1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <linux/inet.h> 45 #include <rdma/ib_cache.h> 46 #include <scsi/scsi_proto.h> 47 #include <scsi/scsi_tcq.h> 48 #include <target/target_core_base.h> 49 #include <target/target_core_fabric.h> 50 #include "ib_srpt.h" 51 52 /* Name of this kernel module. */ 53 #define DRV_NAME "ib_srpt" 54 #define DRV_VERSION "2.0.0" 55 #define DRV_RELDATE "2011-02-14" 56 57 #define SRPT_ID_STRING "Linux SRP target" 58 59 #undef pr_fmt 60 #define pr_fmt(fmt) DRV_NAME " " fmt 61 62 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 64 "v" DRV_VERSION " (" DRV_RELDATE ")"); 65 MODULE_LICENSE("Dual BSD/GPL"); 66 67 /* 68 * Global Variables 69 */ 70 71 static u64 srpt_service_guid; 72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 74 75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 76 module_param(srp_max_req_size, int, 0444); 77 MODULE_PARM_DESC(srp_max_req_size, 78 "Maximum size of SRP request messages in bytes."); 79 80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 81 module_param(srpt_srq_size, int, 0444); 82 MODULE_PARM_DESC(srpt_srq_size, 83 "Shared receive queue (SRQ) size."); 84 85 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp) 86 { 87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 88 } 89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 90 0444); 91 MODULE_PARM_DESC(srpt_service_guid, 92 "Using this value for ioc_guid, id_ext, and cm_listen_id" 93 " instead of using the node_guid of the first HCA."); 94 95 static struct ib_client srpt_client; 96 /* Protects both rdma_cm_port and rdma_cm_id. */ 97 static DEFINE_MUTEX(rdma_cm_mutex); 98 /* Port number RDMA/CM will bind to. */ 99 static u16 rdma_cm_port; 100 static struct rdma_cm_id *rdma_cm_id; 101 static void srpt_release_cmd(struct se_cmd *se_cmd); 102 static void srpt_free_ch(struct kref *kref); 103 static int srpt_queue_status(struct se_cmd *cmd); 104 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc); 105 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc); 106 static void srpt_process_wait_list(struct srpt_rdma_ch *ch); 107 108 /* 109 * The only allowed channel state changes are those that change the channel 110 * state into a state with a higher numerical value. Hence the new > prev test. 111 */ 112 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new) 113 { 114 unsigned long flags; 115 enum rdma_ch_state prev; 116 bool changed = false; 117 118 spin_lock_irqsave(&ch->spinlock, flags); 119 prev = ch->state; 120 if (new > prev) { 121 ch->state = new; 122 changed = true; 123 } 124 spin_unlock_irqrestore(&ch->spinlock, flags); 125 126 return changed; 127 } 128 129 /** 130 * srpt_event_handler - asynchronous IB event callback function 131 * @handler: IB event handler registered by ib_register_event_handler(). 132 * @event: Description of the event that occurred. 133 * 134 * Callback function called by the InfiniBand core when an asynchronous IB 135 * event occurs. This callback may occur in interrupt context. See also 136 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 137 * Architecture Specification. 138 */ 139 static void srpt_event_handler(struct ib_event_handler *handler, 140 struct ib_event *event) 141 { 142 struct srpt_device *sdev; 143 struct srpt_port *sport; 144 u8 port_num; 145 146 sdev = ib_get_client_data(event->device, &srpt_client); 147 if (!sdev || sdev->device != event->device) 148 return; 149 150 pr_debug("ASYNC event= %d on device= %s\n", event->event, 151 dev_name(&sdev->device->dev)); 152 153 switch (event->event) { 154 case IB_EVENT_PORT_ERR: 155 port_num = event->element.port_num - 1; 156 if (port_num < sdev->device->phys_port_cnt) { 157 sport = &sdev->port[port_num]; 158 sport->lid = 0; 159 sport->sm_lid = 0; 160 } else { 161 WARN(true, "event %d: port_num %d out of range 1..%d\n", 162 event->event, port_num + 1, 163 sdev->device->phys_port_cnt); 164 } 165 break; 166 case IB_EVENT_PORT_ACTIVE: 167 case IB_EVENT_LID_CHANGE: 168 case IB_EVENT_PKEY_CHANGE: 169 case IB_EVENT_SM_CHANGE: 170 case IB_EVENT_CLIENT_REREGISTER: 171 case IB_EVENT_GID_CHANGE: 172 /* Refresh port data asynchronously. */ 173 port_num = event->element.port_num - 1; 174 if (port_num < sdev->device->phys_port_cnt) { 175 sport = &sdev->port[port_num]; 176 if (!sport->lid && !sport->sm_lid) 177 schedule_work(&sport->work); 178 } else { 179 WARN(true, "event %d: port_num %d out of range 1..%d\n", 180 event->event, port_num + 1, 181 sdev->device->phys_port_cnt); 182 } 183 break; 184 default: 185 pr_err("received unrecognized IB event %d\n", event->event); 186 break; 187 } 188 } 189 190 /** 191 * srpt_srq_event - SRQ event callback function 192 * @event: Description of the event that occurred. 193 * @ctx: Context pointer specified at SRQ creation time. 194 */ 195 static void srpt_srq_event(struct ib_event *event, void *ctx) 196 { 197 pr_debug("SRQ event %d\n", event->event); 198 } 199 200 static const char *get_ch_state_name(enum rdma_ch_state s) 201 { 202 switch (s) { 203 case CH_CONNECTING: 204 return "connecting"; 205 case CH_LIVE: 206 return "live"; 207 case CH_DISCONNECTING: 208 return "disconnecting"; 209 case CH_DRAINING: 210 return "draining"; 211 case CH_DISCONNECTED: 212 return "disconnected"; 213 } 214 return "???"; 215 } 216 217 /** 218 * srpt_qp_event - QP event callback function 219 * @event: Description of the event that occurred. 220 * @ch: SRPT RDMA channel. 221 */ 222 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 223 { 224 pr_debug("QP event %d on ch=%p sess_name=%s state=%d\n", 225 event->event, ch, ch->sess_name, ch->state); 226 227 switch (event->event) { 228 case IB_EVENT_COMM_EST: 229 if (ch->using_rdma_cm) 230 rdma_notify(ch->rdma_cm.cm_id, event->event); 231 else 232 ib_cm_notify(ch->ib_cm.cm_id, event->event); 233 break; 234 case IB_EVENT_QP_LAST_WQE_REACHED: 235 pr_debug("%s-%d, state %s: received Last WQE event.\n", 236 ch->sess_name, ch->qp->qp_num, 237 get_ch_state_name(ch->state)); 238 break; 239 default: 240 pr_err("received unrecognized IB QP event %d\n", event->event); 241 break; 242 } 243 } 244 245 /** 246 * srpt_set_ioc - initialize a IOUnitInfo structure 247 * @c_list: controller list. 248 * @slot: one-based slot number. 249 * @value: four-bit value. 250 * 251 * Copies the lowest four bits of value in element slot of the array of four 252 * bit elements called c_list (controller list). The index slot is one-based. 253 */ 254 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 255 { 256 u16 id; 257 u8 tmp; 258 259 id = (slot - 1) / 2; 260 if (slot & 0x1) { 261 tmp = c_list[id] & 0xf; 262 c_list[id] = (value << 4) | tmp; 263 } else { 264 tmp = c_list[id] & 0xf0; 265 c_list[id] = (value & 0xf) | tmp; 266 } 267 } 268 269 /** 270 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram 271 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO. 272 * 273 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 274 * Specification. 275 */ 276 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 277 { 278 struct ib_class_port_info *cif; 279 280 cif = (struct ib_class_port_info *)mad->data; 281 memset(cif, 0, sizeof(*cif)); 282 cif->base_version = 1; 283 cif->class_version = 1; 284 285 ib_set_cpi_resp_time(cif, 20); 286 mad->mad_hdr.status = 0; 287 } 288 289 /** 290 * srpt_get_iou - write IOUnitInfo to a management datagram 291 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO. 292 * 293 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 294 * Specification. See also section B.7, table B.6 in the SRP r16a document. 295 */ 296 static void srpt_get_iou(struct ib_dm_mad *mad) 297 { 298 struct ib_dm_iou_info *ioui; 299 u8 slot; 300 int i; 301 302 ioui = (struct ib_dm_iou_info *)mad->data; 303 ioui->change_id = cpu_to_be16(1); 304 ioui->max_controllers = 16; 305 306 /* set present for slot 1 and empty for the rest */ 307 srpt_set_ioc(ioui->controller_list, 1, 1); 308 for (i = 1, slot = 2; i < 16; i++, slot++) 309 srpt_set_ioc(ioui->controller_list, slot, 0); 310 311 mad->mad_hdr.status = 0; 312 } 313 314 /** 315 * srpt_get_ioc - write IOControllerprofile to a management datagram 316 * @sport: HCA port through which the MAD has been received. 317 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query. 318 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE. 319 * 320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 321 * Architecture Specification. See also section B.7, table B.7 in the SRP 322 * r16a document. 323 */ 324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 325 struct ib_dm_mad *mad) 326 { 327 struct srpt_device *sdev = sport->sdev; 328 struct ib_dm_ioc_profile *iocp; 329 int send_queue_depth; 330 331 iocp = (struct ib_dm_ioc_profile *)mad->data; 332 333 if (!slot || slot > 16) { 334 mad->mad_hdr.status 335 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 336 return; 337 } 338 339 if (slot > 2) { 340 mad->mad_hdr.status 341 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 342 return; 343 } 344 345 if (sdev->use_srq) 346 send_queue_depth = sdev->srq_size; 347 else 348 send_queue_depth = min(MAX_SRPT_RQ_SIZE, 349 sdev->device->attrs.max_qp_wr); 350 351 memset(iocp, 0, sizeof(*iocp)); 352 strcpy(iocp->id_string, SRPT_ID_STRING); 353 iocp->guid = cpu_to_be64(srpt_service_guid); 354 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 355 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id); 356 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver); 357 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 358 iocp->subsys_device_id = 0x0; 359 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 360 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); 361 iocp->protocol = cpu_to_be16(SRP_PROTOCOL); 362 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); 363 iocp->send_queue_depth = cpu_to_be16(send_queue_depth); 364 iocp->rdma_read_depth = 4; 365 iocp->send_size = cpu_to_be32(srp_max_req_size); 366 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 367 1U << 24)); 368 iocp->num_svc_entries = 1; 369 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 370 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 371 372 mad->mad_hdr.status = 0; 373 } 374 375 /** 376 * srpt_get_svc_entries - write ServiceEntries to a management datagram 377 * @ioc_guid: I/O controller GUID to use in reply. 378 * @slot: I/O controller number. 379 * @hi: End of the range of service entries to be specified in the reply. 380 * @lo: Start of the range of service entries to be specified in the reply.. 381 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES. 382 * 383 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 384 * Specification. See also section B.7, table B.8 in the SRP r16a document. 385 */ 386 static void srpt_get_svc_entries(u64 ioc_guid, 387 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 388 { 389 struct ib_dm_svc_entries *svc_entries; 390 391 WARN_ON(!ioc_guid); 392 393 if (!slot || slot > 16) { 394 mad->mad_hdr.status 395 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 396 return; 397 } 398 399 if (slot > 2 || lo > hi || hi > 1) { 400 mad->mad_hdr.status 401 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 402 return; 403 } 404 405 svc_entries = (struct ib_dm_svc_entries *)mad->data; 406 memset(svc_entries, 0, sizeof(*svc_entries)); 407 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 408 snprintf(svc_entries->service_entries[0].name, 409 sizeof(svc_entries->service_entries[0].name), 410 "%s%016llx", 411 SRP_SERVICE_NAME_PREFIX, 412 ioc_guid); 413 414 mad->mad_hdr.status = 0; 415 } 416 417 /** 418 * srpt_mgmt_method_get - process a received management datagram 419 * @sp: HCA port through which the MAD has been received. 420 * @rq_mad: received MAD. 421 * @rsp_mad: response MAD. 422 */ 423 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 424 struct ib_dm_mad *rsp_mad) 425 { 426 u16 attr_id; 427 u32 slot; 428 u8 hi, lo; 429 430 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 431 switch (attr_id) { 432 case DM_ATTR_CLASS_PORT_INFO: 433 srpt_get_class_port_info(rsp_mad); 434 break; 435 case DM_ATTR_IOU_INFO: 436 srpt_get_iou(rsp_mad); 437 break; 438 case DM_ATTR_IOC_PROFILE: 439 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 440 srpt_get_ioc(sp, slot, rsp_mad); 441 break; 442 case DM_ATTR_SVC_ENTRIES: 443 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 444 hi = (u8) ((slot >> 8) & 0xff); 445 lo = (u8) (slot & 0xff); 446 slot = (u16) ((slot >> 16) & 0xffff); 447 srpt_get_svc_entries(srpt_service_guid, 448 slot, hi, lo, rsp_mad); 449 break; 450 default: 451 rsp_mad->mad_hdr.status = 452 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 453 break; 454 } 455 } 456 457 /** 458 * srpt_mad_send_handler - MAD send completion callback 459 * @mad_agent: Return value of ib_register_mad_agent(). 460 * @mad_wc: Work completion reporting that the MAD has been sent. 461 */ 462 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 463 struct ib_mad_send_wc *mad_wc) 464 { 465 rdma_destroy_ah(mad_wc->send_buf->ah); 466 ib_free_send_mad(mad_wc->send_buf); 467 } 468 469 /** 470 * srpt_mad_recv_handler - MAD reception callback function 471 * @mad_agent: Return value of ib_register_mad_agent(). 472 * @send_buf: Not used. 473 * @mad_wc: Work completion reporting that a MAD has been received. 