1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <linux/inet.h> 45 #include <rdma/ib_cache.h> 46 #include <scsi/scsi_proto.h> 47 #include <scsi/scsi_tcq.h> 48 #include <target/target_core_base.h> 49 #include <target/target_core_fabric.h> 50 #include "ib_srpt.h" 51 52 /* Name of this kernel module. */ 53 #define DRV_NAME "ib_srpt" 54 #define DRV_VERSION "2.0.0" 55 #define DRV_RELDATE "2011-02-14" 56 57 #define SRPT_ID_STRING "Linux SRP target" 58 59 #undef pr_fmt 60 #define pr_fmt(fmt) DRV_NAME " " fmt 61 62 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 64 "v" DRV_VERSION " (" DRV_RELDATE ")"); 65 MODULE_LICENSE("Dual BSD/GPL"); 66 67 /* 68 * Global Variables 69 */ 70 71 static u64 srpt_service_guid; 72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 74 75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 76 module_param(srp_max_req_size, int, 0444); 77 MODULE_PARM_DESC(srp_max_req_size, 78 "Maximum size of SRP request messages in bytes."); 79 80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 81 module_param(srpt_srq_size, int, 0444); 82 MODULE_PARM_DESC(srpt_srq_size, 83 "Shared receive queue (SRQ) size."); 84 85 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp) 86 { 87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 88 } 89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 90 0444); 91 MODULE_PARM_DESC(srpt_service_guid, 92 "Using this value for ioc_guid, id_ext, and cm_listen_id" 93 " instead of using the node_guid of the first HCA."); 94 95 static struct ib_client srpt_client; 96 /* Protects both rdma_cm_port and rdma_cm_id. */ 97 static DEFINE_MUTEX(rdma_cm_mutex); 98 /* Port number RDMA/CM will bind to. */ 99 static u16 rdma_cm_port; 100 static struct rdma_cm_id *rdma_cm_id; 101 static void srpt_release_cmd(struct se_cmd *se_cmd); 102 static void srpt_free_ch(struct kref *kref); 103 static int srpt_queue_status(struct se_cmd *cmd); 104 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc); 105 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc); 106 static void srpt_process_wait_list(struct srpt_rdma_ch *ch); 107 108 /* 109 * The only allowed channel state changes are those that change the channel 110 * state into a state with a higher numerical value. Hence the new > prev test. 111 */ 112 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new) 113 { 114 unsigned long flags; 115 enum rdma_ch_state prev; 116 bool changed = false; 117 118 spin_lock_irqsave(&ch->spinlock, flags); 119 prev = ch->state; 120 if (new > prev) { 121 ch->state = new; 122 changed = true; 123 } 124 spin_unlock_irqrestore(&ch->spinlock, flags); 125 126 return changed; 127 } 128 129 /** 130 * srpt_event_handler - asynchronous IB event callback function 131 * @handler: IB event handler registered by ib_register_event_handler(). 132 * @event: Description of the event that occurred. 133 * 134 * Callback function called by the InfiniBand core when an asynchronous IB 135 * event occurs. This callback may occur in interrupt context. See also 136 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 137 * Architecture Specification. 138 */ 139 static void srpt_event_handler(struct ib_event_handler *handler, 140 struct ib_event *event) 141 { 142 struct srpt_device *sdev; 143 struct srpt_port *sport; 144 u8 port_num; 145 146 sdev = ib_get_client_data(event->device, &srpt_client); 147 if (!sdev || sdev->device != event->device) 148 return; 149 150 pr_debug("ASYNC event= %d on device= %s\n", event->event, 151 sdev->device->name); 152 153 switch (event->event) { 154 case IB_EVENT_PORT_ERR: 155 port_num = event->element.port_num - 1; 156 if (port_num < sdev->device->phys_port_cnt) { 157 sport = &sdev->port[port_num]; 158 sport->lid = 0; 159 sport->sm_lid = 0; 160 } else { 161 WARN(true, "event %d: port_num %d out of range 1..%d\n", 162 event->event, port_num + 1, 163 sdev->device->phys_port_cnt); 164 } 165 break; 166 case IB_EVENT_PORT_ACTIVE: 167 case IB_EVENT_LID_CHANGE: 168 case IB_EVENT_PKEY_CHANGE: 169 case IB_EVENT_SM_CHANGE: 170 case IB_EVENT_CLIENT_REREGISTER: 171 case IB_EVENT_GID_CHANGE: 172 /* Refresh port data asynchronously. */ 173 port_num = event->element.port_num - 1; 174 if (port_num < sdev->device->phys_port_cnt) { 175 sport = &sdev->port[port_num]; 176 if (!sport->lid && !sport->sm_lid) 177 schedule_work(&sport->work); 178 } else { 179 WARN(true, "event %d: port_num %d out of range 1..%d\n", 180 event->event, port_num + 1, 181 sdev->device->phys_port_cnt); 182 } 183 break; 184 default: 185 pr_err("received unrecognized IB event %d\n", event->event); 186 break; 187 } 188 } 189 190 /** 191 * srpt_srq_event - SRQ event callback function 192 * @event: Description of the event that occurred. 193 * @ctx: Context pointer specified at SRQ creation time. 194 */ 195 static void srpt_srq_event(struct ib_event *event, void *ctx) 196 { 197 pr_debug("SRQ event %d\n", event->event); 198 } 199 200 static const char *get_ch_state_name(enum rdma_ch_state s) 201 { 202 switch (s) { 203 case CH_CONNECTING: 204 return "connecting"; 205 case CH_LIVE: 206 return "live"; 207 case CH_DISCONNECTING: 208 return "disconnecting"; 209 case CH_DRAINING: 210 return "draining"; 211 case CH_DISCONNECTED: 212 return "disconnected"; 213 } 214 return "???"; 215 } 216 217 /** 218 * srpt_qp_event - QP event callback function 219 * @event: Description of the event that occurred. 220 * @ch: SRPT RDMA channel. 221 */ 222 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 223 { 224 pr_debug("QP event %d on ch=%p sess_name=%s state=%d\n", 225 event->event, ch, ch->sess_name, ch->state); 226 227 switch (event->event) { 228 case IB_EVENT_COMM_EST: 229 if (ch->using_rdma_cm) 230 rdma_notify(ch->rdma_cm.cm_id, event->event); 231 else 232 ib_cm_notify(ch->ib_cm.cm_id, event->event); 233 break; 234 case IB_EVENT_QP_LAST_WQE_REACHED: 235 pr_debug("%s-%d, state %s: received Last WQE event.\n", 236 ch->sess_name, ch->qp->qp_num, 237 get_ch_state_name(ch->state)); 238 break; 239 default: 240 pr_err("received unrecognized IB QP event %d\n", event->event); 241 break; 242 } 243 } 244 245 /** 246 * srpt_set_ioc - initialize a IOUnitInfo structure 247 * @c_list: controller list. 248 * @slot: one-based slot number. 249 * @value: four-bit value. 250 * 251 * Copies the lowest four bits of value in element slot of the array of four 252 * bit elements called c_list (controller list). The index slot is one-based. 253 */ 254 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 255 { 256 u16 id; 257 u8 tmp; 258 259 id = (slot - 1) / 2; 260 if (slot & 0x1) { 261 tmp = c_list[id] & 0xf; 262 c_list[id] = (value << 4) | tmp; 263 } else { 264 tmp = c_list[id] & 0xf0; 265 c_list[id] = (value & 0xf) | tmp; 266 } 267 } 268 269 /** 270 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram 271 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO. 272 * 273 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 274 * Specification. 275 */ 276 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 277 { 278 struct ib_class_port_info *cif; 279 280 cif = (struct ib_class_port_info *)mad->data; 281 memset(cif, 0, sizeof(*cif)); 282 cif->base_version = 1; 283 cif->class_version = 1; 284 285 ib_set_cpi_resp_time(cif, 20); 286 mad->mad_hdr.status = 0; 287 } 288 289 /** 290 * srpt_get_iou - write IOUnitInfo to a management datagram 291 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO. 292 * 293 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 294 * Specification. See also section B.7, table B.6 in the SRP r16a document. 295 */ 296 static void srpt_get_iou(struct ib_dm_mad *mad) 297 { 298 struct ib_dm_iou_info *ioui; 299 u8 slot; 300 int i; 301 302 ioui = (struct ib_dm_iou_info *)mad->data; 303 ioui->change_id = cpu_to_be16(1); 304 ioui->max_controllers = 16; 305 306 /* set present for slot 1 and empty for the rest */ 307 srpt_set_ioc(ioui->controller_list, 1, 1); 308 for (i = 1, slot = 2; i < 16; i++, slot++) 309 srpt_set_ioc(ioui->controller_list, slot, 0); 310 311 mad->mad_hdr.status = 0; 312 } 313 314 /** 315 * srpt_get_ioc - write IOControllerprofile to a management datagram 316 * @sport: HCA port through which the MAD has been received. 317 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query. 318 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE. 319 * 320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 321 * Architecture Specification. See also section B.7, table B.7 in the SRP 322 * r16a document. 