1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 14 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/idr.h> 18 #include <linux/input/mt.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/random.h> 22 #include <linux/major.h> 23 #include <linux/proc_fs.h> 24 #include <linux/sched.h> 25 #include <linux/seq_file.h> 26 #include <linux/poll.h> 27 #include <linux/device.h> 28 #include <linux/mutex.h> 29 #include <linux/rcupdate.h> 30 #include "input-compat.h" 31 32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 33 MODULE_DESCRIPTION("Input core"); 34 MODULE_LICENSE("GPL"); 35 36 #define INPUT_MAX_CHAR_DEVICES 1024 37 #define INPUT_FIRST_DYNAMIC_DEV 256 38 static DEFINE_IDA(input_ida); 39 40 static LIST_HEAD(input_dev_list); 41 static LIST_HEAD(input_handler_list); 42 43 /* 44 * input_mutex protects access to both input_dev_list and input_handler_list. 45 * This also causes input_[un]register_device and input_[un]register_handler 46 * be mutually exclusive which simplifies locking in drivers implementing 47 * input handlers. 48 */ 49 static DEFINE_MUTEX(input_mutex); 50 51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; 52 53 static inline int is_event_supported(unsigned int code, 54 unsigned long *bm, unsigned int max) 55 { 56 return code <= max && test_bit(code, bm); 57 } 58 59 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 60 { 61 if (fuzz) { 62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 63 return old_val; 64 65 if (value > old_val - fuzz && value < old_val + fuzz) 66 return (old_val * 3 + value) / 4; 67 68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 69 return (old_val + value) / 2; 70 } 71 72 return value; 73 } 74 75 static void input_start_autorepeat(struct input_dev *dev, int code) 76 { 77 if (test_bit(EV_REP, dev->evbit) && 78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 79 dev->timer.data) { 80 dev->repeat_key = code; 81 mod_timer(&dev->timer, 82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 83 } 84 } 85 86 static void input_stop_autorepeat(struct input_dev *dev) 87 { 88 del_timer(&dev->timer); 89 } 90 91 /* 92 * Pass event first through all filters and then, if event has not been 93 * filtered out, through all open handles. This function is called with 94 * dev->event_lock held and interrupts disabled. 95 */ 96 static unsigned int input_to_handler(struct input_handle *handle, 97 struct input_value *vals, unsigned int count) 98 { 99 struct input_handler *handler = handle->handler; 100 struct input_value *end = vals; 101 struct input_value *v; 102 103 for (v = vals; v != vals + count; v++) { 104 if (handler->filter && 105 handler->filter(handle, v->type, v->code, v->value)) 106 continue; 107 if (end != v) 108 *end = *v; 109 end++; 110 } 111 112 count = end - vals; 113 if (!count) 114 return 0; 115 116 if (handler->events) 117 handler->events(handle, vals, count); 118 else if (handler->event) 119 for (v = vals; v != end; v++) 120 handler->event(handle, v->type, v->code, v->value); 121 122 return count; 123 } 124 125 /* 126 * Pass values first through all filters and then, if event has not been 127 * filtered out, through all open handles. This function is called with 128 * dev->event_lock held and interrupts disabled. 129 */ 130 static void input_pass_values(struct input_dev *dev, 131 struct input_value *vals, unsigned int count) 132 { 133 struct input_handle *handle; 134 struct input_value *v; 135 136 if (!count) 137 return; 138 139 rcu_read_lock(); 140 141 handle = rcu_dereference(dev->grab); 142 if (handle) { 143 count = input_to_handler(handle, vals, count); 144 } else { 145 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 146 if (handle->open) 147 count = input_to_handler(handle, vals, count); 148 } 149 150 rcu_read_unlock(); 151 152 add_input_randomness(vals->type, vals->code, vals->value); 153 154 /* trigger auto repeat for key events */ 155 for (v = vals; v != vals + count; v++) { 156 if (v->type == EV_KEY && v->value != 2) { 157 if (v->value) 158 input_start_autorepeat(dev, v->code); 159 else 160 input_stop_autorepeat(dev); 161 } 162 } 163 } 164 165 static void input_pass_event(struct input_dev *dev, 166 unsigned int type, unsigned int code, int value) 167 { 168 struct input_value vals[] = { { type, code, value } }; 169 170 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 171 } 172 173 /* 174 * Generate software autorepeat event. Note that we take 175 * dev->event_lock here to avoid racing with input_event 176 * which may cause keys get "stuck". 177 */ 178 static void input_repeat_key(unsigned long data) 179 { 180 struct input_dev *dev = (void *) data; 181 unsigned long flags; 182 183 spin_lock_irqsave(&dev->event_lock, flags); 184 185 if (test_bit(dev->repeat_key, dev->key) && 186 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 187 struct input_value vals[] = { 188 { EV_KEY, dev->repeat_key, 2 }, 189 input_value_sync 190 }; 191 192 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 193 194 if (dev->rep[REP_PERIOD]) 195 mod_timer(&dev->timer, jiffies + 196 msecs_to_jiffies(dev->rep[REP_PERIOD])); 197 } 198 199 spin_unlock_irqrestore(&dev->event_lock, flags); 200 } 201 202 #define INPUT_IGNORE_EVENT 0 203 #define INPUT_PASS_TO_HANDLERS 1 204 #define INPUT_PASS_TO_DEVICE 2 205 #define INPUT_SLOT 4 206 #define INPUT_FLUSH 8 207 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 208 209 static int input_handle_abs_event(struct input_dev *dev, 210 unsigned int code, int *pval) 211 { 212 struct input_mt *mt = dev->mt; 213 bool is_mt_event; 214 int *pold; 215 216 if (code == ABS_MT_SLOT) { 217 /* 218 * "Stage" the event; we'll flush it later, when we 219 * get actual touch data. 220 */ 221 if (mt && *pval >= 0 && *pval < mt->num_slots) 222 mt->slot = *pval; 223 224 return INPUT_IGNORE_EVENT; 225 } 226 227 is_mt_event = input_is_mt_value(code); 228 229 if (!is_mt_event) { 230 pold = &dev->absinfo[code].value; 231 } else if (mt) { 232 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; 233 } else { 234 /* 235 * Bypass filtering for multi-touch events when 236 * not employing slots. 237 */ 238 pold = NULL; 239 } 240 241 if (pold) { 242 *pval = input_defuzz_abs_event(*pval, *pold, 243 dev->absinfo[code].fuzz); 244 if (*pold == *pval) 245 return INPUT_IGNORE_EVENT; 246 247 *pold = *pval; 248 } 249 250 /* Flush pending "slot" event */ 251 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 252 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot); 253 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; 254 } 255 256 return INPUT_PASS_TO_HANDLERS; 257 } 258 259 static int input_get_disposition(struct input_dev *dev, 260 unsigned int type, unsigned int code, int value) 261 { 262 int disposition = INPUT_IGNORE_EVENT; 263 264 switch (type) { 265 266 case EV_SYN: 267 switch (code) { 268 case SYN_CONFIG: 269 disposition = INPUT_PASS_TO_ALL; 270 break; 271 272 case SYN_REPORT: 273 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; 274 break; 275 case SYN_MT_REPORT: 276 disposition = INPUT_PASS_TO_HANDLERS; 277 break; 278 } 279 break; 280 281 case EV_KEY: 282 if (is_event_supported(code, dev->keybit, KEY_MAX)) { 283 284 /* auto-repeat bypasses state updates */ 285 if (value == 2) { 286 disposition = INPUT_PASS_TO_HANDLERS; 287 break; 288 } 289 290 if (!!test_bit(code, dev->key) != !!value) { 291 292 __change_bit(code, dev->key); 293 disposition = INPUT_PASS_TO_HANDLERS; 294 } 295 } 296 break; 297 298 case EV_SW: 299 if (is_event_supported(code, dev->swbit, SW_MAX) && 300 !!test_bit(code, dev->sw) != !!value) { 301 302 __change_bit(code, dev->sw); 303 disposition = INPUT_PASS_TO_HANDLERS; 304 } 305 break; 306 307 case EV_ABS: 308 if (is_event_supported(code, dev->absbit, ABS_MAX)) 309 disposition = input_handle_abs_event(dev, code, &value); 310 311 break; 312 313 case EV_REL: 314 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 315 disposition = INPUT_PASS_TO_HANDLERS; 316 317 break; 318 319 case EV_MSC: 320 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 321 disposition = INPUT_PASS_TO_ALL; 322 323 break; 324 325 case EV_LED: 326 if (is_event_supported(code, dev->ledbit, LED_MAX) && 327 !!test_bit(code, dev->led) != !!value) { 328 329 __change_bit(code, dev->led); 330 disposition = INPUT_PASS_TO_ALL; 331 } 332 break; 333 334 case EV_SND: 335 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 