT_SYMBOL_GPL(input_class);
1177 
1178 /**
1179  * input_allocate_device - allocate memory for new input device
1180  *
1181  * Returns prepared struct input_dev or NULL.
1182  *
1183  * NOTE: Use input_free_device() to free devices that have not been
1184  * registered; input_unregister_device() should be used for already
1185  * registered devices.
1186  */
1187 struct input_dev *input_allocate_device(void)
1188 {
1189 	struct input_dev *dev;
1190 
1191 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1192 	if (dev) {
1193 		dev->dev.type = &input_dev_type;
1194 		dev->dev.class = &input_class;
1195 		device_initialize(&dev->dev);
1196 		mutex_init(&dev->mutex);
1197 		spin_lock_init(&dev->event_lock);
1198 		INIT_LIST_HEAD(&dev->h_list);
1199 		INIT_LIST_HEAD(&dev->node);
1200 
1201 		__module_get(THIS_MODULE);
1202 	}
1203 
1204 	return dev;
1205 }
1206 EXPORT_SYMBOL(input_allocate_device);
1207 
1208 /**
1209  * input_free_device - free memory occupied by input_dev structure
1210  * @dev: input device to free
1211  *
1212  * This function should only be used if input_register_device()
1213  * was not called yet or if it failed. Once device was registered
1214  * use input_unregister_device() and memory will be freed once last
1215  * reference to the device is dropped.
1216  *
1217  * Device should be allocated by input_allocate_device().
1218  *
1219  * NOTE: If there are references to the input device then memory
1220  * will not be freed until last reference is dropped.
1221  */
1222 void input_free_device(struct input_dev *dev)
1223 {
1224 	if (dev)
1225 		input_put_device(dev);
1226 }
1227 EXPORT_SYMBOL(input_free_device);
1228 
1229 /**
1230  * input_set_capability - mark device as capable of a certain event
1231  * @dev: device that is capable of emitting or accepting event
1232  * @type: type of the event (EV_KEY, EV_REL, etc...)
1233  * @code: event code
1234  *
1235  * In addition to setting up corresponding bit in appropriate capability
1236  * bitmap the function also adjusts dev->evbit.
1237  */
1238 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1239 {
1240 	switch (type) {
1241 	case EV_KEY:
1242 		__set_bit(code, dev->keybit);
1243 		break;
1244 
1245 	case EV_REL:
1246 		__set_bit(code, dev->relbit);
1247 		break;
1248 
1249 	case EV_ABS:
1250 		__set_bit(code, dev->absbit);
1251 		break;
1252 
1253 	case EV_MSC:
1254 		__set_bit(code, dev->mscbit);
1255 		break;
1256 
1257 	case EV_SW:
1258 		__set_bit(code, dev->swbit);
1259 		break;
1260 
1261 	case EV_LED:
1262 		__set_bit(code, dev->ledbit);
1263 		break;
1264 
1265 	case EV_SND:
1266 		__set_bit(code, dev->sndbit);
1267 		break;
1268 
1269 	case EV_FF:
1270 		__set_bit(code, dev->ffbit);
1271 		break;
1272 
1273 	case EV_PWR:
1274 		/* do nothing */
1275 		break;
1276 
1277 	default:
1278 		printk(KERN_ERR
1279 			"input_set_capability: unknown type %u (code %u)\n",
1280 			type, code);
1281 		dump_stack();
1282 		return;
1283 	}
1284 
1285 	__set_bit(type, dev->evbit);
1286 }
1287 EXPORT_SYMBOL(input_set_capability);
1288 
1289 /**
1290  * input_register_device - register device with input core
1291  * @dev: device to be registered
1292  *
1293  * This function registers device with input core. The device must be
1294  * allocated with input_allocate_device() and all it's capabilities
1295  * set up before registering.
1296  * If function fails the device must be freed with input_free_device().
1297  * Once device has been successfully registered it can be unregistered
1298  * with input_unregister_device(); input_free_device() should not be
1299  * called in this case.
1300  */
1301 int input_register_device(struct input_dev *dev)
1302 {
1303 	static atomic_t input_no = ATOMIC_INIT(0);
1304 	struct input_handler *handler;
1305 	const char *path;
1306 	int error;
1307 
1308 	__set_bit(EV_SYN, dev->evbit);
1309 
1310 	/*
1311 	 * If delay and period are pre-set by the driver, then autorepeating
1312 	 * is handled by the driver itself and we don't do it in input.c.