323 */ 324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 325 struct ib_dm_mad *mad) 326 { 327 struct srpt_device *sdev = sport->sdev; 328 struct ib_dm_ioc_profile *iocp; 329 int send_queue_depth; 330 331 iocp = (struct ib_dm_ioc_profile *)mad->data; 332 333 if (!slot || slot > 16) { 334 mad->mad_hdr.status 335 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 336 return; 337 } 338 339 if (slot > 2) { 340 mad->mad_hdr.status 341 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 342 return; 343 } 344 345 if (sdev->use_srq) 346 send_queue_depth = sdev->srq_size; 347 else 348 send_queue_depth = min(MAX_SRPT_RQ_SIZE, 349 sdev->device->attrs.max_qp_wr); 350 351 memset(iocp, 0, sizeof(*iocp)); 352 strcpy(iocp->id_string, SRPT_ID_STRING); 353 iocp->guid = cpu_to_be64(srpt_service_guid); 354 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 355 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id); 356 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver); 357 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 358 iocp->subsys_device_id = 0x0; 359 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 360 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); 361 iocp->protocol = cpu_to_be16(SRP_PROTOCOL); 362 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); 363 iocp->send_queue_depth = cpu_to_be16(send_queue_depth); 364 iocp->rdma_read_depth = 4; 365 iocp->send_size = cpu_to_be32(srp_max_req_size); 366 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 367 1U << 24)); 368 iocp->num_svc_entries = 1; 369 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 370 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 371 372 mad->mad_hdr.status = 0; 373 } 374 375 /** 376 * srpt_get_svc_entries - write ServiceEntries to a management datagram 377 * @ioc_guid: I/O controller GUID to use in reply. 378 * @slot: I/O controller number. 379 * @hi: End of the range of service entries to be specified in the reply. 380 * @lo: Start of the range of service entries to be specified in the reply.. 381 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES. 382 * 383 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 384 * Specification. See also section B.7, table B.8 in the SRP r16a document. 385 */ 386 static void srpt_get_svc_entries(u64 ioc_guid, 387 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 388 { 389 struct ib_dm_svc_entries *svc_entries; 390 391 WARN_ON(!ioc_guid); 392 393 if (!slot || slot > 16) { 394 mad->mad_hdr.status 395 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 396 return; 397 } 398 399 if (slot > 2 || lo > hi || hi > 1) { 400 mad->mad_hdr.status 401 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 402 return; 403 } 404 405 svc_entries = (struct ib_dm_svc_entries *)mad->data; 406 memset(svc_entries, 0, sizeof(*svc_entries)); 407 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 408 snprintf(svc_entries->service_entries[0].name, 409 sizeof(svc_entries->service_entries[0].name), 410 "%s%016llx", 411 SRP_SERVICE_NAME_PREFIX, 412 ioc_guid); 413 414 mad->mad_hdr.status = 0; 415 } 416 417 /** 418 * srpt_mgmt_method_get - process a received management datagram 419 * @sp: HCA port through which the MAD has been received. 420 * @rq_mad: received MAD. 421 * @rsp_mad: response MAD. 422 */ 423 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 424 struct ib_dm_mad *rsp_mad) 425 { 426 u16 attr_id; 427 u32 slot; 428 u8 hi, lo; 429 430 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 431 switch (attr_id) { 432 case DM_ATTR_CLASS_PORT_INFO: 433 srpt_get_class_port_info(rsp_mad); 434 break; 435 case DM_ATTR_IOU_INFO: 436 srpt_get_iou(rsp_mad); 437 break; 438 case DM_ATTR_IOC_PROFILE: 439 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 440 srpt_get_ioc(sp, slot, rsp_mad); 441 break; 442 case DM_ATTR_SVC_ENTRIES: 443 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 444 hi = (u8) ((slot >> 8) & 0xff); 445 lo = (u8) (slot & 0xff); 446 slot = (u16) ((slot >> 16) & 0xffff); 447 srpt_get_svc_entries(srpt_service_guid, 448 slot, hi, lo, rsp_mad); 449 break; 450 default: 451 rsp_mad->mad_hdr.status = 452 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 453 break; 454 } 455 } 456 457 /** 458 * srpt_mad_send_handler - MAD send completion callback 459 * @mad_agent: Return value of ib_register_mad_agent(). 460 * @mad_wc: Work completion reporting that the MAD has been sent. 461 */ 462 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 463 struct ib_mad_send_wc *mad_wc) 464 { 465 rdma_destroy_ah(mad_wc->send_buf->ah); 466 ib_free_send_mad(mad_wc->send_buf); 467 } 468 469 /** 470 * srpt_mad_recv_handler - MAD reception callback function 471 * @mad_agent: Return value of ib_register_mad_agent(). 472 * @send_buf: Not used. 473 * @mad_wc: Work completion reporting that a MAD has been received. 474 */ 475 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 476 struct ib_mad_send_buf *send_buf, 477 struct ib_mad_recv_wc *mad_wc) 478 { 479 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 480 struct ib_ah *ah; 481 struct ib_mad_send_buf *rsp; 482 struct ib_dm_mad *dm_mad; 483 484 if (!mad_wc || !mad_wc->recv_buf.mad) 485 return; 486 487 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 488 mad_wc->recv_buf.grh, mad_agent->port_num); 489 if (IS_ERR(ah)) 490 goto err; 491 492 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 493 494 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 495 mad_wc->wc->pkey_index, 0, 496 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 497 GFP_KERNEL, 498 IB_MGMT_BASE_VERSION); 499 if (IS_ERR(rsp)) 500 goto err_rsp; 501 502 rsp->ah = ah; 503 504 dm_mad = rsp->mad; 505 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad)); 506 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 507 dm_mad->mad_hdr.status = 0; 508 509 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 510 case IB_MGMT_METHOD_GET: 511 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 512 break; 513 case IB_MGMT_METHOD_SET: 514 dm_mad->mad_hdr.status = 515 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 516 break; 517 default: 518 dm_mad->mad_hdr.status = 519 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 520 break; 521 } 522 523 if (!ib_post_send_mad(rsp, NULL)) { 524 ib_free_recv_mad(mad_wc); 525 /* will destroy_ah & free_send_mad in send completion */ 526 return; 527 } 528 529 ib_free_send_mad(rsp); 530 531 err_rsp: 532 rdma_destroy_ah(ah); 533 err: 534 ib_free_recv_mad(mad_wc); 535 } 536 537 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid) 538 { 539 const __be16 *g = (const __be16 *)guid; 540 541 return snprintf(buf, size, "%04x:%04x:%04x:%04x", 542 be16_to_cpu(g[0]), be16_to_cpu(g[1]), 543 be16_to_cpu(g[2]), be16_to_cpu(g[3])); 544 } 545 546 /** 547 * srpt_refresh_port - configure a HCA port 548 * @sport: SRPT HCA port. 549 * 550 * Enable InfiniBand management datagram processing, update the cached sm_lid, 551 * lid and gid values, and register a callback function for processing MADs 552 * on the specified port. 553 * 554 * Note: It is safe to call this function more than once for the same port. 555 */ 556 static int srpt_refresh_port(struct srpt_port *sport) 557 { 558 struct ib_mad_reg_req reg_req; 559 struct ib_port_modify port_modify; 560 struct ib_port_attr port_attr; 561 int ret; 562 563 memset(&port_modify, 0, sizeof(port_modify)); 564 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 565 port_modify.clr_port_cap_mask = 0; 566 567 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 568 if (ret) 569 goto err_mod_port; 570 571 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 572 if (ret) 573 goto err_query_port; 574 575 sport->sm_lid = port_attr.sm_lid; 576 sport->lid = port_attr.lid; 577 578 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid, 579 NULL); 580 if (ret) 581 goto err_query_port; 582 583 sport->port_guid_wwn.priv = sport; 584 srpt_format_guid(sport->port_guid, sizeof(sport->port_guid), 585 &sport->gid.global.interface_id); 586 sport->port_gid_wwn.priv = sport; 587 snprintf(sport->port_gid, sizeof(sport->port_gid), 588 "0x%016llx%016llx", 589 be64_to_cpu(sport->gid.global.subnet_prefix), 590 be64_to_cpu(sport->gid.global.interface_id)); 591 592 if (!sport->mad_agent) { 593 memset(®_req, 0, sizeof(reg_req)); 594 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 595 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 596 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 597 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 598 599 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 600 sport->port, 601 IB_QPT_GSI, 602 ®_req, 0, 603 srpt_mad_send_handler, 604 srpt_mad_recv_handler, 605 sport, 0); 606 if (IS_ERR(sport->mad_agent)) { 607 ret = PTR_ERR(sport->mad_agent); 608 sport->mad_agent = NULL; 609 goto err_query_port; 610 } 611 } 612 613 return 0; 614 615 err_query_port: 616 617 port_modify.set_port_cap_mask = 0; 618 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 619 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 620 621 err_mod_port: 622 623 return ret; 624 } 625 626 /** 627 * srpt_unregister_mad_agent - unregister MAD callback functions 628 * @sdev: SRPT HCA pointer. 629 * 630 * Note: It is safe to call this function more than once for the same device. 631 */ 632 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 633 { 634 struct ib_port_modify port_modify = { 635 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 636 }; 637 struct srpt_port *sport; 638 int i; 639 640 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 641 sport = &sdev->port[i - 1]; 642 WARN_ON(sport->port != i); 643 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 644 pr_err("disabling MAD processing failed.