1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * The input core 4 * 5 * Copyright (c) 1999-2002 Vojtech Pavlik 6 */ 7 8 9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/types.h> 13 #include <linux/idr.h> 14 #include <linux/input/mt.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/random.h> 18 #include <linux/major.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/poll.h> 23 #include <linux/device.h> 24 #include <linux/mutex.h> 25 #include <linux/rcupdate.h> 26 #include "input-compat.h" 27 #include "input-poller.h" 28 29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 30 MODULE_DESCRIPTION("Input core"); 31 MODULE_LICENSE("GPL"); 32 33 #define INPUT_MAX_CHAR_DEVICES 1024 34 #define INPUT_FIRST_DYNAMIC_DEV 256 35 static DEFINE_IDA(input_ida); 36 37 static LIST_HEAD(input_dev_list); 38 static LIST_HEAD(input_handler_list); 39 40 /* 41 * input_mutex protects access to both input_dev_list and input_handler_list. 42 * This also causes input_[un]register_device and input_[un]register_handler 43 * be mutually exclusive which simplifies locking in drivers implementing 44 * input handlers. 45 */ 46 static DEFINE_MUTEX(input_mutex); 47 48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; 49 50 static inline int is_event_supported(unsigned int code, 51 unsigned long *bm, unsigned int max) 52 { 53 return code <= max && test_bit(code, bm); 54 } 55 56 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 57 { 58 if (fuzz) { 59 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 60 return old_val; 61 62 if (value > old_val - fuzz && value < old_val + fuzz) 63 return (old_val * 3 + value) / 4; 64 65 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 66 return (old_val + value) / 2; 67 } 68 69 return value; 70 } 71 72 static void input_start_autorepeat(struct input_dev *dev, int code) 73 { 74 if (test_bit(EV_REP, dev->evbit) && 75 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 76 dev->timer.function) { 77 dev->repeat_key = code; 78 mod_timer(&dev->timer, 79 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 80 } 81 } 82 83 static void input_stop_autorepeat(struct input_dev *dev) 84 { 85 del_timer(&dev->timer); 86 } 87 88 /* 89 * Pass event first through all filters and then, if event has not been 90 * filtered out, through all open handles. This function is called with 91 * dev->event_lock held and interrupts disabled. 92 */ 93 static unsigned int input_to_handler(struct input_handle *handle, 94 struct input_value *vals, unsigned int count) 95 { 96 struct input_handler *handler = handle->handler; 97 struct input_value *end = vals; 98 struct input_value *v; 99 100 if (handler->filter) { 101 for (v = vals; v != vals + count; v++) { 102 if (handler->filter(handle, v->type, v->code, v->value)) 103 continue; 104 if (end != v) 105 *end = *v; 106 end++; 107 } 108 count = end - vals; 109 } 110 111 if (!count) 112 return 0; 113 114 if (handler->events) 115 handler->events(handle, vals, count); 116 else if (handler->event) 117 for (v = vals; v != vals + count; v++) 118 handler->event(handle, v->type, v->code, v->value); 119 120 return count; 121 } 122 123 /* 124 * Pass values first through all filters and then, if event has not been 125 * filtered out, through all open handles. This function is called with 126 * dev->event_lock held and interrupts disabled. 127 */ 128 static void input_pass_values(struct input_dev *dev, 129 struct input_value *vals, unsigned int count) 130 { 131 struct input_handle *handle; 132 struct input_value *v; 133 134 if (!count) 135 return; 136 137 rcu_read_lock(); 138 139 handle = rcu_dereference(dev->grab); 140 if (handle) { 141 count = input_to_handler(handle, vals, count); 142 } else { 143 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 144 if (handle->open) { 145 count = input_to_handler(handle, vals, count); 146 if (!count) 147 break; 148 } 149 } 150 151 rcu_read_unlock(); 152 153 /* trigger auto repeat for key events */ 154 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) { 155 for (v = vals; v != vals + count; v++) { 156 if (v->type == EV_KEY && v->value != 2) { 157 if (v->value) 158 input_start_autorepeat(dev, v->code); 159 else 160 input_stop_autorepeat(dev); 161 } 162 } 163 } 164 } 165 166 static void input_pass_event(struct input_dev *dev, 167 unsigned int type, unsigned int code, int value) 168 { 169 struct input_value vals[] = { { type, code, value } }; 170 171 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 172 } 173 174 /* 175 * Generate software autorepeat event. Note that we take 176 * dev->event_lock here to avoid racing with input_event 177 * which may cause keys get "stuck". 178 */ 179 static void input_repeat_key(struct timer_list *t) 180 { 181 struct input_dev *dev = from_timer(dev, t, timer); 182 unsigned long flags; 183 184 spin_lock_irqsave(&dev->event_lock, flags); 185 186 if (test_bit(dev->repeat_key, dev->key) && 187 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 188 struct input_value vals[] = { 189 { EV_KEY, dev->repeat_key, 2 }, 190 input_value_sync 191 }; 192 193 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 194 195 if (dev->rep[REP_PERIOD]) 196 mod_timer(&dev->timer, jiffies + 197 msecs_to_jiffies(dev->rep[REP_PERIOD])); 198 } 199 200 spin_unlock_irqrestore(&dev->event_lock, flags); 201 } 202 203 #define INPUT_IGNORE_EVENT 0 204 #define INPUT_PASS_TO_HANDLERS 1 205 #define INPUT_PASS_TO_DEVICE 2 206 #define INPUT_SLOT 4 207 #define INPUT_FLUSH 8 208 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 209 210 static int input_handle_abs_event(struct input_dev *dev, 211 unsigned int code, int *pval) 212 { 213 struct input_mt *mt = dev->mt; 214 bool is_mt_event; 215 int *pold; 216 217 if (code == ABS_MT_SLOT) { 218 /* 219 * "Stage" the event; we'll flush it later, when we 220 * get actual touch data. 221 */ 222 if (mt && *pval >= 0 && *pval < mt->num_slots) 223 mt->slot = *pval; 224 225 return INPUT_IGNORE_EVENT; 226 } 227 228 is_mt_event = input_is_mt_value(code); 229 230 if (!is_mt_event) { 231 pold = &dev->absinfo[code].value; 232 } else if (mt) { 233 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; 234 } else { 235 /* 236 * Bypass filtering for multi-touch events when 237 * not employing slots. 238 */ 239 pold = NULL; 240 } 241 242 if (pold) { 243 *pval = input_defuzz_abs_event(*pval, *pold, 244 dev->absinfo[code].fuzz); 245 if (*pold == *pval) 246 return INPUT_IGNORE_EVENT; 247 248 *pold = *pval; 249 } 250 251 /* Flush pending "slot" event */ 252 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 253 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot); 254 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; 255 } 256 257 return INPUT_PASS_TO_HANDLERS; 258 } 259 260 static int input_get_disposition(struct input_dev *dev, 261 unsigned int type, unsigned int code, int *pval) 262 { 263 int disposition = INPUT_IGNORE_EVENT; 264 int value = *pval; 265 266 switch (type) { 267 268 case EV_SYN: 269 switch (code) { 270 case SYN_CONFIG: 271 disposition = INPUT_PASS_TO_ALL; 272 break; 273 274 case SYN_REPORT: 275 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; 276 break; 277 case SYN_MT_REPORT: 278 disposition = INPUT_PASS_TO_HANDLERS; 279 break; 280 } 281 break; 282 283 case EV_KEY: 284 if (is_event_supported(code, dev->keybit, KEY_MAX)) { 285 286 /* auto-repeat bypasses state updates */ 287 if (value == 2) { 288 disposition = INPUT_PASS_TO_HANDLERS; 289 break; 290 } 291 292 if (!!test_bit(code, dev->key) != !!value) { 293 294 __change_bit(code, dev->key); 295 disposition = INPUT_PASS_TO_HANDLERS; 296 } 297 } 298 break; 299 300 case EV_SW: 301 if (is_event_supported(code, dev->swbit, SW_MAX) && 302 !!test_bit(code, dev->sw) != !!value) { 303 304 __change_bit(code, dev->sw); 305 disposition = INPUT_PASS_TO_HANDLERS; 306 } 307 break; 308 309 case EV_ABS: 310 if (is_event_supported(code, dev->absbit, ABS_MAX)) 311 disposition = input_handle_abs_event(dev, code, &value); 312 313 break; 314 315 case EV_REL: 316 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 317 disposition = INPUT_PASS_TO_HANDLERS; 318 319 break; 320 321 case EV_MSC: 322 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 323 disposition = INPUT_PASS_TO_ALL; 324 325 break; 326 327 case EV_LED: 328 if (is_event_supported(code, dev->ledbit, LED_MAX) && 329 !!test_bit(code, dev->led) != !!value) { 330 331 __change_bit(code, dev->led); 332 disposition = INPUT_PASS_TO_ALL; 333 } 334 break; 335 336 case EV_SND: 337 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 338 339 if (!!test_bit(code, dev->snd) != !!value) 340 __change_bit(code, dev->snd); 341 disposition = INPUT_PASS_TO_ALL; 342 } 343 break; 344 345 case EV_REP: 346 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 347 dev->rep[code] = value; 348 disposition = INPUT_PASS_TO_ALL; 349 } 350 break; 351 352 case EV_FF: 353 if (value >= 0) 354 disposition = INPUT_PASS_TO_ALL; 355 break; 356 357 case EV_PWR: 358 disposition = INPUT_PASS_TO_ALL; 359 break; 360 } 361 362 *pval = value; 363 return disposition; 364 } 365 366 static void input_handle_event(struct input_dev *dev, 367 unsigned int type, unsigned int code, int value) 368 { 369 int disposition = input_get_disposition(dev, type, code, &value); 370 371 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 372 add_input_randomness(type, code, value); 373 374 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 375 dev->event(dev, type, code, value); 376 377 if (!dev->vals) 378 return; 379 380 if (disposition & INPUT_PASS_TO_HANDLERS) { 381 struct input_value *v; 382 383 if (disposition & INPUT_SLOT) { 384 v = &dev->vals[dev->num_vals++]; 385 v->type = EV_ABS; 386 v->code = ABS_MT_SLOT; 387 v->value = dev->mt->slot; 388 } 389 390 v = &dev->vals[dev->num_vals++]; 391 v->type = type; 392 v->code = code; 393 v->value = value; 394 } 395 396 if (disposition & INPUT_FLUSH) { 397 if (dev->num_vals >= 2) 398 input_pass_values(dev, dev->vals, dev->num_vals); 399 dev->num_vals = 0; 400 /* 401 * Reset the timestamp on flush so we won't end up 402 * with a stale one. Note we only need to reset the 403 * monolithic one as we use its presence when deciding 404 * whether to generate a synthetic timestamp. 