474 */ 475 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 476 struct ib_mad_send_buf *send_buf, 477 struct ib_mad_recv_wc *mad_wc) 478 { 479 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 480 struct ib_ah *ah; 481 struct ib_mad_send_buf *rsp; 482 struct ib_dm_mad *dm_mad; 483 484 if (!mad_wc || !mad_wc->recv_buf.mad) 485 return; 486 487 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 488 mad_wc->recv_buf.grh, mad_agent->port_num); 489 if (IS_ERR(ah)) 490 goto err; 491 492 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 493 494 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 495 mad_wc->wc->pkey_index, 0, 496 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 497 GFP_KERNEL, 498 IB_MGMT_BASE_VERSION); 499 if (IS_ERR(rsp)) 500 goto err_rsp; 501 502 rsp->ah = ah; 503 504 dm_mad = rsp->mad; 505 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad)); 506 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 507 dm_mad->mad_hdr.status = 0; 508 509 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 510 case IB_MGMT_METHOD_GET: 511 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 512 break; 513 case IB_MGMT_METHOD_SET: 514 dm_mad->mad_hdr.status = 515 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 516 break; 517 default: 518 dm_mad->mad_hdr.status = 519 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 520 break; 521 } 522 523 if (!ib_post_send_mad(rsp, NULL)) { 524 ib_free_recv_mad(mad_wc); 525 /* will destroy_ah & free_send_mad in send completion */ 526 return; 527 } 528 529 ib_free_send_mad(rsp); 530 531 err_rsp: 532 rdma_destroy_ah(ah); 533 err: 534 ib_free_recv_mad(mad_wc); 535 } 536 537 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid) 538 { 539 const __be16 *g = (const __be16 *)guid; 540 541 return snprintf(buf, size, "%04x:%04x:%04x:%04x", 542 be16_to_cpu(g[0]), be16_to_cpu(g[1]), 543 be16_to_cpu(g[2]), be16_to_cpu(g[3])); 544 } 545 546 /** 547 * srpt_refresh_port - configure a HCA port 548 * @sport: SRPT HCA port. 549 * 550 * Enable InfiniBand management datagram processing, update the cached sm_lid, 551 * lid and gid values, and register a callback function for processing MADs 552 * on the specified port. 553 * 554 * Note: It is safe to call this function more than once for the same port. 555 */ 556 static int srpt_refresh_port(struct srpt_port *sport) 557 { 558 struct ib_mad_reg_req reg_req; 559 struct ib_port_modify port_modify; 560 struct ib_port_attr port_attr; 561 int ret; 562 563 memset(&port_modify, 0, sizeof(port_modify)); 564 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 565 port_modify.clr_port_cap_mask = 0; 566 567 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 568 if (ret) 569 goto err_mod_port; 570 571 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 572 if (ret) 573 goto err_query_port; 574 575 sport->sm_lid = port_attr.sm_lid; 576 sport->lid = port_attr.lid; 577 578 ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 579 if (ret) 580 goto err_query_port; 581 582 sport->port_guid_wwn.priv = sport; 583 srpt_format_guid(sport->port_guid, sizeof(sport->port_guid), 584 &sport->gid.global.interface_id); 585 sport->port_gid_wwn.priv = sport; 586 snprintf(sport->port_gid, sizeof(sport->port_gid), 587 "0x%016llx%016llx", 588 be64_to_cpu(sport->gid.global.subnet_prefix), 589 be64_to_cpu(sport->gid.global.interface_id)); 590 591 if (!sport->mad_agent) { 592 memset(®_req, 0, sizeof(reg_req)); 593 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 594 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 595 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 596 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 597 598 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 599 sport->port, 600 IB_QPT_GSI, 601 ®_req, 0, 602 srpt_mad_send_handler, 603 srpt_mad_recv_handler, 604 sport, 0); 605 if (IS_ERR(sport->mad_agent)) { 606 ret = PTR_ERR(sport->mad_agent); 607 sport->mad_agent = NULL; 608 goto err_query_port; 609 } 610 } 611 612 return 0; 613 614 err_query_port: 615 616 port_modify.set_port_cap_mask = 0; 617 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 618 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 619 620 err_mod_port: 621 622 return ret; 623 } 624 625 /** 626 * srpt_unregister_mad_agent - unregister MAD callback functions 627 * @sdev: SRPT HCA pointer. 628 * 629 * Note: It is safe to call this function more than once for the same device. 630 */ 631 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 632 { 633 struct ib_port_modify port_modify = { 634 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 635 }; 636 struct srpt_port *sport; 637 int i; 638 639 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 640 sport = &sdev->port[i - 1]; 641 WARN_ON(sport->port != i); 642 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 643 pr_err("disabling MAD processing failed.\n"); 644 if (sport->mad_agent) { 645 ib_unregister_mad_agent(sport->mad_agent); 646 sport->mad_agent = NULL; 647 } 648 } 649 } 650 651 /** 652 * srpt_alloc_ioctx - allocate a SRPT I/O context structure 653 * @sdev: SRPT HCA pointer. 654 * @ioctx_size: I/O context size. 655 * @dma_size: Size of I/O context DMA buffer. 656 * @dir: DMA data direction. 657 */ 658 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 659 int ioctx_size, int dma_size, 660 enum dma_data_direction dir) 661 { 662 struct srpt_ioctx *ioctx; 663 664 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 665 if (!ioctx) 666 goto err; 667 668 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 669 if (!ioctx->buf) 670 goto err_free_ioctx; 671 672 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 673 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 674 goto err_free_buf; 675 676 return ioctx; 677 678 err_free_buf: 679 kfree(ioctx->buf); 680 err_free_ioctx: 681 kfree(ioctx); 682 err: 683 return NULL; 684 } 685 686 /** 687 * srpt_free_ioctx - free a SRPT I/O context structure 688 * @sdev: SRPT HCA pointer. 689 * @ioctx: I/O context pointer. 690 * @dma_size: Size of I/O context DMA buffer. 691 * @dir: DMA data direction. 692 */ 693 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 694 int dma_size, enum dma_data_direction dir) 695 { 696 if (!ioctx) 697 return; 698 699 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 700 kfree(ioctx->buf); 701 kfree(ioctx); 702 } 703 704 /** 705 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures 706 * @sdev: Device to allocate the I/O context ring for. 707 * @ring_size: Number of elements in the I/O context ring. 708 * @ioctx_size: I/O context size. 709 * @dma_size: DMA buffer size. 710 * @dir: DMA data direction. 711 */ 712 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 713 int ring_size, int ioctx_size, 714 int dma_size, enum dma_data_direction dir) 715 { 716 struct srpt_ioctx **ring; 717 int i; 718 719 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 720 && ioctx_size != sizeof(struct srpt_send_ioctx)); 721 722 ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL); 723 if (!ring) 724 goto out; 725 for (i = 0; i < ring_size; ++i) { 726 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 727 if (!ring[i]) 728 goto err; 729 ring[i]->index = i; 730 } 731 goto out; 732 733 err: 734 while (--i >= 0) 735 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 736 kvfree(ring); 737 ring = NULL; 738 out: 739 return ring; 740 } 741 742 /** 743 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures 744 * @ioctx_ring: I/O context ring to be freed. 745 * @sdev: SRPT HCA pointer. 746 * @ring_size: Number of ring elements. 747 * @dma_size: Size of I/O context DMA buffer. 748 * @dir: DMA data direction. 749 */ 750 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 751 struct srpt_device *sdev, int ring_size, 752 int dma_size, enum dma_data_direction dir) 753 { 754 int i; 755 756 if (!ioctx_ring) 757 return; 758 759 for (i = 0; i < ring_size; ++i) 760 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 761 kvfree(ioctx_ring); 762 } 763 764 /** 765 * srpt_set_cmd_state - set the state of a SCSI command 766 * @ioctx: Send I/O context. 767 * @new: New I/O context state. 768 * 769 * Does not modify the state of aborted commands. Returns the previous command 770 * state. 771 */ 772 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 773 enum srpt_command_state new) 774 { 775 enum srpt_command_state previous; 776 777 previous = ioctx->state; 778 if (previous != SRPT_STATE_DONE) 779 ioctx->state = new; 780 781 return previous; 782 } 783 784 /** 785 * srpt_test_and_set_cmd_state - test and set the state of a command 786 * @ioctx: Send I/O context. 787 * @old: Current I/O context state. 788 * @new: New I/O context state. 789 * 790 * Returns true if and only if the previous command state was equal to 'old'. 791 */ 792 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 793 enum srpt_command_state old, 794 enum srpt_command_state new) 795 { 796 enum srpt_command_state previous; 797 798 WARN_ON(!ioctx); 799 WARN_ON(old == SRPT_STATE_DONE); 800 WARN_ON(new == SRPT_STATE_NEW); 801 802 previous = ioctx->state; 803 if (previous == old) 804 ioctx->state = new; 805 806 return previous == old; 807 } 808 809 /** 810 * srpt_post_recv - post an IB receive request 811 * @sdev: SRPT HCA pointer. 812 * @ch: SRPT RDMA channel. 813 * @ioctx: Receive I/O context pointer. 814 */ 815 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch, 816 struct srpt_recv_ioctx *ioctx) 817 { 818 struct ib_sge list; 819 struct ib_recv_wr wr; 820 821 BUG_ON(!sdev); 822 list.addr = ioctx->ioctx.dma; 823 list.length = srp_max_req_size; 824 list.lkey = sdev->lkey; 825 826 ioctx->ioctx.cqe.done = srpt_recv_done; 827 wr.wr_cqe = &ioctx->ioctx.cqe; 828 wr.next = NULL; 829 wr.sg_list = &list; 830 wr.num_sge = 1; 831 832 if (sdev->use_srq) 833 return ib_post_srq_recv(sdev->srq, &wr, NULL); 834 else 835 return ib_post_recv(ch->qp, &wr, NULL); 836 } 837 838 /** 839 * srpt_zerolength_write - perform a zero-length RDMA write 840 * @ch: SRPT RDMA channel. 841 * 842 * A quote from the InfiniBand specification: C9-88: For an HCA responder 843 * using Reliable Connection service, for each zero-length RDMA READ or WRITE 844 * request, the R_Key shall not be validated, even if the request includes 845 * Immediate data. 846 */ 847 static int srpt_zerolength_write(struct srpt_rdma_ch *ch) 848 { 849 struct ib_rdma_wr wr = { 850 .wr = { 851 .next = NULL, 852 { .wr_cqe = &ch->zw_cqe, }, 853 .opcode = IB_WR_RDMA_WRITE, 854 .send_flags = IB_SEND_SIGNALED, 855 } 856 }; 857 858 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name, 859 ch->qp->qp_num); 860 861 return ib_post_send(ch->qp, &wr.wr, NULL); 862 } 863 864 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc) 865 { 866 struct srpt_rdma_ch *ch = cq->cq_context; 867 868 pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num, 869 wc->status); 870 871 if (wc->status == IB_WC_SUCCESS) { 872 srpt_process_wait_list(ch); 873 } else { 874 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 875 schedule_work(&ch->release_work); 876 else 877 pr_debug("%s-%d: already disconnected.\n", 878 ch->sess_name, ch->qp->qp_num); 879 } 880 } 881 882 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx, 883 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg, 884 unsigned *sg_cnt) 885 { 886 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 887 struct srpt_rdma_ch *ch = ioctx->ch; 888 struct scatterlist *prev = NULL; 889 unsigned prev_nents; 890 int ret, i; 891 892 if (nbufs == 1) { 893 ioctx->rw_ctxs = &ioctx->s_rw_ctx; 894 } else { 895 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs), 896 GFP_KERNEL); 897 if (!ioctx->rw_ctxs) 898 return -ENOMEM; 899 } 900 901 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) { 902 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 903 u64 remote_addr = be64_to_cpu(db->va); 904 u32 size = be32_to_cpu(db->len); 905 u32 rkey = be32_to_cpu(db->key); 906 907 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false, 908 i < nbufs - 1); 909 if (ret) 910 goto unwind; 911 912 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port, 913 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir); 914 if (ret < 0) { 915 target_free_sgl(ctx->sg, ctx->nents); 916 goto unwind; 917 } 918 919 ioctx->n_rdma += ret; 920 ioctx->n_rw_ctx++; 921 922 if (prev) { 923 sg_unmark_end(&prev[prev_nents - 1]); 924 sg_chain(prev, prev_nents + 1, ctx->sg); 925 } else { 926 *sg = ctx->sg; 927 } 928 929 prev = ctx->sg; 930 prev_nents = ctx->nents; 931 932 *sg_cnt += ctx->nents; 933 } 934 935 return 0; 936 937 unwind: 938 while (--i >= 0) { 939 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 940 941 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 942 ctx->sg, ctx->nents, dir); 943 target_free_sgl(ctx->sg, ctx->nents); 944 } 945 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 946 kfree(ioctx->rw_ctxs); 947 return ret; 948 } 949 950 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch, 951 struct srpt_send_ioctx *ioctx) 952 { 953 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 954 int i; 955 956 for (i = 0; i < ioctx->n_rw_ctx; i++) { 957 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 958 959 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 960 ctx->sg, ctx->nents, dir); 961 target_free_sgl(ctx->sg, ctx->nents); 962 } 963 964 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 965 kfree(ioctx->rw_ctxs); 966 } 967 968 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd) 969 { 970 /* 971 * The pointer computations below will only be compiled correctly 972 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 973 * whether srp_cmd::add_data has been declared as a byte pointer. 974 */ 975 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) && 976 !__same_type(srp_cmd->add_data[0], (u8)0)); 977 978 /* 979 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 980 * CDB LENGTH' field are reserved and the size in bytes of this field 981 * is four times the value specified in bits 3..7. Hence the "& ~3". 982 */ 983 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3); 984 } 985 986 /** 987 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request 988 * @ioctx: Pointer to the I/O context associated with the request. 