\n"); 645 if (sport->mad_agent) { 646 ib_unregister_mad_agent(sport->mad_agent); 647 sport->mad_agent = NULL; 648 } 649 } 650 } 651 652 /** 653 * srpt_alloc_ioctx - allocate a SRPT I/O context structure 654 * @sdev: SRPT HCA pointer. 655 * @ioctx_size: I/O context size. 656 * @dma_size: Size of I/O context DMA buffer. 657 * @dir: DMA data direction. 658 */ 659 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 660 int ioctx_size, int dma_size, 661 enum dma_data_direction dir) 662 { 663 struct srpt_ioctx *ioctx; 664 665 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 666 if (!ioctx) 667 goto err; 668 669 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 670 if (!ioctx->buf) 671 goto err_free_ioctx; 672 673 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 674 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 675 goto err_free_buf; 676 677 return ioctx; 678 679 err_free_buf: 680 kfree(ioctx->buf); 681 err_free_ioctx: 682 kfree(ioctx); 683 err: 684 return NULL; 685 } 686 687 /** 688 * srpt_free_ioctx - free a SRPT I/O context structure 689 * @sdev: SRPT HCA pointer. 690 * @ioctx: I/O context pointer. 691 * @dma_size: Size of I/O context DMA buffer. 692 * @dir: DMA data direction. 693 */ 694 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 695 int dma_size, enum dma_data_direction dir) 696 { 697 if (!ioctx) 698 return; 699 700 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 701 kfree(ioctx->buf); 702 kfree(ioctx); 703 } 704 705 /** 706 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures 707 * @sdev: Device to allocate the I/O context ring for. 708 * @ring_size: Number of elements in the I/O context ring. 709 * @ioctx_size: I/O context size. 710 * @dma_size: DMA buffer size. 711 * @dir: DMA data direction. 712 */ 713 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 714 int ring_size, int ioctx_size, 715 int dma_size, enum dma_data_direction dir) 716 { 717 struct srpt_ioctx **ring; 718 int i; 719 720 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 721 && ioctx_size != sizeof(struct srpt_send_ioctx)); 722 723 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 724 if (!ring) 725 goto out; 726 for (i = 0; i < ring_size; ++i) { 727 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 728 if (!ring[i]) 729 goto err; 730 ring[i]->index = i; 731 } 732 goto out; 733 734 err: 735 while (--i >= 0) 736 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 737 kfree(ring); 738 ring = NULL; 739 out: 740 return ring; 741 } 742 743 /** 744 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures 745 * @ioctx_ring: I/O context ring to be freed. 746 * @sdev: SRPT HCA pointer. 747 * @ring_size: Number of ring elements. 748 * @dma_size: Size of I/O context DMA buffer. 749 * @dir: DMA data direction. 750 */ 751 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 752 struct srpt_device *sdev, int ring_size, 753 int dma_size, enum dma_data_direction dir) 754 { 755 int i; 756 757 if (!ioctx_ring) 758 return; 759 760 for (i = 0; i < ring_size; ++i) 761 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 762 kfree(ioctx_ring); 763 } 764 765 /** 766 * srpt_set_cmd_state - set the state of a SCSI command 767 * @ioctx: Send I/O context. 768 * @new: New I/O context state. 769 * 770 * Does not modify the state of aborted commands. Returns the previous command 771 * state. 772 */ 773 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 774 enum srpt_command_state new) 775 { 776 enum srpt_command_state previous; 777 778 previous = ioctx->state; 779 if (previous != SRPT_STATE_DONE) 780 ioctx->state = new; 781 782 return previous; 783 } 784 785 /** 786 * srpt_test_and_set_cmd_state - test and set the state of a command 787 * @ioctx: Send I/O context. 788 * @old: Current I/O context state. 789 * @new: New I/O context state. 790 * 791 * Returns true if and only if the previous command state was equal to 'old'. 792 */ 793 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 794 enum srpt_command_state old, 795 enum srpt_command_state new) 796 { 797 enum srpt_command_state previous; 798 799 WARN_ON(!ioctx); 800 WARN_ON(old == SRPT_STATE_DONE); 801 WARN_ON(new == SRPT_STATE_NEW); 802 803 previous = ioctx->state; 804 if (previous == old) 805 ioctx->state = new; 806 807 return previous == old; 808 } 809 810 /** 811 * srpt_post_recv - post an IB receive request 812 * @sdev: SRPT HCA pointer. 813 * @ch: SRPT RDMA channel. 814 * @ioctx: Receive I/O context pointer. 815 */ 816 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch, 817 struct srpt_recv_ioctx *ioctx) 818 { 819 struct ib_sge list; 820 struct ib_recv_wr wr, *bad_wr; 821 822 BUG_ON(!sdev); 823 list.addr = ioctx->ioctx.dma; 824 list.length = srp_max_req_size; 825 list.lkey = sdev->lkey; 826 827 ioctx->ioctx.cqe.done = srpt_recv_done; 828 wr.wr_cqe = &ioctx->ioctx.cqe; 829 wr.next = NULL; 830 wr.sg_list = &list; 831 wr.num_sge = 1; 832 833 if (sdev->use_srq) 834 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 835 else 836 return ib_post_recv(ch->qp, &wr, &bad_wr); 837 } 838 839 /** 840 * srpt_zerolength_write - perform a zero-length RDMA write 841 * @ch: SRPT RDMA channel. 842 * 843 * A quote from the InfiniBand specification: C9-88: For an HCA responder 844 * using Reliable Connection service, for each zero-length RDMA READ or WRITE 845 * request, the R_Key shall not be validated, even if the request includes 846 * Immediate data. 847 */ 848 static int srpt_zerolength_write(struct srpt_rdma_ch *ch) 849 { 850 struct ib_send_wr *bad_wr; 851 struct ib_rdma_wr wr = { 852 .wr = { 853 .next = NULL, 854 { .wr_cqe = &ch->zw_cqe, }, 855 .opcode = IB_WR_RDMA_WRITE, 856 .send_flags = IB_SEND_SIGNALED, 857 } 858 }; 859 860 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name, 861 ch->qp->qp_num); 862 863 return ib_post_send(ch->qp, &wr.wr, &bad_wr); 864 } 865 866 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc) 867 { 868 struct srpt_rdma_ch *ch = cq->cq_context; 869 870 pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num, 871 wc->status); 872 873 if (wc->status == IB_WC_SUCCESS) { 874 srpt_process_wait_list(ch); 875 } else { 876 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 877 schedule_work(&ch->release_work); 878 else 879 pr_debug("%s-%d: already disconnected.\n", 880 ch->sess_name, ch->qp->qp_num); 881 } 882 } 883 884 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx, 885 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg, 886 unsigned *sg_cnt) 887 { 888 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 889 struct srpt_rdma_ch *ch = ioctx->ch; 890 struct scatterlist *prev = NULL; 891 unsigned prev_nents; 892 int ret, i; 893 894 if (nbufs == 1) { 895 ioctx->rw_ctxs = &ioctx->s_rw_ctx; 896 } else { 897 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs), 898 GFP_KERNEL); 899 if (!ioctx->rw_ctxs) 900 return -ENOMEM; 901 } 902 903 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) { 904 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 905 u64 remote_addr = be64_to_cpu(db->va); 906 u32 size = be32_to_cpu(db->len); 907 u32 rkey = be32_to_cpu(db->key); 908 909 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false, 910 i < nbufs - 1); 911 if (ret) 912 goto unwind; 913 914 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port, 915 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir); 916 if (ret < 0) { 917 target_free_sgl(ctx->sg, ctx->nents); 918 goto unwind; 919 } 920 921 ioctx->n_rdma += ret; 922 ioctx->n_rw_ctx++; 923 924 if (prev) { 925 sg_unmark_end(&prev[prev_nents - 1]); 926 sg_chain(prev, prev_nents + 1, ctx->sg); 927 } else { 928 *sg = ctx->sg; 929 } 930 931 prev = ctx->sg; 932 prev_nents = ctx->nents; 933 934 *sg_cnt += ctx->nents; 935 } 936 937 return 0; 938 939 unwind: 940 while (--i >= 0) { 941 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 942 943 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 944 ctx->sg, ctx->nents, dir); 945 target_free_sgl(ctx->sg, ctx->nents); 946 } 947 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 948 kfree(ioctx->rw_ctxs); 949 return ret; 950 } 951 952 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch, 953 struct srpt_send_ioctx *ioctx) 954 { 955 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 956 int i; 957 958 for (i = 0; i < ioctx->n_rw_ctx; i++) { 959 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 960 961 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 962 ctx->sg, ctx->nents, dir); 963 target_free_sgl(ctx->sg, ctx->nents); 964 } 965 966 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 967 kfree(ioctx->rw_ctxs); 968 } 969 970 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd) 971 { 972 /* 973 * The pointer computations below will only be compiled correctly 974 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 975 * whether srp_cmd::add_data has been declared as a byte pointer. 976 */ 977 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) && 978 !