1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 14 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/input/mt.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/random.h> 21 #include <linux/major.h> 22 #include <linux/proc_fs.h> 23 #include <linux/sched.h> 24 #include <linux/seq_file.h> 25 #include <linux/poll.h> 26 #include <linux/device.h> 27 #include <linux/mutex.h> 28 #include <linux/rcupdate.h> 29 #include "input-compat.h" 30 31 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 32 MODULE_DESCRIPTION("Input core"); 33 MODULE_LICENSE("GPL"); 34 35 #define INPUT_DEVICES 256 36 37 static LIST_HEAD(input_dev_list); 38 static LIST_HEAD(input_handler_list); 39 40 /* 41 * input_mutex protects access to both input_dev_list and input_handler_list. 42 * This also causes input_[un]register_device and input_[un]register_handler 43 * be mutually exclusive which simplifies locking in drivers implementing 44 * input handlers. 45 */ 46 static DEFINE_MUTEX(input_mutex); 47 48 static struct input_handler *input_table[8]; 49 50 static inline int is_event_supported(unsigned int code, 51 unsigned long *bm, unsigned int max) 52 { 53 return code <= max && test_bit(code, bm); 54 } 55 56 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 57 { 58 if (fuzz) { 59 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 60 return old_val; 61 62 if (value > old_val - fuzz && value < old_val + fuzz) 63 return (old_val * 3 + value) / 4; 64 65 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 66 return (old_val + value) / 2; 67 } 68 69 return value; 70 } 71 72 /* 73 * Pass event first through all filters and then, if event has not been 74 * filtered out, through all open handles. This function is called with 75 * dev->event_lock held and interrupts disabled. 76 */ 77 static void input_pass_event(struct input_dev *dev, 78 unsigned int type, unsigned int code, int value) 79 { 80 struct input_handler *handler; 81 struct input_handle *handle; 82 83 rcu_read_lock(); 84 85 handle = rcu_dereference(dev->grab); 86 if (handle) 87 handle->handler->event(handle, type, code, value); 88 else { 89 bool filtered = false; 90 91 list_for_each_entry_rcu(handle, &dev->h_list, d_node) { 92 if (!handle->open) 93 continue; 94 95 handler = handle->handler; 96 if (!handler->filter) { 97 if (filtered) 98 break; 99 100 handler->event(handle, type, code, value); 101 102 } else if (handler->filter(handle, type, code, value)) 103 filtered = true; 104 } 105 } 106 107 rcu_read_unlock(); 108 } 109 110 /* 111 * Generate software autorepeat event. Note that we take 112 * dev->event_lock here to avoid racing with input_event 113 * which may cause keys get "stuck". 114 */ 115 static void input_repeat_key(unsigned long data) 116 { 117 struct input_dev *dev = (void *) data; 118 unsigned long flags; 119 120 spin_lock_irqsave(&dev->event_lock, flags); 121 122 if (test_bit(dev->repeat_key, dev->key) && 123 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 124 125 input_pass_event(dev, EV_KEY, dev->repeat_key, 2); 126 127 if (dev->sync) { 128 /* 129 * Only send SYN_REPORT if we are not in a middle 130 * of driver parsing a new hardware packet. 131 * Otherwise assume that the driver will send 132 * SYN_REPORT once it's done. 133 */ 134 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 135 } 136 137 if (dev->rep[REP_PERIOD]) 138 mod_timer(&dev->timer, jiffies + 139 msecs_to_jiffies(dev->rep[REP_PERIOD])); 140 } 141 142 spin_unlock_irqrestore(&dev->event_lock, flags); 143 } 144 145 static void input_start_autorepeat(struct input_dev *dev, int code) 146 { 147 if (test_bit(EV_REP, dev->evbit) && 148 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 149 dev->timer.data) { 150 dev->repeat_key = code; 151 mod_timer(&dev->timer, 152 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 153 } 154 } 155 156 static void input_stop_autorepeat(struct input_dev *dev) 157 { 158 del_timer(&dev->timer); 159 } 160 161 #define INPUT_IGNORE_EVENT 0 162 #define INPUT_PASS_TO_HANDLERS 1 163 #define INPUT_PASS_TO_DEVICE 2 164 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 165 166 static int input_handle_abs_event(struct input_dev *dev, 167 unsigned int code, int *pval) 168 { 169 bool is_mt_event; 170 int *pold; 171 172 if (code == ABS_MT_SLOT) { 173 /* 174 * "Stage" the event; we'll flush it later, when we 175 * get actual touch data. 176 */ 177 if (*pval >= 0 && *pval < dev->mtsize) 178 dev->slot = *pval; 179 180 return INPUT_IGNORE_EVENT; 181 } 182 183 is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST; 184 185 if (!is_mt_event) { 186 pold = &dev->absinfo[code].value; 187 } else if (dev->mt) { 188 struct input_mt_slot *mtslot = &dev->mt[dev->slot]; 189 pold = &mtslot->abs[code - ABS_MT_FIRST]; 190 } else { 191 /* 192 * Bypass filtering for multi-touch events when 193 * not employing slots. 194 */ 195 pold = NULL; 196 } 197 198 if (pold) { 199 *pval = input_defuzz_abs_event(*pval, *pold, 200 dev->absinfo[code].fuzz); 201 if (*pold == *pval) 202 return INPUT_IGNORE_EVENT; 203 204 *pold = *pval; 205 } 206 207 /* Flush pending "slot" event */ 208 if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 209 input_abs_set_val(dev, ABS_MT_SLOT, dev->slot); 210 input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot); 211 } 212 213 return INPUT_PASS_TO_HANDLERS; 214 } 215 216 static void input_handle_event(struct input_dev *dev, 217 unsigned int type, unsigned int code, int value) 218 { 219 int disposition = INPUT_IGNORE_EVENT; 220 221 switch (type) { 222 223 case EV_SYN: 224 switch (code) { 225 case SYN_CONFIG: 226 disposition = INPUT_PASS_TO_ALL; 227 break; 228 229 case SYN_REPORT: 230 if (!dev->sync) { 231 dev->sync = true; 232 disposition = INPUT_PASS_TO_HANDLERS; 233 } 234 break; 235 case SYN_MT_REPORT: 236 dev->sync = false; 237 disposition = INPUT_PASS_TO_HANDLERS; 238 break; 239 } 240 break; 241 242 case EV_KEY: 243 if (is_event_supported(code, dev->keybit, KEY_MAX) && 244 !!test_bit(code, dev->key) != value) { 245 246 if (value != 2) { 247 __change_bit(code, dev->key); 248 if (value) 249 input_start_autorepeat(dev, code); 250 else 251 input_stop_autorepeat(dev); 252 } 253 254 disposition = INPUT_PASS_TO_HANDLERS; 255 } 256 break; 257 258 case EV_SW: 259 if (is_event_supported(code, dev->swbit, SW_MAX) && 260 !!test_bit(code, dev->sw) != value) { 261 262 __change_bit(code, dev->sw); 263 disposition = INPUT_PASS_TO_HANDLERS; 264 } 265 break; 266 267 case EV_ABS: 268 if (is_event_supported(code, dev->absbit, ABS_MAX)) 269 disposition = input_handle_abs_event(dev, code, &value); 270 271 break; 272 273 case EV_REL: 274 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 275 disposition = INPUT_PASS_TO_HANDLERS; 276 277 break; 278 279 case EV_MSC: 280 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 281 disposition = INPUT_PASS_TO_ALL; 282 283 break; 284 285 case EV_LED: 286 if (is_event_supported(code, dev->ledbit, LED_MAX) && 287 !!test_bit(code, dev->led) != value) { 288 289 __change_bit(code, dev->led); 290 disposition = INPUT_PASS_TO_ALL; 291 } 292 break; 293 294 case EV_SND: 295 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 296 297 if (!!test_bit(code, dev->snd) != !!value) 298 __change_bit(code, dev->snd); 299 disposition = INPUT_PASS_TO_ALL; 300 } 301 break; 302 303 case EV_REP: 304 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 305 dev->rep[code] = value; 306 disposition = INPUT_PASS_TO_ALL; 307 } 308 break; 309 310 case EV_FF: 311 if (value >= 0) 312 disposition = INPUT_PASS_TO_ALL; 313 break; 314 315 case EV_PWR: 316 disposition = INPUT_PASS_TO_ALL; 317 break; 318 } 319 320 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 321 dev->sync = false; 322 323 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 324 dev->event(dev, type, code, value); 325 326 if (disposition & INPUT_PASS_TO_HANDLERS) 327 input_pass_event(dev, type, code, value); 328 } 329 330 /** 331 * input_event() - report new input event 332 * @dev: device that generated the event 333 * @type: type of the event 334 * @code: event code 335 * @value: value of the event 336 * 337 * This function should be used by drivers implementing various input 338 * devices to report input events. See also input_inject_event(). 