xref: /openbmc/linux/drivers/input/input.c (revision 588b48ca)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static inline int is_event_supported(unsigned int code,
54 				     unsigned long *bm, unsigned int max)
55 {
56 	return code <= max && test_bit(code, bm);
57 }
58 
59 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60 {
61 	if (fuzz) {
62 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 			return old_val;
64 
65 		if (value > old_val - fuzz && value < old_val + fuzz)
66 			return (old_val * 3 + value) / 4;
67 
68 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 			return (old_val + value) / 2;
70 	}
71 
72 	return value;
73 }
74 
75 static void input_start_autorepeat(struct input_dev *dev, int code)
76 {
77 	if (test_bit(EV_REP, dev->evbit) &&
78 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 	    dev->timer.data) {
80 		dev->repeat_key = code;
81 		mod_timer(&dev->timer,
82 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 	}
84 }
85 
86 static void input_stop_autorepeat(struct input_dev *dev)
87 {
88 	del_timer(&dev->timer);
89 }
90 
91 /*
92  * Pass event first through all filters and then, if event has not been
93  * filtered out, through all open handles. This function is called with
94  * dev->event_lock held and interrupts disabled.
95  */
96 static unsigned int input_to_handler(struct input_handle *handle,
97 			struct input_value *vals, unsigned int count)
98 {
99 	struct input_handler *handler = handle->handler;
100 	struct input_value *end = vals;
101 	struct input_value *v;
102 
103 	for (v = vals; v != vals + count; v++) {
104 		if (handler->filter &&
105 		    handler->filter(handle, v->type, v->code, v->value))
106 			continue;
107 		if (end != v)
108 			*end = *v;
109 		end++;
110 	}
111 
112 	count = end - vals;
113 	if (!count)
114 		return 0;
115 
116 	if (handler->events)
117 		handler->events(handle, vals, count);
118 	else if (handler->event)
119 		for (v = vals; v != end; v++)
120 			handler->event(handle, v->type, v->code, v->value);
121 
122 	return count;
123 }
124 
125 /*
126  * Pass values first through all filters and then, if event has not been
127  * filtered out, through all open handles. This function is called with
128  * dev->event_lock held and interrupts disabled.
129  */
130 static void input_pass_values(struct input_dev *dev,
131 			      struct input_value *vals, unsigned int count)
132 {
133 	struct input_handle *handle;
134 	struct input_value *v;
135 
136 	if (!count)
137 		return;
138 
139 	rcu_read_lock();
140 
141 	handle = rcu_dereference(dev->grab);
142 	if (handle) {
143 		count = input_to_handler(handle, vals, count);
144 	} else {
145 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
146 			if (handle->open)
147 				count = input_to_handler(handle, vals, count);
148 	}
149 
150 	rcu_read_unlock();
151 
152 	add_input_randomness(vals->type, vals->code, vals->value);
153 
154 	/* trigger auto repeat for key events */
155 	for (v = vals; v != vals + count; v++) {
156 		if (v->type == EV_KEY && v->value != 2) {
157 			if (v->value)
158 				input_start_autorepeat(dev, v->code);
159 			else
160 				input_stop_autorepeat(dev);
161 		}
162 	}
163 }
164 
165 static void input_pass_event(struct input_dev *dev,
166 			     unsigned int type, unsigned int code, int value)
167 {
168 	struct input_value vals[] = { { type, code, value } };
169 
170 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
171 }
172 
173 /*
174  * Generate software autorepeat event. Note that we take
175  * dev->event_lock here to avoid racing with input_event
176  * which may cause keys get "stuck".
177  */
178 static void input_repeat_key(unsigned long data)
179 {
180 	struct input_dev *dev = (void *) data;
181 	unsigned long flags;
182 
183 	spin_lock_irqsave(&dev->event_lock, flags);
184 
185 	if (test_bit(dev->repeat_key, dev->key) &&
186 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
187 		struct input_value vals[] =  {
188 			{ EV_KEY, dev->repeat_key, 2 },
189 			input_value_sync
190 		};
191 
192 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
193 
194 		if (dev->rep[REP_PERIOD])
195 			mod_timer(&dev->timer, jiffies +
196 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
197 	}
198 
199 	spin_unlock_irqrestore(&dev->event_lock, flags);
200 }
201 
202 #define INPUT_IGNORE_EVENT	0
203 #define INPUT_PASS_TO_HANDLERS	1
204 #define INPUT_PASS_TO_DEVICE	2
205 #define INPUT_SLOT		4
206 #define INPUT_FLUSH		8
207 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
208 
209 static int input_handle_abs_event(struct input_dev *dev,
210 				  unsigned int code, int *pval)
211 {
212 	struct input_mt *mt = dev->mt;
213 	bool is_mt_event;
214 	int *pold;
215 
216 	if (code == ABS_MT_SLOT) {
217 		/*
218 		 * "Stage" the event; we'll flush it later, when we
219 		 * get actual touch data.
220 		 */
221 		if (mt && *pval >= 0 && *pval < mt->num_slots)
222 			mt->slot = *pval;
223 
224 		return INPUT_IGNORE_EVENT;
225 	}
226 
227 	is_mt_event = input_is_mt_value(code);
228 
229 	if (!is_mt_event) {
230 		pold = &dev->absinfo[code].value;
231 	} else if (mt) {
232 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
233 	} else {
234 		/*
235 		 * Bypass filtering for multi-touch events when
236 		 * not employing slots.
237 		 */
238 		pold = NULL;
239 	}
240 
241 	if (pold) {
242 		*pval = input_defuzz_abs_event(*pval, *pold,
243 						dev->absinfo[code].fuzz);
244 		if (*pold == *pval)
245 			return INPUT_IGNORE_EVENT;
246 
247 		*pold = *pval;
248 	}
249 
250 	/* Flush pending "slot" event */
251 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
252 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
253 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
254 	}
255 
256 	return INPUT_PASS_TO_HANDLERS;
257 }
258 
259 static int input_get_disposition(struct input_dev *dev,
260 			  unsigned int type, unsigned int code, int *pval)
261 {
262 	int disposition = INPUT_IGNORE_EVENT;
263 	int value = *pval;
264 
265 	switch (type) {
266 
267 	case EV_SYN:
268 		switch (code) {
269 		case SYN_CONFIG:
270 			disposition = INPUT_PASS_TO_ALL;
271 			break;
272 
273 		case SYN_REPORT:
274 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
275 			break;
276 		case SYN_MT_REPORT:
277 			disposition = INPUT_PASS_TO_HANDLERS;
278 			break;
279 		}
280 		break;
281 
282 	case EV_KEY:
283 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
284 
285 			/* auto-repeat bypasses state updates */
286 			if (value == 2) {
287 				disposition = INPUT_PASS_TO_HANDLERS;
288 				break;
289 			}
290 
291 			if (!!test_bit(code, dev->key) != !!value) {
292 
293 				__change_bit(code, dev->key);
294 				disposition = INPUT_PASS_TO_HANDLERS;
295 			}
296 		}
297 		break;
298 
299 	case EV_SW:
300 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
301 		    !!test_bit(code, dev->sw) != !!value) {
302 
303 			__change_bit(code, dev->sw);
304 			disposition = INPUT_PASS_TO_HANDLERS;
305 		}
306 		break;
307 
308 	case EV_ABS:
309 		if (is_event_supported(code, dev->absbit, ABS_MAX))
310 			disposition = input_handle_abs_event(dev, code, &value);
311 
312 		break;
313 
314 	case EV_REL:
315 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
316 			disposition = INPUT_PASS_TO_HANDLERS;
317 
318 		break;
319 
320 	case EV_MSC:
321 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
322 			disposition = INPUT_PASS_TO_ALL;
323 
324 		break;
325 
326 	case EV_LED:
327 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
328 		    !!test_bit(code, dev->led) != !!value) {
329 
330 			__change_bit(code, dev->led);
331 			disposition = INPUT_PASS_TO_ALL;
332 		}
333 		break;
334 
335 	case EV_SND:
336 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
337 
338 			if (!!test_bit(code, dev->snd) != !!value)
339 				__change_bit(code, dev->snd);
340 			disposition = INPUT_PASS_TO_ALL;
341 		}
342 		break;
343 
344 	case EV_REP:
345 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
346 			dev->rep[code] = value;
347 			disposition = INPUT_PASS_TO_ALL;
348 		}
349 		break;
350 
351 	case EV_FF:
352 		if (value >= 0)
353 			disposition = INPUT_PASS_TO_ALL;
354 		break;
355 
356 	case EV_PWR:
357 		disposition = INPUT_PASS_TO_ALL;
358 		break;
359 	}
360 
361 	*pval = value;
362 	return disposition;
363 }
364 
365 static void input_handle_event(struct input_dev *dev,
366 			       unsigned int type, unsigned int code, int value)
367 {
368 	int disposition;
369 
370 	disposition = input_get_disposition(dev, type, code, &value);
371 
372 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
373 		dev->event(dev, type, code, value);
374 
375 	if (!dev->vals)
376 		return;
377 
378 	if (disposition & INPUT_PASS_TO_HANDLERS) {
379 		struct input_value *v;
380 
381 		if (disposition & INPUT_SLOT) {
382 			v = &dev->vals[dev->num_vals++];
383 			v->type = EV_ABS;
384 			v->code = ABS_MT_SLOT;
385 			v->value = dev->mt->slot;
386 		}
387 
388 		v = &dev->vals[dev->num_vals++];
389 		v->type = type;
390 		v->code = code;
391 		v->value = value;
392 	}
393 
394 	if (disposition & INPUT_FLUSH) {
395 		if (dev->num_vals >= 2)
396 			input_pass_values(dev, dev->vals, dev->num_vals);
397 		dev->num_vals = 0;
398 	} else if (dev->num_vals >= dev->max_vals - 2) {
399 		dev->vals[dev->num_vals++] = input_value_sync;
400 		input_pass_values(dev, dev->vals, dev->num_vals);
401 		dev->num_vals = 0;
402 	}
403 
404 }
405 
406 /**
407  * input_event() - report new input event
408  * @dev: device that generated the event
409  * @type: type of the event
410  * @code: event code
411  * @value: value of the event
412  *
413  * This function should be used by drivers implementing various input
414  * devices to report input events. See also input_inject_event().