__same_type(srp_cmd->add_data[0], (u8)0)); 979 980 /* 981 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 982 * CDB LENGTH' field are reserved and the size in bytes of this field 983 * is four times the value specified in bits 3..7. Hence the "& ~3". 984 */ 985 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3); 986 } 987 988 /** 989 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request 990 * @ioctx: Pointer to the I/O context associated with the request. 991 * @srp_cmd: Pointer to the SRP_CMD request data. 992 * @dir: Pointer to the variable to which the transfer direction will be 993 * written. 994 * @sg: [out] scatterlist allocated for the parsed SRP_CMD. 995 * @sg_cnt: [out] length of @sg. 996 * @data_len: Pointer to the variable to which the total data length of all 997 * descriptors in the SRP_CMD request will be written. 998 * 999 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 1000 * 1001 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 1002 * -ENOMEM when memory allocation fails and zero upon success. 1003 */ 1004 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 1005 struct srp_cmd *srp_cmd, enum dma_data_direction *dir, 1006 struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len) 1007 { 1008 BUG_ON(!dir); 1009 BUG_ON(!data_len); 1010 1011 /* 1012 * The lower four bits of the buffer format field contain the DATA-IN 1013 * buffer descriptor format, and the highest four bits contain the 1014 * DATA-OUT buffer descriptor format. 1015 */ 1016 if (srp_cmd->buf_fmt & 0xf) 1017 /* DATA-IN: transfer data from target to initiator (read). */ 1018 *dir = DMA_FROM_DEVICE; 1019 else if (srp_cmd->buf_fmt >> 4) 1020 /* DATA-OUT: transfer data from initiator to target (write). */ 1021 *dir = DMA_TO_DEVICE; 1022 else 1023 *dir = DMA_NONE; 1024 1025 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */ 1026 ioctx->cmd.data_direction = *dir; 1027 1028 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 1029 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 1030 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd); 1031 1032 *data_len = be32_to_cpu(db->len); 1033 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt); 1034 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 1035 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 1036 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd); 1037 int nbufs = be32_to_cpu(idb->table_desc.len) / 1038 sizeof(struct srp_direct_buf); 1039 1040 if (nbufs > 1041 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 1042 pr_err("received unsupported SRP_CMD request" 1043 " type (%u out + %u in != %u / %zu)\n", 1044 srp_cmd->data_out_desc_cnt, 1045 srp_cmd->data_in_desc_cnt, 1046 be32_to_cpu(idb->table_desc.len), 1047 sizeof(struct srp_direct_buf)); 1048 return -EINVAL; 1049 } 1050 1051 *data_len = be32_to_cpu(idb->len); 1052 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs, 1053 sg, sg_cnt); 1054 } else { 1055 *data_len = 0; 1056 return 0; 1057 } 1058 } 1059 1060 /** 1061 * srpt_init_ch_qp - initialize queue pair attributes 1062 * @ch: SRPT RDMA channel. 1063 * @qp: Queue pair pointer. 1064 * 1065 * Initialized the attributes of queue pair 'qp' by allowing local write, 1066 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 1067 */ 1068 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1069 { 1070 struct ib_qp_attr *attr; 1071 int ret; 1072 1073 WARN_ON_ONCE(ch->using_rdma_cm); 1074 1075 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1076 if (!attr) 1077 return -ENOMEM; 1078 1079 attr->qp_state = IB_QPS_INIT; 1080 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE; 1081 attr->port_num = ch->sport->port; 1082 1083 ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port, 1084 ch->pkey, &attr->pkey_index); 1085 if (ret < 0) 1086 pr_err("Translating pkey %#x failed (%d) - using index 0\n", 1087 ch->pkey, ret); 1088 1089 ret = ib_modify_qp(qp, attr, 1090 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 1091 IB_QP_PKEY_INDEX); 1092 1093 kfree(attr); 1094 return ret; 1095 } 1096 1097 /** 1098 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR) 1099 * @ch: channel of the queue pair. 1100 * @qp: queue pair to change the state of. 1101 * 1102 * Returns zero upon success and a negative value upon failure. 1103 * 1104 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1105 * If this structure ever becomes larger, it might be necessary to allocate 1106 * it dynamically instead of on the stack. 1107 */ 1108 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1109 { 1110 struct ib_qp_attr qp_attr; 1111 int attr_mask; 1112 int ret; 1113 1114 WARN_ON_ONCE(ch->using_rdma_cm); 1115 1116 qp_attr.qp_state = IB_QPS_RTR; 1117 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask); 1118 if (ret) 1119 goto out; 1120 1121 qp_attr.max_dest_rd_atomic = 4; 1122 1123 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1124 1125 out: 1126 return ret; 1127 } 1128 1129 /** 1130 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS) 1131 * @ch: channel of the queue pair. 1132 * @qp: queue pair to change the state of. 1133 * 1134 * Returns zero upon success and a negative value upon failure. 1135 * 1136 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1137 * If this structure ever becomes larger, it might be necessary to allocate 1138 * it dynamically instead of on the stack. 1139 */ 1140 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1141 { 1142 struct ib_qp_attr qp_attr; 1143 int attr_mask; 1144 int ret; 1145 1146 qp_attr.qp_state = IB_QPS_RTS; 1147 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask); 1148 if (ret) 1149 goto out; 1150 1151 qp_attr.max_rd_atomic = 4; 1152 1153 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1154 1155 out: 1156 return ret; 1157 } 1158 1159 /** 1160 * srpt_ch_qp_err - set the channel queue pair state to 'error' 1161 * @ch: SRPT RDMA channel. 1162 */ 1163 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1164 { 1165 struct ib_qp_attr qp_attr; 1166 1167 qp_attr.qp_state = IB_QPS_ERR; 1168 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1169 } 1170 1171 /** 1172 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator 1173 * @ch: SRPT RDMA channel. 1174 */ 1175 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1176 { 1177 struct srpt_send_ioctx *ioctx; 1178 unsigned long flags; 1179 1180 BUG_ON(!ch); 1181 1182 ioctx = NULL; 1183 spin_lock_irqsave(&ch->spinlock, flags); 1184 if (!list_empty(&ch->free_list)) { 1185 ioctx = list_first_entry(&ch->free_list, 1186 struct srpt_send_ioctx, free_list); 1187 list_del(&ioctx->free_list); 1188 } 1189 spin_unlock_irqrestore(&ch->spinlock, flags); 1190 1191 if (!ioctx) 1192 return ioctx; 1193 1194 BUG_ON(ioctx->ch != ch); 1195 ioctx->state = SRPT_STATE_NEW; 1196 ioctx->n_rdma = 0; 1197 ioctx->n_rw_ctx = 0; 1198 ioctx->queue_status_only = false; 1199 /* 1200 * transport_init_se_cmd() does not initialize all fields, so do it 1201 * here. 1202 */ 1203 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1204 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1205 1206 return ioctx; 1207 } 1208 1209 /** 1210 * srpt_abort_cmd - abort a SCSI command 1211 * @ioctx: I/O context associated with the SCSI command. 1212 */ 1213 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1214 { 1215 enum srpt_command_state state; 1216 1217 BUG_ON(!ioctx); 1218 1219 /* 1220 * If the command is in a state where the target core is waiting for 1221 * the ib_srpt driver, change the state to the next state. 1222 */ 1223 1224 state = ioctx->state; 1225 switch (state) { 1226 case SRPT_STATE_NEED_DATA: 1227 ioctx->state = SRPT_STATE_DATA_IN; 1228 break; 1229 case SRPT_STATE_CMD_RSP_SENT: 1230 case SRPT_STATE_MGMT_RSP_SENT: 1231 ioctx->state = SRPT_STATE_DONE; 1232 break; 1233 default: 1234 WARN_ONCE(true, "%s: unexpected I/O context state %d\n", 1235 __func__, state); 1236 break; 1237 } 1238 1239 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state, 1240 ioctx->state, ioctx->cmd.tag); 1241 1242 switch (state) { 1243 case SRPT_STATE_NEW: 1244 case SRPT_STATE_DATA_IN: 1245 case SRPT_STATE_MGMT: 1246 case SRPT_STATE_DONE: 1247 /* 1248 * Do nothing - defer abort processing until 1249 * srpt_queue_response() is invoked. 1250 */ 1251 break; 1252 case SRPT_STATE_NEED_DATA: 1253 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag); 1254 transport_generic_request_failure(&ioctx->cmd, 1255 TCM_CHECK_CONDITION_ABORT_CMD); 1256 break; 1257 case SRPT_STATE_CMD_RSP_SENT: 1258 /* 1259 * SRP_RSP sending failed or the SRP_RSP send completion has 1260 * not been received in time. 1261 */ 1262 transport_generic_free_cmd(&ioctx->cmd, 0); 1263 break; 1264 case SRPT_STATE_MGMT_RSP_SENT: 1265 transport_generic_free_cmd(&ioctx->cmd, 0); 1266 break; 1267 default: 1268 WARN(1, "Unexpected command state (%d)", state); 1269 break; 1270 } 1271 1272 return state; 1273 } 1274 1275 /** 1276 * srpt_rdma_read_done - RDMA read completion callback 1277 * @cq: Completion queue. 1278 * @wc: Work completion. 