339 * 340 * NOTE: input_event() may be safely used right after input device was 341 * allocated with input_allocate_device(), even before it is registered 342 * with input_register_device(), but the event will not reach any of the 343 * input handlers. Such early invocation of input_event() may be used 344 * to 'seed' initial state of a switch or initial position of absolute 345 * axis, etc. 346 */ 347 void input_event(struct input_dev *dev, 348 unsigned int type, unsigned int code, int value) 349 { 350 unsigned long flags; 351 352 if (is_event_supported(type, dev->evbit, EV_MAX)) { 353 354 spin_lock_irqsave(&dev->event_lock, flags); 355 add_input_randomness(type, code, value); 356 input_handle_event(dev, type, code, value); 357 spin_unlock_irqrestore(&dev->event_lock, flags); 358 } 359 } 360 EXPORT_SYMBOL(input_event); 361 362 /** 363 * input_inject_event() - send input event from input handler 364 * @handle: input handle to send event through 365 * @type: type of the event 366 * @code: event code 367 * @value: value of the event 368 * 369 * Similar to input_event() but will ignore event if device is 370 * "grabbed" and handle injecting event is not the one that owns 371 * the device. 372 */ 373 void input_inject_event(struct input_handle *handle, 374 unsigned int type, unsigned int code, int value) 375 { 376 struct input_dev *dev = handle->dev; 377 struct input_handle *grab; 378 unsigned long flags; 379 380 if (is_event_supported(type, dev->evbit, EV_MAX)) { 381 spin_lock_irqsave(&dev->event_lock, flags); 382 383 rcu_read_lock(); 384 grab = rcu_dereference(dev->grab); 385 if (!grab || grab == handle) 386 input_handle_event(dev, type, code, value); 387 rcu_read_unlock(); 388 389 spin_unlock_irqrestore(&dev->event_lock, flags); 390 } 391 } 392 EXPORT_SYMBOL(input_inject_event); 393 394 /** 395 * input_alloc_absinfo - allocates array of input_absinfo structs 396 * @dev: the input device emitting absolute events 397 * 398 * If the absinfo struct the caller asked for is already allocated, this 399 * functions will not do anything. 400 */ 401 void input_alloc_absinfo(struct input_dev *dev) 402 { 403 if (!dev->absinfo) 404 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo), 405 GFP_KERNEL); 406 407 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__); 408 } 409 EXPORT_SYMBOL(input_alloc_absinfo); 410 411 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 412 int min, int max, int fuzz, int flat) 413 { 414 struct input_absinfo *absinfo; 415 416 input_alloc_absinfo(dev); 417 if (!dev->absinfo) 418 return; 419 420 absinfo = &dev->absinfo[axis]; 421 absinfo->minimum = min; 422 absinfo->maximum = max; 423 absinfo->fuzz = fuzz; 424 absinfo->flat = flat; 425 426 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis); 427 } 428 EXPORT_SYMBOL(input_set_abs_params); 429 430 431 /** 432 * input_grab_device - grabs device for exclusive use 433 * @handle: input handle that wants to own the device 434 * 435 * When a device is grabbed by an input handle all events generated by 436 * the device are delivered only to this handle. Also events injected 437 * by other input handles are ignored while device is grabbed. 438 */ 439 int input_grab_device(struct input_handle *handle) 440 { 441 struct input_dev *dev = handle->dev; 442 int retval; 443 444 retval = mutex_lock_interruptible(&dev->mutex); 445 if (retval) 446 return retval; 447 448 if (dev->grab) { 449 retval = -EBUSY; 450 goto out; 451 } 452 453 rcu_assign_pointer(dev->grab, handle); 454 synchronize_rcu(); 455 456 out: 457 mutex_unlock(&dev->mutex); 458 return retval; 459 } 460 EXPORT_SYMBOL(input_grab_device); 461 462 static void __input_release_device(struct input_handle *handle) 463 { 464 struct input_dev *dev = handle->dev; 465 466 if (dev->grab == handle) { 467 rcu_assign_pointer(dev->grab, NULL); 468 /* Make sure input_pass_event() notices that grab is gone */ 469 synchronize_rcu(); 470 471 list_for_each_entry(handle, &dev->h_list, d_node) 472 if (handle->open && handle->handler->start) 473 handle->handler->start(handle); 474 } 475 } 476 477 /** 478 * input_release_device - release previously grabbed device 479 * @handle: input handle that owns the device 480 * 481 * Releases previously grabbed device so that other input handles can 482 * start receiving input events. Upon release all handlers attached 483 * to the device have their start() method called so they have a change 484 * to synchronize device state with the rest of the system. 485 */ 486 void input_release_device(struct input_handle *handle) 487 { 488 struct input_dev *dev = handle->dev; 489 490 mutex_lock(&dev->mutex); 491 __input_release_device(handle); 492 mutex_unlock(&dev->mutex); 493 } 494 EXPORT_SYMBOL(input_release_device); 495 496 /** 497 * input_open_device - open input device 498 * @handle: handle through which device is being accessed 499 * 500 * This function should be called by input handlers when they 501 * want to start receive events from given input device. 502 */ 503 int input_open_device(struct input_handle *handle) 504 { 505 struct input_dev *dev = handle->dev; 506 int retval; 507 508 retval = mutex_lock_interruptible(&dev->mutex); 509 if (retval) 510 return retval; 511 512 if (dev->going_away) { 513 retval = -ENODEV; 514 goto out; 515 } 516 517 handle->open++; 518 519 if (!dev->users++ && dev->open) 520 retval = dev->open(dev); 521 522 if (retval) { 523 dev->users--; 524 if (!--handle->open) { 525 /* 526 * Make sure we are not delivering any more events 527 * through this handle 528 */ 529 synchronize_rcu(); 530 } 531 } 532 533 out: 534 mutex_unlock(&dev->mutex); 535 return retval; 536 } 537 EXPORT_SYMBOL(input_open_device); 538 539 int input_flush_device(struct input_handle *handle, struct file *file) 540 { 541 struct input_dev *dev = handle->dev; 542 int retval; 543 544 retval = mutex_lock_interruptible(&dev->mutex); 545 if (retval) 546 return retval; 547 548 if (dev->flush) 549 retval = dev->flush(dev, file); 550 551 mutex_unlock(&dev->mutex); 552 return retval; 553 } 554 EXPORT_SYMBOL(input_flush_device); 555 556 /** 557 * input_close_device - close input device 558 * @handle: handle through which device is being accessed 559 * 560 * This function should be called by input handlers when they 561 * want to stop receive events from given input device. 562 */ 563 void input_close_device(struct input_handle *handle) 564 { 565 struct input_dev *dev = handle->dev; 566 567 mutex_lock(&dev->mutex); 568 569 __input_release_device(handle); 570 571 if (!--dev->users && dev->close) 572 dev->close(dev); 573 574 if (!