xref: /openbmc/linux/drivers/input/input.c (revision 4800cd83)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/input/mt.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/random.h>
21 #include <linux/major.h>
22 #include <linux/proc_fs.h>
23 #include <linux/sched.h>
24 #include <linux/seq_file.h>
25 #include <linux/poll.h>
26 #include <linux/device.h>
27 #include <linux/mutex.h>
28 #include <linux/rcupdate.h>
29 #include "input-compat.h"
30 
31 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
32 MODULE_DESCRIPTION("Input core");
33 MODULE_LICENSE("GPL");
34 
35 #define INPUT_DEVICES	256
36 
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39 
40 /*
41  * input_mutex protects access to both input_dev_list and input_handler_list.
42  * This also causes input_[un]register_device and input_[un]register_handler
43  * be mutually exclusive which simplifies locking in drivers implementing
44  * input handlers.
45  */
46 static DEFINE_MUTEX(input_mutex);
47 
48 static struct input_handler *input_table[8];
49 
50 static inline int is_event_supported(unsigned int code,
51 				     unsigned long *bm, unsigned int max)
52 {
53 	return code <= max && test_bit(code, bm);
54 }
55 
56 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57 {
58 	if (fuzz) {
59 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 			return old_val;
61 
62 		if (value > old_val - fuzz && value < old_val + fuzz)
63 			return (old_val * 3 + value) / 4;
64 
65 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 			return (old_val + value) / 2;
67 	}
68 
69 	return value;
70 }
71 
72 /*
73  * Pass event first through all filters and then, if event has not been
74  * filtered out, through all open handles. This function is called with
75  * dev->event_lock held and interrupts disabled.
76  */
77 static void input_pass_event(struct input_dev *dev,
78 			     unsigned int type, unsigned int code, int value)
79 {
80 	struct input_handler *handler;
81 	struct input_handle *handle;
82 
83 	rcu_read_lock();
84 
85 	handle = rcu_dereference(dev->grab);
86 	if (handle)
87 		handle->handler->event(handle, type, code, value);
88 	else {
89 		bool filtered = false;
90 
91 		list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
92 			if (!handle->open)
93 				continue;
94 
95 			handler = handle->handler;
96 			if (!handler->filter) {
97 				if (filtered)
98 					break;
99 
100 				handler->event(handle, type, code, value);
101 
102 			} else if (handler->filter(handle, type, code, value))
103 				filtered = true;
104 		}
105 	}
106 
107 	rcu_read_unlock();
108 }
109 
110 /*
111  * Generate software autorepeat event. Note that we take
112  * dev->event_lock here to avoid racing with input_event
113  * which may cause keys get "stuck".
114  */
115 static void input_repeat_key(unsigned long data)
116 {
117 	struct input_dev *dev = (void *) data;
118 	unsigned long flags;
119 
120 	spin_lock_irqsave(&dev->event_lock, flags);
121 
122 	if (test_bit(dev->repeat_key, dev->key) &&
123 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
124 
125 		input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
126 
127 		if (dev->sync) {
128 			/*
129 			 * Only send SYN_REPORT if we are not in a middle
130 			 * of driver parsing a new hardware packet.
131 			 * Otherwise assume that the driver will send
132 			 * SYN_REPORT once it's done.
133 			 */
134 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
135 		}
136 
137 		if (dev->rep[REP_PERIOD])
138 			mod_timer(&dev->timer, jiffies +
139 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
140 	}
141 
142 	spin_unlock_irqrestore(&dev->event_lock, flags);
143 }
144 
145 static void input_start_autorepeat(struct input_dev *dev, int code)
146 {
147 	if (test_bit(EV_REP, dev->evbit) &&
148 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
149 	    dev->timer.data) {
150 		dev->repeat_key = code;
151 		mod_timer(&dev->timer,
152 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
153 	}
154 }
155 
156 static void input_stop_autorepeat(struct input_dev *dev)
157 {
158 	del_timer(&dev->timer);
159 }
160 
161 #define INPUT_IGNORE_EVENT	0
162 #define INPUT_PASS_TO_HANDLERS	1
163 #define INPUT_PASS_TO_DEVICE	2
164 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
165 
166 static int input_handle_abs_event(struct input_dev *dev,
167 				  unsigned int code, int *pval)
168 {
169 	bool is_mt_event;
170 	int *pold;
171 
172 	if (code == ABS_MT_SLOT) {
173 		/*
174 		 * "Stage" the event; we'll flush it later, when we
175 		 * get actual touch data.
176 		 */
177 		if (*pval >= 0 && *pval < dev->mtsize)
178 			dev->slot = *pval;
179 
180 		return INPUT_IGNORE_EVENT;
181 	}
182 
183 	is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
184 
185 	if (!is_mt_event) {
186 		pold = &dev->absinfo[code].value;
187 	} else if (dev->mt) {
188 		struct input_mt_slot *mtslot = &dev->mt[dev->slot];
189 		pold = &mtslot->abs[code - ABS_MT_FIRST];
190 	} else {
191 		/*
192 		 * Bypass filtering for multi-touch events when
193 		 * not employing slots.
194 		 */
195 		pold = NULL;
196 	}
197 
198 	if (pold) {
199 		*pval = input_defuzz_abs_event(*pval, *pold,
200 						dev->absinfo[code].fuzz);
201 		if (*pold == *pval)
202 			return INPUT_IGNORE_EVENT;
203 
204 		*pold = *pval;
205 	}
206 
207 	/* Flush pending "slot" event */
208 	if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
209 		input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
210 		input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
211 	}
212 
213 	return INPUT_PASS_TO_HANDLERS;
214 }
215 
216 static void input_handle_event(struct input_dev *dev,
217 			       unsigned int type, unsigned int code, int value)
218 {
219 	int disposition = INPUT_IGNORE_EVENT;
220 
221 	switch (type) {
222 
223 	case EV_SYN:
224 		switch (code) {
225 		case SYN_CONFIG:
226 			disposition = INPUT_PASS_TO_ALL;
227 			break;
228 
229 		case SYN_REPORT:
230 			if (!dev->sync) {
231 				dev->sync = true;
232 				disposition = INPUT_PASS_TO_HANDLERS;
233 			}
234 			break;
235 		case SYN_MT_REPORT:
236 			dev->sync = false;
237 			disposition = INPUT_PASS_TO_HANDLERS;
238 			break;
239 		}
240 		break;
241 
242 	case EV_KEY:
243 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
244 		    !!test_bit(code, dev->key) != value) {
245 
246 			if (value != 2) {
247 				__change_bit(code, dev->key);
248 				if (value)
249 					input_start_autorepeat(dev, code);
250 				else
251 					input_stop_autorepeat(dev);
252 			}
253 
254 			disposition = INPUT_PASS_TO_HANDLERS;
255 		}
256 		break;
257 
258 	case EV_SW:
259 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
260 		    !!test_bit(code, dev->sw) != value) {
261 
262 			__change_bit(code, dev->sw);
263 			disposition = INPUT_PASS_TO_HANDLERS;
264 		}
265 		break;
266 
267 	case EV_ABS:
268 		if (is_event_supported(code, dev->absbit, ABS_MAX))
269 			disposition = input_handle_abs_event(dev, code, &value);
270 
271 		break;
272 
273 	case EV_REL:
274 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
275 			disposition = INPUT_PASS_TO_HANDLERS;
276 
277 		break;
278 
279 	case EV_MSC:
280 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
281 			disposition = INPUT_PASS_TO_ALL;
282 
283 		break;
284 
285 	case EV_LED:
286 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
287 		    !!test_bit(code, dev->led) != value) {
288 
289 			__change_bit(code, dev->led);
290 			disposition = INPUT_PASS_TO_ALL;
291 		}
292 		break;
293 
294 	case EV_SND:
295 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
296 
297 			if (!!test_bit(code, dev->snd) != !!value)
298 				__change_bit(code, dev->snd);
299 			disposition = INPUT_PASS_TO_ALL;
300 		}
301 		break;
302 
303 	case EV_REP:
304 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
305 			dev->rep[code] = value;
306 			disposition = INPUT_PASS_TO_ALL;
307 		}
308 		break;
309 
310 	case EV_FF:
311 		if (value >= 0)
312 			disposition = INPUT_PASS_TO_ALL;
313 		break;
314 
315 	case EV_PWR:
316 		disposition = INPUT_PASS_TO_ALL;
317 		break;
318 	}
319 
320 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
321 		dev->sync = false;
322 
323 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
324 		dev->event(dev, type, code, value);
325 
326 	if (disposition & INPUT_PASS_TO_HANDLERS)
327 		input_pass_event(dev, type, code, value);
328 }
329 
330 /**
331  * input_event() - report new input event
332  * @dev: device that generated the event
333  * @type: type of the event
334  * @code: event code
335  * @value: value of the event
336  *
337  * This function should be used by drivers implementing various input
338  * devices to report input events. See also input_inject_event().