415  *
416  * NOTE: input_event() may be safely used right after input device was
417  * allocated with input_allocate_device(), even before it is registered
418  * with input_register_device(), but the event will not reach any of the
419  * input handlers. Such early invocation of input_event() may be used
420  * to 'seed' initial state of a switch or initial position of absolute
421  * axis, etc.
422  */
423 void input_event(struct input_dev *dev,
424 		 unsigned int type, unsigned int code, int value)
425 {
426 	unsigned long flags;
427 
428 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
429 
430 		spin_lock_irqsave(&dev->event_lock, flags);
431 		input_handle_event(dev, type, code, value);
432 		spin_unlock_irqrestore(&dev->event_lock, flags);
433 	}
434 }
435 EXPORT_SYMBOL(input_event);
436 
437 /**
438  * input_inject_event() - send input event from input handler
439  * @handle: input handle to send event through
440  * @type: type of the event
441  * @code: event code
442  * @value: value of the event
443  *
444  * Similar to input_event() but will ignore event if device is
445  * "grabbed" and handle injecting event is not the one that owns
446  * the device.
447  */
448 void input_inject_event(struct input_handle *handle,
449 			unsigned int type, unsigned int code, int value)
450 {
451 	struct input_dev *dev = handle->dev;
452 	struct input_handle *grab;
453 	unsigned long flags;
454 
455 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
456 		spin_lock_irqsave(&dev->event_lock, flags);
457 
458 		rcu_read_lock();
459 		grab = rcu_dereference(dev->grab);
460 		if (!grab || grab == handle)
461 			input_handle_event(dev, type, code, value);
462 		rcu_read_unlock();
463 
464 		spin_unlock_irqrestore(&dev->event_lock, flags);
465 	}
466 }
467 EXPORT_SYMBOL(input_inject_event);
468 
469 /**
470  * input_alloc_absinfo - allocates array of input_absinfo structs
471  * @dev: the input device emitting absolute events
472  *
473  * If the absinfo struct the caller asked for is already allocated, this
474  * functions will not do anything.
475  */
476 void input_alloc_absinfo(struct input_dev *dev)
477 {
478 	if (!dev->absinfo)
479 		dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
480 					GFP_KERNEL);
481 
482 	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
483 }
484 EXPORT_SYMBOL(input_alloc_absinfo);
485 
486 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
487 			  int min, int max, int fuzz, int flat)
488 {
489 	struct input_absinfo *absinfo;
490 
491 	input_alloc_absinfo(dev);
492 	if (!dev->absinfo)
493 		return;
494 
495 	absinfo = &dev->absinfo[axis];
496 	absinfo->minimum = min;
497 	absinfo->maximum = max;
498 	absinfo->fuzz = fuzz;
499 	absinfo->flat = flat;
500 
501 	dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
502 }
503 EXPORT_SYMBOL(input_set_abs_params);
504 
505 
506 /**
507  * input_grab_device - grabs device for exclusive use
508  * @handle: input handle that wants to own the device
509  *
510  * When a device is grabbed by an input handle all events generated by
511  * the device are delivered only to this handle. Also events injected
512  * by other input handles are ignored while device is grabbed.
513  */
514 int input_grab_device(struct input_handle *handle)
515 {
516 	struct input_dev *dev = handle->dev;
517 	int retval;
518 
519 	retval = mutex_lock_interruptible(&dev->mutex);
520 	if (retval)
521 		return retval;
522 
523 	if (dev->grab) {
524 		retval = -EBUSY;
525 		goto out;
526 	}
527 
528 	rcu_assign_pointer(dev->grab, handle);
529 
530  out:
531 	mutex_unlock(&dev->mutex);
532 	return retval;
533 }
534 EXPORT_SYMBOL(input_grab_device);
535 
536 static void __input_release_device(struct input_handle *handle)
537 {
538 	struct input_dev *dev = handle->dev;
539 	struct input_handle *grabber;
540 
541 	grabber = rcu_dereference_protected(dev->grab,
542 					    lockdep_is_held(&dev->mutex));
543 	if (grabber == handle) {
544 		rcu_assign_pointer(dev->grab, NULL);
545 		/* Make sure input_pass_event() notices that grab is gone */
546 		synchronize_rcu();
547 
548 		list_for_each_entry(handle, &dev->h_list, d_node)
549 			if (handle->open && handle->handler->start)
550 				handle->handler->start(handle);
551 	}
552 }
553 
554 /**
555  * input_release_device - release previously grabbed device
556  * @handle: input handle that owns the device
557  *
558  * Releases previously grabbed device so that other input handles can
559  * start receiving input events. Upon release all handlers attached
560  * to the device have their start() method called so they have a change
561  * to synchronize device state with the rest of the system.
562  */
563 void input_release_device(struct input_handle *handle)
564 {
565 	struct input_dev *dev = handle->dev;
566 
567 	mutex_lock(&dev->mutex);
568 	__input_release_device(handle);
569 	mutex_unlock(&dev->mutex);
570 }
571 EXPORT_SYMBOL(input_release_device);
572 
573 /**
574  * input_open_device - open input device
575  * @handle: handle through which device is being accessed
576  *
577  * This function should be called by input handlers when they
578  * want to start receive events from given input device.
579  */
580 int input_open_device(struct input_handle *handle)
581 {
582 	struct input_dev *dev = handle->dev;
583 	int retval;
584 
585 	retval = mutex_lock_interruptible(&dev->mutex);
586 	if (retval)
587 		return retval;
588 
589 	if (dev->going_away) {
590 		retval = -ENODEV;
591 		goto out;
592 	}
593 
594 	handle->open++;
595 
596 	if (!dev->users++ && dev->open)
597 		retval = dev->open(dev);
598 
599 	if (retval) {
600 		dev->users--;
601 		if (!--handle->open) {
602 			/*
603 			 * Make sure we are not delivering any more events
604 			 * through this handle
605 			 */
606 			synchronize_rcu();
607 		}
608 	}
609 
610  out:
611 	mutex_unlock(&dev->mutex);
612 	return retval;
613 }
614 EXPORT_SYMBOL(input_open_device);
615 
616 int input_flush_device(struct input_handle *handle, struct file *file)
617 {
618 	struct input_dev *dev = handle->dev;
619 	int retval;
620 
621 	retval = mutex_lock_interruptible(&dev->mutex);
622 	if (retval)
623 		return retval;
624 
625 	if (dev->flush)
626 		retval = dev->flush(dev, file);
627 
628 	mutex_unlock(&dev->mutex);
629 	return retval;
630 }
631 EXPORT_SYMBOL(input_flush_device);
632 
633 /**
634  * input_close_device - close input device
635  * @handle: handle through which device is being accessed
636  *
637  * This function should be called by input handlers when they
638  * want to stop receive events from given input device.
639  */
640 void input_close_device(struct input_handle *handle)
641 {
642 	struct input_dev *dev = handle->dev;
643 
644 	mutex_lock(&dev->mutex);
645 
646 	__input_release_device(handle);
647 
648 	if (!--dev->users && dev->close)
649 		dev->close(dev);
650 
651 	if (!--handle->open) {
652 		/*
653 		 * synchronize_rcu() makes sure that input_pass_event()
654 		 * completed and that no more input events are delivered
655 		 * through this handle
656 		 */
657 		synchronize_rcu();
658 	}
659 
660 	mutex_unlock(&dev->mutex);
661 }
662 EXPORT_SYMBOL(input_close_device);
663 
664 /*
665  * Simulate keyup events for all keys that are marked as pressed.
666  * The function must be called with dev->event_lock held.
