xref: /openbmc/linux/drivers/input/input.c (revision 58919326e72f63c380dc3271dd1cc8bdf1bbe3e4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
28 
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32 
33 #define INPUT_MAX_CHAR_DEVICES		1024
34 #define INPUT_FIRST_DYNAMIC_DEV		256
35 static DEFINE_IDA(input_ida);
36 
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39 
40 /*
41  * input_mutex protects access to both input_dev_list and input_handler_list.
42  * This also causes input_[un]register_device and input_[un]register_handler
43  * be mutually exclusive which simplifies locking in drivers implementing
44  * input handlers.
45  */
46 static DEFINE_MUTEX(input_mutex);
47 
48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49 
50 static const unsigned int input_max_code[EV_CNT] = {
51 	[EV_KEY] = KEY_MAX,
52 	[EV_REL] = REL_MAX,
53 	[EV_ABS] = ABS_MAX,
54 	[EV_MSC] = MSC_MAX,
55 	[EV_SW] = SW_MAX,
56 	[EV_LED] = LED_MAX,
57 	[EV_SND] = SND_MAX,
58 	[EV_FF] = FF_MAX,
59 };
60 
61 static inline int is_event_supported(unsigned int code,
62 				     unsigned long *bm, unsigned int max)
63 {
64 	return code <= max && test_bit(code, bm);
65 }
66 
67 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
68 {
69 	if (fuzz) {
70 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
71 			return old_val;
72 
73 		if (value > old_val - fuzz && value < old_val + fuzz)
74 			return (old_val * 3 + value) / 4;
75 
76 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
77 			return (old_val + value) / 2;
78 	}
79 
80 	return value;
81 }
82 
83 static void input_start_autorepeat(struct input_dev *dev, int code)
84 {
85 	if (test_bit(EV_REP, dev->evbit) &&
86 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
87 	    dev->timer.function) {
88 		dev->repeat_key = code;
89 		mod_timer(&dev->timer,
90 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
91 	}
92 }
93 
94 static void input_stop_autorepeat(struct input_dev *dev)
95 {
96 	del_timer(&dev->timer);
97 }
98 
99 /*
100  * Pass event first through all filters and then, if event has not been
101  * filtered out, through all open handles. This function is called with
102  * dev->event_lock held and interrupts disabled.
103  */
104 static unsigned int input_to_handler(struct input_handle *handle,
105 			struct input_value *vals, unsigned int count)
106 {
107 	struct input_handler *handler = handle->handler;
108 	struct input_value *end = vals;
109 	struct input_value *v;
110 
111 	if (handler->filter) {
112 		for (v = vals; v != vals + count; v++) {
113 			if (handler->filter(handle, v->type, v->code, v->value))
114 				continue;
115 			if (end != v)
116 				*end = *v;
117 			end++;
118 		}
119 		count = end - vals;
120 	}
121 
122 	if (!count)
123 		return 0;
124 
125 	if (handler->events)
126 		handler->events(handle, vals, count);
127 	else if (handler->event)
128 		for (v = vals; v != vals + count; v++)
129 			handler->event(handle, v->type, v->code, v->value);
130 
131 	return count;
132 }
133 
134 /*
135  * Pass values first through all filters and then, if event has not been
136  * filtered out, through all open handles. This function is called with
137  * dev->event_lock held and interrupts disabled.
138  */
139 static void input_pass_values(struct input_dev *dev,
140 			      struct input_value *vals, unsigned int count)
141 {
142 	struct input_handle *handle;
143 	struct input_value *v;
144 
145 	if (!count)
146 		return;
147 
148 	rcu_read_lock();
149 
150 	handle = rcu_dereference(dev->grab);
151 	if (handle) {
152 		count = input_to_handler(handle, vals, count);
153 	} else {
154 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
155 			if (handle->open) {
156 				count = input_to_handler(handle, vals, count);
157 				if (!count)
158 					break;
159 			}
160 	}
161 
162 	rcu_read_unlock();
163 
164 	/* trigger auto repeat for key events */
165 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
166 		for (v = vals; v != vals + count; v++) {
167 			if (v->type == EV_KEY && v->value != 2) {
168 				if (v->value)
169 					input_start_autorepeat(dev, v->code);
170 				else
171 					input_stop_autorepeat(dev);
172 			}
173 		}
174 	}
175 }
176 
177 static void input_pass_event(struct input_dev *dev,
178 			     unsigned int type, unsigned int code, int value)
179 {
180 	struct input_value vals[] = { { type, code, value } };
181 
182 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
183 }
184 
185 /*
186  * Generate software autorepeat event. Note that we take
187  * dev->event_lock here to avoid racing with input_event
188  * which may cause keys get "stuck".
189  */
190 static void input_repeat_key(struct timer_list *t)
191 {
192 	struct input_dev *dev = from_timer(dev, t, timer);
193 	unsigned long flags;
194 
195 	spin_lock_irqsave(&dev->event_lock, flags);
196 
197 	if (test_bit(dev->repeat_key, dev->key) &&
198 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
199 		struct input_value vals[] =  {
200 			{ EV_KEY, dev->repeat_key, 2 },
201 			input_value_sync
202 		};
203 
204 		input_set_timestamp(dev, ktime_get());
205 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
206 
207 		if (dev->rep[REP_PERIOD])
208 			mod_timer(&dev->timer, jiffies +
209 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
210 	}
211 
212 	spin_unlock_irqrestore(&dev->event_lock, flags);
213 }
214 
215 #define INPUT_IGNORE_EVENT	0
216 #define INPUT_PASS_TO_HANDLERS	1
217 #define INPUT_PASS_TO_DEVICE	2
218 #define INPUT_SLOT		4
219 #define INPUT_FLUSH		8
220 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
221 
222 static int input_handle_abs_event(struct input_dev *dev,
223 				  unsigned int code, int *pval)
224 {
225 	struct input_mt *mt = dev->mt;
226 	bool is_mt_event;
227 	int *pold;
228 
229 	if (code == ABS_MT_SLOT) {
230 		/*
231 		 * "Stage" the event; we'll flush it later, when we
232 		 * get actual touch data.
233 		 */
234 		if (mt && *pval >= 0 && *pval < mt->num_slots)
235 			mt->slot = *pval;
236 
237 		return INPUT_IGNORE_EVENT;
238 	}
239 
240 	is_mt_event = input_is_mt_value(code);
241 
242 	if (!is_mt_event) {
243 		pold = &dev->absinfo[code].value;
244 	} else if (mt) {
245 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
246 	} else {
247 		/*
248 		 * Bypass filtering for multi-touch events when
249 		 * not employing slots.
250 		 */
251 		pold = NULL;
252 	}
253 
254 	if (pold) {
255 		*pval = input_defuzz_abs_event(*pval, *pold,
256 						dev->absinfo[code].fuzz);
257 		if (*pold == *pval)
258 			return INPUT_IGNORE_EVENT;
259 
260 		*pold = *pval;
261 	}
262 
263 	/* Flush pending "slot" event */
264 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
265 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
266 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
267 	}
268 
269 	return INPUT_PASS_TO_HANDLERS;
270 }
271 
272 static int input_get_disposition(struct input_dev *dev,
273 			  unsigned int type, unsigned int code, int *pval)
274 {
275 	int disposition = INPUT_IGNORE_EVENT;
276 	int value = *pval;
277 
278 	switch (type) {
279 
280 	case EV_SYN:
281 		switch (code) {
282 		case SYN_CONFIG:
283 			disposition = INPUT_PASS_TO_ALL;
284 			break;
285 
286 		case SYN_REPORT:
287 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
288 			break;
289 		case SYN_MT_REPORT:
290 			disposition = INPUT_PASS_TO_HANDLERS;
291 			break;
292 		}
293 		break;
294 
295 	case EV_KEY:
296 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
297 
298 			/* auto-repeat bypasses state updates */
299 			if (value == 2) {
300 				disposition = INPUT_PASS_TO_HANDLERS;
301 				break;
302 			}
303 
304 			if (!!test_bit(code, dev->key) != !!value) {
305 
306 				__change_bit(code, dev->key);
307 				disposition = INPUT_PASS_TO_HANDLERS;
308 			}
309 		}
310 		break;
311 
312 	case EV_SW:
313 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
314 		    !!test_bit(code, dev->sw) != !!value) {
315 
316 			__change_bit(code, dev->sw);
317 			disposition = INPUT_PASS_TO_HANDLERS;
318 		}
319 		break;
320 
321 	case EV_ABS:
322 		if (is_event_supported(code, dev->absbit, ABS_MAX))
323 			disposition = input_handle_abs_event(dev, code, &value);
324 
325 		break;
326 
327 	case EV_REL:
328 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
329 			disposition = INPUT_PASS_TO_HANDLERS;
330 
331 		break;
332 
333 	case EV_MSC:
334 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
335 			disposition = INPUT_PASS_TO_ALL;
336 
337 		break;
338 
339 	case EV_LED:
340 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
341 		    !!test_bit(code, dev->led) != !!value) {
342 
343 			__change_bit(code, dev->led);
344 			disposition = INPUT_PASS_TO_ALL;
345 		}
346 		break;
347 
348 	case EV_SND:
349 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
350 
351 			if (!!test_bit(code, dev->snd) != !!value)
352 				__change_bit(code, dev->snd);
353 			disposition = INPUT_PASS_TO_ALL;
354 		}
355 		break;
356 
357 	case EV_REP:
358 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
359 			dev->rep[code] = value;
360 			disposition = INPUT_PASS_TO_ALL;
361 		}
362 		break;
363 
364 	case EV_FF:
365 		if (value >= 0)
366 			disposition = INPUT_PASS_TO_ALL;
367 		break;
368 
369 	case EV_PWR:
370 		disposition = INPUT_PASS_TO_ALL;
371 		break;
372 	}
373 
374 	*pval = value;
375 	return disposition;
376 }
377 
378 static void input_handle_event(struct input_dev *dev,
379 			       unsigned int type, unsigned int code, int value)
380 {
381 	int disposition;
382 
383 	/* filter-out events from inhibited devices */
384 	if (dev->inhibited)
385 		return;
386 
387 	disposition = input_get_disposition(dev, type, code, &value);
388 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
389 		add_input_randomness(type, code, value);
390 
391 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
392 		dev->event(dev, type, code, value);
393 
394 	if (!dev->vals)
395 		return;
396 
397 	if (disposition & INPUT_PASS_TO_HANDLERS) {
398 		struct input_value *v;
399 
400 		if (disposition & INPUT_SLOT) {
401 			v = &dev->vals[dev->num_vals++];
402 			v->type = EV_ABS;
403 			v->code = ABS_MT_SLOT;
404 			v->value = dev->mt->slot;
405 		}
406 
407 		v = &dev->vals[dev->num_vals++];
408 		v->type = type;
409 		v->code = code;
410 		v->value = value;
411 	}
412 
413 	if (disposition & INPUT_FLUSH) {
414 		if (dev->num_vals >= 2)
415 			input_pass_values(dev, dev->vals, dev->num_vals);
416 		dev->num_vals = 0;
417 		/*
418 		 * Reset the timestamp on flush so we won't end up
419 		 * with a stale one. Note we only need to reset the
420 		 * monolithic one as we use its presence when deciding
421 		 * whether to generate a synthetic timestamp.