405 */ 406 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0); 407 } else if (dev->num_vals >= dev->max_vals - 2) { 408 dev->vals[dev->num_vals++] = input_value_sync; 409 input_pass_values(dev, dev->vals, dev->num_vals); 410 dev->num_vals = 0; 411 } 412 413 } 414 415 /** 416 * input_event() - report new input event 417 * @dev: device that generated the event 418 * @type: type of the event 419 * @code: event code 420 * @value: value of the event 421 * 422 * This function should be used by drivers implementing various input 423 * devices to report input events. See also input_inject_event(). 424 * 425 * NOTE: input_event() may be safely used right after input device was 426 * allocated with input_allocate_device(), even before it is registered 427 * with input_register_device(), but the event will not reach any of the 428 * input handlers. Such early invocation of input_event() may be used 429 * to 'seed' initial state of a switch or initial position of absolute 430 * axis, etc. 431 */ 432 void input_event(struct input_dev *dev, 433 unsigned int type, unsigned int code, int value) 434 { 435 unsigned long flags; 436 437 if (is_event_supported(type, dev->evbit, EV_MAX)) { 438 439 spin_lock_irqsave(&dev->event_lock, flags); 440 input_handle_event(dev, type, code, value); 441 spin_unlock_irqrestore(&dev->event_lock, flags); 442 } 443 } 444 EXPORT_SYMBOL(input_event); 445 446 /** 447 * input_inject_event() - send input event from input handler 448 * @handle: input handle to send event through 449 * @type: type of the event 450 * @code: event code 451 * @value: value of the event 452 * 453 * Similar to input_event() but will ignore event if device is 454 * "grabbed" and handle injecting event is not the one that owns 455 * the device. 456 */ 457 void input_inject_event(struct input_handle *handle, 458 unsigned int type, unsigned int code, int value) 459 { 460 struct input_dev *dev = handle->dev; 461 struct input_handle *grab; 462 unsigned long flags; 463 464 if (is_event_supported(type, dev->evbit, EV_MAX)) { 465 spin_lock_irqsave(&dev->event_lock, flags); 466 467 rcu_read_lock(); 468 grab = rcu_dereference(dev->grab); 469 if (!grab || grab == handle) 470 input_handle_event(dev, type, code, value); 471 rcu_read_unlock(); 472 473 spin_unlock_irqrestore(&dev->event_lock, flags); 474 } 475 } 476 EXPORT_SYMBOL(input_inject_event); 477 478 /** 479 * input_alloc_absinfo - allocates array of input_absinfo structs 480 * @dev: the input device emitting absolute events 481 * 482 * If the absinfo struct the caller asked for is already allocated, this 483 * functions will not do anything. 484 */ 485 void input_alloc_absinfo(struct input_dev *dev) 486 { 487 if (dev->absinfo) 488 return; 489 490 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL); 491 if (!dev->absinfo) { 492 dev_err(dev->dev.parent ?: &dev->dev, 493 "%s: unable to allocate memory\n", __func__); 494 /* 495 * We will handle this allocation failure in 496 * input_register_device() when we refuse to register input 497 * device with ABS bits but without absinfo. 498 */ 499 } 500 } 501 EXPORT_SYMBOL(input_alloc_absinfo); 502 503 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 504 int min, int max, int fuzz, int flat) 505 { 506 struct input_absinfo *absinfo; 507 508 input_alloc_absinfo(dev); 509 if (!dev->absinfo) 510 return; 511 512 absinfo = &dev->absinfo[axis]; 513 absinfo->minimum = min; 514 absinfo->maximum = max; 515 absinfo->fuzz = fuzz; 516 absinfo->flat = flat; 517 518 __set_bit(EV_ABS, dev->evbit); 519 __set_bit(axis, dev->absbit); 520 } 521 EXPORT_SYMBOL(input_set_abs_params); 522 523 524 /** 525 * input_grab_device - grabs device for exclusive use 526 * @handle: input handle that wants to own the device 527 * 528 * When a device is grabbed by an input handle all events generated by 529 * the device are delivered only to this handle. Also events injected 530 * by other input handles are ignored while device is grabbed. 531 */ 532 int input_grab_device(struct input_handle *handle) 533 { 534 struct input_dev *dev = handle->dev; 535 int retval; 536 537 retval = mutex_lock_interruptible(&dev->mutex); 538 if (retval) 539 return retval; 540 541 if (dev->grab) { 542 retval = -EBUSY; 543 goto out; 544 } 545 546 rcu_assign_pointer(dev->grab, handle); 547 548 out: 549 mutex_unlock(&dev->mutex); 550 return retval; 551 } 552 EXPORT_SYMBOL(input_grab_device); 553 554 static void __input_release_device(struct input_handle *handle) 555 { 556 struct input_dev *dev = handle->dev; 557 struct input_handle *grabber; 558 559 grabber = rcu_dereference_protected(dev->grab, 560 lockdep_is_held(&dev->mutex)); 561 if (grabber == handle) { 562 rcu_assign_pointer(dev->grab, NULL); 563 /* Make sure input_pass_event() notices that grab is gone */ 564 synchronize_rcu(); 565 566 list_for_each_entry(handle, &dev->h_list, d_node) 567 if (handle->open && handle->handler->start) 568 handle->handler->start(handle); 569 } 570 } 571 572 /** 573 * input_release_device - release previously grabbed device 574 * @handle: input handle that owns the device 575 * 576 * Releases previously grabbed device so that other input handles can 577 * start receiving input events. Upon release all handlers attached 578 * to the device have their start() method called so they have a change 579 * to synchronize device state with the rest of the system. 580 */ 581 void input_release_device(struct input_handle *handle) 582 { 583 struct input_dev *dev = handle->dev; 584 585 mutex_lock(&dev->mutex); 586 __input_release_device(handle); 587 mutex_unlock(&dev->mutex); 588 } 589 EXPORT_SYMBOL(input_release_device); 590 591 /** 592 * input_open_device - open input device 593 * @handle: handle through which device is being accessed 594 * 595 * This function should be called by input handlers when they 596 * want to start receive events from given input device. 597 */ 598 int input_open_device(struct input_handle *handle) 599 { 600 struct input_dev *dev = handle->dev; 601 int retval; 602 603 retval = mutex_lock_interruptible(&dev->mutex); 604 if (retval) 605 return retval; 606 607 if (dev->going_away) { 608 retval = -ENODEV; 609 goto out; 610 } 611 612 handle->open++; 613 614 if (dev->users++) { 615 /* 616 * Device is already opened, so we can exit immediately and 617 * report success. 618 */ 619 goto out; 620 } 621 622 if (dev->open) { 623 retval = dev->open(dev); 624 if (retval) { 625 dev->users--; 626 handle->open--; 627 /* 628 * Make sure we are not delivering any more events 629 * through this handle 630 */ 631 synchronize_rcu(); 632 goto out; 633 } 634 } 635 636 if (dev->poller) 637 input_dev_poller_start(dev->poller); 638 639 out: 640 mutex_unlock(&dev->mutex); 641 return retval; 642 } 643 EXPORT_SYMBOL(input_open_device); 644 645 int input_flush_device(struct input_handle *handle, struct file *file) 646 { 647 struct input_dev *dev = handle->dev; 648 int retval; 649 650 retval = mutex_lock_interruptible(&dev->mutex); 651 if (retval) 652 return retval; 653 654 if (dev->flush) 655 retval = dev->flush(dev, file); 656 657 mutex_unlock(&dev->mutex); 658 return retval; 659 } 660 EXPORT_SYMBOL(input_flush_device); 661 662 /** 663 * input_close_device - close input device 664 * @handle: handle through which device is being accessed 665 * 666 * This function should be called by input handlers when they 667 * want to stop receive events from given input device. 668 */ 669 void input_close_device(struct input_handle *handle) 670 { 671 struct input_dev *dev = handle->dev; 672 673 mutex_lock(&dev->mutex); 674 675 __input_release_device(handle); 676 677 if (!