336 337 if (!!test_bit(code, dev->snd) != !!value) 338 __change_bit(code, dev->snd); 339 disposition = INPUT_PASS_TO_ALL; 340 } 341 break; 342 343 case EV_REP: 344 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 345 dev->rep[code] = value; 346 disposition = INPUT_PASS_TO_ALL; 347 } 348 break; 349 350 case EV_FF: 351 if (value >= 0) 352 disposition = INPUT_PASS_TO_ALL; 353 break; 354 355 case EV_PWR: 356 disposition = INPUT_PASS_TO_ALL; 357 break; 358 } 359 360 return disposition; 361 } 362 363 static void input_handle_event(struct input_dev *dev, 364 unsigned int type, unsigned int code, int value) 365 { 366 int disposition; 367 368 disposition = input_get_disposition(dev, type, code, value); 369 370 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 371 dev->event(dev, type, code, value); 372 373 if (!dev->vals) 374 return; 375 376 if (disposition & INPUT_PASS_TO_HANDLERS) { 377 struct input_value *v; 378 379 if (disposition & INPUT_SLOT) { 380 v = &dev->vals[dev->num_vals++]; 381 v->type = EV_ABS; 382 v->code = ABS_MT_SLOT; 383 v->value = dev->mt->slot; 384 } 385 386 v = &dev->vals[dev->num_vals++]; 387 v->type = type; 388 v->code = code; 389 v->value = value; 390 } 391 392 if (disposition & INPUT_FLUSH) { 393 if (dev->num_vals >= 2) 394 input_pass_values(dev, dev->vals, dev->num_vals); 395 dev->num_vals = 0; 396 } else if (dev->num_vals >= dev->max_vals - 2) { 397 dev->vals[dev->num_vals++] = input_value_sync; 398 input_pass_values(dev, dev->vals, dev->num_vals); 399 dev->num_vals = 0; 400 } 401 402 } 403 404 /** 405 * input_event() - report new input event 406 * @dev: device that generated the event 407 * @type: type of the event 408 * @code: event code 409 * @value: value of the event 410 * 411 * This function should be used by drivers implementing various input 412 * devices to report input events. See also input_inject_event(). 413 * 414 * NOTE: input_event() may be safely used right after input device was 415 * allocated with input_allocate_device(), even before it is registered 416 * with input_register_device(), but the event will not reach any of the 417 * input handlers. Such early invocation of input_event() may be used 418 * to 'seed' initial state of a switch or initial position of absolute 419 * axis, etc. 420 */ 421 void input_event(struct input_dev *dev, 422 unsigned int type, unsigned int code, int value) 423 { 424 unsigned long flags; 425 426 if (is_event_supported(type, dev->evbit, EV_MAX)) { 427 428 spin_lock_irqsave(&dev->event_lock, flags); 429 input_handle_event(dev, type, code, value); 430 spin_unlock_irqrestore(&dev->event_lock, flags); 431 } 432 } 433 EXPORT_SYMBOL(input_event); 434 435 /** 436 * input_inject_event() - send input event from input handler 437 * @handle: input handle to send event through 438 * @type: type of the event 439 * @code: event code 440 * @value: value of the event 441 * 442 * Similar to input_event() but will ignore event if device is 443 * "grabbed" and handle injecting event is not the one that owns 444 * the device. 445 */ 446 void input_inject_event(struct input_handle *handle, 447 unsigned int type, unsigned int code, int value) 448 { 449 struct input_dev *dev = handle->dev; 450 struct input_handle *grab; 451 unsigned long flags; 452 453 if (is_event_supported(type, dev->evbit, EV_MAX)) { 454 spin_lock_irqsave(&dev->event_lock, flags); 455 456 rcu_read_lock(); 457 grab = rcu_dereference(dev->grab); 458 if (!grab || grab == handle) 459 input_handle_event(dev, type, code, value); 460 rcu_read_unlock(); 461 462 spin_unlock_irqrestore(&dev->event_lock, flags); 463 } 464 } 465 EXPORT_SYMBOL(input_inject_event); 466 467 /** 468 * input_alloc_absinfo - allocates array of input_absinfo structs 469 * @dev: the input device emitting absolute events 470 * 471 * If the absinfo struct the caller asked for is already allocated, this 472 * functions will not do anything. 473 */ 474 void input_alloc_absinfo(struct input_dev *dev) 475 { 476 if (!dev->absinfo) 477 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo), 478 GFP_KERNEL); 479 480 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__); 481 } 482 EXPORT_SYMBOL(input_alloc_absinfo); 483 484 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 485 int min, int max, int fuzz, int flat) 486 { 487 struct input_absinfo *absinfo; 488 489 input_alloc_absinfo(dev); 490 if (!dev->absinfo) 491 return; 492 493 absinfo = &dev->absinfo[axis]; 494 absinfo->minimum = min; 495 absinfo->maximum = max; 496 absinfo->fuzz = fuzz; 497 absinfo->flat = flat; 498 499 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis); 500 } 501 EXPORT_SYMBOL(input_set_abs_params); 502 503 504 /** 505 * input_grab_device - grabs device for exclusive use 506 * @handle: input handle that wants to own the device 507 * 508 * When a device is grabbed by an input handle all events generated by 509 * the device are delivered only to this handle. Also events injected 510 * by other input handles are ignored while device is grabbed. 511 */ 512 int input_grab_device(struct input_handle *handle) 513 { 514 struct input_dev *dev = handle->dev; 515 int retval; 516 517 retval = mutex_lock_interruptible(&dev->mutex); 518 if (retval) 519 return retval; 520 521 if (dev->grab) { 522 retval = -EBUSY; 523 goto out; 524 } 525 526 rcu_assign_pointer(dev->grab, handle); 527 528 out: 529 mutex_unlock(&dev->mutex); 530 return retval; 531 } 532 EXPORT_SYMBOL(input_grab_device); 533 534 static void __input_release_device(struct input_handle *handle) 535 { 536 struct input_dev *dev = handle->dev; 537 struct input_handle *grabber; 538 539 grabber = rcu_dereference_protected(dev->grab, 540 lockdep_is_held(&dev->mutex)); 541 if (grabber == handle) { 542 rcu_assign_pointer(dev->grab, NULL); 543 /* Make sure input_pass_event() notices that grab is gone */ 544 synchronize_rcu(); 545 546 list_for_each_entry(handle, &dev->h_list, d_node) 547 if (handle->open && handle->handler->start) 548 handle->handler->start(handle); 549 } 550 } 551 552 /** 553 * input_release_device - release previously grabbed device 554 * @handle: input handle that owns the device 555 * 556 * Releases previously grabbed device so that other input handles can 557 * start receiving input events. Upon release all handlers attached 558 * to the device have their start() method called so they have a change 559 * to synchronize device state with the rest of the system. 560 */ 561 void input_release_device(struct input_handle *handle) 562 { 563 struct input_dev *dev = handle->dev; 564 565 mutex_lock(&dev->mutex); 566 __input_release_device(handle); 567 mutex_unlock(&dev->mutex); 568 } 569 EXPORT_SYMBOL(input_release_device); 570 571 /** 572 * input_open_device - open input device 573 * @handle: handle through which device is being accessed 574 * 575 * This function should be called by input handlers when they 576 * want to start receive events from given input device. 577 */ 578 int input_open_device(struct input_handle *handle) 579 { 580 struct input_dev *dev = handle->dev; 581 int retval; 582 583 retval = mutex_lock_interruptible(&dev->mutex); 584 if (retval) 585 return retval; 586 587 if (dev->going_away) { 588 retval = -ENODEV; 589 goto out; 590 } 591 592 handle->open++; 593 594 if (!dev->users++ && dev->open) 595 retval = dev->open(dev); 596 597 if (retval) { 598 dev->users--; 599 if (!--handle->open) { 600 /* 601 * Make sure we are not delivering any more events 602 * through this handle 603 */ 604 synchronize_rcu(); 605 } 606 } 607 608 out: 609 mutex_unlock(&dev->mutex); 610 return retval; 611 } 612 EXPORT_SYMBOL(input_open_device); 613 614 int input_flush_device(struct input_handle *handle, struct file *file) 615 { 616 struct input_dev *dev = handle->dev; 617 int retval; 618 619 retval = mutex_lock_interruptible(&dev->mutex); 620 if (retval) 621 return retval; 622 623 if (dev->flush) 624 retval = dev->flush(dev, file); 625 626 mutex_unlock(&dev->mutex); 627 return retval; 628 } 629 EXPORT_SYMBOL(input_flush_device); 630 631 /** 632 * input_close_device - close input device 633 * @handle: handle through which device is being accessed 634 * 635 * This function should be called by input handlers when they 636 * want to stop receive events from given input device. 