667  */
668 static void input_dev_release_keys(struct input_dev *dev)
669 {
670 	int code;
671 
672 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
673 		for (code = 0; code <= KEY_MAX; code++) {
674 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
675 			    __test_and_clear_bit(code, dev->key)) {
676 				input_pass_event(dev, EV_KEY, code, 0);
677 			}
678 		}
679 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
680 	}
681 }
682 
683 /*
684  * Prepare device for unregistering
685  */
686 static void input_disconnect_device(struct input_dev *dev)
687 {
688 	struct input_handle *handle;
689 
690 	/*
691 	 * Mark device as going away. Note that we take dev->mutex here
692 	 * not to protect access to dev->going_away but rather to ensure
693 	 * that there are no threads in the middle of input_open_device()
694 	 */
695 	mutex_lock(&dev->mutex);
696 	dev->going_away = true;
697 	mutex_unlock(&dev->mutex);
698 
699 	spin_lock_irq(&dev->event_lock);
700 
701 	/*
702 	 * Simulate keyup events for all pressed keys so that handlers
703 	 * are not left with "stuck" keys. The driver may continue
704 	 * generate events even after we done here but they will not
705 	 * reach any handlers.
706 	 */
707 	input_dev_release_keys(dev);
708 
709 	list_for_each_entry(handle, &dev->h_list, d_node)
710 		handle->open = 0;
711 
712 	spin_unlock_irq(&dev->event_lock);
713 }
714 
715 /**
716  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
717  * @ke: keymap entry containing scancode to be converted.
718  * @scancode: pointer to the location where converted scancode should
719  *	be stored.
720  *
721  * This function is used to convert scancode stored in &struct keymap_entry
722  * into scalar form understood by legacy keymap handling methods. These
723  * methods expect scancodes to be represented as 'unsigned int'.
724  */
725 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
726 			     unsigned int *scancode)
727 {
728 	switch (ke->len) {
729 	case 1:
730 		*scancode = *((u8 *)ke->scancode);
731 		break;
732 
733 	case 2:
734 		*scancode = *((u16 *)ke->scancode);
735 		break;
736 
737 	case 4:
738 		*scancode = *((u32 *)ke->scancode);
739 		break;
740 
741 	default:
742 		return -EINVAL;
743 	}
744 
745 	return 0;
746 }
747 EXPORT_SYMBOL(input_scancode_to_scalar);
748 
749 /*
750  * Those routines handle the default case where no [gs]etkeycode() is
751  * defined. In this case, an array indexed by the scancode is used.
752  */
753 
754 static unsigned int input_fetch_keycode(struct input_dev *dev,
755 					unsigned int index)
756 {
757 	switch (dev->keycodesize) {
758 	case 1:
759 		return ((u8 *)dev->keycode)[index];
760 
761 	case 2:
762 		return ((u16 *)dev->keycode)[index];
763 
764 	default:
765 		return ((u32 *)dev->keycode)[index];
766 	}
767 }
768 
769 static int input_default_getkeycode(struct input_dev *dev,
770 				    struct input_keymap_entry *ke)
771 {
772 	unsigned int index;
773 	int error;
774 
775 	if (!dev->keycodesize)
776 		return -EINVAL;
777 
778 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
779 		index = ke->index;
780 	else {
781 		error = input_scancode_to_scalar(ke, &index);
782 		if (error)
783 			return error;
784 	}
785 
786 	if (index >= dev->keycodemax)
787 		return -EINVAL;
788 
789 	ke->keycode = input_fetch_keycode(dev, index);
790 	ke->index = index;
791 	ke->len = sizeof(index);
792 	memcpy(ke->scancode, &index, sizeof(index));
793 
794 	return 0;
795 }
796 
797 static int input_default_setkeycode(struct input_dev *dev,
798 				    const struct input_keymap_entry *ke,
799 				    unsigned int *old_keycode)
800 {
801 	unsigned int index;
802 	int error;
803 	int i;
804 
805 	if (!dev->keycodesize)
806 		return -EINVAL;
807 
808 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
809 		index = ke->index;
810 	} else {
811 		error = input_scancode_to_scalar(ke, &index);
812 		if (error)
813 			return error;
814 	}
815 
816 	if (index >= dev->keycodemax)
817 		return -EINVAL;
818 
819 	if (dev->keycodesize < sizeof(ke->keycode) &&
820 			(ke->keycode >> (dev->keycodesize * 8)))
821 		return -EINVAL;
822 
823 	switch (dev->keycodesize) {
824 		case 1: {
825 			u8 *k = (u8 *)dev->keycode;
826 			*old_keycode = k[index];
827 			k[index] = ke->keycode;
828 			break;
829 		}
830 		case 2: {
831 			u16 *k = (u16 *)dev->keycode;
832 			*old_keycode = k[index];
833 			k[index] = ke->keycode;
834 			break;
835 		}
836 		default: {
837 			u32 *k = (u32 *)dev->keycode;
838 			*old_keycode = k[index];
839 			k[index] = ke->keycode;
840 			break;
841 		}
842 	}
843 
844 	__clear_bit(*old_keycode, dev->keybit);
845 	__set_bit(ke->keycode, dev->keybit);
846 
847 	for (i = 0; i < dev->keycodemax; i++) {
848 		if (input_fetch_keycode(dev, i) == *old_keycode) {
849 			__set_bit(*old_keycode, dev->keybit);
850 			break; /* Setting the bit twice is useless, so break */
851 		}
852 	}
853 
854 	return 0;
855 }
856 
857 /**
858  * input_get_keycode - retrieve keycode currently mapped to a given scancode
859  * @dev: input device which keymap is being queried
860  * @ke: keymap entry
861  *
862  * This function should be called by anyone interested in retrieving current
863  * keymap. Presently evdev handlers use it.
864  */
865 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
866 {
867 	unsigned long flags;
868 	int retval;
869 
870 	spin_lock_irqsave(&dev->event_lock, flags);
871 	retval = dev->getkeycode(dev, ke);
872 	spin_unlock_irqrestore(&dev->event_lock, flags);
873 
874 	return retval;
875 }
876 EXPORT_SYMBOL(input_get_keycode);
877 
878 /**
879  * input_set_keycode - attribute a keycode to a given scancode
880  * @dev: input device which keymap is being updated
881  * @ke: new keymap entry
882  *
883  * This function should be called by anyone needing to update current
884  * keymap. Presently keyboard and evdev handlers use it.
885  */
886 int input_set_keycode(struct input_dev *dev,
887 		      const struct input_keymap_entry *ke)
888 {
889 	unsigned long flags;
890 	unsigned int old_keycode;
891 	int retval;
892 
893 	if (ke->keycode > KEY_MAX)
894 		return -EINVAL;
895 
896 	spin_lock_irqsave(&dev->event_lock, flags);
897 
898 	retval = dev->setkeycode(dev, ke, &old_keycode);
899 	if (retval)
900 		goto out;
901 
902 	/* Make sure KEY_RESERVED did not get enabled. */
903 	__clear_bit(KEY_RESERVED, dev->keybit);
904 
905 	/*
906 	 * Simulate keyup event if keycode is not present
907 	 * in the keymap anymore
908 	 */
909 	if (test_bit(EV_KEY, dev->evbit) &&
910 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
911 	    __test_and_clear_bit(old_keycode, dev->key)) {
912 		struct input_value vals[] =  {
913 			{ EV_KEY, old_keycode, 0 },
914 			input_value_sync
915 		};
916 
917 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
918 	}
919 
920  out:
921 	spin_unlock_irqrestore(&dev->event_lock, flags);
922 
923 	return retval;
924 }
925 EXPORT_SYMBOL(input_set_keycode);
926 
927 static const struct input_device_id *input_match_device(struct input_handler *handler,
928 							struct input_dev *dev)
929 {
930 	const struct input_device_id *id;
931 
932 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
933 
934 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
935 			if (id->bustype != dev->id.bustype)
936 				continue;
937 
938 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
939 			if (id->vendor != dev->id.vendor)
940 				continue;
941 
942 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
943 			if (id->product != dev->id.product)
944 				continue;
945 
946 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
947 			if (id->version != dev->id.version)
948 				continue;
949 
950 		if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
951 			continue;
952 
953 		if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
954 			continue;
955 
956 		if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
957 			continue;
958 
959 		if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
960 			continue;
961 
962 		if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
963 			continue;
964 
965 		if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
966 			continue;
967 
968 		if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
969 			continue;
970 
971 		if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
972 			continue;
973 
974 		if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
975 			continue;
976 
977 		if (!handler->match || handler->match(handler, dev))
978 			return id;
979 	}
980 
981 	return NULL;
982 }
983 
984 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
985 {
986 	const struct input_device_id *id;
987 	int error;
988 
989 	id = input_match_device(handler, dev);
990 	if (!id)
991 		return -ENODEV;
992 
993 	error = handler->connect(handler, dev, id);
994 	if (error && error != -ENODEV)
995 		pr_err("failed to attach handler %s to device %s, error: %d\n",
996 		       handler->name, kobject_name(&dev->dev.kobj), error);
997 
998 	return error;
999 }
1000 
1001 #ifdef CONFIG_COMPAT
1002 
1003 static int input_bits_to_string(char *buf, int buf_size,
1004 				unsigned long bits, bool skip_empty)
1005 {
1006 	int len = 0;
1007 
1008 	if (INPUT_COMPAT_TEST) {
1009 		u32 dword = bits >> 32;
1010 		if (dword || !skip_empty)
1011 			len += snprintf(buf, buf_size, "%x ", dword);
1012 
1013 		dword = bits & 0xffffffffUL;
1014 		if (dword || !skip_empty || len)
1015 			len += snprintf(buf + len, max(buf_size - len, 0),
1016 					"%x", dword);
1017 	} else {
1018 		if (bits || !skip_empty)
1019 			len += snprintf(buf, buf_size, "%lx", bits);
1020 	}
1021 
1022 	return len;
1023 }
1024 
1025 #else /* !CONFIG_COMPAT */
1026 
1027 static int input_bits_to_string(char *buf, int buf_size,
1028 				unsigned long bits, bool skip_empty)
1029 {
1030 	return bits || !skip_empty ?
