xref: /openbmc/linux/drivers/input/input.c (revision 22246614)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/input.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/major.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/poll.h>
21 #include <linux/device.h>
22 #include <linux/mutex.h>
23 #include <linux/rcupdate.h>
24 
25 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
26 MODULE_DESCRIPTION("Input core");
27 MODULE_LICENSE("GPL");
28 
29 #define INPUT_DEVICES	256
30 
31 static LIST_HEAD(input_dev_list);
32 static LIST_HEAD(input_handler_list);
33 
34 /*
35  * input_mutex protects access to both input_dev_list and input_handler_list.
36  * This also causes input_[un]register_device and input_[un]register_handler
37  * be mutually exclusive which simplifies locking in drivers implementing
38  * input handlers.
39  */
40 static DEFINE_MUTEX(input_mutex);
41 
42 static struct input_handler *input_table[8];
43 
44 static inline int is_event_supported(unsigned int code,
45 				     unsigned long *bm, unsigned int max)
46 {
47 	return code <= max && test_bit(code, bm);
48 }
49 
50 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
51 {
52 	if (fuzz) {
53 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
54 			return old_val;
55 
56 		if (value > old_val - fuzz && value < old_val + fuzz)
57 			return (old_val * 3 + value) / 4;
58 
59 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
60 			return (old_val + value) / 2;
61 	}
62 
63 	return value;
64 }
65 
66 /*
67  * Pass event through all open handles. This function is called with
68  * dev->event_lock held and interrupts disabled.
69  */
70 static void input_pass_event(struct input_dev *dev,
71 			     unsigned int type, unsigned int code, int value)
72 {
73 	struct input_handle *handle;
74 
75 	rcu_read_lock();
76 
77 	handle = rcu_dereference(dev->grab);
78 	if (handle)
79 		handle->handler->event(handle, type, code, value);
80 	else
81 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
82 			if (handle->open)
83 				handle->handler->event(handle,
84 							type, code, value);
85 	rcu_read_unlock();
86 }
87 
88 /*
89  * Generate software autorepeat event. Note that we take
90  * dev->event_lock here to avoid racing with input_event
91  * which may cause keys get "stuck".
92  */
93 static void input_repeat_key(unsigned long data)
94 {
95 	struct input_dev *dev = (void *) data;
96 	unsigned long flags;
97 
98 	spin_lock_irqsave(&dev->event_lock, flags);
99 
100 	if (test_bit(dev->repeat_key, dev->key) &&
101 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
102 
103 		input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
104 
105 		if (dev->sync) {
106 			/*
107 			 * Only send SYN_REPORT if we are not in a middle
108 			 * of driver parsing a new hardware packet.
109 			 * Otherwise assume that the driver will send
110 			 * SYN_REPORT once it's done.
111 			 */
112 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
113 		}
114 
115 		if (dev->rep[REP_PERIOD])
116 			mod_timer(&dev->timer, jiffies +
117 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
118 	}
119 
120 	spin_unlock_irqrestore(&dev->event_lock, flags);
121 }
122 
123 static void input_start_autorepeat(struct input_dev *dev, int code)
124 {
125 	if (test_bit(EV_REP, dev->evbit) &&
126 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
127 	    dev->timer.data) {
128 		dev->repeat_key = code;
129 		mod_timer(&dev->timer,
130 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
131 	}
132 }
133 
134 #define INPUT_IGNORE_EVENT	0
135 #define INPUT_PASS_TO_HANDLERS	1
136 #define INPUT_PASS_TO_DEVICE	2
137 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
138 
139 static void input_handle_event(struct input_dev *dev,
140 			       unsigned int type, unsigned int code, int value)
141 {
142 	int disposition = INPUT_IGNORE_EVENT;
143 
144 	switch (type) {
145 
146 	case EV_SYN:
147 		switch (code) {
148 		case SYN_CONFIG:
149 			disposition = INPUT_PASS_TO_ALL;
150 			break;
151 
152 		case SYN_REPORT:
153 			if (!dev->sync) {
154 				dev->sync = 1;
155 				disposition = INPUT_PASS_TO_HANDLERS;
156 			}
157 			break;
158 		}
159 		break;
160 
161 	case EV_KEY:
162 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
163 		    !!test_bit(code, dev->key) != value) {
164 
165 			if (value != 2) {
166 				__change_bit(code, dev->key);
167 				if (value)
168 					input_start_autorepeat(dev, code);
169 			}
170 
171 			disposition = INPUT_PASS_TO_HANDLERS;
172 		}
173 		break;
174 
175 	case EV_SW:
176 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
177 		    !!test_bit(code, dev->sw) != value) {
178 
179 			__change_bit(code, dev->sw);
180 			disposition = INPUT_PASS_TO_HANDLERS;
181 		}
182 		break;
183 
184 	case EV_ABS:
185 		if (is_event_supported(code, dev->absbit, ABS_MAX)) {
186 
187 			value = input_defuzz_abs_event(value,
188 					dev->abs[code], dev->absfuzz[code]);
189 
190 			if (dev->abs[code] != value) {
191 				dev->abs[code] = value;
192 				disposition = INPUT_PASS_TO_HANDLERS;
193 			}
194 		}
195 		break;
196 
197 	case EV_REL:
198 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
199 			disposition = INPUT_PASS_TO_HANDLERS;
200 
201 		break;
202 
203 	case EV_MSC:
204 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
205 			disposition = INPUT_PASS_TO_ALL;
206 
207 		break;
208 
209 	case EV_LED:
210 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
211 		    !!test_bit(code, dev->led) != value) {
212 
213 			__change_bit(code, dev->led);
214 			disposition = INPUT_PASS_TO_ALL;
215 		}
216 		break;
217 
218 	case EV_SND:
219 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
220 
221 			if (!!test_bit(code, dev->snd) != !!value)
222 				__change_bit(code, dev->snd);
223 			disposition = INPUT_PASS_TO_ALL;
224 		}
225 		break;
226 
227 	case EV_REP:
228 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
229 			dev->rep[code] = value;
230 			disposition = INPUT_PASS_TO_ALL;
231 		}
232 		break;
233 
234 	case EV_FF:
235 		if (value >= 0)
236 			disposition = INPUT_PASS_TO_ALL;
237 		break;
238 
239 	case EV_PWR:
240 		disposition = INPUT_PASS_TO_ALL;
241 		break;
242 	}
243 
244 	if (type != EV_SYN)
245 		dev->sync = 0;
246 
247 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
248 		dev->event(dev, type, code, value);
249 
250 	if (disposition & INPUT_PASS_TO_HANDLERS)
251 		input_pass_event(dev, type, code, value);
252 }
253 
254 /**
255  * input_event() - report new input event
256  * @dev: device that generated the event
257  * @type: type of the event
258  * @code: event code
259  * @value: value of the event
260  *
261  * This function should be used by drivers implementing various input
262  * devices. See also input_inject_event().