637 */ 638 void input_close_device(struct input_handle *handle) 639 { 640 struct input_dev *dev = handle->dev; 641 642 mutex_lock(&dev->mutex); 643 644 __input_release_device(handle); 645 646 if (!--dev->users && dev->close) 647 dev->close(dev); 648 649 if (!--handle->open) { 650 /* 651 * synchronize_rcu() makes sure that input_pass_event() 652 * completed and that no more input events are delivered 653 * through this handle 654 */ 655 synchronize_rcu(); 656 } 657 658 mutex_unlock(&dev->mutex); 659 } 660 EXPORT_SYMBOL(input_close_device); 661 662 /* 663 * Simulate keyup events for all keys that are marked as pressed. 664 * The function must be called with dev->event_lock held. 665 */ 666 static void input_dev_release_keys(struct input_dev *dev) 667 { 668 int code; 669 670 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 671 for (code = 0; code <= KEY_MAX; code++) { 672 if (is_event_supported(code, dev->keybit, KEY_MAX) && 673 __test_and_clear_bit(code, dev->key)) { 674 input_pass_event(dev, EV_KEY, code, 0); 675 } 676 } 677 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 678 } 679 } 680 681 /* 682 * Prepare device for unregistering 683 */ 684 static void input_disconnect_device(struct input_dev *dev) 685 { 686 struct input_handle *handle; 687 688 /* 689 * Mark device as going away. Note that we take dev->mutex here 690 * not to protect access to dev->going_away but rather to ensure 691 * that there are no threads in the middle of input_open_device() 692 */ 693 mutex_lock(&dev->mutex); 694 dev->going_away = true; 695 mutex_unlock(&dev->mutex); 696 697 spin_lock_irq(&dev->event_lock); 698 699 /* 700 * Simulate keyup events for all pressed keys so that handlers 701 * are not left with "stuck" keys. The driver may continue 702 * generate events even after we done here but they will not 703 * reach any handlers. 704 */ 705 input_dev_release_keys(dev); 706 707 list_for_each_entry(handle, &dev->h_list, d_node) 708 handle->open = 0; 709 710 spin_unlock_irq(&dev->event_lock); 711 } 712 713 /** 714 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 715 * @ke: keymap entry containing scancode to be converted. 716 * @scancode: pointer to the location where converted scancode should 717 * be stored. 718 * 719 * This function is used to convert scancode stored in &struct keymap_entry 720 * into scalar form understood by legacy keymap handling methods. These 721 * methods expect scancodes to be represented as 'unsigned int'. 722 */ 723 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 724 unsigned int *scancode) 725 { 726 switch (ke->len) { 727 case 1: 728 *scancode = *((u8 *)ke->scancode); 729 break; 730 731 case 2: 732 *scancode = *((u16 *)ke->scancode); 733 break; 734 735 case 4: 736 *scancode = *((u32 *)ke->scancode); 737 break; 738 739 default: 740 return -EINVAL; 741 } 742 743 return 0; 744 } 745 EXPORT_SYMBOL(input_scancode_to_scalar); 746 747 /* 748 * Those routines handle the default case where no [gs]etkeycode() is 749 * defined. In this case, an array indexed by the scancode is used. 750 */ 751 752 static unsigned int input_fetch_keycode(struct input_dev *dev, 753 unsigned int index) 754 { 755 switch (dev->keycodesize) { 756 case 1: 757 return ((u8 *)dev->keycode)[index]; 758 759 case 2: 760 return ((u16 *)dev->keycode)[index]; 761 762 default: 763 return ((u32 *)dev->keycode)[index]; 764 } 765 } 766 767 static int input_default_getkeycode(struct input_dev *dev, 768 struct input_keymap_entry *ke) 769 { 770 unsigned int index; 771 int error; 772 773 if (!dev->keycodesize) 774 return -EINVAL; 775 776 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 777 index = ke->index; 778 else { 779 error = input_scancode_to_scalar(ke, &index); 780 if (error) 781 return error; 782 } 783 784 if (index >= dev->keycodemax) 785 return -EINVAL; 786 787 ke->keycode = input_fetch_keycode(dev, index); 788 ke->index = index; 789 ke->len = sizeof(index); 790 memcpy(ke->scancode, &index, sizeof(index)); 791 792 return 0; 793 } 794 795 static int input_default_setkeycode(struct input_dev *dev, 796 const struct input_keymap_entry *ke, 797 unsigned int *old_keycode) 798 { 799 unsigned int index; 800 int error; 801 int i; 802 803 if (!dev->keycodesize) 804 return -EINVAL; 805 806 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 807 index = ke->index; 808 } else { 809 error = input_scancode_to_scalar(ke, &index); 810 if (error) 811 return error; 812 } 813 814 if (index >= dev->keycodemax) 815 return -EINVAL; 816 817 if (dev->keycodesize < sizeof(ke->keycode) && 818 (ke->keycode >> (dev->keycodesize * 8))) 819 return -EINVAL; 820 821 switch (dev->keycodesize) { 822 case 1: { 823 u8 *k = (u8 *)dev->keycode; 824 *old_keycode = k[index]; 825 k[index] = ke->keycode; 826 break; 827 } 828 case 2: { 829 u16 *k = (u16 *)dev->keycode; 830 *old_keycode = k[index]; 831 k[index] = ke->keycode; 832 break; 833 } 834 default: { 835 u32 *k = (u32 *)dev->keycode; 836 *old_keycode = k[index]; 837 k[index] = ke->keycode; 838 break; 839 } 840 } 841 842 __clear_bit(*old_keycode, dev->keybit); 843 __set_bit(ke->keycode, dev->keybit); 844 845 for (i = 0; i < dev->keycodemax; i++) { 846 if (input_fetch_keycode(dev, i) == *old_keycode) { 847 __set_bit(*old_keycode, dev->keybit); 848 break; /* Setting the bit twice is useless, so break */ 849 } 850 } 851 852 return 0; 853 } 854 855 /** 856 * input_get_keycode - retrieve keycode currently mapped to a given scancode 857 * @dev: input device which keymap is being queried 858 * @ke: keymap entry 859 * 860 * This function should be called by anyone interested in retrieving current 861 * keymap. Presently evdev handlers use it. 862 */ 863 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 864 { 865 unsigned long flags; 866 int retval; 867 868 spin_lock_irqsave(&dev->event_lock, flags); 869 retval = dev->getkeycode(dev, ke); 870 spin_unlock_irqrestore(&dev->event_lock, flags); 871 872 return retval; 873 } 874 EXPORT_SYMBOL(input_get_keycode); 875 876 /** 877 * input_set_keycode - attribute a keycode to a given scancode 878 * @dev: input device which keymap is being updated 879 * @ke: new keymap entry 880 * 881 * This function should be called by anyone needing to update current 882 * keymap. Presently keyboard and evdev handlers use it. 883 */ 884 int input_set_keycode(struct input_dev *dev, 885 const struct input_keymap_entry *ke) 886 { 887 unsigned long flags; 888 unsigned int old_keycode; 889 int retval; 890 891 if (ke->keycode > KEY_MAX) 892 return -EINVAL; 893 894 spin_lock_irqsave(&dev->event_lock, flags); 895 896 retval = dev->setkeycode(dev, ke, &old_keycode); 897 if (retval) 898 goto out; 899 900 /* Make sure KEY_RESERVED did not get enabled. */ 901 __clear_bit(KEY_RESERVED, dev->keybit); 902 903 /* 904 * Simulate keyup event if keycode is not present 905 * in the keymap anymore 906 */ 907 if (test_bit(EV_KEY, dev->evbit) && 908 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 909 __test_and_clear_bit(old_keycode, dev->key)) { 910 struct input_value vals[] = { 911 { EV_KEY, old_keycode, 0 }, 912 input_value_sync 913 }; 914 915 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 916 } 917 918 out: 919 spin_unlock_irqrestore(&dev->event_lock, flags); 920 921 return retval; 922 } 923 EXPORT_SYMBOL(input_set_keycode); 924 925 static const struct input_device_id *input_match_device(struct input_handler *handler, 926 struct input_dev *dev) 927 { 928 const struct input_device_id *id; 929 930 for (id = handler->id_table; id->flags || id->driver_info; id++) { 931 932 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 933 if (id->bustype != dev->id.bustype) 934 continue; 935 936 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 937 if (id->vendor != dev->id.vendor) 938 continue; 939 940 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 941 if (id->product != dev->id.product) 942 continue; 943 944 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 945 if (id->version != dev->id.version) 946 continue; 947 948 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX)) 949 continue; 950 951 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX)) 952 continue; 953 954 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX)) 955 continue; 956 957 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX)) 958 continue; 959 960 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX)) 961 continue; 962 963 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX)) 