1031 		snprintf(buf, buf_size, "%lx", bits) : 0;
1032 }
1033 
1034 #endif
1035 
1036 #ifdef CONFIG_PROC_FS
1037 
1038 static struct proc_dir_entry *proc_bus_input_dir;
1039 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1040 static int input_devices_state;
1041 
1042 static inline void input_wakeup_procfs_readers(void)
1043 {
1044 	input_devices_state++;
1045 	wake_up(&input_devices_poll_wait);
1046 }
1047 
1048 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1049 {
1050 	poll_wait(file, &input_devices_poll_wait, wait);
1051 	if (file->f_version != input_devices_state) {
1052 		file->f_version = input_devices_state;
1053 		return POLLIN | POLLRDNORM;
1054 	}
1055 
1056 	return 0;
1057 }
1058 
1059 union input_seq_state {
1060 	struct {
1061 		unsigned short pos;
1062 		bool mutex_acquired;
1063 	};
1064 	void *p;
1065 };
1066 
1067 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1068 {
1069 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1070 	int error;
1071 
1072 	/* We need to fit into seq->private pointer */
1073 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1074 
1075 	error = mutex_lock_interruptible(&input_mutex);
1076 	if (error) {
1077 		state->mutex_acquired = false;
1078 		return ERR_PTR(error);
1079 	}
1080 
1081 	state->mutex_acquired = true;
1082 
1083 	return seq_list_start(&input_dev_list, *pos);
1084 }
1085 
1086 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1087 {
1088 	return seq_list_next(v, &input_dev_list, pos);
1089 }
1090 
1091 static void input_seq_stop(struct seq_file *seq, void *v)
1092 {
1093 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1094 
1095 	if (state->mutex_acquired)
1096 		mutex_unlock(&input_mutex);
1097 }
1098 
1099 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1100 				   unsigned long *bitmap, int max)
1101 {
1102 	int i;
1103 	bool skip_empty = true;
1104 	char buf[18];
1105 
1106 	seq_printf(seq, "B: %s=", name);
1107 
1108 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1109 		if (input_bits_to_string(buf, sizeof(buf),
1110 					 bitmap[i], skip_empty)) {
1111 			skip_empty = false;
1112 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1113 		}
1114 	}
1115 
1116 	/*
1117 	 * If no output was produced print a single 0.
1118 	 */
1119 	if (skip_empty)
1120 		seq_puts(seq, "0");
1121 
1122 	seq_putc(seq, '\n');
1123 }
1124 
1125 static int input_devices_seq_show(struct seq_file *seq, void *v)
1126 {
1127 	struct input_dev *dev = container_of(v, struct input_dev, node);
1128 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1129 	struct input_handle *handle;
1130 
1131 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1132 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1133 
1134 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1135 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1136 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1137 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1138 	seq_printf(seq, "H: Handlers=");
1139 
1140 	list_for_each_entry(handle, &dev->h_list, d_node)
1141 		seq_printf(seq, "%s ", handle->name);
1142 	seq_putc(seq, '\n');
1143 
1144 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1145 
1146 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1147 	if (test_bit(EV_KEY, dev->evbit))
1148 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1149 	if (test_bit(EV_REL, dev->evbit))
1150 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1151 	if (test_bit(EV_ABS, dev->evbit))
1152 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1153 	if (test_bit(EV_MSC, dev->evbit))
1154 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1155 	if (test_bit(EV_LED, dev->evbit))
1156 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1157 	if (test_bit(EV_SND, dev->evbit))
1158 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1159 	if (test_bit(EV_FF, dev->evbit))
1160 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1161 	if (test_bit(EV_SW, dev->evbit))
1162 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1163 
1164 	seq_putc(seq, '\n');
1165 
1166 	kfree(path);
1167 	return 0;
1168 }
1169 
1170 static const struct seq_operations input_devices_seq_ops = {
1171 	.start	= input_devices_seq_start,
1172 	.next	= input_devices_seq_next,
1173 	.stop	= input_seq_stop,
1174 	.show	= input_devices_seq_show,
1175 };
1176 
1177 static int input_proc_devices_open(struct inode *inode, struct file *file)
1178 {
1179 	return seq_open(file, &input_devices_seq_ops);
1180 }
1181 
1182 static const struct file_operations input_devices_fileops = {
1183 	.owner		= THIS_MODULE,
1184 	.open		= input_proc_devices_open,
1185 	.poll		= input_proc_devices_poll,
1186 	.read		= seq_read,
1187 	.llseek		= seq_lseek,
1188 	.release	= seq_release,
1189 };
1190 
1191 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1192 {
1193 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1194 	int error;
1195 
1196 	/* We need to fit into seq->private pointer */
1197 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1198 
1199 	error = mutex_lock_interruptible(&input_mutex);
1200 	if (error) {
1201 		state->mutex_acquired = false;
1202 		return ERR_PTR(error);
1203 	}
1204 
1205 	state->mutex_acquired = true;
1206 	state->pos = *pos;
1207 
1208 	return seq_list_start(&input_handler_list, *pos);
1209 }
1210 
1211 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1212 {
1213 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1214 
1215 	state->pos = *pos + 1;
1216 	return seq_list_next(v, &input_handler_list, pos);
1217 }
1218 
1219 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1220 {
1221 	struct input_handler *handler = container_of(v, struct input_handler, node);
1222 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1223 
1224 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1225 	if (handler->filter)
1226 		seq_puts(seq, " (filter)");
1227 	if (handler->legacy_minors)
1228 		seq_printf(seq, " Minor=%d", handler->minor);
1229 	seq_putc(seq, '\n');
1230 
1231 	return 0;
1232 }
1233 
1234 static const struct seq_operations input_handlers_seq_ops = {
1235 	.start	= input_handlers_seq_start,
1236 	.next	= input_handlers_seq_next,
1237 	.stop	= input_seq_stop,
1238 	.show	= input_handlers_seq_show,
1239 };
1240 
1241 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1242 {
1243 	return seq_open(file, &input_handlers_seq_ops);
1244 }
1245 
1246 static const struct file_operations input_handlers_fileops = {
1247 	.owner		= THIS_MODULE,
1248 	.open		= input_proc_handlers_open,
1249 	.read		= seq_read,
1250 	.llseek		= seq_lseek,
1251 	.release	= seq_release,
1252 };
1253 
1254 static int __init input_proc_init(void)
1255 {
1256 	struct proc_dir_entry *entry;
1257 
1258 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1259 	if (!proc_bus_input_dir)
1260 		return -ENOMEM;
1261 
1262 	entry = proc_create("devices", 0, proc_bus_input_dir,
1263 			    &input_devices_fileops);
1264 	if (!entry)
1265 		goto fail1;
1266 
1267 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1268 			    &input_handlers_fileops);
1269 	if (!entry)
1270 		goto fail2;
1271 
1272 	return 0;
1273 
1274  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1275  fail1: remove_proc_entry("bus/input", NULL);
1276 	return -ENOMEM;
1277 }
1278 
1279 static void input_proc_exit(void)
1280 {
1281 	remove_proc_entry("devices", proc_bus_input_dir);
1282 	remove_proc_entry("handlers", proc_bus_input_dir);
1283 	remove_proc_entry("bus/input", NULL);
1284 }
1285 
1286 #else /* !CONFIG_PROC_FS */
1287 static inline void input_wakeup_procfs_readers(void) { }
1288 static inline int input_proc_init(void) { return 0; }
1289 static inline void input_proc_exit(void) { }
1290 #endif
1291 
1292 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1293 static ssize_t input_dev_show_##name(struct device *dev,		\
1294 				     struct device_attribute *attr,	\
1295 				     char *buf)				\
1296 {									\
1297 	struct input_dev *input_dev = to_input_dev(dev);		\
1298 									\
1299 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1300 			 input_dev->name ? input_dev->name : "");	\
1301 }									\
1302 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1303 
1304 INPUT_DEV_STRING_ATTR_SHOW(name);
1305 INPUT_DEV_STRING_ATTR_SHOW(phys);
1306 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1307 
1308 static int input_print_modalias_bits(char *buf, int size,
1309 				     char name, unsigned long *bm,
1310 				     unsigned int min_bit, unsigned int max_bit)
1311 {
1312 	int len = 0, i;
1313 
1314 	len += snprintf(buf, max(size, 0), "%c", name);
1315 	for (i = min_bit; i < max_bit; i++)
1316 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1317 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1318 	return len;
1319 }
1320 
1321 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1322 				int add_cr)
1323 {
1324 	int len;
1325 
1326 	len = snprintf(buf, max(size, 0),
1327 		       "input:b%04Xv%04Xp%04Xe%04X-",
1328 		       id->id.bustype, id->id.vendor,
1329 		       id->id.product, id->id.version);
1330 
1331 	len += input_print_modalias_bits(buf + len, size - len,
1332 				'e', id->evbit, 0, EV_MAX);
1333 	len += input_print_modalias_bits(buf + len, size - len,
1334 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1335 	len += input_print_modalias_bits(buf + len, size - len,
1336 				'r', id->relbit, 0, REL_MAX);
1337 	len += input_print_modalias_bits(buf + len, size - len,
1338 				'a', id->absbit, 0, ABS_MAX);
1339 	len += input_print_modalias_bits(buf + len, size - len,
1340 				'm', id->mscbit, 0, MSC_MAX);