339  *
340  * NOTE: input_event() may be safely used right after input device was
341  * allocated with input_allocate_device(), even before it is registered
342  * with input_register_device(), but the event will not reach any of the
343  * input handlers. Such early invocation of input_event() may be used
344  * to 'seed' initial state of a switch or initial position of absolute
345  * axis, etc.
346  */
347 void input_event(struct input_dev *dev,
348 		 unsigned int type, unsigned int code, int value)
349 {
350 	unsigned long flags;
351 
352 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
353 
354 		spin_lock_irqsave(&dev->event_lock, flags);
355 		add_input_randomness(type, code, value);
356 		input_handle_event(dev, type, code, value);
357 		spin_unlock_irqrestore(&dev->event_lock, flags);
358 	}
359 }
360 EXPORT_SYMBOL(input_event);
361 
362 /**
363  * input_inject_event() - send input event from input handler
364  * @handle: input handle to send event through
365  * @type: type of the event
366  * @code: event code
367  * @value: value of the event
368  *
369  * Similar to input_event() but will ignore event if device is
370  * "grabbed" and handle injecting event is not the one that owns
371  * the device.
372  */
373 void input_inject_event(struct input_handle *handle,
374 			unsigned int type, unsigned int code, int value)
375 {
376 	struct input_dev *dev = handle->dev;
377 	struct input_handle *grab;
378 	unsigned long flags;
379 
380 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
381 		spin_lock_irqsave(&dev->event_lock, flags);
382 
383 		rcu_read_lock();
384 		grab = rcu_dereference(dev->grab);
385 		if (!grab || grab == handle)
386 			input_handle_event(dev, type, code, value);
387 		rcu_read_unlock();
388 
389 		spin_unlock_irqrestore(&dev->event_lock, flags);
390 	}
391 }
392 EXPORT_SYMBOL(input_inject_event);
393 
394 /**
395  * input_alloc_absinfo - allocates array of input_absinfo structs
396  * @dev: the input device emitting absolute events
397  *
398  * If the absinfo struct the caller asked for is already allocated, this
399  * functions will not do anything.
400  */
401 void input_alloc_absinfo(struct input_dev *dev)
402 {
403 	if (!dev->absinfo)
404 		dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
405 					GFP_KERNEL);
406 
407 	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
408 }
409 EXPORT_SYMBOL(input_alloc_absinfo);
410 
411 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
412 			  int min, int max, int fuzz, int flat)
413 {
414 	struct input_absinfo *absinfo;
415 
416 	input_alloc_absinfo(dev);
417 	if (!dev->absinfo)
418 		return;
419 
420 	absinfo = &dev->absinfo[axis];
421 	absinfo->minimum = min;
422 	absinfo->maximum = max;
423 	absinfo->fuzz = fuzz;
424 	absinfo->flat = flat;
425 
426 	dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
427 }
428 EXPORT_SYMBOL(input_set_abs_params);
429 
430 
431 /**
432  * input_grab_device - grabs device for exclusive use
433  * @handle: input handle that wants to own the device
434  *
435  * When a device is grabbed by an input handle all events generated by
436  * the device are delivered only to this handle. Also events injected
437  * by other input handles are ignored while device is grabbed.
438  */
439 int input_grab_device(struct input_handle *handle)
440 {
441 	struct input_dev *dev = handle->dev;
442 	int retval;
443 
444 	retval = mutex_lock_interruptible(&dev->mutex);
445 	if (retval)
446 		return retval;
447 
448 	if (dev->grab) {
449 		retval = -EBUSY;
450 		goto out;
451 	}
452 
453 	rcu_assign_pointer(dev->grab, handle);
454 	synchronize_rcu();
455 
456  out:
457 	mutex_unlock(&dev->mutex);
458 	return retval;
459 }
460 EXPORT_SYMBOL(input_grab_device);
461 
462 static void __input_release_device(struct input_handle *handle)
463 {
464 	struct input_dev *dev = handle->dev;
465 
466 	if (dev->grab == handle) {
467 		rcu_assign_pointer(dev->grab, NULL);
468 		/* Make sure input_pass_event() notices that grab is gone */
469 		synchronize_rcu();
470 
471 		list_for_each_entry(handle, &dev->h_list, d_node)
472 			if (handle->open && handle->handler->start)
473 				handle->handler->start(handle);
474 	}
475 }
476 
477 /**
478  * input_release_device - release previously grabbed device
479  * @handle: input handle that owns the device
480  *
481  * Releases previously grabbed device so that other input handles can
482  * start receiving input events. Upon release all handlers attached
483  * to the device have their start() method called so they have a change
484  * to synchronize device state with the rest of the system.
485  */
486 void input_release_device(struct input_handle *handle)
487 {
488 	struct input_dev *dev = handle->dev;
489 
490 	mutex_lock(&dev->mutex);
491 	__input_release_device(handle);
492 	mutex_unlock(&dev->mutex);
493 }
494 EXPORT_SYMBOL(input_release_device);
495 
496 /**
497  * input_open_device - open input device
498  * @handle: handle through which device is being accessed
499  *
500  * This function should be called by input handlers when they
501  * want to start receive events from given input device.
502  */
503 int input_open_device(struct input_handle *handle)
504 {
505 	struct input_dev *dev = handle->dev;
506 	int retval;
507 
508 	retval = mutex_lock_interruptible(&dev->mutex);
509 	if (retval)
510 		return retval;
511 
512 	if (dev->going_away) {
513 		retval = -ENODEV;
514 		goto out;
515 	}
516 
517 	handle->open++;
518 
519 	if (!dev->users++ && dev->open)
520 		retval = dev->open(dev);
521 
522 	if (retval) {
523 		dev->users--;
524 		if (!--handle->open) {
525 			/*
526 			 * Make sure we are not delivering any more events
527 			 * through this handle
528 			 */
529 			synchronize_rcu();
530 		}
531 	}
532 
533  out:
534 	mutex_unlock(&dev->mutex);
535 	return retval;
536 }
537 EXPORT_SYMBOL(input_open_device);
538 
539 int input_flush_device(struct input_handle *handle, struct file *file)
540 {
541 	struct input_dev *dev = handle->dev;
542 	int retval;
543 
544 	retval = mutex_lock_interruptible(&dev->mutex);
545 	if (retval)
546 		return retval;
547 
548 	if (dev->flush)
549 		retval = dev->flush(dev, file);
550 
551 	mutex_unlock(&dev->mutex);
552 	return retval;
553 }
554 EXPORT_SYMBOL(input_flush_device);
555 
556 /**
557  * input_close_device - close input device
558  * @handle: handle through which device is being accessed
559  *
560  * This function should be called by input handlers when they
561  * want to stop receive events from given input device.
562  */
563 void input_close_device(struct input_handle *handle)
564 {
565 	struct input_dev *dev = handle->dev;
566 
567 	mutex_lock(&dev->mutex);
568 
569 	__input_release_device(handle);
570 
571 	if (!--dev->users && dev->close)
572 		dev->close(dev);
573 
574 	if (!--handle->open) {
575 		/*
576 		 * synchronize_rcu() makes sure that input_pass_event()
577 		 * completed and that no more input events are delivered
578 		 * through this handle
579 		 */
580 		synchronize_rcu();
581 	}
582 
583 	mutex_unlock(&dev->mutex);
584 }
585 EXPORT_SYMBOL(input_close_device);
586 
587 /*
588  * Simulate keyup events for all keys that are marked as pressed.