964 continue; 965 966 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX)) 967 continue; 968 969 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX)) 970 continue; 971 972 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX)) 973 continue; 974 975 if (!handler->match || handler->match(handler, dev)) 976 return id; 977 } 978 979 return NULL; 980 } 981 982 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 983 { 984 const struct input_device_id *id; 985 int error; 986 987 id = input_match_device(handler, dev); 988 if (!id) 989 return -ENODEV; 990 991 error = handler->connect(handler, dev, id); 992 if (error && error != -ENODEV) 993 pr_err("failed to attach handler %s to device %s, error: %d\n", 994 handler->name, kobject_name(&dev->dev.kobj), error); 995 996 return error; 997 } 998 999 #ifdef CONFIG_COMPAT 1000 1001 static int input_bits_to_string(char *buf, int buf_size, 1002 unsigned long bits, bool skip_empty) 1003 { 1004 int len = 0; 1005 1006 if (INPUT_COMPAT_TEST) { 1007 u32 dword = bits >> 32; 1008 if (dword || !skip_empty) 1009 len += snprintf(buf, buf_size, "%x ", dword); 1010 1011 dword = bits & 0xffffffffUL; 1012 if (dword || !skip_empty || len) 1013 len += snprintf(buf + len, max(buf_size - len, 0), 1014 "%x", dword); 1015 } else { 1016 if (bits || !skip_empty) 1017 len += snprintf(buf, buf_size, "%lx", bits); 1018 } 1019 1020 return len; 1021 } 1022 1023 #else /* !CONFIG_COMPAT */ 1024 1025 static int input_bits_to_string(char *buf, int buf_size, 1026 unsigned long bits, bool skip_empty) 1027 { 1028 return bits || !skip_empty ? 1029 snprintf(buf, buf_size, "%lx", bits) : 0; 1030 } 1031 1032 #endif 1033 1034 #ifdef CONFIG_PROC_FS 1035 1036 static struct proc_dir_entry *proc_bus_input_dir; 1037 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 1038 static int input_devices_state; 1039 1040 static inline void input_wakeup_procfs_readers(void) 1041 { 1042 input_devices_state++; 1043 wake_up(&input_devices_poll_wait); 1044 } 1045 1046 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 1047 { 1048 poll_wait(file, &input_devices_poll_wait, wait); 1049 if (file->f_version != input_devices_state) { 1050 file->f_version = input_devices_state; 1051 return POLLIN | POLLRDNORM; 1052 } 1053 1054 return 0; 1055 } 1056 1057 union input_seq_state { 1058 struct { 1059 unsigned short pos; 1060 bool mutex_acquired; 1061 }; 1062 void *p; 1063 }; 1064 1065 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1066 { 1067 union input_seq_state *state = (union input_seq_state *)&seq->private; 1068 int error; 1069 1070 /* We need to fit into seq->private pointer */ 1071 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1072 1073 error = mutex_lock_interruptible(&input_mutex); 1074 if (error) { 1075 state->mutex_acquired = false; 1076 return ERR_PTR(error); 1077 } 1078 1079 state->mutex_acquired = true; 1080 1081 return seq_list_start(&input_dev_list, *pos); 1082 } 1083 1084 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1085 { 1086 return seq_list_next(v, &input_dev_list, pos); 1087 } 1088 1089 static void input_seq_stop(struct seq_file *seq, void *v) 1090 { 1091 union input_seq_state *state = (union input_seq_state *)&seq->private; 1092 1093 if (state->mutex_acquired) 1094 mutex_unlock(&input_mutex); 1095 } 1096 1097 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1098 unsigned long *bitmap, int max) 1099 { 1100 int i; 1101 bool skip_empty = true; 1102 char buf[18]; 1103 1104 seq_printf(seq, "B: %s=", name); 1105 1106 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1107 if (input_bits_to_string(buf, sizeof(buf), 1108 bitmap[i], skip_empty)) { 1109 skip_empty = false; 1110 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1111 } 1112 } 1113 1114 /* 1115 * If no output was produced print a single 0. 1116 */ 1117 if (skip_empty) 1118 seq_puts(seq, "0"); 1119 1120 seq_putc(seq, '\n'); 1121 } 1122 1123 static int input_devices_seq_show(struct seq_file *seq, void *v) 1124 { 1125 struct input_dev *dev = container_of(v, struct input_dev, node); 1126 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1127 struct input_handle *handle; 1128 1129 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1130 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1131 1132 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1133 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1134 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1135 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1136 seq_printf(seq, "H: Handlers="); 1137 1138 list_for_each_entry(handle, &dev->h_list, d_node) 1139 seq_printf(seq, "%s ", handle->name); 1140 seq_putc(seq, '\n'); 1141 1142 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1143 1144 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1145 if (test_bit(EV_KEY, dev->evbit)) 1146 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1147 if (test_bit(EV_REL, dev->evbit)) 1148 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1149 if (test_bit(EV_ABS, dev->evbit)) 1150 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1151 if (test_bit(EV_MSC, dev->evbit)) 1152 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1153 if (test_bit(EV_LED, dev->evbit)) 1154 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1155 if (test_bit(EV_SND, dev->evbit)) 1156 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1157 if (test_bit(EV_FF, dev->evbit)) 1158 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1159 if (test_bit(EV_SW, dev->evbit)) 1160 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1161 1162 seq_putc(seq, '\n'); 1163 1164 kfree(path); 1165 return 0; 1166 } 1167 1168 static const struct seq_operations input_devices_seq_ops = { 1169 .start = input_devices_seq_start, 1170 .next = input_devices_seq_next, 1171 .stop = input_seq_stop, 1172 .show = input_devices_seq_show, 1173 }; 1174 1175 static int input_proc_devices_open(struct inode *inode, struct file *file) 1176 { 1177 return seq_open(file, &input_devices_seq_ops); 1178 } 1179 1180 static const struct file_operations input_devices_fileops = { 1181 .owner = THIS_MODULE, 1182 .open = input_proc_devices_open, 1183 .poll = input_proc_devices_poll, 1184 .read = seq_read, 1185 .llseek = seq_lseek, 1186 .release = seq_release, 1187 }; 1188 1189 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1190 { 1191 union input_seq_state *state = (union input_seq_state *)&seq->private; 1192 int error; 1193 1194 /* We need to fit into seq->private pointer */ 1195 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1196 1197 error = mutex_lock_interruptible(&input_mutex); 1198 if (error) { 1199 state->mutex_acquired = false; 1200 return ERR_PTR(error); 1201 } 1202 1203 state->mutex_acquired = true; 1204 state->pos = *pos; 1205 1206 return seq_list_start(&input_handler_list, *pos); 1207 } 1208 1209 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1210 { 1211 union input_seq_state *state = (union input_seq_state *)&seq->private; 1212 1213 state->pos = *pos + 1; 1214 return seq_list_next(v, &input_handler_list, pos); 1215 } 1216 1217 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1218 { 1219 struct input_handler *handler = container_of(v, struct input_handler, node); 1220 union input_seq_state *state = (union input_seq_state *)&seq->private; 1221 1222 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1223 if (handler->filter) 1224 seq_puts(seq, " (filter)"); 1225 if (handler->legacy_minors) 1226 seq_printf(seq, " Minor=%d", handler->minor); 1227 seq_putc(seq, '\n'); 1228 1229 return 0; 1230 } 1231 1232 static const struct seq_operations input_handlers_seq_ops = { 1233 .start = input_handlers_seq_start, 1234 .next = input_handlers_seq_next, 1235 .stop = input_seq_stop, 1236 .show = input_handlers_seq_show, 1237 }; 1238 1239 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1240 { 1241 return seq_open(file, &input_handlers_seq_ops); 1242 } 1243 1244 static const struct file_operations input_handlers_fileops = { 1245 .owner = THIS_MODULE, 1246 .open = input_proc_handlers_open, 1247 .read = seq_read, 1248 .llseek = seq_lseek, 1249 .release = seq_release, 1250 }; 1251 1252 static int __init input_proc_init(void) 1253 { 1254 struct proc_dir_entry *entry; 1255 1256 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1257 if (!proc_bus_input_dir) 