422 		 */
423 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
424 	} else if (dev->num_vals >= dev->max_vals - 2) {
425 		dev->vals[dev->num_vals++] = input_value_sync;
426 		input_pass_values(dev, dev->vals, dev->num_vals);
427 		dev->num_vals = 0;
428 	}
429 
430 }
431 
432 /**
433  * input_event() - report new input event
434  * @dev: device that generated the event
435  * @type: type of the event
436  * @code: event code
437  * @value: value of the event
438  *
439  * This function should be used by drivers implementing various input
440  * devices to report input events. See also input_inject_event().
441  *
442  * NOTE: input_event() may be safely used right after input device was
443  * allocated with input_allocate_device(), even before it is registered
444  * with input_register_device(), but the event will not reach any of the
445  * input handlers. Such early invocation of input_event() may be used
446  * to 'seed' initial state of a switch or initial position of absolute
447  * axis, etc.
448  */
449 void input_event(struct input_dev *dev,
450 		 unsigned int type, unsigned int code, int value)
451 {
452 	unsigned long flags;
453 
454 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
455 
456 		spin_lock_irqsave(&dev->event_lock, flags);
457 		input_handle_event(dev, type, code, value);
458 		spin_unlock_irqrestore(&dev->event_lock, flags);
459 	}
460 }
461 EXPORT_SYMBOL(input_event);
462 
463 /**
464  * input_inject_event() - send input event from input handler
465  * @handle: input handle to send event through
466  * @type: type of the event
467  * @code: event code
468  * @value: value of the event
469  *
470  * Similar to input_event() but will ignore event if device is
471  * "grabbed" and handle injecting event is not the one that owns
472  * the device.
473  */
474 void input_inject_event(struct input_handle *handle,
475 			unsigned int type, unsigned int code, int value)
476 {
477 	struct input_dev *dev = handle->dev;
478 	struct input_handle *grab;
479 	unsigned long flags;
480 
481 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
482 		spin_lock_irqsave(&dev->event_lock, flags);
483 
484 		rcu_read_lock();
485 		grab = rcu_dereference(dev->grab);
486 		if (!grab || grab == handle)
487 			input_handle_event(dev, type, code, value);
488 		rcu_read_unlock();
489 
490 		spin_unlock_irqrestore(&dev->event_lock, flags);
491 	}
492 }
493 EXPORT_SYMBOL(input_inject_event);
494 
495 /**
496  * input_alloc_absinfo - allocates array of input_absinfo structs
497  * @dev: the input device emitting absolute events
498  *
499  * If the absinfo struct the caller asked for is already allocated, this
500  * functions will not do anything.
501  */
502 void input_alloc_absinfo(struct input_dev *dev)
503 {
504 	if (dev->absinfo)
505 		return;
506 
507 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
508 	if (!dev->absinfo) {
509 		dev_err(dev->dev.parent ?: &dev->dev,
510 			"%s: unable to allocate memory\n", __func__);
511 		/*
512 		 * We will handle this allocation failure in
513 		 * input_register_device() when we refuse to register input
514 		 * device with ABS bits but without absinfo.
515 		 */
516 	}
517 }
518 EXPORT_SYMBOL(input_alloc_absinfo);
519 
520 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
521 			  int min, int max, int fuzz, int flat)
522 {
523 	struct input_absinfo *absinfo;
524 
525 	__set_bit(EV_ABS, dev->evbit);
526 	__set_bit(axis, dev->absbit);
527 
528 	input_alloc_absinfo(dev);
529 	if (!dev->absinfo)
530 		return;
531 
532 	absinfo = &dev->absinfo[axis];
533 	absinfo->minimum = min;
534 	absinfo->maximum = max;
535 	absinfo->fuzz = fuzz;
536 	absinfo->flat = flat;
537 }
538 EXPORT_SYMBOL(input_set_abs_params);
539 
540 /**
541  * input_copy_abs - Copy absinfo from one input_dev to another
542  * @dst: Destination input device to copy the abs settings to
543  * @dst_axis: ABS_* value selecting the destination axis
544  * @src: Source input device to copy the abs settings from
545  * @src_axis: ABS_* value selecting the source axis
546  *
547  * Set absinfo for the selected destination axis by copying it from
548  * the specified source input device's source axis.
549  * This is useful to e.g. setup a pen/stylus input-device for combined
550  * touchscreen/pen hardware where the pen uses the same coordinates as
551  * the touchscreen.
552  */
553 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
554 		    const struct input_dev *src, unsigned int src_axis)
555 {
556 	/* src must have EV_ABS and src_axis set */
557 	if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
558 		      test_bit(src_axis, src->absbit))))
559 		return;
560 
561 	/*
562 	 * input_alloc_absinfo() may have failed for the source. Our caller is
563 	 * expected to catch this when registering the input devices, which may
564 	 * happen after the input_copy_abs() call.
565 	 */
566 	if (!src->absinfo)
567 		return;
568 
569 	input_set_capability(dst, EV_ABS, dst_axis);
570 	if (!dst->absinfo)
571 		return;
572 
573 	dst->absinfo[dst_axis] = src->absinfo[src_axis];
574 }
575 EXPORT_SYMBOL(input_copy_abs);
576 
577 /**
578  * input_grab_device - grabs device for exclusive use
579  * @handle: input handle that wants to own the device
580  *
581  * When a device is grabbed by an input handle all events generated by
582  * the device are delivered only to this handle. Also events injected
583  * by other input handles are ignored while device is grabbed.
584  */
585 int input_grab_device(struct input_handle *handle)
586 {
587 	struct input_dev *dev = handle->dev;
588 	int retval;
589 
590 	retval = mutex_lock_interruptible(&dev->mutex);
591 	if (retval)
592 		return retval;
593 
594 	if (dev->grab) {
595 		retval = -EBUSY;
596 		goto out;
597 	}
598 
599 	rcu_assign_pointer(dev->grab, handle);
600 
601  out:
602 	mutex_unlock(&dev->mutex);
603 	return retval;
604 }
605 EXPORT_SYMBOL(input_grab_device);
606 
607 static void __input_release_device(struct input_handle *handle)
608 {
609 	struct input_dev *dev = handle->dev;
610 	struct input_handle *grabber;
611 
612 	grabber = rcu_dereference_protected(dev->grab,
613 					    lockdep_is_held(&dev->mutex));
614 	if (grabber == handle) {
615 		rcu_assign_pointer(dev->grab, NULL);
616 		/* Make sure input_pass_event() notices that grab is gone */
617 		synchronize_rcu();
618 
619 		list_for_each_entry(handle, &dev->h_list, d_node)
620 			if (handle->open && handle->handler->start)
621 				handle->handler->start(handle);
622 	}
623 }
624 
625 /**
626  * input_release_device - release previously grabbed device
627  * @handle: input handle that owns the device
628  *
629  * Releases previously grabbed device so that other input handles can
630  * start receiving input events. Upon release all handlers attached
631  * to the device have their start() method called so they have a change
632  * to synchronize device state with the rest of the system.
633  */
634 void input_release_device(struct input_handle *handle)
635 {
636 	struct input_dev *dev = handle->dev;
637 
638 	mutex_lock(&dev->mutex);
639 	__input_release_device(handle);
640 	mutex_unlock(&dev->mutex);
641 }
642 EXPORT_SYMBOL(input_release_device);
643 
644 /**
645  * input_open_device - open input device
646  * @handle: handle through which device is being accessed
647  *
648  * This function should be called by input handlers when they
649  * want to start receive events from given input device.
650  */
651 int input_open_device(struct input_handle *handle)
652 {
653 	struct input_dev *dev = handle->dev;
654 	int retval;
655 
656 	retval = mutex_lock_interruptible(&dev->mutex);
657 	if (retval)
658 		return retval;
659 
660 	if (dev->going_away) {
661 		retval = -ENODEV;
662 		goto out;
663 	}
664 
665 	handle->open++;
666 
667 	if (dev->users++ || dev->inhibited) {
668 		/*
669 		 * Device is already opened and/or inhibited,
670 		 * so we can exit immediately and report success.
671 		 */
672 		goto out;
673 	}
674 
675 	if (dev->open) {
676 		retval = dev->open(dev);
677 		if (retval) {
678 			dev->users--;
679 			handle->open--;
680 			/*
681 			 * Make sure we are not delivering any more events
682 			 * through this handle
683 			 */
684 			synchronize_rcu();
685 			goto out;
686 		}
687 	}
688 
689 	if (dev->poller)
690 		input_dev_poller_start(dev->poller);
691 
692  out:
693 	mutex_unlock(&dev->mutex);
694 	return retval;
695 }
696 EXPORT_SYMBOL(input_open_device);
697 
698 int input_flush_device(struct input_handle *handle, struct file *file)
699 {
700 	struct input_dev *dev = handle->dev;
701 	int retval;
702 
703 	retval = mutex_lock_interruptible(&dev->mutex);
704 	if (retval)
705 		return retval;
706 
707 	if (dev->flush)
708 		retval = dev->flush(dev, file);
709 
710 	mutex_unlock(&dev->mutex);
711 	return retval;
712 }
713 EXPORT_SYMBOL(input_flush_device);
714 
715 /**
716  * input_close_device - close input device
717  * @handle: handle through which device is being accessed
718  *
719  * This function should be called by input handlers when they
720  * want to stop receive events from given input device.