263  */
264 
265 void input_event(struct input_dev *dev,
266 		 unsigned int type, unsigned int code, int value)
267 {
268 	unsigned long flags;
269 
270 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
271 
272 		spin_lock_irqsave(&dev->event_lock, flags);
273 		add_input_randomness(type, code, value);
274 		input_handle_event(dev, type, code, value);
275 		spin_unlock_irqrestore(&dev->event_lock, flags);
276 	}
277 }
278 EXPORT_SYMBOL(input_event);
279 
280 /**
281  * input_inject_event() - send input event from input handler
282  * @handle: input handle to send event through
283  * @type: type of the event
284  * @code: event code
285  * @value: value of the event
286  *
287  * Similar to input_event() but will ignore event if device is
288  * "grabbed" and handle injecting event is not the one that owns
289  * the device.
290  */
291 void input_inject_event(struct input_handle *handle,
292 			unsigned int type, unsigned int code, int value)
293 {
294 	struct input_dev *dev = handle->dev;
295 	struct input_handle *grab;
296 	unsigned long flags;
297 
298 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
299 		spin_lock_irqsave(&dev->event_lock, flags);
300 
301 		rcu_read_lock();
302 		grab = rcu_dereference(dev->grab);
303 		if (!grab || grab == handle)
304 			input_handle_event(dev, type, code, value);
305 		rcu_read_unlock();
306 
307 		spin_unlock_irqrestore(&dev->event_lock, flags);
308 	}
309 }
310 EXPORT_SYMBOL(input_inject_event);
311 
312 /**
313  * input_grab_device - grabs device for exclusive use
314  * @handle: input handle that wants to own the device
315  *
316  * When a device is grabbed by an input handle all events generated by
317  * the device are delivered only to this handle. Also events injected
318  * by other input handles are ignored while device is grabbed.
319  */
320 int input_grab_device(struct input_handle *handle)
321 {
322 	struct input_dev *dev = handle->dev;
323 	int retval;
324 
325 	retval = mutex_lock_interruptible(&dev->mutex);
326 	if (retval)
327 		return retval;
328 
329 	if (dev->grab) {
330 		retval = -EBUSY;
331 		goto out;
332 	}
333 
334 	rcu_assign_pointer(dev->grab, handle);
335 	synchronize_rcu();
336 
337  out:
338 	mutex_unlock(&dev->mutex);
339 	return retval;
340 }
341 EXPORT_SYMBOL(input_grab_device);
342 
343 static void __input_release_device(struct input_handle *handle)
344 {
345 	struct input_dev *dev = handle->dev;
346 
347 	if (dev->grab == handle) {
348 		rcu_assign_pointer(dev->grab, NULL);
349 		/* Make sure input_pass_event() notices that grab is gone */
350 		synchronize_rcu();
351 
352 		list_for_each_entry(handle, &dev->h_list, d_node)
353 			if (handle->open && handle->handler->start)
354 				handle->handler->start(handle);
355 	}
356 }
357 
358 /**
359  * input_release_device - release previously grabbed device
360  * @handle: input handle that owns the device
361  *
362  * Releases previously grabbed device so that other input handles can
363  * start receiving input events. Upon release all handlers attached
364  * to the device have their start() method called so they have a change
365  * to synchronize device state with the rest of the system.
366  */
367 void input_release_device(struct input_handle *handle)
368 {
369 	struct input_dev *dev = handle->dev;
370 
371 	mutex_lock(&dev->mutex);
372 	__input_release_device(handle);
373 	mutex_unlock(&dev->mutex);
374 }
375 EXPORT_SYMBOL(input_release_device);
376 
377 /**
378  * input_open_device - open input device
379  * @handle: handle through which device is being accessed
380  *
381  * This function should be called by input handlers when they
382  * want to start receive events from given input device.
383  */
384 int input_open_device(struct input_handle *handle)
385 {
386 	struct input_dev *dev = handle->dev;
387 	int retval;
388 
389 	retval = mutex_lock_interruptible(&dev->mutex);
390 	if (retval)
391 		return retval;
392 
393 	if (dev->going_away) {
394 		retval = -ENODEV;
395 		goto out;
396 	}
397 
398 	handle->open++;
399 
400 	if (!dev->users++ && dev->open)
401 		retval = dev->open(dev);
402 
403 	if (retval) {
404 		dev->users--;
405 		if (!--handle->open) {
406 			/*
407 			 * Make sure we are not delivering any more events
408 			 * through this handle
409 			 */
410 			synchronize_rcu();
411 		}
412 	}
413 
414  out:
415 	mutex_unlock(&dev->mutex);
416 	return retval;
417 }
418 EXPORT_SYMBOL(input_open_device);
419 
420 int input_flush_device(struct input_handle *handle, struct file *file)
421 {
422 	struct input_dev *dev = handle->dev;
423 	int retval;
424 
425 	retval = mutex_lock_interruptible(&dev->mutex);
426 	if (retval)
427 		return retval;
428 
429 	if (dev->flush)
430 		retval = dev->flush(dev, file);
431 
432 	mutex_unlock(&dev->mutex);
433 	return retval;
434 }
435 EXPORT_SYMBOL(input_flush_device);
436 
437 /**
438  * input_close_device - close input device
439  * @handle: handle through which device is being accessed
440  *
441  * This function should be called by input handlers when they
442  * want to stop receive events from given input device.