989 * @srp_cmd: Pointer to the SRP_CMD request data. 990 * @dir: Pointer to the variable to which the transfer direction will be 991 * written. 992 * @sg: [out] scatterlist allocated for the parsed SRP_CMD. 993 * @sg_cnt: [out] length of @sg. 994 * @data_len: Pointer to the variable to which the total data length of all 995 * descriptors in the SRP_CMD request will be written. 996 * 997 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 998 * 999 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 1000 * -ENOMEM when memory allocation fails and zero upon success. 1001 */ 1002 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 1003 struct srp_cmd *srp_cmd, enum dma_data_direction *dir, 1004 struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len) 1005 { 1006 BUG_ON(!dir); 1007 BUG_ON(!data_len); 1008 1009 /* 1010 * The lower four bits of the buffer format field contain the DATA-IN 1011 * buffer descriptor format, and the highest four bits contain the 1012 * DATA-OUT buffer descriptor format. 1013 */ 1014 if (srp_cmd->buf_fmt & 0xf) 1015 /* DATA-IN: transfer data from target to initiator (read). */ 1016 *dir = DMA_FROM_DEVICE; 1017 else if (srp_cmd->buf_fmt >> 4) 1018 /* DATA-OUT: transfer data from initiator to target (write). */ 1019 *dir = DMA_TO_DEVICE; 1020 else 1021 *dir = DMA_NONE; 1022 1023 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */ 1024 ioctx->cmd.data_direction = *dir; 1025 1026 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 1027 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 1028 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd); 1029 1030 *data_len = be32_to_cpu(db->len); 1031 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt); 1032 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 1033 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 1034 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd); 1035 int nbufs = be32_to_cpu(idb->table_desc.len) / 1036 sizeof(struct srp_direct_buf); 1037 1038 if (nbufs > 1039 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 1040 pr_err("received unsupported SRP_CMD request" 1041 " type (%u out + %u in != %u / %zu)\n", 1042 srp_cmd->data_out_desc_cnt, 1043 srp_cmd->data_in_desc_cnt, 1044 be32_to_cpu(idb->table_desc.len), 1045 sizeof(struct srp_direct_buf)); 1046 return -EINVAL; 1047 } 1048 1049 *data_len = be32_to_cpu(idb->len); 1050 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs, 1051 sg, sg_cnt); 1052 } else { 1053 *data_len = 0; 1054 return 0; 1055 } 1056 } 1057 1058 /** 1059 * srpt_init_ch_qp - initialize queue pair attributes 1060 * @ch: SRPT RDMA channel. 1061 * @qp: Queue pair pointer. 1062 * 1063 * Initialized the attributes of queue pair 'qp' by allowing local write, 1064 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 1065 */ 1066 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1067 { 1068 struct ib_qp_attr *attr; 1069 int ret; 1070 1071 WARN_ON_ONCE(ch->using_rdma_cm); 1072 1073 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1074 if (!attr) 1075 return -ENOMEM; 1076 1077 attr->qp_state = IB_QPS_INIT; 1078 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE; 1079 attr->port_num = ch->sport->port; 1080 1081 ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port, 1082 ch->pkey, &attr->pkey_index); 1083 if (ret < 0) 1084 pr_err("Translating pkey %#x failed (%d) - using index 0\n", 1085 ch->pkey, ret); 1086 1087 ret = ib_modify_qp(qp, attr, 1088 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 1089 IB_QP_PKEY_INDEX); 1090 1091 kfree(attr); 1092 return ret; 1093 } 1094 1095 /** 1096 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR) 1097 * @ch: channel of the queue pair. 1098 * @qp: queue pair to change the state of. 1099 * 1100 * Returns zero upon success and a negative value upon failure. 1101 * 1102 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1103 * If this structure ever becomes larger, it might be necessary to allocate 1104 * it dynamically instead of on the stack. 1105 */ 1106 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1107 { 1108 struct ib_qp_attr qp_attr; 1109 int attr_mask; 1110 int ret; 1111 1112 WARN_ON_ONCE(ch->using_rdma_cm); 1113 1114 qp_attr.qp_state = IB_QPS_RTR; 1115 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask); 1116 if (ret) 1117 goto out; 1118 1119 qp_attr.max_dest_rd_atomic = 4; 1120 1121 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1122 1123 out: 1124 return ret; 1125 } 1126 1127 /** 1128 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS) 1129 * @ch: channel of the queue pair. 1130 * @qp: queue pair to change the state of. 1131 * 1132 * Returns zero upon success and a negative value upon failure. 1133 * 1134 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1135 * If this structure ever becomes larger, it might be necessary to allocate 1136 * it dynamically instead of on the stack. 1137 */ 1138 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1139 { 1140 struct ib_qp_attr qp_attr; 1141 int attr_mask; 1142 int ret; 1143 1144 qp_attr.qp_state = IB_QPS_RTS; 1145 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask); 1146 if (ret) 1147 goto out; 1148 1149 qp_attr.max_rd_atomic = 4; 1150 1151 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1152 1153 out: 1154 return ret; 1155 } 1156 1157 /** 1158 * srpt_ch_qp_err - set the channel queue pair state to 'error' 1159 * @ch: SRPT RDMA channel. 1160 */ 1161 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1162 { 1163 struct ib_qp_attr qp_attr; 1164 1165 qp_attr.qp_state = IB_QPS_ERR; 1166 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1167 } 1168 1169 /** 1170 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator 1171 * @ch: SRPT RDMA channel. 1172 */ 1173 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1174 { 1175 struct srpt_send_ioctx *ioctx; 1176 unsigned long flags; 1177 1178 BUG_ON(!ch); 1179 1180 ioctx = NULL; 1181 spin_lock_irqsave(&ch->spinlock, flags); 1182 if (!list_empty(&ch->free_list)) { 1183 ioctx = list_first_entry(&ch->free_list, 1184 struct srpt_send_ioctx, free_list); 1185 list_del(&ioctx->free_list); 1186 } 1187 spin_unlock_irqrestore(&ch->spinlock, flags); 1188 1189 if (!ioctx) 1190 return ioctx; 1191 1192 BUG_ON(ioctx->ch != ch); 1193 ioctx->state = SRPT_STATE_NEW; 1194 ioctx->n_rdma = 0; 1195 ioctx->n_rw_ctx = 0; 1196 ioctx->queue_status_only = false; 1197 /* 1198 * transport_init_se_cmd() does not initialize all fields, so do it 1199 * here. 1200 */ 1201 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1202 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1203 1204 return ioctx; 1205 } 1206 1207 /** 1208 * srpt_abort_cmd - abort a SCSI command 1209 * @ioctx: I/O context associated with the SCSI command. 1210 */ 1211 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1212 { 1213 enum srpt_command_state state; 1214 1215 BUG_ON(!ioctx); 1216 1217 /* 1218 * If the command is in a state where the target core is waiting for 1219 * the ib_srpt driver, change the state to the next state. 1220 */ 1221 1222 state = ioctx->state; 1223 switch (state) { 1224 case SRPT_STATE_NEED_DATA: 1225 ioctx->state = SRPT_STATE_DATA_IN; 1226 break; 1227 case SRPT_STATE_CMD_RSP_SENT: 1228 case SRPT_STATE_MGMT_RSP_SENT: 1229 ioctx->state = SRPT_STATE_DONE; 1230 break; 1231 default: 1232 WARN_ONCE(true, "%s: unexpected I/O context state %d\n", 1233 __func__, state); 1234 break; 1235 } 1236 1237 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state, 1238 ioctx->state, ioctx->cmd.tag); 1239 1240 switch (state) { 1241 case SRPT_STATE_NEW: 1242 case SRPT_STATE_DATA_IN: 1243 case SRPT_STATE_MGMT: 1244 case SRPT_STATE_DONE: 1245 /* 1246 * Do nothing - defer abort processing until 1247 * srpt_queue_response() is invoked. 1248 */ 1249 break; 1250 case SRPT_STATE_NEED_DATA: 1251 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag); 1252 transport_generic_request_failure(&ioctx->cmd, 1253 TCM_CHECK_CONDITION_ABORT_CMD); 1254 break; 1255 case SRPT_STATE_CMD_RSP_SENT: 1256 /* 1257 * SRP_RSP sending failed or the SRP_RSP send completion has 1258 * not been received in time. 1259 */ 1260 transport_generic_free_cmd(&ioctx->cmd, 0); 1261 break; 1262 case SRPT_STATE_MGMT_RSP_SENT: 1263 transport_generic_free_cmd(&ioctx->cmd, 0); 1264 break; 1265 default: 1266 WARN(1, "Unexpected command state (%d)", state); 1267 break; 1268 } 1269 1270 return state; 1271 } 1272 1273 /** 1274 * srpt_rdma_read_done - RDMA read completion callback 1275 * @cq: Completion queue. 1276 * @wc: Work completion. 1277 * 1278 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1279 * the data that has been transferred via IB RDMA had to be postponed until the 1280 * check_stop_free() callback. None of this is necessary anymore and needs to 1281 * be cleaned up. 1282 */ 1283 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc) 1284 { 1285 struct srpt_rdma_ch *ch = cq->cq_context; 1286 struct srpt_send_ioctx *ioctx = 1287 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe); 1288 1289 WARN_ON(ioctx->n_rdma <= 0); 1290 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1291 ioctx->n_rdma = 0; 1292 1293 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1294 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n", 1295 ioctx, wc->status); 1296 srpt_abort_cmd(ioctx); 1297 return; 1298 } 1299 1300 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1301 SRPT_STATE_DATA_IN)) 1302 target_execute_cmd(&ioctx->cmd); 1303 else 1304 pr_err("%s[%d]: wrong state = %d\n", __func__, 1305 __LINE__, ioctx->state); 1306 } 1307 1308 /** 1309 * srpt_build_cmd_rsp - build a SRP_RSP response 1310 * @ch: RDMA channel through which the request has been received. 1311 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1312 * be built in the buffer ioctx->buf points at and hence this function will 1313 * overwrite the request data. 1314 * @tag: tag of the request for which this response is being generated. 1315 * @status: value for the STATUS field of the SRP_RSP information unit. 1316 * 1317 * Returns the size in bytes of the SRP_RSP response. 1318 * 1319 * An SRP_RSP response contains a SCSI status or service response. See also 1320 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1321 * response. See also SPC-2 for more information about sense data. 1322 */ 1323 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1324 struct srpt_send_ioctx *ioctx, u64 tag, 1325 int status) 1326 { 1327 struct srp_rsp *srp_rsp; 1328 const u8 *sense_data; 1329 int sense_data_len, max_sense_len; 1330 1331 /* 1332 * The lowest bit of all SAM-3 status codes is zero (see also 1333 * paragraph 5.3 in SAM-3). 1334 */ 1335 WARN_ON(status & 1); 1336 1337 srp_rsp = ioctx->ioctx.buf; 1338 BUG_ON(!srp_rsp); 1339 1340 sense_data = ioctx->sense_data; 1341 sense_data_len = ioctx->cmd.scsi_sense_length; 1342 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1343 1344 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1345 srp_rsp->opcode = SRP_RSP; 1346 srp_rsp->req_lim_delta = 1347 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1348 srp_rsp->tag = tag; 1349 srp_rsp->status = status; 1350 1351 if (sense_data_len) { 1352 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1353 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1354 if (sense_data_len > max_sense_len) { 1355 pr_warn("truncated sense data from %d to %d" 1356 " bytes\n", sense_data_len, max_sense_len); 1357 sense_data_len = max_sense_len; 1358 } 1359 1360 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1361 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1362 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1363 } 1364 1365 return sizeof(*srp_rsp) + sense_data_len; 1366 } 1367 1368 /** 1369 * srpt_build_tskmgmt_rsp - build a task management response 1370 * @ch: RDMA channel through which the request has been received. 1371 * @ioctx: I/O context in which the SRP_RSP response will be built. 1372 * @rsp_code: RSP_CODE that will be stored in the response. 1373 * @tag: Tag of the request for which this response is being generated. 1374 * 1375 * Returns the size in bytes of the SRP_RSP response. 1376 * 1377 * An SRP_RSP response contains a SCSI status or service response. See also 1378 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1379 * response. 1380 */ 1381 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1382 struct srpt_send_ioctx *ioctx, 1383 u8 rsp_code, u64 tag) 1384 { 1385 struct srp_rsp *srp_rsp; 1386 int resp_data_len; 1387 int resp_len; 1388 1389 resp_data_len = 4; 1390 resp_len = sizeof(*srp_rsp) + resp_data_len; 1391 1392 srp_rsp = ioctx->ioctx.buf; 1393 BUG_ON(!srp_rsp); 1394 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1395 1396 srp_rsp->opcode = SRP_RSP; 1397 srp_rsp->req_lim_delta = 1398 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1399 srp_rsp->tag = tag; 1400 1401 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1402 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1403 srp_rsp->data[3] = rsp_code; 1404 1405 return resp_len; 1406 } 1407 1408 static int srpt_check_stop_free(struct se_cmd *cmd) 1409 { 1410 struct srpt_send_ioctx *ioctx = container_of(cmd, 1411 struct srpt_send_ioctx, cmd); 1412 1413 return target_put_sess_cmd(&ioctx->cmd); 1414 } 1415 1416 /** 1417 * srpt_handle_cmd - process a SRP_CMD information unit 1418 * @ch: SRPT RDMA channel. 1419 * @recv_ioctx: Receive I/O context. 1420 * @send_ioctx: Send I/O context. 