1279 * 1280 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1281 * the data that has been transferred via IB RDMA had to be postponed until the 1282 * check_stop_free() callback. None of this is necessary anymore and needs to 1283 * be cleaned up. 1284 */ 1285 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc) 1286 { 1287 struct srpt_rdma_ch *ch = cq->cq_context; 1288 struct srpt_send_ioctx *ioctx = 1289 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe); 1290 1291 WARN_ON(ioctx->n_rdma <= 0); 1292 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1293 ioctx->n_rdma = 0; 1294 1295 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1296 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n", 1297 ioctx, wc->status); 1298 srpt_abort_cmd(ioctx); 1299 return; 1300 } 1301 1302 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1303 SRPT_STATE_DATA_IN)) 1304 target_execute_cmd(&ioctx->cmd); 1305 else 1306 pr_err("%s[%d]: wrong state = %d\n", __func__, 1307 __LINE__, ioctx->state); 1308 } 1309 1310 /** 1311 * srpt_build_cmd_rsp - build a SRP_RSP response 1312 * @ch: RDMA channel through which the request has been received. 1313 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1314 * be built in the buffer ioctx->buf points at and hence this function will 1315 * overwrite the request data. 1316 * @tag: tag of the request for which this response is being generated. 1317 * @status: value for the STATUS field of the SRP_RSP information unit. 1318 * 1319 * Returns the size in bytes of the SRP_RSP response. 1320 * 1321 * An SRP_RSP response contains a SCSI status or service response. See also 1322 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1323 * response. See also SPC-2 for more information about sense data. 1324 */ 1325 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1326 struct srpt_send_ioctx *ioctx, u64 tag, 1327 int status) 1328 { 1329 struct srp_rsp *srp_rsp; 1330 const u8 *sense_data; 1331 int sense_data_len, max_sense_len; 1332 1333 /* 1334 * The lowest bit of all SAM-3 status codes is zero (see also 1335 * paragraph 5.3 in SAM-3). 1336 */ 1337 WARN_ON(status & 1); 1338 1339 srp_rsp = ioctx->ioctx.buf; 1340 BUG_ON(!srp_rsp); 1341 1342 sense_data = ioctx->sense_data; 1343 sense_data_len = ioctx->cmd.scsi_sense_length; 1344 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1345 1346 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1347 srp_rsp->opcode = SRP_RSP; 1348 srp_rsp->req_lim_delta = 1349 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1350 srp_rsp->tag = tag; 1351 srp_rsp->status = status; 1352 1353 if (sense_data_len) { 1354 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1355 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1356 if (sense_data_len > max_sense_len) { 1357 pr_warn("truncated sense data from %d to %d" 1358 " bytes\n", sense_data_len, max_sense_len); 1359 sense_data_len = max_sense_len; 1360 } 1361 1362 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1363 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1364 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1365 } 1366 1367 return sizeof(*srp_rsp) + sense_data_len; 1368 } 1369 1370 /** 1371 * srpt_build_tskmgmt_rsp - build a task management response 1372 * @ch: RDMA channel through which the request has been received. 1373 * @ioctx: I/O context in which the SRP_RSP response will be built. 1374 * @rsp_code: RSP_CODE that will be stored in the response. 1375 * @tag: Tag of the request for which this response is being generated. 1376 * 1377 * Returns the size in bytes of the SRP_RSP response. 1378 * 1379 * An SRP_RSP response contains a SCSI status or service response. See also 1380 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1381 * response. 1382 */ 1383 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1384 struct srpt_send_ioctx *ioctx, 1385 u8 rsp_code, u64 tag) 1386 { 1387 struct srp_rsp *srp_rsp; 1388 int resp_data_len; 1389 int resp_len; 1390 1391 resp_data_len = 4; 1392 resp_len = sizeof(*srp_rsp) + resp_data_len; 1393 1394 srp_rsp = ioctx->ioctx.buf; 1395 BUG_ON(!srp_rsp); 1396 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1397 1398 srp_rsp->opcode = SRP_RSP; 1399 srp_rsp->req_lim_delta = 1400 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1401 srp_rsp->tag = tag; 1402 1403 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1404 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1405 srp_rsp->data[3] = rsp_code; 1406 1407 return resp_len; 1408 } 1409 1410 static int srpt_check_stop_free(struct se_cmd *cmd) 1411 { 1412 struct srpt_send_ioctx *ioctx = container_of(cmd, 1413 struct srpt_send_ioctx, cmd); 1414 1415 return target_put_sess_cmd(&ioctx->cmd); 1416 } 1417 1418 /** 1419 * srpt_handle_cmd - process a SRP_CMD information unit 1420 * @ch: SRPT RDMA channel. 1421 * @recv_ioctx: Receive I/O context. 1422 * @send_ioctx: Send I/O context. 1423 */ 1424 static void srpt_handle_cmd(struct srpt_rdma_ch *ch, 1425 struct srpt_recv_ioctx *recv_ioctx, 1426 struct srpt_send_ioctx *send_ioctx) 1427 { 1428 struct se_cmd *cmd; 1429 struct srp_cmd *srp_cmd; 1430 struct scatterlist *sg = NULL; 1431 unsigned sg_cnt = 0; 1432 u64 data_len; 1433 enum dma_data_direction dir; 1434 int rc; 1435 1436 BUG_ON(!send_ioctx); 1437 1438 srp_cmd = recv_ioctx->ioctx.buf; 1439 cmd = &send_ioctx->cmd; 1440 cmd->tag = srp_cmd->tag; 1441 1442 switch (srp_cmd->task_attr) { 1443 case SRP_CMD_SIMPLE_Q: 1444 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1445 break; 1446 case SRP_CMD_ORDERED_Q: 1447 default: 1448 cmd->sam_task_attr = TCM_ORDERED_TAG; 1449 break; 1450 case SRP_CMD_HEAD_OF_Q: 1451 cmd->sam_task_attr = TCM_HEAD_TAG; 1452 break; 1453 case SRP_CMD_ACA: 1454 cmd->sam_task_attr = TCM_ACA_TAG; 1455 break; 1456 } 1457 1458 rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt, 1459 &data_len); 1460 if (rc) { 1461 if (rc != -EAGAIN) { 1462 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1463 srp_cmd->tag); 1464 } 1465 goto release_ioctx; 1466 } 1467 1468 rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb, 1469 &send_ioctx->sense_data[0], 1470 scsilun_to_int(&srp_cmd->lun), data_len, 1471 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF, 1472 sg, sg_cnt, NULL, 0, NULL, 0); 1473 if (rc != 0) { 1474 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc, 1475 srp_cmd->tag); 1476 goto release_ioctx; 1477 } 1478 return; 1479 1480 release_ioctx: 1481 send_ioctx->state = SRPT_STATE_DONE; 1482 srpt_release_cmd(cmd); 1483 } 1484 1485 static int srp_tmr_to_tcm(int fn) 1486 { 1487 switch (fn) { 1488 case SRP_TSK_ABORT_TASK: 1489 return TMR_ABORT_TASK; 1490 case SRP_TSK_ABORT_TASK_SET: 1491 return TMR_ABORT_TASK_SET; 1492 case SRP_TSK_CLEAR_TASK_SET: 1493 return TMR_CLEAR_TASK_SET; 1494 case SRP_TSK_LUN_RESET: 1495 return TMR_LUN_RESET; 1496 case SRP_TSK_CLEAR_ACA: 1497 return TMR_CLEAR_ACA; 1498 default: 1499 return -1; 1500 } 1501 } 1502 1503 /** 1504 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit 1505 * @ch: SRPT RDMA channel. 1506 * @recv_ioctx: Receive I/O context. 1507 * @send_ioctx: Send I/O context. 1508 * 1509 * Returns 0 if and only if the request will be processed by the target core. 1510 * 1511 * For more information about SRP_TSK_MGMT information units, see also section 1512 * 6.7 in the SRP r16a document. 1513 */ 1514 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1515 struct srpt_recv_ioctx *recv_ioctx, 1516 struct srpt_send_ioctx *send_ioctx) 1517 { 1518 struct srp_tsk_mgmt *srp_tsk; 1519 struct se_cmd *cmd; 1520 struct se_session *sess = ch->sess; 1521 int tcm_tmr; 1522 int rc; 1523 1524 BUG_ON(!send_ioctx); 1525 1526 srp_tsk = recv_ioctx->ioctx.buf; 1527 cmd = &send_ioctx->cmd; 1528 1529 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n", 1530 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch, 1531 ch->sess); 1532 1533 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1534 send_ioctx->cmd.tag = srp_tsk->tag; 1535 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1536 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, 1537 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr, 1538 GFP_KERNEL, srp_tsk->task_tag, 1539 TARGET_SCF_ACK_KREF); 1540 if (rc != 0) { 1541 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1542 goto fail; 1543 } 1544 return; 1545 fail: 1546 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1547 } 1548 1549 /** 1550 * srpt_handle_new_iu - process a newly received information unit 1551 * @ch: RDMA channel through which the information unit has been received. 