443  */
444 void input_close_device(struct input_handle *handle)
445 {
446 	struct input_dev *dev = handle->dev;
447 
448 	mutex_lock(&dev->mutex);
449 
450 	__input_release_device(handle);
451 
452 	if (!--dev->users && dev->close)
453 		dev->close(dev);
454 
455 	if (!--handle->open) {
456 		/*
457 		 * synchronize_rcu() makes sure that input_pass_event()
458 		 * completed and that no more input events are delivered
459 		 * through this handle
460 		 */
461 		synchronize_rcu();
462 	}
463 
464 	mutex_unlock(&dev->mutex);
465 }
466 EXPORT_SYMBOL(input_close_device);
467 
468 /*
469  * Prepare device for unregistering
470  */
471 static void input_disconnect_device(struct input_dev *dev)
472 {
473 	struct input_handle *handle;
474 	int code;
475 
476 	/*
477 	 * Mark device as going away. Note that we take dev->mutex here
478 	 * not to protect access to dev->going_away but rather to ensure
479 	 * that there are no threads in the middle of input_open_device()
480 	 */
481 	mutex_lock(&dev->mutex);
482 	dev->going_away = 1;
483 	mutex_unlock(&dev->mutex);
484 
485 	spin_lock_irq(&dev->event_lock);
486 
487 	/*
488 	 * Simulate keyup events for all pressed keys so that handlers
489 	 * are not left with "stuck" keys. The driver may continue
490 	 * generate events even after we done here but they will not
491 	 * reach any handlers.
492 	 */
493 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
494 		for (code = 0; code <= KEY_MAX; code++) {
495 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
496 			    __test_and_clear_bit(code, dev->key)) {
497 				input_pass_event(dev, EV_KEY, code, 0);
498 			}
499 		}
500 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
501 	}
502 
503 	list_for_each_entry(handle, &dev->h_list, d_node)
504 		handle->open = 0;
505 
506 	spin_unlock_irq(&dev->event_lock);
507 }
508 
509 static int input_fetch_keycode(struct input_dev *dev, int scancode)
510 {
511 	switch (dev->keycodesize) {
512 		case 1:
513 			return ((u8 *)dev->keycode)[scancode];
514 
515 		case 2:
516 			return ((u16 *)dev->keycode)[scancode];
517 
518 		default:
519 			return ((u32 *)dev->keycode)[scancode];
520 	}
521 }
522 
523 static int input_default_getkeycode(struct input_dev *dev,
524 				    int scancode, int *keycode)
525 {
526 	if (!dev->keycodesize)
527 		return -EINVAL;
528 
529 	if (scancode >= dev->keycodemax)
530 		return -EINVAL;
531 
532 	*keycode = input_fetch_keycode(dev, scancode);
533 
534 	return 0;
535 }
536 
537 static int input_default_setkeycode(struct input_dev *dev,
538 				    int scancode, int keycode)
539 {
540 	int old_keycode;
541 	int i;
542 
543 	if (scancode >= dev->keycodemax)
544 		return -EINVAL;
545 
546 	if (!dev->keycodesize)
547 		return -EINVAL;
548 
549 	if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
550 		return -EINVAL;
551 
552 	switch (dev->keycodesize) {
553 		case 1: {
554 			u8 *k = (u8 *)dev->keycode;
555 			old_keycode = k[scancode];
556 			k[scancode] = keycode;
557 			break;
558 		}
559 		case 2: {
560 			u16 *k = (u16 *)dev->keycode;
561 			old_keycode = k[scancode];
562 			k[scancode] = keycode;
563 			break;
564 		}
565 		default: {
566 			u32 *k = (u32 *)dev->keycode;
567 			old_keycode = k[scancode];
568 			k[scancode] = keycode;
569 			break;
570 		}
571 	}
572 
573 	clear_bit(old_keycode, dev->keybit);
574 	set_bit(keycode, dev->keybit);
575 
576 	for (i = 0; i < dev->keycodemax; i++) {
577 		if (input_fetch_keycode(dev, i) == old_keycode) {
578 			set_bit(old_keycode, dev->keybit);
579 			break; /* Setting the bit twice is useless, so break */
580 		}
581 	}
582 
583 	return 0;
584 }
585 
586 /**
587  * input_get_keycode - retrieve keycode currently mapped to a given scancode
588  * @dev: input device which keymap is being queried
589  * @scancode: scancode (or its equivalent for device in question) for which
590  *	keycode is needed
591  * @keycode: result
592  *
593  * This function should be called by anyone interested in retrieving current
594  * keymap. Presently keyboard and evdev handlers use it.
595  */
596 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
597 {
598 	if (scancode < 0)
599 		return -EINVAL;
600 
601 	return dev->getkeycode(dev, scancode, keycode);
602 }
603 EXPORT_SYMBOL(input_get_keycode);
604 
605 /**
606  * input_get_keycode - assign new keycode to a given scancode
607  * @dev: input device which keymap is being updated
608  * @scancode: scancode (or its equivalent for device in question)
609  * @keycode: new keycode to be assigned to the scancode
610  *
611  * This function should be called by anyone needing to update current
612  * keymap. Presently keyboard and evdev handlers use it.
