xref: /openbmc/linux/drivers/input/input.c (revision 22fd411a)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/input/mt.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/random.h>
21 #include <linux/major.h>
22 #include <linux/proc_fs.h>
23 #include <linux/sched.h>
24 #include <linux/seq_file.h>
25 #include <linux/poll.h>
26 #include <linux/device.h>
27 #include <linux/mutex.h>
28 #include <linux/rcupdate.h>
29 #include "input-compat.h"
30 
31 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
32 MODULE_DESCRIPTION("Input core");
33 MODULE_LICENSE("GPL");
34 
35 #define INPUT_DEVICES	256
36 
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39 
40 /*
41  * input_mutex protects access to both input_dev_list and input_handler_list.
42  * This also causes input_[un]register_device and input_[un]register_handler
43  * be mutually exclusive which simplifies locking in drivers implementing
44  * input handlers.
45  */
46 static DEFINE_MUTEX(input_mutex);
47 
48 static struct input_handler *input_table[8];
49 
50 static inline int is_event_supported(unsigned int code,
51 				     unsigned long *bm, unsigned int max)
52 {
53 	return code <= max && test_bit(code, bm);
54 }
55 
56 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57 {
58 	if (fuzz) {
59 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 			return old_val;
61 
62 		if (value > old_val - fuzz && value < old_val + fuzz)
63 			return (old_val * 3 + value) / 4;
64 
65 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 			return (old_val + value) / 2;
67 	}
68 
69 	return value;
70 }
71 
72 /*
73  * Pass event first through all filters and then, if event has not been
74  * filtered out, through all open handles. This function is called with
75  * dev->event_lock held and interrupts disabled.
76  */
77 static void input_pass_event(struct input_dev *dev,
78 			     struct input_handler *src_handler,
79 			     unsigned int type, unsigned int code, int value)
80 {
81 	struct input_handler *handler;
82 	struct input_handle *handle;
83 
84 	rcu_read_lock();
85 
86 	handle = rcu_dereference(dev->grab);
87 	if (handle)
88 		handle->handler->event(handle, type, code, value);
89 	else {
90 		bool filtered = false;
91 
92 		list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
93 			if (!handle->open)
94 				continue;
95 
96 			handler = handle->handler;
97 
98 			/*
99 			 * If this is the handler that injected this
100 			 * particular event we want to skip it to avoid
101 			 * filters firing again and again.
102 			 */
103 			if (handler == src_handler)
104 				continue;
105 
106 			if (!handler->filter) {
107 				if (filtered)
108 					break;
109 
110 				handler->event(handle, type, code, value);
111 
112 			} else if (handler->filter(handle, type, code, value))
113 				filtered = true;
114 		}
115 	}
116 
117 	rcu_read_unlock();
118 }
119 
120 /*
121  * Generate software autorepeat event. Note that we take
122  * dev->event_lock here to avoid racing with input_event
123  * which may cause keys get "stuck".
124  */
125 static void input_repeat_key(unsigned long data)
126 {
127 	struct input_dev *dev = (void *) data;
128 	unsigned long flags;
129 
130 	spin_lock_irqsave(&dev->event_lock, flags);
131 
132 	if (test_bit(dev->repeat_key, dev->key) &&
133 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
134 
135 		input_pass_event(dev, NULL, EV_KEY, dev->repeat_key, 2);
136 
137 		if (dev->sync) {
138 			/*
139 			 * Only send SYN_REPORT if we are not in a middle
140 			 * of driver parsing a new hardware packet.
141 			 * Otherwise assume that the driver will send
142 			 * SYN_REPORT once it's done.
143 			 */
144 			input_pass_event(dev, NULL, EV_SYN, SYN_REPORT, 1);
145 		}
146 
147 		if (dev->rep[REP_PERIOD])
148 			mod_timer(&dev->timer, jiffies +
149 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
150 	}
151 
152 	spin_unlock_irqrestore(&dev->event_lock, flags);
153 }
154 
155 static void input_start_autorepeat(struct input_dev *dev, int code)
156 {
157 	if (test_bit(EV_REP, dev->evbit) &&
158 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
159 	    dev->timer.data) {
160 		dev->repeat_key = code;
161 		mod_timer(&dev->timer,
162 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
163 	}
164 }
165 
166 static void input_stop_autorepeat(struct input_dev *dev)
167 {
168 	del_timer(&dev->timer);
169 }
170 
171 #define INPUT_IGNORE_EVENT	0
172 #define INPUT_PASS_TO_HANDLERS	1
173 #define INPUT_PASS_TO_DEVICE	2
174 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
175 
176 static int input_handle_abs_event(struct input_dev *dev,
177 				  struct input_handler *src_handler,
178 				  unsigned int code, int *pval)
179 {
180 	bool is_mt_event;
181 	int *pold;
182 
183 	if (code == ABS_MT_SLOT) {
184 		/*
185 		 * "Stage" the event; we'll flush it later, when we
186 		 * get actual touch data.
187 		 */
188 		if (*pval >= 0 && *pval < dev->mtsize)
189 			dev->slot = *pval;
190 
191 		return INPUT_IGNORE_EVENT;
192 	}
193 
194 	is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
195 
196 	if (!is_mt_event) {
197 		pold = &dev->absinfo[code].value;
198 	} else if (dev->mt) {
199 		struct input_mt_slot *mtslot = &dev->mt[dev->slot];
200 		pold = &mtslot->abs[code - ABS_MT_FIRST];
201 	} else {
202 		/*
203 		 * Bypass filtering for multi-touch events when
204 		 * not employing slots.
205 		 */
206 		pold = NULL;
207 	}
208 
209 	if (pold) {
210 		*pval = input_defuzz_abs_event(*pval, *pold,
211 						dev->absinfo[code].fuzz);
212 		if (*pold == *pval)
213 			return INPUT_IGNORE_EVENT;
214 
215 		*pold = *pval;
216 	}
217 
218 	/* Flush pending "slot" event */
219 	if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
220 		input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
221 		input_pass_event(dev, src_handler,
222 				 EV_ABS, ABS_MT_SLOT, dev->slot);
223 	}
224 
225 	return INPUT_PASS_TO_HANDLERS;
226 }
227 
228 static void input_handle_event(struct input_dev *dev,
229 			       struct input_handler *src_handler,
230 			       unsigned int type, unsigned int code, int value)
231 {
232 	int disposition = INPUT_IGNORE_EVENT;
233 
234 	switch (type) {
235 
236 	case EV_SYN:
237 		switch (code) {
238 		case SYN_CONFIG:
239 			disposition = INPUT_PASS_TO_ALL;
240 			break;
241 
242 		case SYN_REPORT:
243 			if (!dev->sync) {
244 				dev->sync = true;
245 				disposition = INPUT_PASS_TO_HANDLERS;
246 			}
247 			break;
248 		case SYN_MT_REPORT:
249 			dev->sync = false;
250 			disposition = INPUT_PASS_TO_HANDLERS;
251 			break;
252 		}
253 		break;
254 
255 	case EV_KEY:
256 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
257 		    !!test_bit(code, dev->key) != value) {
258 
259 			if (value != 2) {
260 				__change_bit(code, dev->key);
261 				if (value)
262 					input_start_autorepeat(dev, code);
263 				else
264 					input_stop_autorepeat(dev);
265 			}
266 
267 			disposition = INPUT_PASS_TO_HANDLERS;
268 		}
269 		break;
270 
271 	case EV_SW:
272 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
273 		    !!test_bit(code, dev->sw) != value) {
274 
275 			__change_bit(code, dev->sw);
276 			disposition = INPUT_PASS_TO_HANDLERS;
277 		}
278 		break;
279 
280 	case EV_ABS:
281 		if (is_event_supported(code, dev->absbit, ABS_MAX))
282 			disposition = input_handle_abs_event(dev, src_handler,
283 							     code, &value);
284 
285 		break;
286 
287 	case EV_REL:
288 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
289 			disposition = INPUT_PASS_TO_HANDLERS;
290 
291 		break;
292 
293 	case EV_MSC:
294 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
295 			disposition = INPUT_PASS_TO_ALL;
296 
297 		break;
298 
299 	case EV_LED:
300 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
301 		    !!test_bit(code, dev->led) != value) {
302 
303 			__change_bit(code, dev->led);
304 			disposition = INPUT_PASS_TO_ALL;
305 		}
306 		break;
307 
308 	case EV_SND:
309 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
310 
311 			if (!!test_bit(code, dev->snd) != !!value)
312 				__change_bit(code, dev->snd);
313 			disposition = INPUT_PASS_TO_ALL;
314 		}
315 		break;
316 
317 	case EV_REP:
318 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
319 			dev->rep[code] = value;
320 			disposition = INPUT_PASS_TO_ALL;
321 		}
322 		break;
323 
324 	case EV_FF:
325 		if (value >= 0)
326 			disposition = INPUT_PASS_TO_ALL;
327 		break;
328 
329 	case EV_PWR:
330 		disposition = INPUT_PASS_TO_ALL;
331 		break;
332 	}
333 
334 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
335 		dev->sync = false;
336 
337 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
338 		dev->event(dev, type, code, value);
339 
340 	if (disposition & INPUT_PASS_TO_HANDLERS)
341 		input_pass_event(dev, src_handler, type, code, value);
342 }
343 
344 /**
345  * input_event() - report new input event
346  * @dev: device that generated the event
347  * @type: type of the event
348  * @code: event code
349  * @value: value of the event
350  *
351  * This function should be used by drivers implementing various input
352  * devices to report input events. See also input_inject_event().