--handle->open) { 575 /* 576 * synchronize_rcu() makes sure that input_pass_event() 577 * completed and that no more input events are delivered 578 * through this handle 579 */ 580 synchronize_rcu(); 581 } 582 583 mutex_unlock(&dev->mutex); 584 } 585 EXPORT_SYMBOL(input_close_device); 586 587 /* 588 * Simulate keyup events for all keys that are marked as pressed. 589 * The function must be called with dev->event_lock held. 590 */ 591 static void input_dev_release_keys(struct input_dev *dev) 592 { 593 int code; 594 595 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 596 for (code = 0; code <= KEY_MAX; code++) { 597 if (is_event_supported(code, dev->keybit, KEY_MAX) && 598 __test_and_clear_bit(code, dev->key)) { 599 input_pass_event(dev, EV_KEY, code, 0); 600 } 601 } 602 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 603 } 604 } 605 606 /* 607 * Prepare device for unregistering 608 */ 609 static void input_disconnect_device(struct input_dev *dev) 610 { 611 struct input_handle *handle; 612 613 /* 614 * Mark device as going away. Note that we take dev->mutex here 615 * not to protect access to dev->going_away but rather to ensure 616 * that there are no threads in the middle of input_open_device() 617 */ 618 mutex_lock(&dev->mutex); 619 dev->going_away = true; 620 mutex_unlock(&dev->mutex); 621 622 spin_lock_irq(&dev->event_lock); 623 624 /* 625 * Simulate keyup events for all pressed keys so that handlers 626 * are not left with "stuck" keys. The driver may continue 627 * generate events even after we done here but they will not 628 * reach any handlers. 629 */ 630 input_dev_release_keys(dev); 631 632 list_for_each_entry(handle, &dev->h_list, d_node) 633 handle->open = 0; 634 635 spin_unlock_irq(&dev->event_lock); 636 } 637 638 /** 639 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 640 * @ke: keymap entry containing scancode to be converted. 641 * @scancode: pointer to the location where converted scancode should 642 * be stored. 643 * 644 * This function is used to convert scancode stored in &struct keymap_entry 645 * into scalar form understood by legacy keymap handling methods. These 646 * methods expect scancodes to be represented as 'unsigned int'. 647 */ 648 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 649 unsigned int *scancode) 650 { 651 switch (ke->len) { 652 case 1: 653 *scancode = *((u8 *)ke->scancode); 654 break; 655 656 case 2: 657 *scancode = *((u16 *)ke->scancode); 658 break; 659 660 case 4: 661 *scancode = *((u32 *)ke->scancode); 662 break; 663 664 default: 665 return -EINVAL; 666 } 667 668 return 0; 669 } 670 EXPORT_SYMBOL(input_scancode_to_scalar); 671 672 /* 673 * Those routines handle the default case where no [gs]etkeycode() is 674 * defined. In this case, an array indexed by the scancode is used. 675 */ 676 677 static unsigned int input_fetch_keycode(struct input_dev *dev, 678 unsigned int index) 679 { 680 switch (dev->keycodesize) { 681 case 1: 682 return ((u8 *)dev->keycode)[index]; 683 684 case 2: 685 return ((u16 *)dev->keycode)[index]; 686 687 default: 688 return ((u32 *)dev->keycode)[index]; 689 } 690 } 691 692 static int input_default_getkeycode(struct input_dev *dev, 693 struct input_keymap_entry *ke) 694 { 695 unsigned int index; 696 int error; 697 698 if (!dev->keycodesize) 699 return -EINVAL; 700 701 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 702 index = ke->index; 703 else { 704 error = input_scancode_to_scalar(ke, &index); 705 if (error) 706 return error; 707 } 708 709 if (index >= dev->keycodemax) 710 return -EINVAL; 711 712 ke->keycode = input_fetch_keycode(dev, index); 713 ke->index = index; 714 ke->len = sizeof(index); 715 memcpy(ke->scancode, &index, sizeof(index)); 716 717 return 0; 718 } 719 720 static int input_default_setkeycode(struct input_dev *dev, 721 const struct input_keymap_entry *ke, 722 unsigned int *old_keycode) 723 { 724 unsigned int index; 725 int error; 726 int i; 727 728 if (!dev->keycodesize) 729 return -EINVAL; 730 731 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 732 index = ke->index; 733 } else { 734 error = input_scancode_to_scalar(ke, &index); 735 if (error) 736 return error; 737 } 738 739 if (index >= dev->keycodemax) 740 return -EINVAL; 741 742 if (dev->keycodesize < sizeof(ke->keycode) && 743 (ke->keycode >> (dev->keycodesize * 8))) 744 return -EINVAL; 745 746 switch (dev->keycodesize) { 747 case 1: { 748 u8 *k = (u8 *)dev->keycode; 749 *old_keycode = k[index]; 750 k[index] = ke->keycode; 751 break; 752 } 753 case 2: { 754 u16 *k = (u16 *)dev->keycode; 755 *old_keycode = k[index]; 756 k[index] = ke->keycode; 757 break; 758 } 759 default: { 760 u32 *k = (u32 *)dev->keycode; 761 *old_keycode = k[index]; 762 k[index] = ke->keycode; 763 break; 764 } 765 } 766 767 __clear_bit(*old_keycode, dev->keybit); 768 __set_bit(ke->keycode, dev->keybit); 769 770 for (i = 0; i < dev->keycodemax; i++) { 771 if (input_fetch_keycode(dev, i) == *old_keycode) { 772 __set_bit(*old_keycode, dev->keybit); 773 break; /* Setting the bit twice is useless, so break */ 774 } 775 } 776 777 return 0; 778 } 779 780 /** 781 * input_get_keycode - retrieve keycode currently mapped to a given scancode 782 * @dev: input device which keymap is being queried 783 * @ke: keymap entry 784 * 785 * This function should be called by anyone interested in retrieving current 786 * keymap. Presently evdev handlers use it. 787 */ 788 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 789 { 790 unsigned long flags; 791 int retval; 792 793 spin_lock_irqsave(&dev->event_lock, flags); 794 795 if (dev->getkeycode) { 796 /* 797 * Support for legacy drivers, that don't implement the new 798 * ioctls 799 */ 800 u32 scancode = ke->index; 801 802 memcpy(ke->scancode, &scancode, sizeof(scancode)); 803 ke->len = sizeof(scancode); 804 retval = dev->getkeycode(dev, scancode, &ke->keycode); 805 } else { 806 retval = dev->getkeycode_new(dev, ke); 807 } 808 809 spin_unlock_irqrestore(&dev->event_lock, flags); 810 return retval; 811 } 812 EXPORT_SYMBOL(input_get_keycode); 813 814 /** 815 * input_set_keycode - attribute a keycode to a given scancode 816 * @dev: input device which keymap is being updated 817 * @ke: new keymap entry 818 * 819 * This function should be called by anyone needing to update current 820 * keymap. Presently keyboard and evdev handlers use it. 821 */ 822 int input_set_keycode(struct input_dev *dev, 823 const struct input_keymap_entry *ke) 824 { 825 unsigned long flags; 826 unsigned int old_keycode; 827 int retval; 828 829 if (ke->keycode > KEY_MAX) 830 return -EINVAL; 831 832 spin_lock_irqsave(&dev->event_lock, flags); 833 834 if (dev->setkeycode) { 835 /* 836 * Support for legacy drivers, that don't implement the new 837 * ioctls 838 */ 839 unsigned int scancode; 840 841 retval = input_scancode_to_scalar(ke, &scancode); 842 if (retval) 843 goto out; 844 845 /* 846 * We need to know the old scancode, in order to generate a 847 * keyup effect, if the set operation happens successfully 848 */ 849 if (!dev->getkeycode) { 850 retval = -EINVAL; 851 goto out; 852 } 853 854 retval = dev->getkeycode(dev, scancode, &old_keycode); 855 if (retval) 856 goto out; 857 858 retval = dev->setkeycode(dev, scancode, ke->keycode); 859 } else { 860 retval = dev->setkeycode_new(dev, ke, &old_keycode); 861 } 862 863 if (retval) 864 goto out; 865 866 /* Make sure KEY_RESERVED did not get enabled. */ 867 __clear_bit(KEY_RESERVED, dev->keybit); 868 869 /* 