1341 	len += input_print_modalias_bits(buf + len, size - len,
1342 				'l', id->ledbit, 0, LED_MAX);
1343 	len += input_print_modalias_bits(buf + len, size - len,
1344 				's', id->sndbit, 0, SND_MAX);
1345 	len += input_print_modalias_bits(buf + len, size - len,
1346 				'f', id->ffbit, 0, FF_MAX);
1347 	len += input_print_modalias_bits(buf + len, size - len,
1348 				'w', id->swbit, 0, SW_MAX);
1349 
1350 	if (add_cr)
1351 		len += snprintf(buf + len, max(size - len, 0), "\n");
1352 
1353 	return len;
1354 }
1355 
1356 static ssize_t input_dev_show_modalias(struct device *dev,
1357 				       struct device_attribute *attr,
1358 				       char *buf)
1359 {
1360 	struct input_dev *id = to_input_dev(dev);
1361 	ssize_t len;
1362 
1363 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1364 
1365 	return min_t(int, len, PAGE_SIZE);
1366 }
1367 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1368 
1369 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1370 			      int max, int add_cr);
1371 
1372 static ssize_t input_dev_show_properties(struct device *dev,
1373 					 struct device_attribute *attr,
1374 					 char *buf)
1375 {
1376 	struct input_dev *input_dev = to_input_dev(dev);
1377 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1378 				     INPUT_PROP_MAX, true);
1379 	return min_t(int, len, PAGE_SIZE);
1380 }
1381 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1382 
1383 static struct attribute *input_dev_attrs[] = {
1384 	&dev_attr_name.attr,
1385 	&dev_attr_phys.attr,
1386 	&dev_attr_uniq.attr,
1387 	&dev_attr_modalias.attr,
1388 	&dev_attr_properties.attr,
1389 	NULL
1390 };
1391 
1392 static struct attribute_group input_dev_attr_group = {
1393 	.attrs	= input_dev_attrs,
1394 };
1395 
1396 #define INPUT_DEV_ID_ATTR(name)						\
1397 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1398 					struct device_attribute *attr,	\
1399 					char *buf)			\
1400 {									\
1401 	struct input_dev *input_dev = to_input_dev(dev);		\
1402 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1403 }									\
1404 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1405 
1406 INPUT_DEV_ID_ATTR(bustype);
1407 INPUT_DEV_ID_ATTR(vendor);
1408 INPUT_DEV_ID_ATTR(product);
1409 INPUT_DEV_ID_ATTR(version);
1410 
1411 static struct attribute *input_dev_id_attrs[] = {
1412 	&dev_attr_bustype.attr,
1413 	&dev_attr_vendor.attr,
1414 	&dev_attr_product.attr,
1415 	&dev_attr_version.attr,
1416 	NULL
1417 };
1418 
1419 static struct attribute_group input_dev_id_attr_group = {
1420 	.name	= "id",
1421 	.attrs	= input_dev_id_attrs,
1422 };
1423 
1424 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1425 			      int max, int add_cr)
1426 {
1427 	int i;
1428 	int len = 0;
1429 	bool skip_empty = true;
1430 
1431 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1432 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1433 					    bitmap[i], skip_empty);
1434 		if (len) {
1435 			skip_empty = false;
1436 			if (i > 0)
1437 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1438 		}
1439 	}
1440 
1441 	/*
1442 	 * If no output was produced print a single 0.
1443 	 */
1444 	if (len == 0)
1445 		len = snprintf(buf, buf_size, "%d", 0);
1446 
1447 	if (add_cr)
1448 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1449 
1450 	return len;
1451 }
1452 
1453 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1454 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1455 				       struct device_attribute *attr,	\
1456 				       char *buf)			\
1457 {									\
1458 	struct input_dev *input_dev = to_input_dev(dev);		\
1459 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1460 				     input_dev->bm##bit, ev##_MAX,	\
1461 				     true);				\
1462 	return min_t(int, len, PAGE_SIZE);				\
1463 }									\
1464 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1465 
1466 INPUT_DEV_CAP_ATTR(EV, ev);
1467 INPUT_DEV_CAP_ATTR(KEY, key);
1468 INPUT_DEV_CAP_ATTR(REL, rel);
1469 INPUT_DEV_CAP_ATTR(ABS, abs);
1470 INPUT_DEV_CAP_ATTR(MSC, msc);
1471 INPUT_DEV_CAP_ATTR(LED, led);
1472 INPUT_DEV_CAP_ATTR(SND, snd);
1473 INPUT_DEV_CAP_ATTR(FF, ff);
1474 INPUT_DEV_CAP_ATTR(SW, sw);
1475 
1476 static struct attribute *input_dev_caps_attrs[] = {
1477 	&dev_attr_ev.attr,
1478 	&dev_attr_key.attr,
1479 	&dev_attr_rel.attr,
1480 	&dev_attr_abs.attr,
1481 	&dev_attr_msc.attr,
1482 	&dev_attr_led.attr,
1483 	&dev_attr_snd.attr,
1484 	&dev_attr_ff.attr,
1485 	&dev_attr_sw.attr,
1486 	NULL
1487 };
1488 
1489 static struct attribute_group input_dev_caps_attr_group = {
1490 	.name	= "capabilities",
1491 	.attrs	= input_dev_caps_attrs,
1492 };
1493 
1494 static const struct attribute_group *input_dev_attr_groups[] = {
1495 	&input_dev_attr_group,
1496 	&input_dev_id_attr_group,
1497 	&input_dev_caps_attr_group,
1498 	NULL
1499 };
1500 
1501 static void input_dev_release(struct device *device)
1502 {
1503 	struct input_dev *dev = to_input_dev(device);
1504 
1505 	input_ff_destroy(dev);
1506 	input_mt_destroy_slots(dev);
1507 	kfree(dev->absinfo);
1508 	kfree(dev->vals);
1509 	kfree(dev);
1510 
1511 	module_put(THIS_MODULE);
1512 }
1513 
1514 /*
1515  * Input uevent interface - loading event handlers based on
1516  * device bitfields.
1517  */
1518 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1519 				   const char *name, unsigned long *bitmap, int max)
1520 {
1521 	int len;
1522 
1523 	if (add_uevent_var(env, "%s", name))
1524 		return -ENOMEM;
1525 
1526 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1527 				 sizeof(env->buf) - env->buflen,
1528 				 bitmap, max, false);
1529 	if (len >= (sizeof(env->buf) - env->buflen))
1530 		return -ENOMEM;
1531 
1532 	env->buflen += len;
1533 	return 0;
1534 }
1535 
1536 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1537 					 struct input_dev *dev)
1538 {
1539 	int len;
1540 
1541 	if (add_uevent_var(env, "MODALIAS="))
1542 		return -ENOMEM;
1543 
1544 	len = input_print_modalias(&env->buf[env->buflen - 1],
1545 				   sizeof(env->buf) - env->buflen,
1546 				   dev, 0);
1547 	if (len >= (sizeof(env->buf) - env->buflen))
1548 		return -ENOMEM;
1549 
1550 	env->buflen += len;
1551 	return 0;
1552 }
1553 
1554 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1555 	do {								\
1556 		int err = add_uevent_var(env, fmt, val);		\
1557 		if (err)						\
1558 			return err;					\
1559 	} while (0)
1560 
1561 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1562 	do {								\
1563 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1564 		if (err)						\
1565 			return err;					\
1566 	} while (0)
1567 
1568 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1569 	do {								\
1570 		int err = input_add_uevent_modalias_var(env, dev);	\
1571 		if (err)						\
1572 			return err;					\
1573 	} while (0)
1574 
1575 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1576 {
1577 	struct input_dev *dev = to_input_dev(device);
1578 
1579 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1580 				dev->id.bustype, dev->id.vendor,
1581 				dev->id.product, dev->id.version);
1582 	if (dev->name)
1583 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1584 	if (dev->phys)
1585 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1586 	if (dev->uniq)
1587 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1588 
1589 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1590 
1591 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1592 	if (test_bit(EV_KEY, dev->evbit))
1593 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1594 	if (test_bit(EV_REL, dev->evbit))
1595 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1596 	if (test_bit(EV_ABS, dev->evbit))
1597 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1598 	if (test_bit(EV_MSC, dev->evbit))
1599 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1600 	if (test_bit(EV_LED, dev->evbit))
1601 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1602 	if (test_bit(EV_SND, dev->evbit))
1603 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1604 	if (test_bit(EV_FF, dev->evbit))
1605 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1606 	if (test_bit(EV_SW, dev->evbit))
1607 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1608 
1609 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1610 
1611 	return 0;
1612 }
1613 
1614 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1615 	do {								\
1616 		int i;							\
1617 		bool active;						\
1618 									\
1619 		if (!test_bit(EV_##type, dev->evbit))			\
1620 			break;						\
1621 									\
1622 		for (i = 0; i < type##_MAX; i++) {			\
1623 			if (!test_bit(i, dev->bits##bit))		\
1624 				continue;				\
1625 									\
1626 			active = test_bit(i, dev->bits);		\
1627 			if (!active && !on)				\
1628 				continue;				\
1629 									\
1630 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1631 		}							\
1632 	} while (0)
1633 
1634 static void input_dev_toggle(struct input_dev *dev, bool activate)
1635 {
1636 	if (!dev->event)
1637 		return;
1638 
1639 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1640 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1641 
1642 	if (activate && test_bit(EV_REP, dev->evbit)) {
1643 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1644 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1645 	}
1646 }
1647 
1648 /**
1649  * input_reset_device() - reset/restore the state of input device
1650  * @dev: input device whose state needs to be reset
1651  *
1652  * This function tries to reset the state of an opened input device and
1653  * bring internal state and state if the hardware in sync with each other.