613  */
614 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
615 {
616 	unsigned long flags;
617 	int old_keycode;
618 	int retval;
619 
620 	if (scancode < 0)
621 		return -EINVAL;
622 
623 	if (keycode < 0 || keycode > KEY_MAX)
624 		return -EINVAL;
625 
626 	spin_lock_irqsave(&dev->event_lock, flags);
627 
628 	retval = dev->getkeycode(dev, scancode, &old_keycode);
629 	if (retval)
630 		goto out;
631 
632 	retval = dev->setkeycode(dev, scancode, keycode);
633 	if (retval)
634 		goto out;
635 
636 	/*
637 	 * Simulate keyup event if keycode is not present
638 	 * in the keymap anymore
639 	 */
640 	if (test_bit(EV_KEY, dev->evbit) &&
641 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
642 	    __test_and_clear_bit(old_keycode, dev->key)) {
643 
644 		input_pass_event(dev, EV_KEY, old_keycode, 0);
645 		if (dev->sync)
646 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
647 	}
648 
649  out:
650 	spin_unlock_irqrestore(&dev->event_lock, flags);
651 
652 	return retval;
653 }
654 EXPORT_SYMBOL(input_set_keycode);
655 
656 #define MATCH_BIT(bit, max) \
657 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
658 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
659 				break; \
660 		if (i != BITS_TO_LONGS(max)) \
661 			continue;
662 
663 static const struct input_device_id *input_match_device(const struct input_device_id *id,
664 							struct input_dev *dev)
665 {
666 	int i;
667 
668 	for (; id->flags || id->driver_info; id++) {
669 
670 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
671 			if (id->bustype != dev->id.bustype)
672 				continue;
673 
674 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
675 			if (id->vendor != dev->id.vendor)
676 				continue;
677 
678 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
679 			if (id->product != dev->id.product)
680 				continue;
681 
682 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
683 			if (id->version != dev->id.version)
684 				continue;
685 
686 		MATCH_BIT(evbit,  EV_MAX);
687 		MATCH_BIT(keybit, KEY_MAX);
688 		MATCH_BIT(relbit, REL_MAX);
689 		MATCH_BIT(absbit, ABS_MAX);
690 		MATCH_BIT(mscbit, MSC_MAX);
691 		MATCH_BIT(ledbit, LED_MAX);
692 		MATCH_BIT(sndbit, SND_MAX);
693 		MATCH_BIT(ffbit,  FF_MAX);
694 		MATCH_BIT(swbit,  SW_MAX);
695 
696 		return id;
697 	}
698 
699 	return NULL;
700 }
701 
702 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
703 {
704 	const struct input_device_id *id;
705 	int error;
706 
707 	if (handler->blacklist && input_match_device(handler->blacklist, dev))
708 		return -ENODEV;
709 
710 	id = input_match_device(handler->id_table, dev);
711 	if (!id)
712 		return -ENODEV;
713 
714 	error = handler->connect(handler, dev, id);
715 	if (error && error != -ENODEV)
716 		printk(KERN_ERR
717 			"input: failed to attach handler %s to device %s, "
718 			"error: %d\n",
719 			handler->name, kobject_name(&dev->dev.kobj), error);
720 
721 	return error;
722 }
723 
724 
725 #ifdef CONFIG_PROC_FS
726 
727 static struct proc_dir_entry *proc_bus_input_dir;
728 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
729 static int input_devices_state;
730 
731 static inline void input_wakeup_procfs_readers(void)
732 {
733 	input_devices_state++;
734 	wake_up(&input_devices_poll_wait);
735 }
736 
737 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
738 {
739 	int state = input_devices_state;
740 
741 	poll_wait(file, &input_devices_poll_wait, wait);
742 	if (state != input_devices_state)
743 		return POLLIN | POLLRDNORM;
744 
745 	return 0;
746 }
747 
748 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
749 {
750 	if (mutex_lock_interruptible(&input_mutex))
751 		return NULL;
752 
753 	return seq_list_start(&input_dev_list, *pos);
754 }
755 
756 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
757 {
758 	return seq_list_next(v, &input_dev_list, pos);
759 }
760 
761 static void input_devices_seq_stop(struct seq_file *seq, void *v)
762 {
763 	mutex_unlock(&input_mutex);
764 }
765 
766 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
767 				   unsigned long *bitmap, int max)
768 {
769 	int i;
770 
771 	for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
772 		if (bitmap[i])
773 			break;
774 
775 	seq_printf(seq, "B: %s=", name);
776 	for (; i >= 0; i--)
777 		seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
778 	seq_putc(seq, '\n');
779 }
780 
781 static int input_devices_seq_show(struct seq_file *seq, void *v)
782 {
783 	struct input_dev *dev = container_of(v, struct input_dev, node);
784 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
785 	struct input_handle *handle;
786 
787 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
788 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
789 
790 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
791 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
792 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
793 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
794 	seq_printf(seq, "H: Handlers=");
795 
796 	list_for_each_entry(handle, &dev->h_list, d_node)
797 		seq_printf(seq, "%s ", handle->name);
798 	seq_putc(seq, '\n');
799 
800 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
801 	if (test_bit(EV_KEY, dev->evbit))
802 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
803 	if (test_bit(EV_REL, dev->evbit))
804 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
805 	if (test_bit(EV_ABS, dev->evbit))
806 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
807 	if (test_bit(EV_MSC, dev->evbit))
808 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
809 	if (test_bit(EV_LED, dev->evbit))
810 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
811 	if (test_bit(EV_SND, dev->evbit))
812 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
813 	if (test_bit(EV_FF, dev->evbit))
814 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
815 	if (test_bit(EV_SW, dev->evbit))
816 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
817 
818 	seq_putc(seq, '\n');
819 
820 	kfree(path);
821 	return 0;
822 }
823 
824 static const struct seq_operations input_devices_seq_ops = {
825 	.start	= input_devices_seq_start,
826 	.next	= input_devices_seq_next,
827 	.stop	= input_devices_seq_stop,
828 	.show	= input_devices_seq_show,
829 };
830 
831 static int input_proc_devices_open(struct inode *inode, struct file *file)
832 {