353  *
354  * NOTE: input_event() may be safely used right after input device was
355  * allocated with input_allocate_device(), even before it is registered
356  * with input_register_device(), but the event will not reach any of the
357  * input handlers. Such early invocation of input_event() may be used
358  * to 'seed' initial state of a switch or initial position of absolute
359  * axis, etc.
360  */
361 void input_event(struct input_dev *dev,
362 		 unsigned int type, unsigned int code, int value)
363 {
364 	unsigned long flags;
365 
366 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
367 
368 		spin_lock_irqsave(&dev->event_lock, flags);
369 		add_input_randomness(type, code, value);
370 		input_handle_event(dev, NULL, type, code, value);
371 		spin_unlock_irqrestore(&dev->event_lock, flags);
372 	}
373 }
374 EXPORT_SYMBOL(input_event);
375 
376 /**
377  * input_inject_event() - send input event from input handler
378  * @handle: input handle to send event through
379  * @type: type of the event
380  * @code: event code
381  * @value: value of the event
382  *
383  * Similar to input_event() but will ignore event if device is
384  * "grabbed" and handle injecting event is not the one that owns
385  * the device.
386  */
387 void input_inject_event(struct input_handle *handle,
388 			unsigned int type, unsigned int code, int value)
389 {
390 	struct input_dev *dev = handle->dev;
391 	struct input_handle *grab;
392 	unsigned long flags;
393 
394 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
395 		spin_lock_irqsave(&dev->event_lock, flags);
396 
397 		rcu_read_lock();
398 		grab = rcu_dereference(dev->grab);
399 		if (!grab || grab == handle)
400 			input_handle_event(dev, handle->handler,
401 					   type, code, value);
402 		rcu_read_unlock();
403 
404 		spin_unlock_irqrestore(&dev->event_lock, flags);
405 	}
406 }
407 EXPORT_SYMBOL(input_inject_event);
408 
409 /**
410  * input_alloc_absinfo - allocates array of input_absinfo structs
411  * @dev: the input device emitting absolute events
412  *
413  * If the absinfo struct the caller asked for is already allocated, this
414  * functions will not do anything.
415  */
416 void input_alloc_absinfo(struct input_dev *dev)
417 {
418 	if (!dev->absinfo)
419 		dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
420 					GFP_KERNEL);
421 
422 	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
423 }
424 EXPORT_SYMBOL(input_alloc_absinfo);
425 
426 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
427 			  int min, int max, int fuzz, int flat)
428 {
429 	struct input_absinfo *absinfo;
430 
431 	input_alloc_absinfo(dev);
432 	if (!dev->absinfo)
433 		return;
434 
435 	absinfo = &dev->absinfo[axis];
436 	absinfo->minimum = min;
437 	absinfo->maximum = max;
438 	absinfo->fuzz = fuzz;
439 	absinfo->flat = flat;
440 
441 	dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
442 }
443 EXPORT_SYMBOL(input_set_abs_params);
444 
445 
446 /**
447  * input_grab_device - grabs device for exclusive use
448  * @handle: input handle that wants to own the device
449  *
450  * When a device is grabbed by an input handle all events generated by
451  * the device are delivered only to this handle. Also events injected
452  * by other input handles are ignored while device is grabbed.
453  */
454 int input_grab_device(struct input_handle *handle)
455 {
456 	struct input_dev *dev = handle->dev;
457 	int retval;
458 
459 	retval = mutex_lock_interruptible(&dev->mutex);
460 	if (retval)
461 		return retval;
462 
463 	if (dev->grab) {
464 		retval = -EBUSY;
465 		goto out;
466 	}
467 
468 	rcu_assign_pointer(dev->grab, handle);
469 	synchronize_rcu();
470 
471  out:
472 	mutex_unlock(&dev->mutex);
473 	return retval;
474 }
475 EXPORT_SYMBOL(input_grab_device);
476 
477 static void __input_release_device(struct input_handle *handle)
478 {
479 	struct input_dev *dev = handle->dev;
480 
481 	if (dev->grab == handle) {
482 		rcu_assign_pointer(dev->grab, NULL);
483 		/* Make sure input_pass_event() notices that grab is gone */
484 		synchronize_rcu();
485 
486 		list_for_each_entry(handle, &dev->h_list, d_node)
487 			if (handle->open && handle->handler->start)
488 				handle->handler->start(handle);
489 	}
490 }
491 
492 /**
493  * input_release_device - release previously grabbed device
494  * @handle: input handle that owns the device
495  *
496  * Releases previously grabbed device so that other input handles can
497  * start receiving input events. Upon release all handlers attached
498  * to the device have their start() method called so they have a change
499  * to synchronize device state with the rest of the system.
500  */
501 void input_release_device(struct input_handle *handle)
502 {
503 	struct input_dev *dev = handle->dev;
504 
505 	mutex_lock(&dev->mutex);
506 	__input_release_device(handle);
507 	mutex_unlock(&dev->mutex);
508 }
509 EXPORT_SYMBOL(input_release_device);
510 
511 /**
512  * input_open_device - open input device
513  * @handle: handle through which device is being accessed
514  *
515  * This function should be called by input handlers when they
516  * want to start receive events from given input device.
517  */
518 int input_open_device(struct input_handle *handle)
519 {
520 	struct input_dev *dev = handle->dev;
521 	int retval;
522 
523 	retval = mutex_lock_interruptible(&dev->mutex);
524 	if (retval)
525 		return retval;
526 
527 	if (dev->going_away) {
528 		retval = -ENODEV;
529 		goto out;
530 	}
531 
532 	handle->open++;
533 
534 	if (!dev->users++ && dev->open)
535 		retval = dev->open(dev);
536 
537 	if (retval) {
538 		dev->users--;
539 		if (!--handle->open) {
540 			/*
541 			 * Make sure we are not delivering any more events
542 			 * through this handle
543 			 */
544 			synchronize_rcu();
545 		}
546 	}
547 
548  out:
549 	mutex_unlock(&dev->mutex);
550 	return retval;
551 }
552 EXPORT_SYMBOL(input_open_device);
553 
554 int input_flush_device(struct input_handle *handle, struct file *file)
555 {
556 	struct input_dev *dev = handle->dev;
557 	int retval;
558 
559 	retval = mutex_lock_interruptible(&dev->mutex);
560 	if (retval)
561 		return retval;
562 
563 	if (dev->flush)
564 		retval = dev->flush(dev, file);
565 
566 	mutex_unlock(&dev->mutex);
567 	return retval;
568 }
569 EXPORT_SYMBOL(input_flush_device);
570 
571 /**
572  * input_close_device - close input device
573  * @handle: handle through which device is being accessed
574  *
575  * This function should be called by input handlers when they
576  * want to stop receive events from given input device.