870 * Simulate keyup event if keycode is not present 871 * in the keymap anymore 872 */ 873 if (test_bit(EV_KEY, dev->evbit) && 874 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 875 __test_and_clear_bit(old_keycode, dev->key)) { 876 877 input_pass_event(dev, EV_KEY, old_keycode, 0); 878 if (dev->sync) 879 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 880 } 881 882 out: 883 spin_unlock_irqrestore(&dev->event_lock, flags); 884 885 return retval; 886 } 887 EXPORT_SYMBOL(input_set_keycode); 888 889 #define MATCH_BIT(bit, max) \ 890 for (i = 0; i < BITS_TO_LONGS(max); i++) \ 891 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ 892 break; \ 893 if (i != BITS_TO_LONGS(max)) \ 894 continue; 895 896 static const struct input_device_id *input_match_device(struct input_handler *handler, 897 struct input_dev *dev) 898 { 899 const struct input_device_id *id; 900 int i; 901 902 for (id = handler->id_table; id->flags || id->driver_info; id++) { 903 904 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 905 if (id->bustype != dev->id.bustype) 906 continue; 907 908 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 909 if (id->vendor != dev->id.vendor) 910 continue; 911 912 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 913 if (id->product != dev->id.product) 914 continue; 915 916 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 917 if (id->version != dev->id.version) 918 continue; 919 920 MATCH_BIT(evbit, EV_MAX); 921 MATCH_BIT(keybit, KEY_MAX); 922 MATCH_BIT(relbit, REL_MAX); 923 MATCH_BIT(absbit, ABS_MAX); 924 MATCH_BIT(mscbit, MSC_MAX); 925 MATCH_BIT(ledbit, LED_MAX); 926 MATCH_BIT(sndbit, SND_MAX); 927 MATCH_BIT(ffbit, FF_MAX); 928 MATCH_BIT(swbit, SW_MAX); 929 930 if (!handler->match || handler->match(handler, dev)) 931 return id; 932 } 933 934 return NULL; 935 } 936 937 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 938 { 939 const struct input_device_id *id; 940 int error; 941 942 id = input_match_device(handler, dev); 943 if (!id) 944 return -ENODEV; 945 946 error = handler->connect(handler, dev, id); 947 if (error && error != -ENODEV) 948 pr_err("failed to attach handler %s to device %s, error: %d\n", 949 handler->name, kobject_name(&dev->dev.kobj), error); 950 951 return error; 952 } 953 954 #ifdef CONFIG_COMPAT 955 956 static int input_bits_to_string(char *buf, int buf_size, 957 unsigned long bits, bool skip_empty) 958 { 959 int len = 0; 960 961 if (INPUT_COMPAT_TEST) { 962 u32 dword = bits >> 32; 963 if (dword || !skip_empty) 964 len += snprintf(buf, buf_size, "%x ", dword); 965 966 dword = bits & 0xffffffffUL; 967 if (dword || !skip_empty || len) 968 len += snprintf(buf + len, max(buf_size - len, 0), 969 "%x", dword); 970 } else { 971 if (bits || !skip_empty) 972 len += snprintf(buf, buf_size, "%lx", bits); 973 } 974 975 return len; 976 } 977 978 #else /* !CONFIG_COMPAT */ 979 980 static int input_bits_to_string(char *buf, int buf_size, 981 unsigned long bits, bool skip_empty) 982 { 983 return bits || !skip_empty ? 984 snprintf(buf, buf_size, "%lx", bits) : 0; 985 } 986 987 #endif 988 989 #ifdef CONFIG_PROC_FS 990 991 static struct proc_dir_entry *proc_bus_input_dir; 992 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 993 static int input_devices_state; 994 995 static inline void input_wakeup_procfs_readers(void) 996 { 997 input_devices_state++; 998 wake_up(&input_devices_poll_wait); 999 } 1000 1001 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 1002 { 1003 poll_wait(file, &input_devices_poll_wait, wait); 1004 if (file->f_version != input_devices_state) { 1005 file->f_version = input_devices_state; 1006 return POLLIN | POLLRDNORM; 1007 } 1008 1009 return 0; 1010 } 1011 1012 union input_seq_state { 1013 struct { 1014 unsigned short pos; 1015 bool mutex_acquired; 1016 }; 1017 void *p; 1018 }; 1019 1020 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1021 { 1022 union input_seq_state *state = (union input_seq_state *)&seq->private; 1023 int error; 1024 1025 /* We need to fit into seq->private pointer */ 1026 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1027 1028 error = mutex_lock_interruptible(&input_mutex); 1029 if (error) { 1030 state->mutex_acquired = false; 1031 return ERR_PTR(error); 1032 } 1033 1034 state->mutex_acquired = true; 1035 1036 return seq_list_start(&input_dev_list, *pos); 1037 } 1038 1039 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1040 { 1041 return seq_list_next(v, &input_dev_list, pos); 1042 } 1043 1044 static void input_seq_stop(struct seq_file *seq, void *v) 1045 { 1046 union input_seq_state *state = (union input_seq_state *)&seq->private; 1047 1048 if (state->mutex_acquired) 1049 mutex_unlock(&input_mutex); 1050 } 1051 1052 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1053 unsigned long *bitmap, int max) 1054 { 1055 int i; 1056 bool skip_empty = true; 1057 char buf[18]; 1058 1059 seq_printf(seq, "B: %s=", name); 1060 1061 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1062 if (input_bits_to_string(buf, sizeof(buf), 1063 bitmap[i], skip_empty)) { 1064 skip_empty = false; 1065 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1066 } 1067 } 1068 1069 /* 1070 * If no output was produced print a single 0. 1071 */ 1072 if (skip_empty) 1073 seq_puts(seq, "0"); 1074 1075 seq_putc(seq, '\n'); 1076 } 1077 1078 static int input_devices_seq_show(struct seq_file *seq, void *v) 1079 { 1080 struct input_dev *dev = container_of(v, struct input_dev, node); 1081 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1082 struct input_handle *handle; 1083 1084 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1085 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1086 1087 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1088 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1089 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1090 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1091 seq_printf(seq, "H: Handlers="); 1092 1093 list_for_each_entry(handle, &dev->h_list, d_node) 1094 seq_printf(seq, "%s ", handle->name); 1095 seq_putc(seq, '\n'); 1096 1097 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1098 1099 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1100 if (test_bit(EV_KEY, dev->evbit)) 1101 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1102 if (test_bit(EV_REL, dev->evbit)) 1103 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1104 if (test_bit(EV_ABS, dev->evbit)) 1105 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1106 if (test_bit(EV_MSC, dev->evbit)) 1107 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1108 if (test_bit(EV_LED, dev->evbit)) 1109 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1110 if (test_bit(EV_SND, dev->evbit)) 1111 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1112 if (test_bit(EV_FF, dev->evbit)) 1113 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1114 if (test_bit(EV_SW, dev->evbit)) 1115 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1116 1117 seq_putc(seq, '\n'); 1118 1119 kfree(path); 1120 return 0; 1121 } 1122 1123 static const struct seq_operations input_devices_seq_ops = { 1124 .start = input_devices_seq_start, 1125 .next = input_devices_seq_next, 1126 .stop = input_seq_stop, 1127 .show = input_devices_seq_show, 1128 }; 1129 1130 static int input_proc_devices_open(struct inode *inode, struct file *file) 1131 { 1132 return seq_open(file, &input_devices_seq_ops); 