1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 14 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/idr.h> 18 #include <linux/input/mt.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/random.h> 22 #include <linux/major.h> 23 #include <linux/proc_fs.h> 24 #include <linux/sched.h> 25 #include <linux/seq_file.h> 26 #include <linux/poll.h> 27 #include <linux/device.h> 28 #include <linux/mutex.h> 29 #include <linux/rcupdate.h> 30 #include "input-compat.h" 31 32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 33 MODULE_DESCRIPTION("Input core"); 34 MODULE_LICENSE("GPL"); 35 36 #define INPUT_MAX_CHAR_DEVICES 1024 37 #define INPUT_FIRST_DYNAMIC_DEV 256 38 static DEFINE_IDA(input_ida); 39 40 static LIST_HEAD(input_dev_list); 41 static LIST_HEAD(input_handler_list); 42 43 /* 44 * input_mutex protects access to both input_dev_list and input_handler_list. 45 * This also causes input_[un]register_device and input_[un]register_handler 46 * be mutually exclusive which simplifies locking in drivers implementing 47 * input handlers. 48 */ 49 static DEFINE_MUTEX(input_mutex); 50 51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; 52 53 static inline int is_event_supported(unsigned int code, 54 unsigned long *bm, unsigned int max) 55 { 56 return code <= max && test_bit(code, bm); 57 } 58 59 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 60 { 61 if (fuzz) { 62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 63 return old_val; 64 65 if (value > old_val - fuzz && value < old_val + fuzz) 66 return (old_val * 3 + value) / 4; 67 68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 69 return (old_val + value) / 2; 70 } 71 72 return value; 73 } 74 75 static void input_start_autorepeat(struct input_dev *dev, int code) 76 { 77 if (test_bit(EV_REP, dev->evbit) && 78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 79 dev->timer.data) { 80 dev->repeat_key = code; 81 mod_timer(&dev->timer, 82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 83 } 84 } 85 86 static void input_stop_autorepeat(struct input_dev *dev) 87 { 88 del_timer(&dev->timer); 89 } 90 91 /* 92 * Pass event first through all filters and then, if event has not been 93 * filtered out, through all open handles. This function is called with 94 * dev->event_lock held and interrupts disabled. 95 */ 96 static unsigned int input_to_handler(struct input_handle *handle, 97 struct input_value *vals, unsigned int count) 98 { 99 struct input_handler *handler = handle->handler; 100 struct input_value *end = vals; 101 struct input_value *v; 102 103 if (handler->filter) { 104 for (v = vals; v != vals + count; v++) { 105 if (handler->filter(handle, v->type, v->code, v->value)) 106 continue; 107 if (end != v) 108 *end = *v; 109 end++; 110 } 111 count = end - vals; 112 } 113 114 if (!count) 115 return 0; 116 117 if (handler->events) 118 handler->events(handle, vals, count); 119 else if (handler->event) 120 for (v = vals; v != vals + count; v++) 121 handler->event(handle, v->type, v->code, v->value); 122 123 return count; 124 } 125 126 /* 127 * Pass values first through all filters and then, if event has not been 128 * filtered out, through all open handles. This function is called with 129 * dev->event_lock held and interrupts disabled. 130 */ 131 static void input_pass_values(struct input_dev *dev, 132 struct input_value *vals, unsigned int count) 133 { 134 struct input_handle *handle; 135 struct input_value *v; 136 137 if (!count) 138 return; 139 140 rcu_read_lock(); 141 142 handle = rcu_dereference(dev->grab); 143 if (handle) { 144 count = input_to_handler(handle, vals, count); 145 } else { 146 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 147 if (handle->open) { 148 count = input_to_handler(handle, vals, count); 149 if (!count) 150 break; 151 } 152 } 153 154 rcu_read_unlock(); 155 156 /* trigger auto repeat for key events */ 157 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) { 158 for (v = vals; v != vals + count; v++) { 159 if (v->type == EV_KEY && v->value != 2) { 160 if (v->value) 161 input_start_autorepeat(dev, v->code); 162 else 163 input_stop_autorepeat(dev); 164 } 165 } 166 } 167 } 168 169 static void input_pass_event(struct input_dev *dev, 170 unsigned int type, unsigned int code, int value) 171 { 172 struct input_value vals[] = { { type, code, value } }; 173 174 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 175 } 176 177 /* 178 * Generate software autorepeat event. Note that we take 179 * dev->event_lock here to avoid racing with input_event 180 * which may cause keys get "stuck". 181 */ 182 static void input_repeat_key(unsigned long data) 183 { 184 struct input_dev *dev = (void *) data; 185 unsigned long flags; 186 187 spin_lock_irqsave(&dev->event_lock, flags); 188 189 if (test_bit(dev->repeat_key, dev->key) && 190 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 191 struct input_value vals[] = { 192 { EV_KEY, dev->repeat_key, 2 }, 193 input_value_sync 194 }; 195 196 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 197 198 if (dev->rep[REP_PERIOD]) 199 mod_timer(&dev->timer, jiffies + 200 msecs_to_jiffies(dev->rep[REP_PERIOD])); 201 } 202 203 spin_unlock_irqrestore(&dev->event_lock, flags); 204 } 205 206 #define INPUT_IGNORE_EVENT 0 207 #define INPUT_PASS_TO_HANDLERS 1 208 #define INPUT_PASS_TO_DEVICE 2 209 #define INPUT_SLOT 4 210 #define INPUT_FLUSH 8 211 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 212 213 static int input_handle_abs_event(struct input_dev *dev, 214 unsigned int code, int *pval) 215 { 216 struct input_mt *mt = dev->mt; 217 bool is_mt_event; 218 int *pold; 219 220 if (code == ABS_MT_SLOT) { 221 /* 222 * "Stage" the event; we'll flush it later, when we 223 * get actual touch data. 224 */ 225 if (mt && *pval >= 0 && *pval < mt->num_slots) 226 mt->slot = *pval; 227 228 return INPUT_IGNORE_EVENT; 229 } 230 231 is_mt_event = input_is_mt_value(code); 232 233 if (!is_mt_event) { 234 pold = &dev->absinfo[code].value; 235 } else if (mt) { 236 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; 237 } else { 238 /* 239 * Bypass filtering for multi-touch events when 240 * not employing slots. 241 */ 242 pold = NULL; 243 } 244 245 if (pold) { 246 *pval = input_defuzz_abs_event(*pval, *pold, 247 dev->absinfo[code].fuzz); 248 if (*pold == *pval) 249 return INPUT_IGNORE_EVENT; 250 251 *pold = *pval; 252 } 253 254 /* Flush pending "slot" event */ 255 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 256 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot); 257 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; 258 } 259 260 return INPUT_PASS_TO_HANDLERS; 261 } 262 263 static int input_get_disposition(struct input_dev *dev, 264 unsigned int type, unsigned int code, int *pval) 265 { 266 int disposition = INPUT_IGNORE_EVENT; 267 int value = *pval; 268 269 switch (type) { 270 271 case EV_SYN: 272 switch (code) { 273 case SYN_CONFIG: 274 disposition = INPUT_PASS_TO_ALL; 275 break; 276 277 case SYN_REPORT: 278 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; 279 break; 280 case SYN_MT_REPORT: 281 disposition = INPUT_PASS_TO_HANDLERS; 282 break; 283 } 284 break; 285 286 case EV_KEY: 287 if (is_event_supported(code, dev->keybit, KEY_MAX)) { 288 289 /* auto-repeat bypasses state updates */ 290 if (value == 2) { 291 disposition = INPUT_PASS_TO_HANDLERS; 292 break; 293 } 294 295 if (!!test_bit(code, dev->key) != !!value) { 296 297 __change_bit(code, dev->key); 298 disposition = INPUT_PASS_TO_HANDLERS; 299 } 300 } 301 break; 302 303 case EV_SW: 304 if (is_event_supported(code, dev->swbit, SW_MAX) && 305 !!test_bit(code, dev->sw) != !!value) { 306 307 __change_bit(code, dev->sw); 308 disposition = INPUT_PASS_TO_HANDLERS; 309 } 310 break; 311 312 case EV_ABS: 313 if (is_event_supported(code, dev->absbit, ABS_MAX)) 314 disposition = input_handle_abs_event(dev, code, &value); 315 316 break; 317 318 case EV_REL: 319 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 320 disposition = INPUT_PASS_TO_HANDLERS; 321 322 break; 323 324 case EV_MSC: 325 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 326 disposition = INPUT_PASS_TO_ALL; 327 328 break; 329 330 case EV_LED: 331 if (is_event_supported(code, dev->ledbit, LED_MAX) && 332 !!test_bit(code, dev->led) != !!value) { 333 334 __change_bit(code, dev->led); 335 disposition = INPUT_PASS_TO_ALL; 336 } 337 break; 338 339 case EV_SND: 340 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 341 342 if (!!test_bit(code, dev->snd) != !!value) 343 __change_bit(code, dev->snd); 344 disposition = INPUT_PASS_TO_ALL; 345 } 346 