1258 return -ENOMEM; 1259 1260 entry = proc_create("devices", 0, proc_bus_input_dir, 1261 &input_devices_fileops); 1262 if (!entry) 1263 goto fail1; 1264 1265 entry = proc_create("handlers", 0, proc_bus_input_dir, 1266 &input_handlers_fileops); 1267 if (!entry) 1268 goto fail2; 1269 1270 return 0; 1271 1272 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1273 fail1: remove_proc_entry("bus/input", NULL); 1274 return -ENOMEM; 1275 } 1276 1277 static void input_proc_exit(void) 1278 { 1279 remove_proc_entry("devices", proc_bus_input_dir); 1280 remove_proc_entry("handlers", proc_bus_input_dir); 1281 remove_proc_entry("bus/input", NULL); 1282 } 1283 1284 #else /* !CONFIG_PROC_FS */ 1285 static inline void input_wakeup_procfs_readers(void) { } 1286 static inline int input_proc_init(void) { return 0; } 1287 static inline void input_proc_exit(void) { } 1288 #endif 1289 1290 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1291 static ssize_t input_dev_show_##name(struct device *dev, \ 1292 struct device_attribute *attr, \ 1293 char *buf) \ 1294 { \ 1295 struct input_dev *input_dev = to_input_dev(dev); \ 1296 \ 1297 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1298 input_dev->name ? input_dev->name : ""); \ 1299 } \ 1300 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1301 1302 INPUT_DEV_STRING_ATTR_SHOW(name); 1303 INPUT_DEV_STRING_ATTR_SHOW(phys); 1304 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1305 1306 static int input_print_modalias_bits(char *buf, int size, 1307 char name, unsigned long *bm, 1308 unsigned int min_bit, unsigned int max_bit) 1309 { 1310 int len = 0, i; 1311 1312 len += snprintf(buf, max(size, 0), "%c", name); 1313 for (i = min_bit; i < max_bit; i++) 1314 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1315 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1316 return len; 1317 } 1318 1319 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1320 int add_cr) 1321 { 1322 int len; 1323 1324 len = snprintf(buf, max(size, 0), 1325 "input:b%04Xv%04Xp%04Xe%04X-", 1326 id->id.bustype, id->id.vendor, 1327 id->id.product, id->id.version); 1328 1329 len += input_print_modalias_bits(buf + len, size - len, 1330 'e', id->evbit, 0, EV_MAX); 1331 len += input_print_modalias_bits(buf + len, size - len, 1332 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1333 len += input_print_modalias_bits(buf + len, size - len, 1334 'r', id->relbit, 0, REL_MAX); 1335 len += input_print_modalias_bits(buf + len, size - len, 1336 'a', id->absbit, 0, ABS_MAX); 1337 len += input_print_modalias_bits(buf + len, size - len, 1338 'm', id->mscbit, 0, MSC_MAX); 1339 len += input_print_modalias_bits(buf + len, size - len, 1340 'l', id->ledbit, 0, LED_MAX); 1341 len += input_print_modalias_bits(buf + len, size - len, 1342 's', id->sndbit, 0, SND_MAX); 1343 len += input_print_modalias_bits(buf + len, size - len, 1344 'f', id->ffbit, 0, FF_MAX); 1345 len += input_print_modalias_bits(buf + len, size - len, 1346 'w', id->swbit, 0, SW_MAX); 1347 1348 if (add_cr) 1349 len += snprintf(buf + len, max(size - len, 0), "\n"); 1350 1351 return len; 1352 } 1353 1354 static ssize_t input_dev_show_modalias(struct device *dev, 1355 struct device_attribute *attr, 1356 char *buf) 1357 { 1358 struct input_dev *id = to_input_dev(dev); 1359 ssize_t len; 1360 1361 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1362 1363 return min_t(int, len, PAGE_SIZE); 1364 } 1365 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1366 1367 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1368 int max, int add_cr); 1369 1370 static ssize_t input_dev_show_properties(struct device *dev, 1371 struct device_attribute *attr, 1372 char *buf) 1373 { 1374 struct input_dev *input_dev = to_input_dev(dev); 1375 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1376 INPUT_PROP_MAX, true); 1377 return min_t(int, len, PAGE_SIZE); 1378 } 1379 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1380 1381 static struct attribute *input_dev_attrs[] = { 1382 &dev_attr_name.attr, 1383 &dev_attr_phys.attr, 1384 &dev_attr_uniq.attr, 1385 &dev_attr_modalias.attr, 1386 &dev_attr_properties.attr, 1387 NULL 1388 }; 1389 1390 static struct attribute_group input_dev_attr_group = { 1391 .attrs = input_dev_attrs, 1392 }; 1393 1394 #define INPUT_DEV_ID_ATTR(name) \ 1395 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1396 struct device_attribute *attr, \ 1397 char *buf) \ 1398 { \ 1399 struct input_dev *input_dev = to_input_dev(dev); \ 1400 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1401 } \ 1402 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1403 1404 INPUT_DEV_ID_ATTR(bustype); 1405 INPUT_DEV_ID_ATTR(vendor); 1406 INPUT_DEV_ID_ATTR(product); 1407 INPUT_DEV_ID_ATTR(version); 1408 1409 static struct attribute *input_dev_id_attrs[] = { 1410 &dev_attr_bustype.attr, 1411 &dev_attr_vendor.attr, 1412 &dev_attr_product.attr, 1413 &dev_attr_version.attr, 1414 NULL 1415 }; 1416 1417 static struct attribute_group input_dev_id_attr_group = { 1418 .name = "id", 1419 .attrs = input_dev_id_attrs, 1420 }; 1421 1422 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1423 int max, int add_cr) 1424 { 1425 int i; 1426 int len = 0; 1427 bool skip_empty = true; 1428 1429 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1430 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1431 bitmap[i], skip_empty); 1432 if (len) { 1433 skip_empty = false; 1434 if (i > 0) 1435 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1436 } 1437 } 1438 1439 /* 1440 * If no output was produced print a single 0. 1441 */ 1442 if (len == 0) 1443 len = snprintf(buf, buf_size, "%d", 0); 1444 1445 if (add_cr) 1446 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1447 1448 return len; 1449 } 1450 1451 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1452 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1453 struct device_attribute *attr, \ 1454 char *buf) \ 1455 { \ 1456 struct input_dev *input_dev = to_input_dev(dev); \ 1457 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1458 input_dev->bm##bit, ev##_MAX, \ 1459 true); \ 1460 return min_t(int, len, PAGE_SIZE); \ 1461 } \ 1462 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1463 1464 INPUT_DEV_CAP_ATTR(EV, ev); 1465 INPUT_DEV_CAP_ATTR(KEY, key); 1466 INPUT_DEV_CAP_ATTR(REL, rel); 1467 INPUT_DEV_CAP_ATTR(ABS, abs); 1468 INPUT_DEV_CAP_ATTR(MSC, msc); 1469 INPUT_DEV_CAP_ATTR(LED, led); 1470 INPUT_DEV_CAP_ATTR(SND, snd); 1471 INPUT_DEV_CAP_ATTR(FF, ff); 1472 INPUT_DEV_CAP_ATTR(SW, sw); 1473 1474 static struct attribute *input_dev_caps_attrs[] = { 1475 &dev_attr_ev.attr, 1476 &dev_attr_key.attr, 1477 &dev_attr_rel.attr, 1478 &dev_attr_abs.attr, 1479 &dev_attr_msc.attr, 1480 &dev_attr_led.attr, 1481 &dev_attr_snd.attr, 1482 &dev_attr_ff.attr, 1483 &dev_attr_sw.attr, 1484 NULL 1485 }; 1486 1487 static struct attribute_group input_dev_caps_attr_group = { 1488 .name = "capabilities", 1489 .attrs = input_dev_caps_attrs, 1490 }; 1491 1492 static const struct attribute_group *input_dev_attr_groups[] = { 1493 &input_dev_attr_group, 1494 &input_dev_id_attr_group, 1495 &input_dev_caps_attr_group, 1496 NULL 1497 }; 1498 1499 static void input_dev_release(struct device *device) 1500 { 1501 struct input_dev *dev = to_input_dev(device); 1502 1503 input_ff_destroy(dev); 1504 input_mt_destroy_slots(dev); 1505 kfree(dev->absinfo); 1506 kfree(dev->vals); 1507 kfree(dev); 1508 1509 module_put(THIS_MODULE); 1510 } 1511 1512 /* 1513 * Input uevent interface - loading event handlers based on 1514 * device bitfields. 