1133 } 1134 1135 static const struct file_operations input_devices_fileops = { 1136 .owner = THIS_MODULE, 1137 .open = input_proc_devices_open, 1138 .poll = input_proc_devices_poll, 1139 .read = seq_read, 1140 .llseek = seq_lseek, 1141 .release = seq_release, 1142 }; 1143 1144 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1145 { 1146 union input_seq_state *state = (union input_seq_state *)&seq->private; 1147 int error; 1148 1149 /* We need to fit into seq->private pointer */ 1150 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1151 1152 error = mutex_lock_interruptible(&input_mutex); 1153 if (error) { 1154 state->mutex_acquired = false; 1155 return ERR_PTR(error); 1156 } 1157 1158 state->mutex_acquired = true; 1159 state->pos = *pos; 1160 1161 return seq_list_start(&input_handler_list, *pos); 1162 } 1163 1164 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1165 { 1166 union input_seq_state *state = (union input_seq_state *)&seq->private; 1167 1168 state->pos = *pos + 1; 1169 return seq_list_next(v, &input_handler_list, pos); 1170 } 1171 1172 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1173 { 1174 struct input_handler *handler = container_of(v, struct input_handler, node); 1175 union input_seq_state *state = (union input_seq_state *)&seq->private; 1176 1177 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1178 if (handler->filter) 1179 seq_puts(seq, " (filter)"); 1180 if (handler->fops) 1181 seq_printf(seq, " Minor=%d", handler->minor); 1182 seq_putc(seq, '\n'); 1183 1184 return 0; 1185 } 1186 1187 static const struct seq_operations input_handlers_seq_ops = { 1188 .start = input_handlers_seq_start, 1189 .next = input_handlers_seq_next, 1190 .stop = input_seq_stop, 1191 .show = input_handlers_seq_show, 1192 }; 1193 1194 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1195 { 1196 return seq_open(file, &input_handlers_seq_ops); 1197 } 1198 1199 static const struct file_operations input_handlers_fileops = { 1200 .owner = THIS_MODULE, 1201 .open = input_proc_handlers_open, 1202 .read = seq_read, 1203 .llseek = seq_lseek, 1204 .release = seq_release, 1205 }; 1206 1207 static int __init input_proc_init(void) 1208 { 1209 struct proc_dir_entry *entry; 1210 1211 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1212 if (!proc_bus_input_dir) 1213 return -ENOMEM; 1214 1215 entry = proc_create("devices", 0, proc_bus_input_dir, 1216 &input_devices_fileops); 1217 if (!entry) 1218 goto fail1; 1219 1220 entry = proc_create("handlers", 0, proc_bus_input_dir, 1221 &input_handlers_fileops); 1222 if (!entry) 1223 goto fail2; 1224 1225 return 0; 1226 1227 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1228 fail1: remove_proc_entry("bus/input", NULL); 1229 return -ENOMEM; 1230 } 1231 1232 static void input_proc_exit(void) 1233 { 1234 remove_proc_entry("devices", proc_bus_input_dir); 1235 remove_proc_entry("handlers", proc_bus_input_dir); 1236 remove_proc_entry("bus/input", NULL); 1237 } 1238 1239 #else /* !CONFIG_PROC_FS */ 1240 static inline void input_wakeup_procfs_readers(void) { } 1241 static inline int input_proc_init(void) { return 0; } 1242 static inline void input_proc_exit(void) { } 1243 #endif 1244 1245 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1246 static ssize_t input_dev_show_##name(struct device *dev, \ 1247 struct device_attribute *attr, \ 1248 char *buf) \ 1249 { \ 1250 struct input_dev *input_dev = to_input_dev(dev); \ 1251 \ 1252 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1253 input_dev->name ? input_dev->name : ""); \ 1254 } \ 1255 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1256 1257 INPUT_DEV_STRING_ATTR_SHOW(name); 1258 INPUT_DEV_STRING_ATTR_SHOW(phys); 1259 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1260 1261 static int input_print_modalias_bits(char *buf, int size, 1262 char name, unsigned long *bm, 1263 unsigned int min_bit, unsigned int max_bit) 1264 { 1265 int len = 0, i; 1266 1267 len += snprintf(buf, max(size, 0), "%c", name); 1268 for (i = min_bit; i < max_bit; i++) 1269 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1270 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1271 return len; 1272 } 1273 1274 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1275 int add_cr) 1276 { 1277 int len; 1278 1279 len = snprintf(buf, max(size, 0), 1280 "input:b%04Xv%04Xp%04Xe%04X-", 1281 id->id.bustype, id->id.vendor, 1282 id->id.product, id->id.version); 1283 1284 len += input_print_modalias_bits(buf + len, size - len, 1285 'e', id->evbit, 0, EV_MAX); 1286 len += input_print_modalias_bits(buf + len, size - len, 1287 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1288 len += input_print_modalias_bits(buf + len, size - len, 1289 'r', id->relbit, 0, REL_MAX); 1290 len += input_print_modalias_bits(buf + len, size - len, 1291 'a', id->absbit, 0, ABS_MAX); 1292 len += input_print_modalias_bits(buf + len, size - len, 1293 'm', id->mscbit, 0, MSC_MAX); 1294 len += input_print_modalias_bits(buf + len, size - len, 1295 'l', id->ledbit, 0, LED_MAX); 1296 len += input_print_modalias_bits(buf + len, size - len, 1297 's', id->sndbit, 0, SND_MAX); 1298 len += input_print_modalias_bits(buf + len, size - len, 1299 'f', id->ffbit, 0, FF_MAX); 1300 len += input_print_modalias_bits(buf + len, size - len, 1301 'w', id->swbit, 0, SW_MAX); 1302 1303 if (add_cr) 1304 len += snprintf(buf + len, max(size - len, 0), "\n"); 1305 1306 return len; 1307 } 1308 1309 static ssize_t input_dev_show_modalias(struct device *dev, 1310 struct device_attribute *attr, 1311 char *buf) 1312 { 1313 struct input_dev *id = to_input_dev(dev); 1314 ssize_t len; 1315 1316 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1317 1318 return min_t(int, len, PAGE_SIZE); 1319 } 1320 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1321 1322 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1323 int max, int add_cr); 1324 1325 static ssize_t input_dev_show_properties(struct device *dev, 1326 struct device_attribute *attr, 1327 char *buf) 1328 { 1329 struct input_dev *input_dev = to_input_dev(dev); 1330 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1331 INPUT_PROP_MAX, true); 1332 return min_t(int, len, PAGE_SIZE); 1333 } 1334 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1335 1336 static struct attribute *input_dev_attrs[] = { 1337 &dev_attr_name.attr, 1338 &dev_attr_phys.attr, 1339 &dev_attr_uniq.attr, 1340 &dev_attr_modalias.attr, 1341 &dev_attr_properties.attr, 1342 NULL 1343 }; 1344 1345 static struct attribute_group input_dev_attr_group = { 1346 .attrs = input_dev_attrs, 1347 }; 1348 1349 #define INPUT_DEV_ID_ATTR(name) \ 1350 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1351 struct device_attribute *attr, \ 1352 char *buf) \ 1353 { \ 1354 struct input_dev *input_dev = to_input_dev(dev); \ 1355 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1356 } \ 1357 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1358 1359 INPUT_DEV_ID_ATTR(bustype); 1360 INPUT_DEV_ID_ATTR(vendor); 1361 INPUT_DEV_ID_ATTR(product); 1362 INPUT_DEV_ID_ATTR(version); 1363 1364 static struct attribute *input_dev_id_attrs[] = { 1365 &dev_attr_bustype.attr, 1366 &dev_attr_vendor.attr, 1367 &dev_attr_product.attr, 1368 &dev_attr_version.attr, 1369 NULL 1370 }; 1371 1372 static struct attribute_group input_dev_id_attr_group = { 1373 .name = "id", 1374 .attrs = input_dev_id_attrs, 1375 }; 1376 1377 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1378 int max, int add_cr) 1379 { 1380 int i; 1381 int len = 0; 1382 bool skip_empty = true; 1383 1384 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1385 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1386 bitmap[i], skip_empty); 1387 if (len) { 1388 skip_empty = false; 1389 if (i > 0) 1390 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1391 } 1392 } 1393 1394 /* 1395 * If no output was produced print a single 0. 