1421 */ 1422 static void srpt_handle_cmd(struct srpt_rdma_ch *ch, 1423 struct srpt_recv_ioctx *recv_ioctx, 1424 struct srpt_send_ioctx *send_ioctx) 1425 { 1426 struct se_cmd *cmd; 1427 struct srp_cmd *srp_cmd; 1428 struct scatterlist *sg = NULL; 1429 unsigned sg_cnt = 0; 1430 u64 data_len; 1431 enum dma_data_direction dir; 1432 int rc; 1433 1434 BUG_ON(!send_ioctx); 1435 1436 srp_cmd = recv_ioctx->ioctx.buf; 1437 cmd = &send_ioctx->cmd; 1438 cmd->tag = srp_cmd->tag; 1439 1440 switch (srp_cmd->task_attr) { 1441 case SRP_CMD_SIMPLE_Q: 1442 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1443 break; 1444 case SRP_CMD_ORDERED_Q: 1445 default: 1446 cmd->sam_task_attr = TCM_ORDERED_TAG; 1447 break; 1448 case SRP_CMD_HEAD_OF_Q: 1449 cmd->sam_task_attr = TCM_HEAD_TAG; 1450 break; 1451 case SRP_CMD_ACA: 1452 cmd->sam_task_attr = TCM_ACA_TAG; 1453 break; 1454 } 1455 1456 rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt, 1457 &data_len); 1458 if (rc) { 1459 if (rc != -EAGAIN) { 1460 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1461 srp_cmd->tag); 1462 } 1463 goto release_ioctx; 1464 } 1465 1466 rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb, 1467 &send_ioctx->sense_data[0], 1468 scsilun_to_int(&srp_cmd->lun), data_len, 1469 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF, 1470 sg, sg_cnt, NULL, 0, NULL, 0); 1471 if (rc != 0) { 1472 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc, 1473 srp_cmd->tag); 1474 goto release_ioctx; 1475 } 1476 return; 1477 1478 release_ioctx: 1479 send_ioctx->state = SRPT_STATE_DONE; 1480 srpt_release_cmd(cmd); 1481 } 1482 1483 static int srp_tmr_to_tcm(int fn) 1484 { 1485 switch (fn) { 1486 case SRP_TSK_ABORT_TASK: 1487 return TMR_ABORT_TASK; 1488 case SRP_TSK_ABORT_TASK_SET: 1489 return TMR_ABORT_TASK_SET; 1490 case SRP_TSK_CLEAR_TASK_SET: 1491 return TMR_CLEAR_TASK_SET; 1492 case SRP_TSK_LUN_RESET: 1493 return TMR_LUN_RESET; 1494 case SRP_TSK_CLEAR_ACA: 1495 return TMR_CLEAR_ACA; 1496 default: 1497 return -1; 1498 } 1499 } 1500 1501 /** 1502 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit 1503 * @ch: SRPT RDMA channel. 1504 * @recv_ioctx: Receive I/O context. 1505 * @send_ioctx: Send I/O context. 1506 * 1507 * Returns 0 if and only if the request will be processed by the target core. 1508 * 1509 * For more information about SRP_TSK_MGMT information units, see also section 1510 * 6.7 in the SRP r16a document. 1511 */ 1512 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1513 struct srpt_recv_ioctx *recv_ioctx, 1514 struct srpt_send_ioctx *send_ioctx) 1515 { 1516 struct srp_tsk_mgmt *srp_tsk; 1517 struct se_cmd *cmd; 1518 struct se_session *sess = ch->sess; 1519 int tcm_tmr; 1520 int rc; 1521 1522 BUG_ON(!send_ioctx); 1523 1524 srp_tsk = recv_ioctx->ioctx.buf; 1525 cmd = &send_ioctx->cmd; 1526 1527 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n", 1528 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch, 1529 ch->sess); 1530 1531 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1532 send_ioctx->cmd.tag = srp_tsk->tag; 1533 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1534 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, 1535 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr, 1536 GFP_KERNEL, srp_tsk->task_tag, 1537 TARGET_SCF_ACK_KREF); 1538 if (rc != 0) { 1539 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1540 goto fail; 1541 } 1542 return; 1543 fail: 1544 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1545 } 1546 1547 /** 1548 * srpt_handle_new_iu - process a newly received information unit 1549 * @ch: RDMA channel through which the information unit has been received. 1550 * @recv_ioctx: Receive I/O context associated with the information unit. 1551 */ 1552 static bool 1553 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx) 1554 { 1555 struct srpt_send_ioctx *send_ioctx = NULL; 1556 struct srp_cmd *srp_cmd; 1557 bool res = false; 1558 u8 opcode; 1559 1560 BUG_ON(!ch); 1561 BUG_ON(!recv_ioctx); 1562 1563 if (unlikely(ch->state == CH_CONNECTING)) 1564 goto push; 1565 1566 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1567 recv_ioctx->ioctx.dma, srp_max_req_size, 1568 DMA_FROM_DEVICE); 1569 1570 srp_cmd = recv_ioctx->ioctx.buf; 1571 opcode = srp_cmd->opcode; 1572 if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) { 1573 send_ioctx = srpt_get_send_ioctx(ch); 1574 if (unlikely(!send_ioctx)) 1575 goto push; 1576 } 1577 1578 if (!list_empty(&recv_ioctx->wait_list)) { 1579 WARN_ON_ONCE(!ch->processing_wait_list); 1580 list_del_init(&recv_ioctx->wait_list); 1581 } 1582 1583 switch (opcode) { 1584 case SRP_CMD: 1585 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1586 break; 1587 case SRP_TSK_MGMT: 1588 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1589 break; 1590 case SRP_I_LOGOUT: 1591 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1592 break; 1593 case SRP_CRED_RSP: 1594 pr_debug("received SRP_CRED_RSP\n"); 1595 break; 1596 case SRP_AER_RSP: 1597 pr_debug("received SRP_AER_RSP\n"); 1598 break; 1599 case SRP_RSP: 1600 pr_err("Received SRP_RSP\n"); 1601 break; 1602 default: 1603 pr_err("received IU with unknown opcode 0x%x\n", opcode); 1604 break; 1605 } 1606 1607 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx); 1608 res = true; 1609 1610 out: 1611 return res; 1612 1613 push: 1614 if (list_empty(&recv_ioctx->wait_list)) { 1615 WARN_ON_ONCE(ch->processing_wait_list); 1616 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1617 } 1618 goto out; 1619 } 1620 1621 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1622 { 1623 struct srpt_rdma_ch *ch = cq->cq_context; 1624 struct srpt_recv_ioctx *ioctx = 1625 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe); 1626 1627 if (wc->status == IB_WC_SUCCESS) { 1628 int req_lim; 1629 1630 req_lim = atomic_dec_return(&ch->req_lim); 1631 if (unlikely(req_lim < 0)) 1632 pr_err("req_lim = %d < 0\n", req_lim); 1633 srpt_handle_new_iu(ch, ioctx); 1634 } else { 1635 pr_info_ratelimited("receiving failed for ioctx %p with status %d\n", 1636 ioctx, wc->status); 1637 } 1638 } 1639 1640 /* 1641 * This function must be called from the context in which RDMA completions are 1642 * processed because it accesses the wait list without protection against 1643 * access from other threads. 1644 */ 1645 static void srpt_process_wait_list(struct srpt_rdma_ch *ch) 1646 { 1647 struct srpt_recv_ioctx *recv_ioctx, *tmp; 1648 1649 WARN_ON_ONCE(ch->state == CH_CONNECTING); 1650 1651 if (list_empty(&ch->cmd_wait_list)) 1652 return; 1653 1654 WARN_ON_ONCE(ch->processing_wait_list); 1655 ch->processing_wait_list = true; 1656 list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list, 1657 wait_list) { 1658 if (!srpt_handle_new_iu(ch, recv_ioctx)) 1659 break; 1660 } 1661 ch->processing_wait_list = false; 1662 } 1663 1664 /** 1665 * srpt_send_done - send completion callback 1666 * @cq: Completion queue. 1667 * @wc: Work completion. 1668 * 1669 * Note: Although this has not yet been observed during tests, at least in 1670 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1671 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1672 * value in each response is set to one, and it is possible that this response 1673 * makes the initiator send a new request before the send completion for that 1674 * response has been processed. This could e.g. happen if the call to 1675 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1676 * if IB retransmission causes generation of the send completion to be 1677 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1678 * are queued on cmd_wait_list. The code below processes these delayed 1679 * requests one at a time. 1680 */ 1681 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc) 1682 { 1683 struct srpt_rdma_ch *ch = cq->cq_context; 1684 struct srpt_send_ioctx *ioctx = 1685 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe); 1686 enum srpt_command_state state; 1687 1688 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1689 1690 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT && 1691 state != SRPT_STATE_MGMT_RSP_SENT); 1692 1693 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 1694 1695 if (wc->status != IB_WC_SUCCESS) 1696 pr_info("sending response for ioctx 0x%p failed" 1697 " with status %d\n", ioctx, wc->status); 1698 1699 if (state != SRPT_STATE_DONE) { 1700 transport_generic_free_cmd(&ioctx->cmd, 0); 1701 } else { 1702 pr_err("IB completion has been received too late for" 1703 " wr_id = %u.\n", ioctx->ioctx.index); 1704 } 1705 1706 srpt_process_wait_list(ch); 1707 } 1708 1709 /** 1710 * srpt_create_ch_ib - create receive and send completion queues 1711 * @ch: SRPT RDMA channel. 1712 */ 1713 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 1714 { 1715 struct ib_qp_init_attr *qp_init; 1716 struct srpt_port *sport = ch->sport; 1717 struct srpt_device *sdev = sport->sdev; 1718 const struct ib_device_attr *attrs = &sdev->device->attrs; 1719 int sq_size = sport->port_attrib.srp_sq_size; 1720 int i, ret; 1721 1722 WARN_ON(ch->rq_size < 1); 1723 1724 ret = -ENOMEM; 1725 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL); 1726 if (!qp_init) 1727 goto out; 1728 1729 retry: 1730 ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + sq_size, 1731 0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE); 1732 if (IS_ERR(ch->cq)) { 1733 ret = PTR_ERR(ch->cq); 1734 pr_err("failed to create CQ cqe= %d ret= %d\n", 1735 ch->rq_size + sq_size, ret); 1736 goto out; 1737 } 1738 1739 qp_init->qp_context = (void *)ch; 1740 qp_init->event_handler 1741 = (void(*)(struct ib_event *, void*))srpt_qp_event; 1742 qp_init->send_cq = ch->cq; 1743 qp_init->recv_cq = ch->cq; 1744 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 1745 qp_init->qp_type = IB_QPT_RC; 1746 /* 1747 * We divide up our send queue size into half SEND WRs to send the 1748 * completions, and half R/W contexts to actually do the RDMA 1749 * READ/WRITE transfers. Note that we need to allocate CQ slots for 1750 * both both, as RDMA contexts will also post completions for the 1751 * RDMA READ case. 1752 */ 1753 qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr); 1754 qp_init->cap.max_rdma_ctxs = sq_size / 2; 1755 qp_init->cap.max_send_sge = min(attrs->max_send_sge, 1756 SRPT_MAX_SG_PER_WQE); 1757 qp_init->port_num = ch->sport->port; 1758 if (sdev->use_srq) { 1759 qp_init->srq = sdev->srq; 1760 } else { 1761 qp_init->cap.max_recv_wr = ch->rq_size; 1762 qp_init->cap.max_recv_sge = min(attrs->max_recv_sge, 1763 SRPT_MAX_SG_PER_WQE); 1764 } 1765 1766 if (ch->using_rdma_cm) { 1767 ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init); 1768 ch->qp = ch->rdma_cm.cm_id->qp; 1769 } else { 1770 ch->qp = ib_create_qp(sdev->pd, qp_init); 1771 if (!IS_ERR(ch->qp)) { 1772 ret = srpt_init_ch_qp(ch, ch->qp); 1773 if (ret) 1774 ib_destroy_qp(ch->qp); 1775 } else { 1776 ret = PTR_ERR(ch->qp); 1777 } 1778 } 1779 if (ret) { 1780 bool retry = sq_size > MIN_SRPT_SQ_SIZE; 1781 1782 if (retry) { 1783 pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n", 1784 sq_size, ret); 1785 ib_free_cq(ch->cq); 1786 sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE); 1787 goto retry; 1788 } else { 1789 pr_err("failed to create queue pair with sq_size = %d (%d)\n", 1790 sq_size, ret); 1791 goto err_destroy_cq; 1792 } 1793 } 1794 1795 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 1796 1797 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n", 1798 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 1799 qp_init->cap.max_send_wr, ch); 1800 1801 if (!sdev->use_srq) 1802 for (i = 0; i < ch->rq_size; i++) 1803 srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]); 1804 1805 out: 1806 kfree(qp_init); 1807 return ret; 1808 1809 err_destroy_cq: 1810 ch->qp = NULL; 1811 ib_free_cq(ch->cq); 1812 goto out; 1813 } 1814 1815 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 1816 { 1817 ib_destroy_qp(ch->qp); 1818 ib_free_cq(ch->cq); 1819 } 1820 1821 /** 1822 * srpt_close_ch - close a RDMA channel 1823 * @ch: SRPT RDMA channel. 1824 * 1825 * Make sure all resources associated with the channel will be deallocated at 1826 * an appropriate time. 1827 * 1828 * Returns true if and only if the channel state has been modified into 1829 * CH_DRAINING. 1830 */ 1831 static bool srpt_close_ch(struct srpt_rdma_ch *ch) 1832 { 1833 int ret; 1834 1835 if (!srpt_set_ch_state(ch, CH_DRAINING)) { 1836 pr_debug("%s: already closed\n", ch->sess_name); 1837 return false; 1838 } 1839 1840 kref_get(&ch->kref); 1841 1842 ret = srpt_ch_qp_err(ch); 1843 if (ret < 0) 1844 pr_err("%s-%d: changing queue pair into error state failed: %d\n", 1845 ch->sess_name, ch->qp->qp_num, ret); 1846 1847 ret = srpt_zerolength_write(ch); 1848 if (ret < 0) { 1849 pr_err("%s-%d: queuing zero-length write failed: %d\n", 1850 ch->sess_name, ch->qp->qp_num, ret); 1851 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 1852 schedule_work(&ch->release_work); 1853 else 1854 WARN_ON_ONCE(true); 1855 } 1856 1857 kref_put(&ch->kref, srpt_free_ch); 1858 1859 return true; 1860 } 1861 1862 /* 1863 * Change the channel state into CH_DISCONNECTING. If a channel has not yet 1864 * reached the connected state, close it. If a channel is in the connected 1865 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is 1866 * the responsibility of the caller to ensure that this function is not 1867 * invoked concurrently with the code that accepts a connection. This means 1868 * that this function must either be invoked from inside a CM callback 1869 * function or that it must be invoked with the srpt_port.mutex held. 1870 */ 1871 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch) 1872 { 1873 int ret; 1874 1875 if (!srpt_set_ch_state(ch, CH_DISCONNECTING)) 1876 return -ENOTCONN; 1877 1878 if (ch->using_rdma_cm) { 1879 ret = rdma_disconnect(ch->rdma_cm.cm_id); 1880 } else { 1881 ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0); 1882 if (ret < 0) 1883 ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0); 1884 } 1885 1886 if (ret < 0 && srpt_close_ch(ch)) 1887 ret = 0; 1888 1889 return ret; 1890 } 1891 1892 static bool srpt_ch_closed(struct srpt_port *sport, struct srpt_rdma_ch *ch) 1893 { 1894 struct srpt_nexus *nexus; 1895 struct srpt_rdma_ch *ch2; 1896 bool res = true; 1897 1898 rcu_read_lock(); 1899 list_for_each_entry(nexus, &sport->nexus_list, entry) { 1900 list_for_each_entry(ch2, &nexus->ch_list, list) { 1901 if (ch2 == ch) { 1902 res = false; 1903 goto done; 1904 } 1905 } 1906 } 1907 done: 1908 rcu_read_unlock(); 1909 1910 return res; 1911 } 1912 1913 /* Send DREQ and wait for DREP. */ 1914 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch) 1915 { 1916 struct srpt_port *sport = ch->sport; 1917 1918 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num, 1919 ch->state); 1920 1921 mutex_lock(&sport->mutex); 1922 srpt_disconnect_ch(ch); 1923 mutex_unlock(&sport->mutex); 1924 1925 while (wait_event_timeout(sport->ch_releaseQ, srpt_ch_closed(sport, ch), 1926 5 * HZ) == 0) 1927 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__, 1928 ch->sess_name, ch->qp->qp_num, ch->state); 1929 1930 } 1931 1932 static void __srpt_close_all_ch(struct srpt_port *sport) 1933 { 1934 struct srpt_nexus *nexus; 1935 struct srpt_rdma_ch *ch; 1936 1937 lockdep_assert_held(&sport->mutex); 1938 1939 list_for_each_entry(nexus, &sport->nexus_list, entry) { 1940 list_for_each_entry(ch, &nexus->ch_list, list) { 1941 if (srpt_disconnect_ch(ch) >= 0) 1942 pr_info("Closing channel %s because target %s_%d has been disabled\n", 1943 ch->sess_name, 1944 dev_name(&sport->sdev->device->dev), 1945 sport->port); 1946 srpt_close_ch(ch); 1947 } 1948 } 1949 } 1950 1951 /* 1952 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if 1953 * it does not yet exist. 