1515 */ 1516 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1517 const char *name, unsigned long *bitmap, int max) 1518 { 1519 int len; 1520 1521 if (add_uevent_var(env, "%s", name)) 1522 return -ENOMEM; 1523 1524 len = input_print_bitmap(&env->buf[env->buflen - 1], 1525 sizeof(env->buf) - env->buflen, 1526 bitmap, max, false); 1527 if (len >= (sizeof(env->buf) - env->buflen)) 1528 return -ENOMEM; 1529 1530 env->buflen += len; 1531 return 0; 1532 } 1533 1534 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1535 struct input_dev *dev) 1536 { 1537 int len; 1538 1539 if (add_uevent_var(env, "MODALIAS=")) 1540 return -ENOMEM; 1541 1542 len = input_print_modalias(&env->buf[env->buflen - 1], 1543 sizeof(env->buf) - env->buflen, 1544 dev, 0); 1545 if (len >= (sizeof(env->buf) - env->buflen)) 1546 return -ENOMEM; 1547 1548 env->buflen += len; 1549 return 0; 1550 } 1551 1552 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1553 do { \ 1554 int err = add_uevent_var(env, fmt, val); \ 1555 if (err) \ 1556 return err; \ 1557 } while (0) 1558 1559 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1560 do { \ 1561 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1562 if (err) \ 1563 return err; \ 1564 } while (0) 1565 1566 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1567 do { \ 1568 int err = input_add_uevent_modalias_var(env, dev); \ 1569 if (err) \ 1570 return err; \ 1571 } while (0) 1572 1573 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1574 { 1575 struct input_dev *dev = to_input_dev(device); 1576 1577 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1578 dev->id.bustype, dev->id.vendor, 1579 dev->id.product, dev->id.version); 1580 if (dev->name) 1581 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1582 if (dev->phys) 1583 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1584 if (dev->uniq) 1585 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1586 1587 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1588 1589 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1590 if (test_bit(EV_KEY, dev->evbit)) 1591 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1592 if (test_bit(EV_REL, dev->evbit)) 1593 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1594 if (test_bit(EV_ABS, dev->evbit)) 1595 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1596 if (test_bit(EV_MSC, dev->evbit)) 1597 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1598 if (test_bit(EV_LED, dev->evbit)) 1599 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1600 if (test_bit(EV_SND, dev->evbit)) 1601 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1602 if (test_bit(EV_FF, dev->evbit)) 1603 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1604 if (test_bit(EV_SW, dev->evbit)) 1605 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1606 1607 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1608 1609 return 0; 1610 } 1611 1612 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1613 do { \ 1614 int i; \ 1615 bool active; \ 1616 \ 1617 if (!test_bit(EV_##type, dev->evbit)) \ 1618 break; \ 1619 \ 1620 for (i = 0; i < type##_MAX; i++) { \ 1621 if (!test_bit(i, dev->bits##bit)) \ 1622 continue; \ 1623 \ 1624 active = test_bit(i, dev->bits); \ 1625 if (!active && !on) \ 1626 continue; \ 1627 \ 1628 dev->event(dev, EV_##type, i, on ? active : 0); \ 1629 } \ 1630 } while (0) 1631 1632 static void input_dev_toggle(struct input_dev *dev, bool activate) 1633 { 1634 if (!dev->event) 1635 return; 1636 1637 INPUT_DO_TOGGLE(dev, LED, led, activate); 1638 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1639 1640 if (activate && test_bit(EV_REP, dev->evbit)) { 1641 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1642 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1643 } 1644 } 1645 1646 /** 1647 * input_reset_device() - reset/restore the state of input device 1648 * @dev: input device whose state needs to be reset 1649 * 1650 * This function tries to reset the state of an opened input device and 1651 * bring internal state and state if the hardware in sync with each other. 1652 * We mark all keys as released, restore LED state, repeat rate, etc. 1653 */ 1654 void input_reset_device(struct input_dev *dev) 1655 { 1656 mutex_lock(&dev->mutex); 1657 1658 if (dev->users) { 1659 input_dev_toggle(dev, true); 1660 1661 /* 1662 * Keys that have been pressed at suspend time are unlikely 1663 * to be still pressed when we resume. 1664 */ 1665 spin_lock_irq(&dev->event_lock); 1666 input_dev_release_keys(dev); 1667 spin_unlock_irq(&dev->event_lock); 1668 } 1669 1670 mutex_unlock(&dev->mutex); 1671 } 1672 EXPORT_SYMBOL(input_reset_device); 1673 1674 #ifdef CONFIG_PM 1675 static int input_dev_suspend(struct device *dev) 1676 { 1677 struct input_dev *input_dev = to_input_dev(dev); 1678 1679 mutex_lock(&input_dev->mutex); 1680 1681 if (input_dev->users) 1682 input_dev_toggle(input_dev, false); 1683 1684 mutex_unlock(&input_dev->mutex); 1685 1686 return 0; 1687 } 1688 1689 static int input_dev_resume(struct device *dev) 1690 { 1691 struct input_dev *input_dev = to_input_dev(dev); 1692 1693 input_reset_device(input_dev); 1694 1695 return 0; 1696 } 1697 1698 static const struct dev_pm_ops input_dev_pm_ops = { 1699 .suspend = input_dev_suspend, 1700 .resume = input_dev_resume, 1701 .poweroff = input_dev_suspend, 1702 .restore = input_dev_resume, 1703 }; 1704 #endif /* CONFIG_PM */ 1705 1706 static struct device_type input_dev_type = { 1707 .groups = input_dev_attr_groups, 1708 .release = input_dev_release, 1709 .uevent = input_dev_uevent, 1710 #ifdef CONFIG_PM 1711 .pm = &input_dev_pm_ops, 1712 #endif 1713 }; 1714 1715 static char *input_devnode(struct device *dev, umode_t *mode) 1716 { 1717 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1718 } 1719 1720 struct class input_class = { 1721 .name = "input", 1722 .devnode = input_devnode, 1723 }; 1724 EXPORT_SYMBOL_GPL(input_class); 1725 1726 /** 1727 * input_allocate_device - allocate memory for new input device 1728 * 1729 * Returns prepared struct input_dev or %NULL. 1730 * 1731 * NOTE: Use input_free_device() to free devices that have not been 1732 * registered; input_unregister_device() should be used for already 1733 * registered devices. 1734 */ 1735 struct input_dev *input_allocate_device(void) 1736 { 1737 static atomic_t input_no = ATOMIC_INIT(0); 1738 struct input_dev *dev; 1739 1740 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1741 if (dev) { 1742 dev->dev.type = &input_dev_type; 1743 dev->dev.class = &input_class; 1744 device_initialize(&dev->dev); 1745 mutex_init(&dev->mutex); 1746 spin_lock_init(&dev->event_lock); 1747 init_timer(&dev->timer); 1748 INIT_LIST_HEAD(&dev->h_list); 1749 INIT_LIST_HEAD(&dev->node); 1750 1751 dev_set_name(&dev->dev, "input%ld", 1752 (unsigned long) atomic_inc_return(&input_no) - 1); 1753 1754 __module_get(THIS_MODULE); 1755 } 1756 1757 return dev; 1758 } 1759 EXPORT_SYMBOL(input_allocate_device); 1760 1761 struct input_devres { 1762 struct input_dev *input; 1763 }; 1764 1765 static int devm_input_device_match(struct device *dev, void *res, void *data) 1766 { 1767 struct input_devres *devres = res; 1768 1769 return devres->input == data; 1770 } 1771 1772 static void devm_input_device_release(struct device *dev, void *res) 1773 { 1774 struct input_devres *devres = res; 1775 struct input_dev *input = devres->input; 1776 1777 dev_dbg(dev, "%s: dropping reference to %s\n", 1778 __func__, dev_name(&input->dev)); 1779 input_put_device(input); 1780 } 1781 1782 /** 1783 * devm_input_allocate_device - allocate managed input device 1784 * @dev: device owning the input device being created 1785 * 1786 * Returns prepared struct input_dev or %NULL. 1787 * 1788 * Managed input devices do not need to be explicitly unregistered or 1789 * freed as it will be done automatically when owner device unbinds from 1790 * its driver (or binding fails). Once managed input device is allocated, 1791 * it is ready to be set up and registered in the same fashion as regular 1792 * input device. There are no special devm_input_device_[un]register() 1793 * variants, regular ones work with both managed and unmanaged devices, 1794 * should you need them. In most cases however, managed input device need 1795 * not be explicitly unregistered or freed. 1796 * 1797 * NOTE: the owner device is set up as parent of input device and users 1798 * should not override it. 1799 */ 1800 struct input_dev *devm_input_allocate_device(struct device *dev) 1801 { 1802 struct input_dev *input; 1803 struct input_devres *devres; 1804 1805 devres = devres_alloc(devm_input_device_release, 1806 sizeof(struct input_devres), GFP_KERNEL); 1807 if (!devres) 1808 return NULL; 1809 1810 input = input_allocate_device(); 1811 if (!input) { 1812 devres_free(devres); 1813 return NULL; 1814 } 1815 1816 input->dev.parent = dev; 1817 input->devres_managed = true; 1818 1819 devres->input = input; 1820 devres_add(dev, devres); 1821 1822 return input; 1823 } 1824 EXPORT_SYMBOL(devm_input_allocate_device); 1825 1826 /** 1827 * input_free_device - free memory occupied by input_dev structure 1828 * @dev: input device to free 1829 * 1830 * This function should only be used if input_register_device() 1831 * was not called yet or if it failed. Once device was registered 1832 * use input_unregister_device() and memory will be freed once last 1833 * reference to the device is dropped. 