1396 */ 1397 if (len == 0) 1398 len = snprintf(buf, buf_size, "%d", 0); 1399 1400 if (add_cr) 1401 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1402 1403 return len; 1404 } 1405 1406 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1407 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1408 struct device_attribute *attr, \ 1409 char *buf) \ 1410 { \ 1411 struct input_dev *input_dev = to_input_dev(dev); \ 1412 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1413 input_dev->bm##bit, ev##_MAX, \ 1414 true); \ 1415 return min_t(int, len, PAGE_SIZE); \ 1416 } \ 1417 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1418 1419 INPUT_DEV_CAP_ATTR(EV, ev); 1420 INPUT_DEV_CAP_ATTR(KEY, key); 1421 INPUT_DEV_CAP_ATTR(REL, rel); 1422 INPUT_DEV_CAP_ATTR(ABS, abs); 1423 INPUT_DEV_CAP_ATTR(MSC, msc); 1424 INPUT_DEV_CAP_ATTR(LED, led); 1425 INPUT_DEV_CAP_ATTR(SND, snd); 1426 INPUT_DEV_CAP_ATTR(FF, ff); 1427 INPUT_DEV_CAP_ATTR(SW, sw); 1428 1429 static struct attribute *input_dev_caps_attrs[] = { 1430 &dev_attr_ev.attr, 1431 &dev_attr_key.attr, 1432 &dev_attr_rel.attr, 1433 &dev_attr_abs.attr, 1434 &dev_attr_msc.attr, 1435 &dev_attr_led.attr, 1436 &dev_attr_snd.attr, 1437 &dev_attr_ff.attr, 1438 &dev_attr_sw.attr, 1439 NULL 1440 }; 1441 1442 static struct attribute_group input_dev_caps_attr_group = { 1443 .name = "capabilities", 1444 .attrs = input_dev_caps_attrs, 1445 }; 1446 1447 static const struct attribute_group *input_dev_attr_groups[] = { 1448 &input_dev_attr_group, 1449 &input_dev_id_attr_group, 1450 &input_dev_caps_attr_group, 1451 NULL 1452 }; 1453 1454 static void input_dev_release(struct device *device) 1455 { 1456 struct input_dev *dev = to_input_dev(device); 1457 1458 input_ff_destroy(dev); 1459 input_mt_destroy_slots(dev); 1460 kfree(dev->absinfo); 1461 kfree(dev); 1462 1463 module_put(THIS_MODULE); 1464 } 1465 1466 /* 1467 * Input uevent interface - loading event handlers based on 1468 * device bitfields. 1469 */ 1470 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1471 const char *name, unsigned long *bitmap, int max) 1472 { 1473 int len; 1474 1475 if (add_uevent_var(env, "%s", name)) 1476 return -ENOMEM; 1477 1478 len = input_print_bitmap(&env->buf[env->buflen - 1], 1479 sizeof(env->buf) - env->buflen, 1480 bitmap, max, false); 1481 if (len >= (sizeof(env->buf) - env->buflen)) 1482 return -ENOMEM; 1483 1484 env->buflen += len; 1485 return 0; 1486 } 1487 1488 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1489 struct input_dev *dev) 1490 { 1491 int len; 1492 1493 if (add_uevent_var(env, "MODALIAS=")) 1494 return -ENOMEM; 1495 1496 len = input_print_modalias(&env->buf[env->buflen - 1], 1497 sizeof(env->buf) - env->buflen, 1498 dev, 0); 1499 if (len >= (sizeof(env->buf) - env->buflen)) 1500 return -ENOMEM; 1501 1502 env->buflen += len; 1503 return 0; 1504 } 1505 1506 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1507 do { \ 1508 int err = add_uevent_var(env, fmt, val); \ 1509 if (err) \ 1510 return err; \ 1511 } while (0) 1512 1513 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1514 do { \ 1515 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1516 if (err) \ 1517 return err; \ 1518 } while (0) 1519 1520 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1521 do { \ 1522 int err = input_add_uevent_modalias_var(env, dev); \ 1523 if (err) \ 1524 return err; \ 1525 } while (0) 1526 1527 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1528 { 1529 struct input_dev *dev = to_input_dev(device); 1530 1531 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1532 dev->id.bustype, dev->id.vendor, 1533 dev->id.product, dev->id.version); 1534 if (dev->name) 1535 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1536 if (dev->phys) 1537 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1538 if (dev->uniq) 1539 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1540 1541 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1542 1543 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1544 if (test_bit(EV_KEY, dev->evbit)) 1545 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1546 if (test_bit(EV_REL, dev->evbit)) 1547 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1548 if (test_bit(EV_ABS, dev->evbit)) 1549 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1550 if (test_bit(EV_MSC, dev->evbit)) 1551 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1552 if (test_bit(EV_LED, dev->evbit)) 1553 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1554 if (test_bit(EV_SND, dev->evbit)) 1555 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1556 if (test_bit(EV_FF, dev->evbit)) 1557 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1558 if (test_bit(EV_SW, dev->evbit)) 1559 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1560 1561 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1562 1563 return 0; 1564 } 1565 1566 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1567 do { \ 1568 int i; \ 1569 bool active; \ 1570 \ 1571 if (!test_bit(EV_##type, dev->evbit)) \ 1572 break; \ 1573 \ 1574 for (i = 0; i < type##_MAX; i++) { \ 1575 if (!test_bit(i, dev->bits##bit)) \ 1576 continue; \ 1577 \ 1578 active = test_bit(i, dev->bits); \ 1579 if (!active && !on) \ 1580 continue; \ 1581 \ 1582 dev->event(dev, EV_##type, i, on ? active : 0); \ 1583 } \ 1584 } while (0) 1585 1586 static void input_dev_toggle(struct input_dev *dev, bool activate) 1587 { 1588 if (!dev->event) 1589 return; 1590 1591 INPUT_DO_TOGGLE(dev, LED, led, activate); 1592 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1593 1594 if (activate && test_bit(EV_REP, dev->evbit)) { 1595 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1596 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1597 } 1598 } 1599 1600 /** 1601 * input_reset_device() - reset/restore the state of input device 1602 * @dev: input device whose state needs to be reset 1603 * 1604 * This function tries to reset the state of an opened input device and 1605 * bring internal state and state if the hardware in sync with each other. 1606 * We mark all keys as released, restore LED state, repeat rate, etc. 1607 */ 1608 void input_reset_device(struct input_dev *dev) 1609 { 1610 mutex_lock(&dev->mutex); 1611 1612 if (dev->users) { 1613 input_dev_toggle(dev, true); 1614 1615 /* 1616 * Keys that have been pressed at suspend time are unlikely 1617 * to be still pressed when we resume. 