1552 * @recv_ioctx: Receive I/O context associated with the information unit. 1553 */ 1554 static bool 1555 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx) 1556 { 1557 struct srpt_send_ioctx *send_ioctx = NULL; 1558 struct srp_cmd *srp_cmd; 1559 bool res = false; 1560 u8 opcode; 1561 1562 BUG_ON(!ch); 1563 BUG_ON(!recv_ioctx); 1564 1565 if (unlikely(ch->state == CH_CONNECTING)) 1566 goto push; 1567 1568 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1569 recv_ioctx->ioctx.dma, srp_max_req_size, 1570 DMA_FROM_DEVICE); 1571 1572 srp_cmd = recv_ioctx->ioctx.buf; 1573 opcode = srp_cmd->opcode; 1574 if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) { 1575 send_ioctx = srpt_get_send_ioctx(ch); 1576 if (unlikely(!send_ioctx)) 1577 goto push; 1578 } 1579 1580 if (!list_empty(&recv_ioctx->wait_list)) { 1581 WARN_ON_ONCE(!ch->processing_wait_list); 1582 list_del_init(&recv_ioctx->wait_list); 1583 } 1584 1585 switch (opcode) { 1586 case SRP_CMD: 1587 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1588 break; 1589 case SRP_TSK_MGMT: 1590 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1591 break; 1592 case SRP_I_LOGOUT: 1593 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1594 break; 1595 case SRP_CRED_RSP: 1596 pr_debug("received SRP_CRED_RSP\n"); 1597 break; 1598 case SRP_AER_RSP: 1599 pr_debug("received SRP_AER_RSP\n"); 1600 break; 1601 case SRP_RSP: 1602 pr_err("Received SRP_RSP\n"); 1603 break; 1604 default: 1605 pr_err("received IU with unknown opcode 0x%x\n", opcode); 1606 break; 1607 } 1608 1609 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx); 1610 res = true; 1611 1612 out: 1613 return res; 1614 1615 push: 1616 if (list_empty(&recv_ioctx->wait_list)) { 1617 WARN_ON_ONCE(ch->processing_wait_list); 1618 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1619 } 1620 goto out; 1621 } 1622 1623 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1624 { 1625 struct srpt_rdma_ch *ch = cq->cq_context; 1626 struct srpt_recv_ioctx *ioctx = 1627 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe); 1628 1629 if (wc->status == IB_WC_SUCCESS) { 1630 int req_lim; 1631 1632 req_lim = atomic_dec_return(&ch->req_lim); 1633 if (unlikely(req_lim < 0)) 1634 pr_err("req_lim = %d < 0\n", req_lim); 1635 srpt_handle_new_iu(ch, ioctx); 1636 } else { 1637 pr_info_ratelimited("receiving failed for ioctx %p with status %d\n", 1638 ioctx, wc->status); 1639 } 1640 } 1641 1642 /* 1643 * This function must be called from the context in which RDMA completions are 1644 * processed because it accesses the wait list without protection against 1645 * access from other threads. 1646 */ 1647 static void srpt_process_wait_list(struct srpt_rdma_ch *ch) 1648 { 1649 struct srpt_recv_ioctx *recv_ioctx, *tmp; 1650 1651 WARN_ON_ONCE(ch->state == CH_CONNECTING); 1652 1653 if (list_empty(&ch->cmd_wait_list)) 1654 return; 1655 1656 WARN_ON_ONCE(ch->processing_wait_list); 1657 ch->processing_wait_list = true; 1658 list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list, 1659 wait_list) { 1660 if (!srpt_handle_new_iu(ch, recv_ioctx)) 1661 break; 1662 } 1663 ch->processing_wait_list = false; 1664 } 1665 1666 /** 1667 * srpt_send_done - send completion callback 1668 * @cq: Completion queue. 1669 * @wc: Work completion. 1670 * 1671 * Note: Although this has not yet been observed during tests, at least in 1672 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1673 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1674 * value in each response is set to one, and it is possible that this response 1675 * makes the initiator send a new request before the send completion for that 1676 * response has been processed. This could e.g. happen if the call to 1677 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1678 * if IB retransmission causes generation of the send completion to be 1679 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1680 * are queued on cmd_wait_list. The code below processes these delayed 1681 * requests one at a time. 1682 */ 1683 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc) 1684 { 1685 struct srpt_rdma_ch *ch = cq->cq_context; 1686 struct srpt_send_ioctx *ioctx = 1687 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe); 1688 enum srpt_command_state state; 1689 1690 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1691 1692 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT && 1693 state != SRPT_STATE_MGMT_RSP_SENT); 1694 1695 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 1696 1697 if (wc->status != IB_WC_SUCCESS) 1698 pr_info("sending response for ioctx 0x%p failed" 1699 " with status %d\n", ioctx, wc->status); 1700 1701 if (state != SRPT_STATE_DONE) { 1702 transport_generic_free_cmd(&ioctx->cmd, 0); 1703 } else { 1704 pr_err("IB completion has been received too late for" 1705 " wr_id = %u.\n", ioctx->ioctx.index); 1706 } 1707 1708 srpt_process_wait_list(ch); 1709 } 1710 1711 /** 1712 * srpt_create_ch_ib - create receive and send completion queues 1713 * @ch: SRPT RDMA channel. 1714 */ 1715 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 1716 { 1717 struct ib_qp_init_attr *qp_init; 1718 struct srpt_port *sport = ch->sport; 1719 struct srpt_device *sdev = sport->sdev; 1720 const struct ib_device_attr *attrs = &sdev->device->attrs; 1721 int sq_size = sport->port_attrib.srp_sq_size; 1722 int i, ret; 1723 1724 WARN_ON(ch->rq_size < 1); 1725 1726 ret = -ENOMEM; 1727 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL); 1728 if (!qp_init) 1729 goto out; 1730 1731 retry: 1732 ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + sq_size, 1733 0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE); 1734 if (IS_ERR(ch->cq)) { 1735 ret = PTR_ERR(ch->cq); 1736 pr_err("failed to create CQ cqe= %d ret= %d\n", 1737 ch->rq_size + sq_size, ret); 1738 goto out; 1739 } 1740 1741 qp_init->qp_context = (void *)ch; 1742 qp_init->event_handler 1743 = (void(*)(struct ib_event *, void*))srpt_qp_event; 1744 qp_init->send_cq = ch->cq; 1745 qp_init->recv_cq = ch->cq; 1746 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 1747 qp_init->qp_type = IB_QPT_RC; 1748 /* 1749 * We divide up our send queue size into half SEND WRs to send the 1750 * completions, and half R/W contexts to actually do the RDMA 1751 * READ/WRITE transfers. Note that we need to allocate CQ slots for 1752 * both both, as RDMA contexts will also post completions for the 1753 * RDMA READ case. 1754 */ 1755 qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr); 1756 qp_init->cap.max_rdma_ctxs = sq_size / 2; 1757 qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE); 1758 qp_init->port_num = ch->sport->port; 1759 if (sdev->use_srq) { 1760 qp_init->srq = sdev->srq; 1761 } else { 1762 qp_init->cap.max_recv_wr = ch->rq_size; 1763 qp_init->cap.max_recv_sge = qp_init->cap.max_send_sge; 1764 } 1765 1766 if (ch->using_rdma_cm) { 1767 ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init); 1768 ch->qp = ch->rdma_cm.cm_id->qp; 1769 } else { 1770 ch->qp = ib_create_qp(sdev->pd, qp_init); 1771 if (!IS_ERR(ch->qp)) { 1772 ret = srpt_init_ch_qp(ch, ch->qp); 1773 if (ret) 1774 ib_destroy_qp(ch->qp); 1775 } else { 1776 ret = PTR_ERR(ch->qp); 1777 } 1778 } 1779 if (ret) { 1780 bool retry = sq_size > MIN_SRPT_SQ_SIZE; 1781 1782 if (retry) { 1783 pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n", 1784 sq_size, ret); 1785 ib_free_cq(ch->cq); 1786 sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE); 1787 goto retry; 1788 } else { 1789 pr_err("failed to create queue pair with sq_size = %d (%d)\n", 1790 sq_size, ret); 1791 goto err_destroy_cq; 1792 } 1793 } 1794 1795 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 1796 1797 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n", 1798 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 1799 qp_init->cap.max_send_wr, ch); 1800 1801 if (!sdev->use_srq) 1802 for (i = 0; i < ch->rq_size; i++) 1803 srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]); 1804 1805 out: 1806 kfree(qp_init); 1807 return ret; 1808 1809 err_destroy_cq: 1810 ch->qp = NULL; 1811 ib_free_cq(ch->cq); 1812 goto out; 1813 } 1814 1815 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 1816 { 1817 ib_destroy_qp(ch->qp); 1818 ib_free_cq(ch->cq); 1819 } 1820 1821 /** 1822 * srpt_close_ch - close a RDMA channel 1823 * @ch: SRPT RDMA channel. 1824 * 1825 * Make sure all resources associated with the channel will be deallocated at 1826 * an appropriate time. 1827 * 1828 * Returns true if and only if the channel state has been modified into 1829 * CH_DRAINING. 