break; 347 348 case EV_REP: 349 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 350 dev->rep[code] = value; 351 disposition = INPUT_PASS_TO_ALL; 352 } 353 break; 354 355 case EV_FF: 356 if (value >= 0) 357 disposition = INPUT_PASS_TO_ALL; 358 break; 359 360 case EV_PWR: 361 disposition = INPUT_PASS_TO_ALL; 362 break; 363 } 364 365 *pval = value; 366 return disposition; 367 } 368 369 static void input_handle_event(struct input_dev *dev, 370 unsigned int type, unsigned int code, int value) 371 { 372 int disposition = input_get_disposition(dev, type, code, &value); 373 374 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 375 add_input_randomness(type, code, value); 376 377 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 378 dev->event(dev, type, code, value); 379 380 if (!dev->vals) 381 return; 382 383 if (disposition & INPUT_PASS_TO_HANDLERS) { 384 struct input_value *v; 385 386 if (disposition & INPUT_SLOT) { 387 v = &dev->vals[dev->num_vals++]; 388 v->type = EV_ABS; 389 v->code = ABS_MT_SLOT; 390 v->value = dev->mt->slot; 391 } 392 393 v = &dev->vals[dev->num_vals++]; 394 v->type = type; 395 v->code = code; 396 v->value = value; 397 } 398 399 if (disposition & INPUT_FLUSH) { 400 if (dev->num_vals >= 2) 401 input_pass_values(dev, dev->vals, dev->num_vals); 402 dev->num_vals = 0; 403 } else if (dev->num_vals >= dev->max_vals - 2) { 404 dev->vals[dev->num_vals++] = input_value_sync; 405 input_pass_values(dev, dev->vals, dev->num_vals); 406 dev->num_vals = 0; 407 } 408 409 } 410 411 /** 412 * input_event() - report new input event 413 * @dev: device that generated the event 414 * @type: type of the event 415 * @code: event code 416 * @value: value of the event 417 * 418 * This function should be used by drivers implementing various input 419 * devices to report input events. See also input_inject_event(). 420 * 421 * NOTE: input_event() may be safely used right after input device was 422 * allocated with input_allocate_device(), even before it is registered 423 * with input_register_device(), but the event will not reach any of the 424 * input handlers. Such early invocation of input_event() may be used 425 * to 'seed' initial state of a switch or initial position of absolute 426 * axis, etc. 427 */ 428 void input_event(struct input_dev *dev, 429 unsigned int type, unsigned int code, int value) 430 { 431 unsigned long flags; 432 433 if (is_event_supported(type, dev->evbit, EV_MAX)) { 434 435 spin_lock_irqsave(&dev->event_lock, flags); 436 input_handle_event(dev, type, code, value); 437 spin_unlock_irqrestore(&dev->event_lock, flags); 438 } 439 } 440 EXPORT_SYMBOL(input_event); 441 442 /** 443 * input_inject_event() - send input event from input handler 444 * @handle: input handle to send event through 445 * @type: type of the event 446 * @code: event code 447 * @value: value of the event 448 * 449 * Similar to input_event() but will ignore event if device is 450 * "grabbed" and handle injecting event is not the one that owns 451 * the device. 452 */ 453 void input_inject_event(struct input_handle *handle, 454 unsigned int type, unsigned int code, int value) 455 { 456 struct input_dev *dev = handle->dev; 457 struct input_handle *grab; 458 unsigned long flags; 459 460 if (is_event_supported(type, dev->evbit, EV_MAX)) { 461 spin_lock_irqsave(&dev->event_lock, flags); 462 463 rcu_read_lock(); 464 grab = rcu_dereference(dev->grab); 465 if (!grab || grab == handle) 466 input_handle_event(dev, type, code, value); 467 rcu_read_unlock(); 468 469 spin_unlock_irqrestore(&dev->event_lock, flags); 470 } 471 } 472 EXPORT_SYMBOL(input_inject_event); 473 474 /** 475 * input_alloc_absinfo - allocates array of input_absinfo structs 476 * @dev: the input device emitting absolute events 477 * 478 * If the absinfo struct the caller asked for is already allocated, this 479 * functions will not do anything. 480 */ 481 void input_alloc_absinfo(struct input_dev *dev) 482 { 483 if (!dev->absinfo) 484 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo), 485 GFP_KERNEL); 486 487 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__); 488 } 489 EXPORT_SYMBOL(input_alloc_absinfo); 490 491 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 492 int min, int max, int fuzz, int flat) 493 { 494 struct input_absinfo *absinfo; 495 496 input_alloc_absinfo(dev); 497 if (!dev->absinfo) 498 return; 499 500 absinfo = &dev->absinfo[axis]; 501 absinfo->minimum = min; 502 absinfo->maximum = max; 503 absinfo->fuzz = fuzz; 504 absinfo->flat = flat; 505 506 __set_bit(EV_ABS, dev->evbit); 507 __set_bit(axis, dev->absbit); 508 } 509 EXPORT_SYMBOL(input_set_abs_params); 510 511 512 /** 513 * input_grab_device - grabs device for exclusive use 514 * @handle: input handle that wants to own the device 515 * 516 * When a device is grabbed by an input handle all events generated by 517 * the device are delivered only to this handle. Also events injected 518 * by other input handles are ignored while device is grabbed. 519 */ 520 int input_grab_device(struct input_handle *handle) 521 { 522 struct input_dev *dev = handle->dev; 523 int retval; 524 525 retval = mutex_lock_interruptible(&dev->mutex); 526 if (retval) 527 return retval; 528 529 if (dev->grab) { 530 retval = -EBUSY; 531 goto out; 532 } 533 534 rcu_assign_pointer(dev->grab, handle); 535 536 out: 537 mutex_unlock(&dev->mutex); 538 return retval; 539 } 540 EXPORT_SYMBOL(input_grab_device); 541 542 static void __input_release_device(struct input_handle *handle) 543 { 544 struct input_dev *dev = handle->dev; 545 struct input_handle *grabber; 546 547 grabber = rcu_dereference_protected(dev->grab, 548 lockdep_is_held(&dev->mutex)); 549 if (grabber == handle) { 550 rcu_assign_pointer(dev->grab, NULL); 551 /* Make sure input_pass_event() notices that grab is gone */ 552 synchronize_rcu(); 553 554 list_for_each_entry(handle, &dev->h_list, d_node) 555 if (handle->open && handle->handler->start) 556 handle->handler->start(handle); 557 } 558 } 559 560 /** 561 * input_release_device - release previously grabbed device 562 * @handle: input handle that owns the device 563 * 564 * Releases previously grabbed device so that other input handles can 565 * start receiving input events. Upon release all handlers attached 566 * to the device have their start() method called so they have a change 567 * to synchronize device state with the rest of the system. 568 */ 569 void input_release_device(struct input_handle *handle) 570 { 571 struct input_dev *dev = handle->dev; 572 573 mutex_lock(&dev->mutex); 574 __input_release_device(handle); 575 mutex_unlock(&dev->mutex); 576 } 577 EXPORT_SYMBOL(input_release_device); 578 579 /** 580 * input_open_device - open input device 581 * @handle: handle through which device is being accessed 582 * 583 * This function should be called by input handlers when they 584 * want to start receive events from given input device. 585 */ 586 int input_open_device(struct input_handle *handle) 587 { 588 struct input_dev *dev = handle->dev; 589 int retval; 590 591 retval = mutex_lock_interruptible(&dev->mutex); 592 if (retval) 593 return retval; 594 595 if (dev->going_away) { 596 retval = -ENODEV; 597 goto out; 598 } 599 600 handle->open++; 601 602 if (!dev->users++ && dev->open) 603 retval = dev->open(dev); 604 605 if (retval) { 606 dev->users--; 607 if (!--handle->open) { 608 /* 609 * Make sure we are not delivering any more events 610 * through this handle 611 */ 612 synchronize_rcu(); 613 } 614 } 615 616 out: 617 mutex_unlock(&dev->mutex); 618 return retval; 619 } 620 EXPORT_SYMBOL(input_open_device); 621 622 int input_flush_device(struct input_handle *handle, struct file *file) 623 { 624 struct input_dev *dev = handle->dev; 625 int retval; 626 627 retval = mutex_lock_interruptible(&dev->mutex); 628 if (retval) 629 return retval; 630 631 if (dev->flush) 632 retval = dev->flush(dev, file); 633 634 mutex_unlock(&dev->mutex); 635 return retval; 636 } 637 EXPORT_SYMBOL(input_flush_device); 638 639 /** 640 * input_close_device - close input device 641 * @handle: handle through which device is being accessed 642 * 643 * This function should be called by input handlers when they 644 * want to stop receive events from given input device. 645 */ 646 void input_close_device(struct input_handle *handle) 647 { 648 struct input_dev *dev = handle->dev; 649 650 mutex_lock(&dev->mutex); 651 652 __input_release_device(handle); 653 654 if (!--dev->users && dev->close) 655 dev->close(dev); 656 657 if (!