1954 */ 1955 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport, 1956 const u8 i_port_id[16], 1957 const u8 t_port_id[16]) 1958 { 1959 struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n; 1960 1961 for (;;) { 1962 mutex_lock(&sport->mutex); 1963 list_for_each_entry(n, &sport->nexus_list, entry) { 1964 if (memcmp(n->i_port_id, i_port_id, 16) == 0 && 1965 memcmp(n->t_port_id, t_port_id, 16) == 0) { 1966 nexus = n; 1967 break; 1968 } 1969 } 1970 if (!nexus && tmp_nexus) { 1971 list_add_tail_rcu(&tmp_nexus->entry, 1972 &sport->nexus_list); 1973 swap(nexus, tmp_nexus); 1974 } 1975 mutex_unlock(&sport->mutex); 1976 1977 if (nexus) 1978 break; 1979 tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL); 1980 if (!tmp_nexus) { 1981 nexus = ERR_PTR(-ENOMEM); 1982 break; 1983 } 1984 INIT_LIST_HEAD(&tmp_nexus->ch_list); 1985 memcpy(tmp_nexus->i_port_id, i_port_id, 16); 1986 memcpy(tmp_nexus->t_port_id, t_port_id, 16); 1987 } 1988 1989 kfree(tmp_nexus); 1990 1991 return nexus; 1992 } 1993 1994 static void srpt_set_enabled(struct srpt_port *sport, bool enabled) 1995 __must_hold(&sport->mutex) 1996 { 1997 lockdep_assert_held(&sport->mutex); 1998 1999 if (sport->enabled == enabled) 2000 return; 2001 sport->enabled = enabled; 2002 if (!enabled) 2003 __srpt_close_all_ch(sport); 2004 } 2005 2006 static void srpt_free_ch(struct kref *kref) 2007 { 2008 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref); 2009 2010 kfree_rcu(ch, rcu); 2011 } 2012 2013 static void srpt_release_channel_work(struct work_struct *w) 2014 { 2015 struct srpt_rdma_ch *ch; 2016 struct srpt_device *sdev; 2017 struct srpt_port *sport; 2018 struct se_session *se_sess; 2019 2020 ch = container_of(w, struct srpt_rdma_ch, release_work); 2021 pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num); 2022 2023 sdev = ch->sport->sdev; 2024 BUG_ON(!sdev); 2025 2026 se_sess = ch->sess; 2027 BUG_ON(!se_sess); 2028 2029 target_sess_cmd_list_set_waiting(se_sess); 2030 target_wait_for_sess_cmds(se_sess); 2031 2032 target_remove_session(se_sess); 2033 ch->sess = NULL; 2034 2035 if (ch->using_rdma_cm) 2036 rdma_destroy_id(ch->rdma_cm.cm_id); 2037 else 2038 ib_destroy_cm_id(ch->ib_cm.cm_id); 2039 2040 srpt_destroy_ch_ib(ch); 2041 2042 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2043 ch->sport->sdev, ch->rq_size, 2044 ch->max_rsp_size, DMA_TO_DEVICE); 2045 2046 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring, 2047 sdev, ch->rq_size, 2048 srp_max_req_size, DMA_FROM_DEVICE); 2049 2050 sport = ch->sport; 2051 mutex_lock(&sport->mutex); 2052 list_del_rcu(&ch->list); 2053 mutex_unlock(&sport->mutex); 2054 2055 wake_up(&sport->ch_releaseQ); 2056 2057 kref_put(&ch->kref, srpt_free_ch); 2058 } 2059 2060 /** 2061 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED 2062 * @sdev: HCA through which the login request was received. 2063 * @ib_cm_id: IB/CM connection identifier in case of IB/CM. 2064 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM. 2065 * @port_num: Port through which the REQ message was received. 2066 * @pkey: P_Key of the incoming connection. 2067 * @req: SRP login request. 2068 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted 2069 * the login request. 2070 * 2071 * Ownership of the cm_id is transferred to the target session if this 2072 * function returns zero. Otherwise the caller remains the owner of cm_id. 2073 */ 2074 static int srpt_cm_req_recv(struct srpt_device *const sdev, 2075 struct ib_cm_id *ib_cm_id, 2076 struct rdma_cm_id *rdma_cm_id, 2077 u8 port_num, __be16 pkey, 2078 const struct srp_login_req *req, 2079 const char *src_addr) 2080 { 2081 struct srpt_port *sport = &sdev->port[port_num - 1]; 2082 struct srpt_nexus *nexus; 2083 struct srp_login_rsp *rsp = NULL; 2084 struct srp_login_rej *rej = NULL; 2085 union { 2086 struct rdma_conn_param rdma_cm; 2087 struct ib_cm_rep_param ib_cm; 2088 } *rep_param = NULL; 2089 struct srpt_rdma_ch *ch = NULL; 2090 char i_port_id[36]; 2091 u32 it_iu_len; 2092 int i, ret; 2093 2094 WARN_ON_ONCE(irqs_disabled()); 2095 2096 if (WARN_ON(!sdev || !req)) 2097 return -EINVAL; 2098 2099 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2100 2101 pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n", 2102 req->initiator_port_id, req->target_port_id, it_iu_len, 2103 port_num, &sport->gid, be16_to_cpu(pkey)); 2104 2105 nexus = srpt_get_nexus(sport, req->initiator_port_id, 2106 req->target_port_id); 2107 if (IS_ERR(nexus)) { 2108 ret = PTR_ERR(nexus); 2109 goto out; 2110 } 2111 2112 ret = -ENOMEM; 2113 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 2114 rej = kzalloc(sizeof(*rej), GFP_KERNEL); 2115 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL); 2116 if (!rsp || !rej || !rep_param) 2117 goto out; 2118 2119 ret = -EINVAL; 2120 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2121 rej->reason = cpu_to_be32( 2122 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2123 pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n", 2124 it_iu_len, 64, srp_max_req_size); 2125 goto reject; 2126 } 2127 2128 if (!sport->enabled) { 2129 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2130 pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n", 2131 dev_name(&sport->sdev->device->dev), port_num); 2132 goto reject; 2133 } 2134 2135 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2136 || *(__be64 *)(req->target_port_id + 8) != 2137 cpu_to_be64(srpt_service_guid)) { 2138 rej->reason = cpu_to_be32( 2139 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2140 pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n"); 2141 goto reject; 2142 } 2143 2144 ret = -ENOMEM; 2145 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 2146 if (!ch) { 2147 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2148 pr_err("rejected SRP_LOGIN_REQ because out of memory.\n"); 2149 goto reject; 2150 } 2151 2152 kref_init(&ch->kref); 2153 ch->pkey = be16_to_cpu(pkey); 2154 ch->nexus = nexus; 2155 ch->zw_cqe.done = srpt_zerolength_write_done; 2156 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2157 ch->sport = sport; 2158 if (ib_cm_id) { 2159 ch->ib_cm.cm_id = ib_cm_id; 2160 ib_cm_id->context = ch; 2161 } else { 2162 ch->using_rdma_cm = true; 2163 ch->rdma_cm.cm_id = rdma_cm_id; 2164 rdma_cm_id->context = ch; 2165 } 2166 /* 2167 * ch->rq_size should be at least as large as the initiator queue 2168 * depth to avoid that the initiator driver has to report QUEUE_FULL 2169 * to the SCSI mid-layer. 2170 */ 2171 ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr); 2172 spin_lock_init(&ch->spinlock); 2173 ch->state = CH_CONNECTING; 2174 INIT_LIST_HEAD(&ch->cmd_wait_list); 2175 ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2176 2177 ch->ioctx_ring = (struct srpt_send_ioctx **) 2178 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2179 sizeof(*ch->ioctx_ring[0]), 2180 ch->max_rsp_size, DMA_TO_DEVICE); 2181 if (!ch->ioctx_ring) { 2182 pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n"); 2183 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2184 goto free_ch; 2185 } 2186 2187 INIT_LIST_HEAD(&ch->free_list); 2188 for (i = 0; i < ch->rq_size; i++) { 2189 ch->ioctx_ring[i]->ch = ch; 2190 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2191 } 2192 if (!sdev->use_srq) { 2193 ch->ioctx_recv_ring = (struct srpt_recv_ioctx **) 2194 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2195 sizeof(*ch->ioctx_recv_ring[0]), 2196 srp_max_req_size, 2197 DMA_FROM_DEVICE); 2198 if (!ch->ioctx_recv_ring) { 2199 pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n"); 2200 rej->reason = 2201 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2202 goto free_ring; 2203 } 2204 for (i = 0; i < ch->rq_size; i++) 2205 INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list); 2206 } 2207 2208 ret = srpt_create_ch_ib(ch); 2209 if (ret) { 2210 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2211 pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n"); 2212 goto free_recv_ring; 2213 } 2214 2215 strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name)); 2216 snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx", 2217 be64_to_cpu(*(__be64 *)nexus->i_port_id), 2218 be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8))); 2219 2220 pr_debug("registering session %s\n", ch->sess_name); 2221 2222 if (sport->port_guid_tpg.se_tpg_wwn) 2223 ch->sess = target_setup_session(&sport->port_guid_tpg, 0, 0, 2224 TARGET_PROT_NORMAL, 2225 ch->sess_name, ch, NULL); 2226 if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess)) 2227 ch->sess = target_setup_session(&sport->port_gid_tpg, 0, 0, 2228 TARGET_PROT_NORMAL, i_port_id, ch, 2229 NULL); 2230 /* Retry without leading "0x" */ 2231 if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess)) 2232 ch->sess = target_setup_session(&sport->port_gid_tpg, 0, 0, 2233 TARGET_PROT_NORMAL, 2234 i_port_id + 2, ch, NULL); 2235 if (IS_ERR_OR_NULL(ch->sess)) { 2236 WARN_ON_ONCE(ch->sess == NULL); 2237 ret = PTR_ERR(ch->sess); 2238 ch->sess = NULL; 2239 pr_info("Rejected login for initiator %s: ret = %d.\n", 2240 ch->sess_name, ret); 2241 rej->reason = cpu_to_be32(ret == -ENOMEM ? 2242 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES : 2243 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2244 goto destroy_ib; 2245 } 2246 2247 mutex_lock(&sport->mutex); 2248 2249 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2250 struct srpt_rdma_ch *ch2; 2251 2252 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2253 2254 list_for_each_entry(ch2, &nexus->ch_list, list) { 2255 if (srpt_disconnect_ch(ch2) < 0) 2256 continue; 2257 pr_info("Relogin - closed existing channel %s\n", 2258 ch2->sess_name); 2259 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2260 } 2261 } else { 2262 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2263 } 2264 2265 list_add_tail_rcu(&ch->list, &nexus->ch_list); 2266 2267 if (!sport->enabled) { 2268 rej->reason = cpu_to_be32( 2269 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2270 pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n", 2271 dev_name(&sdev->device->dev), port_num); 2272 mutex_unlock(&sport->mutex); 2273 goto reject; 2274 } 2275 2276 mutex_unlock(&sport->mutex); 2277 2278 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp); 2279 if (ret) { 2280 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2281 pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n", 2282 ret); 2283 goto reject; 2284 } 2285 2286 pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess, 2287 ch->sess_name, ch); 2288 2289 /* create srp_login_response */ 2290 rsp->opcode = SRP_LOGIN_RSP; 2291 rsp->tag = req->tag; 2292 rsp->max_it_iu_len = req->req_it_iu_len; 2293 rsp->max_ti_iu_len = req->req_it_iu_len; 2294 ch->max_ti_iu_len = it_iu_len; 2295 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 2296 SRP_BUF_FORMAT_INDIRECT); 2297 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2298 atomic_set(&ch->req_lim, ch->rq_size); 2299 atomic_set(&ch->req_lim_delta, 0); 2300 2301 /* create cm reply */ 2302 if (ch->using_rdma_cm) { 2303 rep_param->rdma_cm.private_data = (void *)rsp; 2304 rep_param->rdma_cm.private_data_len = sizeof(*rsp); 2305 rep_param->rdma_cm.rnr_retry_count = 7; 2306 rep_param->rdma_cm.flow_control = 1; 2307 rep_param->rdma_cm.responder_resources = 4; 2308 rep_param->rdma_cm.initiator_depth = 4; 2309 } else { 2310 rep_param->ib_cm.qp_num = ch->qp->qp_num; 2311 rep_param->ib_cm.private_data = (void *)rsp; 2312 rep_param->ib_cm.private_data_len = sizeof(*rsp); 2313 rep_param->ib_cm.rnr_retry_count = 7; 2314 rep_param->ib_cm.flow_control = 1; 2315 rep_param->ib_cm.failover_accepted = 0; 2316 rep_param->ib_cm.srq = 1; 2317 rep_param->ib_cm.responder_resources = 4; 2318 rep_param->ib_cm.initiator_depth = 4; 2319 } 2320 2321 /* 2322 * Hold the sport mutex while accepting a connection to avoid that 2323 * srpt_disconnect_ch() is invoked concurrently with this code. 2324 */ 2325 mutex_lock(&sport->mutex); 2326 if (sport->enabled && ch->state == CH_CONNECTING) { 2327 