577  */
578 void input_close_device(struct input_handle *handle)
579 {
580 	struct input_dev *dev = handle->dev;
581 
582 	mutex_lock(&dev->mutex);
583 
584 	__input_release_device(handle);
585 
586 	if (!--dev->users && dev->close)
587 		dev->close(dev);
588 
589 	if (!--handle->open) {
590 		/*
591 		 * synchronize_rcu() makes sure that input_pass_event()
592 		 * completed and that no more input events are delivered
593 		 * through this handle
594 		 */
595 		synchronize_rcu();
596 	}
597 
598 	mutex_unlock(&dev->mutex);
599 }
600 EXPORT_SYMBOL(input_close_device);
601 
602 /*
603  * Simulate keyup events for all keys that are marked as pressed.
604  * The function must be called with dev->event_lock held.
605  */
606 static void input_dev_release_keys(struct input_dev *dev)
607 {
608 	int code;
609 
610 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
611 		for (code = 0; code <= KEY_MAX; code++) {
612 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
613 			    __test_and_clear_bit(code, dev->key)) {
614 				input_pass_event(dev, NULL, EV_KEY, code, 0);
615 			}
616 		}
617 		input_pass_event(dev, NULL, EV_SYN, SYN_REPORT, 1);
618 	}
619 }
620 
621 /*
622  * Prepare device for unregistering
623  */
624 static void input_disconnect_device(struct input_dev *dev)
625 {
626 	struct input_handle *handle;
627 
628 	/*
629 	 * Mark device as going away. Note that we take dev->mutex here
630 	 * not to protect access to dev->going_away but rather to ensure
631 	 * that there are no threads in the middle of input_open_device()
632 	 */
633 	mutex_lock(&dev->mutex);
634 	dev->going_away = true;
635 	mutex_unlock(&dev->mutex);
636 
637 	spin_lock_irq(&dev->event_lock);
638 
639 	/*
640 	 * Simulate keyup events for all pressed keys so that handlers
641 	 * are not left with "stuck" keys. The driver may continue
642 	 * generate events even after we done here but they will not
643 	 * reach any handlers.
644 	 */
645 	input_dev_release_keys(dev);
646 
647 	list_for_each_entry(handle, &dev->h_list, d_node)
648 		handle->open = 0;
649 
650 	spin_unlock_irq(&dev->event_lock);
651 }
652 
653 /**
654  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
655  * @ke: keymap entry containing scancode to be converted.
656  * @scancode: pointer to the location where converted scancode should
657  *	be stored.
658  *
659  * This function is used to convert scancode stored in &struct keymap_entry
660  * into scalar form understood by legacy keymap handling methods. These
661  * methods expect scancodes to be represented as 'unsigned int'.
662  */
663 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
664 			     unsigned int *scancode)
665 {
666 	switch (ke->len) {
667 	case 1:
668 		*scancode = *((u8 *)ke->scancode);
669 		break;
670 
671 	case 2:
672 		*scancode = *((u16 *)ke->scancode);
673 		break;
674 
675 	case 4:
676 		*scancode = *((u32 *)ke->scancode);
677 		break;
678 
679 	default:
680 		return -EINVAL;
681 	}
682 
683 	return 0;
684 }
685 EXPORT_SYMBOL(input_scancode_to_scalar);
686 
687 /*
688  * Those routines handle the default case where no [gs]etkeycode() is
689  * defined. In this case, an array indexed by the scancode is used.
690  */
691 
692 static unsigned int input_fetch_keycode(struct input_dev *dev,
693 					unsigned int index)
694 {
695 	switch (dev->keycodesize) {
696 	case 1:
697 		return ((u8 *)dev->keycode)[index];
698 
699 	case 2:
700 		return ((u16 *)dev->keycode)[index];
701 
702 	default:
703 		return ((u32 *)dev->keycode)[index];
704 	}
705 }
706 
707 static int input_default_getkeycode(struct input_dev *dev,
708 				    struct input_keymap_entry *ke)
709 {
710 	unsigned int index;
711 	int error;
712 
713 	if (!dev->keycodesize)
714 		return -EINVAL;
715 
716 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
717 		index = ke->index;
718 	else {
719 		error = input_scancode_to_scalar(ke, &index);
720 		if (error)
721 			return error;
722 	}
723 
724 	if (index >= dev->keycodemax)
725 		return -EINVAL;
726 
727 	ke->keycode = input_fetch_keycode(dev, index);
728 	ke->index = index;
729 	ke->len = sizeof(index);
730 	memcpy(ke->scancode, &index, sizeof(index));
731 
732 	return 0;
733 }
734 
735 static int input_default_setkeycode(struct input_dev *dev,
736 				    const struct input_keymap_entry *ke,
737 				    unsigned int *old_keycode)
738 {
739 	unsigned int index;
740 	int error;
741 	int i;
742 
743 	if (!dev->keycodesize)
744 		return -EINVAL;
745 
746 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
747 		index = ke->index;
748 	} else {
749 		error = input_scancode_to_scalar(ke, &index);
750 		if (error)
751 			return error;
752 	}
753 
754 	if (index >= dev->keycodemax)
755 		return -EINVAL;
756 
757 	if (dev->keycodesize < sizeof(ke->keycode) &&
758 			(ke->keycode >> (dev->keycodesize * 8)))
759 		return -EINVAL;
760 
761 	switch (dev->keycodesize) {
762 		case 1: {
763 			u8 *k = (u8 *)dev->keycode;
764 			*old_keycode = k[index];
765 			k[index] = ke->keycode;
766 			break;
767 		}
768 		case 2: {
769 			u16 *k = (u16 *)dev->keycode;
770 			*old_keycode = k[index];
771 			k[index] = ke->keycode;
772 			break;
773 		}
774 		default: {
775 			u32 *k = (u32 *)dev->keycode;
776 			*old_keycode = k[index];
777 			k[index] = ke->keycode;
778 			break;
779 		}
780 	}
781 
782 	__clear_bit(*old_keycode, dev->keybit);
783 	__set_bit(ke->keycode, dev->keybit);
784 
785 	for (i = 0; i < dev->keycodemax; i++) {
786 		if (input_fetch_keycode(dev, i) == *old_keycode) {
787 			__set_bit(*old_keycode, dev->keybit);
788 			break; /* Setting the bit twice is useless, so break */
789 		}
790 	}
791 
792 	return 0;
793 }
794 
795 /**
796  * input_get_keycode - retrieve keycode currently mapped to a given scancode
797  * @dev: input device which keymap is being queried
798  * @ke: keymap entry
799  *
800  * This function should be called by anyone interested in retrieving current
801  * keymap. Presently evdev handlers use it.
802  */
803 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
804 {
805 	unsigned long flags;
806 	int retval;
807 
808 	spin_lock_irqsave(&dev->event_lock, flags);
809 
810 	if (dev->getkeycode) {
811 		/*
812 		 * Support for legacy drivers, that don't implement the new
813 		 * ioctls
814 		 */
815 		u32 scancode = ke->index;
816 
817 		memcpy(ke->scancode, &scancode, sizeof(scancode));
818 		ke->len = sizeof(scancode);
819 		retval = dev->getkeycode(dev, scancode, &ke->keycode);
820 	} else {
821 		retval = dev->getkeycode_new(dev, ke);
822 	}
823 
824 	spin_unlock_irqrestore(&dev->event_lock, flags);
825 	return retval;
826 }
827 EXPORT_SYMBOL(input_get_keycode);
828 
829 /**
830  * input_set_keycode - attribute a keycode to a given scancode
831  * @dev: input device which keymap is being updated
832  * @ke: new keymap entry
833  *
834  * This function should be called by anyone needing to update current
835  * keymap. Presently keyboard and evdev handlers use it.