721  */
722 void input_close_device(struct input_handle *handle)
723 {
724 	struct input_dev *dev = handle->dev;
725 
726 	mutex_lock(&dev->mutex);
727 
728 	__input_release_device(handle);
729 
730 	if (!dev->inhibited && !--dev->users) {
731 		if (dev->poller)
732 			input_dev_poller_stop(dev->poller);
733 		if (dev->close)
734 			dev->close(dev);
735 	}
736 
737 	if (!--handle->open) {
738 		/*
739 		 * synchronize_rcu() makes sure that input_pass_event()
740 		 * completed and that no more input events are delivered
741 		 * through this handle
742 		 */
743 		synchronize_rcu();
744 	}
745 
746 	mutex_unlock(&dev->mutex);
747 }
748 EXPORT_SYMBOL(input_close_device);
749 
750 /*
751  * Simulate keyup events for all keys that are marked as pressed.
752  * The function must be called with dev->event_lock held.
753  */
754 static void input_dev_release_keys(struct input_dev *dev)
755 {
756 	bool need_sync = false;
757 	int code;
758 
759 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
760 		for_each_set_bit(code, dev->key, KEY_CNT) {
761 			input_pass_event(dev, EV_KEY, code, 0);
762 			need_sync = true;
763 		}
764 
765 		if (need_sync)
766 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
767 
768 		memset(dev->key, 0, sizeof(dev->key));
769 	}
770 }
771 
772 /*
773  * Prepare device for unregistering
774  */
775 static void input_disconnect_device(struct input_dev *dev)
776 {
777 	struct input_handle *handle;
778 
779 	/*
780 	 * Mark device as going away. Note that we take dev->mutex here
781 	 * not to protect access to dev->going_away but rather to ensure
782 	 * that there are no threads in the middle of input_open_device()
783 	 */
784 	mutex_lock(&dev->mutex);
785 	dev->going_away = true;
786 	mutex_unlock(&dev->mutex);
787 
788 	spin_lock_irq(&dev->event_lock);
789 
790 	/*
791 	 * Simulate keyup events for all pressed keys so that handlers
792 	 * are not left with "stuck" keys. The driver may continue
793 	 * generate events even after we done here but they will not
794 	 * reach any handlers.
795 	 */
796 	input_dev_release_keys(dev);
797 
798 	list_for_each_entry(handle, &dev->h_list, d_node)
799 		handle->open = 0;
800 
801 	spin_unlock_irq(&dev->event_lock);
802 }
803 
804 /**
805  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
806  * @ke: keymap entry containing scancode to be converted.
807  * @scancode: pointer to the location where converted scancode should
808  *	be stored.
809  *
810  * This function is used to convert scancode stored in &struct keymap_entry
811  * into scalar form understood by legacy keymap handling methods. These
812  * methods expect scancodes to be represented as 'unsigned int'.
813  */
814 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
815 			     unsigned int *scancode)
816 {
817 	switch (ke->len) {
818 	case 1:
819 		*scancode = *((u8 *)ke->scancode);
820 		break;
821 
822 	case 2:
823 		*scancode = *((u16 *)ke->scancode);
824 		break;
825 
826 	case 4:
827 		*scancode = *((u32 *)ke->scancode);
828 		break;
829 
830 	default:
831 		return -EINVAL;
832 	}
833 
834 	return 0;
835 }
836 EXPORT_SYMBOL(input_scancode_to_scalar);
837 
838 /*
839  * Those routines handle the default case where no [gs]etkeycode() is
840  * defined. In this case, an array indexed by the scancode is used.
841  */
842 
843 static unsigned int input_fetch_keycode(struct input_dev *dev,
844 					unsigned int index)
845 {
846 	switch (dev->keycodesize) {
847 	case 1:
848 		return ((u8 *)dev->keycode)[index];
849 
850 	case 2:
851 		return ((u16 *)dev->keycode)[index];
852 
853 	default:
854 		return ((u32 *)dev->keycode)[index];
855 	}
856 }
857 
858 static int input_default_getkeycode(struct input_dev *dev,
859 				    struct input_keymap_entry *ke)
860 {
861 	unsigned int index;
862 	int error;
863 
864 	if (!dev->keycodesize)
865 		return -EINVAL;
866 
867 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
868 		index = ke->index;
869 	else {
870 		error = input_scancode_to_scalar(ke, &index);
871 		if (error)
872 			return error;
873 	}
874 
875 	if (index >= dev->keycodemax)
876 		return -EINVAL;
877 
878 	ke->keycode = input_fetch_keycode(dev, index);
879 	ke->index = index;
880 	ke->len = sizeof(index);
881 	memcpy(ke->scancode, &index, sizeof(index));
882 
883 	return 0;
884 }
885 
886 static int input_default_setkeycode(struct input_dev *dev,
887 				    const struct input_keymap_entry *ke,
888 				    unsigned int *old_keycode)
889 {
890 	unsigned int index;
891 	int error;
892 	int i;
893 
894 	if (!dev->keycodesize)
895 		return -EINVAL;
896 
897 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
898 		index = ke->index;
899 	} else {
900 		error = input_scancode_to_scalar(ke, &index);
901 		if (error)
902 			return error;
903 	}
904 
905 	if (index >= dev->keycodemax)
906 		return -EINVAL;
907 
908 	if (dev->keycodesize < sizeof(ke->keycode) &&
909 			(ke->keycode >> (dev->keycodesize * 8)))
910 		return -EINVAL;
911 
912 	switch (dev->keycodesize) {
913 		case 1: {
914 			u8 *k = (u8 *)dev->keycode;
915 			*old_keycode = k[index];
916 			k[index] = ke->keycode;
917 			break;
918 		}
919 		case 2: {
920 			u16 *k = (u16 *)dev->keycode;
921 			*old_keycode = k[index];
922 			k[index] = ke->keycode;
923 			break;
924 		}
925 		default: {
926 			u32 *k = (u32 *)dev->keycode;
927 			*old_keycode = k[index];
928 			k[index] = ke->keycode;
929 			break;
930 		}
931 	}
932 
933 	if (*old_keycode <= KEY_MAX) {
934 		__clear_bit(*old_keycode, dev->keybit);
935 		for (i = 0; i < dev->keycodemax; i++) {
936 			if (input_fetch_keycode(dev, i) == *old_keycode) {
937 				__set_bit(*old_keycode, dev->keybit);
938 				/* Setting the bit twice is useless, so break */
939 				break;
940 			}
941 		}
942 	}
943 
944 	__set_bit(ke->keycode, dev->keybit);
945 	return 0;
946 }
947 
948 /**
949  * input_get_keycode - retrieve keycode currently mapped to a given scancode
950  * @dev: input device which keymap is being queried
951  * @ke: keymap entry
952  *
953  * This function should be called by anyone interested in retrieving current
954  * keymap. Presently evdev handlers use it.
955  */
956 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
957 {
958 	unsigned long flags;
959 	int retval;
960 
961 	spin_lock_irqsave(&dev->event_lock, flags);
962 	retval = dev->getkeycode(dev, ke);
963 	spin_unlock_irqrestore(&dev->event_lock, flags);
964 
965 	return retval;
966 }
967 EXPORT_SYMBOL(input_get_keycode);
968 
969 /**
970  * input_set_keycode - attribute a keycode to a given scancode
971  * @dev: input device which keymap is being updated
972  * @ke: new keymap entry
973  *
974  * This function should be called by anyone needing to update current
975  * keymap. Presently keyboard and evdev handlers use it.
976  */
977 int input_set_keycode(struct input_dev *dev,
978 		      const struct input_keymap_entry *ke)
979 {
980 	unsigned long flags;
981 	unsigned int old_keycode;
982 	int retval;
983 
984 	if (ke->keycode > KEY_MAX)
985 		return -EINVAL;
986 
987 	spin_lock_irqsave(&dev->event_lock, flags);
988 
989 	retval = dev->setkeycode(dev, ke, &old_keycode);
990 	if (retval)
991 		goto out;
992 
993 	/* Make sure KEY_RESERVED did not get enabled. */
994 	__clear_bit(KEY_RESERVED, dev->keybit);
995 
996 	/*
997 	 * Simulate keyup event if keycode is not present
998 	 * in the keymap anymore
999 	 */
1000 	if (old_keycode > KEY_MAX) {
1001 		dev_warn(dev->dev.parent ?: &dev->dev,
1002 			 "%s: got too big old keycode %#x\n",
1003 			 __func__, old_keycode);
1004 	} else if (test_bit(EV_KEY, dev->evbit) &&
1005 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
1006 		   __test_and_clear_bit(old_keycode, dev->key)) {
1007 		struct input_value vals[] =  {
1008 			{ EV_KEY, old_keycode, 0 },
1009 			input_value_sync
1010 		};
1011 
1012 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
1013 	}
1014 
1015  out:
1016 	spin_unlock_irqrestore(&dev->event_lock, flags);
1017 
1018 	return retval;
1019 }
1020 EXPORT_SYMBOL(input_set_keycode);
1021 
1022 bool input_match_device_id(const struct input_dev *dev,
1023 			   const struct input_device_id *id)
1024 {
1025 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
1026 		if (id->bustype != dev->id.bustype)
1027 			return false;
1028 
1029 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
1030 		if (id->vendor != dev->id.vendor)
1031 			return false;
1032 
1033 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
1034 		if (id->product != dev->id.product)
1035 			return false;
1036 
1037 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1038 		if (id->version != dev->id.version)
1039 			return false;
1040 
1041 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1042 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1043 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1044 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1045 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1046 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1047 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1048 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1049 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1050 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1051 		return false;
1052 	}
1053 
1054 	return true;
1055 }
1056 EXPORT_SYMBOL(input_match_device_id);
1057 
1058 static const struct input_device_id *input_match_device(struct input_handler *handler,
1059 							struct input_dev *dev)
1060 {
1061 	const struct input_device_id *id;
1062 
1063 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1064 		if (input_match_device_id(dev, id) &&
1065 		    (!handler->match || handler->match(handler, dev))) {
1066 			return id;
1067 		}
1068 	}
1069 
1070 	return NULL;
1071 }
1072 
1073 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1074 {
1075 	const struct input_device_id *id;
1076 	int error;
1077 
1078 	id = input_match_device(handler, dev);
1079 	if (!id)
1080 		return -ENODEV;
1081 
1082 	error = handler->connect(handler, dev, id);
1083 	if (error && error != -ENODEV)
1084 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1085 		       handler->name, kobject_name(&dev->dev.kobj), error);
1086 
1087 	return error;
1088 }
1089 
1090 #ifdef CONFIG_COMPAT
1091 
1092 static int input_bits_to_string(char *buf, int buf_size,
1093 				unsigned long bits, bool skip_empty)
1094 {
1095 	int len = 0;
1096 
1097 	if (in_compat_syscall()) {
1098 		u32 dword = bits >> 32;
1099 		if (dword || !skip_empty)
1100 			len += snprintf(buf, buf_size, "%x ", dword);
1101 
1102 		dword = bits & 0xffffffffUL;
1103 		if (dword || !skip_empty || len)
1104 			len += snprintf(buf + len, max(buf_size - len, 0),
1105 					"%x", dword);
1106 	} else {
1107 		if (bits || !skip_empty)
1108 			len += snprintf(buf, buf_size, "%lx", bits);
1109 	}
1110 
1111 	return len;
1112 }
1113 
1114 #else /* !CONFIG_COMPAT */
1115 
1116 static int input_bits_to_string(char *buf, int buf_size,
1117 				unsigned long bits, bool skip_empty)
1118 {
1119 	return bits || !skip_empty ?