--dev->users) { 678 if (dev->poller) 679 input_dev_poller_stop(dev->poller); 680 681 if (dev->close) 682 dev->close(dev); 683 } 684 685 if (!--handle->open) { 686 /* 687 * synchronize_rcu() makes sure that input_pass_event() 688 * completed and that no more input events are delivered 689 * through this handle 690 */ 691 synchronize_rcu(); 692 } 693 694 mutex_unlock(&dev->mutex); 695 } 696 EXPORT_SYMBOL(input_close_device); 697 698 /* 699 * Simulate keyup events for all keys that are marked as pressed. 700 * The function must be called with dev->event_lock held. 701 */ 702 static void input_dev_release_keys(struct input_dev *dev) 703 { 704 bool need_sync = false; 705 int code; 706 707 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 708 for_each_set_bit(code, dev->key, KEY_CNT) { 709 input_pass_event(dev, EV_KEY, code, 0); 710 need_sync = true; 711 } 712 713 if (need_sync) 714 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 715 716 memset(dev->key, 0, sizeof(dev->key)); 717 } 718 } 719 720 /* 721 * Prepare device for unregistering 722 */ 723 static void input_disconnect_device(struct input_dev *dev) 724 { 725 struct input_handle *handle; 726 727 /* 728 * Mark device as going away. Note that we take dev->mutex here 729 * not to protect access to dev->going_away but rather to ensure 730 * that there are no threads in the middle of input_open_device() 731 */ 732 mutex_lock(&dev->mutex); 733 dev->going_away = true; 734 mutex_unlock(&dev->mutex); 735 736 spin_lock_irq(&dev->event_lock); 737 738 /* 739 * Simulate keyup events for all pressed keys so that handlers 740 * are not left with "stuck" keys. The driver may continue 741 * generate events even after we done here but they will not 742 * reach any handlers. 743 */ 744 input_dev_release_keys(dev); 745 746 list_for_each_entry(handle, &dev->h_list, d_node) 747 handle->open = 0; 748 749 spin_unlock_irq(&dev->event_lock); 750 } 751 752 /** 753 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 754 * @ke: keymap entry containing scancode to be converted. 755 * @scancode: pointer to the location where converted scancode should 756 * be stored. 757 * 758 * This function is used to convert scancode stored in &struct keymap_entry 759 * into scalar form understood by legacy keymap handling methods. These 760 * methods expect scancodes to be represented as 'unsigned int'. 761 */ 762 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 763 unsigned int *scancode) 764 { 765 switch (ke->len) { 766 case 1: 767 *scancode = *((u8 *)ke->scancode); 768 break; 769 770 case 2: 771 *scancode = *((u16 *)ke->scancode); 772 break; 773 774 case 4: 775 *scancode = *((u32 *)ke->scancode); 776 break; 777 778 default: 779 return -EINVAL; 780 } 781 782 return 0; 783 } 784 EXPORT_SYMBOL(input_scancode_to_scalar); 785 786 /* 787 * Those routines handle the default case where no [gs]etkeycode() is 788 * defined. In this case, an array indexed by the scancode is used. 789 */ 790 791 static unsigned int input_fetch_keycode(struct input_dev *dev, 792 unsigned int index) 793 { 794 switch (dev->keycodesize) { 795 case 1: 796 return ((u8 *)dev->keycode)[index]; 797 798 case 2: 799 return ((u16 *)dev->keycode)[index]; 800 801 default: 802 return ((u32 *)dev->keycode)[index]; 803 } 804 } 805 806 static int input_default_getkeycode(struct input_dev *dev, 807 struct input_keymap_entry *ke) 808 { 809 unsigned int index; 810 int error; 811 812 if (!dev->keycodesize) 813 return -EINVAL; 814 815 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 816 index = ke->index; 817 else { 818 error = input_scancode_to_scalar(ke, &index); 819 if (error) 820 return error; 821 } 822 823 if (index >= dev->keycodemax) 824 return -EINVAL; 825 826 ke->keycode = input_fetch_keycode(dev, index); 827 ke->index = index; 828 ke->len = sizeof(index); 829 memcpy(ke->scancode, &index, sizeof(index)); 830 831 return 0; 832 } 833 834 static int input_default_setkeycode(struct input_dev *dev, 835 const struct input_keymap_entry *ke, 836 unsigned int *old_keycode) 837 { 838 unsigned int index; 839 int error; 840 int i; 841 842 if (!dev->keycodesize) 843 return -EINVAL; 844 845 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 846 index = ke->index; 847 } else { 848 error = input_scancode_to_scalar(ke, &index); 849 if (error) 850 return error; 851 } 852 853 if (index >= dev->keycodemax) 854 return -EINVAL; 855 856 if (dev->keycodesize < sizeof(ke->keycode) && 857 (ke->keycode >> (dev->keycodesize * 8))) 858 return -EINVAL; 859 860 switch (dev->keycodesize) { 861 case 1: { 862 u8 *k = (u8 *)dev->keycode; 863 *old_keycode = k[index]; 864 k[index] = ke->keycode; 865 break; 866 } 867 case 2: { 868 u16 *k = (u16 *)dev->keycode; 869 *old_keycode = k[index]; 870 k[index] = ke->keycode; 871 break; 872 } 873 default: { 874 u32 *k = (u32 *)dev->keycode; 875 *old_keycode = k[index]; 876 k[index] = ke->keycode; 877 break; 878 } 879 } 880 881 __clear_bit(*old_keycode, dev->keybit); 882 __set_bit(ke->keycode, dev->keybit); 883 884 for (i = 0; i < dev->keycodemax; i++) { 885 if (input_fetch_keycode(dev, i) == *old_keycode) { 886 __set_bit(*old_keycode, dev->keybit); 887 break; /* Setting the bit twice is useless, so break */ 888 } 889 } 890 891 return 0; 892 } 893 894 /** 895 * input_get_keycode - retrieve keycode currently mapped to a given scancode 896 * @dev: input device which keymap is being queried 897 * @ke: keymap entry 898 * 899 * This function should be called by anyone interested in retrieving current 900 * keymap. Presently evdev handlers use it. 901 */ 902 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 903 { 904 unsigned long flags; 905 int retval; 906 907 spin_lock_irqsave(&dev->event_lock, flags); 908 retval = dev->getkeycode(dev, ke); 909 spin_unlock_irqrestore(&dev->event_lock, flags); 910 911 return retval; 912 } 913 EXPORT_SYMBOL(input_get_keycode); 914 915 /** 916 * input_set_keycode - attribute a keycode to a given scancode 917 * @dev: input device which keymap is being updated 918 * @ke: new keymap entry 919 * 920 * This function should be called by anyone needing to update current 921 * keymap. Presently keyboard and evdev handlers use it. 922 */ 923 int input_set_keycode(struct input_dev *dev, 924 const struct input_keymap_entry *ke) 925 { 926 unsigned long flags; 927 unsigned int old_keycode; 928 int retval; 929 930 if (ke->keycode > KEY_MAX) 931 return -EINVAL; 932 933 spin_lock_irqsave(&dev->event_lock, flags); 934 935 retval = dev->setkeycode(dev, ke, &old_keycode); 936 if (retval) 937 goto out; 938 939 /* Make sure KEY_RESERVED did not get enabled. */ 940 __clear_bit(KEY_RESERVED, dev->keybit); 941 942 /* 943 * Simulate keyup event if keycode is not present 944 * in the keymap anymore 945 */ 946 if (test_bit(EV_KEY, dev->evbit) && 947 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 948 __test_and_clear_bit(old_keycode, dev->key)) { 949 struct input_value vals[] = { 950 { EV_KEY, old_keycode, 0 }, 951 input_value_sync 952 }; 953 954 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 955 } 956 957 out: 958 spin_unlock_irqrestore(&dev->event_lock, flags); 959 960 return retval; 961 } 962 EXPORT_SYMBOL(input_set_keycode); 963 964 bool input_match_device_id(const struct input_dev *dev, 965 const struct input_device_id *id) 966 { 967 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 968 if (id->bustype != dev->id.bustype) 969 return false; 970 971 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 972 if (id->vendor != dev->id.vendor) 973 return false; 974 975 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 976 if (id->product != dev->id.product) 977 return false; 978 979 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 980 if (id->version != dev->id.version) 981 return false; 982 983 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) || 984 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) || 985 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) || 986 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) || 987 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) || 988 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) || 989 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) || 990 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) || 991 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) || 992 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) { 993 return false; 994 } 995 996 return true; 997 } 998 EXPORT_SYMBOL(input_match_device_id); 999 1000 static const struct input_device_id *input_match_device(struct input_handler *handler, 1001 struct input_dev *dev) 1002 { 1003 const struct input_device_id *id; 1004 1005 for (id = handler->id_table; id->flags || id->driver_info; id++) { 1006 if (input_match_device_id(dev, id) && 1007 (!handler->match || handler->match(handler, dev))) { 1008 return id; 1009 } 1010 } 1011 1012 return NULL; 1013 } 1014 1015 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 1016 { 1017 const struct input_device_id *id; 1018 int error; 1019 1020 id = input_match_device(handler, dev); 1021 if (!id) 1022 return -ENODEV; 1023 1024 error = handler->connect(handler, dev, id); 1025 if (error && error != -ENODEV) 1026 pr_err("failed to attach handler %s to device %s, error: %d\n", 1027 handler->name, kobject_name(&dev->dev.kobj), error); 1028 1029 return error; 1030 } 1031 1032 #ifdef CONFIG_COMPAT 1033 1034 static int input_bits_to_string(char *buf, int buf_size, 1035 unsigned long bits, bool skip_empty) 1036 { 1037 int len = 0; 1038 1039 if (in_compat_syscall()) { 1040 u32 dword = bits >> 32; 1041 if (dword || !skip_empty) 1042 len += snprintf(buf, buf_size, "%x ", dword); 1043 1044 dword = bits & 0xffffffffUL; 1045 if (dword || !skip_empty || len) 1046 len += snprintf(buf + len, max(buf_size - len, 0), 1047 "%x", dword); 1048 } else { 1049 if (bits || !skip_empty) 1050 len += snprintf(buf, buf_size, "%lx", bits); 1051 } 1052 1053 return len; 1054 } 1055 1056 #else /* !CONFIG_COMPAT */ 1057 1058 static int input_bits_to_string(char *buf, int buf_size, 1059 unsigned long bits, bool skip_empty) 1060 { 1061 return bits || !skip_empty ? 