--handle->open) { 658 /* 659 * synchronize_rcu() makes sure that input_pass_event() 660 * completed and that no more input events are delivered 661 * through this handle 662 */ 663 synchronize_rcu(); 664 } 665 666 mutex_unlock(&dev->mutex); 667 } 668 EXPORT_SYMBOL(input_close_device); 669 670 /* 671 * Simulate keyup events for all keys that are marked as pressed. 672 * The function must be called with dev->event_lock held. 673 */ 674 static void input_dev_release_keys(struct input_dev *dev) 675 { 676 bool need_sync = false; 677 int code; 678 679 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 680 for_each_set_bit(code, dev->key, KEY_CNT) { 681 input_pass_event(dev, EV_KEY, code, 0); 682 need_sync = true; 683 } 684 685 if (need_sync) 686 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 687 688 memset(dev->key, 0, sizeof(dev->key)); 689 } 690 } 691 692 /* 693 * Prepare device for unregistering 694 */ 695 static void input_disconnect_device(struct input_dev *dev) 696 { 697 struct input_handle *handle; 698 699 /* 700 * Mark device as going away. Note that we take dev->mutex here 701 * not to protect access to dev->going_away but rather to ensure 702 * that there are no threads in the middle of input_open_device() 703 */ 704 mutex_lock(&dev->mutex); 705 dev->going_away = true; 706 mutex_unlock(&dev->mutex); 707 708 spin_lock_irq(&dev->event_lock); 709 710 /* 711 * Simulate keyup events for all pressed keys so that handlers 712 * are not left with "stuck" keys. The driver may continue 713 * generate events even after we done here but they will not 714 * reach any handlers. 715 */ 716 input_dev_release_keys(dev); 717 718 list_for_each_entry(handle, &dev->h_list, d_node) 719 handle->open = 0; 720 721 spin_unlock_irq(&dev->event_lock); 722 } 723 724 /** 725 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 726 * @ke: keymap entry containing scancode to be converted. 727 * @scancode: pointer to the location where converted scancode should 728 * be stored. 729 * 730 * This function is used to convert scancode stored in &struct keymap_entry 731 * into scalar form understood by legacy keymap handling methods. These 732 * methods expect scancodes to be represented as 'unsigned int'. 733 */ 734 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 735 unsigned int *scancode) 736 { 737 switch (ke->len) { 738 case 1: 739 *scancode = *((u8 *)ke->scancode); 740 break; 741 742 case 2: 743 *scancode = *((u16 *)ke->scancode); 744 break; 745 746 case 4: 747 *scancode = *((u32 *)ke->scancode); 748 break; 749 750 default: 751 return -EINVAL; 752 } 753 754 return 0; 755 } 756 EXPORT_SYMBOL(input_scancode_to_scalar); 757 758 /* 759 * Those routines handle the default case where no [gs]etkeycode() is 760 * defined. In this case, an array indexed by the scancode is used. 761 */ 762 763 static unsigned int input_fetch_keycode(struct input_dev *dev, 764 unsigned int index) 765 { 766 switch (dev->keycodesize) { 767 case 1: 768 return ((u8 *)dev->keycode)[index]; 769 770 case 2: 771 return ((u16 *)dev->keycode)[index]; 772 773 default: 774 return ((u32 *)dev->keycode)[index]; 775 } 776 } 777 778 static int input_default_getkeycode(struct input_dev *dev, 779 struct input_keymap_entry *ke) 780 { 781 unsigned int index; 782 int error; 783 784 if (!dev->keycodesize) 785 return -EINVAL; 786 787 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 788 index = ke->index; 789 else { 790 error = input_scancode_to_scalar(ke, &index); 791 if (error) 792 return error; 793 } 794 795 if (index >= dev->keycodemax) 796 return -EINVAL; 797 798 ke->keycode = input_fetch_keycode(dev, index); 799 ke->index = index; 800 ke->len = sizeof(index); 801 memcpy(ke->scancode, &index, sizeof(index)); 802 803 return 0; 804 } 805 806 static int input_default_setkeycode(struct input_dev *dev, 807 const struct input_keymap_entry *ke, 808 unsigned int *old_keycode) 809 { 810 unsigned int index; 811 int error; 812 int i; 813 814 if (!dev->keycodesize) 815 return -EINVAL; 816 817 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 818 index = ke->index; 819 } else { 820 error = input_scancode_to_scalar(ke, &index); 821 if (error) 822 return error; 823 } 824 825 if (index >= dev->keycodemax) 826 return -EINVAL; 827 828 if (dev->keycodesize < sizeof(ke->keycode) && 829 (ke->keycode >> (dev->keycodesize * 8))) 830 return -EINVAL; 831 832 switch (dev->keycodesize) { 833 case 1: { 834 u8 *k = (u8 *)dev->keycode; 835 *old_keycode = k[index]; 836 k[index] = ke->keycode; 837 break; 838 } 839 case 2: { 840 u16 *k = (u16 *)dev->keycode; 841 *old_keycode = k[index]; 842 k[index] = ke->keycode; 843 break; 844 } 845 default: { 846 u32 *k = (u32 *)dev->keycode; 847 *old_keycode = k[index]; 848 k[index] = ke->keycode; 849 break; 850 } 851 } 852 853 __clear_bit(*old_keycode, dev->keybit); 854 __set_bit(ke->keycode, dev->keybit); 855 856 for (i = 0; i < dev->keycodemax; i++) { 857 if (input_fetch_keycode(dev, i) == *old_keycode) { 858 __set_bit(*old_keycode, dev->keybit); 859 break; /* Setting the bit twice is useless, so break */ 860 } 861 } 862 863 return 0; 864 } 865 866 /** 867 * input_get_keycode - retrieve keycode currently mapped to a given scancode 868 * @dev: input device which keymap is being queried 869 * @ke: keymap entry 870 * 871 * This function should be called by anyone interested in retrieving current 872 * keymap. Presently evdev handlers use it. 873 */ 874 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 875 { 876 unsigned long flags; 877 int retval; 878 879 spin_lock_irqsave(&dev->event_lock, flags); 880 retval = dev->getkeycode(dev, ke); 881 spin_unlock_irqrestore(&dev->event_lock, flags); 882 883 return retval; 884 } 885 EXPORT_SYMBOL(input_get_keycode); 886 887 /** 888 * input_set_keycode - attribute a keycode to a given scancode 889 * @dev: input device which keymap is being updated 890 * @ke: new keymap entry 891 * 892 * This function should be called by anyone needing to update current 893 * keymap. Presently keyboard and evdev handlers use it. 894 */ 895 int input_set_keycode(struct input_dev *dev, 896 const struct input_keymap_entry *ke) 897 { 898 unsigned long flags; 899 unsigned int old_keycode; 900 int retval; 901 902 if (ke->keycode > KEY_MAX) 903 return -EINVAL; 904 905 spin_lock_irqsave(&dev->event_lock, flags); 906 907 retval = dev->setkeycode(dev, ke, &old_keycode); 908 if (retval) 909 goto out; 910 911 /* Make sure KEY_RESERVED did not get enabled. */ 912 __clear_bit(KEY_RESERVED, dev->keybit); 913 914 /* 915 * Simulate keyup event if keycode is not present 916 * in the keymap anymore 917 */ 918 if (test_bit(EV_KEY, dev->evbit) && 919 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 920 __test_and_clear_bit(old_keycode, dev->key)) { 921 struct input_value vals[] = { 922 { EV_KEY, old_keycode, 0 }, 923 input_value_sync 924 }; 925 926 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 927 } 928 929 out: 930 spin_unlock_irqrestore(&dev->event_lock, flags); 931 932 return retval; 933 } 934 EXPORT_SYMBOL(input_set_keycode); 935 936 static const struct input_device_id *input_match_device(struct input_handler *handler, 937 struct input_dev *dev) 938 { 939 const struct input_device_id *id; 940 941 for (id = handler->id_table; id->flags || id->driver_info; id++) { 942 943 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 944 if (id->bustype != dev->id.bustype) 945 continue; 946 947 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 948 if (id->vendor != dev->id.vendor) 949 continue; 950 951 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 952 if (id->product != dev->id.product) 953 continue; 954 955 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 956 if (id->version != dev->id.version) 957 continue; 958 959 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX)) 960 continue; 961 962 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX)) 963 continue; 964 965 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX)) 966 continue; 967 968 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX)) 969 continue; 970 971 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX)) 972 continue; 973 974 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX)) 975 continue; 976 977 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX)) 978 continue; 979 980 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX)) 981 continue; 982 983 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX)) 984 continue; 985 986 if (!handler->match || handler->match(handler, dev)) 987 return id; 988 } 989 990 return NULL; 991 } 992 993 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 994 { 995 const struct input_device_id *id; 996 int error; 997 998 id = input_match_device(handler, dev); 999 if (!id) 1000 return -ENODEV; 1001 1002 error = handler->connect(handler, dev, id); 1003 if (error && error != -ENODEV) 1004 pr_err("failed to attach handler %s to device %s, error: %d\n", 1005 handler->name, kobject_name(&dev->dev.kobj), error); 1006 1007 return error; 1008 } 1009 1010 #ifdef CONFIG_COMPAT 1011 1012 static int input_bits_to_string(char *buf, int buf_size, 1013 unsigned long bits, bool skip_empty) 1014 { 1015 int len = 0; 1016 1017 if (in_compat_syscall()) { 1018 u32 dword = bits >> 32; 1019 if (dword || !skip_empty) 1020 len += snprintf(buf, buf_size, "%x ", dword); 1021 1022 dword = bits & 0xffffffffUL; 1023 if (dword || !skip_empty || len) 1024 len += snprintf(buf + len, max(buf_size - len, 0), 1025 "%x", dword); 1026 } else { 1027 if (bits || !skip_empty) 1028 len += snprintf(buf, buf_size, "%lx", bits); 1029 } 1030 1031 return len; 1032 } 1033 1034 #else /* !CONFIG_COMPAT */ 1035 1036 static int input_bits_to_string(char *buf, int buf_size, 1037 unsigned long bits, bool skip_empty) 1038 { 1039 return bits || !skip_empty ? 