589  * The function must be called with dev->event_lock held.
590  */
591 static void input_dev_release_keys(struct input_dev *dev)
592 {
593 	int code;
594 
595 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
596 		for (code = 0; code <= KEY_MAX; code++) {
597 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
598 			    __test_and_clear_bit(code, dev->key)) {
599 				input_pass_event(dev, EV_KEY, code, 0);
600 			}
601 		}
602 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
603 	}
604 }
605 
606 /*
607  * Prepare device for unregistering
608  */
609 static void input_disconnect_device(struct input_dev *dev)
610 {
611 	struct input_handle *handle;
612 
613 	/*
614 	 * Mark device as going away. Note that we take dev->mutex here
615 	 * not to protect access to dev->going_away but rather to ensure
616 	 * that there are no threads in the middle of input_open_device()
617 	 */
618 	mutex_lock(&dev->mutex);
619 	dev->going_away = true;
620 	mutex_unlock(&dev->mutex);
621 
622 	spin_lock_irq(&dev->event_lock);
623 
624 	/*
625 	 * Simulate keyup events for all pressed keys so that handlers
626 	 * are not left with "stuck" keys. The driver may continue
627 	 * generate events even after we done here but they will not
628 	 * reach any handlers.
629 	 */
630 	input_dev_release_keys(dev);
631 
632 	list_for_each_entry(handle, &dev->h_list, d_node)
633 		handle->open = 0;
634 
635 	spin_unlock_irq(&dev->event_lock);
636 }
637 
638 /**
639  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
640  * @ke: keymap entry containing scancode to be converted.
641  * @scancode: pointer to the location where converted scancode should
642  *	be stored.
643  *
644  * This function is used to convert scancode stored in &struct keymap_entry
645  * into scalar form understood by legacy keymap handling methods. These
646  * methods expect scancodes to be represented as 'unsigned int'.
647  */
648 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
649 			     unsigned int *scancode)
650 {
651 	switch (ke->len) {
652 	case 1:
653 		*scancode = *((u8 *)ke->scancode);
654 		break;
655 
656 	case 2:
657 		*scancode = *((u16 *)ke->scancode);
658 		break;
659 
660 	case 4:
661 		*scancode = *((u32 *)ke->scancode);
662 		break;
663 
664 	default:
665 		return -EINVAL;
666 	}
667 
668 	return 0;
669 }
670 EXPORT_SYMBOL(input_scancode_to_scalar);
671 
672 /*
673  * Those routines handle the default case where no [gs]etkeycode() is
674  * defined. In this case, an array indexed by the scancode is used.
675  */
676 
677 static unsigned int input_fetch_keycode(struct input_dev *dev,
678 					unsigned int index)
679 {
680 	switch (dev->keycodesize) {
681 	case 1:
682 		return ((u8 *)dev->keycode)[index];
683 
684 	case 2:
685 		return ((u16 *)dev->keycode)[index];
686 
687 	default:
688 		return ((u32 *)dev->keycode)[index];
689 	}
690 }
691 
692 static int input_default_getkeycode(struct input_dev *dev,
693 				    struct input_keymap_entry *ke)
694 {
695 	unsigned int index;
696 	int error;
697 
698 	if (!dev->keycodesize)
699 		return -EINVAL;
700 
701 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
702 		index = ke->index;
703 	else {
704 		error = input_scancode_to_scalar(ke, &index);
705 		if (error)
706 			return error;
707 	}
708 
709 	if (index >= dev->keycodemax)
710 		return -EINVAL;
711 
712 	ke->keycode = input_fetch_keycode(dev, index);
713 	ke->index = index;
714 	ke->len = sizeof(index);
715 	memcpy(ke->scancode, &index, sizeof(index));
716 
717 	return 0;
718 }
719 
720 static int input_default_setkeycode(struct input_dev *dev,
721 				    const struct input_keymap_entry *ke,
722 				    unsigned int *old_keycode)
723 {
724 	unsigned int index;
725 	int error;
726 	int i;
727 
728 	if (!dev->keycodesize)
729 		return -EINVAL;
730 
731 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
732 		index = ke->index;
733 	} else {
734 		error = input_scancode_to_scalar(ke, &index);
735 		if (error)
736 			return error;
737 	}
738 
739 	if (index >= dev->keycodemax)
740 		return -EINVAL;
741 
742 	if (dev->keycodesize < sizeof(ke->keycode) &&
743 			(ke->keycode >> (dev->keycodesize * 8)))
744 		return -EINVAL;
745 
746 	switch (dev->keycodesize) {
747 		case 1: {
748 			u8 *k = (u8 *)dev->keycode;
749 			*old_keycode = k[index];
750 			k[index] = ke->keycode;
751 			break;
752 		}
753 		case 2: {
754 			u16 *k = (u16 *)dev->keycode;
755 			*old_keycode = k[index];
756 			k[index] = ke->keycode;
757 			break;
758 		}
759 		default: {
760 			u32 *k = (u32 *)dev->keycode;
761 			*old_keycode = k[index];
762 			k[index] = ke->keycode;
763 			break;
764 		}
765 	}
766 
767 	__clear_bit(*old_keycode, dev->keybit);
768 	__set_bit(ke->keycode, dev->keybit);
769 
770 	for (i = 0; i < dev->keycodemax; i++) {
771 		if (input_fetch_keycode(dev, i) == *old_keycode) {
772 			__set_bit(*old_keycode, dev->keybit);
773 			break; /* Setting the bit twice is useless, so break */
774 		}
775 	}
776 
777 	return 0;
778 }
779 
780 /**
781  * input_get_keycode - retrieve keycode currently mapped to a given scancode
782  * @dev: input device which keymap is being queried
783  * @ke: keymap entry
784  *
785  * This function should be called by anyone interested in retrieving current
786  * keymap. Presently evdev handlers use it.
787  */
788 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
789 {
790 	unsigned long flags;
791 	int retval;
792 
793 	spin_lock_irqsave(&dev->event_lock, flags);
794 
795 	if (dev->getkeycode) {
796 		/*
797 		 * Support for legacy drivers, that don't implement the new
798 		 * ioctls
799 		 */
800 		u32 scancode = ke->index;
801 
802 		memcpy(ke->scancode, &scancode, sizeof(scancode));
803 		ke->len = sizeof(scancode);
804 		retval = dev->getkeycode(dev, scancode, &ke->keycode);
805 	} else {
806 		retval = dev->getkeycode_new(dev, ke);
807 	}
808 
809 	spin_unlock_irqrestore(&dev->event_lock, flags);
810 	return retval;
811 }
812 EXPORT_SYMBOL(input_get_keycode);
813 
814 /**
815  * input_set_keycode - attribute a keycode to a given scancode
816  * @dev: input device which keymap is being updated
817  * @ke: new keymap entry
818  *
819  * This function should be called by anyone needing to update current
820  * keymap. Presently keyboard and evdev handlers use it.