836  */
837 int input_set_keycode(struct input_dev *dev,
838 		      const struct input_keymap_entry *ke)
839 {
840 	unsigned long flags;
841 	unsigned int old_keycode;
842 	int retval;
843 
844 	if (ke->keycode > KEY_MAX)
845 		return -EINVAL;
846 
847 	spin_lock_irqsave(&dev->event_lock, flags);
848 
849 	if (dev->setkeycode) {
850 		/*
851 		 * Support for legacy drivers, that don't implement the new
852 		 * ioctls
853 		 */
854 		unsigned int scancode;
855 
856 		retval = input_scancode_to_scalar(ke, &scancode);
857 		if (retval)
858 			goto out;
859 
860 		/*
861 		 * We need to know the old scancode, in order to generate a
862 		 * keyup effect, if the set operation happens successfully
863 		 */
864 		if (!dev->getkeycode) {
865 			retval = -EINVAL;
866 			goto out;
867 		}
868 
869 		retval = dev->getkeycode(dev, scancode, &old_keycode);
870 		if (retval)
871 			goto out;
872 
873 		retval = dev->setkeycode(dev, scancode, ke->keycode);
874 	} else {
875 		retval = dev->setkeycode_new(dev, ke, &old_keycode);
876 	}
877 
878 	if (retval)
879 		goto out;
880 
881 	/* Make sure KEY_RESERVED did not get enabled. */
882 	__clear_bit(KEY_RESERVED, dev->keybit);
883 
884 	/*
885 	 * Simulate keyup event if keycode is not present
886 	 * in the keymap anymore
887 	 */
888 	if (test_bit(EV_KEY, dev->evbit) &&
889 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
890 	    __test_and_clear_bit(old_keycode, dev->key)) {
891 
892 		input_pass_event(dev, NULL, EV_KEY, old_keycode, 0);
893 		if (dev->sync)
894 			input_pass_event(dev, NULL, EV_SYN, SYN_REPORT, 1);
895 	}
896 
897  out:
898 	spin_unlock_irqrestore(&dev->event_lock, flags);
899 
900 	return retval;
901 }
902 EXPORT_SYMBOL(input_set_keycode);
903 
904 #define MATCH_BIT(bit, max) \
905 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
906 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
907 				break; \
908 		if (i != BITS_TO_LONGS(max)) \
909 			continue;
910 
911 static const struct input_device_id *input_match_device(struct input_handler *handler,
912 							struct input_dev *dev)
913 {
914 	const struct input_device_id *id;
915 	int i;
916 
917 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
918 
919 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
920 			if (id->bustype != dev->id.bustype)
921 				continue;
922 
923 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
924 			if (id->vendor != dev->id.vendor)
925 				continue;
926 
927 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
928 			if (id->product != dev->id.product)
929 				continue;
930 
931 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
932 			if (id->version != dev->id.version)
933 				continue;
934 
935 		MATCH_BIT(evbit,  EV_MAX);
936 		MATCH_BIT(keybit, KEY_MAX);
937 		MATCH_BIT(relbit, REL_MAX);
938 		MATCH_BIT(absbit, ABS_MAX);
939 		MATCH_BIT(mscbit, MSC_MAX);
940 		MATCH_BIT(ledbit, LED_MAX);
941 		MATCH_BIT(sndbit, SND_MAX);
942 		MATCH_BIT(ffbit,  FF_MAX);
943 		MATCH_BIT(swbit,  SW_MAX);
944 
945 		if (!handler->match || handler->match(handler, dev))
946 			return id;
947 	}
948 
949 	return NULL;
950 }
951 
952 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
953 {
954 	const struct input_device_id *id;
955 	int error;
956 
957 	id = input_match_device(handler, dev);
958 	if (!id)
959 		return -ENODEV;
960 
961 	error = handler->connect(handler, dev, id);
962 	if (error && error != -ENODEV)
963 		pr_err("failed to attach handler %s to device %s, error: %d\n",
964 		       handler->name, kobject_name(&dev->dev.kobj), error);
965 
966 	return error;
967 }
968 
969 #ifdef CONFIG_COMPAT
970 
971 static int input_bits_to_string(char *buf, int buf_size,
972 				unsigned long bits, bool skip_empty)
973 {
974 	int len = 0;
975 
976 	if (INPUT_COMPAT_TEST) {
977 		u32 dword = bits >> 32;
978 		if (dword || !skip_empty)
979 			len += snprintf(buf, buf_size, "%x ", dword);
980 
981 		dword = bits & 0xffffffffUL;
982 		if (dword || !skip_empty || len)
983 			len += snprintf(buf + len, max(buf_size - len, 0),
984 					"%x", dword);
985 	} else {
986 		if (bits || !skip_empty)
987 			len += snprintf(buf, buf_size, "%lx", bits);
988 	}
989 
990 	return len;
991 }
992 
993 #else /* !CONFIG_COMPAT */
994 
995 static int input_bits_to_string(char *buf, int buf_size,
996 				unsigned long bits, bool skip_empty)
997 {
998 	return bits || !skip_empty ?
999 		snprintf(buf, buf_size, "%lx", bits) : 0;
1000 }
1001 
1002 #endif
1003 
1004 #ifdef CONFIG_PROC_FS
1005 
1006 static struct proc_dir_entry *proc_bus_input_dir;
1007 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1008 static int input_devices_state;
1009 
1010 static inline void input_wakeup_procfs_readers(void)
1011 {
1012 	input_devices_state++;
1013 	wake_up(&input_devices_poll_wait);
1014 }
1015 
1016 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1017 {
1018 	poll_wait(file, &input_devices_poll_wait, wait);
1019 	if (file->f_version != input_devices_state) {
1020 		file->f_version = input_devices_state;
1021 		return POLLIN | POLLRDNORM;
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 union input_seq_state {
1028 	struct {
1029 		unsigned short pos;
1030 		bool mutex_acquired;
1031 	};
1032 	void *p;
1033 };
1034 
1035 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1036 {
1037 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1038 	int error;
1039 
1040 	/* We need to fit into seq->private pointer */
1041 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1042 
1043 	error = mutex_lock_interruptible(&input_mutex);
1044 	if (error) {
1045 		state->mutex_acquired = false;
1046 		return ERR_PTR(error);
1047 	}
1048 
1049 	state->mutex_acquired = true;
1050 
1051 	return seq_list_start(&input_dev_list, *pos);
1052 }
1053 
1054 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1055 {
1056 	return seq_list_next(v, &input_dev_list, pos);
1057 }
1058 
1059 static void input_seq_stop(struct seq_file *seq, void *v)
1060 {
1061 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1062 
1063 	if (state->mutex_acquired)
1064 		mutex_unlock(&input_mutex);
1065 }
1066 
1067 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1068 				   unsigned long *bitmap, int max)
1069 {
1070 	int i;
1071 	bool skip_empty = true;
1072 	char buf[18];
1073 
1074 	seq_printf(seq, "B: %s=", name);
1075 
1076 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1077 		if (input_bits_to_string(buf, sizeof(buf),
1078 					 bitmap[i], skip_empty)) {
1079 			skip_empty = false;
1080 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1081 		}
1082 	}
1083 
1084 	/*
1085 	 * If no output was produced print a single 0.