1120 		snprintf(buf, buf_size, "%lx", bits) : 0;
1121 }
1122 
1123 #endif
1124 
1125 #ifdef CONFIG_PROC_FS
1126 
1127 static struct proc_dir_entry *proc_bus_input_dir;
1128 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1129 static int input_devices_state;
1130 
1131 static inline void input_wakeup_procfs_readers(void)
1132 {
1133 	input_devices_state++;
1134 	wake_up(&input_devices_poll_wait);
1135 }
1136 
1137 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1138 {
1139 	poll_wait(file, &input_devices_poll_wait, wait);
1140 	if (file->f_version != input_devices_state) {
1141 		file->f_version = input_devices_state;
1142 		return EPOLLIN | EPOLLRDNORM;
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 union input_seq_state {
1149 	struct {
1150 		unsigned short pos;
1151 		bool mutex_acquired;
1152 	};
1153 	void *p;
1154 };
1155 
1156 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1157 {
1158 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1159 	int error;
1160 
1161 	/* We need to fit into seq->private pointer */
1162 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1163 
1164 	error = mutex_lock_interruptible(&input_mutex);
1165 	if (error) {
1166 		state->mutex_acquired = false;
1167 		return ERR_PTR(error);
1168 	}
1169 
1170 	state->mutex_acquired = true;
1171 
1172 	return seq_list_start(&input_dev_list, *pos);
1173 }
1174 
1175 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1176 {
1177 	return seq_list_next(v, &input_dev_list, pos);
1178 }
1179 
1180 static void input_seq_stop(struct seq_file *seq, void *v)
1181 {
1182 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1183 
1184 	if (state->mutex_acquired)
1185 		mutex_unlock(&input_mutex);
1186 }
1187 
1188 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1189 				   unsigned long *bitmap, int max)
1190 {
1191 	int i;
1192 	bool skip_empty = true;
1193 	char buf[18];
1194 
1195 	seq_printf(seq, "B: %s=", name);
1196 
1197 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1198 		if (input_bits_to_string(buf, sizeof(buf),
1199 					 bitmap[i], skip_empty)) {
1200 			skip_empty = false;
1201 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1202 		}
1203 	}
1204 
1205 	/*
1206 	 * If no output was produced print a single 0.
1207 	 */
1208 	if (skip_empty)
1209 		seq_putc(seq, '0');
1210 
1211 	seq_putc(seq, '\n');
1212 }
1213 
1214 static int input_devices_seq_show(struct seq_file *seq, void *v)
1215 {
1216 	struct input_dev *dev = container_of(v, struct input_dev, node);
1217 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1218 	struct input_handle *handle;
1219 
1220 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1221 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1222 
1223 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1224 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1225 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1226 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1227 	seq_puts(seq, "H: Handlers=");
1228 
1229 	list_for_each_entry(handle, &dev->h_list, d_node)
1230 		seq_printf(seq, "%s ", handle->name);
1231 	seq_putc(seq, '\n');
1232 
1233 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1234 
1235 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1236 	if (test_bit(EV_KEY, dev->evbit))
1237 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1238 	if (test_bit(EV_REL, dev->evbit))
1239 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1240 	if (test_bit(EV_ABS, dev->evbit))
1241 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1242 	if (test_bit(EV_MSC, dev->evbit))
1243 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1244 	if (test_bit(EV_LED, dev->evbit))
1245 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1246 	if (test_bit(EV_SND, dev->evbit))
1247 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1248 	if (test_bit(EV_FF, dev->evbit))
1249 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1250 	if (test_bit(EV_SW, dev->evbit))
1251 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1252 
1253 	seq_putc(seq, '\n');
1254 
1255 	kfree(path);
1256 	return 0;
1257 }
1258 
1259 static const struct seq_operations input_devices_seq_ops = {
1260 	.start	= input_devices_seq_start,
1261 	.next	= input_devices_seq_next,
1262 	.stop	= input_seq_stop,
1263 	.show	= input_devices_seq_show,
1264 };
1265 
1266 static int input_proc_devices_open(struct inode *inode, struct file *file)
1267 {
1268 	return seq_open(file, &input_devices_seq_ops);
1269 }
1270 
1271 static const struct proc_ops input_devices_proc_ops = {
1272 	.proc_open	= input_proc_devices_open,
1273 	.proc_poll	= input_proc_devices_poll,
1274 	.proc_read	= seq_read,
1275 	.proc_lseek	= seq_lseek,
1276 	.proc_release	= seq_release,
1277 };
1278 
1279 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1280 {
1281 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1282 	int error;
1283 
1284 	/* We need to fit into seq->private pointer */
1285 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1286 
1287 	error = mutex_lock_interruptible(&input_mutex);
1288 	if (error) {
1289 		state->mutex_acquired = false;
1290 		return ERR_PTR(error);
1291 	}
1292 
1293 	state->mutex_acquired = true;
1294 	state->pos = *pos;
1295 
1296 	return seq_list_start(&input_handler_list, *pos);
1297 }
1298 
1299 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1300 {
1301 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1302 
1303 	state->pos = *pos + 1;
1304 	return seq_list_next(v, &input_handler_list, pos);
1305 }
1306 
1307 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1308 {
1309 	struct input_handler *handler = container_of(v, struct input_handler, node);
1310 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1311 
1312 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1313 	if (handler->filter)
1314 		seq_puts(seq, " (filter)");
1315 	if (handler->legacy_minors)
1316 		seq_printf(seq, " Minor=%d", handler->minor);
1317 	seq_putc(seq, '\n');
1318 
1319 	return 0;
1320 }
1321 
1322 static const struct seq_operations input_handlers_seq_ops = {
1323 	.start	= input_handlers_seq_start,
1324 	.next	= input_handlers_seq_next,
1325 	.stop	= input_seq_stop,
1326 	.show	= input_handlers_seq_show,
1327 };
1328 
1329 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1330 {
1331 	return seq_open(file, &input_handlers_seq_ops);
1332 }
1333 
1334 static const struct proc_ops input_handlers_proc_ops = {
1335 	.proc_open	= input_proc_handlers_open,
1336 	.proc_read	= seq_read,
1337 	.proc_lseek	= seq_lseek,
1338 	.proc_release	= seq_release,
1339 };
1340 
1341 static int __init input_proc_init(void)
1342 {
1343 	struct proc_dir_entry *entry;
1344 
1345 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1346 	if (!proc_bus_input_dir)
1347 		return -ENOMEM;
1348 
1349 	entry = proc_create("devices", 0, proc_bus_input_dir,
1350 			    &input_devices_proc_ops);
1351 	if (!entry)
1352 		goto fail1;
1353 
1354 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1355 			    &input_handlers_proc_ops);
1356 	if (!entry)
1357 		goto fail2;
1358 
1359 	return 0;
1360 
1361  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1362  fail1: remove_proc_entry("bus/input", NULL);
1363 	return -ENOMEM;
1364 }
1365 
1366 static void input_proc_exit(void)
1367 {
1368 	remove_proc_entry("devices", proc_bus_input_dir);
1369 	remove_proc_entry("handlers", proc_bus_input_dir);
1370 	remove_proc_entry("bus/input", NULL);
1371 }
1372 
1373 #else /* !CONFIG_PROC_FS */
1374 static inline void input_wakeup_procfs_readers(void) { }
1375 static inline int input_proc_init(void) { return 0; }
1376 static inline void input_proc_exit(void) { }
1377 #endif
1378 
1379 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1380 static ssize_t input_dev_show_##name(struct device *dev,		\
1381 				     struct device_attribute *attr,	\
1382 				     char *buf)				\
1383 {									\
1384 	struct input_dev *input_dev = to_input_dev(dev);		\
1385 									\
1386 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1387 			 input_dev->name ? input_dev->name : "");	\
1388 }									\
1389 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1390 
1391 INPUT_DEV_STRING_ATTR_SHOW(name);
1392 INPUT_DEV_STRING_ATTR_SHOW(phys);
1393 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1394 
1395 static int input_print_modalias_bits(char *buf, int size,
1396 				     char name, unsigned long *bm,
1397 				     unsigned int min_bit, unsigned int max_bit)
1398 {
1399 	int len = 0, i;
1400 
1401 	len += snprintf(buf, max(size, 0), "%c", name);
1402 	for (i = min_bit; i < max_bit; i++)
1403 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1404 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1405 	return len;
1406 }
1407 
1408 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1409 				int add_cr)
1410 {
1411 	int len;
1412 
1413 	len = snprintf(buf, max(size, 0),
1414 		       "input:b%04Xv%04Xp%04Xe%04X-",
1415 		       id->id.bustype, id->id.vendor,
1416 		       id->id.product, id->id.version);
1417 
1418 	len += input_print_modalias_bits(buf + len, size - len,
1419 				'e', id->evbit, 0, EV_MAX);
1420 	len += input_print_modalias_bits(buf + len, size - len,
1421 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1422 	len += input_print_modalias_bits(buf + len, size - len,
1423 				'r', id->relbit, 0, REL_MAX);
1424 	len += input_print_modalias_bits(buf + len, size - len,
1425 				'a', id->absbit, 0, ABS_MAX);
1426 	len += input_print_modalias_bits(buf + len, size - len,
1427 				'm', id->mscbit, 0, MSC_MAX);
1428 	len += input_print_modalias_bits(buf + len, size - len,
1429 				'l', id->ledbit, 0, LED_MAX);
1430 	len += input_print_modalias_bits(buf + len, size - len,
1431 				's', id->sndbit, 0, SND_MAX);
1432 	len += input_print_modalias_bits(buf + len, size - len,
1433 				'f', id->ffbit, 0, FF_MAX);
1434 	len += input_print_modalias_bits(buf + len, size - len,
1435 				'w', id->swbit, 0, SW_MAX);
1436 
1437 	if (add_cr)
1438 		len += snprintf(buf + len, max(size - len, 0), "\n");
1439 
1440 	return len;
1441 }