821  */
822 int input_set_keycode(struct input_dev *dev,
823 		      const struct input_keymap_entry *ke)
824 {
825 	unsigned long flags;
826 	unsigned int old_keycode;
827 	int retval;
828 
829 	if (ke->keycode > KEY_MAX)
830 		return -EINVAL;
831 
832 	spin_lock_irqsave(&dev->event_lock, flags);
833 
834 	if (dev->setkeycode) {
835 		/*
836 		 * Support for legacy drivers, that don't implement the new
837 		 * ioctls
838 		 */
839 		unsigned int scancode;
840 
841 		retval = input_scancode_to_scalar(ke, &scancode);
842 		if (retval)
843 			goto out;
844 
845 		/*
846 		 * We need to know the old scancode, in order to generate a
847 		 * keyup effect, if the set operation happens successfully
848 		 */
849 		if (!dev->getkeycode) {
850 			retval = -EINVAL;
851 			goto out;
852 		}
853 
854 		retval = dev->getkeycode(dev, scancode, &old_keycode);
855 		if (retval)
856 			goto out;
857 
858 		retval = dev->setkeycode(dev, scancode, ke->keycode);
859 	} else {
860 		retval = dev->setkeycode_new(dev, ke, &old_keycode);
861 	}
862 
863 	if (retval)
864 		goto out;
865 
866 	/* Make sure KEY_RESERVED did not get enabled. */
867 	__clear_bit(KEY_RESERVED, dev->keybit);
868 
869 	/*
870 	 * Simulate keyup event if keycode is not present
871 	 * in the keymap anymore
872 	 */
873 	if (test_bit(EV_KEY, dev->evbit) &&
874 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
875 	    __test_and_clear_bit(old_keycode, dev->key)) {
876 
877 		input_pass_event(dev, EV_KEY, old_keycode, 0);
878 		if (dev->sync)
879 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
880 	}
881 
882  out:
883 	spin_unlock_irqrestore(&dev->event_lock, flags);
884 
885 	return retval;
886 }
887 EXPORT_SYMBOL(input_set_keycode);
888 
889 #define MATCH_BIT(bit, max) \
890 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
891 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
892 				break; \
893 		if (i != BITS_TO_LONGS(max)) \
894 			continue;
895 
896 static const struct input_device_id *input_match_device(struct input_handler *handler,
897 							struct input_dev *dev)
898 {
899 	const struct input_device_id *id;
900 	int i;
901 
902 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
903 
904 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
905 			if (id->bustype != dev->id.bustype)
906 				continue;
907 
908 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
909 			if (id->vendor != dev->id.vendor)
910 				continue;
911 
912 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
913 			if (id->product != dev->id.product)
914 				continue;
915 
916 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
917 			if (id->version != dev->id.version)
918 				continue;
919 
920 		MATCH_BIT(evbit,  EV_MAX);
921 		MATCH_BIT(keybit, KEY_MAX);
922 		MATCH_BIT(relbit, REL_MAX);
923 		MATCH_BIT(absbit, ABS_MAX);
924 		MATCH_BIT(mscbit, MSC_MAX);
925 		MATCH_BIT(ledbit, LED_MAX);
926 		MATCH_BIT(sndbit, SND_MAX);
927 		MATCH_BIT(ffbit,  FF_MAX);
928 		MATCH_BIT(swbit,  SW_MAX);
929 
930 		if (!handler->match || handler->match(handler, dev))
931 			return id;
932 	}
933 
934 	return NULL;
935 }
936 
937 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
938 {
939 	const struct input_device_id *id;
940 	int error;
941 
942 	id = input_match_device(handler, dev);
943 	if (!id)
944 		return -ENODEV;
945 
946 	error = handler->connect(handler, dev, id);
947 	if (error && error != -ENODEV)
948 		pr_err("failed to attach handler %s to device %s, error: %d\n",
949 		       handler->name, kobject_name(&dev->dev.kobj), error);
950 
951 	return error;
952 }
953 
954 #ifdef CONFIG_COMPAT
955 
956 static int input_bits_to_string(char *buf, int buf_size,
957 				unsigned long bits, bool skip_empty)
958 {
959 	int len = 0;
960 
961 	if (INPUT_COMPAT_TEST) {
962 		u32 dword = bits >> 32;
963 		if (dword || !skip_empty)
964 			len += snprintf(buf, buf_size, "%x ", dword);
965 
966 		dword = bits & 0xffffffffUL;
967 		if (dword || !skip_empty || len)
968 			len += snprintf(buf + len, max(buf_size - len, 0),
969 					"%x", dword);
970 	} else {
971 		if (bits || !skip_empty)
972 			len += snprintf(buf, buf_size, "%lx", bits);
973 	}
974 
975 	return len;
976 }
977 
978 #else /* !CONFIG_COMPAT */
979 
980 static int input_bits_to_string(char *buf, int buf_size,
981 				unsigned long bits, bool skip_empty)
982 {
983 	return bits || !skip_empty ?
984 		snprintf(buf, buf_size, "%lx", bits) : 0;
985 }
986 
987 #endif
988 
989 #ifdef CONFIG_PROC_FS
990 
991 static struct proc_dir_entry *proc_bus_input_dir;
992 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
993 static int input_devices_state;
994 
995 static inline void input_wakeup_procfs_readers(void)
996 {
997 	input_devices_state++;
998 	wake_up(&input_devices_poll_wait);
999 }
1000 
1001 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1002 {
1003 	poll_wait(file, &input_devices_poll_wait, wait);
1004 	if (file->f_version != input_devices_state) {
1005 		file->f_version = input_devices_state;
1006 		return POLLIN | POLLRDNORM;
1007 	}
1008 
1009 	return 0;
1010 }
1011 
1012 union input_seq_state {
1013 	struct {
1014 		unsigned short pos;
1015 		bool mutex_acquired;
1016 	};
1017 	void *p;
1018 };
1019 
1020 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1021 {
1022 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1023 	int error;
1024 
1025 	/* We need to fit into seq->private pointer */
1026 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1027 
1028 	error = mutex_lock_interruptible(&input_mutex);
1029 	if (error) {
1030 		state->mutex_acquired = false;
1031 		return ERR_PTR(error);
1032 	}
1033 
1034 	state->mutex_acquired = true;
1035 
1036 	return seq_list_start(&input_dev_list, *pos);
1037 }
1038 
1039 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1040 {
1041 	return seq_list_next(v, &input_dev_list, pos);
1042 }
1043 
1044 static void input_seq_stop(struct seq_file *seq, void *v)
1045 {
1046 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1047 
1048 	if (state->mutex_acquired)
1049 		mutex_unlock(&input_mutex);
1050 }
1051 
1052 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1053 				   unsigned long *bitmap, int max)
1054 {
1055 	int i;
1056 	bool skip_empty = true;
1057 	char buf[18];
1058 
1059 	seq_printf(seq, "B: %s=", name);
1060 
1061 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1062 		if (input_bits_to_string(buf, sizeof(buf),
1063 					 bitmap[i], skip_empty)) {
1064 			skip_empty = false;
1065 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1066 		}
1067 	}
1068 
1069 	/*
1070 	 * If no output was produced print a single 0.