1062 snprintf(buf, buf_size, "%lx", bits) : 0; 1063 } 1064 1065 #endif 1066 1067 #ifdef CONFIG_PROC_FS 1068 1069 static struct proc_dir_entry *proc_bus_input_dir; 1070 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 1071 static int input_devices_state; 1072 1073 static inline void input_wakeup_procfs_readers(void) 1074 { 1075 input_devices_state++; 1076 wake_up(&input_devices_poll_wait); 1077 } 1078 1079 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait) 1080 { 1081 poll_wait(file, &input_devices_poll_wait, wait); 1082 if (file->f_version != input_devices_state) { 1083 file->f_version = input_devices_state; 1084 return EPOLLIN | EPOLLRDNORM; 1085 } 1086 1087 return 0; 1088 } 1089 1090 union input_seq_state { 1091 struct { 1092 unsigned short pos; 1093 bool mutex_acquired; 1094 }; 1095 void *p; 1096 }; 1097 1098 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1099 { 1100 union input_seq_state *state = (union input_seq_state *)&seq->private; 1101 int error; 1102 1103 /* We need to fit into seq->private pointer */ 1104 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1105 1106 error = mutex_lock_interruptible(&input_mutex); 1107 if (error) { 1108 state->mutex_acquired = false; 1109 return ERR_PTR(error); 1110 } 1111 1112 state->mutex_acquired = true; 1113 1114 return seq_list_start(&input_dev_list, *pos); 1115 } 1116 1117 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1118 { 1119 return seq_list_next(v, &input_dev_list, pos); 1120 } 1121 1122 static void input_seq_stop(struct seq_file *seq, void *v) 1123 { 1124 union input_seq_state *state = (union input_seq_state *)&seq->private; 1125 1126 if (state->mutex_acquired) 1127 mutex_unlock(&input_mutex); 1128 } 1129 1130 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1131 unsigned long *bitmap, int max) 1132 { 1133 int i; 1134 bool skip_empty = true; 1135 char buf[18]; 1136 1137 seq_printf(seq, "B: %s=", name); 1138 1139 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1140 if (input_bits_to_string(buf, sizeof(buf), 1141 bitmap[i], skip_empty)) { 1142 skip_empty = false; 1143 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1144 } 1145 } 1146 1147 /* 1148 * If no output was produced print a single 0. 1149 */ 1150 if (skip_empty) 1151 seq_putc(seq, '0'); 1152 1153 seq_putc(seq, '\n'); 1154 } 1155 1156 static int input_devices_seq_show(struct seq_file *seq, void *v) 1157 { 1158 struct input_dev *dev = container_of(v, struct input_dev, node); 1159 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1160 struct input_handle *handle; 1161 1162 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1163 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1164 1165 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1166 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1167 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1168 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1169 seq_puts(seq, "H: Handlers="); 1170 1171 list_for_each_entry(handle, &dev->h_list, d_node) 1172 seq_printf(seq, "%s ", handle->name); 1173 seq_putc(seq, '\n'); 1174 1175 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1176 1177 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1178 if (test_bit(EV_KEY, dev->evbit)) 1179 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1180 if (test_bit(EV_REL, dev->evbit)) 1181 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1182 if (test_bit(EV_ABS, dev->evbit)) 1183 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1184 if (test_bit(EV_MSC, dev->evbit)) 1185 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1186 if (test_bit(EV_LED, dev->evbit)) 1187 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1188 if (test_bit(EV_SND, dev->evbit)) 1189 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1190 if (test_bit(EV_FF, dev->evbit)) 1191 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1192 if (test_bit(EV_SW, dev->evbit)) 1193 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1194 1195 seq_putc(seq, '\n'); 1196 1197 kfree(path); 1198 return 0; 1199 } 1200 1201 static const struct seq_operations input_devices_seq_ops = { 1202 .start = input_devices_seq_start, 1203 .next = input_devices_seq_next, 1204 .stop = input_seq_stop, 1205 .show = input_devices_seq_show, 1206 }; 1207 1208 static int input_proc_devices_open(struct inode *inode, struct file *file) 1209 { 1210 return seq_open(file, &input_devices_seq_ops); 1211 } 1212 1213 static const struct file_operations input_devices_fileops = { 1214 .owner = THIS_MODULE, 1215 .open = input_proc_devices_open, 1216 .poll = input_proc_devices_poll, 1217 .read = seq_read, 1218 .llseek = seq_lseek, 1219 .release = seq_release, 1220 }; 1221 1222 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1223 { 1224 union input_seq_state *state = (union input_seq_state *)&seq->private; 1225 int error; 1226 1227 /* We need to fit into seq->private pointer */ 1228 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1229 1230 error = mutex_lock_interruptible(&input_mutex); 1231 if (error) { 1232 state->mutex_acquired = false; 1233 return ERR_PTR(error); 1234 } 1235 1236 state->mutex_acquired = true; 1237 state->pos = *pos; 1238 1239 return seq_list_start(&input_handler_list, *pos); 1240 } 1241 1242 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1243 { 1244 union input_seq_state *state = (union input_seq_state *)&seq->private; 1245 1246 state->pos = *pos + 1; 1247 return seq_list_next(v, &input_handler_list, pos); 1248 } 1249 1250 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1251 { 1252 struct input_handler *handler = container_of(v, struct input_handler, node); 1253 union input_seq_state *state = (union input_seq_state *)&seq->private; 1254 1255 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1256 if (handler->filter) 1257 seq_puts(seq, " (filter)"); 1258 if (handler->legacy_minors) 1259 seq_printf(seq, " Minor=%d", handler->minor); 1260 seq_putc(seq, '\n'); 1261 1262 return 0; 1263 } 1264 1265 static const struct seq_operations input_handlers_seq_ops = { 1266 .start = input_handlers_seq_start, 1267 .next = input_handlers_seq_next, 1268 .stop = input_seq_stop, 1269 .show = input_handlers_seq_show, 1270 }; 1271 1272 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1273 { 1274 return seq_open(file, &input_handlers_seq_ops); 1275 } 1276 1277 static const struct file_operations input_handlers_fileops = { 1278 .owner = THIS_MODULE, 1279 .open = input_proc_handlers_open, 1280 .read = seq_read, 1281 .llseek = seq_lseek, 1282 .release = seq_release, 1283 }; 1284 1285 static int __init input_proc_init(void) 1286 { 1287 struct proc_dir_entry *entry; 1288 1289 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1290 if (!proc_bus_input_dir) 1291 return -ENOMEM; 1292 1293 entry = proc_create("devices", 0, proc_bus_input_dir, 1294 &input_devices_fileops); 1295 if (!entry) 1296 goto fail1; 1297 1298 entry = proc_create("handlers", 0, proc_bus_input_dir, 1299 &input_handlers_fileops); 1300 if (!entry) 1301 goto fail2; 1302 1303 return 0; 1304 1305 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1306 fail1: remove_proc_entry("bus/input", NULL); 1307 return -ENOMEM; 1308 } 1309 1310 static void input_proc_exit(void) 1311 { 1312 remove_proc_entry("devices", proc_bus_input_dir); 1313 remove_proc_entry("handlers", proc_bus_input_dir); 1314 remove_proc_entry("bus/input", NULL); 1315 } 1316 1317 #else /* !CONFIG_PROC_FS */ 1318 static inline void input_wakeup_procfs_readers(void) { } 1319 static inline int input_proc_init(void) { return 0; } 1320 static inline void input_proc_exit(void) { } 1321 #endif 1322 1323 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1324 