1442 
1443 static ssize_t input_dev_show_modalias(struct device *dev,
1444 				       struct device_attribute *attr,
1445 				       char *buf)
1446 {
1447 	struct input_dev *id = to_input_dev(dev);
1448 	ssize_t len;
1449 
1450 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1451 
1452 	return min_t(int, len, PAGE_SIZE);
1453 }
1454 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1455 
1456 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1457 			      int max, int add_cr);
1458 
1459 static ssize_t input_dev_show_properties(struct device *dev,
1460 					 struct device_attribute *attr,
1461 					 char *buf)
1462 {
1463 	struct input_dev *input_dev = to_input_dev(dev);
1464 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1465 				     INPUT_PROP_MAX, true);
1466 	return min_t(int, len, PAGE_SIZE);
1467 }
1468 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1469 
1470 static int input_inhibit_device(struct input_dev *dev);
1471 static int input_uninhibit_device(struct input_dev *dev);
1472 
1473 static ssize_t inhibited_show(struct device *dev,
1474 			      struct device_attribute *attr,
1475 			      char *buf)
1476 {
1477 	struct input_dev *input_dev = to_input_dev(dev);
1478 
1479 	return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1480 }
1481 
1482 static ssize_t inhibited_store(struct device *dev,
1483 			       struct device_attribute *attr, const char *buf,
1484 			       size_t len)
1485 {
1486 	struct input_dev *input_dev = to_input_dev(dev);
1487 	ssize_t rv;
1488 	bool inhibited;
1489 
1490 	if (strtobool(buf, &inhibited))
1491 		return -EINVAL;
1492 
1493 	if (inhibited)
1494 		rv = input_inhibit_device(input_dev);
1495 	else
1496 		rv = input_uninhibit_device(input_dev);
1497 
1498 	if (rv != 0)
1499 		return rv;
1500 
1501 	return len;
1502 }
1503 
1504 static DEVICE_ATTR_RW(inhibited);
1505 
1506 static struct attribute *input_dev_attrs[] = {
1507 	&dev_attr_name.attr,
1508 	&dev_attr_phys.attr,
1509 	&dev_attr_uniq.attr,
1510 	&dev_attr_modalias.attr,
1511 	&dev_attr_properties.attr,
1512 	&dev_attr_inhibited.attr,
1513 	NULL
1514 };
1515 
1516 static const struct attribute_group input_dev_attr_group = {
1517 	.attrs	= input_dev_attrs,
1518 };
1519 
1520 #define INPUT_DEV_ID_ATTR(name)						\
1521 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1522 					struct device_attribute *attr,	\
1523 					char *buf)			\
1524 {									\
1525 	struct input_dev *input_dev = to_input_dev(dev);		\
1526 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1527 }									\
1528 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1529 
1530 INPUT_DEV_ID_ATTR(bustype);
1531 INPUT_DEV_ID_ATTR(vendor);
1532 INPUT_DEV_ID_ATTR(product);
1533 INPUT_DEV_ID_ATTR(version);
1534 
1535 static struct attribute *input_dev_id_attrs[] = {
1536 	&dev_attr_bustype.attr,
1537 	&dev_attr_vendor.attr,
1538 	&dev_attr_product.attr,
1539 	&dev_attr_version.attr,
1540 	NULL
1541 };
1542 
1543 static const struct attribute_group input_dev_id_attr_group = {
1544 	.name	= "id",
1545 	.attrs	= input_dev_id_attrs,
1546 };
1547 
1548 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1549 			      int max, int add_cr)
1550 {
1551 	int i;
1552 	int len = 0;
1553 	bool skip_empty = true;
1554 
1555 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1556 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1557 					    bitmap[i], skip_empty);
1558 		if (len) {
1559 			skip_empty = false;
1560 			if (i > 0)
1561 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1562 		}
1563 	}
1564 
1565 	/*
1566 	 * If no output was produced print a single 0.
1567 	 */
1568 	if (len == 0)
1569 		len = snprintf(buf, buf_size, "%d", 0);
1570 
1571 	if (add_cr)
1572 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1573 
1574 	return len;
1575 }
1576 
1577 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1578 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1579 				       struct device_attribute *attr,	\
1580 				       char *buf)			\
1581 {									\
1582 	struct input_dev *input_dev = to_input_dev(dev);		\
1583 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1584 				     input_dev->bm##bit, ev##_MAX,	\
1585 				     true);				\
1586 	return min_t(int, len, PAGE_SIZE);				\
1587 }									\
1588 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1589 
1590 INPUT_DEV_CAP_ATTR(EV, ev);
1591 INPUT_DEV_CAP_ATTR(KEY, key);
1592 INPUT_DEV_CAP_ATTR(REL, rel);
1593 INPUT_DEV_CAP_ATTR(ABS, abs);
1594 INPUT_DEV_CAP_ATTR(MSC, msc);
1595 INPUT_DEV_CAP_ATTR(LED, led);
1596 INPUT_DEV_CAP_ATTR(SND, snd);
1597 INPUT_DEV_CAP_ATTR(FF, ff);
1598 INPUT_DEV_CAP_ATTR(SW, sw);
1599 
1600 static struct attribute *input_dev_caps_attrs[] = {
1601 	&dev_attr_ev.attr,
1602 	&dev_attr_key.attr,
1603 	&dev_attr_rel.attr,
1604 	&dev_attr_abs.attr,
1605 	&dev_attr_msc.attr,
1606 	&dev_attr_led.attr,
1607 	&dev_attr_snd.attr,
1608 	&dev_attr_ff.attr,
1609 	&dev_attr_sw.attr,
1610 	NULL
1611 };
1612 
1613 static const struct attribute_group input_dev_caps_attr_group = {
1614 	.name	= "capabilities",
1615 	.attrs	= input_dev_caps_attrs,
1616 };
1617 
1618 static const struct attribute_group *input_dev_attr_groups[] = {
1619 	&input_dev_attr_group,
1620 	&input_dev_id_attr_group,
1621 	&input_dev_caps_attr_group,
1622 	&input_poller_attribute_group,
1623 	NULL
1624 };
1625 
1626 static void input_dev_release(struct device *device)
1627 {
1628 	struct input_dev *dev = to_input_dev(device);
1629 
1630 	input_ff_destroy(dev);
1631 	input_mt_destroy_slots(dev);
1632 	kfree(dev->poller);
1633 	kfree(dev->absinfo);
1634 	kfree(dev->vals);
1635 	kfree(dev);
1636 
1637 	module_put(THIS_MODULE);
1638 }
1639 
1640 /*
1641  * Input uevent interface - loading event handlers based on
1642  * device bitfields.
1643  */
1644 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1645 				   const char *name, unsigned long *bitmap, int max)
1646 {
1647 	int len;
1648 
1649 	if (add_uevent_var(env, "%s", name))
1650 		return -ENOMEM;
1651 
1652 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1653 				 sizeof(env->buf) - env->buflen,
1654 				 bitmap, max, false);
1655 	if (len >= (sizeof(env->buf) - env->buflen))
1656 		return -ENOMEM;
1657 
1658 	env->buflen += len;
1659 	return 0;
1660 }
1661 
1662 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1663 					 struct input_dev *dev)
1664 {
1665 	int len;
1666 
1667 	if (add_uevent_var(env, "MODALIAS="))
1668 		return -ENOMEM;
1669 
1670 	len = input_print_modalias(&env->buf[env->buflen - 1],
1671 				   sizeof(env->buf) - env->buflen,
1672 				   dev, 0);
1673 	if (len >= (sizeof(env->buf) - env->buflen))
1674 		return -ENOMEM;
1675 
1676 	env->buflen += len;
1677 	return 0;
1678 }
1679 
1680 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1681 	do {								\
1682 		int err = add_uevent_var(env, fmt, val);		\
1683 		if (err)						\
1684 			return err;					\
1685 	} while (0)
1686 
1687 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1688 	do {								\
1689 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1690 		if (err)						\
1691 			return err;					\
1692 	} while (0)
1693 
1694 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1695 	do {								\
1696 		int err = input_add_uevent_modalias_var(env, dev);	\
1697 		if (err)						\
1698 			return err;					\
1699 	} while (0)
1700 
1701 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1702 {
1703 	struct input_dev *dev = to_input_dev(device);
1704 
1705 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1706 				dev->id.bustype, dev->id.vendor,
1707 				dev->id.product, dev->id.version);
1708 	if (dev->name)
1709 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1710 	if (dev->phys)
1711 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1712 	if (dev->uniq)
1713 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1714 
1715 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1716 
1717 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1718 	if (test_bit(EV_KEY, dev->evbit))
1719 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1720 	if (test_bit(EV_REL, dev->evbit))
1721 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1722 	if (test_bit(EV_ABS, dev->evbit))
1723 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1724 	if (test_bit(EV_MSC, dev->evbit))
1725 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1726 	if (test_bit(EV_LED, dev->evbit))
1727 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1728 	if (test_bit(EV_SND, dev->evbit))
1729 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1730 	if (test_bit(EV_FF, dev->evbit))
1731 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1732 	if (test_bit(EV_SW, dev->evbit))
1733 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1734 
1735 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1736 
1737 	return 0;
1738 }
1739 
1740 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1741 	do {								\
1742 		int i;							\
1743 		bool active;						\
1744 									\
1745 		if (!test_bit(EV_##type, dev->evbit))			\
1746 			break;						\
1747 									\
1748 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1749 			active = test_bit(i, dev->bits);		\
1750 			if (!active && !on)				\
1751 				continue;				\
1752 									\
1753 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1754 		}							\
1755 	} while (0)
1756 
1757 static void input_dev_toggle(struct input_dev *dev, bool activate)
1758 {
1759 	if (!dev->event)
1760 		return;
1761 
1762 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1763 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1764 
1765 	if (activate && test_bit(EV_REP, dev->evbit)) {
1766 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1767 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1768 	}
1769 }
1770 
1771 /**
1772  * input_reset_device() - reset/restore the state of input device
1773  * @dev: input device whose state needs to be reset
1774  *
1775  * This function tries to reset the state of an opened input device and
1776  * bring internal state and state if the hardware in sync with each other.