1086 	 */
1087 	if (skip_empty)
1088 		seq_puts(seq, "0");
1089 
1090 	seq_putc(seq, '\n');
1091 }
1092 
1093 static int input_devices_seq_show(struct seq_file *seq, void *v)
1094 {
1095 	struct input_dev *dev = container_of(v, struct input_dev, node);
1096 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1097 	struct input_handle *handle;
1098 
1099 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1100 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1101 
1102 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1103 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1104 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1105 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1106 	seq_printf(seq, "H: Handlers=");
1107 
1108 	list_for_each_entry(handle, &dev->h_list, d_node)
1109 		seq_printf(seq, "%s ", handle->name);
1110 	seq_putc(seq, '\n');
1111 
1112 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1113 
1114 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1115 	if (test_bit(EV_KEY, dev->evbit))
1116 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1117 	if (test_bit(EV_REL, dev->evbit))
1118 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1119 	if (test_bit(EV_ABS, dev->evbit))
1120 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1121 	if (test_bit(EV_MSC, dev->evbit))
1122 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1123 	if (test_bit(EV_LED, dev->evbit))
1124 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1125 	if (test_bit(EV_SND, dev->evbit))
1126 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1127 	if (test_bit(EV_FF, dev->evbit))
1128 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1129 	if (test_bit(EV_SW, dev->evbit))
1130 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1131 
1132 	seq_putc(seq, '\n');
1133 
1134 	kfree(path);
1135 	return 0;
1136 }
1137 
1138 static const struct seq_operations input_devices_seq_ops = {
1139 	.start	= input_devices_seq_start,
1140 	.next	= input_devices_seq_next,
1141 	.stop	= input_seq_stop,
1142 	.show	= input_devices_seq_show,
1143 };
1144 
1145 static int input_proc_devices_open(struct inode *inode, struct file *file)
1146 {
1147 	return seq_open(file, &input_devices_seq_ops);
1148 }
1149 
1150 static const struct file_operations input_devices_fileops = {
1151 	.owner		= THIS_MODULE,
1152 	.open		= input_proc_devices_open,
1153 	.poll		= input_proc_devices_poll,
1154 	.read		= seq_read,
1155 	.llseek		= seq_lseek,
1156 	.release	= seq_release,
1157 };
1158 
1159 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1160 {
1161 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1162 	int error;
1163 
1164 	/* We need to fit into seq->private pointer */
1165 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1166 
1167 	error = mutex_lock_interruptible(&input_mutex);
1168 	if (error) {
1169 		state->mutex_acquired = false;
1170 		return ERR_PTR(error);
1171 	}
1172 
1173 	state->mutex_acquired = true;
1174 	state->pos = *pos;
1175 
1176 	return seq_list_start(&input_handler_list, *pos);
1177 }
1178 
1179 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1180 {
1181 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1182 
1183 	state->pos = *pos + 1;
1184 	return seq_list_next(v, &input_handler_list, pos);
1185 }
1186 
1187 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1188 {
1189 	struct input_handler *handler = container_of(v, struct input_handler, node);
1190 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1191 
1192 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1193 	if (handler->filter)
1194 		seq_puts(seq, " (filter)");
1195 	if (handler->fops)
1196 		seq_printf(seq, " Minor=%d", handler->minor);
1197 	seq_putc(seq, '\n');
1198 
1199 	return 0;
1200 }
1201 
1202 static const struct seq_operations input_handlers_seq_ops = {
1203 	.start	= input_handlers_seq_start,
1204 	.next	= input_handlers_seq_next,
1205 	.stop	= input_seq_stop,
1206 	.show	= input_handlers_seq_show,
1207 };
1208 
1209 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1210 {
1211 	return seq_open(file, &input_handlers_seq_ops);
1212 }
1213 
1214 static const struct file_operations input_handlers_fileops = {
1215 	.owner		= THIS_MODULE,
1216 	.open		= input_proc_handlers_open,
1217 	.read		= seq_read,
1218 	.llseek		= seq_lseek,
1219 	.release	= seq_release,
1220 };
1221 
1222 static int __init input_proc_init(void)
1223 {
1224 	struct proc_dir_entry *entry;
1225 
1226 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1227 	if (!proc_bus_input_dir)
1228 		return -ENOMEM;
1229 
1230 	entry = proc_create("devices", 0, proc_bus_input_dir,
1231 			    &input_devices_fileops);
1232 	if (!entry)
1233 		goto fail1;
1234 
1235 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1236 			    &input_handlers_fileops);
1237 	if (!entry)
1238 		goto fail2;
1239 
1240 	return 0;
1241 
1242  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1243  fail1: remove_proc_entry("bus/input", NULL);
1244 	return -ENOMEM;
1245 }
1246 
1247 static void input_proc_exit(void)
1248 {
1249 	remove_proc_entry("devices", proc_bus_input_dir);
1250 	remove_proc_entry("handlers", proc_bus_input_dir);
1251 	remove_proc_entry("bus/input", NULL);
1252 }
1253 
1254 #else /* !CONFIG_PROC_FS */
1255 static inline void input_wakeup_procfs_readers(void) { }
1256 static inline int input_proc_init(void) { return 0; }
1257 static inline void input_proc_exit(void) { }
1258 #endif
1259 
1260 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1261 static ssize_t input_dev_show_##name(struct device *dev,		\
1262 				     struct device_attribute *attr,	\
1263 				     char *buf)				\
1264 {									\
1265 	struct input_dev *input_dev = to_input_dev(dev);		\
1266 									\
1267 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1268 			 input_dev->name ? input_dev->name : "");	\
1269 }									\
1270 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1271 
1272 INPUT_DEV_STRING_ATTR_SHOW(name);
1273 INPUT_DEV_STRING_ATTR_SHOW(phys);
1274 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1275 
1276 static int input_print_modalias_bits(char *buf, int size,
1277 				     char name, unsigned long *bm,
1278 				     unsigned int min_bit, unsigned int max_bit)
1279 {
1280 	int len = 0, i;
1281 
1282 	len += snprintf(buf, max(size, 0), "%c", name);
1283 	for (i = min_bit; i < max_bit; i++)
1284 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1285 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1286 	return len;
1287 }
1288 
1289 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1290 				int add_cr)
1291 {
1292 	int len;
1293 
1294 	len = snprintf(buf, max(size, 0),
1295 		       "input:b%04Xv%04Xp%04Xe%04X-",
1296 		       id->id.bustype, id->id.vendor,
1297 		       id->id.product, id->id.version);
1298 
1299 	len += input_print_modalias_bits(buf + len, size - len,
1300 				'e', id->evbit, 0, EV_MAX);
1301 	len += input_print_modalias_bits(buf + len, size - len,
1302 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1303 	len += input_print_modalias_bits(buf + len, size - len,
1304 				'r', id->relbit, 0, REL_MAX);
1305 	len += input_print_modalias_bits(buf + len, size - len,
1306 				'a', id->absbit, 0, ABS_MAX);
1307 	len += input_print_modalias_bits(buf + len, size - len,
1308 				'm', id->mscbit, 0, MSC_MAX);
1309 	len += input_print_modalias_bits(buf + len, size - len,
1310 				'l', id->ledbit, 0, LED_MAX);
1311 	len += input_print_modalias_bits(buf + len, size - len,
1312 				's', id->sndbit, 0, SND_MAX);
1313 	len += input_print_modalias_bits(buf + len, size - len,
1314 				'f', id->ffbit, 0, FF_MAX);
1315 	len += input_print_modalias_bits(buf + len, size - len,
1316 				'w', id->swbit, 0, SW_MAX);
1317 
1318 	if (add_cr)
1319 		len += snprintf(buf + len, max(size - len, 0), "\n");
1320 
1321 	return len;
1322 }
1323 
1324 static ssize_t input_dev_show_modalias(struct device *dev,
1325 				       struct device_attribute *attr,
1326 				       char *buf)
1327 {
1328 	struct input_dev *id = to_input_dev(dev);
1329 	ssize_t len;
1330 
1331 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1332 
1333 	return min_t(int, len, PAGE_SIZE);
1334 }
1335 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1336 
1337 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1338 			      int max, int add_cr);
1339 
1340 static ssize_t input_dev_show_properties(struct device *dev,
1341 					 struct device_attribute *attr,
1342 					 char *buf)
1343 {
1344 	struct input_dev *input_dev = to_input_dev(dev);
1345 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1346 				     INPUT_PROP_MAX, true);
1347 	return min_t(int, len, PAGE_SIZE);
1348 }
1349 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1350 
1351 static struct attribute *input_dev_attrs[] = {
1352 	&dev_attr_name.attr,
1353 	&dev_attr_phys.attr,
1354 	&dev_attr_uniq.attr,
1355 	&dev_attr_modalias.attr,
1356 	&dev_attr_properties.attr,
1357 	NULL
1358 };
1359 
1360 static struct attribute_group input_dev_attr_group = {
1361 	.attrs	= input_dev_attrs,
1362 };
1363 
1364 #define INPUT_DEV_ID_ATTR(name)						\
1365 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1366 					struct device_attribute *attr,	\
1367 					char *buf)			\
1368 {									\
1369 	struct input_dev *input_dev = to_input_dev(dev);		\
1370 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1371 }									\
1372 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1373 
1374 INPUT_DEV_ID_ATTR(bustype);
1375 INPUT_DEV_ID_ATTR(vendor);
1376 INPUT_DEV_ID_ATTR(product);
1377 INPUT_DEV_ID_ATTR(version);
1378 
1379 static struct attribute *input_dev_id_attrs[] = {
1380 	&dev_attr_bustype.attr,
1381 	&dev_attr_vendor.attr,
1382 	&dev_attr_product.attr,
1383 	&dev_attr_version.attr,
1384 	NULL
1385 };
1386 
1387 static struct attribute_group input_dev_id_attr_group = {
1388 	.name	= "id",
1389 	.attrs	= input_dev_id_attrs,
1390 };
1391 
1392 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1393 			      int max, int add_cr)
1394 {
1395 	int i;
1396 	int len = 0;
1397 	bool skip_empty = true;
1398 
1399 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1400 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1401 					    bitmap[i], skip_empty);
1402 		if (len) {
1403 			skip_empty = false;
1404 			if (i > 0)
1405 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1406 		}
1407 	}
1408 
1409 	/*
1410 	 * If no output was produced print a single 0.