833 	return seq_open(file, &input_devices_seq_ops);
834 }
835 
836 static const struct file_operations input_devices_fileops = {
837 	.owner		= THIS_MODULE,
838 	.open		= input_proc_devices_open,
839 	.poll		= input_proc_devices_poll,
840 	.read		= seq_read,
841 	.llseek		= seq_lseek,
842 	.release	= seq_release,
843 };
844 
845 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
846 {
847 	if (mutex_lock_interruptible(&input_mutex))
848 		return NULL;
849 
850 	seq->private = (void *)(unsigned long)*pos;
851 	return seq_list_start(&input_handler_list, *pos);
852 }
853 
854 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
855 {
856 	seq->private = (void *)(unsigned long)(*pos + 1);
857 	return seq_list_next(v, &input_handler_list, pos);
858 }
859 
860 static void input_handlers_seq_stop(struct seq_file *seq, void *v)
861 {
862 	mutex_unlock(&input_mutex);
863 }
864 
865 static int input_handlers_seq_show(struct seq_file *seq, void *v)
866 {
867 	struct input_handler *handler = container_of(v, struct input_handler, node);
868 
869 	seq_printf(seq, "N: Number=%ld Name=%s",
870 		   (unsigned long)seq->private, handler->name);
871 	if (handler->fops)
872 		seq_printf(seq, " Minor=%d", handler->minor);
873 	seq_putc(seq, '\n');
874 
875 	return 0;
876 }
877 static const struct seq_operations input_handlers_seq_ops = {
878 	.start	= input_handlers_seq_start,
879 	.next	= input_handlers_seq_next,
880 	.stop	= input_handlers_seq_stop,
881 	.show	= input_handlers_seq_show,
882 };
883 
884 static int input_proc_handlers_open(struct inode *inode, struct file *file)
885 {
886 	return seq_open(file, &input_handlers_seq_ops);
887 }
888 
889 static const struct file_operations input_handlers_fileops = {
890 	.owner		= THIS_MODULE,
891 	.open		= input_proc_handlers_open,
892 	.read		= seq_read,
893 	.llseek		= seq_lseek,
894 	.release	= seq_release,
895 };
896 
897 static int __init input_proc_init(void)
898 {
899 	struct proc_dir_entry *entry;
900 
901 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
902 	if (!proc_bus_input_dir)
903 		return -ENOMEM;
904 
905 	proc_bus_input_dir->owner = THIS_MODULE;
906 
907 	entry = proc_create("devices", 0, proc_bus_input_dir,
908 			    &input_devices_fileops);
909 	if (!entry)
910 		goto fail1;
911 
912 	entry = proc_create("handlers", 0, proc_bus_input_dir,
913 			    &input_handlers_fileops);
914 	if (!entry)
915 		goto fail2;
916 
917 	return 0;
918 
919  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
920  fail1: remove_proc_entry("bus/input", NULL);
921 	return -ENOMEM;
922 }
923 
924 static void input_proc_exit(void)
925 {
926 	remove_proc_entry("devices", proc_bus_input_dir);
927 	remove_proc_entry("handlers", proc_bus_input_dir);
928 	remove_proc_entry("bus/input", NULL);
929 }
930 
931 #else /* !CONFIG_PROC_FS */
932 static inline void input_wakeup_procfs_readers(void) { }
933 static inline int input_proc_init(void) { return 0; }
934 static inline void input_proc_exit(void) { }
935 #endif
936 
937 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
938 static ssize_t input_dev_show_##name(struct device *dev,		\
939 				     struct device_attribute *attr,	\
940 				     char *buf)				\
941 {									\
942 	struct input_dev *input_dev = to_input_dev(dev);		\
943 									\
944 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
945 			 input_dev->name ? input_dev->name : "");	\
946 }									\
947 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
948 
949 INPUT_DEV_STRING_ATTR_SHOW(name);
950 INPUT_DEV_STRING_ATTR_SHOW(phys);
951 INPUT_DEV_STRING_ATTR_SHOW(uniq);
952 
953 static int input_print_modalias_bits(char *buf, int size,
954 				     char name, unsigned long *bm,
955 				     unsigned int min_bit, unsigned int max_bit)
956 {
957 	int len = 0, i;
958 
959 	len += snprintf(buf, max(size, 0), "%c", name);
960 	for (i = min_bit; i < max_bit; i++)
961 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
962 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
963 	return len;
964 }
965 
966 static int input_print_modalias(char *buf, int size, struct input_dev *id,
967 				int add_cr)
968 {
969 	int len;
970 
971 	len = snprintf(buf, max(size, 0),
972 		       "input:b%04Xv%04Xp%04Xe%04X-",
973 		       id->id.bustype, id->id.vendor,
974 		       id->id.product, id->id.version);
975 
976 	len += input_print_modalias_bits(buf + len, size - len,
977 				'e', id->evbit, 0, EV_MAX);
978 	len += input_print_modalias_bits(buf + len, size - len,
979 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
980 	len += input_print_modalias_bits(buf + len, size - len,
981 				'r', id->relbit, 0, REL_MAX);
982 	len += input_print_modalias_bits(buf + len, size - len,
983 				'a', id->absbit, 0, ABS_MAX);
984 	len += input_print_modalias_bits(buf + len, size - len,
985 				'm', id->mscbit, 0, MSC_MAX);
986 	len += input_print_modalias_bits(buf + len, size - len,
987 				'l', id->ledbit, 0, LED_MAX);
988 	len += input_print_modalias_bits(buf + len, size - len,
989 				's', id->sndbit, 0, SND_MAX);
990 	len += input_print_modalias_bits(buf + len, size - len,
991 				'f', id->ffbit, 0, FF_MAX);
992 	len += input_print_modalias_bits(buf + len, size - len,
993 				'w', id->swbit, 0, SW_MAX);
994 
995 	if (add_cr)
996 		len += snprintf(buf + len, max(size - len, 0), "\n");
997 
998 	return len;
999 }
1000 
1001 static ssize_t input_dev_show_modalias(struct device *dev,
1002 				       struct device_attribute *attr,
1003 				       char *buf)
1004 {
1005 	struct input_dev *id = to_input_dev(dev);
1006 	ssize_t len;
1007 
1008 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1009 
1010 	return min_t(int, len, PAGE_SIZE);
1011 }
1012 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1013 
1014 static struct attribute *input_dev_attrs[] = {
1015 	&dev_attr_name.attr,
1016 	&dev_attr_phys.attr,
1017 	&dev_attr_uniq.attr,
1018 	&dev_attr_modalias.attr,
1019 	NULL
1020 };
1021 
1022 static struct attribute_group input_dev_attr_group = {
1023 	.attrs	= input_dev_attrs,
1024 };
1025 
1026 #define INPUT_DEV_ID_ATTR(name)						\
1027 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1028 					struct device_attribute *attr,	\
1029 					char *buf)			\
1030 {									\
1031 	struct input_dev *input_dev = to_input_dev(dev);		\
1032 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1033 }									\
1034 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1035 