static ssize_t input_dev_show_##name(struct device *dev, \ 1325 struct device_attribute *attr, \ 1326 char *buf) \ 1327 { \ 1328 struct input_dev *input_dev = to_input_dev(dev); \ 1329 \ 1330 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1331 input_dev->name ? input_dev->name : ""); \ 1332 } \ 1333 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1334 1335 INPUT_DEV_STRING_ATTR_SHOW(name); 1336 INPUT_DEV_STRING_ATTR_SHOW(phys); 1337 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1338 1339 static int input_print_modalias_bits(char *buf, int size, 1340 char name, unsigned long *bm, 1341 unsigned int min_bit, unsigned int max_bit) 1342 { 1343 int len = 0, i; 1344 1345 len += snprintf(buf, max(size, 0), "%c", name); 1346 for (i = min_bit; i < max_bit; i++) 1347 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1348 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1349 return len; 1350 } 1351 1352 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1353 int add_cr) 1354 { 1355 int len; 1356 1357 len = snprintf(buf, max(size, 0), 1358 "input:b%04Xv%04Xp%04Xe%04X-", 1359 id->id.bustype, id->id.vendor, 1360 id->id.product, id->id.version); 1361 1362 len += input_print_modalias_bits(buf + len, size - len, 1363 'e', id->evbit, 0, EV_MAX); 1364 len += input_print_modalias_bits(buf + len, size - len, 1365 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1366 len += input_print_modalias_bits(buf + len, size - len, 1367 'r', id->relbit, 0, REL_MAX); 1368 len += input_print_modalias_bits(buf + len, size - len, 1369 'a', id->absbit, 0, ABS_MAX); 1370 len += input_print_modalias_bits(buf + len, size - len, 1371 'm', id->mscbit, 0, MSC_MAX); 1372 len += input_print_modalias_bits(buf + len, size - len, 1373 'l', id->ledbit, 0, LED_MAX); 1374 len += input_print_modalias_bits(buf + len, size - len, 1375 's', id->sndbit, 0, SND_MAX); 1376 len += input_print_modalias_bits(buf + len, size - len, 1377 'f', id->ffbit, 0, FF_MAX); 1378 len += input_print_modalias_bits(buf + len, size - len, 1379 'w', id->swbit, 0, SW_MAX); 1380 1381 if (add_cr) 1382 len += snprintf(buf + len, max(size - len, 0), "\n"); 1383 1384 return len; 1385 } 1386 1387 static ssize_t input_dev_show_modalias(struct device *dev, 1388 struct device_attribute *attr, 1389 char *buf) 1390 { 1391 struct input_dev *id = to_input_dev(dev); 1392 ssize_t len; 1393 1394 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1395 1396 return min_t(int, len, PAGE_SIZE); 1397 } 1398 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1399 1400 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1401 int max, int add_cr); 1402 1403 static ssize_t input_dev_show_properties(struct device *dev, 1404 struct device_attribute *attr, 1405 char *buf) 1406 { 1407 struct input_dev *input_dev = to_input_dev(dev); 1408 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1409 INPUT_PROP_MAX, true); 1410 return min_t(int, len, PAGE_SIZE); 1411 } 1412 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1413 1414 static struct attribute *input_dev_attrs[] = { 1415 &dev_attr_name.attr, 1416 &dev_attr_phys.attr, 1417 &dev_attr_uniq.attr, 1418 &dev_attr_modalias.attr, 1419 &dev_attr_properties.attr, 1420 NULL 1421 }; 1422 1423 static const struct attribute_group input_dev_attr_group = { 1424 .attrs = input_dev_attrs, 1425 }; 1426 1427 #define INPUT_DEV_ID_ATTR(name) \ 1428 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1429 struct device_attribute *attr, \ 1430 char *buf) \ 1431 { \ 1432 struct input_dev *input_dev = to_input_dev(dev); \ 1433 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1434 } \ 1435 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1436 1437 INPUT_DEV_ID_ATTR(bustype); 1438 INPUT_DEV_ID_ATTR(vendor); 1439 INPUT_DEV_ID_ATTR(product); 1440 INPUT_DEV_ID_ATTR(version); 1441 1442 static struct attribute *input_dev_id_attrs[] = { 1443 &dev_attr_bustype.attr, 1444 &dev_attr_vendor.attr, 1445 &dev_attr_product.attr, 1446 &dev_attr_version.attr, 1447 NULL 1448 }; 1449 1450 static const struct attribute_group input_dev_id_attr_group = { 1451 .name = "id", 1452 .attrs = input_dev_id_attrs, 1453 }; 1454 1455 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1456 int max, int add_cr) 1457 { 1458 int i; 1459 int len = 0; 1460 bool skip_empty = true; 1461 1462 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1463 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1464 bitmap[i], skip_empty); 1465 if (len) { 1466 skip_empty = false; 1467 if (i > 0) 1468 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1469 } 1470 } 1471 1472 /* 1473 * If no output was produced print a single 0. 1474 */ 1475 if (len == 0) 1476 len = snprintf(buf, buf_size, "%d", 0); 1477 1478 if (add_cr) 1479 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1480 1481 return len; 1482 } 1483 1484 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1485 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1486 struct device_attribute *attr, \ 1487 char *buf) \ 1488 { \ 1489 struct input_dev *input_dev = to_input_dev(dev); \ 1490 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1491 input_dev->bm##bit, ev##_MAX, \ 1492 true); \ 1493 return min_t(int, len, PAGE_SIZE); \ 1494 } \ 1495 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1496 1497 INPUT_DEV_CAP_ATTR(EV, ev); 1498 INPUT_DEV_CAP_ATTR(KEY, key); 1499 INPUT_DEV_CAP_ATTR(REL, rel); 1500 INPUT_DEV_CAP_ATTR(ABS, abs); 1501 INPUT_DEV_CAP_ATTR(MSC, msc); 1502 INPUT_DEV_CAP_ATTR(LED, led); 1503 INPUT_DEV_CAP_ATTR(SND, snd); 1504 INPUT_DEV_CAP_ATTR(FF, ff); 1505 INPUT_DEV_CAP_ATTR(SW, sw); 1506 1507 static struct attribute *input_dev_caps_attrs[] = { 1508 &dev_attr_ev.attr, 1509 &dev_attr_key.attr, 1510 &dev_attr_rel.attr, 1511 &dev_attr_abs.attr, 1512 &dev_attr_msc.attr, 1513 &dev_attr_led.attr, 1514 &dev_attr_snd.attr, 1515 &dev_attr_ff.attr, 1516 &dev_attr_sw.attr, 1517 NULL 1518 }; 1519 1520 static const struct attribute_group input_dev_caps_attr_group = { 1521 .name = "capabilities", 1522 .attrs = input_dev_caps_attrs, 1523 }; 1524 1525 static const struct attribute_group *input_dev_attr_groups[] = { 1526 &input_dev_attr_group, 1527 &input_dev_id_attr_group, 1528 &input_dev_caps_attr_group, 1529 &input_poller_attribute_group, 1530 NULL 1531 }; 1532 1533 static void input_dev_release(struct device *device) 1534 { 1535 struct input_dev *dev = to_input_dev(device); 1536 1537 input_ff_destroy(dev); 1538 input_mt_destroy_slots(dev); 1539 kfree(dev->poller); 1540 kfree(dev->absinfo); 1541 kfree(dev->vals); 1542 kfree(dev); 1543 1544 module_put(THIS_MODULE); 1545 } 1546 1547 /* 1548 * Input uevent interface - loading event handlers based on 1549 * device bitfields. 1550 */ 1551 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1552 const char *name, unsigned long *bitmap, int max) 1553 { 1554 int len; 1555 1556 if (add_uevent_var(env, "%s", name)) 1557 return -ENOMEM; 1558 1559 len = input_print_bitmap(&env->buf[env->buflen - 1], 1560 sizeof(env->buf) - env->buflen, 1561 bitmap, max, false); 1562 if (len >= (sizeof(env->buf) - env->buflen)) 1563 return -ENOMEM; 1564 1565 env->buflen += len; 1566 return 0; 1567 } 1568 1569 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1570 struct input_dev *dev) 1571 { 1572 int len; 1573 1574 if (add_uevent_var(env, "MODALIAS=")) 1575 return -ENOMEM; 1576 1577 len = input_print_modalias(&env->buf[env->buflen - 1], 1578 sizeof(env->buf) - env->buflen, 1579 dev, 0); 1580 if (len >= (sizeof(env->buf) - env->buflen)) 1581 return -ENOMEM; 1582 1583 env->buflen += len; 1584 return 0; 1585 } 1586 1587 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1588 do { \ 1589 int err = add_uevent_var(env, fmt, val); \ 1590 if (err) \ 1591 return err; \ 1592 } while (0) 1593 1594 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1595 do { \ 1596 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1597 if (err) \ 1598 return err; \ 1599 } while (0) 1600 1601 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1602 do { \ 1603 int err = input_add_uevent_modalias_var(env, dev); \ 1604 if (err) \ 1605 return err; \ 1606 } while (0) 1607 1608 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1609 { 1610 struct input_dev *dev = to_input_dev(device); 1611 1612 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1613 dev->id.bustype, dev->id.vendor, 1614 dev->id.product, dev->id.version); 1615 if (dev->name) 1616 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1617 if (dev->phys) 1618 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1619 if (dev->uniq) 1620 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1621 1622 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1623 1624 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1625 if (test_bit(EV_KEY, dev->evbit)) 1626 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1627 if (test_bit(EV_REL, dev->evbit)) 1628 