1654  * We mark all keys as released, restore LED state, repeat rate, etc.
1655  */
1656 void input_reset_device(struct input_dev *dev)
1657 {
1658 	unsigned long flags;
1659 
1660 	mutex_lock(&dev->mutex);
1661 	spin_lock_irqsave(&dev->event_lock, flags);
1662 
1663 	input_dev_toggle(dev, true);
1664 	input_dev_release_keys(dev);
1665 
1666 	spin_unlock_irqrestore(&dev->event_lock, flags);
1667 	mutex_unlock(&dev->mutex);
1668 }
1669 EXPORT_SYMBOL(input_reset_device);
1670 
1671 #ifdef CONFIG_PM_SLEEP
1672 static int input_dev_suspend(struct device *dev)
1673 {
1674 	struct input_dev *input_dev = to_input_dev(dev);
1675 
1676 	spin_lock_irq(&input_dev->event_lock);
1677 
1678 	/*
1679 	 * Keys that are pressed now are unlikely to be
1680 	 * still pressed when we resume.
1681 	 */
1682 	input_dev_release_keys(input_dev);
1683 
1684 	/* Turn off LEDs and sounds, if any are active. */
1685 	input_dev_toggle(input_dev, false);
1686 
1687 	spin_unlock_irq(&input_dev->event_lock);
1688 
1689 	return 0;
1690 }
1691 
1692 static int input_dev_resume(struct device *dev)
1693 {
1694 	struct input_dev *input_dev = to_input_dev(dev);
1695 
1696 	spin_lock_irq(&input_dev->event_lock);
1697 
1698 	/* Restore state of LEDs and sounds, if any were active. */
1699 	input_dev_toggle(input_dev, true);
1700 
1701 	spin_unlock_irq(&input_dev->event_lock);
1702 
1703 	return 0;
1704 }
1705 
1706 static int input_dev_freeze(struct device *dev)
1707 {
1708 	struct input_dev *input_dev = to_input_dev(dev);
1709 
1710 	spin_lock_irq(&input_dev->event_lock);
1711 
1712 	/*
1713 	 * Keys that are pressed now are unlikely to be
1714 	 * still pressed when we resume.
1715 	 */
1716 	input_dev_release_keys(input_dev);
1717 
1718 	spin_unlock_irq(&input_dev->event_lock);
1719 
1720 	return 0;
1721 }
1722 
1723 static int input_dev_poweroff(struct device *dev)
1724 {
1725 	struct input_dev *input_dev = to_input_dev(dev);
1726 
1727 	spin_lock_irq(&input_dev->event_lock);
1728 
1729 	/* Turn off LEDs and sounds, if any are active. */
1730 	input_dev_toggle(input_dev, false);
1731 
1732 	spin_unlock_irq(&input_dev->event_lock);
1733 
1734 	return 0;
1735 }
1736 
1737 static const struct dev_pm_ops input_dev_pm_ops = {
1738 	.suspend	= input_dev_suspend,
1739 	.resume		= input_dev_resume,
1740 	.freeze		= input_dev_freeze,
1741 	.poweroff	= input_dev_poweroff,
1742 	.restore	= input_dev_resume,
1743 };
1744 #endif /* CONFIG_PM */
1745 
1746 static struct device_type input_dev_type = {
1747 	.groups		= input_dev_attr_groups,
1748 	.release	= input_dev_release,
1749 	.uevent		= input_dev_uevent,
1750 #ifdef CONFIG_PM_SLEEP
1751 	.pm		= &input_dev_pm_ops,
1752 #endif
1753 };
1754 
1755 static char *input_devnode(struct device *dev, umode_t *mode)
1756 {
1757 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1758 }
1759 
1760 struct class input_class = {
1761 	.name		= "input",
1762 	.devnode	= input_devnode,
1763 };
1764 EXPORT_SYMBOL_GPL(input_class);
1765 
1766 /**
1767  * input_allocate_device - allocate memory for new input device
1768  *
1769  * Returns prepared struct input_dev or %NULL.
1770  *
1771  * NOTE: Use input_free_device() to free devices that have not been
1772  * registered; input_unregister_device() should be used for already
1773  * registered devices.
1774  */
1775 struct input_dev *input_allocate_device(void)
1776 {
1777 	static atomic_t input_no = ATOMIC_INIT(0);
1778 	struct input_dev *dev;
1779 
1780 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1781 	if (dev) {
1782 		dev->dev.type = &input_dev_type;
1783 		dev->dev.class = &input_class;
1784 		device_initialize(&dev->dev);
1785 		mutex_init(&dev->mutex);
1786 		spin_lock_init(&dev->event_lock);
1787 		init_timer(&dev->timer);
1788 		INIT_LIST_HEAD(&dev->h_list);
1789 		INIT_LIST_HEAD(&dev->node);
1790 
1791 		dev_set_name(&dev->dev, "input%ld",
1792 			     (unsigned long) atomic_inc_return(&input_no) - 1);
1793 
1794 		__module_get(THIS_MODULE);
1795 	}
1796 
1797 	return dev;
1798 }
1799 EXPORT_SYMBOL(input_allocate_device);
1800 
1801 struct input_devres {
1802 	struct input_dev *input;
1803 };
1804 
1805 static int devm_input_device_match(struct device *dev, void *res, void *data)
1806 {
1807 	struct input_devres *devres = res;
1808 
1809 	return devres->input == data;
1810 }
1811 
1812 static void devm_input_device_release(struct device *dev, void *res)
1813 {
1814 	struct input_devres *devres = res;
1815 	struct input_dev *input = devres->input;
1816 
1817 	dev_dbg(dev, "%s: dropping reference to %s\n",
1818 		__func__, dev_name(&input->dev));
1819 	input_put_device(input);
1820 }
1821 
1822 /**
1823  * devm_input_allocate_device - allocate managed input device
1824  * @dev: device owning the input device being created
1825  *
1826  * Returns prepared struct input_dev or %NULL.
1827  *
1828  * Managed input devices do not need to be explicitly unregistered or
1829  * freed as it will be done automatically when owner device unbinds from
1830  * its driver (or binding fails). Once managed input device is allocated,
1831  * it is ready to be set up and registered in the same fashion as regular
1832  * input device. There are no special devm_input_device_[un]register()
1833  * variants, regular ones work with both managed and unmanaged devices,
1834  * should you need them. In most cases however, managed input device need
1835  * not be explicitly unregistered or freed.
1836  *
1837  * NOTE: the owner device is set up as parent of input device and users
1838  * should not override it.
1839  */
1840 struct input_dev *devm_input_allocate_device(struct device *dev)
1841 {
1842 	struct input_dev *input;
1843 	struct input_devres *devres;
1844 
1845 	devres = devres_alloc(devm_input_device_release,
1846 			      sizeof(struct input_devres), GFP_KERNEL);
1847 	if (!devres)
1848 		return NULL;
1849 
1850 	input = input_allocate_device();
1851 	if (!input) {
1852 		devres_free(devres);
1853 		return NULL;
1854 	}
1855 
1856 	input->dev.parent = dev;
1857 	input->devres_managed = true;
1858 
1859 	devres->input = input;
1860 	devres_add(dev, devres);
1861 
1862 	return input;
1863 }
1864 EXPORT_SYMBOL(devm_input_allocate_device);
1865 
1866 /**
1867  * input_free_device - free memory occupied by input_dev structure
1868  * @dev: input device to free
1869  *
1870  * This function should only be used if input_register_device()
1871  * was not called yet or if it failed. Once device was registered
1872  * use input_unregister_device() and memory will be freed once last
1873  * reference to the device is dropped.