1830 */ 1831 static bool srpt_close_ch(struct srpt_rdma_ch *ch) 1832 { 1833 int ret; 1834 1835 if (!srpt_set_ch_state(ch, CH_DRAINING)) { 1836 pr_debug("%s-%d: already closed\n", ch->sess_name, 1837 ch->qp->qp_num); 1838 return false; 1839 } 1840 1841 kref_get(&ch->kref); 1842 1843 ret = srpt_ch_qp_err(ch); 1844 if (ret < 0) 1845 pr_err("%s-%d: changing queue pair into error state failed: %d\n", 1846 ch->sess_name, ch->qp->qp_num, ret); 1847 1848 ret = srpt_zerolength_write(ch); 1849 if (ret < 0) { 1850 pr_err("%s-%d: queuing zero-length write failed: %d\n", 1851 ch->sess_name, ch->qp->qp_num, ret); 1852 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 1853 schedule_work(&ch->release_work); 1854 else 1855 WARN_ON_ONCE(true); 1856 } 1857 1858 kref_put(&ch->kref, srpt_free_ch); 1859 1860 return true; 1861 } 1862 1863 /* 1864 * Change the channel state into CH_DISCONNECTING. If a channel has not yet 1865 * reached the connected state, close it. If a channel is in the connected 1866 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is 1867 * the responsibility of the caller to ensure that this function is not 1868 * invoked concurrently with the code that accepts a connection. This means 1869 * that this function must either be invoked from inside a CM callback 1870 * function or that it must be invoked with the srpt_port.mutex held. 1871 */ 1872 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch) 1873 { 1874 int ret; 1875 1876 if (!srpt_set_ch_state(ch, CH_DISCONNECTING)) 1877 return -ENOTCONN; 1878 1879 if (ch->using_rdma_cm) { 1880 ret = rdma_disconnect(ch->rdma_cm.cm_id); 1881 } else { 1882 ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0); 1883 if (ret < 0) 1884 ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0); 1885 } 1886 1887 if (ret < 0 && srpt_close_ch(ch)) 1888 ret = 0; 1889 1890 return ret; 1891 } 1892 1893 static bool srpt_ch_closed(struct srpt_port *sport, struct srpt_rdma_ch *ch) 1894 { 1895 struct srpt_nexus *nexus; 1896 struct srpt_rdma_ch *ch2; 1897 bool res = true; 1898 1899 rcu_read_lock(); 1900 list_for_each_entry(nexus, &sport->nexus_list, entry) { 1901 list_for_each_entry(ch2, &nexus->ch_list, list) { 1902 if (ch2 == ch) { 1903 res = false; 1904 goto done; 1905 } 1906 } 1907 } 1908 done: 1909 rcu_read_unlock(); 1910 1911 return res; 1912 } 1913 1914 /* Send DREQ and wait for DREP. */ 1915 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch) 1916 { 1917 struct srpt_port *sport = ch->sport; 1918 1919 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num, 1920 ch->state); 1921 1922 mutex_lock(&sport->mutex); 1923 srpt_disconnect_ch(ch); 1924 mutex_unlock(&sport->mutex); 1925 1926 while (wait_event_timeout(sport->ch_releaseQ, srpt_ch_closed(sport, ch), 1927 5 * HZ) == 0) 1928 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__, 1929 ch->sess_name, ch->qp->qp_num, ch->state); 1930 1931 } 1932 1933 static void __srpt_close_all_ch(struct srpt_port *sport) 1934 { 1935 struct srpt_nexus *nexus; 1936 struct srpt_rdma_ch *ch; 1937 1938 lockdep_assert_held(&sport->mutex); 1939 1940 list_for_each_entry(nexus, &sport->nexus_list, entry) { 1941 list_for_each_entry(ch, &nexus->ch_list, list) { 1942 if (srpt_disconnect_ch(ch) >= 0) 1943 pr_info("Closing channel %s-%d because target %s_%d has been disabled\n", 1944 ch->sess_name, ch->qp->qp_num, 1945 sport->sdev->device->name, sport->port); 1946 srpt_close_ch(ch); 1947 } 1948 } 1949 } 1950 1951 /* 1952 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if 1953 * it does not yet exist. 1954 */ 1955 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport, 1956 const u8 i_port_id[16], 1957 const u8 t_port_id[16]) 1958 { 1959 struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n; 1960 1961 for (;;) { 1962 mutex_lock(&sport->mutex); 1963 list_for_each_entry(n, &sport->nexus_list, entry) { 1964 if (memcmp(n->i_port_id, i_port_id, 16) == 0 && 1965 memcmp(n->t_port_id, t_port_id, 16) == 0) { 1966 nexus = n; 1967 break; 1968 } 1969 } 1970 if (!nexus && tmp_nexus) { 1971 list_add_tail_rcu(&tmp_nexus->entry, 1972 &sport->nexus_list); 1973 swap(nexus, tmp_nexus); 1974 } 1975 mutex_unlock(&sport->mutex); 1976 1977 if (nexus) 1978 break; 1979 tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL); 1980 if (!tmp_nexus) { 1981 nexus = ERR_PTR(-ENOMEM); 1982 break; 1983 } 1984 INIT_LIST_HEAD(&tmp_nexus->ch_list); 1985 memcpy(tmp_nexus->i_port_id, i_port_id, 16); 1986 memcpy(tmp_nexus->t_port_id, t_port_id, 16); 1987 } 1988 1989 kfree(tmp_nexus); 1990 1991 return nexus; 1992 } 1993 1994 static void srpt_set_enabled(struct srpt_port *sport, bool enabled) 1995 __must_hold(&sport->mutex) 1996 { 1997 lockdep_assert_held(&sport->mutex); 1998 1999 if (sport->enabled == enabled) 2000 return; 2001 sport->enabled = enabled; 2002 if (!enabled) 2003 __srpt_close_all_ch(sport); 2004 } 2005 2006 static void srpt_free_ch(struct kref *kref) 2007 { 2008 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref); 2009 2010 kfree_rcu(ch, rcu); 2011 } 2012 2013 static void srpt_release_channel_work(struct work_struct *w) 2014 { 2015 struct srpt_rdma_ch *ch; 2016 struct srpt_device *sdev; 2017 struct srpt_port *sport; 2018 struct se_session *se_sess; 2019 2020 ch = container_of(w, struct srpt_rdma_ch, release_work); 2021 pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num); 2022 2023 sdev = ch->sport->sdev; 2024 BUG_ON(!sdev); 2025 2026 se_sess = ch->sess; 2027 BUG_ON(!se_sess); 2028 2029 target_sess_cmd_list_set_waiting(se_sess); 2030 target_wait_for_sess_cmds(se_sess); 2031 2032 transport_deregister_session_configfs(se_sess); 2033 transport_deregister_session(se_sess); 2034 ch->sess = NULL; 2035 2036 if (ch->using_rdma_cm) 2037 rdma_destroy_id(ch->rdma_cm.cm_id); 2038 else 2039 ib_destroy_cm_id(ch->ib_cm.cm_id); 2040 2041 srpt_destroy_ch_ib(ch); 2042 2043 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2044 ch->sport->sdev, ch->rq_size, 2045 ch->max_rsp_size, DMA_TO_DEVICE); 2046 2047 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring, 2048 sdev, ch->rq_size, 2049 srp_max_req_size, DMA_FROM_DEVICE); 2050 2051 sport = ch->sport; 2052 mutex_lock(&sport->mutex); 2053 list_del_rcu(&ch->list); 2054 mutex_unlock(&sport->mutex); 2055 2056 wake_up(&sport->ch_releaseQ); 2057 2058 kref_put(&ch->kref, srpt_free_ch); 2059 } 2060 2061 /** 2062 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED 2063 * @sdev: HCA through which the login request was received. 2064 * @ib_cm_id: IB/CM connection identifier in case of IB/CM. 2065 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM. 2066 * @port_num: Port through which the REQ message was received. 2067 * @pkey: P_Key of the incoming connection. 2068 * @req: SRP login request. 2069 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted 2070 * the login request. 2071 * 2072 * Ownership of the cm_id is transferred to the target session if this 2073 * function returns zero. Otherwise the caller remains the owner of cm_id. 2074 */ 2075 static int srpt_cm_req_recv(struct srpt_device *const sdev, 2076 struct ib_cm_id *ib_cm_id, 2077 struct rdma_cm_id *rdma_cm_id, 2078 u8 port_num, __be16 pkey, 2079 const struct srp_login_req *req, 2080 const char *src_addr) 2081 { 2082 struct srpt_port *sport = &sdev->port[port_num - 1]; 2083 struct srpt_nexus *nexus; 2084 struct srp_login_rsp *rsp = NULL; 2085 struct srp_login_rej *rej = NULL; 2086 union { 2087 struct rdma_conn_param rdma_cm; 2088 struct ib_cm_rep_param ib_cm; 2089 } *rep_param = NULL; 2090 struct srpt_rdma_ch *ch; 2091 char i_port_id[36]; 2092 u32 it_iu_len; 2093 int i, ret; 2094 2095 WARN_ON_ONCE(irqs_disabled()); 2096 2097 if (WARN_ON(!sdev || !req)) 2098 return -EINVAL; 2099 2100 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2101 2102 pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n", 2103 req->initiator_port_id, req->target_port_id, it_iu_len, 2104 port_num, &sport->gid, be16_to_cpu(pkey)); 2105 2106 nexus = srpt_get_nexus(sport, req->initiator_port_id, 2107 req->target_port_id); 2108 if (IS_ERR(nexus)) { 2109 ret = PTR_ERR(nexus); 2110 goto out; 2111 } 2112 2113 ret = -ENOMEM; 2114 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 2115 rej = kzalloc(sizeof(*rej), GFP_KERNEL); 2116 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL); 2117 if (!rsp || !rej || !rep_param) 2118 goto out; 2119 2120 ret = -EINVAL; 2121 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2122 rej->reason = cpu_to_be32( 2123 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2124 pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n", 2125 it_iu_len, 64, srp_max_req_size); 2126 goto reject; 2127 } 2128 2129 if (!sport->enabled) { 2130 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2131 pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n", 2132 sport->sdev->device->name, port_num); 2133 goto reject; 2134 } 2135 2136 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2137 || *(__be64 *)(req->target_port_id + 8) != 2138 cpu_to_be64(srpt_service_guid)) { 2139 rej->reason = cpu_to_be32( 2140 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2141 pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n"); 2142 goto reject; 2143 } 2144 2145 ret = -ENOMEM; 2146 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 2147 if (!ch) { 2148 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2149 pr_err("rejected SRP_LOGIN_REQ because out of memory.\n"); 2150 goto reject; 2151 } 2152 2153 kref_init(&ch->kref); 2154 ch->pkey = be16_to_cpu(pkey); 2155 ch->nexus = nexus; 2156 ch->zw_cqe.done = srpt_zerolength_write_done; 2157 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2158 ch->sport = sport; 2159 if (ib_cm_id) { 2160 ch->ib_cm.cm_id = ib_cm_id; 2161 ib_cm_id->context = ch; 2162 } else { 2163 ch->using_rdma_cm = true; 2164 ch->rdma_cm.cm_id = rdma_cm_id; 2165 rdma_cm_id->context = ch; 2166 } 2167 /* 2168 * ch->rq_size should be at least as large as the initiator queue 2169 * depth to avoid that the initiator driver has to report QUEUE_FULL 2170 * to the SCSI mid-layer. 