1036 INPUT_DEV_ID_ATTR(bustype);
1037 INPUT_DEV_ID_ATTR(vendor);
1038 INPUT_DEV_ID_ATTR(product);
1039 INPUT_DEV_ID_ATTR(version);
1040 
1041 static struct attribute *input_dev_id_attrs[] = {
1042 	&dev_attr_bustype.attr,
1043 	&dev_attr_vendor.attr,
1044 	&dev_attr_product.attr,
1045 	&dev_attr_version.attr,
1046 	NULL
1047 };
1048 
1049 static struct attribute_group input_dev_id_attr_group = {
1050 	.name	= "id",
1051 	.attrs	= input_dev_id_attrs,
1052 };
1053 
1054 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1055 			      int max, int add_cr)
1056 {
1057 	int i;
1058 	int len = 0;
1059 
1060 	for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1061 		if (bitmap[i])
1062 			break;
1063 
1064 	for (; i >= 0; i--)
1065 		len += snprintf(buf + len, max(buf_size - len, 0),
1066 				"%lx%s", bitmap[i], i > 0 ? " " : "");
1067 
1068 	if (add_cr)
1069 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1070 
1071 	return len;
1072 }
1073 
1074 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1075 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1076 				       struct device_attribute *attr,	\
1077 				       char *buf)			\
1078 {									\
1079 	struct input_dev *input_dev = to_input_dev(dev);		\
1080 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1081 				     input_dev->bm##bit, ev##_MAX, 1);	\
1082 	return min_t(int, len, PAGE_SIZE);				\
1083 }									\
1084 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1085 
1086 INPUT_DEV_CAP_ATTR(EV, ev);
1087 INPUT_DEV_CAP_ATTR(KEY, key);
1088 INPUT_DEV_CAP_ATTR(REL, rel);
1089 INPUT_DEV_CAP_ATTR(ABS, abs);
1090 INPUT_DEV_CAP_ATTR(MSC, msc);
1091 INPUT_DEV_CAP_ATTR(LED, led);
1092 INPUT_DEV_CAP_ATTR(SND, snd);
1093 INPUT_DEV_CAP_ATTR(FF, ff);
1094 INPUT_DEV_CAP_ATTR(SW, sw);
1095 
1096 static struct attribute *input_dev_caps_attrs[] = {
1097 	&dev_attr_ev.attr,
1098 	&dev_attr_key.attr,
1099 	&dev_attr_rel.attr,
1100 	&dev_attr_abs.attr,
1101 	&dev_attr_msc.attr,
1102 	&dev_attr_led.attr,
1103 	&dev_attr_snd.attr,
1104 	&dev_attr_ff.attr,
1105 	&dev_attr_sw.attr,
1106 	NULL
1107 };
1108 
1109 static struct attribute_group input_dev_caps_attr_group = {
1110 	.name	= "capabilities",
1111 	.attrs	= input_dev_caps_attrs,
1112 };
1113 
1114 static struct attribute_group *input_dev_attr_groups[] = {
1115 	&input_dev_attr_group,
1116 	&input_dev_id_attr_group,
1117 	&input_dev_caps_attr_group,
1118 	NULL
1119 };
1120 
1121 static void input_dev_release(struct device *device)
1122 {
1123 	struct input_dev *dev = to_input_dev(device);
1124 
1125 	input_ff_destroy(dev);
1126 	kfree(dev);
1127 
1128 	module_put(THIS_MODULE);
1129 }
1130 
1131 /*
1132  * Input uevent interface - loading event handlers based on
1133  * device bitfields.
1134  */
1135 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1136 				   const char *name, unsigned long *bitmap, int max)
1137 {
1138 	int len;
1139 
1140 	if (add_uevent_var(env, "%s=", name))
1141 		return -ENOMEM;
1142 
1143 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1144 				 sizeof(env->buf) - env->buflen,
1145 				 bitmap, max, 0);
1146 	if (len >= (sizeof(env->buf) - env->buflen))
1147 		return -ENOMEM;
1148 
1149 	env->buflen += len;
1150 	return 0;
1151 }
1152 
1153 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1154 					 struct input_dev *dev)
1155 {
1156 	int len;
1157 
1158 	if (add_uevent_var(env, "MODALIAS="))
1159 		return -ENOMEM;
1160 
1161 	len = input_print_modalias(&env->buf[env->buflen - 1],
1162 				   sizeof(env->buf) - env->buflen,
1163 				   dev, 0);
1164 	if (len >= (sizeof(env->buf) - env->buflen))
1165 		return -ENOMEM;
1166 
1167 	env->buflen += len;
1168 	return 0;
1169 }
1170 
1171 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1172 	do {								\
1173 		int err = add_uevent_var(env, fmt, val);		\
1174 		if (err)						\
1175 			return err;					\
1176 	} while (0)
1177 
1178 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1179 	do {								\
1180 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1181 		if (err)						\
1182 			return err;					\
1183 	} while (0)
1184 
1185 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1186 	do {								\
1187 		int err = input_add_uevent_modalias_var(env, dev);	\
1188 		if (err)						\
1189 			return err;					\
1190 	} while (0)
1191 
1192 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1193 {
1194 	struct input_dev *dev = to_input_dev(device);
1195 
1196 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1197 				dev->id.bustype, dev->id.vendor,
1198 				dev->id.product, dev->id.version);
1199 	if (dev->name)
1200 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1201 	if (dev->phys)
1202 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1203 	if (dev->uniq)
1204 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1205 
1206 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1207 	if (test_bit(EV_KEY, dev->evbit))
1208 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1209 	if (test_bit(EV_REL, dev->evbit))
1210 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1211 	if (test_bit(EV_ABS, dev->evbit))
1212 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1213 	if (test_bit(EV_MSC, dev->evbit))
1214 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1215 	if (test_bit(EV_LED, dev->evbit))
1216 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1217 	if (test_bit(EV_SND, dev->evbit))
1218 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1219 	if (test_bit(EV_FF, dev->evbit))
1220 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1221 	if (test_bit(EV_SW, dev->evbit))
1222 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1223 
1224 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1225 
1226 	return 0;
1227 }
1228 
1229 static struct device_type input_dev_type = {
1230 	.groups		= input_dev_attr_groups,
1231 	.release	= input_dev_release,
1232 	.uevent		= input_dev_uevent,
1233 };
1234 
1235 struct class input_class = {
1236 	.name		= "input",
1237 };
1238 EXPORT_SYMBOL_GPL(input_class);
1239 
1240 /**
1241  * input_allocate_device - allocate memory for new input device
1242  *
1243  * Returns prepared struct input_dev or NULL.
1244  *
1245  * NOTE: Use input_free_device() to free devices that have not been
1246  * registered; input_unregister_device() should be used for already
1247  * registered devices.