1777  * We mark all keys as released, restore LED state, repeat rate, etc.
1778  */
1779 void input_reset_device(struct input_dev *dev)
1780 {
1781 	unsigned long flags;
1782 
1783 	mutex_lock(&dev->mutex);
1784 	spin_lock_irqsave(&dev->event_lock, flags);
1785 
1786 	input_dev_toggle(dev, true);
1787 	input_dev_release_keys(dev);
1788 
1789 	spin_unlock_irqrestore(&dev->event_lock, flags);
1790 	mutex_unlock(&dev->mutex);
1791 }
1792 EXPORT_SYMBOL(input_reset_device);
1793 
1794 static int input_inhibit_device(struct input_dev *dev)
1795 {
1796 	int ret = 0;
1797 
1798 	mutex_lock(&dev->mutex);
1799 
1800 	if (dev->inhibited)
1801 		goto out;
1802 
1803 	if (dev->users) {
1804 		if (dev->close)
1805 			dev->close(dev);
1806 		if (dev->poller)
1807 			input_dev_poller_stop(dev->poller);
1808 	}
1809 
1810 	spin_lock_irq(&dev->event_lock);
1811 	input_dev_release_keys(dev);
1812 	input_dev_toggle(dev, false);
1813 	spin_unlock_irq(&dev->event_lock);
1814 
1815 	dev->inhibited = true;
1816 
1817 out:
1818 	mutex_unlock(&dev->mutex);
1819 	return ret;
1820 }
1821 
1822 static int input_uninhibit_device(struct input_dev *dev)
1823 {
1824 	int ret = 0;
1825 
1826 	mutex_lock(&dev->mutex);
1827 
1828 	if (!dev->inhibited)
1829 		goto out;
1830 
1831 	if (dev->users) {
1832 		if (dev->open) {
1833 			ret = dev->open(dev);
1834 			if (ret)
1835 				goto out;
1836 		}
1837 		if (dev->poller)
1838 			input_dev_poller_start(dev->poller);
1839 	}
1840 
1841 	dev->inhibited = false;
1842 	spin_lock_irq(&dev->event_lock);
1843 	input_dev_toggle(dev, true);
1844 	spin_unlock_irq(&dev->event_lock);
1845 
1846 out:
1847 	mutex_unlock(&dev->mutex);
1848 	return ret;
1849 }
1850 
1851 #ifdef CONFIG_PM_SLEEP
1852 static int input_dev_suspend(struct device *dev)
1853 {
1854 	struct input_dev *input_dev = to_input_dev(dev);
1855 
1856 	spin_lock_irq(&input_dev->event_lock);
1857 
1858 	/*
1859 	 * Keys that are pressed now are unlikely to be
1860 	 * still pressed when we resume.
1861 	 */
1862 	input_dev_release_keys(input_dev);
1863 
1864 	/* Turn off LEDs and sounds, if any are active. */
1865 	input_dev_toggle(input_dev, false);
1866 
1867 	spin_unlock_irq(&input_dev->event_lock);
1868 
1869 	return 0;
1870 }
1871 
1872 static int input_dev_resume(struct device *dev)
1873 {
1874 	struct input_dev *input_dev = to_input_dev(dev);
1875 
1876 	spin_lock_irq(&input_dev->event_lock);
1877 
1878 	/* Restore state of LEDs and sounds, if any were active. */
1879 	input_dev_toggle(input_dev, true);
1880 
1881 	spin_unlock_irq(&input_dev->event_lock);
1882 
1883 	return 0;
1884 }
1885 
1886 static int input_dev_freeze(struct device *dev)
1887 {
1888 	struct input_dev *input_dev = to_input_dev(dev);
1889 
1890 	spin_lock_irq(&input_dev->event_lock);
1891 
1892 	/*
1893 	 * Keys that are pressed now are unlikely to be
1894 	 * still pressed when we resume.
1895 	 */
1896 	input_dev_release_keys(input_dev);
1897 
1898 	spin_unlock_irq(&input_dev->event_lock);
1899 
1900 	return 0;
1901 }
1902 
1903 static int input_dev_poweroff(struct device *dev)
1904 {
1905 	struct input_dev *input_dev = to_input_dev(dev);
1906 
1907 	spin_lock_irq(&input_dev->event_lock);
1908 
1909 	/* Turn off LEDs and sounds, if any are active. */
1910 	input_dev_toggle(input_dev, false);
1911 
1912 	spin_unlock_irq(&input_dev->event_lock);
1913 
1914 	return 0;
1915 }
1916 
1917 static const struct dev_pm_ops input_dev_pm_ops = {
1918 	.suspend	= input_dev_suspend,
1919 	.resume		= input_dev_resume,
1920 	.freeze		= input_dev_freeze,
1921 	.poweroff	= input_dev_poweroff,
1922 	.restore	= input_dev_resume,
1923 };
1924 #endif /* CONFIG_PM */
1925 
1926 static const struct device_type input_dev_type = {
1927 	.groups		= input_dev_attr_groups,
1928 	.release	= input_dev_release,
1929 	.uevent		= input_dev_uevent,
1930 #ifdef CONFIG_PM_SLEEP
1931 	.pm		= &input_dev_pm_ops,
1932 #endif
1933 };
1934 
1935 static char *input_devnode(struct device *dev, umode_t *mode)
1936 {
1937 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1938 }
1939 
1940 struct class input_class = {
1941 	.name		= "input",
1942 	.devnode	= input_devnode,
1943 };
1944 EXPORT_SYMBOL_GPL(input_class);
1945 
1946 /**
1947  * input_allocate_device - allocate memory for new input device
1948  *
1949  * Returns prepared struct input_dev or %NULL.
1950  *
1951  * NOTE: Use input_free_device() to free devices that have not been
1952  * registered; input_unregister_device() should be used for already
1953  * registered devices.
1954  */
1955 struct input_dev *input_allocate_device(void)
1956 {
1957 	static atomic_t input_no = ATOMIC_INIT(-1);
1958 	struct input_dev *dev;
1959 
1960 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1961 	if (dev) {
1962 		dev->dev.type = &input_dev_type;
1963 		dev->dev.class = &input_class;
1964 		device_initialize(&dev->dev);
1965 		mutex_init(&dev->mutex);
1966 		spin_lock_init(&dev->event_lock);
1967 		timer_setup(&dev->timer, NULL, 0);
1968 		INIT_LIST_HEAD(&dev->h_list);
1969 		INIT_LIST_HEAD(&dev->node);
1970 
1971 		dev_set_name(&dev->dev, "input%lu",
1972 			     (unsigned long)atomic_inc_return(&input_no));
1973 
1974 		__module_get(THIS_MODULE);
1975 	}
1976 
1977 	return dev;
1978 }
1979 EXPORT_SYMBOL(input_allocate_device);
1980 
1981 struct input_devres {
1982 	struct input_dev *input;
1983 };
1984 
1985 static int devm_input_device_match(struct device *dev, void *res, void *data)
1986 {
1987 	struct input_devres *devres = res;
1988 
1989 	return devres->input == data;
1990 }
1991 
1992 static void devm_input_device_release(struct device *dev, void *res)
1993 {
1994 	struct input_devres *devres = res;
1995 	struct input_dev *input = devres->input;
1996 
1997 	dev_dbg(dev, "%s: dropping reference to %s\n",
1998 		__func__, dev_name(&input->dev));
1999 	input_put_device(input);
2000 }
2001 
2002 /**
2003  * devm_input_allocate_device - allocate managed input device
2004  * @dev: device owning the input device being created
2005  *
2006  * Returns prepared struct input_dev or %NULL.
2007  *
2008  * Managed input devices do not need to be explicitly unregistered or
2009  * freed as it will be done automatically when owner device unbinds from
2010  * its driver (or binding fails). Once managed input device is allocated,
2011  * it is ready to be set up and registered in the same fashion as regular
2012  * input device. There are no special devm_input_device_[un]register()
2013  * variants, regular ones work with both managed and unmanaged devices,
2014  * should you need them. In most cases however, managed input device need
2015  * not be explicitly unregistered or freed.
2016  *
2017  * NOTE: the owner device is set up as parent of input device and users
2018  * should not override it.
2019  */
2020 struct input_dev *devm_input_allocate_device(struct device *dev)
2021 {
2022 	struct input_dev *input;
2023 	struct input_devres *devres;
2024 
2025 	devres = devres_alloc(devm_input_device_release,
2026 			      sizeof(*devres), GFP_KERNEL);
2027 	if (!devres)
2028 		return NULL;
2029 
2030 	input = input_allocate_device();
2031 	if (!input) {
2032 		devres_free(devres);
2033 		return NULL;
2034 	}
2035 
2036 	input->dev.parent = dev;
2037 	input->devres_managed = true;
2038 
2039 	devres->input = input;
2040 	devres_add(dev, devres);
2041 
2042 	return input;
2043 }
2044 EXPORT_SYMBOL(devm_input_allocate_device);
2045 
2046 /**
2047  * input_free_device - free memory occupied by input_dev structure
2048  * @dev: input device to free
2049  *
2050  * This function should only be used if input_register_device()
2051  * was not called yet or if it failed. Once device was registered
2052  * use input_unregister_device() and memory will be freed once last
2053  * reference to the device is dropped.