1071 	 */
1072 	if (skip_empty)
1073 		seq_puts(seq, "0");
1074 
1075 	seq_putc(seq, '\n');
1076 }
1077 
1078 static int input_devices_seq_show(struct seq_file *seq, void *v)
1079 {
1080 	struct input_dev *dev = container_of(v, struct input_dev, node);
1081 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1082 	struct input_handle *handle;
1083 
1084 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1085 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1086 
1087 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1088 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1089 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1090 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1091 	seq_printf(seq, "H: Handlers=");
1092 
1093 	list_for_each_entry(handle, &dev->h_list, d_node)
1094 		seq_printf(seq, "%s ", handle->name);
1095 	seq_putc(seq, '\n');
1096 
1097 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1098 
1099 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1100 	if (test_bit(EV_KEY, dev->evbit))
1101 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1102 	if (test_bit(EV_REL, dev->evbit))
1103 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1104 	if (test_bit(EV_ABS, dev->evbit))
1105 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1106 	if (test_bit(EV_MSC, dev->evbit))
1107 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1108 	if (test_bit(EV_LED, dev->evbit))
1109 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1110 	if (test_bit(EV_SND, dev->evbit))
1111 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1112 	if (test_bit(EV_FF, dev->evbit))
1113 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1114 	if (test_bit(EV_SW, dev->evbit))
1115 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1116 
1117 	seq_putc(seq, '\n');
1118 
1119 	kfree(path);
1120 	return 0;
1121 }
1122 
1123 static const struct seq_operations input_devices_seq_ops = {
1124 	.start	= input_devices_seq_start,
1125 	.next	= input_devices_seq_next,
1126 	.stop	= input_seq_stop,
1127 	.show	= input_devices_seq_show,
1128 };
1129 
1130 static int input_proc_devices_open(struct inode *inode, struct file *file)
1131 {
1132 	return seq_open(file, &input_devices_seq_ops);
1133 }
1134 
1135 static const struct file_operations input_devices_fileops = {
1136 	.owner		= THIS_MODULE,
1137 	.open		= input_proc_devices_open,
1138 	.poll		= input_proc_devices_poll,
1139 	.read		= seq_read,
1140 	.llseek		= seq_lseek,
1141 	.release	= seq_release,
1142 };
1143 
1144 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1145 {
1146 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1147 	int error;
1148 
1149 	/* We need to fit into seq->private pointer */
1150 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1151 
1152 	error = mutex_lock_interruptible(&input_mutex);
1153 	if (error) {
1154 		state->mutex_acquired = false;
1155 		return ERR_PTR(error);
1156 	}
1157 
1158 	state->mutex_acquired = true;
1159 	state->pos = *pos;
1160 
1161 	return seq_list_start(&input_handler_list, *pos);
1162 }
1163 
1164 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1165 {
1166 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1167 
1168 	state->pos = *pos + 1;
1169 	return seq_list_next(v, &input_handler_list, pos);
1170 }
1171 
1172 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1173 {
1174 	struct input_handler *handler = container_of(v, struct input_handler, node);
1175 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1176 
1177 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1178 	if (handler->filter)
1179 		seq_puts(seq, " (filter)");
1180 	if (handler->fops)
1181 		seq_printf(seq, " Minor=%d", handler->minor);
1182 	seq_putc(seq, '\n');
1183 
1184 	return 0;
1185 }
1186 
1187 static const struct seq_operations input_handlers_seq_ops = {
1188 	.start	= input_handlers_seq_start,
1189 	.next	= input_handlers_seq_next,
1190 	.stop	= input_seq_stop,
1191 	.show	= input_handlers_seq_show,
1192 };
1193 
1194 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1195 {
1196 	return seq_open(file, &input_handlers_seq_ops);
1197 }
1198 
1199 static const struct file_operations input_handlers_fileops = {
1200 	.owner		= THIS_MODULE,
1201 	.open		= input_proc_handlers_open,
1202 	.read		= seq_read,
1203 	.llseek		= seq_lseek,
1204 	.release	= seq_release,
1205 };
1206 
1207 static int __init input_proc_init(void)
1208 {
1209 	struct proc_dir_entry *entry;
1210 
1211 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1212 	if (!proc_bus_input_dir)
1213 		return -ENOMEM;
1214 
1215 	entry = proc_create("devices", 0, proc_bus_input_dir,
1216 			    &input_devices_fileops);
1217 	if (!entry)
1218 		goto fail1;
1219 
1220 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1221 			    &input_handlers_fileops);
1222 	if (!entry)
1223 		goto fail2;
1224 
1225 	return 0;
1226 
1227  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1228  fail1: remove_proc_entry("bus/input", NULL);
1229 	return -ENOMEM;
1230 }
1231 
1232 static void input_proc_exit(void)
1233 {
1234 	remove_proc_entry("devices", proc_bus_input_dir);
1235 	remove_proc_entry("handlers", proc_bus_input_dir);
1236 	remove_proc_entry("bus/input", NULL);
1237 }
1238 
1239 #else /* !CONFIG_PROC_FS */
1240 static inline void input_wakeup_procfs_readers(void) { }
1241 static inline int input_proc_init(void) { return 0; }
1242 static inline void input_proc_exit(void) { }
1243 #endif
1244 
1245 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1246 static ssize_t input_dev_show_##name(struct device *dev,		\
1247 				     struct device_attribute *attr,	\
1248 				     char *buf)				\
1249 {									\
1250 	struct input_dev *input_dev = to_input_dev(dev);		\
1251 									\
1252 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1253 			 input_dev->name ? input_dev->name : "");	\
1254 }									\
1255 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1256 
1257 INPUT_DEV_STRING_ATTR_SHOW(name);
1258 INPUT_DEV_STRING_ATTR_SHOW(phys);
1259 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1260 
1261 static int input_print_modalias_bits(char *buf, int size,
1262 				     char name, unsigned long *bm,
1263 				     unsigned int min_bit, unsigned int max_bit)
1264 {
1265 	int len = 0, i;
1266 
1267 	len += snprintf(buf, max(size, 0), "%c", name);
1268 	for (i = min_bit; i < max_bit; i++)
1269 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1270 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1271 	return len;
1272 }
1273 
1274 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1275 				int add_cr)
1276 {
1277 	int len;
1278 
1279 	len = snprintf(buf, max(size, 0),
1280 		       "input:b%04Xv%04Xp%04Xe%04X-",
1281 		       id->id.bustype, id->id.vendor,
1282 		       id->id.product, id->id.version);
1283 
1284 	len += input_print_modalias_bits(buf + len, size - len,
1285 				'e', id->evbit, 0, EV_MAX);
1286 	len += input_print_modalias_bits(buf + len, size - len,
1287 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1288 	len += input_print_modalias_bits(buf + len, size - len,
1289 				'r', id->relbit, 0, REL_MAX);
1290 	len += input_print_modalias_bits(buf + len, size - len,
1291 				'a', id->absbit, 0, ABS_MAX);
1292 	len += input_print_modalias_bits(buf + len, size - len,
1293 				'm', id->mscbit, 0, MSC_MAX);
1294 	len += input_print_modalias_bits(buf + len, size - len,
1295 				'l', id->ledbit, 0, LED_MAX);
1296 	len += input_print_modalias_bits(buf + len, size - len,
1297 				's', id->sndbit, 0, SND_MAX);
1298 	len += input_print_modalias_bits(buf + len, size - len,
1299 				'f', id->ffbit, 0, FF_MAX);
1300 	len += input_print_modalias_bits(buf + len, size - len,
1301 				'w', id->swbit, 0, SW_MAX);
1302 
1303 	if (add_cr)
1304 		len += snprintf(buf + len, max(size - len, 0), "\n");
1305 
1306 	return len;
1307 }
1308 
1309 static ssize_t input_dev_show_modalias(struct device *dev,
1310 				       struct device_attribute *attr,
1311 				       char *buf)
1312 {
1313 	struct input_dev *id = to_input_dev(dev);
1314 	ssize_t len;
1315 
1316 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1317 
1318 	return min_t(int, len, PAGE_SIZE);
1319 }
1320 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1321 
1322 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1323 			      int max, int add_cr);
1324 
1325 static ssize_t input_dev_show_properties(struct device *dev,
1326 					 struct device_attribute *attr,
1327 					 char *buf)
1328 {
1329 	struct input_dev *input_dev = to_input_dev(dev);
1330 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1331 				     INPUT_PROP_MAX, true);
1332 	return min_t(int, len, PAGE_SIZE);
1333 }
1334 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1335 
1336 static struct attribute *input_dev_attrs[] = {
1337 	&dev_attr_name.attr,
1338 	&dev_attr_phys.attr,
1339 	&dev_attr_uniq.attr,
1340 	&dev_attr_modalias.attr,
1341 	&dev_attr_properties.attr,
1342 	NULL
1343 };
1344 
1345 static struct attribute_group input_dev_attr_group = {
1346 	.attrs	= input_dev_attrs,
1347 };
1348 
1349 #define INPUT_DEV_ID_ATTR(name)						\
1350 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1351 					struct device_attribute *attr,	\
1352 					char *buf)			\
1353 {									\
1354 	struct input_dev *input_dev = to_input_dev(dev);		\
1355 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1356 }									\
1357 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1358 
1359 INPUT_DEV_ID_ATTR(bustype);
1360 INPUT_DEV_ID_ATTR(vendor);
1361 INPUT_DEV_ID_ATTR(product);
1362 INPUT_DEV_ID_ATTR(version);
1363 
1364 static struct attribute *input_dev_id_attrs[] = {
1365 	&dev_attr_bustype.attr,
1366 	&dev_attr_vendor.attr,
1367 	&dev_attr_product.attr,
1368 	&dev_attr_version.attr,
1369 	NULL
1370 };
1371 
1372 static struct attribute_group input_dev_id_attr_group = {
1373 	.name	= "id",
1374 	.attrs	= input_dev_id_attrs,
1375 };
1376 
1377 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1378 			      int max, int add_cr)
1379 {
1380 	int i;
1381 	int len = 0;
1382 	bool skip_empty = true;
1383 
1384 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1385 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1386 					    bitmap[i], skip_empty);
1387 		if (len) {
1388 			skip_empty = false;
1389 			if (i > 0)
1390 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1391 		}
1392 	}
1393 
1394 	/*
1395 	 * If no output was produced print a single 0.