1248  */
1249 struct input_dev *input_allocate_device(void)
1250 {
1251 	struct input_dev *dev;
1252 
1253 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1254 	if (dev) {
1255 		dev->dev.type = &input_dev_type;
1256 		dev->dev.class = &input_class;
1257 		device_initialize(&dev->dev);
1258 		mutex_init(&dev->mutex);
1259 		spin_lock_init(&dev->event_lock);
1260 		INIT_LIST_HEAD(&dev->h_list);
1261 		INIT_LIST_HEAD(&dev->node);
1262 
1263 		__module_get(THIS_MODULE);
1264 	}
1265 
1266 	return dev;
1267 }
1268 EXPORT_SYMBOL(input_allocate_device);
1269 
1270 /**
1271  * input_free_device - free memory occupied by input_dev structure
1272  * @dev: input device to free
1273  *
1274  * This function should only be used if input_register_device()
1275  * was not called yet or if it failed. Once device was registered
1276  * use input_unregister_device() and memory will be freed once last
1277  * reference to the device is dropped.
1278  *
1279  * Device should be allocated by input_allocate_device().
1280  *
1281  * NOTE: If there are references to the input device then memory
1282  * will not be freed until last reference is dropped.
1283  */
1284 void input_free_device(struct input_dev *dev)
1285 {
1286 	if (dev)
1287 		input_put_device(dev);
1288 }
1289 EXPORT_SYMBOL(input_free_device);
1290 
1291 /**
1292  * input_set_capability - mark device as capable of a certain event
1293  * @dev: device that is capable of emitting or accepting event
1294  * @type: type of the event (EV_KEY, EV_REL, etc...)
1295  * @code: event code
1296  *
1297  * In addition to setting up corresponding bit in appropriate capability
1298  * bitmap the function also adjusts dev->evbit.
1299  */
1300 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1301 {
1302 	switch (type) {
1303 	case EV_KEY:
1304 		__set_bit(code, dev->keybit);
1305 		break;
1306 
1307 	case EV_REL:
1308 		__set_bit(code, dev->relbit);
1309 		break;
1310 
1311 	case EV_ABS:
1312 		__set_bit(code, dev->absbit);
1313 		break;
1314 
1315 	case EV_MSC:
1316 		__set_bit(code, dev->mscbit);
1317 		break;
1318 
1319 	case EV_SW:
1320 		__set_bit(code, dev->swbit);
1321 		break;
1322 
1323 	case EV_LED:
1324 		__set_bit(code, dev->ledbit);
1325 		break;
1326 
1327 	case EV_SND:
1328 		__set_bit(code, dev->sndbit);
1329 		break;
1330 
1331 	case EV_FF:
1332 		__set_bit(code, dev->ffbit);
1333 		break;
1334 
1335 	case EV_PWR:
1336 		/* do nothing */
1337 		break;
1338 
1339 	default:
1340 		printk(KERN_ERR
1341 			"input_set_capability: unknown type %u (code %u)\n",
1342 			type, code);
1343 		dump_stack();
1344 		return;
1345 	}
1346 
1347 	__set_bit(type, dev->evbit);
1348 }
1349 EXPORT_SYMBOL(input_set_capability);
1350 
1351 /**
1352  * input_register_device - register device with input core
1353  * @dev: device to be registered
1354  *
1355  * This function registers device with input core. The device must be
1356  * allocated with input_allocate_device() and all it's capabilities
1357  * set up before registering.
1358  * If function fails the device must be freed with input_free_device().
1359  * Once device has been successfully registered it can be unregistered
1360  * with input_unregister_device(); input_free_device() should not be
1361  * called in this case.
1362  */
1363 int input_register_device(struct input_dev *dev)
1364 {
1365 	static atomic_t input_no = ATOMIC_INIT(0);
1366 	struct input_handler *handler;
1367 	const char *path;
1368 	int error;
1369 
1370 	__set_bit(EV_SYN, dev->evbit);
1371 
1372 	/*
1373 	 * If delay and period are pre-set by the driver, then autorepeating
1374 	 * is handled by the driver itself and we don't do it in input.c.
1375 	 */
1376 
1377 	init_timer(&dev->timer);
1378 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1379 		dev->timer.data = (long) dev;
1380 		dev->timer.function = input_repeat_key;
1381 		dev->rep[REP_DELAY] = 250;
1382 		dev->rep[REP_PERIOD] = 33;
1383 	}
1384 
1385 	if (!dev->getkeycode)
1386 		dev->getkeycode = input_default_getkeycode;
1387 
1388 	if (!dev->setkeycode)
1389 		dev->setkeycode = input_default_setkeycode;
1390 
1391 	snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id),
1392 		 "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);
1393 
1394 	error = device_add(&dev->dev);
1395 	if (error)
1396 		return error;
1397 
1398 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1399 	printk(KERN_INFO "input: %s as %s\n",
1400 		dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1401 	kfree(path);
1402 
1403 	error = mutex_lock_interruptible(&input_mutex);
1404 	if (error) {
1405 		device_del(&dev->dev);
1406 		return error;
1407 	}
1408 
1409 	list_add_tail(&dev->node, &input_dev_list);
1410 
1411 	list_for_each_entry(handler, &input_handler_list, node)
1412 		input_attach_handler(dev, handler);
1413 
1414 	input_wakeup_procfs_readers();
1415 
1416 	mutex_unlock(&input_mutex);
1417 
1418 	return 0;
1419 }
1420 EXPORT_SYMBOL(input_register_device);
1421 
1422 /**
1423  * input_unregister_device - unregister previously registered device
1424  * @dev: device to be unregistered
1425  *
1426  * This function unregisters an input device. Once device is unregistered
1427  * the caller should not try to access it as it may get freed at any moment.
1428  */
1429 void input_unregister_device(struct input_dev *dev)
1430 {
1431 	struct input_handle *handle, *next;
1432 
1433 	input_disconnect_device(dev);
1434 
1435 	mutex_lock(&input_mutex);
1436 
1437 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1438 		handle->handler->disconnect(handle);
1439 	WARN_ON(!list_empty(&dev->h_list));
1440 
1441 	del_timer_sync(&dev->timer);
1442 	list_del_init(&dev->node);
1443 
1444 	input_wakeup_procfs_readers();
1445 
1446 	mutex_unlock(&input_mutex);
1447 
1448 	device_unregister(&dev->dev);
1449 }
1450 EXPORT_SYMBOL(input_unregister_device);
1451 
1452 /**
1453  * input_register_handler - register a new input handler
1454  * @handler: handler to be registered
1455  *
1456  * This function registers a new input handler (interface) for input
1457  * devices in the system and attaches it to all input devices that
1458  * are compatible with the handler.