1040 snprintf(buf, buf_size, "%lx", bits) : 0; 1041 } 1042 1043 #endif 1044 1045 #ifdef CONFIG_PROC_FS 1046 1047 static struct proc_dir_entry *proc_bus_input_dir; 1048 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 1049 static int input_devices_state; 1050 1051 static inline void input_wakeup_procfs_readers(void) 1052 { 1053 input_devices_state++; 1054 wake_up(&input_devices_poll_wait); 1055 } 1056 1057 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 1058 { 1059 poll_wait(file, &input_devices_poll_wait, wait); 1060 if (file->f_version != input_devices_state) { 1061 file->f_version = input_devices_state; 1062 return POLLIN | POLLRDNORM; 1063 } 1064 1065 return 0; 1066 } 1067 1068 union input_seq_state { 1069 struct { 1070 unsigned short pos; 1071 bool mutex_acquired; 1072 }; 1073 void *p; 1074 }; 1075 1076 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1077 { 1078 union input_seq_state *state = (union input_seq_state *)&seq->private; 1079 int error; 1080 1081 /* We need to fit into seq->private pointer */ 1082 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1083 1084 error = mutex_lock_interruptible(&input_mutex); 1085 if (error) { 1086 state->mutex_acquired = false; 1087 return ERR_PTR(error); 1088 } 1089 1090 state->mutex_acquired = true; 1091 1092 return seq_list_start(&input_dev_list, *pos); 1093 } 1094 1095 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1096 { 1097 return seq_list_next(v, &input_dev_list, pos); 1098 } 1099 1100 static void input_seq_stop(struct seq_file *seq, void *v) 1101 { 1102 union input_seq_state *state = (union input_seq_state *)&seq->private; 1103 1104 if (state->mutex_acquired) 1105 mutex_unlock(&input_mutex); 1106 } 1107 1108 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1109 unsigned long *bitmap, int max) 1110 { 1111 int i; 1112 bool skip_empty = true; 1113 char buf[18]; 1114 1115 seq_printf(seq, "B: %s=", name); 1116 1117 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1118 if (input_bits_to_string(buf, sizeof(buf), 1119 bitmap[i], skip_empty)) { 1120 skip_empty = false; 1121 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1122 } 1123 } 1124 1125 /* 1126 * If no output was produced print a single 0. 1127 */ 1128 if (skip_empty) 1129 seq_puts(seq, "0"); 1130 1131 seq_putc(seq, '\n'); 1132 } 1133 1134 static int input_devices_seq_show(struct seq_file *seq, void *v) 1135 { 1136 struct input_dev *dev = container_of(v, struct input_dev, node); 1137 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1138 struct input_handle *handle; 1139 1140 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1141 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1142 1143 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1144 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1145 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1146 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1147 seq_printf(seq, "H: Handlers="); 1148 1149 list_for_each_entry(handle, &dev->h_list, d_node) 1150 seq_printf(seq, "%s ", handle->name); 1151 seq_putc(seq, '\n'); 1152 1153 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1154 1155 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1156 if (test_bit(EV_KEY, dev->evbit)) 1157 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1158 if (test_bit(EV_REL, dev->evbit)) 1159 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1160 if (test_bit(EV_ABS, dev->evbit)) 1161 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1162 if (test_bit(EV_MSC, dev->evbit)) 1163 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1164 if (test_bit(EV_LED, dev->evbit)) 1165 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1166 if (test_bit(EV_SND, dev->evbit)) 1167 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1168 if (test_bit(EV_FF, dev->evbit)) 1169 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1170 if (test_bit(EV_SW, dev->evbit)) 1171 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1172 1173 seq_putc(seq, '\n'); 1174 1175 kfree(path); 1176 return 0; 1177 } 1178 1179 static const struct seq_operations input_devices_seq_ops = { 1180 .start = input_devices_seq_start, 1181 .next = input_devices_seq_next, 1182 .stop = input_seq_stop, 1183 .show = input_devices_seq_show, 1184 }; 1185 1186 static int input_proc_devices_open(struct inode *inode, struct file *file) 1187 { 1188 return seq_open(file, &input_devices_seq_ops); 1189 } 1190 1191 static const struct file_operations input_devices_fileops = { 1192 .owner = THIS_MODULE, 1193 .open = input_proc_devices_open, 1194 .poll = input_proc_devices_poll, 1195 .read = seq_read, 1196 .llseek = seq_lseek, 1197 .release = seq_release, 1198 }; 1199 1200 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1201 { 1202 union input_seq_state *state = (union input_seq_state *)&seq->private; 1203 int error; 1204 1205 /* We need to fit into seq->private pointer */ 1206 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1207 1208 error = mutex_lock_interruptible(&input_mutex); 1209 if (error) { 1210 state->mutex_acquired = false; 1211 return ERR_PTR(error); 1212 } 1213 1214 state->mutex_acquired = true; 1215 state->pos = *pos; 1216 1217 return seq_list_start(&input_handler_list, *pos); 1218 } 1219 1220 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1221 { 1222 union input_seq_state *state = (union input_seq_state *)&seq->private; 1223 1224 state->pos = *pos + 1; 1225 return seq_list_next(v, &input_handler_list, pos); 1226 } 1227 1228 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1229 { 1230 struct input_handler *handler = container_of(v, struct input_handler, node); 1231 union input_seq_state *state = (union input_seq_state *)&seq->private; 1232 1233 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1234 if (handler->filter) 1235 seq_puts(seq, " (filter)"); 1236 if (handler->legacy_minors) 1237 seq_printf(seq, " Minor=%d", handler->minor); 1238 seq_putc(seq, '\n'); 1239 1240 return 0; 1241 } 1242 1243 static const struct seq_operations input_handlers_seq_ops = { 1244 .start = input_handlers_seq_start, 1245 .next = input_handlers_seq_next, 1246 .stop = input_seq_stop, 1247 .show = input_handlers_seq_show, 1248 }; 1249 1250 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1251 { 1252 return seq_open(file, &input_handlers_seq_ops); 1253 } 1254 1255 static const struct file_operations input_handlers_fileops = { 1256 .owner = THIS_MODULE, 1257 .open = input_proc_handlers_open, 1258 .read = seq_read, 1259 .llseek = seq_lseek, 1260 .release = seq_release, 1261 }; 1262 1263 static int __init input_proc_init(void) 1264 { 1265 struct proc_dir_entry *entry; 1266 1267 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1268 if (!proc_bus_input_dir) 1269 return -ENOMEM; 1270 1271 entry = proc_create("devices", 0, proc_bus_input_dir, 1272 &input_devices_fileops); 1273 if (!entry) 1274 goto fail1; 1275 1276 entry = proc_create("handlers", 0, proc_bus_input_dir, 1277 &input_handlers_fileops); 1278 if (!entry) 1279 goto fail2; 1280 1281 return 0; 1282 1283 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1284 fail1: remove_proc_entry("bus/input", NULL); 1285 return -ENOMEM; 1286 } 1287 1288 static void input_proc_exit(void) 1289 { 1290 remove_proc_entry("devices", proc_bus_input_dir); 1291 remove_proc_entry("handlers", proc_bus_input_dir); 1292 remove_proc_entry("bus/input", NULL); 1293 } 1294 1295 #else /* !CONFIG_PROC_FS */ 1296 static inline void input_wakeup_procfs_readers(void) { } 1297 static inline int input_proc_init(void) { return 0; } 1298 static inline void input_proc_exit(void) { } 1299 #endif 1300 1301 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1302 static ssize_t input_dev_show_##name(struct device *dev, \ 1303 struct device_attribute *attr, \ 1304 char *buf) \ 1305 { \ 1306 struct input_dev *input_dev = to_input_dev(dev); \ 1307 \ 1308 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1309 input_dev->name ? input_dev->name : ""); \ 1310 } \ 1311 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1312 1313 INPUT_DEV_STRING_ATTR_SHOW(name); 1314 INPUT_DEV_STRING_ATTR_SHOW(phys); 1315 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1316 1317 static int input_print_modalias_bits(char *buf, int size, 1318 char name, unsigned long *bm, 1319 unsigned int min_bit, unsigned int max_bit) 1320 { 1321 int len = 0, i; 1322 1323 len += snprintf(buf, max(size, 0), "%c", name); 1324 for (i = min_bit; i < max_bit; i++) 1325 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1326 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1327 return len; 1328 } 1329 1330 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1331 int add_cr) 1332 { 1333 int len; 1334 1335 len = snprintf(buf, max(size, 0), 1336 "input:b%04Xv%04Xp%04Xe%04X-", 1337 id->id.bustype, id->id.vendor, 1338 id->id.product, id->id.version); 1339 1340 len += input_print_modalias_bits(buf + len, size - len, 1341 'e', id->evbit, 0, EV_MAX); 1342 len += input_print_modalias_bits(buf + len, size - len, 1343 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1344 len += input_print_modalias_bits(buf + len, size - len, 1345 'r', id->relbit, 0, REL_MAX); 1346 len += input_print_modalias_bits(buf + len, size - len, 1347 'a', id->absbit, 0, ABS_MAX); 1348 len += input_print_modalias_bits(buf + len, size - len, 1349 'm', id->mscbit, 0, MSC_MAX); 1350 len += input_print_modalias_bits(buf + len, size - len, 1351 'l', id->ledbit, 0, LED_MAX); 1352 len += input_print_modalias_bits(buf + len, size - len, 1353 's', id->sndbit, 0, SND_MAX); 1354 len += input_print_modalias_bits(buf + len, size - len, 1355 'f', id->ffbit, 0, FF_MAX); 1356 len += input_print_modalias_bits(buf + len, size - len, 1357 'w', id->swbit, 0, SW_MAX); 1358 1359 if (add_cr) 1360 len += snprintf(buf + len, max(size - len, 0), "\n"); 1361 1362 return len; 1363 } 1364 1365 static ssize_t input_dev_show_modalias(struct device *dev, 1366 struct device_attribute *attr, 1367 char *buf) 1368 { 1369 struct input_dev *id = to_input_dev(dev); 1370 ssize_t len; 1371 1372 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1373 1374 return min_t(int, len, PAGE_SIZE); 1375 } 1376 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1377 1378 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1379 int max, int add_cr); 1380 1381 static ssize_t input_dev_show_properties(struct device *dev, 1382 struct device_attribute *attr, 1383 char *buf) 1384 { 1385 struct input_dev *input_dev = to_input_dev(dev); 1386 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1387 INPUT_PROP_MAX, true); 1388 return min_t(int, len, PAGE_SIZE); 1389 } 1390 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1391 1392 static struct attribute *input_dev_attrs[] = { 1393 &dev_attr_name.attr, 1394 &dev_attr_phys.attr, 1395 &dev_attr_uniq.attr, 1396 &dev_attr_modalias.attr, 1397 &dev_attr_properties.attr, 1398 NULL 1399 }; 1400 1401 static struct attribute_group input_dev_attr_group = { 1402 .attrs = input_dev_attrs, 1403 }; 1404 1405 #define INPUT_DEV_ID_ATTR(name) \ 1406 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1407 struct device_attribute *attr, \ 1408 char *buf) \ 1409 { \ 1410 struct input_dev *input_dev = to_input_dev(dev); \ 1411 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1412 } \ 1413 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1414 1415 INPUT_DEV_ID_ATTR(bustype); 1416 INPUT_DEV_ID_ATTR(vendor); 1417 INPUT_DEV_ID_ATTR(product); 1418 INPUT_DEV_ID_ATTR(version); 1419 1420 static struct attribute *input_dev_id_attrs[] = { 1421 &dev_attr_bustype.attr, 1422 &dev_attr_vendor.attr, 1423 &dev_attr_product.attr, 1424 &dev_attr_version.attr, 1425 NULL 1426 }; 1427 1428 static struct attribute_group input_dev_id_attr_group = { 1429 .name = "id", 1430 .attrs = input_dev_id_attrs, 1431 }; 1432 1433 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1434 int max, int add_cr) 1435 { 1436 int i; 1437 int len = 0; 1438 bool skip_empty = true; 1439 1440 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1441 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1442 bitmap[i], skip_empty); 1443 if (len) { 1444 skip_empty = false; 1445 if (i > 0) 1446 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1447 } 1448 } 1449 1450 /* 1451 * If no output was produced print a single 0. 1452 */ 1453 if (len == 0) 1454 len = snprintf(buf, buf_size, "%d", 0); 1455 1456 if (add_cr) 1457 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1458 1459 return len; 1460 } 1461 1462 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1463 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1464 struct device_attribute *attr, \ 1465 char *buf) \ 1466 { \ 1467 struct input_dev *input_dev = to_input_dev(dev); \ 1468 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1469 input_dev->bm##bit, ev##_MAX, \ 1470 true); \ 1471 return min_t(int, len, PAGE_SIZE); \ 1472 } \ 1473 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1474 1475 INPUT_DEV_CAP_ATTR(EV, ev); 1476 INPUT_DEV_CAP_ATTR(KEY, key); 1477 INPUT_DEV_CAP_ATTR(REL, rel); 1478 INPUT_DEV_CAP_ATTR(ABS, abs); 1479 INPUT_DEV_CAP_ATTR(MSC, msc); 1480 INPUT_DEV_CAP_ATTR(LED, led); 1481 INPUT_DEV_CAP_ATTR(SND, snd); 1482 INPUT_DEV_CAP_ATTR(FF, ff); 1483 INPUT_DEV_CAP_ATTR(SW, sw); 1484 1485 static struct attribute *input_dev_caps_attrs[] = { 1486 &dev_attr_ev.attr, 1487 &dev_attr_key.attr, 1488 &dev_attr_rel.attr, 1489 &dev_attr_abs.attr, 1490 &dev_attr_msc.attr, 1491 &dev_attr_led.attr, 1492 &dev_attr_snd.attr, 1493 &dev_attr_ff.attr, 1494 &dev_attr_sw.attr, 1495 NULL 1496 }; 1497 1498 static struct attribute_group input_dev_caps_attr_group = { 1499 .name = "capabilities", 1500 .attrs = input_dev_caps_attrs, 1501 }; 1502 1503 static const struct attribute_group *input_dev_attr_groups[] = { 1504 &input_dev_attr_group, 1505 &input_dev_id_attr_group, 1506 &input_dev_caps_attr_group, 1507 NULL 1508 }; 1509 1510 static void input_dev_release(struct device *device) 1511 { 1512 struct input_dev *dev = to_input_dev(device); 1513 1514 input_ff_destroy(dev); 1515 input_mt_destroy_slots(dev); 1516 kfree(dev->absinfo); 1517 kfree(dev->vals); 1518 kfree(dev); 1519 1520 module_put(THIS_MODULE); 1521 } 1522 1523 /* 1524 * Input uevent interface - loading event handlers based on 1525 * device bitfields. 1526 */ 1527 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1528 const char *name, unsigned long *bitmap, int max) 1529 { 1530 int len; 1531 1532 if (add_uevent_var(env, "%s", name)) 1533 return -ENOMEM; 1534 1535 len = input_print_bitmap(&env->buf[env->buflen - 1], 1536 sizeof(env->buf) - env->buflen, 1537 bitmap, max, false); 1538 if (len >= (sizeof(env->buf) - env->buflen)) 1539 return -ENOMEM; 1540 1541 env->buflen += len; 1542 return 0; 1543 } 1544 1545 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1546 struct input_dev *dev) 1547 { 1548 int len; 1549 1550 if (add_uevent_var(env, "MODALIAS=")) 1551 return -ENOMEM; 1552 1553 len = input_print_modalias(&env->buf[env->buflen - 1], 1554 sizeof(env->buf) - env->buflen, 1555 dev, 0); 1556 if (len >= (sizeof(env->buf) - env->buflen)) 1557 return -ENOMEM; 1558 1559 env->buflen += len; 1560 return 0; 1561 } 1562 1563 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1564 do { \ 1565 int err = add_uevent_var(env, fmt, val); \ 1566 if (err) \ 1567 return err; \ 1568 } while (0) 1569 1570 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1571 do { \ 1572 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1573 if (err) \ 1574 return err; \ 1575 } while (0) 1576 1577 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1578 do { \ 1579 int err = input_add_uevent_modalias_var(env, dev); \ 1580 if (err) \ 1581 return err; \ 1582 } while (0) 1583 1584 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1585 { 1586 struct input_dev *dev = to_input_dev(device); 1587 1588 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1589 dev->id.bustype, dev->id.vendor, 1590 dev->id.product, dev->id.version); 1591 if (dev->name) 