1313 	 */
1314 
1315 	init_timer(&dev->timer);
1316 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1317 		dev->timer.data = (long) dev;
1318 		dev->timer.function = input_repeat_key;
1319 		dev->rep[REP_DELAY] = 250;
1320 		dev->rep[REP_PERIOD] = 33;
1321 	}
1322 
1323 	if (!dev->getkeycode)
1324 		dev->getkeycode = input_default_getkeycode;
1325 
1326 	if (!dev->setkeycode)
1327 		dev->setkeycode = input_default_setkeycode;
1328 
1329 	snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id),
1330 		 "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);
1331 
1332 	if (dev->cdev.dev)
1333 		dev->dev.parent = dev->cdev.dev;
1334 
1335 	error = device_add(&dev->dev);
1336 	if (error)
1337 		return error;
1338 
1339 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1340 	printk(KERN_INFO "input: %s as %s\n",
1341 		dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1342 	kfree(path);
1343 
1344 	error = mutex_lock_interruptible(&input_mutex);
1345 	if (error) {
1346 		device_del(&dev->dev);
1347 		return error;
1348 	}
1349 
1350 	list_add_tail(&dev->node, &input_dev_list);
1351 
1352 	list_for_each_entry(handler, &input_handler_list, node)
1353 		input_attach_handler(dev, handler);
1354 
1355 	input_wakeup_procfs_readers();
1356 
1357 	mutex_unlock(&input_mutex);
1358 
1359 	return 0;
1360 }
1361 EXPORT_SYMBOL(input_register_device);
1362 
1363 /**
1364  * input_unregister_device - unregister previously registered device
1365  * @dev: device to be unregistered
1366  *
1367  * This function unregisters an input device. Once device is unregistered
1368  * the caller should not try to access it as it may get freed at any moment.
1369  */
1370 void input_unregister_device(struct input_dev *dev)
1371 {
1372 	struct input_handle *handle, *next;
1373 
1374 	input_disconnect_device(dev);
1375 
1376 	mutex_lock(&input_mutex);
1377 
1378 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1379 		handle->handler->disconnect(handle);
1380 	WARN_ON(!list_empty(&dev->h_list));
1381 
1382 	del_timer_sync(&dev->timer);
1383 	list_del_init(&dev->node);
1384 
1385 	input_wakeup_procfs_readers();
1386 
1387 	mutex_unlock(&input_mutex);
1388 
1389 	device_unregister(&dev->dev);
1390 }
1391 EXPORT_SYMBOL(input_unregister_device);
1392 
1393 /**
1394  * input_register_handler - register a new input handler
1395  * @handler: handler to be registered
1396  *
1397  * This function registers a new input handler (interface) for input
1398  * devices in the system and attaches it to all input devices that
1399  * are compatible with the handler.
1400  */
1401 int input_register_handler(struct input_handler *handler)
1402 {
1403 	struct input_dev *dev;
1404 	int retval;
1405 
1406 	retval = mutex_lock_interruptible(&input_mutex);
1407 	if (retval)
1408 		return retval;
1409 
1410 	INIT_LIST_HEAD(&handler->h_list);
1411 
1412 	if (handler->fops != NULL) {
1413 		if (input_table[handler->minor >> 5]) {
1414 			retval = -EBUSY;
1415 			goto out;
1416 		}
1417 		input_table[handler->minor >> 5] = handler;
1418 	}
1419 
1420 	list_add_tail(&handler->node, &input_handler_list);
1421 
1422 	list_for_each_entry(dev, &input_dev_list, node)
1423 		input_attach_handler(dev, handler);
1424 
1425 	input_wakeup_procfs_readers();
1426 
1427  out:
1428 	mutex_unlock(&input_mutex);
1429 	return retval;
1430 }
1431 EXPORT_SYMBOL(input_register_handler);
1432 
1433 /**
1434  * input_unregister_handler - unregisters an input handler
1435  * @handler: handler to be unregistered
1436  *
1437  * This function disconnects a handler from its input devices and
1438  * removes it from lists of known handlers.
1439  */
1440 void input_unregister_handler(struct input_handler *handler)
1441 {
1442 	struct input_handle *handle, *next;
1443 
1444 	mutex_lock(&input_mutex);
1445 
1446 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1447 		handler->disconnect(handle);
1448 	WARN_ON(!list_empty(&handler->h_list));
1449 
1450 	list_del_init(&handler->node);
1451 
1452 	if (handler->fops != NULL)
1453 		input_table[handler->minor >> 5] = NULL;
1454 
1455 	input_wakeup_procfs_readers();
1456 
1457 	mutex_unlock(&input_mutex);
1458 }
1459 EXPORT_SYMBOL(input_unregister_handler);
1460 
1461 /**
1462  * input_register_handle - register a new input handle
1463  * @handle: handle to register
1464  *
1465  * This function puts a new input handle onto device's
1466  * and handler's lists so that events can flow through
1467  * it once it is opened using input_open_device().