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1629 if (test_bit(EV_ABS, dev->evbit)) 1630 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1631 if (test_bit(EV_MSC, dev->evbit)) 1632 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1633 if (test_bit(EV_LED, dev->evbit)) 1634 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1635 if (test_bit(EV_SND, dev->evbit)) 1636 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1637 if (test_bit(EV_FF, dev->evbit)) 1638 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1639 if (test_bit(EV_SW, dev->evbit)) 1640 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1641 1642 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1643 1644 return 0; 1645 } 1646 1647 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1648 do { \ 1649 int i; \ 1650 bool active; \ 1651 \ 1652 if (!test_bit(EV_##type, dev->evbit)) \ 1653 break; \ 1654 \ 1655 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \ 1656 active = test_bit(i, dev->bits); \ 1657 if (!active && !on) \ 1658 continue; \ 1659 \ 1660 dev->event(dev, EV_##type, i, on ? active : 0); \ 1661 } \ 1662 } while (0) 1663 1664 static void input_dev_toggle(struct input_dev *dev, bool activate) 1665 { 1666 if (!dev->event) 1667 return; 1668 1669 INPUT_DO_TOGGLE(dev, LED, led, activate); 1670 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1671 1672 if (activate && test_bit(EV_REP, dev->evbit)) { 1673 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1674 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1675 } 1676 } 1677 1678 /** 1679 * input_reset_device() - reset/restore the state of input device 1680 * @dev: input device whose state needs to be reset 1681 * 1682 * This function tries to reset the state of an opened input device and 1683 * bring internal state and state if the hardware in sync with each other. 1684 * We mark all keys as released, restore LED state, repeat rate, etc. 1685 */ 1686 void input_reset_device(struct input_dev *dev) 1687 { 1688 unsigned long flags; 1689 1690 mutex_lock(&dev->mutex); 1691 spin_lock_irqsave(&dev->event_lock, flags); 1692 1693 input_dev_toggle(dev, true); 1694 input_dev_release_keys(dev); 1695 1696 spin_unlock_irqrestore(&dev->event_lock, flags); 1697 mutex_unlock(&dev->mutex); 1698 } 1699 EXPORT_SYMBOL(input_reset_device); 1700 1701 #ifdef CONFIG_PM_SLEEP 1702 static int input_dev_suspend(struct device *dev) 1703 { 1704 struct input_dev *input_dev = to_input_dev(dev); 1705 1706 spin_lock_irq(&input_dev->event_lock); 1707 1708 /* 1709 * Keys that are pressed now are unlikely to be 1710 * still pressed when we resume. 1711 */ 1712 input_dev_release_keys(input_dev); 1713 1714 /* Turn off LEDs and sounds, if any are active. */ 1715 input_dev_toggle(input_dev, false); 1716 1717 spin_unlock_irq(&input_dev->event_lock); 1718 1719 return 0; 1720 } 1721 1722 static int input_dev_resume(struct device *dev) 1723 { 1724 struct input_dev *input_dev = to_input_dev(dev); 1725 1726 spin_lock_irq(&input_dev->event_lock); 1727 1728 /* Restore state of LEDs and sounds, if any were active. */ 1729 input_dev_toggle(input_dev, true); 1730 1731 spin_unlock_irq(&input_dev->event_lock); 1732 1733 return 0; 1734 } 1735 1736 static int input_dev_freeze(struct device *dev) 1737 { 1738 struct input_dev *input_dev = to_input_dev(dev); 1739 1740 spin_lock_irq(&input_dev->event_lock); 1741 1742 /* 1743 * Keys that are pressed now are unlikely to be 1744 * still pressed when we resume. 1745 */ 1746 input_dev_release_keys(input_dev); 1747 1748 spin_unlock_irq(&input_dev->event_lock); 1749 1750 return 0; 1751 } 1752 1753 static int input_dev_poweroff(struct device *dev) 1754 { 1755 struct input_dev *input_dev = to_input_dev(dev); 1756 1757 spin_lock_irq(&input_dev->event_lock); 1758 1759 /* Turn off LEDs and sounds, if any are active. */ 1760 input_dev_toggle(input_dev, false); 1761 1762 spin_unlock_irq(&input_dev->event_lock); 1763 1764 return 0; 1765 } 1766 1767 static const struct dev_pm_ops input_dev_pm_ops = { 1768 .suspend = input_dev_suspend, 1769 .resume = input_dev_resume, 1770 .freeze = input_dev_freeze, 1771 .poweroff = input_dev_poweroff, 1772 .restore = input_dev_resume, 1773 }; 1774 #endif /* CONFIG_PM */ 1775 1776 static const struct device_type input_dev_type = { 1777 .groups = input_dev_attr_groups, 1778 .release = input_dev_release, 1779 .uevent = input_dev_uevent, 1780 #ifdef CONFIG_PM_SLEEP 1781 .pm = &input_dev_pm_ops, 1782 #endif 1783 }; 1784 1785 static char *input_devnode(struct device *dev, umode_t *mode) 1786 { 1787 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1788 } 1789 1790 struct class input_class = { 1791 .name = "input", 1792 .devnode = input_devnode, 1793 }; 1794 EXPORT_SYMBOL_GPL(input_class); 1795 1796 /** 1797 * input_allocate_device - allocate memory for new input device 1798 * 1799 * Returns prepared struct input_dev or %NULL. 1800 * 1801 * NOTE: Use input_free_device() to free devices that have not been 1802 * registered; input_unregister_device() should be used for already 1803 * registered devices. 1804 */ 1805 struct input_dev *input_allocate_device(void) 1806 { 1807 static atomic_t input_no = ATOMIC_INIT(-1); 1808 struct input_dev *dev; 1809 1810 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1811 if (dev) { 1812 dev->dev.type = &input_dev_type; 1813 dev->dev.class = &input_class; 1814 device_initialize(&dev->dev); 1815 mutex_init(&dev->mutex); 1816 spin_lock_init(&dev->event_lock); 1817 timer_setup(&dev->timer, NULL, 0); 1818 INIT_LIST_HEAD(&dev->h_list); 1819 INIT_LIST_HEAD(&dev->node); 1820 1821 dev_set_name(&dev->dev, "input%lu", 1822 (unsigned long)atomic_inc_return(&input_no)); 1823 1824 __module_get(THIS_MODULE); 1825 } 1826 1827 return dev; 1828 } 1829 EXPORT_SYMBOL(input_allocate_device); 1830 1831 struct input_devres { 1832 struct input_dev *input; 1833 }; 1834 1835 static int devm_input_device_match(struct device *dev, void *res, void *data) 1836 { 1837 struct input_devres *devres = res; 1838 1839 return devres->input == data; 1840 } 1841 1842 static void devm_input_device_release(struct device *dev, void *res) 1843 { 1844 struct input_devres *devres = res; 1845 struct input_dev *input = devres->input; 1846 1847 dev_dbg(dev, "%s: dropping reference to %s\n", 1848 __func__, dev_name(&input->dev)); 1849 input_put_device(input); 1850 } 1851 1852 /** 1853 * devm_input_allocate_device - allocate managed input device 1854 * @dev: device owning the input device being created 1855 * 1856 * Returns prepared struct input_dev or %NULL. 1857 * 1858 * Managed input devices do not need to be explicitly unregistered or 1859 * freed as it will be done automatically when owner device unbinds from 1860 * its driver (or binding fails). Once managed input device is allocated, 1861 * it is ready to be set up and registered in the same fashion as regular 1862 * input device. There are no special devm_input_device_[un]register() 1863 * variants, regular ones work with both managed and unmanaged devices, 1864 * should you need them. In most cases however, managed input device need 1865 * not be explicitly unregistered or freed. 1866 * 1867 * NOTE: the owner device is set up as parent of input device and users 1868 * should not override it. 1869 */ 1870 struct input_dev *devm_input_allocate_device(struct device *dev) 1871 { 1872 struct input_dev *input; 1873 struct input_devres *devres; 1874 1875 devres = devres_alloc(devm_input_device_release, 1876 sizeof(*devres), GFP_KERNEL); 1877 if (!devres) 1878 return NULL; 1879 1880 input = input_allocate_device(); 1881 if (!input) { 1882 devres_free(devres); 1883 return NULL; 1884 } 1885 1886 input->dev.parent = dev; 1887 input->devres_managed = true; 1888 1889 devres->input = input; 1890 devres_add(dev, devres); 1891 1892 return input; 1893 } 1894 EXPORT_SYMBOL(devm_input_allocate_device); 1895 1896 /** 1897 * input_free_device - free memory occupied by input_dev structure 1898 * @dev: input device to free 1899 * 1900 * This function should only be used if input_register_device() 1901 * was not called yet or if it failed. Once device was registered 1902 * use input_unregister_device() and memory will be freed once last 1903 * reference to the device is dropped. 1904 * 1905 * Device should be allocated by input_allocate_device(). 1906 * 1907 * NOTE: If there are references to the input device then memory 1908 * will not be freed until last reference is dropped. 1909 */ 1910 void input_free_device(struct input_dev *dev) 1911 { 1912 if (dev) { 1913 if (dev->devres_managed) 1914 WARN_ON(devres_destroy(dev->dev.parent, 1915 devm_input_device_release, 1916 devm_input_device_match, 1917 dev)); 1918 input_put_device(dev); 1919 } 1920 } 1921 EXPORT_SYMBOL(input_free_device); 1922 1923 /** 1924 * input_set_timestamp - set timestamp for input events 1925 * @dev: input device to set timestamp for 1926 * @timestamp: the time at which the event has occurred 1927 * in CLOCK_MONOTONIC 1928 * 1929 * This function is intended to provide to the input system a more 1930 * accurate time of when an event actually occurred. The driver should 1931 * call this function as soon as a timestamp is acquired ensuring 1932 * clock conversions in input_set_timestamp are done correctly. 