1396 	 */
1397 	if (len == 0)
1398 		len = snprintf(buf, buf_size, "%d", 0);
1399 
1400 	if (add_cr)
1401 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1402 
1403 	return len;
1404 }
1405 
1406 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1407 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1408 				       struct device_attribute *attr,	\
1409 				       char *buf)			\
1410 {									\
1411 	struct input_dev *input_dev = to_input_dev(dev);		\
1412 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1413 				     input_dev->bm##bit, ev##_MAX,	\
1414 				     true);				\
1415 	return min_t(int, len, PAGE_SIZE);				\
1416 }									\
1417 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1418 
1419 INPUT_DEV_CAP_ATTR(EV, ev);
1420 INPUT_DEV_CAP_ATTR(KEY, key);
1421 INPUT_DEV_CAP_ATTR(REL, rel);
1422 INPUT_DEV_CAP_ATTR(ABS, abs);
1423 INPUT_DEV_CAP_ATTR(MSC, msc);
1424 INPUT_DEV_CAP_ATTR(LED, led);
1425 INPUT_DEV_CAP_ATTR(SND, snd);
1426 INPUT_DEV_CAP_ATTR(FF, ff);
1427 INPUT_DEV_CAP_ATTR(SW, sw);
1428 
1429 static struct attribute *input_dev_caps_attrs[] = {
1430 	&dev_attr_ev.attr,
1431 	&dev_attr_key.attr,
1432 	&dev_attr_rel.attr,
1433 	&dev_attr_abs.attr,
1434 	&dev_attr_msc.attr,
1435 	&dev_attr_led.attr,
1436 	&dev_attr_snd.attr,
1437 	&dev_attr_ff.attr,
1438 	&dev_attr_sw.attr,
1439 	NULL
1440 };
1441 
1442 static struct attribute_group input_dev_caps_attr_group = {
1443 	.name	= "capabilities",
1444 	.attrs	= input_dev_caps_attrs,
1445 };
1446 
1447 static const struct attribute_group *input_dev_attr_groups[] = {
1448 	&input_dev_attr_group,
1449 	&input_dev_id_attr_group,
1450 	&input_dev_caps_attr_group,
1451 	NULL
1452 };
1453 
1454 static void input_dev_release(struct device *device)
1455 {
1456 	struct input_dev *dev = to_input_dev(device);
1457 
1458 	input_ff_destroy(dev);
1459 	input_mt_destroy_slots(dev);
1460 	kfree(dev->absinfo);
1461 	kfree(dev);
1462 
1463 	module_put(THIS_MODULE);
1464 }
1465 
1466 /*
1467  * Input uevent interface - loading event handlers based on
1468  * device bitfields.
1469  */
1470 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1471 				   const char *name, unsigned long *bitmap, int max)
1472 {
1473 	int len;
1474 
1475 	if (add_uevent_var(env, "%s", name))
1476 		return -ENOMEM;
1477 
1478 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1479 				 sizeof(env->buf) - env->buflen,
1480 				 bitmap, max, false);
1481 	if (len >= (sizeof(env->buf) - env->buflen))
1482 		return -ENOMEM;
1483 
1484 	env->buflen += len;
1485 	return 0;
1486 }
1487 
1488 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1489 					 struct input_dev *dev)
1490 {
1491 	int len;
1492 
1493 	if (add_uevent_var(env, "MODALIAS="))
1494 		return -ENOMEM;
1495 
1496 	len = input_print_modalias(&env->buf[env->buflen - 1],
1497 				   sizeof(env->buf) - env->buflen,
1498 				   dev, 0);
1499 	if (len >= (sizeof(env->buf) - env->buflen))
1500 		return -ENOMEM;
1501 
1502 	env->buflen += len;
1503 	return 0;
1504 }
1505 
1506 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1507 	do {								\
1508 		int err = add_uevent_var(env, fmt, val);		\
1509 		if (err)						\
1510 			return err;					\
1511 	} while (0)
1512 
1513 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1514 	do {								\
1515 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1516 		if (err)						\
1517 			return err;					\
1518 	} while (0)
1519 
1520 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1521 	do {								\
1522 		int err = input_add_uevent_modalias_var(env, dev);	\
1523 		if (err)						\
1524 			return err;					\
1525 	} while (0)
1526 
1527 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1528 {
1529 	struct input_dev *dev = to_input_dev(device);
1530 
1531 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1532 				dev->id.bustype, dev->id.vendor,
1533 				dev->id.product, dev->id.version);
1534 	if (dev->name)
1535 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1536 	if (dev->phys)
1537 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1538 	if (dev->uniq)
1539 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1540 
1541 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1542 
1543 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1544 	if (test_bit(EV_KEY, dev->evbit))
1545 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1546 	if (test_bit(EV_REL, dev->evbit))
1547 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1548 	if (test_bit(EV_ABS, dev->evbit))
1549 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1550 	if (test_bit(EV_MSC, dev->evbit))
1551 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1552 	if (test_bit(EV_LED, dev->evbit))
1553 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1554 	if (test_bit(EV_SND, dev->evbit))
1555 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1556 	if (test_bit(EV_FF, dev->evbit))
1557 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1558 	if (test_bit(EV_SW, dev->evbit))
1559 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1560 
1561 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1562 
1563 	return 0;
1564 }
1565 
1566 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1567 	do {								\
1568 		int i;							\
1569 		bool active;						\
1570 									\
1571 		if (!test_bit(EV_##type, dev->evbit))			\
1572 			break;						\
1573 									\
1574 		for (i = 0; i < type##_MAX; i++) {			\
1575 			if (!test_bit(i, dev->bits##bit))		\
1576 				continue;				\
1577 									\
1578 			active = test_bit(i, dev->bits);		\
1579 			if (!active && !on)				\
1580 				continue;				\
1581 									\
1582 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1583 		}							\
1584 	} while (0)
1585 
1586 static void input_dev_toggle(struct input_dev *dev, bool activate)
1587 {
1588 	if (!dev->event)
1589 		return;
1590 
1591 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1592 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1593 
1594 	if (activate && test_bit(EV_REP, dev->evbit)) {
1595 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1596 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1597 	}
1598 }
1599 
1600 /**
1601  * input_reset_device() - reset/restore the state of input device
1602  * @dev: input device whose state needs to be reset
1603  *
1604  * This function tries to reset the state of an opened input device and
1605  * bring internal state and state if the hardware in sync with each other.
1606  * We mark all keys as released, restore LED state, repeat rate, etc.
1607  */
1608 void input_reset_device(struct input_dev *dev)
1609 {
1610 	mutex_lock(&dev->mutex);
1611 
1612 	if (dev->users) {
1613 		input_dev_toggle(dev, true);
1614 
1615 		/*
1616 		 * Keys that have been pressed at suspend time are unlikely
1617 		 * to be still pressed when we resume.
1618 		 */
1619 		spin_lock_irq(&dev->event_lock);
1620 		input_dev_release_keys(dev);
1621 		spin_unlock_irq(&dev->event_lock);
1622 	}
1623 
1624 	mutex_unlock(&dev->mutex);
1625 }
1626 EXPORT_SYMBOL(input_reset_device);
1627 
1628 #ifdef CONFIG_PM
1629 static int input_dev_suspend(struct device *dev)
1630 {
1631 	struct input_dev *input_dev = to_input_dev(dev);
1632 
1633 	mutex_lock(&input_dev->mutex);
1634 
1635 	if (input_dev->users)
1636 		input_dev_toggle(input_dev, false);
1637 
1638 	mutex_unlock(&input_dev->mutex);
1639 
1640 	return 0;
1641 }
1642 
1643 static int input_dev_resume(struct device *dev)
1644 {
1645 	struct input_dev *input_dev = to_input_dev(dev);
1646 
1647 	input_reset_device(input_dev);
1648 
1649 	return 0;
1650 }
1651 
1652 static const struct dev_pm_ops input_dev_pm_ops = {
1653 	.suspend	= input_dev_suspend,
1654 	.resume		= input_dev_resume,
1655 	.poweroff	= input_dev_suspend,
1656 	.restore	= input_dev_resume,
1657 };
1658 #endif /* CONFIG_PM */
1659 
1660 static struct device_type input_dev_type = {
1661 	.groups		= input_dev_attr_groups,
1662 	.release	= input_dev_release,
1663 	.uevent		= input_dev_uevent,
1664 #ifdef CONFIG_PM
1665 	.pm		= &input_dev_pm_ops,
1666 #endif
1667 };
1668 
1669 static char *input_devnode(struct device *dev, mode_t *mode)
1670 {
1671 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1672 }
1673 
1674 struct class input_class = {
1675 	.name		= "input",
1676 	.devnode	= input_devnode,
1677 };
1678 EXPORT_SYMBOL_GPL(input_class);
1679 
1680 /**
1681  * input_allocate_device - allocate memory for new input device
1682  *
1683  * Returns prepared struct input_dev or NULL.