1592 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1593 if (dev->phys) 1594 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1595 if (dev->uniq) 1596 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1597 1598 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1599 1600 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1601 if (test_bit(EV_KEY, dev->evbit)) 1602 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1603 if (test_bit(EV_REL, dev->evbit)) 1604 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1605 if (test_bit(EV_ABS, dev->evbit)) 1606 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1607 if (test_bit(EV_MSC, dev->evbit)) 1608 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1609 if (test_bit(EV_LED, dev->evbit)) 1610 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1611 if (test_bit(EV_SND, dev->evbit)) 1612 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1613 if (test_bit(EV_FF, dev->evbit)) 1614 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1615 if (test_bit(EV_SW, dev->evbit)) 1616 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1617 1618 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1619 1620 return 0; 1621 } 1622 1623 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1624 do { \ 1625 int i; \ 1626 bool active; \ 1627 \ 1628 if (!test_bit(EV_##type, dev->evbit)) \ 1629 break; \ 1630 \ 1631 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \ 1632 active = test_bit(i, dev->bits); \ 1633 if (!active && !on) \ 1634 continue; \ 1635 \ 1636 dev->event(dev, EV_##type, i, on ? active : 0); \ 1637 } \ 1638 } while (0) 1639 1640 static void input_dev_toggle(struct input_dev *dev, bool activate) 1641 { 1642 if (!dev->event) 1643 return; 1644 1645 INPUT_DO_TOGGLE(dev, LED, led, activate); 1646 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1647 1648 if (activate && test_bit(EV_REP, dev->evbit)) { 1649 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1650 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1651 } 1652 } 1653 1654 /** 1655 * input_reset_device() - reset/restore the state of input device 1656 * @dev: input device whose state needs to be reset 1657 * 1658 * This function tries to reset the state of an opened input device and 1659 * bring internal state and state if the hardware in sync with each other. 1660 * We mark all keys as released, restore LED state, repeat rate, etc. 1661 */ 1662 void input_reset_device(struct input_dev *dev) 1663 { 1664 unsigned long flags; 1665 1666 mutex_lock(&dev->mutex); 1667 spin_lock_irqsave(&dev->event_lock, flags); 1668 1669 input_dev_toggle(dev, true); 1670 input_dev_release_keys(dev); 1671 1672 spin_unlock_irqrestore(&dev->event_lock, flags); 1673 mutex_unlock(&dev->mutex); 1674 } 1675 EXPORT_SYMBOL(input_reset_device); 1676 1677 #ifdef CONFIG_PM_SLEEP 1678 static int input_dev_suspend(struct device *dev) 1679 { 1680 struct input_dev *input_dev = to_input_dev(dev); 1681 1682 spin_lock_irq(&input_dev->event_lock); 1683 1684 /* 1685 * Keys that are pressed now are unlikely to be 1686 * still pressed when we resume. 1687 */ 1688 input_dev_release_keys(input_dev); 1689 1690 /* Turn off LEDs and sounds, if any are active. */ 1691 input_dev_toggle(input_dev, false); 1692 1693 spin_unlock_irq(&input_dev->event_lock); 1694 1695 return 0; 1696 } 1697 1698 static int input_dev_resume(struct device *dev) 1699 { 1700 struct input_dev *input_dev = to_input_dev(dev); 1701 1702 spin_lock_irq(&input_dev->event_lock); 1703 1704 /* Restore state of LEDs and sounds, if any were active. */ 1705 input_dev_toggle(input_dev, true); 1706 1707 spin_unlock_irq(&input_dev->event_lock); 1708 1709 return 0; 1710 } 1711 1712 static int input_dev_freeze(struct device *dev) 1713 { 1714 struct input_dev *input_dev = to_input_dev(dev); 1715 1716 spin_lock_irq(&input_dev->event_lock); 1717 1718 /* 1719 * Keys that are pressed now are unlikely to be 1720 * still pressed when we resume. 1721 */ 1722 input_dev_release_keys(input_dev); 1723 1724 spin_unlock_irq(&input_dev->event_lock); 1725 1726 return 0; 1727 } 1728 1729 static int input_dev_poweroff(struct device *dev) 1730 { 1731 struct input_dev *input_dev = to_input_dev(dev); 1732 1733 spin_lock_irq(&input_dev->event_lock); 1734 1735 /* Turn off LEDs and sounds, if any are active. */ 1736 input_dev_toggle(input_dev, false); 1737 1738 spin_unlock_irq(&input_dev->event_lock); 1739 1740 return 0; 1741 } 1742 1743 static const struct dev_pm_ops input_dev_pm_ops = { 1744 .suspend = input_dev_suspend, 1745 .resume = input_dev_resume, 1746 .freeze = input_dev_freeze, 1747 .poweroff = input_dev_poweroff, 1748 .restore = input_dev_resume, 1749 }; 1750 #endif /* CONFIG_PM */ 1751 1752 static const struct device_type input_dev_type = { 1753 .groups = input_dev_attr_groups, 1754 .release = input_dev_release, 1755 .uevent = input_dev_uevent, 1756 #ifdef CONFIG_PM_SLEEP 1757 .pm = &input_dev_pm_ops, 1758 #endif 1759 }; 1760 1761 static char *input_devnode(struct device *dev, umode_t *mode) 1762 { 1763 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1764 } 1765 1766 struct class input_class = { 1767 .name = "input", 1768 .devnode = input_devnode, 1769 }; 1770 EXPORT_SYMBOL_GPL(input_class); 1771 1772 /** 1773 * input_allocate_device - allocate memory for new input device 1774 * 1775 * Returns prepared struct input_dev or %NULL. 1776 * 1777 * NOTE: Use input_free_device() to free devices that have not been 1778 * registered; input_unregister_device() should be used for already 1779 * registered devices. 1780 */ 1781 struct input_dev *input_allocate_device(void) 1782 { 1783 static atomic_t input_no = ATOMIC_INIT(-1); 1784 struct input_dev *dev; 1785 1786 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1787 if (dev) { 1788 dev->dev.type = &input_dev_type; 1789 dev->dev.class = &input_class; 1790 device_initialize(&dev->dev); 1791 mutex_init(&dev->mutex); 1792 spin_lock_init(&dev->event_lock); 1793 init_timer(&dev->timer); 1794 INIT_LIST_HEAD(&dev->h_list); 1795 INIT_LIST_HEAD(&dev->node); 1796 1797 dev_set_name(&dev->dev, "input%lu", 1798 (unsigned long)atomic_inc_return(&input_no)); 1799 1800 __module_get(THIS_MODULE); 1801 } 1802 1803 return dev; 1804 } 1805 EXPORT_SYMBOL(input_allocate_device); 1806 1807 struct input_devres { 1808 struct input_dev *input; 1809 }; 1810 1811 static int devm_input_device_match(struct device *dev, void *res, void *data) 1812 { 1813 struct input_devres *devres = res; 1814 1815 return devres->input == data; 1816 } 1817 1818 static void devm_input_device_release(struct device *dev, void *res) 1819 { 1820 struct input_devres *devres = res; 1821 struct input_dev *input = devres->input; 1822 1823 dev_dbg(dev, "%s: dropping reference to %s\n", 1824 __func__, dev_name(&input->dev)); 1825 input_put_device(input); 1826 } 1827 1828 /** 1829 * devm_input_allocate_device - allocate managed input device 1830 * @dev: device owning the input device being created 1831 * 1832 * Returns prepared struct input_dev or %NULL. 1833 * 1834 * Managed input devices do not need to be explicitly unregistered or 1835 * freed as it will be done automatically when owner device unbinds from 1836 * its driver (or binding fails). Once managed input device is allocated, 1837 * it is ready to be set up and registered in the same fashion as regular 1838 * input device. There are no special devm_input_device_[un]register() 1839 * variants, regular ones work with both managed and unmanaged devices, 1840 * should you need them. In most cases however, managed input device need 1841 * not be explicitly unregistered or freed. 1842 * 1843 * NOTE: the owner device is set up as parent of input device and users 1844 * should not override it. 1845 */ 1846 struct input_dev *devm_input_allocate_device(struct device *dev) 1847 { 1848 struct input_dev *input; 1849 struct input_devres *devres; 1850 1851 devres = devres_alloc(devm_input_device_release, 1852 sizeof(struct input_devres), GFP_KERNEL); 1853 if (!devres) 1854 return NULL; 1855 1856 input = input_allocate_device(); 1857 if (!input) { 1858 devres_free(devres); 1859 return NULL; 1860 } 1861 1862 input->dev.parent = dev; 1863 input->devres_managed = true; 1864 1865 devres->input = input; 1866 devres_add(dev, devres); 1867 1868 return input; 1869 } 1870 EXPORT_SYMBOL(devm_input_allocate_device); 1871 1872 /** 1873 * input_free_device - free memory occupied by input_dev structure 1874 * @dev: input device to free 1875 * 1876 * This function should only be used if input_register_device() 1877 * was not called yet or if it failed. Once device was registered 1878 * use input_unregister_device() and memory will be freed once last 1879 * reference to the device is dropped. 