1411 	 */
1412 	if (len == 0)
1413 		len = snprintf(buf, buf_size, "%d", 0);
1414 
1415 	if (add_cr)
1416 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1417 
1418 	return len;
1419 }
1420 
1421 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1422 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1423 				       struct device_attribute *attr,	\
1424 				       char *buf)			\
1425 {									\
1426 	struct input_dev *input_dev = to_input_dev(dev);		\
1427 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1428 				     input_dev->bm##bit, ev##_MAX,	\
1429 				     true);				\
1430 	return min_t(int, len, PAGE_SIZE);				\
1431 }									\
1432 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1433 
1434 INPUT_DEV_CAP_ATTR(EV, ev);
1435 INPUT_DEV_CAP_ATTR(KEY, key);
1436 INPUT_DEV_CAP_ATTR(REL, rel);
1437 INPUT_DEV_CAP_ATTR(ABS, abs);
1438 INPUT_DEV_CAP_ATTR(MSC, msc);
1439 INPUT_DEV_CAP_ATTR(LED, led);
1440 INPUT_DEV_CAP_ATTR(SND, snd);
1441 INPUT_DEV_CAP_ATTR(FF, ff);
1442 INPUT_DEV_CAP_ATTR(SW, sw);
1443 
1444 static struct attribute *input_dev_caps_attrs[] = {
1445 	&dev_attr_ev.attr,
1446 	&dev_attr_key.attr,
1447 	&dev_attr_rel.attr,
1448 	&dev_attr_abs.attr,
1449 	&dev_attr_msc.attr,
1450 	&dev_attr_led.attr,
1451 	&dev_attr_snd.attr,
1452 	&dev_attr_ff.attr,
1453 	&dev_attr_sw.attr,
1454 	NULL
1455 };
1456 
1457 static struct attribute_group input_dev_caps_attr_group = {
1458 	.name	= "capabilities",
1459 	.attrs	= input_dev_caps_attrs,
1460 };
1461 
1462 static const struct attribute_group *input_dev_attr_groups[] = {
1463 	&input_dev_attr_group,
1464 	&input_dev_id_attr_group,
1465 	&input_dev_caps_attr_group,
1466 	NULL
1467 };
1468 
1469 static void input_dev_release(struct device *device)
1470 {
1471 	struct input_dev *dev = to_input_dev(device);
1472 
1473 	input_ff_destroy(dev);
1474 	input_mt_destroy_slots(dev);
1475 	kfree(dev->absinfo);
1476 	kfree(dev);
1477 
1478 	module_put(THIS_MODULE);
1479 }
1480 
1481 /*
1482  * Input uevent interface - loading event handlers based on
1483  * device bitfields.
1484  */
1485 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1486 				   const char *name, unsigned long *bitmap, int max)
1487 {
1488 	int len;
1489 
1490 	if (add_uevent_var(env, "%s", name))
1491 		return -ENOMEM;
1492 
1493 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1494 				 sizeof(env->buf) - env->buflen,
1495 				 bitmap, max, false);
1496 	if (len >= (sizeof(env->buf) - env->buflen))
1497 		return -ENOMEM;
1498 
1499 	env->buflen += len;
1500 	return 0;
1501 }
1502 
1503 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1504 					 struct input_dev *dev)
1505 {
1506 	int len;
1507 
1508 	if (add_uevent_var(env, "MODALIAS="))
1509 		return -ENOMEM;
1510 
1511 	len = input_print_modalias(&env->buf[env->buflen - 1],
1512 				   sizeof(env->buf) - env->buflen,
1513 				   dev, 0);
1514 	if (len >= (sizeof(env->buf) - env->buflen))
1515 		return -ENOMEM;
1516 
1517 	env->buflen += len;
1518 	return 0;
1519 }
1520 
1521 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1522 	do {								\
1523 		int err = add_uevent_var(env, fmt, val);		\
1524 		if (err)						\
1525 			return err;					\
1526 	} while (0)
1527 
1528 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1529 	do {								\
1530 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1531 		if (err)						\
1532 			return err;					\
1533 	} while (0)
1534 
1535 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1536 	do {								\
1537 		int err = input_add_uevent_modalias_var(env, dev);	\
1538 		if (err)						\
1539 			return err;					\
1540 	} while (0)
1541 
1542 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1543 {
1544 	struct input_dev *dev = to_input_dev(device);
1545 
1546 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1547 				dev->id.bustype, dev->id.vendor,
1548 				dev->id.product, dev->id.version);
1549 	if (dev->name)
1550 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1551 	if (dev->phys)
1552 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1553 	if (dev->uniq)
1554 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1555 
1556 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1557 
1558 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1559 	if (test_bit(EV_KEY, dev->evbit))
1560 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1561 	if (test_bit(EV_REL, dev->evbit))
1562 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1563 	if (test_bit(EV_ABS, dev->evbit))
1564 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1565 	if (test_bit(EV_MSC, dev->evbit))
1566 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1567 	if (test_bit(EV_LED, dev->evbit))
1568 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1569 	if (test_bit(EV_SND, dev->evbit))
1570 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1571 	if (test_bit(EV_FF, dev->evbit))
1572 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1573 	if (test_bit(EV_SW, dev->evbit))
1574 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1575 
1576 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1577 
1578 	return 0;
1579 }
1580 
1581 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1582 	do {								\
1583 		int i;							\
1584 		bool active;						\
1585 									\
1586 		if (!test_bit(EV_##type, dev->evbit))			\
1587 			break;						\
1588 									\
1589 		for (i = 0; i < type##_MAX; i++) {			\
1590 			if (!test_bit(i, dev->bits##bit))		\
1591 				continue;				\
1592 									\
1593 			active = test_bit(i, dev->bits);		\
1594 			if (!active && !on)				\
1595 				continue;				\
1596 									\
1597 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1598 		}							\
1599 	} while (0)
1600 
1601 static void input_dev_toggle(struct input_dev *dev, bool activate)
1602 {
1603 	if (!dev->event)
1604 		return;
1605 
1606 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1607 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1608 
1609 	if (activate && test_bit(EV_REP, dev->evbit)) {
1610 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1611 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1612 	}
1613 }
1614 
1615 /**
1616  * input_reset_device() - reset/restore the state of input device
1617  * @dev: input device whose state needs to be reset
1618  *
1619  * This function tries to reset the state of an opened input device and
1620  * bring internal state and state if the hardware in sync with each other.
1621  * We mark all keys as released, restore LED state, repeat rate, etc.
1622  */
1623 void input_reset_device(struct input_dev *dev)
1624 {
1625 	mutex_lock(&dev->mutex);
1626 
1627 	if (dev->users) {
1628 		input_dev_toggle(dev, true);
1629 
1630 		/*
1631 		 * Keys that have been pressed at suspend time are unlikely
1632 		 * to be still pressed when we resume.
1633 		 */
1634 		spin_lock_irq(&dev->event_lock);
1635 		input_dev_release_keys(dev);
1636 		spin_unlock_irq(&dev->event_lock);
1637 	}
1638 
1639 	mutex_unlock(&dev->mutex);
1640 }
1641 EXPORT_SYMBOL(input_reset_device);
1642 
1643 #ifdef CONFIG_PM
1644 static int input_dev_suspend(struct device *dev)
1645 {
1646 	struct input_dev *input_dev = to_input_dev(dev);
1647 
1648 	mutex_lock(&input_dev->mutex);
1649 
1650 	if (input_dev->users)
1651 		input_dev_toggle(input_dev, false);
1652 
1653 	mutex_unlock(&input_dev->mutex);
1654 
1655 	return 0;
1656 }
1657 
1658 static int input_dev_resume(struct device *dev)
1659 {
1660 	struct input_dev *input_dev = to_input_dev(dev);
1661 
1662 	input_reset_device(input_dev);
1663 
1664 	return 0;
1665 }
1666 
1667 static const struct dev_pm_ops input_dev_pm_ops = {
1668 	.suspend	= input_dev_suspend,
1669 	.resume		= input_dev_resume,
1670 	.poweroff	= input_dev_suspend,
1671 	.restore	= input_dev_resume,
1672 };
1673 #endif /* CONFIG_PM */
1674 
1675 static struct device_type input_dev_type = {
1676 	.groups		= input_dev_attr_groups,
1677 	.release	= input_dev_release,
1678 	.uevent		= input_dev_uevent,
1679 #ifdef CONFIG_PM
1680 	.pm		= &input_dev_pm_ops,
1681 #endif
1682 };
1683 
1684 static char *input_devnode(struct device *dev, mode_t *mode)
1685 {
1686 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1687 }
1688 
1689 struct class input_class = {
1690 	.name		= "input",
1691 	.devnode	= input_devnode,
1692 };
1693 EXPORT_SYMBOL_GPL(input_class);
1694 
1695 /**
1696  * input_allocate_device - allocate memory for new input device
1697  *
1698  * Returns prepared struct input_dev or NULL.