1834 * 1835 * Device should be allocated by input_allocate_device(). 1836 * 1837 * NOTE: If there are references to the input device then memory 1838 * will not be freed until last reference is dropped. 1839 */ 1840 void input_free_device(struct input_dev *dev) 1841 { 1842 if (dev) { 1843 if (dev->devres_managed) 1844 WARN_ON(devres_destroy(dev->dev.parent, 1845 devm_input_device_release, 1846 devm_input_device_match, 1847 dev)); 1848 input_put_device(dev); 1849 } 1850 } 1851 EXPORT_SYMBOL(input_free_device); 1852 1853 /** 1854 * input_set_capability - mark device as capable of a certain event 1855 * @dev: device that is capable of emitting or accepting event 1856 * @type: type of the event (EV_KEY, EV_REL, etc...) 1857 * @code: event code 1858 * 1859 * In addition to setting up corresponding bit in appropriate capability 1860 * bitmap the function also adjusts dev->evbit. 1861 */ 1862 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1863 { 1864 switch (type) { 1865 case EV_KEY: 1866 __set_bit(code, dev->keybit); 1867 break; 1868 1869 case EV_REL: 1870 __set_bit(code, dev->relbit); 1871 break; 1872 1873 case EV_ABS: 1874 input_alloc_absinfo(dev); 1875 if (!dev->absinfo) 1876 return; 1877 1878 __set_bit(code, dev->absbit); 1879 break; 1880 1881 case EV_MSC: 1882 __set_bit(code, dev->mscbit); 1883 break; 1884 1885 case EV_SW: 1886 __set_bit(code, dev->swbit); 1887 break; 1888 1889 case EV_LED: 1890 __set_bit(code, dev->ledbit); 1891 break; 1892 1893 case EV_SND: 1894 __set_bit(code, dev->sndbit); 1895 break; 1896 1897 case EV_FF: 1898 __set_bit(code, dev->ffbit); 1899 break; 1900 1901 case EV_PWR: 1902 /* do nothing */ 1903 break; 1904 1905 default: 1906 pr_err("input_set_capability: unknown type %u (code %u)\n", 1907 type, code); 1908 dump_stack(); 1909 return; 1910 } 1911 1912 __set_bit(type, dev->evbit); 1913 } 1914 EXPORT_SYMBOL(input_set_capability); 1915 1916 static unsigned int input_estimate_events_per_packet(struct input_dev *dev) 1917 { 1918 int mt_slots; 1919 int i; 1920 unsigned int events; 1921 1922 if (dev->mt) { 1923 mt_slots = dev->mt->num_slots; 1924 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { 1925 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - 1926 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, 1927 mt_slots = clamp(mt_slots, 2, 32); 1928 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { 1929 mt_slots = 2; 1930 } else { 1931 mt_slots = 0; 1932 } 1933 1934 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ 1935 1936 for (i = 0; i < ABS_CNT; i++) { 1937 if (test_bit(i, dev->absbit)) { 1938 if (input_is_mt_axis(i)) 1939 events += mt_slots; 1940 else 1941 events++; 1942 } 1943 } 1944 1945 for (i = 0; i < REL_CNT; i++) 1946 if (test_bit(i, dev->relbit)) 1947 events++; 1948 1949 /* Make room for KEY and MSC events */ 1950 events += 7; 1951 1952 return events; 1953 } 1954 1955 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 1956 do { \ 1957 if (!test_bit(EV_##type, dev->evbit)) \ 1958 memset(dev->bits##bit, 0, \ 1959 sizeof(dev->bits##bit)); \ 1960 } while (0) 1961 1962 static void input_cleanse_bitmasks(struct input_dev *dev) 1963 { 1964 INPUT_CLEANSE_BITMASK(dev, KEY, key); 1965 INPUT_CLEANSE_BITMASK(dev, REL, rel); 1966 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 1967 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 1968 INPUT_CLEANSE_BITMASK(dev, LED, led); 1969 INPUT_CLEANSE_BITMASK(dev, SND, snd); 1970 INPUT_CLEANSE_BITMASK(dev, FF, ff); 1971 INPUT_CLEANSE_BITMASK(dev, SW, sw); 1972 } 1973 1974 static void __input_unregister_device(struct input_dev *dev) 1975 { 1976 struct input_handle *handle, *next; 1977 1978 input_disconnect_device(dev); 1979 1980 mutex_lock(&input_mutex); 1981 1982 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1983 handle->handler->disconnect(handle); 1984 WARN_ON(!list_empty(&dev->h_list)); 1985 1986 del_timer_sync(&dev->timer); 1987 list_del_init(&dev->node); 1988 1989 input_wakeup_procfs_readers(); 1990 1991 mutex_unlock(&input_mutex); 1992 1993 device_del(&dev->dev); 1994 } 1995 1996 static void devm_input_device_unregister(struct device *dev, void *res) 1997 { 1998 struct input_devres *devres = res; 1999 struct input_dev *input = devres->input; 2000 2001 dev_dbg(dev, "%s: unregistering device %s\n", 2002 __func__, dev_name(&input->dev)); 2003 __input_unregister_device(input); 2004 } 2005 2006 /** 2007 * input_register_device - register device with input core 2008 * @dev: device to be registered 2009 * 2010 * This function registers device with input core. The device must be 2011 * allocated with input_allocate_device() and all it's capabilities 2012 * set up before registering. 2013 * If function fails the device must be freed with input_free_device(). 2014 * Once device has been successfully registered it can be unregistered 2015 * with input_unregister_device(); input_free_device() should not be 2016 * called in this case. 2017 * 2018 * Note that this function is also used to register managed input devices 2019 * (ones allocated with devm_input_allocate_device()). Such managed input 2020 * devices need not be explicitly unregistered or freed, their tear down 2021 * is controlled by the devres infrastructure. It is also worth noting 2022 * that tear down of managed input devices is internally a 2-step process: 2023 * registered managed input device is first unregistered, but stays in 2024 * memory and can still handle input_event() calls (although events will 2025 * not be delivered anywhere). The freeing of managed input device will 2026 * happen later, when devres stack is unwound to the point where device 2027 * allocation was made. 2028 */ 2029 int input_register_device(struct input_dev *dev) 2030 { 2031 struct input_devres *devres = NULL; 2032 struct input_handler *handler; 2033 unsigned int packet_size; 2034 const char *path; 2035 int error; 2036 2037 if (dev->devres_managed) { 2038 devres = devres_alloc(devm_input_device_unregister, 2039 sizeof(struct input_devres), GFP_KERNEL); 2040 if (!devres) 2041 return -ENOMEM; 2042 2043 devres->input = dev; 2044 } 2045 2046 /* Every input device generates EV_SYN/SYN_REPORT events. */ 2047 __set_bit(EV_SYN, dev->evbit); 2048 2049 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 2050 __clear_bit(KEY_RESERVED, dev->keybit); 2051 2052 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 2053 input_cleanse_bitmasks(dev); 2054 2055 packet_size = input_estimate_events_per_packet(dev); 2056 if (dev->hint_events_per_packet < packet_size) 2057 dev->hint_events_per_packet = packet_size; 2058 2059 dev->max_vals = dev->hint_events_per_packet + 2; 2060 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); 2061 if (!dev->vals) { 2062 error = -ENOMEM; 2063 goto err_devres_free; 2064 } 2065 2066 /* 2067 * If delay and period are pre-set by the driver, then autorepeating 2068 * is handled by the driver itself and we don't do it in input.c. 2069 */ 2070 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 2071 dev->timer.data = (long) dev; 2072 dev->timer.function = input_repeat_key; 2073 dev->rep[REP_DELAY] = 250; 2074 dev->rep[REP_PERIOD] = 33; 2075 } 2076 2077 if (!dev->getkeycode) 2078 dev->getkeycode = input_default_getkeycode; 2079 2080 if (!dev->setkeycode) 2081 dev->setkeycode = input_default_setkeycode; 2082 2083 error = device_add(&dev->dev); 2084 if (error) 2085 goto err_free_vals; 2086 2087 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 2088 pr_info("%s as %s\n", 2089 dev->name ? dev->name : "Unspecified device", 2090 path ? path : "N/A"); 2091 kfree(path); 2092 2093 error = mutex_lock_interruptible(&input_mutex); 2094 if (error) 2095 goto err_device_del; 2096 2097 list_add_tail(&dev->node, &input_dev_list); 2098 2099 list_for_each_entry(handler, &input_handler_list, node) 2100 input_attach_handler(dev, handler); 2101 2102 input_wakeup_procfs_readers(); 2103 2104 mutex_unlock(&input_mutex); 2105 2106 if (dev->devres_managed) { 2107 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n", 2108 __func__, dev_name(&dev->dev)); 2109 devres_add(dev->dev.parent, devres); 2110 } 2111 return 0; 2112 2113 err_device_del: 2114 device_del(&dev->dev); 2115 err_free_vals: 2116 kfree(dev->vals); 2117 dev->vals = NULL; 2118 err_devres_free: 2119 devres_free(devres); 2120 return error; 2121 } 2122 EXPORT_SYMBOL(input_register_device); 2123 2124 /** 2125 * input_unregister_device - unregister previously registered device 2126 * @dev: device to be unregistered 2127 * 2128 * This function unregisters an input device. Once device is unregistered 2129 * the caller should not try to access it as it may get freed at any moment. 