2054  *
2055  * Device should be allocated by input_allocate_device().
2056  *
2057  * NOTE: If there are references to the input device then memory
2058  * will not be freed until last reference is dropped.
2059  */
2060 void input_free_device(struct input_dev *dev)
2061 {
2062 	if (dev) {
2063 		if (dev->devres_managed)
2064 			WARN_ON(devres_destroy(dev->dev.parent,
2065 						devm_input_device_release,
2066 						devm_input_device_match,
2067 						dev));
2068 		input_put_device(dev);
2069 	}
2070 }
2071 EXPORT_SYMBOL(input_free_device);
2072 
2073 /**
2074  * input_set_timestamp - set timestamp for input events
2075  * @dev: input device to set timestamp for
2076  * @timestamp: the time at which the event has occurred
2077  *   in CLOCK_MONOTONIC
2078  *
2079  * This function is intended to provide to the input system a more
2080  * accurate time of when an event actually occurred. The driver should
2081  * call this function as soon as a timestamp is acquired ensuring
2082  * clock conversions in input_set_timestamp are done correctly.
2083  *
2084  * The system entering suspend state between timestamp acquisition and
2085  * calling input_set_timestamp can result in inaccurate conversions.
2086  */
2087 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2088 {
2089 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2090 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2091 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2092 							   TK_OFFS_BOOT);
2093 }
2094 EXPORT_SYMBOL(input_set_timestamp);
2095 
2096 /**
2097  * input_get_timestamp - get timestamp for input events
2098  * @dev: input device to get timestamp from
2099  *
2100  * A valid timestamp is a timestamp of non-zero value.
2101  */
2102 ktime_t *input_get_timestamp(struct input_dev *dev)
2103 {
2104 	const ktime_t invalid_timestamp = ktime_set(0, 0);
2105 
2106 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2107 		input_set_timestamp(dev, ktime_get());
2108 
2109 	return dev->timestamp;
2110 }
2111 EXPORT_SYMBOL(input_get_timestamp);
2112 
2113 /**
2114  * input_set_capability - mark device as capable of a certain event
2115  * @dev: device that is capable of emitting or accepting event
2116  * @type: type of the event (EV_KEY, EV_REL, etc...)
2117  * @code: event code
2118  *
2119  * In addition to setting up corresponding bit in appropriate capability
2120  * bitmap the function also adjusts dev->evbit.
2121  */
2122 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2123 {
2124 	if (type < EV_CNT && input_max_code[type] &&
2125 	    code > input_max_code[type]) {
2126 		pr_err("%s: invalid code %u for type %u\n", __func__, code,
2127 		       type);
2128 		dump_stack();
2129 		return;
2130 	}
2131 
2132 	switch (type) {
2133 	case EV_KEY:
2134 		__set_bit(code, dev->keybit);
2135 		break;
2136 
2137 	case EV_REL:
2138 		__set_bit(code, dev->relbit);
2139 		break;
2140 
2141 	case EV_ABS:
2142 		input_alloc_absinfo(dev);
2143 		__set_bit(code, dev->absbit);
2144 		break;
2145 
2146 	case EV_MSC:
2147 		__set_bit(code, dev->mscbit);
2148 		break;
2149 
2150 	case EV_SW:
2151 		__set_bit(code, dev->swbit);
2152 		break;
2153 
2154 	case EV_LED:
2155 		__set_bit(code, dev->ledbit);
2156 		break;
2157 
2158 	case EV_SND:
2159 		__set_bit(code, dev->sndbit);
2160 		break;
2161 
2162 	case EV_FF:
2163 		__set_bit(code, dev->ffbit);
2164 		break;
2165 
2166 	case EV_PWR:
2167 		/* do nothing */
2168 		break;
2169 
2170 	default:
2171 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2172 		dump_stack();
2173 		return;
2174 	}
2175 
2176 	__set_bit(type, dev->evbit);
2177 }
2178 EXPORT_SYMBOL(input_set_capability);
2179 
2180 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2181 {
2182 	int mt_slots;
2183 	int i;
2184 	unsigned int events;
2185 
2186 	if (dev->mt) {
2187 		mt_slots = dev->mt->num_slots;
2188 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2189 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2190 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2191 		mt_slots = clamp(mt_slots, 2, 32);
2192 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2193 		mt_slots = 2;
2194 	} else {
2195 		mt_slots = 0;
2196 	}
2197 
2198 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2199 
2200 	if (test_bit(EV_ABS, dev->evbit))
2201 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2202 			events += input_is_mt_axis(i) ? mt_slots : 1;
2203 
2204 	if (test_bit(EV_REL, dev->evbit))
2205 		events += bitmap_weight(dev->relbit, REL_CNT);
2206 
2207 	/* Make room for KEY and MSC events */
2208 	events += 7;
2209 
2210 	return events;
2211 }
2212 
2213 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2214 	do {								\
2215 		if (!test_bit(EV_##type, dev->evbit))			\
2216 			memset(dev->bits##bit, 0,			\
2217 				sizeof(dev->bits##bit));		\
2218 	} while (0)
2219 
2220 static void input_cleanse_bitmasks(struct input_dev *dev)
2221 {
2222 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2223 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2224 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2225 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2226 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2227 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2228 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2229 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2230 }
2231 
2232 static void __input_unregister_device(struct input_dev *dev)
2233 {
2234 	struct input_handle *handle, *next;
2235 
2236 	input_disconnect_device(dev);
2237 
2238 	mutex_lock(&input_mutex);
2239 
2240 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2241 		handle->handler->disconnect(handle);
2242 	WARN_ON(!list_empty(&dev->h_list));
2243 
2244 	del_timer_sync(&dev->timer);
2245 	list_del_init(&dev->node);
2246 
2247 	input_wakeup_procfs_readers();
2248 
2249 	mutex_unlock(&input_mutex);
2250 
2251 	device_del(&dev->dev);
2252 }
2253 
2254 static void devm_input_device_unregister(struct device *dev, void *res)
2255 {
2256 	struct input_devres *devres = res;
2257 	struct input_dev *input = devres->input;
2258 
2259 	dev_dbg(dev, "%s: unregistering device %s\n",
2260 		__func__, dev_name(&input->dev));
2261 	__input_unregister_device(input);
2262 }
2263 
2264 /**
2265  * input_enable_softrepeat - enable software autorepeat
2266  * @dev: input device
2267  * @delay: repeat delay
2268  * @period: repeat period
2269  *
2270  * Enable software autorepeat on the input device.
2271  */
2272 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2273 {
2274 	dev->timer.function = input_repeat_key;
2275 	dev->rep[REP_DELAY] = delay;
2276 	dev->rep[REP_PERIOD] = period;
2277 }
2278 EXPORT_SYMBOL(input_enable_softrepeat);
2279 
2280 bool input_device_enabled(struct input_dev *dev)
2281 {
2282 	lockdep_assert_held(&dev->mutex);
2283 
2284 	return !dev->inhibited && dev->users > 0;
2285 }
2286 EXPORT_SYMBOL_GPL(input_device_enabled);
2287 
2288 /**
2289  * input_register_device - register device with input core
2290  * @dev: device to be registered
2291  *
2292  * This function registers device with input core. The device must be
2293  * allocated with input_allocate_device() and all it's capabilities
2294  * set up before registering.
2295  * If function fails the device must be freed with input_free_device().
2296  * Once device has been successfully registered it can be unregistered
2297  * with input_unregister_device(); input_free_device() should not be
2298  * called in this case.
2299  *
2300  * Note that this function is also used to register managed input devices
2301  * (ones allocated with devm_input_allocate_device()). Such managed input
2302  * devices need not be explicitly unregistered or freed, their tear down
2303  * is controlled by the devres infrastructure. It is also worth noting
2304  * that tear down of managed input devices is internally a 2-step process:
2305  * registered managed input device is first unregistered, but stays in
2306  * memory and can still handle input_event() calls (although events will
2307  * not be delivered anywhere). The freeing of managed input device will
2308  * happen later, when devres stack is unwound to the point where device
2309  * allocation was made.
2310  */
2311 int input_register_device(struct input_dev *dev)
2312 {
2313 	struct input_devres *devres = NULL;
2314 	struct input_handler *handler;
2315 	unsigned int packet_size;
2316 	const char *path;
2317 	int error;
2318 
2319 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2320 		dev_err(&dev->dev,
2321 			"Absolute device without dev->absinfo, refusing to register\n");
2322 		return -EINVAL;
2323 	}
2324 
2325 	if (dev->devres_managed) {
2326 		devres = devres_alloc(devm_input_device_unregister,
2327 				      sizeof(*devres), GFP_KERNEL);
2328 		if (!devres)
2329 			return -ENOMEM;
2330 
2331 		devres->input = dev;
2332 	}
2333 
2334 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2335 	__set_bit(EV_SYN, dev->evbit);
2336 
2337 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2338 	__clear_bit(KEY_RESERVED, dev->keybit);
2339 
2340 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2341 	input_cleanse_bitmasks(dev);
2342 
2343 	packet_size = input_estimate_events_per_packet(dev);
2344 	if (dev->hint_events_per_packet < packet_size)
2345 		dev->hint_events_per_packet = packet_size;
2346 
2347 	dev->max_vals = dev->hint_events_per_packet + 2;
2348 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2349 	if (!dev->vals) {
2350 		error = -ENOMEM;
2351 		goto err_devres_free;
2352 	}
2353 
2354 	/*
2355 	 * If delay and period are pre-set by the driver, then autorepeating
2356 	 * is handled by the driver itself and we don't do it in input.c.