1699  *
1700  * NOTE: Use input_free_device() to free devices that have not been
1701  * registered; input_unregister_device() should be used for already
1702  * registered devices.
1703  */
1704 struct input_dev *input_allocate_device(void)
1705 {
1706 	struct input_dev *dev;
1707 
1708 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1709 	if (dev) {
1710 		dev->dev.type = &input_dev_type;
1711 		dev->dev.class = &input_class;
1712 		device_initialize(&dev->dev);
1713 		mutex_init(&dev->mutex);
1714 		spin_lock_init(&dev->event_lock);
1715 		INIT_LIST_HEAD(&dev->h_list);
1716 		INIT_LIST_HEAD(&dev->node);
1717 
1718 		__module_get(THIS_MODULE);
1719 	}
1720 
1721 	return dev;
1722 }
1723 EXPORT_SYMBOL(input_allocate_device);
1724 
1725 /**
1726  * input_free_device - free memory occupied by input_dev structure
1727  * @dev: input device to free
1728  *
1729  * This function should only be used if input_register_device()
1730  * was not called yet or if it failed. Once device was registered
1731  * use input_unregister_device() and memory will be freed once last
1732  * reference to the device is dropped.
1733  *
1734  * Device should be allocated by input_allocate_device().
1735  *
1736  * NOTE: If there are references to the input device then memory
1737  * will not be freed until last reference is dropped.
1738  */
1739 void input_free_device(struct input_dev *dev)
1740 {
1741 	if (dev)
1742 		input_put_device(dev);
1743 }
1744 EXPORT_SYMBOL(input_free_device);
1745 
1746 /**
1747  * input_set_capability - mark device as capable of a certain event
1748  * @dev: device that is capable of emitting or accepting event
1749  * @type: type of the event (EV_KEY, EV_REL, etc...)
1750  * @code: event code
1751  *
1752  * In addition to setting up corresponding bit in appropriate capability
1753  * bitmap the function also adjusts dev->evbit.
1754  */
1755 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1756 {
1757 	switch (type) {
1758 	case EV_KEY:
1759 		__set_bit(code, dev->keybit);
1760 		break;
1761 
1762 	case EV_REL:
1763 		__set_bit(code, dev->relbit);
1764 		break;
1765 
1766 	case EV_ABS:
1767 		__set_bit(code, dev->absbit);
1768 		break;
1769 
1770 	case EV_MSC:
1771 		__set_bit(code, dev->mscbit);
1772 		break;
1773 
1774 	case EV_SW:
1775 		__set_bit(code, dev->swbit);
1776 		break;
1777 
1778 	case EV_LED:
1779 		__set_bit(code, dev->ledbit);
1780 		break;
1781 
1782 	case EV_SND:
1783 		__set_bit(code, dev->sndbit);
1784 		break;
1785 
1786 	case EV_FF:
1787 		__set_bit(code, dev->ffbit);
1788 		break;
1789 
1790 	case EV_PWR:
1791 		/* do nothing */
1792 		break;
1793 
1794 	default:
1795 		pr_err("input_set_capability: unknown type %u (code %u)\n",
1796 		       type, code);
1797 		dump_stack();
1798 		return;
1799 	}
1800 
1801 	__set_bit(type, dev->evbit);
1802 }
1803 EXPORT_SYMBOL(input_set_capability);
1804 
1805 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1806 	do {								\
1807 		if (!test_bit(EV_##type, dev->evbit))			\
1808 			memset(dev->bits##bit, 0,			\
1809 				sizeof(dev->bits##bit));		\
1810 	} while (0)
1811 
1812 static void input_cleanse_bitmasks(struct input_dev *dev)
1813 {
1814 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
1815 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
1816 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1817 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1818 	INPUT_CLEANSE_BITMASK(dev, LED, led);
1819 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
1820 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
1821 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
1822 }
1823 
1824 /**
1825  * input_register_device - register device with input core
1826  * @dev: device to be registered
1827  *
1828  * This function registers device with input core. The device must be
1829  * allocated with input_allocate_device() and all it's capabilities
1830  * set up before registering.
1831  * If function fails the device must be freed with input_free_device().
1832  * Once device has been successfully registered it can be unregistered
1833  * with input_unregister_device(); input_free_device() should not be
1834  * called in this case.
1835  */
1836 int input_register_device(struct input_dev *dev)
1837 {
1838 	static atomic_t input_no = ATOMIC_INIT(0);
1839 	struct input_handler *handler;
1840 	const char *path;
1841 	int error;
1842 
1843 	/* Every input device generates EV_SYN/SYN_REPORT events. */
1844 	__set_bit(EV_SYN, dev->evbit);
1845 
1846 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
1847 	__clear_bit(KEY_RESERVED, dev->keybit);
1848 
1849 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1850 	input_cleanse_bitmasks(dev);
1851 
1852 	/*
1853 	 * If delay and period are pre-set by the driver, then autorepeating
1854 	 * is handled by the driver itself and we don't do it in input.c.
1855 	 */
1856 	init_timer(&dev->timer);
1857 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1858 		dev->timer.data = (long) dev;
1859 		dev->timer.function = input_repeat_key;
1860 		dev->rep[REP_DELAY] = 250;
1861 		dev->rep[REP_PERIOD] = 33;
1862 	}
1863 
1864 	if (!dev->getkeycode && !dev->getkeycode_new)
1865 		dev->getkeycode_new = input_default_getkeycode;
1866 
1867 	if (!dev->setkeycode && !dev->setkeycode_new)
1868 		dev->setkeycode_new = input_default_setkeycode;
1869 
1870 	dev_set_name(&dev->dev, "input%ld",
1871 		     (unsigned long) atomic_inc_return(&input_no) - 1);
1872 
1873 	error = device_add(&dev->dev);
1874 	if (error)
1875 		return error;
1876 
1877 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1878 	pr_info("%s as %s\n",
1879 		dev->name ? dev->name : "Unspecified device",
1880 		path ? path : "N/A");
1881 	kfree(path);
1882 
1883 	error = mutex_lock_interruptible(&input_mutex);
1884 	if (error) {
1885 		device_del(&dev->dev);
1886 		return error;
1887 	}
1888 
1889 	list_add_tail(&dev->node, &input_dev_list);
1890 
1891 	list_for_each_entry(handler, &input_handler_list, node)
1892 		input_attach_handler(dev, handler);
1893 
1894 	input_wakeup_procfs_readers();
1895 
1896 	mutex_unlock(&input_mutex);
1897 
1898 	return 0;
1899 }
1900 EXPORT_SYMBOL(input_register_device);
1901 
1902 /**
1903  * input_unregister_device - unregister previously registered device
1904  * @dev: device to be unregistered
1905  *
1906  * This function unregisters an input device. Once device is unregistered
1907  * the caller should not try to access it as it may get freed at any moment.