1880 * 1881 * Device should be allocated by input_allocate_device(). 1882 * 1883 * NOTE: If there are references to the input device then memory 1884 * will not be freed until last reference is dropped. 1885 */ 1886 void input_free_device(struct input_dev *dev) 1887 { 1888 if (dev) { 1889 if (dev->devres_managed) 1890 WARN_ON(devres_destroy(dev->dev.parent, 1891 devm_input_device_release, 1892 devm_input_device_match, 1893 dev)); 1894 input_put_device(dev); 1895 } 1896 } 1897 EXPORT_SYMBOL(input_free_device); 1898 1899 /** 1900 * input_set_capability - mark device as capable of a certain event 1901 * @dev: device that is capable of emitting or accepting event 1902 * @type: type of the event (EV_KEY, EV_REL, etc...) 1903 * @code: event code 1904 * 1905 * In addition to setting up corresponding bit in appropriate capability 1906 * bitmap the function also adjusts dev->evbit. 1907 */ 1908 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1909 { 1910 switch (type) { 1911 case EV_KEY: 1912 __set_bit(code, dev->keybit); 1913 break; 1914 1915 case EV_REL: 1916 __set_bit(code, dev->relbit); 1917 break; 1918 1919 case EV_ABS: 1920 input_alloc_absinfo(dev); 1921 if (!dev->absinfo) 1922 return; 1923 1924 __set_bit(code, dev->absbit); 1925 break; 1926 1927 case EV_MSC: 1928 __set_bit(code, dev->mscbit); 1929 break; 1930 1931 case EV_SW: 1932 __set_bit(code, dev->swbit); 1933 break; 1934 1935 case EV_LED: 1936 __set_bit(code, dev->ledbit); 1937 break; 1938 1939 case EV_SND: 1940 __set_bit(code, dev->sndbit); 1941 break; 1942 1943 case EV_FF: 1944 __set_bit(code, dev->ffbit); 1945 break; 1946 1947 case EV_PWR: 1948 /* do nothing */ 1949 break; 1950 1951 default: 1952 pr_err("input_set_capability: unknown type %u (code %u)\n", 1953 type, code); 1954 dump_stack(); 1955 return; 1956 } 1957 1958 __set_bit(type, dev->evbit); 1959 } 1960 EXPORT_SYMBOL(input_set_capability); 1961 1962 static unsigned int input_estimate_events_per_packet(struct input_dev *dev) 1963 { 1964 int mt_slots; 1965 int i; 1966 unsigned int events; 1967 1968 if (dev->mt) { 1969 mt_slots = dev->mt->num_slots; 1970 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { 1971 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - 1972 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, 1973 mt_slots = clamp(mt_slots, 2, 32); 1974 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { 1975 mt_slots = 2; 1976 } else { 1977 mt_slots = 0; 1978 } 1979 1980 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ 1981 1982 if (test_bit(EV_ABS, dev->evbit)) 1983 for_each_set_bit(i, dev->absbit, ABS_CNT) 1984 events += input_is_mt_axis(i) ? mt_slots : 1; 1985 1986 if (test_bit(EV_REL, dev->evbit)) 1987 events += bitmap_weight(dev->relbit, REL_CNT); 1988 1989 /* Make room for KEY and MSC events */ 1990 events += 7; 1991 1992 return events; 1993 } 1994 1995 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 1996 do { \ 1997 if (!test_bit(EV_##type, dev->evbit)) \ 1998 memset(dev->bits##bit, 0, \ 1999 sizeof(dev->bits##bit)); \ 2000 } while (0) 2001 2002 static void input_cleanse_bitmasks(struct input_dev *dev) 2003 { 2004 INPUT_CLEANSE_BITMASK(dev, KEY, key); 2005 INPUT_CLEANSE_BITMASK(dev, REL, rel); 2006 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 2007 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 2008 INPUT_CLEANSE_BITMASK(dev, LED, led); 2009 INPUT_CLEANSE_BITMASK(dev, SND, snd); 2010 INPUT_CLEANSE_BITMASK(dev, FF, ff); 2011 INPUT_CLEANSE_BITMASK(dev, SW, sw); 2012 } 2013 2014 static void __input_unregister_device(struct input_dev *dev) 2015 { 2016 struct input_handle *handle, *next; 2017 2018 input_disconnect_device(dev); 2019 2020 mutex_lock(&input_mutex); 2021 2022 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 2023 handle->handler->disconnect(handle); 2024 WARN_ON(!list_empty(&dev->h_list)); 2025 2026 del_timer_sync(&dev->timer); 2027 list_del_init(&dev->node); 2028 2029 input_wakeup_procfs_readers(); 2030 2031 mutex_unlock(&input_mutex); 2032 2033 device_del(&dev->dev); 2034 } 2035 2036 static void devm_input_device_unregister(struct device *dev, void *res) 2037 { 2038 struct input_devres *devres = res; 2039 struct input_dev *input = devres->input; 2040 2041 dev_dbg(dev, "%s: unregistering device %s\n", 2042 __func__, dev_name(&input->dev)); 2043 __input_unregister_device(input); 2044 } 2045 2046 /** 2047 * input_enable_softrepeat - enable software autorepeat 2048 * @dev: input device 2049 * @delay: repeat delay 2050 * @period: repeat period 2051 * 2052 * Enable software autorepeat on the input device. 2053 */ 2054 void input_enable_softrepeat(struct input_dev *dev, int delay, int period) 2055 { 2056 dev->timer.data = (unsigned long) dev; 2057 dev->timer.function = input_repeat_key; 2058 dev->rep[REP_DELAY] = delay; 2059 dev->rep[REP_PERIOD] = period; 2060 } 2061 EXPORT_SYMBOL(input_enable_softrepeat); 2062 2063 /** 2064 * input_register_device - register device with input core 2065 * @dev: device to be registered 2066 * 2067 * This function registers device with input core. The device must be 2068 * allocated with input_allocate_device() and all it's capabilities 2069 * set up before registering. 2070 * If function fails the device must be freed with input_free_device(). 2071 * Once device has been successfully registered it can be unregistered 2072 * with input_unregister_device(); input_free_device() should not be 2073 * called in this case. 2074 * 2075 * Note that this function is also used to register managed input devices 2076 * (ones allocated with devm_input_allocate_device()). Such managed input 2077 * devices need not be explicitly unregistered or freed, their tear down 2078 * is controlled by the devres infrastructure. It is also worth noting 2079 * that tear down of managed input devices is internally a 2-step process: 2080 * registered managed input device is first unregistered, but stays in 2081 * memory and can still handle input_event() calls (although events will 2082 * not be delivered anywhere). The freeing of managed input device will 2083 * happen later, when devres stack is unwound to the point where device 2084 * allocation was made. 2085 */ 2086 int input_register_device(struct input_dev *dev) 2087 { 2088 struct input_devres *devres = NULL; 2089 struct input_handler *handler; 2090 unsigned int packet_size; 2091 const char *path; 2092 int error; 2093 2094 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) { 2095 dev_err(&dev->dev, 2096 "Absolute device without dev->absinfo, refusing to register\n"); 2097 return -EINVAL; 2098 } 2099 2100 if (dev->devres_managed) { 2101 devres = devres_alloc(devm_input_device_unregister, 2102 sizeof(struct input_devres), GFP_KERNEL); 2103 if (!devres) 2104 return -ENOMEM; 2105 2106 devres->input = dev; 2107 } 2108 2109 /* Every input device generates EV_SYN/SYN_REPORT events. */ 2110 __set_bit(EV_SYN, dev->evbit); 2111 2112 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 2113 __clear_bit(KEY_RESERVED, dev->keybit); 2114 2115 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 2116 input_cleanse_bitmasks(dev); 2117 2118 packet_size = input_estimate_events_per_packet(dev); 2119 if (dev->hint_events_per_packet < packet_size) 2120 dev->hint_events_per_packet = packet_size; 2121 2122 dev->max_vals = dev->hint_events_per_packet + 2; 2123 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); 2124 if (!dev->vals) { 2125 error = -ENOMEM; 2126 goto err_devres_free; 2127 } 2128 2129 /* 2130 * If delay and period are pre-set by the driver, then autorepeating 2131 * is handled by the driver itself and we don't do it in input.c. 2132 */ 2133 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) 2134 input_enable_softrepeat(dev, 250, 33); 2135 2136 if (!dev->getkeycode) 2137 dev->getkeycode = input_default_getkeycode; 2138 2139 if (!dev->setkeycode) 2140 dev->setkeycode = input_default_setkeycode; 2141 2142 error = device_add(&dev->dev); 2143 if (error) 2144 goto err_free_vals; 2145 2146 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 2147 pr_info("%s as %s\n", 2148 dev->name ? dev->name : "Unspecified device", 2149 path ? path : "N/A"); 2150 kfree(path); 2151 2152 error = mutex_lock_interruptible(&input_mutex); 2153 if (error) 2154 goto err_device_del; 2155 2156 list_add_tail(&dev->node, &input_dev_list); 2157 2158 list_for_each_entry(handler, &input_handler_list, node) 2159 input_attach_handler(dev, handler); 2160 2161 input_wakeup_procfs_readers(); 2162 2163 mutex_unlock(&input_mutex); 2164 2165 if (dev->devres_managed) { 2166 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n", 2167 __func__, dev_name(&dev->dev)); 2168 devres_add(dev->dev.parent, devres); 2169 } 2170 return 0; 2171 2172 err_device_del: 2173 device_del(&dev->dev); 2174 err_free_vals: 2175 kfree(dev->vals); 2176 dev->vals = NULL; 2177 err_devres_free: 2178 devres_free(devres); 2179 return error; 2180 } 2181 EXPORT_SYMBOL(input_register_device); 2182 2183 /** 2184 * input_unregister_device - unregister previously registered device 2185 * @dev: device to be unregistered 2186 * 2187 * This function unregisters an input device. Once device is unregistered 2188 * the caller should not try to access it as it may get freed at any moment. 