1874  *
1875  * Device should be allocated by input_allocate_device().
1876  *
1877  * NOTE: If there are references to the input device then memory
1878  * will not be freed until last reference is dropped.
1879  */
1880 void input_free_device(struct input_dev *dev)
1881 {
1882 	if (dev) {
1883 		if (dev->devres_managed)
1884 			WARN_ON(devres_destroy(dev->dev.parent,
1885 						devm_input_device_release,
1886 						devm_input_device_match,
1887 						dev));
1888 		input_put_device(dev);
1889 	}
1890 }
1891 EXPORT_SYMBOL(input_free_device);
1892 
1893 /**
1894  * input_set_capability - mark device as capable of a certain event
1895  * @dev: device that is capable of emitting or accepting event
1896  * @type: type of the event (EV_KEY, EV_REL, etc...)
1897  * @code: event code
1898  *
1899  * In addition to setting up corresponding bit in appropriate capability
1900  * bitmap the function also adjusts dev->evbit.
1901  */
1902 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1903 {
1904 	switch (type) {
1905 	case EV_KEY:
1906 		__set_bit(code, dev->keybit);
1907 		break;
1908 
1909 	case EV_REL:
1910 		__set_bit(code, dev->relbit);
1911 		break;
1912 
1913 	case EV_ABS:
1914 		input_alloc_absinfo(dev);
1915 		if (!dev->absinfo)
1916 			return;
1917 
1918 		__set_bit(code, dev->absbit);
1919 		break;
1920 
1921 	case EV_MSC:
1922 		__set_bit(code, dev->mscbit);
1923 		break;
1924 
1925 	case EV_SW:
1926 		__set_bit(code, dev->swbit);
1927 		break;
1928 
1929 	case EV_LED:
1930 		__set_bit(code, dev->ledbit);
1931 		break;
1932 
1933 	case EV_SND:
1934 		__set_bit(code, dev->sndbit);
1935 		break;
1936 
1937 	case EV_FF:
1938 		__set_bit(code, dev->ffbit);
1939 		break;
1940 
1941 	case EV_PWR:
1942 		/* do nothing */
1943 		break;
1944 
1945 	default:
1946 		pr_err("input_set_capability: unknown type %u (code %u)\n",
1947 		       type, code);
1948 		dump_stack();
1949 		return;
1950 	}
1951 
1952 	__set_bit(type, dev->evbit);
1953 }
1954 EXPORT_SYMBOL(input_set_capability);
1955 
1956 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1957 {
1958 	int mt_slots;
1959 	int i;
1960 	unsigned int events;
1961 
1962 	if (dev->mt) {
1963 		mt_slots = dev->mt->num_slots;
1964 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1965 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1966 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1967 		mt_slots = clamp(mt_slots, 2, 32);
1968 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1969 		mt_slots = 2;
1970 	} else {
1971 		mt_slots = 0;
1972 	}
1973 
1974 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1975 
1976 	for (i = 0; i < ABS_CNT; i++) {
1977 		if (test_bit(i, dev->absbit)) {
1978 			if (input_is_mt_axis(i))
1979 				events += mt_slots;
1980 			else
1981 				events++;
1982 		}
1983 	}
1984 
1985 	for (i = 0; i < REL_CNT; i++)
1986 		if (test_bit(i, dev->relbit))
1987 			events++;
1988 
1989 	/* Make room for KEY and MSC events */
1990 	events += 7;
1991 
1992 	return events;
1993 }
1994 
1995 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1996 	do {								\
1997 		if (!test_bit(EV_##type, dev->evbit))			\
1998 			memset(dev->bits##bit, 0,			\
1999 				sizeof(dev->bits##bit));		\
2000 	} while (0)
2001 
2002 static void input_cleanse_bitmasks(struct input_dev *dev)
2003 {
2004 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2005 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2006 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2007 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2008 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2009 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2010 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2011 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2012 }
2013 
2014 static void __input_unregister_device(struct input_dev *dev)
2015 {
2016 	struct input_handle *handle, *next;
2017 
2018 	input_disconnect_device(dev);
2019 
2020 	mutex_lock(&input_mutex);
2021 
2022 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2023 		handle->handler->disconnect(handle);
2024 	WARN_ON(!list_empty(&dev->h_list));
2025 
2026 	del_timer_sync(&dev->timer);
2027 	list_del_init(&dev->node);
2028 
2029 	input_wakeup_procfs_readers();
2030 
2031 	mutex_unlock(&input_mutex);
2032 
2033 	device_del(&dev->dev);
2034 }
2035 
2036 static void devm_input_device_unregister(struct device *dev, void *res)
2037 {
2038 	struct input_devres *devres = res;
2039 	struct input_dev *input = devres->input;
2040 
2041 	dev_dbg(dev, "%s: unregistering device %s\n",
2042 		__func__, dev_name(&input->dev));
2043 	__input_unregister_device(input);
2044 }
2045 
2046 /**
2047  * input_register_device - register device with input core
2048  * @dev: device to be registered
2049  *
2050  * This function registers device with input core. The device must be
2051  * allocated with input_allocate_device() and all it's capabilities
2052  * set up before registering.
2053  * If function fails the device must be freed with input_free_device().
2054  * Once device has been successfully registered it can be unregistered
2055  * with input_unregister_device(); input_free_device() should not be
2056  * called in this case.
2057  *
2058  * Note that this function is also used to register managed input devices
2059  * (ones allocated with devm_input_allocate_device()). Such managed input
2060  * devices need not be explicitly unregistered or freed, their tear down
2061  * is controlled by the devres infrastructure. It is also worth noting
2062  * that tear down of managed input devices is internally a 2-step process:
2063  * registered managed input device is first unregistered, but stays in
2064  * memory and can still handle input_event() calls (although events will
2065  * not be delivered anywhere). The freeing of managed input device will
2066  * happen later, when devres stack is unwound to the point where device
2067  * allocation was made.
2068  */
2069 int input_register_device(struct input_dev *dev)
2070 {
2071 	struct input_devres *devres = NULL;
2072 	struct input_handler *handler;
2073 	unsigned int packet_size;
2074 	const char *path;
2075 	int error;
2076 
2077 	if (dev->devres_managed) {
2078 		devres = devres_alloc(devm_input_device_unregister,
2079 				      sizeof(struct input_devres), GFP_KERNEL);
2080 		if (!devres)
2081 			return -ENOMEM;
2082 
2083 		devres->input = dev;
2084 	}
2085 
2086 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2087 	__set_bit(EV_SYN, dev->evbit);
2088 
2089 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2090 	__clear_bit(KEY_RESERVED, dev->keybit);
2091 
2092 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2093 	input_cleanse_bitmasks(dev);
2094 
2095 	packet_size = input_estimate_events_per_packet(dev);
2096 	if (dev->hint_events_per_packet < packet_size)
2097 		dev->hint_events_per_packet = packet_size;
2098 
2099 	dev->max_vals = dev->hint_events_per_packet + 2;
2100 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2101 	if (!dev->vals) {
2102 		error = -ENOMEM;
2103 		goto err_devres_free;
2104 	}
2105 
2106 	/*
2107 	 * If delay and period are pre-set by the driver, then autorepeating
2108 	 * is handled by the driver itself and we don't do it in input.c.
2109 	 */
2110 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
2111 		dev->timer.data = (long) dev;
2112 		dev->timer.function = input_repeat_key;
2113 		dev->rep[REP_DELAY] = 250;
2114 		dev->rep[REP_PERIOD] = 33;
2115 	}
2116 
2117 	if (!dev->getkeycode)
2118 		dev->getkeycode = input_default_getkeycode;
2119 
2120 	if (!dev->setkeycode)
2121 		dev->setkeycode = input_default_setkeycode;
2122 
2123 	error = device_add(&dev->dev);
2124 	if (error)
2125 		goto err_free_vals;
2126 
2127 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2128 	pr_info("%s as %s\n",
2129 		dev->name ? dev->name : "Unspecified device",
2130 		path ? path : "N/A");
2131 	kfree(path);
2132 
2133 	error = mutex_lock_interruptible(&input_mutex);
2134 	if (error)
2135 		goto err_device_del;
2136 
2137 	list_add_tail(&dev->node, &input_dev_list);
2138 
2139 	list_for_each_entry(handler, &input_handler_list, node)
2140 		input_attach_handler(dev, handler);
2141 
2142 	input_wakeup_procfs_readers();
2143 
2144 	mutex_unlock(&input_mutex);
2145 
2146 	if (dev->devres_managed) {
2147 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2148 			__func__, dev_name(&dev->dev));
2149 		devres_add(dev->dev.parent, devres);
2150 	}
2151 	return 0;
2152 
2153 err_device_del:
2154 	device_del(&dev->dev);
2155 err_free_vals:
2156 	kfree(dev->vals);
2157 	dev->vals = NULL;
2158 err_devres_free:
2159 	devres_free(devres);
2160 	return error;
2161 }
2162 EXPORT_SYMBOL(input_register_device);
2163 
2164 /**
2165  * input_unregister_device - unregister previously registered device
2166  * @dev: device to be unregistered
2167  *
2168  * This function unregisters an input device. Once device is unregistered
2169  * the caller should not try to access it as it may get freed at any moment.