2130 */ 2131 void input_unregister_device(struct input_dev *dev) 2132 { 2133 if (dev->devres_managed) { 2134 WARN_ON(devres_destroy(dev->dev.parent, 2135 devm_input_device_unregister, 2136 devm_input_device_match, 2137 dev)); 2138 __input_unregister_device(dev); 2139 /* 2140 * We do not do input_put_device() here because it will be done 2141 * when 2nd devres fires up. 2142 */ 2143 } else { 2144 __input_unregister_device(dev); 2145 input_put_device(dev); 2146 } 2147 } 2148 EXPORT_SYMBOL(input_unregister_device); 2149 2150 /** 2151 * input_register_handler - register a new input handler 2152 * @handler: handler to be registered 2153 * 2154 * This function registers a new input handler (interface) for input 2155 * devices in the system and attaches it to all input devices that 2156 * are compatible with the handler. 2157 */ 2158 int input_register_handler(struct input_handler *handler) 2159 { 2160 struct input_dev *dev; 2161 int error; 2162 2163 error = mutex_lock_interruptible(&input_mutex); 2164 if (error) 2165 return error; 2166 2167 INIT_LIST_HEAD(&handler->h_list); 2168 2169 list_add_tail(&handler->node, &input_handler_list); 2170 2171 list_for_each_entry(dev, &input_dev_list, node) 2172 input_attach_handler(dev, handler); 2173 2174 input_wakeup_procfs_readers(); 2175 2176 mutex_unlock(&input_mutex); 2177 return 0; 2178 } 2179 EXPORT_SYMBOL(input_register_handler); 2180 2181 /** 2182 * input_unregister_handler - unregisters an input handler 2183 * @handler: handler to be unregistered 2184 * 2185 * This function disconnects a handler from its input devices and 2186 * removes it from lists of known handlers. 2187 */ 2188 void input_unregister_handler(struct input_handler *handler) 2189 { 2190 struct input_handle *handle, *next; 2191 2192 mutex_lock(&input_mutex); 2193 2194 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 2195 handler->disconnect(handle); 2196 WARN_ON(!list_empty(&handler->h_list)); 2197 2198 list_del_init(&handler->node); 2199 2200 input_wakeup_procfs_readers(); 2201 2202 mutex_unlock(&input_mutex); 2203 } 2204 EXPORT_SYMBOL(input_unregister_handler); 2205 2206 /** 2207 * input_handler_for_each_handle - handle iterator 2208 * @handler: input handler to iterate 2209 * @data: data for the callback 2210 * @fn: function to be called for each handle 2211 * 2212 * Iterate over @bus's list of devices, and call @fn for each, passing 2213 * it @data and stop when @fn returns a non-zero value. The function is 2214 * using RCU to traverse the list and therefore may be usind in atonic 2215 * contexts. The @fn callback is invoked from RCU critical section and 2216 * thus must not sleep. 2217 */ 2218 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2219 int (*fn)(struct input_handle *, void *)) 2220 { 2221 struct input_handle *handle; 2222 int retval = 0; 2223 2224 rcu_read_lock(); 2225 2226 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2227 retval = fn(handle, data); 2228 if (retval) 2229 break; 2230 } 2231 2232 rcu_read_unlock(); 2233 2234 return retval; 2235 } 2236 EXPORT_SYMBOL(input_handler_for_each_handle); 2237 2238 /** 2239 * input_register_handle - register a new input handle 2240 * @handle: handle to register 2241 * 2242 * This function puts a new input handle onto device's 2243 * and handler's lists so that events can flow through 2244 * it once it is opened using input_open_device(). 2245 * 2246 * This function is supposed to be called from handler's 2247 * connect() method. 2248 */ 2249 int input_register_handle(struct input_handle *handle) 2250 { 2251 struct input_handler *handler = handle->handler; 2252 struct input_dev *dev = handle->dev; 2253 int error; 2254 2255 /* 2256 * We take dev->mutex here to prevent race with 2257 * input_release_device(). 2258 */ 2259 error = mutex_lock_interruptible(&dev->mutex); 2260 if (error) 2261 return error; 2262 2263 /* 2264 * Filters go to the head of the list, normal handlers 2265 * to the tail. 2266 */ 2267 if (handler->filter) 2268 list_add_rcu(&handle->d_node, &dev->h_list); 2269 else 2270 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2271 2272 mutex_unlock(&dev->mutex); 2273 2274 /* 2275 * Since we are supposed to be called from ->connect() 2276 * which is mutually exclusive with ->disconnect() 2277 * we can't be racing with input_unregister_handle() 2278 * and so separate lock is not needed here. 2279 */ 2280 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2281 2282 if (handler->start) 2283 handler->start(handle); 2284 2285 return 0; 2286 } 2287 EXPORT_SYMBOL(input_register_handle); 2288 2289 /** 2290 * input_unregister_handle - unregister an input handle 2291 * @handle: handle to unregister 2292 * 2293 * This function removes input handle from device's 2294 * and handler's lists. 2295 * 2296 * This function is supposed to be called from handler's 2297 * disconnect() method. 2298 */ 2299 void input_unregister_handle(struct input_handle *handle) 2300 { 2301 struct input_dev *dev = handle->dev; 2302 2303 list_del_rcu(&handle->h_node); 2304 2305 /* 2306 * Take dev->mutex to prevent race with input_release_device(). 2307 */ 2308 mutex_lock(&dev->mutex); 2309 list_del_rcu(&handle->d_node); 2310 mutex_unlock(&dev->mutex); 2311 2312 synchronize_rcu(); 2313 } 2314 EXPORT_SYMBOL(input_unregister_handle); 2315 2316 /** 2317 * input_get_new_minor - allocates a new input minor number 2318 * @legacy_base: beginning or the legacy range to be searched 2319 * @legacy_num: size of legacy range 2320 * @allow_dynamic: whether we can also take ID from the dynamic range 2321 * 2322 * This function allocates a new device minor for from input major namespace. 2323 * Caller can request legacy minor by specifying @legacy_base and @legacy_num 2324 * parameters and whether ID can be allocated from dynamic range if there are 2325 * no free IDs in legacy range. 2326 */ 2327 int input_get_new_minor(int legacy_base, unsigned int legacy_num, 2328 bool allow_dynamic) 2329 { 2330 /* 2331 * This function should be called from input handler's ->connect() 2332 * methods, which are serialized with input_mutex, so no additional 2333 * locking is needed here. 2334 */ 2335 if (legacy_base >= 0) { 2336 int minor = ida_simple_get(&input_ida, 2337 legacy_base, 2338 legacy_base + legacy_num, 2339 GFP_KERNEL); 2340 if (minor >= 0 || !allow_dynamic) 2341 return minor; 2342 } 2343 2344 return ida_simple_get(&input_ida, 2345 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES, 2346 GFP_KERNEL); 2347 } 2348 EXPORT_SYMBOL(input_get_new_minor); 2349 2350 /** 2351 * input_free_minor - release previously allocated minor 2352 * @minor: minor to be released 2353 * 2354 * This function releases previously allocated input minor so that it can be 2355 * reused later. 2356 */ 2357 void input_free_minor(unsigned int minor) 2358 { 2359 ida_simple_remove(&input_ida, minor); 2360 } 2361 EXPORT_SYMBOL(input_free_minor); 2362 2363 static int __init input_init(void) 2364 { 2365 int err; 2366 2367 err = class_register(&input_class); 2368 if (err) { 2369 pr_err("unable to register input_dev class\n"); 2370 return err; 2371 } 2372 2373 err = input_proc_init(); 2374 if (err) 2375 goto fail1; 2376 2377 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2378 INPUT_MAX_CHAR_DEVICES, "input"); 2379 if (err) { 2380 pr_err("unable to register char major %d", INPUT_MAJOR); 2381 goto fail2; 2382 } 2383 2384 return 0; 2385 2386 fail2: input_proc_exit(); 2387 fail1: class_unregister(&input_class); 2388 return err; 2389 } 2390 2391 static void __exit input_exit(void) 2392 { 2393 input_proc_exit(); 2394 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2395 INPUT_MAX_CHAR_DEVICES); 2396 class_unregister(&input_class); 2397 } 2398 2399 subsys_initcall(input_init); 2400 module_exit(input_exit); 2401