2189 */ 2190 void input_unregister_device(struct input_dev *dev) 2191 { 2192 if (dev->devres_managed) { 2193 WARN_ON(devres_destroy(dev->dev.parent, 2194 devm_input_device_unregister, 2195 devm_input_device_match, 2196 dev)); 2197 __input_unregister_device(dev); 2198 /* 2199 * We do not do input_put_device() here because it will be done 2200 * when 2nd devres fires up. 2201 */ 2202 } else { 2203 __input_unregister_device(dev); 2204 input_put_device(dev); 2205 } 2206 } 2207 EXPORT_SYMBOL(input_unregister_device); 2208 2209 /** 2210 * input_register_handler - register a new input handler 2211 * @handler: handler to be registered 2212 * 2213 * This function registers a new input handler (interface) for input 2214 * devices in the system and attaches it to all input devices that 2215 * are compatible with the handler. 2216 */ 2217 int input_register_handler(struct input_handler *handler) 2218 { 2219 struct input_dev *dev; 2220 int error; 2221 2222 error = mutex_lock_interruptible(&input_mutex); 2223 if (error) 2224 return error; 2225 2226 INIT_LIST_HEAD(&handler->h_list); 2227 2228 list_add_tail(&handler->node, &input_handler_list); 2229 2230 list_for_each_entry(dev, &input_dev_list, node) 2231 input_attach_handler(dev, handler); 2232 2233 input_wakeup_procfs_readers(); 2234 2235 mutex_unlock(&input_mutex); 2236 return 0; 2237 } 2238 EXPORT_SYMBOL(input_register_handler); 2239 2240 /** 2241 * input_unregister_handler - unregisters an input handler 2242 * @handler: handler to be unregistered 2243 * 2244 * This function disconnects a handler from its input devices and 2245 * removes it from lists of known handlers. 2246 */ 2247 void input_unregister_handler(struct input_handler *handler) 2248 { 2249 struct input_handle *handle, *next; 2250 2251 mutex_lock(&input_mutex); 2252 2253 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 2254 handler->disconnect(handle); 2255 WARN_ON(!list_empty(&handler->h_list)); 2256 2257 list_del_init(&handler->node); 2258 2259 input_wakeup_procfs_readers(); 2260 2261 mutex_unlock(&input_mutex); 2262 } 2263 EXPORT_SYMBOL(input_unregister_handler); 2264 2265 /** 2266 * input_handler_for_each_handle - handle iterator 2267 * @handler: input handler to iterate 2268 * @data: data for the callback 2269 * @fn: function to be called for each handle 2270 * 2271 * Iterate over @bus's list of devices, and call @fn for each, passing 2272 * it @data and stop when @fn returns a non-zero value. The function is 2273 * using RCU to traverse the list and therefore may be using in atomic 2274 * contexts. The @fn callback is invoked from RCU critical section and 2275 * thus must not sleep. 2276 */ 2277 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2278 int (*fn)(struct input_handle *, void *)) 2279 { 2280 struct input_handle *handle; 2281 int retval = 0; 2282 2283 rcu_read_lock(); 2284 2285 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2286 retval = fn(handle, data); 2287 if (retval) 2288 break; 2289 } 2290 2291 rcu_read_unlock(); 2292 2293 return retval; 2294 } 2295 EXPORT_SYMBOL(input_handler_for_each_handle); 2296 2297 /** 2298 * input_register_handle - register a new input handle 2299 * @handle: handle to register 2300 * 2301 * This function puts a new input handle onto device's 2302 * and handler's lists so that events can flow through 2303 * it once it is opened using input_open_device(). 2304 * 2305 * This function is supposed to be called from handler's 2306 * connect() method. 2307 */ 2308 int input_register_handle(struct input_handle *handle) 2309 { 2310 struct input_handler *handler = handle->handler; 2311 struct input_dev *dev = handle->dev; 2312 int error; 2313 2314 /* 2315 * We take dev->mutex here to prevent race with 2316 * input_release_device(). 2317 */ 2318 error = mutex_lock_interruptible(&dev->mutex); 2319 if (error) 2320 return error; 2321 2322 /* 2323 * Filters go to the head of the list, normal handlers 2324 * to the tail. 2325 */ 2326 if (handler->filter) 2327 list_add_rcu(&handle->d_node, &dev->h_list); 2328 else 2329 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2330 2331 mutex_unlock(&dev->mutex); 2332 2333 /* 2334 * Since we are supposed to be called from ->connect() 2335 * which is mutually exclusive with ->disconnect() 2336 * we can't be racing with input_unregister_handle() 2337 * and so separate lock is not needed here. 2338 */ 2339 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2340 2341 if (handler->start) 2342 handler->start(handle); 2343 2344 return 0; 2345 } 2346 EXPORT_SYMBOL(input_register_handle); 2347 2348 /** 2349 * input_unregister_handle - unregister an input handle 2350 * @handle: handle to unregister 2351 * 2352 * This function removes input handle from device's 2353 * and handler's lists. 2354 * 2355 * This function is supposed to be called from handler's 2356 * disconnect() method. 2357 */ 2358 void input_unregister_handle(struct input_handle *handle) 2359 { 2360 struct input_dev *dev = handle->dev; 2361 2362 list_del_rcu(&handle->h_node); 2363 2364 /* 2365 * Take dev->mutex to prevent race with input_release_device(). 2366 */ 2367 mutex_lock(&dev->mutex); 2368 list_del_rcu(&handle->d_node); 2369 mutex_unlock(&dev->mutex); 2370 2371 synchronize_rcu(); 2372 } 2373 EXPORT_SYMBOL(input_unregister_handle); 2374 2375 /** 2376 * input_get_new_minor - allocates a new input minor number 2377 * @legacy_base: beginning or the legacy range to be searched 2378 * @legacy_num: size of legacy range 2379 * @allow_dynamic: whether we can also take ID from the dynamic range 2380 * 2381 * This function allocates a new device minor for from input major namespace. 2382 * Caller can request legacy minor by specifying @legacy_base and @legacy_num 2383 * parameters and whether ID can be allocated from dynamic range if there are 2384 * no free IDs in legacy range. 2385 */ 2386 int input_get_new_minor(int legacy_base, unsigned int legacy_num, 2387 bool allow_dynamic) 2388 { 2389 /* 2390 * This function should be called from input handler's ->connect() 2391 * methods, which are serialized with input_mutex, so no additional 2392 * locking is needed here. 2393 */ 2394 if (legacy_base >= 0) { 2395 int minor = ida_simple_get(&input_ida, 2396 legacy_base, 2397 legacy_base + legacy_num, 2398 GFP_KERNEL); 2399 if (minor >= 0 || !allow_dynamic) 2400 return minor; 2401 } 2402 2403 return ida_simple_get(&input_ida, 2404 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES, 2405 GFP_KERNEL); 2406 } 2407 EXPORT_SYMBOL(input_get_new_minor); 2408 2409 /** 2410 * input_free_minor - release previously allocated minor 2411 * @minor: minor to be released 2412 * 2413 * This function releases previously allocated input minor so that it can be 2414 * reused later. 2415 */ 2416 void input_free_minor(unsigned int minor) 2417 { 2418 ida_simple_remove(&input_ida, minor); 2419 } 2420 EXPORT_SYMBOL(input_free_minor); 2421 2422 static int __init input_init(void) 2423 { 2424 int err; 2425 2426 err = class_register(&input_class); 2427 if (err) { 2428 pr_err("unable to register input_dev class\n"); 2429 return err; 2430 } 2431 2432 err = input_proc_init(); 2433 if (err) 2434 goto fail1; 2435 2436 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2437 INPUT_MAX_CHAR_DEVICES, "input"); 2438 if (err) { 2439 pr_err("unable to register char major %d", INPUT_MAJOR); 2440 goto fail2; 2441 } 2442 2443 return 0; 2444 2445 fail2: input_proc_exit(); 2446 fail1: class_unregister(&input_class); 2447 return err; 2448 } 2449 2450 static void __exit input_exit(void) 2451 { 2452 input_proc_exit(); 2453 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2454 INPUT_MAX_CHAR_DEVICES); 2455 class_unregister(&input_class); 2456 } 2457 2458 subsys_initcall(input_init); 2459 module_exit(input_exit); 2460