2170  */
2171 void input_unregister_device(struct input_dev *dev)
2172 {
2173 	if (dev->devres_managed) {
2174 		WARN_ON(devres_destroy(dev->dev.parent,
2175 					devm_input_device_unregister,
2176 					devm_input_device_match,
2177 					dev));
2178 		__input_unregister_device(dev);
2179 		/*
2180 		 * We do not do input_put_device() here because it will be done
2181 		 * when 2nd devres fires up.
2182 		 */
2183 	} else {
2184 		__input_unregister_device(dev);
2185 		input_put_device(dev);
2186 	}
2187 }
2188 EXPORT_SYMBOL(input_unregister_device);
2189 
2190 /**
2191  * input_register_handler - register a new input handler
2192  * @handler: handler to be registered
2193  *
2194  * This function registers a new input handler (interface) for input
2195  * devices in the system and attaches it to all input devices that
2196  * are compatible with the handler.
2197  */
2198 int input_register_handler(struct input_handler *handler)
2199 {
2200 	struct input_dev *dev;
2201 	int error;
2202 
2203 	error = mutex_lock_interruptible(&input_mutex);
2204 	if (error)
2205 		return error;
2206 
2207 	INIT_LIST_HEAD(&handler->h_list);
2208 
2209 	list_add_tail(&handler->node, &input_handler_list);
2210 
2211 	list_for_each_entry(dev, &input_dev_list, node)
2212 		input_attach_handler(dev, handler);
2213 
2214 	input_wakeup_procfs_readers();
2215 
2216 	mutex_unlock(&input_mutex);
2217 	return 0;
2218 }
2219 EXPORT_SYMBOL(input_register_handler);
2220 
2221 /**
2222  * input_unregister_handler - unregisters an input handler
2223  * @handler: handler to be unregistered
2224  *
2225  * This function disconnects a handler from its input devices and
2226  * removes it from lists of known handlers.
2227  */
2228 void input_unregister_handler(struct input_handler *handler)
2229 {
2230 	struct input_handle *handle, *next;
2231 
2232 	mutex_lock(&input_mutex);
2233 
2234 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2235 		handler->disconnect(handle);
2236 	WARN_ON(!list_empty(&handler->h_list));
2237 
2238 	list_del_init(&handler->node);
2239 
2240 	input_wakeup_procfs_readers();
2241 
2242 	mutex_unlock(&input_mutex);
2243 }
2244 EXPORT_SYMBOL(input_unregister_handler);
2245 
2246 /**
2247  * input_handler_for_each_handle - handle iterator
2248  * @handler: input handler to iterate
2249  * @data: data for the callback
2250  * @fn: function to be called for each handle
2251  *
2252  * Iterate over @bus's list of devices, and call @fn for each, passing
2253  * it @data and stop when @fn returns a non-zero value. The function is
2254  * using RCU to traverse the list and therefore may be usind in atonic
2255  * contexts. The @fn callback is invoked from RCU critical section and
2256  * thus must not sleep.
2257  */
2258 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2259 				  int (*fn)(struct input_handle *, void *))
2260 {
2261 	struct input_handle *handle;
2262 	int retval = 0;
2263 
2264 	rcu_read_lock();
2265 
2266 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2267 		retval = fn(handle, data);
2268 		if (retval)
2269 			break;
2270 	}
2271 
2272 	rcu_read_unlock();
2273 
2274 	return retval;
2275 }
2276 EXPORT_SYMBOL(input_handler_for_each_handle);
2277 
2278 /**
2279  * input_register_handle - register a new input handle
2280  * @handle: handle to register
2281  *
2282  * This function puts a new input handle onto device's
2283  * and handler's lists so that events can flow through
2284  * it once it is opened using input_open_device().
2285  *
2286  * This function is supposed to be called from handler's
2287  * connect() method.
2288  */
2289 int input_register_handle(struct input_handle *handle)
2290 {
2291 	struct input_handler *handler = handle->handler;
2292 	struct input_dev *dev = handle->dev;
2293 	int error;
2294 
2295 	/*
2296 	 * We take dev->mutex here to prevent race with
2297 	 * input_release_device().
2298 	 */
2299 	error = mutex_lock_interruptible(&dev->mutex);
2300 	if (error)
2301 		return error;
2302 
2303 	/*
2304 	 * Filters go to the head of the list, normal handlers
2305 	 * to the tail.
2306 	 */
2307 	if (handler->filter)
2308 		list_add_rcu(&handle->d_node, &dev->h_list);
2309 	else
2310 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2311 
2312 	mutex_unlock(&dev->mutex);
2313 
2314 	/*
2315 	 * Since we are supposed to be called from ->connect()
2316 	 * which is mutually exclusive with ->disconnect()
2317 	 * we can't be racing with input_unregister_handle()
2318 	 * and so separate lock is not needed here.
2319 	 */
2320 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2321 
2322 	if (handler->start)
2323 		handler->start(handle);
2324 
2325 	return 0;
2326 }
2327 EXPORT_SYMBOL(input_register_handle);
2328 
2329 /**
2330  * input_unregister_handle - unregister an input handle
2331  * @handle: handle to unregister
2332  *
2333  * This function removes input handle from device's
2334  * and handler's lists.
2335  *
2336  * This function is supposed to be called from handler's
2337  * disconnect() method.
2338  */
2339 void input_unregister_handle(struct input_handle *handle)
2340 {
2341 	struct input_dev *dev = handle->dev;
2342 
2343 	list_del_rcu(&handle->h_node);
2344 
2345 	/*
2346 	 * Take dev->mutex to prevent race with input_release_device().
2347 	 */
2348 	mutex_lock(&dev->mutex);
2349 	list_del_rcu(&handle->d_node);
2350 	mutex_unlock(&dev->mutex);
2351 
2352 	synchronize_rcu();
2353 }
2354 EXPORT_SYMBOL(input_unregister_handle);
2355 
2356 /**
2357  * input_get_new_minor - allocates a new input minor number
2358  * @legacy_base: beginning or the legacy range to be searched
2359  * @legacy_num: size of legacy range
2360  * @allow_dynamic: whether we can also take ID from the dynamic range
2361  *
2362  * This function allocates a new device minor for from input major namespace.
2363  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2364  * parameters and whether ID can be allocated from dynamic range if there are
2365  * no free IDs in legacy range.
2366  */
2367 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2368 			bool allow_dynamic)
2369 {
2370 	/*
2371 	 * This function should be called from input handler's ->connect()
2372 	 * methods, which are serialized with input_mutex, so no additional
2373 	 * locking is needed here.
2374 	 */
2375 	if (legacy_base >= 0) {
2376 		int minor = ida_simple_get(&input_ida,
2377 					   legacy_base,
2378 					   legacy_base + legacy_num,
2379 					   GFP_KERNEL);
2380 		if (minor >= 0 || !allow_dynamic)
2381 			return minor;
2382 	}
2383 
2384 	return ida_simple_get(&input_ida,
2385 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2386 			      GFP_KERNEL);
2387 }
2388 EXPORT_SYMBOL(input_get_new_minor);
2389 
2390 /**
2391  * input_free_minor - release previously allocated minor
2392  * @minor: minor to be released
2393  *
2394  * This function releases previously allocated input minor so that it can be
2395  * reused later.
2396  */
2397 void input_free_minor(unsigned int minor)
2398 {
2399 	ida_simple_remove(&input_ida, minor);
2400 }
2401 EXPORT_SYMBOL(input_free_minor);
2402 
2403 static int __init input_init(void)
2404 {
2405 	int err;
2406 
2407 	err = class_register(&input_class);
2408 	if (err) {
2409 		pr_err("unable to register input_dev class\n");
2410 		return err;
2411 	}
2412 
2413 	err = input_proc_init();
2414 	if (err)
2415 		goto fail1;
2416 
2417 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2418 				     INPUT_MAX_CHAR_DEVICES, "input");
2419 	if (err) {
2420 		pr_err("unable to register char major %d", INPUT_MAJOR);
2421 		goto fail2;
2422 	}
2423 
2424 	return 0;
2425 
2426  fail2:	input_proc_exit();
2427  fail1:	class_unregister(&input_class);
2428 	return err;
2429 }
2430 
2431 static void __exit input_exit(void)
2432 {
2433 	input_proc_exit();
2434 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2435 				 INPUT_MAX_CHAR_DEVICES);
2436 	class_unregister(&input_class);
2437 }
2438 
2439 subsys_initcall(input_init);
2440 module_exit(input_exit);
2441