1468  *
1469  * This function is supposed to be called from handler's
1470  * connect() method.
1471  */
1472 int input_register_handle(struct input_handle *handle)
1473 {
1474 	struct input_handler *handler = handle->handler;
1475 	struct input_dev *dev = handle->dev;
1476 	int error;
1477 
1478 	/*
1479 	 * We take dev->mutex here to prevent race with
1480 	 * input_release_device().
1481 	 */
1482 	error = mutex_lock_interruptible(&dev->mutex);
1483 	if (error)
1484 		return error;
1485 	list_add_tail_rcu(&handle->d_node, &dev->h_list);
1486 	mutex_unlock(&dev->mutex);
1487 	synchronize_rcu();
1488 
1489 	/*
1490 	 * Since we are supposed to be called from ->connect()
1491 	 * which is mutually exclusive with ->disconnect()
1492 	 * we can't be racing with input_unregister_handle()
1493 	 * and so separate lock is not needed here.
1494 	 */
1495 	list_add_tail(&handle->h_node, &handler->h_list);
1496 
1497 	if (handler->start)
1498 		handler->start(handle);
1499 
1500 	return 0;
1501 }
1502 EXPORT_SYMBOL(input_register_handle);
1503 
1504 /**
1505  * input_unregister_handle - unregister an input handle
1506  * @handle: handle to unregister
1507  *
1508  * This function removes input handle from device's
1509  * and handler's lists.
1510  *
1511  * This function is supposed to be called from handler's
1512  * disconnect() method.
1513  */
1514 void input_unregister_handle(struct input_handle *handle)
1515 {
1516 	struct input_dev *dev = handle->dev;
1517 
1518 	list_del_init(&handle->h_node);
1519 
1520 	/*
1521 	 * Take dev->mutex to prevent race with input_release_device().
1522 	 */
1523 	mutex_lock(&dev->mutex);
1524 	list_del_rcu(&handle->d_node);
1525 	mutex_unlock(&dev->mutex);
1526 	synchronize_rcu();
1527 }
1528 EXPORT_SYMBOL(input_unregister_handle);
1529 
1530 static int input_open_file(struct inode *inode, struct file *file)
1531 {
1532 	struct input_handler *handler = input_table[iminor(inode) >> 5];
1533 	const struct file_operations *old_fops, *new_fops = NULL;
1534 	int err;
1535 
1536 	/* No load-on-demand here? */
1537 	if (!handler || !(new_fops = fops_get(handler->fops)))
1538 		return -ENODEV;
1539 
1540 	/*
1541 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
1542 	 * not "no device". Oh, well...
1543 	 */
1544 	if (!new_fops->open) {
1545 		fops_put(new_fops);
1546 		return -ENODEV;
1547 	}
1548 	old_fops = file->f_op;
1549 	file->f_op = new_fops;
1550 
1551 	err = new_fops->open(inode, file);
1552 
1553 	if (err) {
1554 		fops_put(file->f_op);
1555 		file->f_op = fops_get(old_fops);
1556 	}
1557 	fops_put(old_fops);
1558 	return err;
1559 }
1560 
1561 static const struct file_operations input_fops = {
1562 	.owner = THIS_MODULE,
1563 	.open = input_open_file,
1564 };
1565 
1566 static int __init input_init(void)
1567 {
1568 	int err;
1569 
1570 	err = class_register(&input_class);
1571 	if (err) {
1572 		printk(KERN_ERR "input: unable to register input_dev class\n");
1573 		return err;
1574 	}
1575 
1576 	err = input_proc_init();
1577 	if (err)
1578 		goto fail1;
1579 
1580 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1581 	if (err) {
1582 		printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1583 		goto fail2;
1584 	}
1585 
1586 	return 0;
1587 
1588  fail2:	input_proc_exit();
1589  fail1:	class_unregister(&input_class);
1590 	return err;
1591 }
1592 
1593 static void __exit input_exit(void)
1594 {
1595 	input_proc_exit();
1596 	unregister_chrdev(INPUT_MAJOR, "input");
1597 	class_unregister(&input_class);
1598 }
1599 
1600 subsys_initcall(input_init);
1601 module_exit(input_exit);
1602