1933 * 1934 * The system entering suspend state between timestamp acquisition and 1935 * calling input_set_timestamp can result in inaccurate conversions. 1936 */ 1937 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp) 1938 { 1939 dev->timestamp[INPUT_CLK_MONO] = timestamp; 1940 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp); 1941 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp, 1942 TK_OFFS_BOOT); 1943 } 1944 EXPORT_SYMBOL(input_set_timestamp); 1945 1946 /** 1947 * input_get_timestamp - get timestamp for input events 1948 * @dev: input device to get timestamp from 1949 * 1950 * A valid timestamp is a timestamp of non-zero value. 1951 */ 1952 ktime_t *input_get_timestamp(struct input_dev *dev) 1953 { 1954 const ktime_t invalid_timestamp = ktime_set(0, 0); 1955 1956 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp)) 1957 input_set_timestamp(dev, ktime_get()); 1958 1959 return dev->timestamp; 1960 } 1961 EXPORT_SYMBOL(input_get_timestamp); 1962 1963 /** 1964 * input_set_capability - mark device as capable of a certain event 1965 * @dev: device that is capable of emitting or accepting event 1966 * @type: type of the event (EV_KEY, EV_REL, etc...) 1967 * @code: event code 1968 * 1969 * In addition to setting up corresponding bit in appropriate capability 1970 * bitmap the function also adjusts dev->evbit. 1971 */ 1972 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1973 { 1974 switch (type) { 1975 case EV_KEY: 1976 __set_bit(code, dev->keybit); 1977 break; 1978 1979 case EV_REL: 1980 __set_bit(code, dev->relbit); 1981 break; 1982 1983 case EV_ABS: 1984 input_alloc_absinfo(dev); 1985 if (!dev->absinfo) 1986 return; 1987 1988 __set_bit(code, dev->absbit); 1989 break; 1990 1991 case EV_MSC: 1992 __set_bit(code, dev->mscbit); 1993 break; 1994 1995 case EV_SW: 1996 __set_bit(code, dev->swbit); 1997 break; 1998 1999 case EV_LED: 2000 __set_bit(code, dev->ledbit); 2001 break; 2002 2003 case EV_SND: 2004 __set_bit(code, dev->sndbit); 2005 break; 2006 2007 case EV_FF: 2008 __set_bit(code, dev->ffbit); 2009 break; 2010 2011 case EV_PWR: 2012 /* do nothing */ 2013 break; 2014 2015 default: 2016 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code); 2017 dump_stack(); 2018 return; 2019 } 2020 2021 __set_bit(type, dev->evbit); 2022 } 2023 EXPORT_SYMBOL(input_set_capability); 2024 2025 static unsigned int input_estimate_events_per_packet(struct input_dev *dev) 2026 { 2027 int mt_slots; 2028 int i; 2029 unsigned int events; 2030 2031 if (dev->mt) { 2032 mt_slots = dev->mt->num_slots; 2033 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { 2034 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - 2035 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, 2036 mt_slots = clamp(mt_slots, 2, 32); 2037 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { 2038 mt_slots = 2; 2039 } else { 2040 mt_slots = 0; 2041 } 2042 2043 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ 2044 2045 if (test_bit(EV_ABS, dev->evbit)) 2046 for_each_set_bit(i, dev->absbit, ABS_CNT) 2047 events += input_is_mt_axis(i) ? mt_slots : 1; 2048 2049 if (test_bit(EV_REL, dev->evbit)) 2050 events += bitmap_weight(dev->relbit, REL_CNT); 2051 2052 /* Make room for KEY and MSC events */ 2053 events += 7; 2054 2055 return events; 2056 } 2057 2058 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 2059 do { \ 2060 if (!test_bit(EV_##type, dev->evbit)) \ 2061 memset(dev->bits##bit, 0, \ 2062 sizeof(dev->bits##bit)); \ 2063 } while (0) 2064 2065 static void input_cleanse_bitmasks(struct input_dev *dev) 2066 { 2067 INPUT_CLEANSE_BITMASK(dev, KEY, key); 2068 INPUT_CLEANSE_BITMASK(dev, REL, rel); 2069 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 2070 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 2071 INPUT_CLEANSE_BITMASK(dev, LED, led); 2072 INPUT_CLEANSE_BITMASK(dev, SND, snd); 2073 INPUT_CLEANSE_BITMASK(dev, FF, ff); 2074 INPUT_CLEANSE_BITMASK(dev, SW, sw); 2075 } 2076 2077 static void __input_unregister_device(struct input_dev *dev) 2078 { 2079 struct input_handle *handle, *next; 2080 2081 input_disconnect_device(dev); 2082 2083 mutex_lock(&input_mutex); 2084 2085 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 2086 handle->handler->disconnect(handle); 2087 WARN_ON(!list_empty(&dev->h_list)); 2088 2089 del_timer_sync(&dev->timer); 2090 list_del_init(&dev->node); 2091 2092 input_wakeup_procfs_readers(); 2093 2094 mutex_unlock(&input_mutex); 2095 2096 device_del(&dev->dev); 2097 } 2098 2099 static void devm_input_device_unregister(struct device *dev, void *res) 2100 { 2101 struct input_devres *devres = res; 2102 struct input_dev *input = devres->input; 2103 2104 dev_dbg(dev, "%s: unregistering device %s\n", 2105 __func__, dev_name(&input->dev)); 2106 __input_unregister_device(input); 2107 } 2108 2109 /** 2110 * input_enable_softrepeat - enable software autorepeat 2111 * @dev: input device 2112 * @delay: repeat delay 2113 * @period: repeat period 2114 * 2115 * Enable software autorepeat on the input device. 2116 */ 2117 void input_enable_softrepeat(struct input_dev *dev, int delay, int period) 2118 { 2119 dev->timer.function = input_repeat_key; 2120 dev->rep[REP_DELAY] = delay; 2121 dev->rep[REP_PERIOD] = period; 2122 } 2123 EXPORT_SYMBOL(input_enable_softrepeat); 2124 2125 /** 2126 * input_register_device - register device with input core 2127 * @dev: device to be registered 2128 * 2129 * This function registers device with input core. The device must be 2130 * allocated with input_allocate_device() and all it's capabilities 2131 * set up before registering. 2132 * If function fails the device must be freed with input_free_device(). 2133 * Once device has been successfully registered it can be unregistered 2134 * with input_unregister_device(); input_free_device() should not be 2135 * called in this case. 2136 * 2137 * Note that this function is also used to register managed input devices 2138 * (ones allocated with devm_input_allocate_device()). Such managed input 2139 * devices need not be explicitly unregistered or freed, their tear down 2140 * is controlled by the devres infrastructure. It is also worth noting 2141 * that tear down of managed input devices is internally a 2-step process: 2142 * registered managed input device is first unregistered, but stays in 2143 * memory and can still handle input_event() calls (although events will 2144 * not be delivered anywhere). The freeing of managed input device will 2145 * happen later, when devres stack is unwound to the point where device 2146 * allocation was made. 2147 */ 2148 int input_register_device(struct input_dev *dev) 2149 { 2150 struct input_devres *devres = NULL; 2151 struct input_handler *handler; 2152 unsigned int packet_size; 2153 const char *path; 2154 int error; 2155 2156 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) { 2157 dev_err(&dev->dev, 2158 "Absolute device without dev->absinfo, refusing to register\n"); 2159 return -EINVAL; 2160 } 2161 2162 if (dev->devres_managed) { 2163 devres = devres_alloc(devm_input_device_unregister, 2164 sizeof(*devres), GFP_KERNEL); 2165 if (!devres) 2166 return -ENOMEM; 2167 2168 devres->input = dev; 2169 } 2170 2171 /* Every input device generates EV_SYN/SYN_REPORT events. */ 2172 __set_bit(EV_SYN, dev->evbit); 2173 2174 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 2175 __clear_bit(KEY_RESERVED, dev->keybit); 2176 2177 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 2178 input_cleanse_bitmasks(dev); 2179 2180 packet_size = input_estimate_events_per_packet(dev); 2181 if (dev->hint_events_per_packet < packet_size) 2182 dev->hint_events_per_packet = packet_size; 2183 2184 dev->max_vals = dev->hint_events_per_packet + 2; 2185 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); 2186 if (!dev->vals) { 2187 error = -ENOMEM; 2188 goto err_devres_free; 2189 } 2190 2191 /* 2192 * If delay and period are pre-set by the driver, then autorepeating 2193 * is handled by the driver itself and we don't do it in input.c. 2194 */ 2195 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) 2196 input_enable_softrepeat(dev, 250, 33); 2197 2198 if (!dev->getkeycode) 2199 dev->getkeycode = input_default_getkeycode; 2200 2201 if (!dev->setkeycode) 2202 dev->setkeycode = input_default_setkeycode; 2203 2204 if (dev->poller) 2205 input_dev_poller_finalize(dev->poller); 2206 2207 error = device_add(&dev->dev); 2208 if (error) 2209 goto err_free_vals; 2210 2211 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 2212 pr_info("%s as %s\n", 2213 dev->name ? dev->name : "Unspecified device", 2214 path ? path : "N/A"); 2215 kfree(path); 2216 2217 error = mutex_lock_interruptible(&input_mutex); 2218 if (error) 2219 goto err_device_del; 2220 2221 list_add_tail(&dev->node, &input_dev_list); 2222 2223 list_for_each_entry(handler, &input_handler_list, node) 2224 input_attach_handler(dev, handler); 2225 2226 input_wakeup_procfs_readers(); 2227 2228 mutex_unlock(&input_mutex); 2229 2230 if (dev->devres_managed) { 2231 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n", 2232 __func__, dev_name(&dev->dev)); 2233 devres_add(dev->dev.parent, devres); 2234 } 2235 return 0; 2236 2237 err_device_del: 2238 device_del(&dev->dev); 2239 err_free_vals: 2240 kfree(dev->vals); 2241 dev->vals = NULL; 2242 err_devres_free: 2243 devres_free(devres); 2244 return error; 2245 } 2246 EXPORT_SYMBOL(input_register_device); 2247 2248 /** 2249 * input_unregister_device - unregister previously registered device 2250 * @dev: device to be unregistered 2251 * 2252 * This function unregisters an input device. Once device is unregistered 2253 * the caller should not try to access it as it may get freed at any moment. 