if (ch->using_rdma_cm) 2328 ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm); 2329 else 2330 ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm); 2331 } else { 2332 ret = -EINVAL; 2333 } 2334 mutex_unlock(&sport->mutex); 2335 2336 switch (ret) { 2337 case 0: 2338 break; 2339 case -EINVAL: 2340 goto reject; 2341 default: 2342 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2343 pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n", 2344 ret); 2345 goto reject; 2346 } 2347 2348 goto out; 2349 2350 destroy_ib: 2351 srpt_destroy_ch_ib(ch); 2352 2353 free_recv_ring: 2354 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring, 2355 ch->sport->sdev, ch->rq_size, 2356 srp_max_req_size, DMA_FROM_DEVICE); 2357 2358 free_ring: 2359 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2360 ch->sport->sdev, ch->rq_size, 2361 ch->max_rsp_size, DMA_TO_DEVICE); 2362 2363 free_ch: 2364 if (rdma_cm_id) 2365 rdma_cm_id->context = NULL; 2366 else 2367 ib_cm_id->context = NULL; 2368 kfree(ch); 2369 ch = NULL; 2370 2371 WARN_ON_ONCE(ret == 0); 2372 2373 reject: 2374 pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason)); 2375 rej->opcode = SRP_LOGIN_REJ; 2376 rej->tag = req->tag; 2377 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 2378 SRP_BUF_FORMAT_INDIRECT); 2379 2380 if (rdma_cm_id) 2381 rdma_reject(rdma_cm_id, rej, sizeof(*rej)); 2382 else 2383 ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2384 rej, sizeof(*rej)); 2385 2386 if (ch && ch->sess) { 2387 srpt_close_ch(ch); 2388 /* 2389 * Tell the caller not to free cm_id since 2390 * srpt_release_channel_work() will do that. 2391 */ 2392 ret = 0; 2393 } 2394 2395 out: 2396 kfree(rep_param); 2397 kfree(rsp); 2398 kfree(rej); 2399 2400 return ret; 2401 } 2402 2403 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id, 2404 const struct ib_cm_req_event_param *param, 2405 void *private_data) 2406 { 2407 char sguid[40]; 2408 2409 srpt_format_guid(sguid, sizeof(sguid), 2410 ¶m->primary_path->dgid.global.interface_id); 2411 2412 return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port, 2413 param->primary_path->pkey, 2414 private_data, sguid); 2415 } 2416 2417 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id, 2418 struct rdma_cm_event *event) 2419 { 2420 struct srpt_device *sdev; 2421 struct srp_login_req req; 2422 const struct srp_login_req_rdma *req_rdma; 2423 char src_addr[40]; 2424 2425 sdev = ib_get_client_data(cm_id->device, &srpt_client); 2426 if (!sdev) 2427 return -ECONNREFUSED; 2428 2429 if (event->param.conn.private_data_len < sizeof(*req_rdma)) 2430 return -EINVAL; 2431 2432 /* Transform srp_login_req_rdma into srp_login_req. */ 2433 req_rdma = event->param.conn.private_data; 2434 memset(&req, 0, sizeof(req)); 2435 req.opcode = req_rdma->opcode; 2436 req.tag = req_rdma->tag; 2437 req.req_it_iu_len = req_rdma->req_it_iu_len; 2438 req.req_buf_fmt = req_rdma->req_buf_fmt; 2439 req.req_flags = req_rdma->req_flags; 2440 memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16); 2441 memcpy(req.target_port_id, req_rdma->target_port_id, 16); 2442 2443 snprintf(src_addr, sizeof(src_addr), "%pIS", 2444 &cm_id->route.addr.src_addr); 2445 2446 return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num, 2447 cm_id->route.path_rec->pkey, &req, src_addr); 2448 } 2449 2450 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch, 2451 enum ib_cm_rej_reason reason, 2452 const u8 *private_data, 2453 u8 private_data_len) 2454 { 2455 char *priv = NULL; 2456 int i; 2457 2458 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1, 2459 GFP_KERNEL))) { 2460 for (i = 0; i < private_data_len; i++) 2461 sprintf(priv + 3 * i, " %02x", private_data[i]); 2462 } 2463 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n", 2464 ch->sess_name, ch->qp->qp_num, reason, private_data_len ? 2465 "; private data" : "", priv ? priv : " (?)"); 2466 kfree(priv); 2467 } 2468 2469 /** 2470 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event 2471 * @ch: SRPT RDMA channel. 2472 * 2473 * An RTU (ready to use) message indicates that the connection has been 2474 * established and that the recipient may begin transmitting. 2475 */ 2476 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch) 2477 { 2478 int ret; 2479 2480 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp); 2481 if (ret < 0) { 2482 pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name, 2483 ch->qp->qp_num); 2484 srpt_close_ch(ch); 2485 return; 2486 } 2487 2488 /* 2489 * Note: calling srpt_close_ch() if the transition to the LIVE state 2490 * fails is not necessary since that means that that function has 2491 * already been invoked from another thread. 2492 */ 2493 if (!srpt_set_ch_state(ch, CH_LIVE)) { 2494 pr_err("%s-%d: channel transition to LIVE state failed\n", 2495 ch->sess_name, ch->qp->qp_num); 2496 return; 2497 } 2498 2499 /* Trigger wait list processing. */ 2500 ret = srpt_zerolength_write(ch); 2501 WARN_ONCE(ret < 0, "%d\n", ret); 2502 } 2503 2504 /** 2505 * srpt_cm_handler - IB connection manager callback function 2506 * @cm_id: IB/CM connection identifier. 2507 * @event: IB/CM event. 2508 * 2509 * A non-zero return value will cause the caller destroy the CM ID. 2510 * 2511 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2512 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2513 * a non-zero value in any other case will trigger a race with the 2514 * ib_destroy_cm_id() call in srpt_release_channel(). 2515 */ 2516 static int srpt_cm_handler(struct ib_cm_id *cm_id, 2517 const struct ib_cm_event *event) 2518 { 2519 struct srpt_rdma_ch *ch = cm_id->context; 2520 int ret; 2521 2522 ret = 0; 2523 switch (event->event) { 2524 case IB_CM_REQ_RECEIVED: 2525 ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd, 2526 event->private_data); 2527 break; 2528 case IB_CM_REJ_RECEIVED: 2529 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason, 2530 event->private_data, 2531 IB_CM_REJ_PRIVATE_DATA_SIZE); 2532 break; 2533 case IB_CM_RTU_RECEIVED: 2534 case IB_CM_USER_ESTABLISHED: 2535 srpt_cm_rtu_recv(ch); 2536 break; 2537 case IB_CM_DREQ_RECEIVED: 2538 srpt_disconnect_ch(ch); 2539 break; 2540 case IB_CM_DREP_RECEIVED: 2541 pr_info("Received CM DREP message for ch %s-%d.\n", 2542 ch->sess_name, ch->qp->qp_num); 2543 srpt_close_ch(ch); 2544 break; 2545 case IB_CM_TIMEWAIT_EXIT: 2546 pr_info("Received CM TimeWait exit for ch %s-%d.\n", 2547 ch->sess_name, ch->qp->qp_num); 2548 srpt_close_ch(ch); 2549 break; 2550 case IB_CM_REP_ERROR: 2551 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2552 ch->qp->qp_num); 2553 break; 2554 case IB_CM_DREQ_ERROR: 2555 pr_info("Received CM DREQ ERROR event.\n"); 2556 break; 2557 case IB_CM_MRA_RECEIVED: 2558 pr_info("Received CM MRA event\n"); 2559 break; 2560 default: 2561 pr_err("received unrecognized CM event %d\n", event->event); 2562 break; 2563 } 2564 2565 return ret; 2566 } 2567 2568 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id, 2569 struct rdma_cm_event *event) 2570 { 2571 struct srpt_rdma_ch *ch = cm_id->context; 2572 int ret = 0; 2573 2574 switch (event->event) { 2575 case RDMA_CM_EVENT_CONNECT_REQUEST: 2576 ret = srpt_rdma_cm_req_recv(cm_id, event); 2577 break; 2578 case RDMA_CM_EVENT_REJECTED: 2579 srpt_cm_rej_recv(ch, event->status, 2580 event->param.conn.private_data, 2581 event->param.conn.private_data_len); 2582 break; 2583 case RDMA_CM_EVENT_ESTABLISHED: 2584 srpt_cm_rtu_recv(ch); 2585 break; 2586 case RDMA_CM_EVENT_DISCONNECTED: 2587 if (ch->state < CH_DISCONNECTING) 2588 srpt_disconnect_ch(ch); 2589 else 2590 srpt_close_ch(ch); 2591 break; 2592 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 2593 srpt_close_ch(ch); 2594 break; 2595 case RDMA_CM_EVENT_UNREACHABLE: 2596 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2597 ch->qp->qp_num); 2598 break; 2599 case RDMA_CM_EVENT_DEVICE_REMOVAL: 2600 case RDMA_CM_EVENT_ADDR_CHANGE: 2601 break; 2602 default: 2603 pr_err("received unrecognized RDMA CM event %d\n", 2604 event->event); 2605 break; 2606 } 2607 2608 return ret; 2609 } 2610 2611 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2612 { 2613 struct srpt_send_ioctx *ioctx; 2614 2615 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2616 return ioctx->state == SRPT_STATE_NEED_DATA; 2617 } 2618 2619 /* 2620 * srpt_write_pending - Start data transfer from initiator to target (write). 2621 */ 2622 static int srpt_write_pending(struct se_cmd *se_cmd) 2623 { 2624 struct srpt_send_ioctx *ioctx = 2625 container_of(se_cmd, struct srpt_send_ioctx, cmd); 2626 struct srpt_rdma_ch *ch = ioctx->ch; 2627 struct ib_send_wr *first_wr = NULL; 2628 struct ib_cqe *cqe = &ioctx->rdma_cqe; 2629 enum srpt_command_state new_state; 2630 int ret, i; 2631 2632 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2633 WARN_ON(new_state == SRPT_STATE_DONE); 2634 2635 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) { 2636 pr_warn("%s: IB send queue full (needed %d)\n", 2637 __func__, ioctx->n_rdma); 2638 ret = -ENOMEM; 2639 goto out_undo; 2640 } 2641 2642 cqe->done = srpt_rdma_read_done; 2643 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2644 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2645 2646 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port, 2647 cqe, first_wr); 2648 cqe = NULL; 2649 } 2650 2651 ret = ib_post_send(ch->qp, first_wr, NULL); 2652 if (ret) { 2653 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n", 2654 __func__, ret, ioctx->n_rdma, 2655 atomic_read(&ch->sq_wr_avail)); 2656 goto out_undo; 2657 } 2658 2659 return 0; 2660 out_undo: 2661 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 2662 return ret; 2663 } 2664 2665 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2666 { 2667 switch (tcm_mgmt_status) { 2668 case TMR_FUNCTION_COMPLETE: 2669 return SRP_TSK_MGMT_SUCCESS; 2670 case TMR_FUNCTION_REJECTED: 2671 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2672 } 2673 return SRP_TSK_MGMT_FAILED; 2674 } 2675 2676 /** 2677 * srpt_queue_response - transmit the response to a SCSI command 2678 * @cmd: SCSI target command. 2679 * 2680 * Callback function called by the TCM core. Must not block since it can be 2681 * invoked on the context of the IB completion handler. 2682 */ 2683 static void srpt_queue_response(struct se_cmd *cmd) 2684 { 2685 struct srpt_send_ioctx *ioctx = 2686 container_of(cmd, struct srpt_send_ioctx, cmd); 2687 struct srpt_rdma_ch *ch = ioctx->ch; 2688 struct srpt_device *sdev = ch->sport->sdev; 2689 struct ib_send_wr send_wr, *first_wr = &send_wr; 2690 struct ib_sge sge; 2691 enum srpt_command_state state; 2692 int resp_len, ret, i; 2693 u8 srp_tm_status; 2694 2695 BUG_ON(!ch); 2696 2697 state = ioctx->state; 2698 switch (state) { 2699 case SRPT_STATE_NEW: 2700 case SRPT_STATE_DATA_IN: 2701 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 2702 break; 2703 case SRPT_STATE_MGMT: 2704 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 2705 break; 2706 default: 2707 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 2708 ch, ioctx->ioctx.index, ioctx->state); 2709 break; 2710 } 2711 2712 if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)) 2713 return; 2714 2715 /* For read commands, transfer the data to the initiator. */ 2716 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE && 2717 ioctx->cmd.data_length && 2718 !ioctx->queue_status_only) { 2719 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2720 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2721 2722 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, 2723 ch->sport->port, NULL, first_wr); 2724 } 2725 } 2726 2727 if (state != SRPT_STATE_MGMT) 2728 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, 2729 cmd->scsi_status); 2730 else { 2731 srp_tm_status 2732 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 2733 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 2734 ioctx->cmd.tag); 2735 } 2736 2737 atomic_inc(&ch->req_lim); 2738 2739 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma, 2740 &ch->sq_wr_avail) < 0)) { 2741 pr_warn("%s: IB send queue full (needed %d)\n", 2742 __func__, ioctx->n_rdma); 2743 ret = -ENOMEM; 2744 goto out; 2745 } 2746 2747 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len, 2748 DMA_TO_DEVICE); 2749 2750 sge.addr = ioctx->ioctx.dma; 2751 sge.length = resp_len; 2752 sge.lkey = sdev->lkey; 2753 2754 ioctx->ioctx.cqe.done = srpt_send_done; 2755 send_wr.next = NULL; 2756 send_wr.wr_cqe = &ioctx->ioctx.cqe; 2757 send_wr.sg_list = &sge; 2758 send_wr.num_sge = 1; 2759 send_wr.opcode = IB_WR_SEND; 2760 send_wr.send_flags = IB_SEND_SIGNALED; 2761 2762 ret = ib_post_send(ch->qp, first_wr, NULL); 2763 if (ret < 0) { 2764 pr_err("%s: sending cmd response failed for tag %llu (%d)\n", 2765 __func__, ioctx->cmd.tag, ret); 2766 goto out; 2767 } 2768 2769 return; 2770 2771 out: 2772 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 2773 atomic_dec(&ch->req_lim); 2774 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 2775 target_put_sess_cmd(&ioctx->cmd); 2776 } 2777 2778 static int srpt_queue_data_in(struct se_cmd *cmd) 2779 { 2780 srpt_queue_response(cmd); 2781 return 0; 2782 } 2783 2784 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 2785 { 2786 srpt_queue_response(cmd); 2787 } 2788 2789 static void srpt_aborted_task(struct se_cmd *cmd) 2790 { 2791 } 2792 2793 static int srpt_queue_status(struct se_cmd *cmd) 2794 { 2795 struct srpt_send_ioctx *ioctx; 2796 2797 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 2798 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 2799 if (cmd->se_cmd_flags & 2800 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 2801 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 2802 ioctx->queue_status_only = true; 2803 srpt_queue_response(cmd); 2804 return 0; 2805 } 2806 2807 static void srpt_refresh_port_work(struct work_struct *work) 2808 { 2809 struct srpt_port *sport = container_of(work, struct srpt_port, work); 2810 2811 srpt_refresh_port(sport); 2812 } 2813 2814 static bool srpt_ch_list_empty(struct srpt_port *sport) 2815 { 2816 struct srpt_nexus *nexus; 2817 bool res = true; 2818 2819 rcu_read_lock(); 2820 list_for_each_entry(nexus, &sport->nexus_list, entry) 2821 if (!list_empty(&nexus->ch_list)) 2822 res = false; 2823 rcu_read_unlock(); 2824 2825 return res; 2826 } 2827 2828 /** 2829 * srpt_release_sport - disable login and wait for associated channels 2830 * @sport: SRPT HCA port. 2831 */ 2832 static int srpt_release_sport(struct srpt_port *sport) 2833 { 2834 struct srpt_nexus *nexus, *next_n; 2835 struct srpt_rdma_ch *ch; 2836 2837 WARN_ON_ONCE(irqs_disabled()); 2838 2839 mutex_lock(&sport->mutex); 2840 srpt_set_enabled(sport, false); 2841 mutex_unlock(&sport->mutex); 2842 2843 while (wait_event_timeout(sport->ch_releaseQ, 2844 srpt_ch_list_empty(sport), 5 * HZ) <= 0) { 2845 pr_info("%s_%d: waiting for session unregistration ...