1684  *
1685  * NOTE: Use input_free_device() to free devices that have not been
1686  * registered; input_unregister_device() should be used for already
1687  * registered devices.
1688  */
1689 struct input_dev *input_allocate_device(void)
1690 {
1691 	struct input_dev *dev;
1692 
1693 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1694 	if (dev) {
1695 		dev->dev.type = &input_dev_type;
1696 		dev->dev.class = &input_class;
1697 		device_initialize(&dev->dev);
1698 		mutex_init(&dev->mutex);
1699 		spin_lock_init(&dev->event_lock);
1700 		INIT_LIST_HEAD(&dev->h_list);
1701 		INIT_LIST_HEAD(&dev->node);
1702 
1703 		__module_get(THIS_MODULE);
1704 	}
1705 
1706 	return dev;
1707 }
1708 EXPORT_SYMBOL(input_allocate_device);
1709 
1710 /**
1711  * input_free_device - free memory occupied by input_dev structure
1712  * @dev: input device to free
1713  *
1714  * This function should only be used if input_register_device()
1715  * was not called yet or if it failed. Once device was registered
1716  * use input_unregister_device() and memory will be freed once last
1717  * reference to the device is dropped.
1718  *
1719  * Device should be allocated by input_allocate_device().
1720  *
1721  * NOTE: If there are references to the input device then memory
1722  * will not be freed until last reference is dropped.
1723  */
1724 void input_free_device(struct input_dev *dev)
1725 {
1726 	if (dev)
1727 		input_put_device(dev);
1728 }
1729 EXPORT_SYMBOL(input_free_device);
1730 
1731 /**
1732  * input_set_capability - mark device as capable of a certain event
1733  * @dev: device that is capable of emitting or accepting event
1734  * @type: type of the event (EV_KEY, EV_REL, etc...)
1735  * @code: event code
1736  *
1737  * In addition to setting up corresponding bit in appropriate capability
1738  * bitmap the function also adjusts dev->evbit.
1739  */
1740 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1741 {
1742 	switch (type) {
1743 	case EV_KEY:
1744 		__set_bit(code, dev->keybit);
1745 		break;
1746 
1747 	case EV_REL:
1748 		__set_bit(code, dev->relbit);
1749 		break;
1750 
1751 	case EV_ABS:
1752 		__set_bit(code, dev->absbit);
1753 		break;
1754 
1755 	case EV_MSC:
1756 		__set_bit(code, dev->mscbit);
1757 		break;
1758 
1759 	case EV_SW:
1760 		__set_bit(code, dev->swbit);
1761 		break;
1762 
1763 	case EV_LED:
1764 		__set_bit(code, dev->ledbit);
1765 		break;
1766 
1767 	case EV_SND:
1768 		__set_bit(code, dev->sndbit);
1769 		break;
1770 
1771 	case EV_FF:
1772 		__set_bit(code, dev->ffbit);
1773 		break;
1774 
1775 	case EV_PWR:
1776 		/* do nothing */
1777 		break;
1778 
1779 	default:
1780 		pr_err("input_set_capability: unknown type %u (code %u)\n",
1781 		       type, code);
1782 		dump_stack();
1783 		return;
1784 	}
1785 
1786 	__set_bit(type, dev->evbit);
1787 }
1788 EXPORT_SYMBOL(input_set_capability);
1789 
1790 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1791 	do {								\
1792 		if (!test_bit(EV_##type, dev->evbit))			\
1793 			memset(dev->bits##bit, 0,			\
1794 				sizeof(dev->bits##bit));		\
1795 	} while (0)
1796 
1797 static void input_cleanse_bitmasks(struct input_dev *dev)
1798 {
1799 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
1800 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
1801 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1802 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1803 	INPUT_CLEANSE_BITMASK(dev, LED, led);
1804 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
1805 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
1806 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
1807 }
1808 
1809 /**
1810  * input_register_device - register device with input core
1811  * @dev: device to be registered
1812  *
1813  * This function registers device with input core. The device must be
1814  * allocated with input_allocate_device() and all it's capabilities
1815  * set up before registering.
1816  * If function fails the device must be freed with input_free_device().
1817  * Once device has been successfully registered it can be unregistered
1818  * with input_unregister_device(); input_free_device() should not be
1819  * called in this case.
1820  */
1821 int input_register_device(struct input_dev *dev)
1822 {
1823 	static atomic_t input_no = ATOMIC_INIT(0);
1824 	struct input_handler *handler;
1825 	const char *path;
1826 	int error;
1827 
1828 	/* Every input device generates EV_SYN/SYN_REPORT events. */
1829 	__set_bit(EV_SYN, dev->evbit);
1830 
1831 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
1832 	__clear_bit(KEY_RESERVED, dev->keybit);
1833 
1834 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1835 	input_cleanse_bitmasks(dev);
1836 
1837 	/*
1838 	 * If delay and period are pre-set by the driver, then autorepeating
1839 	 * is handled by the driver itself and we don't do it in input.c.
1840 	 */
1841 	init_timer(&dev->timer);
1842 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1843 		dev->timer.data = (long) dev;
1844 		dev->timer.function = input_repeat_key;
1845 		dev->rep[REP_DELAY] = 250;
1846 		dev->rep[REP_PERIOD] = 33;
1847 	}
1848 
1849 	if (!dev->getkeycode && !dev->getkeycode_new)
1850 		dev->getkeycode_new = input_default_getkeycode;
1851 
1852 	if (!dev->setkeycode && !dev->setkeycode_new)
1853 		dev->setkeycode_new = input_default_setkeycode;
1854 
1855 	dev_set_name(&dev->dev, "input%ld",
1856 		     (unsigned long) atomic_inc_return(&input_no) - 1);
1857 
1858 	error = device_add(&dev->dev);
1859 	if (error)
1860 		return error;
1861 
1862 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1863 	pr_info("%s as %s\n",
1864 		dev->name ? dev->name : "Unspecified device",
1865 		path ? path : "N/A");
1866 	kfree(path);
1867 
1868 	error = mutex_lock_interruptible(&input_mutex);
1869 	if (error) {
1870 		device_del(&dev->dev);
1871 		return error;
1872 	}
1873 
1874 	list_add_tail(&dev->node, &input_dev_list);
1875 
1876 	list_for_each_entry(handler, &input_handler_list, node)
1877 		input_attach_handler(dev, handler);
1878 
1879 	input_wakeup_procfs_readers();
1880 
1881 	mutex_unlock(&input_mutex);
1882 
1883 	return 0;
1884 }
1885 EXPORT_SYMBOL(input_register_device);
1886 
1887 /**
1888  * input_unregister_device - unregister previously registered device
1889  * @dev: device to be unregistered
1890  *
1891  * This function unregisters an input device. Once device is unregistered
1892  * the caller should not try to access it as it may get freed at any moment.
1893  */
1894 void input_unregister_device(struct input_dev *dev)
1895 {
1896 	struct input_handle *handle, *next;
1897 
1898 	input_disconnect_device(dev);
1899 
1900 	mutex_lock(&input_mutex);
1901 
1902 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1903 		handle->handler->disconnect(handle);
1904 	WARN_ON(!list_empty(&dev->h_list));
1905 
1906 	del_timer_sync(&dev->timer);
1907 	list_del_init(&dev->node);
1908 
1909 	input_wakeup_procfs_readers();
1910 
1911 	mutex_unlock(&input_mutex);
1912 
1913 	device_unregister(&dev->dev);
1914 }
1915 EXPORT_SYMBOL(input_unregister_device);
1916 
1917 /**
1918  * input_register_handler - register a new input handler
1919  * @handler: handler to be registered
1920  *
1921  * This function registers a new input handler (interface) for input
1922  * devices in the system and attaches it to all input devices that
1923  * are compatible with the handler.