1618 */ 1619 spin_lock_irq(&dev->event_lock); 1620 input_dev_release_keys(dev); 1621 spin_unlock_irq(&dev->event_lock); 1622 } 1623 1624 mutex_unlock(&dev->mutex); 1625 } 1626 EXPORT_SYMBOL(input_reset_device); 1627 1628 #ifdef CONFIG_PM 1629 static int input_dev_suspend(struct device *dev) 1630 { 1631 struct input_dev *input_dev = to_input_dev(dev); 1632 1633 mutex_lock(&input_dev->mutex); 1634 1635 if (input_dev->users) 1636 input_dev_toggle(input_dev, false); 1637 1638 mutex_unlock(&input_dev->mutex); 1639 1640 return 0; 1641 } 1642 1643 static int input_dev_resume(struct device *dev) 1644 { 1645 struct input_dev *input_dev = to_input_dev(dev); 1646 1647 input_reset_device(input_dev); 1648 1649 return 0; 1650 } 1651 1652 static const struct dev_pm_ops input_dev_pm_ops = { 1653 .suspend = input_dev_suspend, 1654 .resume = input_dev_resume, 1655 .poweroff = input_dev_suspend, 1656 .restore = input_dev_resume, 1657 }; 1658 #endif /* CONFIG_PM */ 1659 1660 static struct device_type input_dev_type = { 1661 .groups = input_dev_attr_groups, 1662 .release = input_dev_release, 1663 .uevent = input_dev_uevent, 1664 #ifdef CONFIG_PM 1665 .pm = &input_dev_pm_ops, 1666 #endif 1667 }; 1668 1669 static char *input_devnode(struct device *dev, mode_t *mode) 1670 { 1671 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1672 } 1673 1674 struct class input_class = { 1675 .name = "input", 1676 .devnode = input_devnode, 1677 }; 1678 EXPORT_SYMBOL_GPL(input_class); 1679 1680 /** 1681 * input_allocate_device - allocate memory for new input device 1682 * 1683 * Returns prepared struct input_dev or NULL. 1684 * 1685 * NOTE: Use input_free_device() to free devices that have not been 1686 * registered; input_unregister_device() should be used for already 1687 * registered devices. 1688 */ 1689 struct input_dev *input_allocate_device(void) 1690 { 1691 struct input_dev *dev; 1692 1693 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1694 if (dev) { 1695 dev->dev.type = &input_dev_type; 1696 dev->dev.class = &input_class; 1697 device_initialize(&dev->dev); 1698 mutex_init(&dev->mutex); 1699 spin_lock_init(&dev->event_lock); 1700 INIT_LIST_HEAD(&dev->h_list); 1701 INIT_LIST_HEAD(&dev->node); 1702 1703 __module_get(THIS_MODULE); 1704 } 1705 1706 return dev; 1707 } 1708 EXPORT_SYMBOL(input_allocate_device); 1709 1710 /** 1711 * input_free_device - free memory occupied by input_dev structure 1712 * @dev: input device to free 1713 * 1714 * This function should only be used if input_register_device() 1715 * was not called yet or if it failed. Once device was registered 1716 * use input_unregister_device() and memory will be freed once last 1717 * reference to the device is dropped. 1718 * 1719 * Device should be allocated by input_allocate_device(). 1720 * 1721 * NOTE: If there are references to the input device then memory 1722 * will not be freed until last reference is dropped. 1723 */ 1724 void input_free_device(struct input_dev *dev) 1725 { 1726 if (dev) 1727 input_put_device(dev); 1728 } 1729 EXPORT_SYMBOL(input_free_device); 1730 1731 /** 1732 * input_set_capability - mark device as capable of a certain event 1733 * @dev: device that is capable of emitting or accepting event 1734 * @type: type of the event (EV_KEY, EV_REL, etc...) 1735 * @code: event code 1736 * 1737 * In addition to setting up corresponding bit in appropriate capability 1738 * bitmap the function also adjusts dev->evbit. 1739 */ 1740 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1741 { 1742 switch (type) { 1743 case EV_KEY: 1744 __set_bit(code, dev->keybit); 1745 break; 1746 1747 case EV_REL: 1748 __set_bit(code, dev->relbit); 1749 break; 1750 1751 case EV_ABS: 1752 __set_bit(code, dev->absbit); 1753 break; 1754 1755 case EV_MSC: 1756 __set_bit(code, dev->mscbit); 1757 break; 1758 1759 case EV_SW: 1760 __set_bit(code, dev->swbit); 1761 break; 1762 1763 case EV_LED: 1764 __set_bit(code, dev->ledbit); 1765 break; 1766 1767 case EV_SND: 1768 __set_bit(code, dev->sndbit); 1769 break; 1770 1771 case EV_FF: 1772 __set_bit(code, dev->ffbit); 1773 break; 1774 1775 case EV_PWR: 1776 /* do nothing */ 1777 break; 1778 1779 default: 1780 pr_err("input_set_capability: unknown type %u (code %u)\n", 1781 type, code); 1782 dump_stack(); 1783 return; 1784 } 1785 1786 __set_bit(type, dev->evbit); 1787 } 1788 EXPORT_SYMBOL(input_set_capability); 1789 1790 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 1791 do { \ 1792 if (!test_bit(EV_##type, dev->evbit)) \ 1793 memset(dev->bits##bit, 0, \ 1794 sizeof(dev->bits##bit)); \ 1795 } while (0) 1796 1797 static void input_cleanse_bitmasks(struct input_dev *dev) 1798 { 1799 INPUT_CLEANSE_BITMASK(dev, KEY, key); 1800 INPUT_CLEANSE_BITMASK(dev, REL, rel); 1801 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 1802 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 1803 INPUT_CLEANSE_BITMASK(dev, LED, led); 1804 INPUT_CLEANSE_BITMASK(dev, SND, snd); 1805 INPUT_CLEANSE_BITMASK(dev, FF, ff); 1806 INPUT_CLEANSE_BITMASK(dev, SW, sw); 1807 } 1808 1809 /** 1810 * input_register_device - register device with input core 1811 * @dev: device to be registered 1812 * 1813 * This function registers device with input core. The device must be 1814 * allocated with input_allocate_device() and all it's capabilities 1815 * set up before registering. 1816 * If function fails the device must be freed with input_free_device(). 1817 * Once device has been successfully registered it can be unregistered 1818 * with input_unregister_device(); input_free_device() should not be 1819 * called in this case. 1820 */ 1821 int input_register_device(struct input_dev *dev) 1822 { 1823 static atomic_t input_no = ATOMIC_INIT(0); 1824 struct input_handler *handler; 1825 const char *path; 1826 int error; 1827 1828 /* Every input device generates EV_SYN/SYN_REPORT events. */ 1829 __set_bit(EV_SYN, dev->evbit); 1830 1831 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 1832 __clear_bit(KEY_RESERVED, dev->keybit); 1833 1834 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 1835 input_cleanse_bitmasks(dev); 1836 1837 /* 1838 * If delay and period are pre-set by the driver, then autorepeating 1839 * is handled by the driver itself and we don't do it in input.c. 1840 */ 1841 init_timer(&dev->timer); 1842 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1843 dev->timer.data = (long) dev; 1844 dev->timer.function = input_repeat_key; 1845 dev->rep[REP_DELAY] = 250; 1846 dev->rep[REP_PERIOD] = 33; 1847 } 1848 1849 if (!dev->getkeycode && !dev->getkeycode_new) 1850 dev->getkeycode_new = input_default_getkeycode; 1851 1852 if (!dev->setkeycode && !dev->setkeycode_new) 1853 dev->setkeycode_new = input_default_setkeycode; 1854 1855 dev_set_name(&dev->dev, "input%ld", 1856 (unsigned long) atomic_inc_return(&input_no) - 1); 1857 1858 error = device_add(&dev->dev); 1859 if (error) 1860 return error; 1861 1862 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1863 pr_info("%s as %s\n", 1864 dev->name ? dev->name : "Unspecified device", 1865 path ? path : "N/A"); 1866 kfree(path); 1867 1868 error = mutex_lock_interruptible(&input_mutex); 1869 if (error) { 1870 device_del(&dev->dev); 1871 return error; 1872 } 1873 1874 list_add_tail(&dev->node, &input_dev_list); 1875 1876 list_for_each_entry(handler, &input_handler_list, node) 1877 input_attach_handler(dev, handler); 1878 1879 input_wakeup_procfs_readers(); 1880 1881 mutex_unlock(&input_mutex); 1882 1883 return 0; 1884 } 1885 EXPORT_SYMBOL(input_register_device); 1886 1887 /** 1888 * input_unregister_device - unregister previously registered device 1889 * @dev: device to be unregistered 1890 * 1891 * This function unregisters an input device. Once device is unregistered 1892 * the caller should not try to access it as it may get freed at any moment. 