2254 */ 2255 void input_unregister_device(struct input_dev *dev) 2256 { 2257 if (dev->devres_managed) { 2258 WARN_ON(devres_destroy(dev->dev.parent, 2259 devm_input_device_unregister, 2260 devm_input_device_match, 2261 dev)); 2262 __input_unregister_device(dev); 2263 /* 2264 * We do not do input_put_device() here because it will be done 2265 * when 2nd devres fires up. 2266 */ 2267 } else { 2268 __input_unregister_device(dev); 2269 input_put_device(dev); 2270 } 2271 } 2272 EXPORT_SYMBOL(input_unregister_device); 2273 2274 /** 2275 * input_register_handler - register a new input handler 2276 * @handler: handler to be registered 2277 * 2278 * This function registers a new input handler (interface) for input 2279 * devices in the system and attaches it to all input devices that 2280 * are compatible with the handler. 2281 */ 2282 int input_register_handler(struct input_handler *handler) 2283 { 2284 struct input_dev *dev; 2285 int error; 2286 2287 error = mutex_lock_interruptible(&input_mutex); 2288 if (error) 2289 return error; 2290 2291 INIT_LIST_HEAD(&handler->h_list); 2292 2293 list_add_tail(&handler->node, &input_handler_list); 2294 2295 list_for_each_entry(dev, &input_dev_list, node) 2296 input_attach_handler(dev, handler); 2297 2298 input_wakeup_procfs_readers(); 2299 2300 mutex_unlock(&input_mutex); 2301 return 0; 2302 } 2303 EXPORT_SYMBOL(input_register_handler); 2304 2305 /** 2306 * input_unregister_handler - unregisters an input handler 2307 * @handler: handler to be unregistered 2308 * 2309 * This function disconnects a handler from its input devices and 2310 * removes it from lists of known handlers. 2311 */ 2312 void input_unregister_handler(struct input_handler *handler) 2313 { 2314 struct input_handle *handle, *next; 2315 2316 mutex_lock(&input_mutex); 2317 2318 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 2319 handler->disconnect(handle); 2320 WARN_ON(!list_empty(&handler->h_list)); 2321 2322 list_del_init(&handler->node); 2323 2324 input_wakeup_procfs_readers(); 2325 2326 mutex_unlock(&input_mutex); 2327 } 2328 EXPORT_SYMBOL(input_unregister_handler); 2329 2330 /** 2331 * input_handler_for_each_handle - handle iterator 2332 * @handler: input handler to iterate 2333 * @data: data for the callback 2334 * @fn: function to be called for each handle 2335 * 2336 * Iterate over @bus's list of devices, and call @fn for each, passing 2337 * it @data and stop when @fn returns a non-zero value. The function is 2338 * using RCU to traverse the list and therefore may be using in atomic 2339 * contexts. The @fn callback is invoked from RCU critical section and 2340 * thus must not sleep. 2341 */ 2342 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2343 int (*fn)(struct input_handle *, void *)) 2344 { 2345 struct input_handle *handle; 2346 int retval = 0; 2347 2348 rcu_read_lock(); 2349 2350 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2351 retval = fn(handle, data); 2352 if (retval) 2353 break; 2354 } 2355 2356 rcu_read_unlock(); 2357 2358 return retval; 2359 } 2360 EXPORT_SYMBOL(input_handler_for_each_handle); 2361 2362 /** 2363 * input_register_handle - register a new input handle 2364 * @handle: handle to register 2365 * 2366 * This function puts a new input handle onto device's 2367 * and handler's lists so that events can flow through 2368 * it once it is opened using input_open_device(). 2369 * 2370 * This function is supposed to be called from handler's 2371 * connect() method. 2372 */ 2373 int input_register_handle(struct input_handle *handle) 2374 { 2375 struct input_handler *handler = handle->handler; 2376 struct input_dev *dev = handle->dev; 2377 int error; 2378 2379 /* 2380 * We take dev->mutex here to prevent race with 2381 * input_release_device(). 2382 */ 2383 error = mutex_lock_interruptible(&dev->mutex); 2384 if (error) 2385 return error; 2386 2387 /* 2388 * Filters go to the head of the list, normal handlers 2389 * to the tail. 2390 */ 2391 if (handler->filter) 2392 list_add_rcu(&handle->d_node, &dev->h_list); 2393 else 2394 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2395 2396 mutex_unlock(&dev->mutex); 2397 2398 /* 2399 * Since we are supposed to be called from ->connect() 2400 * which is mutually exclusive with ->disconnect() 2401 * we can't be racing with input_unregister_handle() 2402 * and so separate lock is not needed here. 2403 */ 2404 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2405 2406 if (handler->start) 2407 handler->start(handle); 2408 2409 return 0; 2410 } 2411 EXPORT_SYMBOL(input_register_handle); 2412 2413 /** 2414 * input_unregister_handle - unregister an input handle 2415 * @handle: handle to unregister 2416 * 2417 * This function removes input handle from device's 2418 * and handler's lists. 2419 * 2420 * This function is supposed to be called from handler's 2421 * disconnect() method. 2422 */ 2423 void input_unregister_handle(struct input_handle *handle) 2424 { 2425 struct input_dev *dev = handle->dev; 2426 2427 list_del_rcu(&handle->h_node); 2428 2429 /* 2430 * Take dev->mutex to prevent race with input_release_device(). 2431 */ 2432 mutex_lock(&dev->mutex); 2433 list_del_rcu(&handle->d_node); 2434 mutex_unlock(&dev->mutex); 2435 2436 synchronize_rcu(); 2437 } 2438 EXPORT_SYMBOL(input_unregister_handle); 2439 2440 /** 2441 * input_get_new_minor - allocates a new input minor number 2442 * @legacy_base: beginning or the legacy range to be searched 2443 * @legacy_num: size of legacy range 2444 * @allow_dynamic: whether we can also take ID from the dynamic range 2445 * 2446 * This function allocates a new device minor for from input major namespace. 2447 * Caller can request legacy minor by specifying @legacy_base and @legacy_num 2448 * parameters and whether ID can be allocated from dynamic range if there are 2449 * no free IDs in legacy range. 2450 */ 2451 int input_get_new_minor(int legacy_base, unsigned int legacy_num, 2452 bool allow_dynamic) 2453 { 2454 /* 2455 * This function should be called from input handler's ->connect() 2456 * methods, which are serialized with input_mutex, so no additional 2457 * locking is needed here. 2458 */ 2459 if (legacy_base >= 0) { 2460 int minor = ida_simple_get(&input_ida, 2461 legacy_base, 2462 legacy_base + legacy_num, 2463 GFP_KERNEL); 2464 if (minor >= 0 || !allow_dynamic) 2465 return minor; 2466 } 2467 2468 return ida_simple_get(&input_ida, 2469 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES, 2470 GFP_KERNEL); 2471 } 2472 EXPORT_SYMBOL(input_get_new_minor); 2473 2474 /** 2475 * input_free_minor - release previously allocated minor 2476 * @minor: minor to be released 2477 * 2478 * This function releases previously allocated input minor so that it can be 2479 * reused later. 2480 */ 2481 void input_free_minor(unsigned int minor) 2482 { 2483 ida_simple_remove(&input_ida, minor); 2484 } 2485 EXPORT_SYMBOL(input_free_minor); 2486 2487 static int __init input_init(void) 2488 { 2489 int err; 2490 2491 err = class_register(&input_class); 2492 if (err) { 2493 pr_err("unable to register input_dev class\n"); 2494 return err; 2495 } 2496 2497 err = input_proc_init(); 2498 if (err) 2499 goto fail1; 2500 2501 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2502 INPUT_MAX_CHAR_DEVICES, "input"); 2503 if (err) { 2504 pr_err("unable to register char major %d", INPUT_MAJOR); 2505 goto fail2; 2506 } 2507 2508 return 0; 2509 2510 fail2: input_proc_exit(); 2511 fail1: class_unregister(&input_class); 2512 return err; 2513 } 2514 2515 static void __exit input_exit(void) 2516 { 2517 input_proc_exit(); 2518 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2519 INPUT_MAX_CHAR_DEVICES); 2520 class_unregister(&input_class); 2521 } 2522 2523 subsys_initcall(input_init); 2524 module_exit(input_exit); 2525