2357 	 */
2358 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2359 		input_enable_softrepeat(dev, 250, 33);
2360 
2361 	if (!dev->getkeycode)
2362 		dev->getkeycode = input_default_getkeycode;
2363 
2364 	if (!dev->setkeycode)
2365 		dev->setkeycode = input_default_setkeycode;
2366 
2367 	if (dev->poller)
2368 		input_dev_poller_finalize(dev->poller);
2369 
2370 	error = device_add(&dev->dev);
2371 	if (error)
2372 		goto err_free_vals;
2373 
2374 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2375 	pr_info("%s as %s\n",
2376 		dev->name ? dev->name : "Unspecified device",
2377 		path ? path : "N/A");
2378 	kfree(path);
2379 
2380 	error = mutex_lock_interruptible(&input_mutex);
2381 	if (error)
2382 		goto err_device_del;
2383 
2384 	list_add_tail(&dev->node, &input_dev_list);
2385 
2386 	list_for_each_entry(handler, &input_handler_list, node)
2387 		input_attach_handler(dev, handler);
2388 
2389 	input_wakeup_procfs_readers();
2390 
2391 	mutex_unlock(&input_mutex);
2392 
2393 	if (dev->devres_managed) {
2394 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2395 			__func__, dev_name(&dev->dev));
2396 		devres_add(dev->dev.parent, devres);
2397 	}
2398 	return 0;
2399 
2400 err_device_del:
2401 	device_del(&dev->dev);
2402 err_free_vals:
2403 	kfree(dev->vals);
2404 	dev->vals = NULL;
2405 err_devres_free:
2406 	devres_free(devres);
2407 	return error;
2408 }
2409 EXPORT_SYMBOL(input_register_device);
2410 
2411 /**
2412  * input_unregister_device - unregister previously registered device
2413  * @dev: device to be unregistered
2414  *
2415  * This function unregisters an input device. Once device is unregistered
2416  * the caller should not try to access it as it may get freed at any moment.
2417  */
2418 void input_unregister_device(struct input_dev *dev)
2419 {
2420 	if (dev->devres_managed) {
2421 		WARN_ON(devres_destroy(dev->dev.parent,
2422 					devm_input_device_unregister,
2423 					devm_input_device_match,
2424 					dev));
2425 		__input_unregister_device(dev);
2426 		/*
2427 		 * We do not do input_put_device() here because it will be done
2428 		 * when 2nd devres fires up.
2429 		 */
2430 	} else {
2431 		__input_unregister_device(dev);
2432 		input_put_device(dev);
2433 	}
2434 }
2435 EXPORT_SYMBOL(input_unregister_device);
2436 
2437 /**
2438  * input_register_handler - register a new input handler
2439  * @handler: handler to be registered
2440  *
2441  * This function registers a new input handler (interface) for input
2442  * devices in the system and attaches it to all input devices that
2443  * are compatible with the handler.
2444  */
2445 int input_register_handler(struct input_handler *handler)
2446 {
2447 	struct input_dev *dev;
2448 	int error;
2449 
2450 	error = mutex_lock_interruptible(&input_mutex);
2451 	if (error)
2452 		return error;
2453 
2454 	INIT_LIST_HEAD(&handler->h_list);
2455 
2456 	list_add_tail(&handler->node, &input_handler_list);
2457 
2458 	list_for_each_entry(dev, &input_dev_list, node)
2459 		input_attach_handler(dev, handler);
2460 
2461 	input_wakeup_procfs_readers();
2462 
2463 	mutex_unlock(&input_mutex);
2464 	return 0;
2465 }
2466 EXPORT_SYMBOL(input_register_handler);
2467 
2468 /**
2469  * input_unregister_handler - unregisters an input handler
2470  * @handler: handler to be unregistered
2471  *
2472  * This function disconnects a handler from its input devices and
2473  * removes it from lists of known handlers.
2474  */
2475 void input_unregister_handler(struct input_handler *handler)
2476 {
2477 	struct input_handle *handle, *next;
2478 
2479 	mutex_lock(&input_mutex);
2480 
2481 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2482 		handler->disconnect(handle);
2483 	WARN_ON(!list_empty(&handler->h_list));
2484 
2485 	list_del_init(&handler->node);
2486 
2487 	input_wakeup_procfs_readers();
2488 
2489 	mutex_unlock(&input_mutex);
2490 }
2491 EXPORT_SYMBOL(input_unregister_handler);
2492 
2493 /**
2494  * input_handler_for_each_handle - handle iterator
2495  * @handler: input handler to iterate
2496  * @data: data for the callback
2497  * @fn: function to be called for each handle
2498  *
2499  * Iterate over @bus's list of devices, and call @fn for each, passing
2500  * it @data and stop when @fn returns a non-zero value. The function is
2501  * using RCU to traverse the list and therefore may be using in atomic
2502  * contexts. The @fn callback is invoked from RCU critical section and
2503  * thus must not sleep.
2504  */
2505 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2506 				  int (*fn)(struct input_handle *, void *))
2507 {
2508 	struct input_handle *handle;
2509 	int retval = 0;
2510 
2511 	rcu_read_lock();
2512 
2513 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2514 		retval = fn(handle, data);
2515 		if (retval)
2516 			break;
2517 	}
2518 
2519 	rcu_read_unlock();
2520 
2521 	return retval;
2522 }
2523 EXPORT_SYMBOL(input_handler_for_each_handle);
2524 
2525 /**
2526  * input_register_handle - register a new input handle
2527  * @handle: handle to register
2528  *
2529  * This function puts a new input handle onto device's
2530  * and handler's lists so that events can flow through
2531  * it once it is opened using input_open_device().
2532  *
2533  * This function is supposed to be called from handler's
2534  * connect() method.
2535  */
2536 int input_register_handle(struct input_handle *handle)
2537 {
2538 	struct input_handler *handler = handle->handler;
2539 	struct input_dev *dev = handle->dev;
2540 	int error;
2541 
2542 	/*
2543 	 * We take dev->mutex here to prevent race with
2544 	 * input_release_device().
2545 	 */
2546 	error = mutex_lock_interruptible(&dev->mutex);
2547 	if (error)
2548 		return error;
2549 
2550 	/*
2551 	 * Filters go to the head of the list, normal handlers
2552 	 * to the tail.
2553 	 */
2554 	if (handler->filter)
2555 		list_add_rcu(&handle->d_node, &dev->h_list);
2556 	else
2557 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2558 
2559 	mutex_unlock(&dev->mutex);
2560 
2561 	/*
2562 	 * Since we are supposed to be called from ->connect()
2563 	 * which is mutually exclusive with ->disconnect()
2564 	 * we can't be racing with input_unregister_handle()
2565 	 * and so separate lock is not needed here.
2566 	 */
2567 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2568 
2569 	if (handler->start)
2570 		handler->start(handle);
2571 
2572 	return 0;
2573 }
2574 EXPORT_SYMBOL(input_register_handle);
2575 
2576 /**
2577  * input_unregister_handle - unregister an input handle
2578  * @handle: handle to unregister
2579  *
2580  * This function removes input handle from device's
2581  * and handler's lists.
2582  *
2583  * This function is supposed to be called from handler's
2584  * disconnect() method.
2585  */
2586 void input_unregister_handle(struct input_handle *handle)
2587 {
2588 	struct input_dev *dev = handle->dev;
2589 
2590 	list_del_rcu(&handle->h_node);
2591 
2592 	/*
2593 	 * Take dev->mutex to prevent race with input_release_device().
2594 	 */
2595 	mutex_lock(&dev->mutex);
2596 	list_del_rcu(&handle->d_node);
2597 	mutex_unlock(&dev->mutex);
2598 
2599 	synchronize_rcu();
2600 }
2601 EXPORT_SYMBOL(input_unregister_handle);
2602 
2603 /**
2604  * input_get_new_minor - allocates a new input minor number
2605  * @legacy_base: beginning or the legacy range to be searched
2606  * @legacy_num: size of legacy range
2607  * @allow_dynamic: whether we can also take ID from the dynamic range
2608  *
2609  * This function allocates a new device minor for from input major namespace.
2610  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2611  * parameters and whether ID can be allocated from dynamic range if there are
2612  * no free IDs in legacy range.
2613  */
2614 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2615 			bool allow_dynamic)
2616 {
2617 	/*
2618 	 * This function should be called from input handler's ->connect()
2619 	 * methods, which are serialized with input_mutex, so no additional
2620 	 * locking is needed here.
2621 	 */
2622 	if (legacy_base >= 0) {
2623 		int minor = ida_simple_get(&input_ida,
2624 					   legacy_base,
2625 					   legacy_base + legacy_num,
2626 					   GFP_KERNEL);
2627 		if (minor >= 0 || !allow_dynamic)
2628 			return minor;
2629 	}
2630 
2631 	return ida_simple_get(&input_ida,
2632 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2633 			      GFP_KERNEL);
2634 }
2635 EXPORT_SYMBOL(input_get_new_minor);
2636 
2637 /**
2638  * input_free_minor - release previously allocated minor
2639  * @minor: minor to be released
2640  *
2641  * This function releases previously allocated input minor so that it can be
2642  * reused later.
2643  */
2644 void input_free_minor(unsigned int minor)
2645 {
2646 	ida_simple_remove(&input_ida, minor);
2647 }
2648 EXPORT_SYMBOL(input_free_minor);
2649 
2650 static int __init input_init(void)
2651 {
2652 	int err;
2653 
2654 	err = class_register(&input_class);
2655 	if (err) {
2656 		pr_err("unable to register input_dev class\n");
2657 		return err;
2658 	}
2659 
2660 	err = input_proc_init();
2661 	if (err)
2662 		goto fail1;
2663 
2664 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2665 				     INPUT_MAX_CHAR_DEVICES, "input");
2666 	if (err) {
2667 		pr_err("unable to register char major %d", INPUT_MAJOR);
2668 		goto fail2;
2669 	}
2670 
2671 	return 0;
2672 
2673  fail2:	input_proc_exit();
2674  fail1:	class_unregister(&input_class);
2675 	return err;
2676 }
2677 
2678 static void __exit input_exit(void)
2679 {
2680 	input_proc_exit();
2681 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2682 				 INPUT_MAX_CHAR_DEVICES);
2683 	class_unregister(&input_class);
2684 }
2685 
2686 subsys_initcall(input_init);
2687 module_exit(input_exit);
2688