\n", 2846 dev_name(&sport->sdev->device->dev), sport->port); 2847 rcu_read_lock(); 2848 list_for_each_entry(nexus, &sport->nexus_list, entry) { 2849 list_for_each_entry(ch, &nexus->ch_list, list) { 2850 pr_info("%s-%d: state %s\n", 2851 ch->sess_name, ch->qp->qp_num, 2852 get_ch_state_name(ch->state)); 2853 } 2854 } 2855 rcu_read_unlock(); 2856 } 2857 2858 mutex_lock(&sport->mutex); 2859 list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) { 2860 list_del(&nexus->entry); 2861 kfree_rcu(nexus, rcu); 2862 } 2863 mutex_unlock(&sport->mutex); 2864 2865 return 0; 2866 } 2867 2868 static struct se_wwn *__srpt_lookup_wwn(const char *name) 2869 { 2870 struct ib_device *dev; 2871 struct srpt_device *sdev; 2872 struct srpt_port *sport; 2873 int i; 2874 2875 list_for_each_entry(sdev, &srpt_dev_list, list) { 2876 dev = sdev->device; 2877 if (!dev) 2878 continue; 2879 2880 for (i = 0; i < dev->phys_port_cnt; i++) { 2881 sport = &sdev->port[i]; 2882 2883 if (strcmp(sport->port_guid, name) == 0) 2884 return &sport->port_guid_wwn; 2885 if (strcmp(sport->port_gid, name) == 0) 2886 return &sport->port_gid_wwn; 2887 } 2888 } 2889 2890 return NULL; 2891 } 2892 2893 static struct se_wwn *srpt_lookup_wwn(const char *name) 2894 { 2895 struct se_wwn *wwn; 2896 2897 spin_lock(&srpt_dev_lock); 2898 wwn = __srpt_lookup_wwn(name); 2899 spin_unlock(&srpt_dev_lock); 2900 2901 return wwn; 2902 } 2903 2904 static void srpt_free_srq(struct srpt_device *sdev) 2905 { 2906 if (!sdev->srq) 2907 return; 2908 2909 ib_destroy_srq(sdev->srq); 2910 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 2911 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 2912 sdev->srq = NULL; 2913 } 2914 2915 static int srpt_alloc_srq(struct srpt_device *sdev) 2916 { 2917 struct ib_srq_init_attr srq_attr = { 2918 .event_handler = srpt_srq_event, 2919 .srq_context = (void *)sdev, 2920 .attr.max_wr = sdev->srq_size, 2921 .attr.max_sge = 1, 2922 .srq_type = IB_SRQT_BASIC, 2923 }; 2924 struct ib_device *device = sdev->device; 2925 struct ib_srq *srq; 2926 int i; 2927 2928 WARN_ON_ONCE(sdev->srq); 2929 srq = ib_create_srq(sdev->pd, &srq_attr); 2930 if (IS_ERR(srq)) { 2931 pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq)); 2932 return PTR_ERR(srq); 2933 } 2934 2935 pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size, 2936 sdev->device->attrs.max_srq_wr, dev_name(&device->dev)); 2937 2938 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 2939 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 2940 sizeof(*sdev->ioctx_ring[0]), 2941 srp_max_req_size, DMA_FROM_DEVICE); 2942 if (!sdev->ioctx_ring) { 2943 ib_destroy_srq(srq); 2944 return -ENOMEM; 2945 } 2946 2947 sdev->use_srq = true; 2948 sdev->srq = srq; 2949 2950 for (i = 0; i < sdev->srq_size; ++i) { 2951 INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list); 2952 srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]); 2953 } 2954 2955 return 0; 2956 } 2957 2958 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq) 2959 { 2960 struct ib_device *device = sdev->device; 2961 int ret = 0; 2962 2963 if (!use_srq) { 2964 srpt_free_srq(sdev); 2965 sdev->use_srq = false; 2966 } else if (use_srq && !sdev->srq) { 2967 ret = srpt_alloc_srq(sdev); 2968 } 2969 pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, 2970 dev_name(&device->dev), sdev->use_srq, ret); 2971 return ret; 2972 } 2973 2974 /** 2975 * srpt_add_one - InfiniBand device addition callback function 2976 * @device: Describes a HCA. 2977 */ 2978 static void srpt_add_one(struct ib_device *device) 2979 { 2980 struct srpt_device *sdev; 2981 struct srpt_port *sport; 2982 int i, ret; 2983 2984 pr_debug("device = %p\n", device); 2985 2986 sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt), 2987 GFP_KERNEL); 2988 if (!sdev) 2989 goto err; 2990 2991 sdev->device = device; 2992 mutex_init(&sdev->sdev_mutex); 2993 2994 sdev->pd = ib_alloc_pd(device, 0); 2995 if (IS_ERR(sdev->pd)) 2996 goto free_dev; 2997 2998 sdev->lkey = sdev->pd->local_dma_lkey; 2999 3000 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr); 3001 3002 srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq); 3003 3004 if (!srpt_service_guid) 3005 srpt_service_guid = be64_to_cpu(device->node_guid); 3006 3007 if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND) 3008 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3009 if (IS_ERR(sdev->cm_id)) { 3010 pr_info("ib_create_cm_id() failed: %ld\n", 3011 PTR_ERR(sdev->cm_id)); 3012 sdev->cm_id = NULL; 3013 if (!rdma_cm_id) 3014 goto err_ring; 3015 } 3016 3017 /* print out target login information */ 3018 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3019 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3020 srpt_service_guid, srpt_service_guid); 3021 3022 /* 3023 * We do not have a consistent service_id (ie. also id_ext of target_id) 3024 * to identify this target. We currently use the guid of the first HCA 3025 * in the system as service_id; therefore, the target_id will change 3026 * if this HCA is gone bad and replaced by different HCA 3027 */ 3028 ret = sdev->cm_id ? 3029 ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) : 3030 0; 3031 if (ret < 0) { 3032 pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret, 3033 sdev->cm_id->state); 3034 goto err_cm; 3035 } 3036 3037 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3038 srpt_event_handler); 3039 ib_register_event_handler(&sdev->event_handler); 3040 3041 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3042 sport = &sdev->port[i - 1]; 3043 INIT_LIST_HEAD(&sport->nexus_list); 3044 init_waitqueue_head(&sport->ch_releaseQ); 3045 mutex_init(&sport->mutex); 3046 sport->sdev = sdev; 3047 sport->port = i; 3048 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3049 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3050 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3051 sport->port_attrib.use_srq = false; 3052 INIT_WORK(&sport->work, srpt_refresh_port_work); 3053 3054 if (srpt_refresh_port(sport)) { 3055 pr_err("MAD registration failed for %s-%d.\n", 3056 dev_name(&sdev->device->dev), i); 3057 goto err_event; 3058 } 3059 } 3060 3061 spin_lock(&srpt_dev_lock); 3062 list_add_tail(&sdev->list, &srpt_dev_list); 3063 spin_unlock(&srpt_dev_lock); 3064 3065 out: 3066 ib_set_client_data(device, &srpt_client, sdev); 3067 pr_debug("added %s.\n", dev_name(&device->dev)); 3068 return; 3069 3070 err_event: 3071 ib_unregister_event_handler(&sdev->event_handler); 3072 err_cm: 3073 if (sdev->cm_id) 3074 ib_destroy_cm_id(sdev->cm_id); 3075 err_ring: 3076 srpt_free_srq(sdev); 3077 ib_dealloc_pd(sdev->pd); 3078 free_dev: 3079 kfree(sdev); 3080 err: 3081 sdev = NULL; 3082 pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev)); 3083 goto out; 3084 } 3085 3086 /** 3087 * srpt_remove_one - InfiniBand device removal callback function 3088 * @device: Describes a HCA. 3089 * @client_data: The value passed as the third argument to ib_set_client_data(). 3090 */ 3091 static void srpt_remove_one(struct ib_device *device, void *client_data) 3092 { 3093 struct srpt_device *sdev = client_data; 3094 int i; 3095 3096 if (!sdev) { 3097 pr_info("%s(%s): nothing to do.\n", __func__, 3098 dev_name(&device->dev)); 3099 return; 3100 } 3101 3102 srpt_unregister_mad_agent(sdev); 3103 3104 ib_unregister_event_handler(&sdev->event_handler); 3105 3106 /* Cancel any work queued by the just unregistered IB event handler. */ 3107 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3108 cancel_work_sync(&sdev->port[i].work); 3109 3110 if (sdev->cm_id) 3111 ib_destroy_cm_id(sdev->cm_id); 3112 3113 ib_set_client_data(device, &srpt_client, NULL); 3114 3115 /* 3116 * Unregistering a target must happen after destroying sdev->cm_id 3117 * such that no new SRP_LOGIN_REQ information units can arrive while 3118 * destroying the target. 3119 */ 3120 spin_lock(&srpt_dev_lock); 3121 list_del(&sdev->list); 3122 spin_unlock(&srpt_dev_lock); 3123 3124 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3125 srpt_release_sport(&sdev->port[i]); 3126 3127 srpt_free_srq(sdev); 3128 3129 ib_dealloc_pd(sdev->pd); 3130 3131 kfree(sdev); 3132 } 3133 3134 static struct ib_client srpt_client = { 3135 .name = DRV_NAME, 3136 .add = srpt_add_one, 3137 .remove = srpt_remove_one 3138 }; 3139 3140 static int srpt_check_true(struct se_portal_group *se_tpg) 3141 { 3142 return 1; 3143 } 3144 3145 static int srpt_check_false(struct se_portal_group *se_tpg) 3146 { 3147 return 0; 3148 } 3149 3150 static char *srpt_get_fabric_name(void) 3151 { 3152 return "srpt"; 3153 } 3154 3155 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg) 3156 { 3157 return tpg->se_tpg_wwn->priv; 3158 } 3159 3160 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3161 { 3162 struct srpt_port *sport = srpt_tpg_to_sport(tpg); 3163 3164 WARN_ON_ONCE(tpg != &sport->port_guid_tpg && 3165 tpg != &sport->port_gid_tpg); 3166 return tpg == &sport->port_guid_tpg ? sport->port_guid : 3167 sport->port_gid; 3168 } 3169 3170 static u16 srpt_get_tag(struct se_portal_group *tpg) 3171 { 3172 return 1; 3173 } 3174 3175 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3176 { 3177 return 1; 3178 } 3179 3180 static void srpt_release_cmd(struct se_cmd *se_cmd) 3181 { 3182 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3183 struct srpt_send_ioctx, cmd); 3184 struct srpt_rdma_ch *ch = ioctx->ch; 3185 unsigned long flags; 3186 3187 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE && 3188 !(ioctx->cmd.transport_state & CMD_T_ABORTED)); 3189 3190 if (ioctx->n_rw_ctx) { 3191 srpt_free_rw_ctxs(ch, ioctx); 3192 ioctx->n_rw_ctx = 0; 3193 } 3194 3195 spin_lock_irqsave(&ch->spinlock, flags); 3196 list_add(&ioctx->free_list, &ch->free_list); 3197 spin_unlock_irqrestore(&ch->spinlock, flags); 3198 } 3199 3200 /** 3201 * srpt_close_session - forcibly close a session 3202 * @se_sess: SCSI target session. 3203 * 3204 * Callback function invoked by the TCM core to clean up sessions associated 3205 * with a node ACL when the user invokes 3206 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3207 */ 3208 static void srpt_close_session(struct se_session *se_sess) 3209 { 3210 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 3211 3212 srpt_disconnect_ch_sync(ch); 3213 } 3214 3215 /** 3216 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB) 3217 * @se_sess: SCSI target session. 3218 * 3219 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3220 * This object represents an arbitrary integer used to uniquely identify a 3221 * particular attached remote initiator port to a particular SCSI target port 3222 * within a particular SCSI target device within a particular SCSI instance. 