1908  */
1909 void input_unregister_device(struct input_dev *dev)
1910 {
1911 	struct input_handle *handle, *next;
1912 
1913 	input_disconnect_device(dev);
1914 
1915 	mutex_lock(&input_mutex);
1916 
1917 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1918 		handle->handler->disconnect(handle);
1919 	WARN_ON(!list_empty(&dev->h_list));
1920 
1921 	del_timer_sync(&dev->timer);
1922 	list_del_init(&dev->node);
1923 
1924 	input_wakeup_procfs_readers();
1925 
1926 	mutex_unlock(&input_mutex);
1927 
1928 	device_unregister(&dev->dev);
1929 }
1930 EXPORT_SYMBOL(input_unregister_device);
1931 
1932 /**
1933  * input_register_handler - register a new input handler
1934  * @handler: handler to be registered
1935  *
1936  * This function registers a new input handler (interface) for input
1937  * devices in the system and attaches it to all input devices that
1938  * are compatible with the handler.
1939  */
1940 int input_register_handler(struct input_handler *handler)
1941 {
1942 	struct input_dev *dev;
1943 	int retval;
1944 
1945 	retval = mutex_lock_interruptible(&input_mutex);
1946 	if (retval)
1947 		return retval;
1948 
1949 	INIT_LIST_HEAD(&handler->h_list);
1950 
1951 	if (handler->fops != NULL) {
1952 		if (input_table[handler->minor >> 5]) {
1953 			retval = -EBUSY;
1954 			goto out;
1955 		}
1956 		input_table[handler->minor >> 5] = handler;
1957 	}
1958 
1959 	list_add_tail(&handler->node, &input_handler_list);
1960 
1961 	list_for_each_entry(dev, &input_dev_list, node)
1962 		input_attach_handler(dev, handler);
1963 
1964 	input_wakeup_procfs_readers();
1965 
1966  out:
1967 	mutex_unlock(&input_mutex);
1968 	return retval;
1969 }
1970 EXPORT_SYMBOL(input_register_handler);
1971 
1972 /**
1973  * input_unregister_handler - unregisters an input handler
1974  * @handler: handler to be unregistered
1975  *
1976  * This function disconnects a handler from its input devices and
1977  * removes it from lists of known handlers.
1978  */
1979 void input_unregister_handler(struct input_handler *handler)
1980 {
1981 	struct input_handle *handle, *next;
1982 
1983 	mutex_lock(&input_mutex);
1984 
1985 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1986 		handler->disconnect(handle);
1987 	WARN_ON(!list_empty(&handler->h_list));
1988 
1989 	list_del_init(&handler->node);
1990 
1991 	if (handler->fops != NULL)
1992 		input_table[handler->minor >> 5] = NULL;
1993 
1994 	input_wakeup_procfs_readers();
1995 
1996 	mutex_unlock(&input_mutex);
1997 }
1998 EXPORT_SYMBOL(input_unregister_handler);
1999 
2000 /**
2001  * input_handler_for_each_handle - handle iterator
2002  * @handler: input handler to iterate
2003  * @data: data for the callback
2004  * @fn: function to be called for each handle
2005  *
2006  * Iterate over @bus's list of devices, and call @fn for each, passing
2007  * it @data and stop when @fn returns a non-zero value. The function is
2008  * using RCU to traverse the list and therefore may be usind in atonic
2009  * contexts. The @fn callback is invoked from RCU critical section and
2010  * thus must not sleep.
2011  */
2012 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2013 				  int (*fn)(struct input_handle *, void *))
2014 {
2015 	struct input_handle *handle;
2016 	int retval = 0;
2017 
2018 	rcu_read_lock();
2019 
2020 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2021 		retval = fn(handle, data);
2022 		if (retval)
2023 			break;
2024 	}
2025 
2026 	rcu_read_unlock();
2027 
2028 	return retval;
2029 }
2030 EXPORT_SYMBOL(input_handler_for_each_handle);
2031 
2032 /**
2033  * input_register_handle - register a new input handle
2034  * @handle: handle to register
2035  *
2036  * This function puts a new input handle onto device's
2037  * and handler's lists so that events can flow through
2038  * it once it is opened using input_open_device().
2039  *
2040  * This function is supposed to be called from handler's
2041  * connect() method.
2042  */
2043 int input_register_handle(struct input_handle *handle)
2044 {
2045 	struct input_handler *handler = handle->handler;
2046 	struct input_dev *dev = handle->dev;
2047 	int error;
2048 
2049 	/*
2050 	 * We take dev->mutex here to prevent race with
2051 	 * input_release_device().
2052 	 */
2053 	error = mutex_lock_interruptible(&dev->mutex);
2054 	if (error)
2055 		return error;
2056 
2057 	/*
2058 	 * Filters go to the head of the list, normal handlers
2059 	 * to the tail.
2060 	 */
2061 	if (handler->filter)
2062 		list_add_rcu(&handle->d_node, &dev->h_list);
2063 	else
2064 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2065 
2066 	mutex_unlock(&dev->mutex);
2067 
2068 	/*
2069 	 * Since we are supposed to be called from ->connect()
2070 	 * which is mutually exclusive with ->disconnect()
2071 	 * we can't be racing with input_unregister_handle()
2072 	 * and so separate lock is not needed here.
2073 	 */
2074 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2075 
2076 	if (handler->start)
2077 		handler->start(handle);
2078 
2079 	return 0;
2080 }
2081 EXPORT_SYMBOL(input_register_handle);
2082 
2083 /**
2084  * input_unregister_handle - unregister an input handle
2085  * @handle: handle to unregister
2086  *
2087  * This function removes input handle from device's
2088  * and handler's lists.
2089  *
2090  * This function is supposed to be called from handler's
2091  * disconnect() method.
2092  */
2093 void input_unregister_handle(struct input_handle *handle)
2094 {
2095 	struct input_dev *dev = handle->dev;
2096 
2097 	list_del_rcu(&handle->h_node);
2098 
2099 	/*
2100 	 * Take dev->mutex to prevent race with input_release_device().
2101 	 */
2102 	mutex_lock(&dev->mutex);
2103 	list_del_rcu(&handle->d_node);
2104 	mutex_unlock(&dev->mutex);
2105 
2106 	synchronize_rcu();
2107 }
2108 EXPORT_SYMBOL(input_unregister_handle);
2109 
2110 static int input_open_file(struct inode *inode, struct file *file)
2111 {
2112 	struct input_handler *handler;
2113 	const struct file_operations *old_fops, *new_fops = NULL;
2114 	int err;
2115 
2116 	err = mutex_lock_interruptible(&input_mutex);
2117 	if (err)
2118 		return err;
2119 
2120 	/* No load-on-demand here? */
2121 	handler = input_table[iminor(inode) >> 5];
2122 	if (handler)
2123 		new_fops = fops_get(handler->fops);
2124 
2125 	mutex_unlock(&input_mutex);
2126 
2127 	/*
2128 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
2129 	 * not "no device". Oh, well...
2130 	 */
2131 	if (!new_fops || !new_fops->open) {
2132 		fops_put(new_fops);
2133 		err = -ENODEV;
2134 		goto out;
2135 	}
2136 
2137 	old_fops = file->f_op;
2138 	file->f_op = new_fops;
2139 
2140 	err = new_fops->open(inode, file);
2141 	if (err) {
2142 		fops_put(file->f_op);
2143 		file->f_op = fops_get(old_fops);
2144 	}
2145 	fops_put(old_fops);
2146 out:
2147 	return err;
2148 }
2149 
2150 static const struct file_operations input_fops = {
2151 	.owner = THIS_MODULE,
2152 	.open = input_open_file,
2153 	.llseek = noop_llseek,
2154 };
2155 
2156 static int __init input_init(void)
2157 {
2158 	int err;
2159 
2160 	err = class_register(&input_class);
2161 	if (err) {
2162 		pr_err("unable to register input_dev class\n");
2163 		return err;
2164 	}
2165 
2166 	err = input_proc_init();
2167 	if (err)
2168 		goto fail1;
2169 
2170 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2171 	if (err) {
2172 		pr_err("unable to register char major %d", INPUT_MAJOR);
2173 		goto fail2;
2174 	}
2175 
2176 	return 0;
2177 
2178  fail2:	input_proc_exit();
2179  fail1:	class_unregister(&input_class);
2180 	return err;
2181 }
2182 
2183 static void __exit input_exit(void)
2184 {
2185 	input_proc_exit();
2186 	unregister_chrdev(INPUT_MAJOR, "input");
2187 	class_unregister(&input_class);
2188 }
2189 
2190 subsys_initcall(input_init);
2191 module_exit(input_exit);
2192