1924  */
1925 int input_register_handler(struct input_handler *handler)
1926 {
1927 	struct input_dev *dev;
1928 	int retval;
1929 
1930 	retval = mutex_lock_interruptible(&input_mutex);
1931 	if (retval)
1932 		return retval;
1933 
1934 	INIT_LIST_HEAD(&handler->h_list);
1935 
1936 	if (handler->fops != NULL) {
1937 		if (input_table[handler->minor >> 5]) {
1938 			retval = -EBUSY;
1939 			goto out;
1940 		}
1941 		input_table[handler->minor >> 5] = handler;
1942 	}
1943 
1944 	list_add_tail(&handler->node, &input_handler_list);
1945 
1946 	list_for_each_entry(dev, &input_dev_list, node)
1947 		input_attach_handler(dev, handler);
1948 
1949 	input_wakeup_procfs_readers();
1950 
1951  out:
1952 	mutex_unlock(&input_mutex);
1953 	return retval;
1954 }
1955 EXPORT_SYMBOL(input_register_handler);
1956 
1957 /**
1958  * input_unregister_handler - unregisters an input handler
1959  * @handler: handler to be unregistered
1960  *
1961  * This function disconnects a handler from its input devices and
1962  * removes it from lists of known handlers.
1963  */
1964 void input_unregister_handler(struct input_handler *handler)
1965 {
1966 	struct input_handle *handle, *next;
1967 
1968 	mutex_lock(&input_mutex);
1969 
1970 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1971 		handler->disconnect(handle);
1972 	WARN_ON(!list_empty(&handler->h_list));
1973 
1974 	list_del_init(&handler->node);
1975 
1976 	if (handler->fops != NULL)
1977 		input_table[handler->minor >> 5] = NULL;
1978 
1979 	input_wakeup_procfs_readers();
1980 
1981 	mutex_unlock(&input_mutex);
1982 }
1983 EXPORT_SYMBOL(input_unregister_handler);
1984 
1985 /**
1986  * input_handler_for_each_handle - handle iterator
1987  * @handler: input handler to iterate
1988  * @data: data for the callback
1989  * @fn: function to be called for each handle
1990  *
1991  * Iterate over @bus's list of devices, and call @fn for each, passing
1992  * it @data and stop when @fn returns a non-zero value. The function is
1993  * using RCU to traverse the list and therefore may be usind in atonic
1994  * contexts. The @fn callback is invoked from RCU critical section and
1995  * thus must not sleep.
1996  */
1997 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1998 				  int (*fn)(struct input_handle *, void *))
1999 {
2000 	struct input_handle *handle;
2001 	int retval = 0;
2002 
2003 	rcu_read_lock();
2004 
2005 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2006 		retval = fn(handle, data);
2007 		if (retval)
2008 			break;
2009 	}
2010 
2011 	rcu_read_unlock();
2012 
2013 	return retval;
2014 }
2015 EXPORT_SYMBOL(input_handler_for_each_handle);
2016 
2017 /**
2018  * input_register_handle - register a new input handle
2019  * @handle: handle to register
2020  *
2021  * This function puts a new input handle onto device's
2022  * and handler's lists so that events can flow through
2023  * it once it is opened using input_open_device().
2024  *
2025  * This function is supposed to be called from handler's
2026  * connect() method.
2027  */
2028 int input_register_handle(struct input_handle *handle)
2029 {
2030 	struct input_handler *handler = handle->handler;
2031 	struct input_dev *dev = handle->dev;
2032 	int error;
2033 
2034 	/*
2035 	 * We take dev->mutex here to prevent race with
2036 	 * input_release_device().
2037 	 */
2038 	error = mutex_lock_interruptible(&dev->mutex);
2039 	if (error)
2040 		return error;
2041 
2042 	/*
2043 	 * Filters go to the head of the list, normal handlers
2044 	 * to the tail.
2045 	 */
2046 	if (handler->filter)
2047 		list_add_rcu(&handle->d_node, &dev->h_list);
2048 	else
2049 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2050 
2051 	mutex_unlock(&dev->mutex);
2052 
2053 	/*
2054 	 * Since we are supposed to be called from ->connect()
2055 	 * which is mutually exclusive with ->disconnect()
2056 	 * we can't be racing with input_unregister_handle()
2057 	 * and so separate lock is not needed here.
2058 	 */
2059 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2060 
2061 	if (handler->start)
2062 		handler->start(handle);
2063 
2064 	return 0;
2065 }
2066 EXPORT_SYMBOL(input_register_handle);
2067 
2068 /**
2069  * input_unregister_handle - unregister an input handle
2070  * @handle: handle to unregister
2071  *
2072  * This function removes input handle from device's
2073  * and handler's lists.
2074  *
2075  * This function is supposed to be called from handler's
2076  * disconnect() method.
2077  */
2078 void input_unregister_handle(struct input_handle *handle)
2079 {
2080 	struct input_dev *dev = handle->dev;
2081 
2082 	list_del_rcu(&handle->h_node);
2083 
2084 	/*
2085 	 * Take dev->mutex to prevent race with input_release_device().
2086 	 */
2087 	mutex_lock(&dev->mutex);
2088 	list_del_rcu(&handle->d_node);
2089 	mutex_unlock(&dev->mutex);
2090 
2091 	synchronize_rcu();
2092 }
2093 EXPORT_SYMBOL(input_unregister_handle);
2094 
2095 static int input_open_file(struct inode *inode, struct file *file)
2096 {
2097 	struct input_handler *handler;
2098 	const struct file_operations *old_fops, *new_fops = NULL;
2099 	int err;
2100 
2101 	err = mutex_lock_interruptible(&input_mutex);
2102 	if (err)
2103 		return err;
2104 
2105 	/* No load-on-demand here? */
2106 	handler = input_table[iminor(inode) >> 5];
2107 	if (handler)
2108 		new_fops = fops_get(handler->fops);
2109 
2110 	mutex_unlock(&input_mutex);
2111 
2112 	/*
2113 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
2114 	 * not "no device". Oh, well...
2115 	 */
2116 	if (!new_fops || !new_fops->open) {
2117 		fops_put(new_fops);
2118 		err = -ENODEV;
2119 		goto out;
2120 	}
2121 
2122 	old_fops = file->f_op;
2123 	file->f_op = new_fops;
2124 
2125 	err = new_fops->open(inode, file);
2126 	if (err) {
2127 		fops_put(file->f_op);
2128 		file->f_op = fops_get(old_fops);
2129 	}
2130 	fops_put(old_fops);
2131 out:
2132 	return err;
2133 }
2134 
2135 static const struct file_operations input_fops = {
2136 	.owner = THIS_MODULE,
2137 	.open = input_open_file,
2138 	.llseek = noop_llseek,
2139 };
2140 
2141 static int __init input_init(void)
2142 {
2143 	int err;
2144 
2145 	err = class_register(&input_class);
2146 	if (err) {
2147 		pr_err("unable to register input_dev class\n");
2148 		return err;
2149 	}
2150 
2151 	err = input_proc_init();
2152 	if (err)
2153 		goto fail1;
2154 
2155 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2156 	if (err) {
2157 		pr_err("unable to register char major %d", INPUT_MAJOR);
2158 		goto fail2;
2159 	}
2160 
2161 	return 0;
2162 
2163  fail2:	input_proc_exit();
2164  fail1:	class_unregister(&input_class);
2165 	return err;
2166 }
2167 
2168 static void __exit input_exit(void)
2169 {
2170 	input_proc_exit();
2171 	unregister_chrdev(INPUT_MAJOR, "input");
2172 	class_unregister(&input_class);
2173 }
2174 
2175 subsys_initcall(input_init);
2176 module_exit(input_exit);
2177