1893 */ 1894 void input_unregister_device(struct input_dev *dev) 1895 { 1896 struct input_handle *handle, *next; 1897 1898 input_disconnect_device(dev); 1899 1900 mutex_lock(&input_mutex); 1901 1902 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1903 handle->handler->disconnect(handle); 1904 WARN_ON(!list_empty(&dev->h_list)); 1905 1906 del_timer_sync(&dev->timer); 1907 list_del_init(&dev->node); 1908 1909 input_wakeup_procfs_readers(); 1910 1911 mutex_unlock(&input_mutex); 1912 1913 device_unregister(&dev->dev); 1914 } 1915 EXPORT_SYMBOL(input_unregister_device); 1916 1917 /** 1918 * input_register_handler - register a new input handler 1919 * @handler: handler to be registered 1920 * 1921 * This function registers a new input handler (interface) for input 1922 * devices in the system and attaches it to all input devices that 1923 * are compatible with the handler. 1924 */ 1925 int input_register_handler(struct input_handler *handler) 1926 { 1927 struct input_dev *dev; 1928 int retval; 1929 1930 retval = mutex_lock_interruptible(&input_mutex); 1931 if (retval) 1932 return retval; 1933 1934 INIT_LIST_HEAD(&handler->h_list); 1935 1936 if (handler->fops != NULL) { 1937 if (input_table[handler->minor >> 5]) { 1938 retval = -EBUSY; 1939 goto out; 1940 } 1941 input_table[handler->minor >> 5] = handler; 1942 } 1943 1944 list_add_tail(&handler->node, &input_handler_list); 1945 1946 list_for_each_entry(dev, &input_dev_list, node) 1947 input_attach_handler(dev, handler); 1948 1949 input_wakeup_procfs_readers(); 1950 1951 out: 1952 mutex_unlock(&input_mutex); 1953 return retval; 1954 } 1955 EXPORT_SYMBOL(input_register_handler); 1956 1957 /** 1958 * input_unregister_handler - unregisters an input handler 1959 * @handler: handler to be unregistered 1960 * 1961 * This function disconnects a handler from its input devices and 1962 * removes it from lists of known handlers. 1963 */ 1964 void input_unregister_handler(struct input_handler *handler) 1965 { 1966 struct input_handle *handle, *next; 1967 1968 mutex_lock(&input_mutex); 1969 1970 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 1971 handler->disconnect(handle); 1972 WARN_ON(!list_empty(&handler->h_list)); 1973 1974 list_del_init(&handler->node); 1975 1976 if (handler->fops != NULL) 1977 input_table[handler->minor >> 5] = NULL; 1978 1979 input_wakeup_procfs_readers(); 1980 1981 mutex_unlock(&input_mutex); 1982 } 1983 EXPORT_SYMBOL(input_unregister_handler); 1984 1985 /** 1986 * input_handler_for_each_handle - handle iterator 1987 * @handler: input handler to iterate 1988 * @data: data for the callback 1989 * @fn: function to be called for each handle 1990 * 1991 * Iterate over @bus's list of devices, and call @fn for each, passing 1992 * it @data and stop when @fn returns a non-zero value. The function is 1993 * using RCU to traverse the list and therefore may be usind in atonic 1994 * contexts. The @fn callback is invoked from RCU critical section and 1995 * thus must not sleep. 1996 */ 1997 int input_handler_for_each_handle(struct input_handler *handler, void *data, 1998 int (*fn)(struct input_handle *, void *)) 1999 { 2000 struct input_handle *handle; 2001 int retval = 0; 2002 2003 rcu_read_lock(); 2004 2005 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2006 retval = fn(handle, data); 2007 if (retval) 2008 break; 2009 } 2010 2011 rcu_read_unlock(); 2012 2013 return retval; 2014 } 2015 EXPORT_SYMBOL(input_handler_for_each_handle); 2016 2017 /** 2018 * input_register_handle - register a new input handle 2019 * @handle: handle to register 2020 * 2021 * This function puts a new input handle onto device's 2022 * and handler's lists so that events can flow through 2023 * it once it is opened using input_open_device(). 2024 * 2025 * This function is supposed to be called from handler's 2026 * connect() method. 2027 */ 2028 int input_register_handle(struct input_handle *handle) 2029 { 2030 struct input_handler *handler = handle->handler; 2031 struct input_dev *dev = handle->dev; 2032 int error; 2033 2034 /* 2035 * We take dev->mutex here to prevent race with 2036 * input_release_device(). 2037 */ 2038 error = mutex_lock_interruptible(&dev->mutex); 2039 if (error) 2040 return error; 2041 2042 /* 2043 * Filters go to the head of the list, normal handlers 2044 * to the tail. 2045 */ 2046 if (handler->filter) 2047 list_add_rcu(&handle->d_node, &dev->h_list); 2048 else 2049 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2050 2051 mutex_unlock(&dev->mutex); 2052 2053 /* 2054 * Since we are supposed to be called from ->connect() 2055 * which is mutually exclusive with ->disconnect() 2056 * we can't be racing with input_unregister_handle() 2057 * and so separate lock is not needed here. 2058 */ 2059 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2060 2061 if (handler->start) 2062 handler->start(handle); 2063 2064 return 0; 2065 } 2066 EXPORT_SYMBOL(input_register_handle); 2067 2068 /** 2069 * input_unregister_handle - unregister an input handle 2070 * @handle: handle to unregister 2071 * 2072 * This function removes input handle from device's 2073 * and handler's lists. 2074 * 2075 * This function is supposed to be called from handler's 2076 * disconnect() method. 2077 */ 2078 void input_unregister_handle(struct input_handle *handle) 2079 { 2080 struct input_dev *dev = handle->dev; 2081 2082 list_del_rcu(&handle->h_node); 2083 2084 /* 2085 * Take dev->mutex to prevent race with input_release_device(). 2086 */ 2087 mutex_lock(&dev->mutex); 2088 list_del_rcu(&handle->d_node); 2089 mutex_unlock(&dev->mutex); 2090 2091 synchronize_rcu(); 2092 } 2093 EXPORT_SYMBOL(input_unregister_handle); 2094 2095 static int input_open_file(struct inode *inode, struct file *file) 2096 { 2097 struct input_handler *handler; 2098 const struct file_operations *old_fops, *new_fops = NULL; 2099 int err; 2100 2101 err = mutex_lock_interruptible(&input_mutex); 2102 if (err) 2103 return err; 2104 2105 /* No load-on-demand here? */ 2106 handler = input_table[iminor(inode) >> 5]; 2107 if (handler) 2108 new_fops = fops_get(handler->fops); 2109 2110 mutex_unlock(&input_mutex); 2111 2112 /* 2113 * That's _really_ odd. Usually NULL ->open means "nothing special", 2114 * not "no device". Oh, well... 2115 */ 2116 if (!new_fops || !new_fops->open) { 2117 fops_put(new_fops); 2118 err = -ENODEV; 2119 goto out; 2120 } 2121 2122 old_fops = file->f_op; 2123 file->f_op = new_fops; 2124 2125 err = new_fops->open(inode, file); 2126 if (err) { 2127 fops_put(file->f_op); 2128 file->f_op = fops_get(old_fops); 2129 } 2130 fops_put(old_fops); 2131 out: 2132 return err; 2133 } 2134 2135 static const struct file_operations input_fops = { 2136 .owner = THIS_MODULE, 2137 .open = input_open_file, 2138 .llseek = noop_llseek, 2139 }; 2140 2141 static int __init input_init(void) 2142 { 2143 int err; 2144 2145 err = class_register(&input_class); 2146 if (err) { 2147 pr_err("unable to register input_dev class\n"); 2148 return err; 2149 } 2150 2151 err = input_proc_init(); 2152 if (err) 2153 goto fail1; 2154 2155 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 2156 if (err) { 2157 pr_err("unable to register char major %d", INPUT_MAJOR); 2158 goto fail2; 2159 } 2160 2161 return 0; 2162 2163 fail2: input_proc_exit(); 2164 fail1: class_unregister(&input_class); 2165 return err; 2166 } 2167 2168 static void __exit input_exit(void) 2169 { 2170 input_proc_exit(); 2171 unregister_chrdev(INPUT_MAJOR, "input"); 2172 class_unregister(&input_class); 2173 } 2174 2175 subsys_initcall(input_init); 2176 module_exit(input_exit); 2177