3223 */ 3224 static u32 srpt_sess_get_index(struct se_session *se_sess) 3225 { 3226 return 0; 3227 } 3228 3229 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3230 { 3231 } 3232 3233 /* Note: only used from inside debug printk's by the TCM core. */ 3234 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3235 { 3236 struct srpt_send_ioctx *ioctx; 3237 3238 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3239 return ioctx->state; 3240 } 3241 3242 static int srpt_parse_guid(u64 *guid, const char *name) 3243 { 3244 u16 w[4]; 3245 int ret = -EINVAL; 3246 3247 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4) 3248 goto out; 3249 *guid = get_unaligned_be64(w); 3250 ret = 0; 3251 out: 3252 return ret; 3253 } 3254 3255 /** 3256 * srpt_parse_i_port_id - parse an initiator port ID 3257 * @name: ASCII representation of a 128-bit initiator port ID. 3258 * @i_port_id: Binary 128-bit port ID. 3259 */ 3260 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3261 { 3262 const char *p; 3263 unsigned len, count, leading_zero_bytes; 3264 int ret; 3265 3266 p = name; 3267 if (strncasecmp(p, "0x", 2) == 0) 3268 p += 2; 3269 ret = -EINVAL; 3270 len = strlen(p); 3271 if (len % 2) 3272 goto out; 3273 count = min(len / 2, 16U); 3274 leading_zero_bytes = 16 - count; 3275 memset(i_port_id, 0, leading_zero_bytes); 3276 ret = hex2bin(i_port_id + leading_zero_bytes, p, count); 3277 3278 out: 3279 return ret; 3280 } 3281 3282 /* 3283 * configfs callback function invoked for mkdir 3284 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3285 * 3286 * i_port_id must be an initiator port GUID, GID or IP address. See also the 3287 * target_alloc_session() calls in this driver. Examples of valid initiator 3288 * port IDs: 3289 * 0x0000000000000000505400fffe4a0b7b 3290 * 0000000000000000505400fffe4a0b7b 3291 * 5054:00ff:fe4a:0b7b 3292 * 192.168.122.76 3293 */ 3294 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) 3295 { 3296 struct sockaddr_storage sa; 3297 u64 guid; 3298 u8 i_port_id[16]; 3299 int ret; 3300 3301 ret = srpt_parse_guid(&guid, name); 3302 if (ret < 0) 3303 ret = srpt_parse_i_port_id(i_port_id, name); 3304 if (ret < 0) 3305 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL, 3306 &sa); 3307 if (ret < 0) 3308 pr_err("invalid initiator port ID %s\n", name); 3309 return ret; 3310 } 3311 3312 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, 3313 char *page) 3314 { 3315 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3316 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3317 3318 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3319 } 3320 3321 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, 3322 const char *page, size_t count) 3323 { 3324 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3325 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3326 unsigned long val; 3327 int ret; 3328 3329 ret = kstrtoul(page, 0, &val); 3330 if (ret < 0) { 3331 pr_err("kstrtoul() failed with ret: %d\n", ret); 3332 return -EINVAL; 3333 } 3334 if (val > MAX_SRPT_RDMA_SIZE) { 3335 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3336 MAX_SRPT_RDMA_SIZE); 3337 return -EINVAL; 3338 } 3339 if (val < DEFAULT_MAX_RDMA_SIZE) { 3340 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3341 val, DEFAULT_MAX_RDMA_SIZE); 3342 return -EINVAL; 3343 } 3344 sport->port_attrib.srp_max_rdma_size = val; 3345 3346 return count; 3347 } 3348 3349 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, 3350 char *page) 3351 { 3352 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3353 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3354 3355 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3356 } 3357 3358 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, 3359 const char *page, size_t count) 3360 { 3361 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3362 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3363 unsigned long val; 3364 int ret; 3365 3366 ret = kstrtoul(page, 0, &val); 3367 if (ret < 0) { 3368 pr_err("kstrtoul() failed with ret: %d\n", ret); 3369 return -EINVAL; 3370 } 3371 if (val > MAX_SRPT_RSP_SIZE) { 3372 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3373 MAX_SRPT_RSP_SIZE); 3374 return -EINVAL; 3375 } 3376 if (val < MIN_MAX_RSP_SIZE) { 3377 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3378 MIN_MAX_RSP_SIZE); 3379 return -EINVAL; 3380 } 3381 sport->port_attrib.srp_max_rsp_size = val; 3382 3383 return count; 3384 } 3385 3386 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, 3387 char *page) 3388 { 3389 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3390 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3391 3392 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3393 } 3394 3395 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, 3396 const char *page, size_t count) 3397 { 3398 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3399 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3400 unsigned long val; 3401 int ret; 3402 3403 ret = kstrtoul(page, 0, &val); 3404 if (ret < 0) { 3405 pr_err("kstrtoul() failed with ret: %d\n", ret); 3406 return -EINVAL; 3407 } 3408 if (val > MAX_SRPT_SRQ_SIZE) { 3409 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3410 MAX_SRPT_SRQ_SIZE); 3411 return -EINVAL; 3412 } 3413 if (val < MIN_SRPT_SRQ_SIZE) { 3414 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3415 MIN_SRPT_SRQ_SIZE); 3416 return -EINVAL; 3417 } 3418 sport->port_attrib.srp_sq_size = val; 3419 3420 return count; 3421 } 3422 3423 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item, 3424 char *page) 3425 { 3426 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3427 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3428 3429 return sprintf(page, "%d\n", sport->port_attrib.use_srq); 3430 } 3431 3432 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item, 3433 const char *page, size_t count) 3434 { 3435 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3436 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3437 struct srpt_device *sdev = sport->sdev; 3438 unsigned long val; 3439 bool enabled; 3440 int ret; 3441 3442 ret = kstrtoul(page, 0, &val); 3443 if (ret < 0) 3444 return ret; 3445 if (val != !!val) 3446 return -EINVAL; 3447 3448 ret = mutex_lock_interruptible(&sdev->sdev_mutex); 3449 if (ret < 0) 3450 return ret; 3451 ret = mutex_lock_interruptible(&sport->mutex); 3452 if (ret < 0) 3453 goto unlock_sdev; 3454 enabled = sport->enabled; 3455 /* Log out all initiator systems before changing 'use_srq'. */ 3456 srpt_set_enabled(sport, false); 3457 sport->port_attrib.use_srq = val; 3458 srpt_use_srq(sdev, sport->port_attrib.use_srq); 3459 srpt_set_enabled(sport, enabled); 3460 ret = count; 3461 mutex_unlock(&sport->mutex); 3462 unlock_sdev: 3463 mutex_unlock(&sdev->sdev_mutex); 3464 3465 return ret; 3466 } 3467 3468 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size); 3469 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size); 3470 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size); 3471 CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq); 3472 3473 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3474 &srpt_tpg_attrib_attr_srp_max_rdma_size, 3475 &srpt_tpg_attrib_attr_srp_max_rsp_size, 3476 &srpt_tpg_attrib_attr_srp_sq_size, 3477 &srpt_tpg_attrib_attr_use_srq, 3478 NULL, 3479 }; 3480 3481 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr) 3482 { 3483 struct rdma_cm_id *rdma_cm_id; 3484 int ret; 3485 3486 rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler, 3487 NULL, RDMA_PS_TCP, IB_QPT_RC); 3488 if (IS_ERR(rdma_cm_id)) { 3489 pr_err("RDMA/CM ID creation failed: %ld\n", 3490 PTR_ERR(rdma_cm_id)); 3491 goto out; 3492 } 3493 3494 ret = rdma_bind_addr(rdma_cm_id, listen_addr); 3495 if (ret) { 3496 char addr_str[64]; 3497 3498 snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr); 3499 pr_err("Binding RDMA/CM ID to address %s failed: %d\n", 3500 addr_str, ret); 3501 rdma_destroy_id(rdma_cm_id); 3502 rdma_cm_id = ERR_PTR(ret); 3503 goto out; 3504 } 3505 3506 ret = rdma_listen(rdma_cm_id, 128); 3507 if (ret) { 3508 pr_err("rdma_listen() failed: %d\n", ret); 3509 rdma_destroy_id(rdma_cm_id); 3510 rdma_cm_id = ERR_PTR(ret); 3511 } 3512 3513 out: 3514 return rdma_cm_id; 3515 } 3516 3517 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page) 3518 { 3519 return sprintf(page, "%d\n", rdma_cm_port); 3520 } 3521 3522 static ssize_t srpt_rdma_cm_port_store(struct config_item *item, 3523 const char *page, size_t count) 3524 { 3525 struct sockaddr_in addr4 = { .sin_family = AF_INET }; 3526 struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 }; 3527 struct rdma_cm_id *new_id = NULL; 3528 u16 val; 3529 int ret; 3530 3531 ret = kstrtou16(page, 0, &val); 3532 if (ret < 0) 3533 return ret; 3534 ret = count; 3535 if (rdma_cm_port == val) 3536 goto out; 3537 3538 if (val) { 3539 addr6.sin6_port = cpu_to_be16(val); 3540 new_id = srpt_create_rdma_id((struct sockaddr *)&addr6); 3541 if (IS_ERR(new_id)) { 3542 addr4.sin_port = cpu_to_be16(val); 3543 new_id = srpt_create_rdma_id((struct sockaddr *)&addr4); 3544 if (IS_ERR(new_id)) { 3545 ret = PTR_ERR(new_id); 3546 goto out; 3547 } 3548 } 3549 } 3550 3551 mutex_lock(&rdma_cm_mutex); 3552 rdma_cm_port = val; 3553 swap(rdma_cm_id, new_id); 3554 mutex_unlock(&rdma_cm_mutex); 3555 3556 if (new_id) 3557 rdma_destroy_id(new_id); 3558 ret = count; 3559 out: 3560 return ret; 3561 } 3562 3563 CONFIGFS_ATTR(srpt_, rdma_cm_port); 3564 3565 static struct configfs_attribute *srpt_da_attrs[] = { 3566 &srpt_attr_rdma_cm_port, 3567 NULL, 3568 }; 3569 3570 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page) 3571 { 3572 struct se_portal_group *se_tpg = to_tpg(item); 3573 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3574 3575 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3576 } 3577 3578 static ssize_t srpt_tpg_enable_store(struct config_item *item, 3579 const char *page, size_t count) 3580 { 3581 struct se_portal_group *se_tpg = to_tpg(item); 3582 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3583 unsigned long tmp; 3584 int ret; 3585 3586 ret = kstrtoul(page, 0, &tmp); 3587 if (ret < 0) { 3588 pr_err("Unable to extract srpt_tpg_store_enable\n"); 3589 return -EINVAL; 3590 } 3591 3592 if ((tmp != 0) && (tmp != 1)) { 3593 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3594 return -EINVAL; 3595 } 3596 3597 mutex_lock(&sport->mutex); 3598 srpt_set_enabled(sport, tmp); 3599 mutex_unlock(&sport->mutex); 3600 3601 return count; 3602 } 3603 3604 CONFIGFS_ATTR(srpt_tpg_, enable); 3605 3606 static struct configfs_attribute *srpt_tpg_attrs[] = { 3607 &srpt_tpg_attr_enable, 3608 NULL, 3609 }; 3610 3611 /** 3612 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg 3613 * @wwn: Corresponds to $driver/$port. 3614 * @name: $tpg. 3615 */ 3616 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3617 const char *name) 3618 { 3619 struct srpt_port *sport = wwn->priv; 3620 static struct se_portal_group *tpg; 3621 int res; 3622 3623 WARN_ON_ONCE(wwn != &sport->port_guid_wwn && 3624 wwn != &sport->port_gid_wwn); 3625 tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg : 3626 &sport->port_gid_tpg; 3627 res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP); 3628 if (res) 3629 return ERR_PTR(res); 3630 3631 return tpg; 3632 } 3633 3634 /** 3635 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg 3636 * @tpg: Target portal group to deregister. 3637 */ 3638 static void srpt_drop_tpg(struct se_portal_group *tpg) 3639 { 3640 struct srpt_port *sport = srpt_tpg_to_sport(tpg); 3641 3642 sport->enabled = false; 3643 core_tpg_deregister(tpg); 3644 } 3645 3646 /** 3647 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port 3648 * @tf: Not used. 3649 * @group: Not used. 3650 * @name: $port. 3651 */ 3652 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3653 struct config_group *group, 3654 const char *name) 3655 { 3656 return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL); 3657 } 3658 3659 /** 3660 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port 3661 * @wwn: $port. 3662 */ 3663 static void srpt_drop_tport(struct se_wwn *wwn) 3664 { 3665 } 3666 3667 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf) 3668 { 3669 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3670 } 3671 3672 CONFIGFS_ATTR_RO(srpt_wwn_, version); 3673 3674 static struct configfs_attribute *srpt_wwn_attrs[] = { 3675 &srpt_wwn_attr_version, 3676 NULL, 3677 }; 3678 3679 static const struct target_core_fabric_ops srpt_template = { 3680 .module = THIS_MODULE, 3681 .name = "srpt", 3682 .get_fabric_name = srpt_get_fabric_name, 3683 .tpg_get_wwn = srpt_get_fabric_wwn, 3684 .tpg_get_tag = srpt_get_tag, 3685 .tpg_check_demo_mode = srpt_check_false, 3686 .tpg_check_demo_mode_cache = srpt_check_true, 3687 .tpg_check_demo_mode_write_protect = srpt_check_true, 3688 .tpg_check_prod_mode_write_protect = srpt_check_false, 3689 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3690 .release_cmd = srpt_release_cmd, 3691 .check_stop_free = srpt_check_stop_free, 3692 .close_session = srpt_close_session, 3693 .sess_get_index = srpt_sess_get_index, 3694 .sess_get_initiator_sid = NULL, 3695 .write_pending = srpt_write_pending, 3696 .write_pending_status = srpt_write_pending_status, 3697 .set_default_node_attributes = srpt_set_default_node_attrs, 3698 .get_cmd_state = srpt_get_tcm_cmd_state, 3699 .queue_data_in = srpt_queue_data_in, 3700 .queue_status = srpt_queue_status, 3701 .queue_tm_rsp = srpt_queue_tm_rsp, 3702 .aborted_task = srpt_aborted_task, 3703 /* 3704 * Setup function pointers for generic logic in 3705 * target_core_fabric_configfs.c 3706 */ 3707 .fabric_make_wwn = srpt_make_tport, 3708 .fabric_drop_wwn = srpt_drop_tport, 3709 .fabric_make_tpg = srpt_make_tpg, 3710 .fabric_drop_tpg = srpt_drop_tpg, 3711 .fabric_init_nodeacl = srpt_init_nodeacl, 3712 3713 .tfc_discovery_attrs = srpt_da_attrs, 3714 .tfc_wwn_attrs = srpt_wwn_attrs, 3715 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3716 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3717 }; 3718 3719 /** 3720 * srpt_init_module - kernel module initialization 3721 * 3722 * Note: Since ib_register_client() registers callback functions, and since at 3723 * least one of these callback functions (srpt_add_one()) calls target core 3724 * functions, this driver must be registered with the target core before 3725 * ib_register_client() is called. 3726 */ 3727 static int __init srpt_init_module(void) 3728 { 3729 int ret; 3730 3731 ret = -EINVAL; 3732 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3733 pr_err("invalid value %d for kernel module parameter" 3734 " srp_max_req_size -- must be at least %d.\n", 3735 srp_max_req_size, MIN_MAX_REQ_SIZE); 3736 goto out; 3737 } 3738 3739 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3740 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3741 pr_err("invalid value %d for kernel module parameter" 3742 " srpt_srq_size -- must be in the range [%d..%d].\n", 3743 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3744 goto out; 3745 } 3746 3747 ret = target_register_template(&srpt_template); 3748 if (ret) 3749 goto out; 3750 3751 ret = ib_register_client(&srpt_client); 3752 if (ret) { 3753 pr_err("couldn't register IB client\n"); 3754 goto out_unregister_target; 3755 } 3756 3757 return 0; 3758 3759 out_unregister_target: 3760 target_unregister_template(&srpt_template); 3761 out: 3762 return ret; 3763 } 3764 3765 static void __exit srpt_cleanup_module(void) 3766 { 3767 if (rdma_cm_id) 3768 rdma_destroy_id(rdma_cm_id); 3769 ib_unregister_client(&srpt_client); 3770 target_unregister_template(&srpt_template); 3771 } 3772 3773 module_init(srpt_init_module); 3774 module_exit(srpt_cleanup_module); 3775