1459  */
1460 int input_register_handler(struct input_handler *handler)
1461 {
1462 	struct input_dev *dev;
1463 	int retval;
1464 
1465 	retval = mutex_lock_interruptible(&input_mutex);
1466 	if (retval)
1467 		return retval;
1468 
1469 	INIT_LIST_HEAD(&handler->h_list);
1470 
1471 	if (handler->fops != NULL) {
1472 		if (input_table[handler->minor >> 5]) {
1473 			retval = -EBUSY;
1474 			goto out;
1475 		}
1476 		input_table[handler->minor >> 5] = handler;
1477 	}
1478 
1479 	list_add_tail(&handler->node, &input_handler_list);
1480 
1481 	list_for_each_entry(dev, &input_dev_list, node)
1482 		input_attach_handler(dev, handler);
1483 
1484 	input_wakeup_procfs_readers();
1485 
1486  out:
1487 	mutex_unlock(&input_mutex);
1488 	return retval;
1489 }
1490 EXPORT_SYMBOL(input_register_handler);
1491 
1492 /**
1493  * input_unregister_handler - unregisters an input handler
1494  * @handler: handler to be unregistered
1495  *
1496  * This function disconnects a handler from its input devices and
1497  * removes it from lists of known handlers.
1498  */
1499 void input_unregister_handler(struct input_handler *handler)
1500 {
1501 	struct input_handle *handle, *next;
1502 
1503 	mutex_lock(&input_mutex);
1504 
1505 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1506 		handler->disconnect(handle);
1507 	WARN_ON(!list_empty(&handler->h_list));
1508 
1509 	list_del_init(&handler->node);
1510 
1511 	if (handler->fops != NULL)
1512 		input_table[handler->minor >> 5] = NULL;
1513 
1514 	input_wakeup_procfs_readers();
1515 
1516 	mutex_unlock(&input_mutex);
1517 }
1518 EXPORT_SYMBOL(input_unregister_handler);
1519 
1520 /**
1521  * input_register_handle - register a new input handle
1522  * @handle: handle to register
1523  *
1524  * This function puts a new input handle onto device's
1525  * and handler's lists so that events can flow through
1526  * it once it is opened using input_open_device().
1527  *
1528  * This function is supposed to be called from handler's
1529  * connect() method.
1530  */
1531 int input_register_handle(struct input_handle *handle)
1532 {
1533 	struct input_handler *handler = handle->handler;
1534 	struct input_dev *dev = handle->dev;
1535 	int error;
1536 
1537 	/*
1538 	 * We take dev->mutex here to prevent race with
1539 	 * input_release_device().
1540 	 */
1541 	error = mutex_lock_interruptible(&dev->mutex);
1542 	if (error)
1543 		return error;
1544 	list_add_tail_rcu(&handle->d_node, &dev->h_list);
1545 	mutex_unlock(&dev->mutex);
1546 	synchronize_rcu();
1547 
1548 	/*
1549 	 * Since we are supposed to be called from ->connect()
1550 	 * which is mutually exclusive with ->disconnect()
1551 	 * we can't be racing with input_unregister_handle()
1552 	 * and so separate lock is not needed here.
1553 	 */
1554 	list_add_tail(&handle->h_node, &handler->h_list);
1555 
1556 	if (handler->start)
1557 		handler->start(handle);
1558 
1559 	return 0;
1560 }
1561 EXPORT_SYMBOL(input_register_handle);
1562 
1563 /**
1564  * input_unregister_handle - unregister an input handle
1565  * @handle: handle to unregister
1566  *
1567  * This function removes input handle from device's
1568  * and handler's lists.
1569  *
1570  * This function is supposed to be called from handler's
1571  * disconnect() method.
1572  */
1573 void input_unregister_handle(struct input_handle *handle)
1574 {
1575 	struct input_dev *dev = handle->dev;
1576 
1577 	list_del_init(&handle->h_node);
1578 
1579 	/*
1580 	 * Take dev->mutex to prevent race with input_release_device().
1581 	 */
1582 	mutex_lock(&dev->mutex);
1583 	list_del_rcu(&handle->d_node);
1584 	mutex_unlock(&dev->mutex);
1585 	synchronize_rcu();
1586 }
1587 EXPORT_SYMBOL(input_unregister_handle);
1588 
1589 static int input_open_file(struct inode *inode, struct file *file)
1590 {
1591 	struct input_handler *handler = input_table[iminor(inode) >> 5];
1592 	const struct file_operations *old_fops, *new_fops = NULL;
1593 	int err;
1594 
1595 	/* No load-on-demand here? */
1596 	if (!handler || !(new_fops = fops_get(handler->fops)))
1597 		return -ENODEV;
1598 
1599 	/*
1600 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
1601 	 * not "no device". Oh, well...
1602 	 */
1603 	if (!new_fops->open) {
1604 		fops_put(new_fops);
1605 		return -ENODEV;
1606 	}
1607 	old_fops = file->f_op;
1608 	file->f_op = new_fops;
1609 
1610 	err = new_fops->open(inode, file);
1611 
1612 	if (err) {
1613 		fops_put(file->f_op);
1614 		file->f_op = fops_get(old_fops);
1615 	}
1616 	fops_put(old_fops);
1617 	return err;
1618 }
1619 
1620 static const struct file_operations input_fops = {
1621 	.owner = THIS_MODULE,
1622 	.open = input_open_file,
1623 };
1624 
1625 static int __init input_init(void)
1626 {
1627 	int err;
1628 
1629 	err = class_register(&input_class);
1630 	if (err) {
1631 		printk(KERN_ERR "input: unable to register input_dev class\n");
1632 		return err;
1633 	}
1634 
1635 	err = input_proc_init();
1636 	if (err)
1637 		goto fail1;
1638 
1639 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1640 	if (err) {
1641 		printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1642 		goto fail2;
1643 	}
1644 
1645 	return 0;
1646 
1647  fail2:	input_proc_exit();
1648  fail1:	class_unregister(&input_class);
1649 	return err;
1650 }
1651 
1652 static void __exit input_exit(void)
1653 {
1654 	input_proc_exit();
1655 	unregister_chrdev(INPUT_MAJOR, "input");
1656 	class_unregister(&input_class);
1657 }
1658 
1659 subsys_initcall(input_init);
1660 module_exit(input_exit);
1661