2171 */ 2172 ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr); 2173 spin_lock_init(&ch->spinlock); 2174 ch->state = CH_CONNECTING; 2175 INIT_LIST_HEAD(&ch->cmd_wait_list); 2176 ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2177 2178 ch->ioctx_ring = (struct srpt_send_ioctx **) 2179 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2180 sizeof(*ch->ioctx_ring[0]), 2181 ch->max_rsp_size, DMA_TO_DEVICE); 2182 if (!ch->ioctx_ring) { 2183 pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n"); 2184 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2185 goto free_ch; 2186 } 2187 2188 INIT_LIST_HEAD(&ch->free_list); 2189 for (i = 0; i < ch->rq_size; i++) { 2190 ch->ioctx_ring[i]->ch = ch; 2191 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2192 } 2193 if (!sdev->use_srq) { 2194 ch->ioctx_recv_ring = (struct srpt_recv_ioctx **) 2195 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2196 sizeof(*ch->ioctx_recv_ring[0]), 2197 srp_max_req_size, 2198 DMA_FROM_DEVICE); 2199 if (!ch->ioctx_recv_ring) { 2200 pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n"); 2201 rej->reason = 2202 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2203 goto free_ring; 2204 } 2205 for (i = 0; i < ch->rq_size; i++) 2206 INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list); 2207 } 2208 2209 ret = srpt_create_ch_ib(ch); 2210 if (ret) { 2211 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2212 pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n"); 2213 goto free_recv_ring; 2214 } 2215 2216 strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name)); 2217 snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx", 2218 be64_to_cpu(*(__be64 *)nexus->i_port_id), 2219 be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8))); 2220 2221 pr_debug("registering session %s\n", ch->sess_name); 2222 2223 if (sport->port_guid_tpg.se_tpg_wwn) 2224 ch->sess = target_alloc_session(&sport->port_guid_tpg, 0, 0, 2225 TARGET_PROT_NORMAL, 2226 ch->sess_name, ch, NULL); 2227 if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess)) 2228 ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0, 2229 TARGET_PROT_NORMAL, i_port_id, ch, 2230 NULL); 2231 /* Retry without leading "0x" */ 2232 if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess)) 2233 ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0, 2234 TARGET_PROT_NORMAL, 2235 i_port_id + 2, ch, NULL); 2236 if (IS_ERR_OR_NULL(ch->sess)) { 2237 ret = PTR_ERR(ch->sess); 2238 pr_info("Rejected login for initiator %s: ret = %d.\n", 2239 ch->sess_name, ret); 2240 rej->reason = cpu_to_be32(ret == -ENOMEM ? 2241 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES : 2242 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2243 goto reject; 2244 } 2245 2246 mutex_lock(&sport->mutex); 2247 2248 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2249 struct srpt_rdma_ch *ch2; 2250 2251 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2252 2253 list_for_each_entry(ch2, &nexus->ch_list, list) { 2254 if (srpt_disconnect_ch(ch2) < 0) 2255 continue; 2256 pr_info("Relogin - closed existing channel %s\n", 2257 ch2->sess_name); 2258 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2259 } 2260 } else { 2261 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2262 } 2263 2264 list_add_tail_rcu(&ch->list, &nexus->ch_list); 2265 2266 if (!sport->enabled) { 2267 rej->reason = cpu_to_be32( 2268 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2269 pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n", 2270 sdev->device->name, port_num); 2271 mutex_unlock(&sport->mutex); 2272 goto reject; 2273 } 2274 2275 mutex_unlock(&sport->mutex); 2276 2277 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp); 2278 if (ret) { 2279 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2280 pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n", 2281 ret); 2282 goto destroy_ib; 2283 } 2284 2285 pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess, 2286 ch->sess_name, ch); 2287 2288 /* create srp_login_response */ 2289 rsp->opcode = SRP_LOGIN_RSP; 2290 rsp->tag = req->tag; 2291 rsp->max_it_iu_len = req->req_it_iu_len; 2292 rsp->max_ti_iu_len = req->req_it_iu_len; 2293 ch->max_ti_iu_len = it_iu_len; 2294 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 2295 SRP_BUF_FORMAT_INDIRECT); 2296 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2297 atomic_set(&ch->req_lim, ch->rq_size); 2298 atomic_set(&ch->req_lim_delta, 0); 2299 2300 /* create cm reply */ 2301 if (ch->using_rdma_cm) { 2302 rep_param->rdma_cm.private_data = (void *)rsp; 2303 rep_param->rdma_cm.private_data_len = sizeof(*rsp); 2304 rep_param->rdma_cm.rnr_retry_count = 7; 2305 rep_param->rdma_cm.flow_control = 1; 2306 rep_param->rdma_cm.responder_resources = 4; 2307 rep_param->rdma_cm.initiator_depth = 4; 2308 } else { 2309 rep_param->ib_cm.qp_num = ch->qp->qp_num; 2310 rep_param->ib_cm.private_data = (void *)rsp; 2311 rep_param->ib_cm.private_data_len = sizeof(*rsp); 2312 rep_param->ib_cm.rnr_retry_count = 7; 2313 rep_param->ib_cm.flow_control = 1; 2314 rep_param->ib_cm.failover_accepted = 0; 2315 rep_param->ib_cm.srq = 1; 2316 rep_param->ib_cm.responder_resources = 4; 2317 rep_param->ib_cm.initiator_depth = 4; 2318 } 2319 2320 /* 2321 * Hold the sport mutex while accepting a connection to avoid that 2322 * srpt_disconnect_ch() is invoked concurrently with this code. 2323 */ 2324 mutex_lock(&sport->mutex); 2325 if (sport->enabled && ch->state == CH_CONNECTING) { 2326 if (ch->using_rdma_cm) 2327 ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm); 2328 else 2329 ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm); 2330 } else { 2331 ret = -EINVAL; 2332 } 2333 mutex_unlock(&sport->mutex); 2334 2335 switch (ret) { 2336 case 0: 2337 break; 2338 case -EINVAL: 2339 goto reject; 2340 default: 2341 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2342 pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n", 2343 ret); 2344 goto reject; 2345 } 2346 2347 goto out; 2348 2349 destroy_ib: 2350 srpt_destroy_ch_ib(ch); 2351 2352 free_recv_ring: 2353 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring, 2354 ch->sport->sdev, ch->rq_size, 2355 srp_max_req_size, DMA_FROM_DEVICE); 2356 2357 free_ring: 2358 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2359 ch->sport->sdev, ch->rq_size, 2360 ch->max_rsp_size, DMA_TO_DEVICE); 2361 free_ch: 2362 if (ib_cm_id) 2363 ib_cm_id->context = NULL; 2364 kfree(ch); 2365 ch = NULL; 2366 2367 WARN_ON_ONCE(ret == 0); 2368 2369 reject: 2370 pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason)); 2371 rej->opcode = SRP_LOGIN_REJ; 2372 rej->tag = req->tag; 2373 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 2374 SRP_BUF_FORMAT_INDIRECT); 2375 2376 if (rdma_cm_id) 2377 rdma_reject(rdma_cm_id, rej, sizeof(*rej)); 2378 else 2379 ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2380 rej, sizeof(*rej)); 2381 2382 out: 2383 kfree(rep_param); 2384 kfree(rsp); 2385 kfree(rej); 2386 2387 return ret; 2388 } 2389 2390 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id, 2391 struct ib_cm_req_event_param *param, 2392 void *private_data) 2393 { 2394 char sguid[40]; 2395 2396 srpt_format_guid(sguid, sizeof(sguid), 2397 ¶m->primary_path->dgid.global.interface_id); 2398 2399 return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port, 2400 param->primary_path->pkey, 2401 private_data, sguid); 2402 } 2403 2404 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id, 2405 struct rdma_cm_event *event) 2406 { 2407 struct srpt_device *sdev; 2408 struct srp_login_req req; 2409 const struct srp_login_req_rdma *req_rdma; 2410 char src_addr[40]; 2411 2412 sdev = ib_get_client_data(cm_id->device, &srpt_client); 2413 if (!sdev) 2414 return -ECONNREFUSED; 2415 2416 if (event->param.conn.private_data_len < sizeof(*req_rdma)) 2417 return -EINVAL; 2418 2419 /* Transform srp_login_req_rdma into srp_login_req. */ 2420 req_rdma = event->param.conn.private_data; 2421 memset(&req, 0, sizeof(req)); 2422 req.opcode = req_rdma->opcode; 2423 req.tag = req_rdma->tag; 2424 req.req_it_iu_len = req_rdma->req_it_iu_len; 2425 req.req_buf_fmt = req_rdma->req_buf_fmt; 2426 req.req_flags = req_rdma->req_flags; 2427 memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16); 2428 memcpy(req.target_port_id, req_rdma->target_port_id, 16); 2429 2430 snprintf(src_addr, sizeof(src_addr), "%pIS", 2431 &cm_id->route.addr.src_addr); 2432 2433 return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num, 2434 cm_id->route.path_rec->pkey, &req, src_addr); 2435 } 2436 2437 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch, 2438 enum ib_cm_rej_reason reason, 2439 const u8 *private_data, 2440 u8 private_data_len) 2441 { 2442 char *priv = NULL; 2443 int i; 2444 2445 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1, 2446 GFP_KERNEL))) { 2447 for (i = 0; i < private_data_len; i++) 2448 sprintf(priv + 3 * i, " %02x", private_data[i]); 2449 } 2450 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n", 2451 ch->sess_name, ch->qp->qp_num, reason, private_data_len ? 2452 "; private data" : "", priv ? priv : " (?)"); 2453 kfree(priv); 2454 } 2455 2456 /** 2457 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event 2458 * @ch: SRPT RDMA channel. 2459 * 2460 * An RTU (ready to use) message indicates that the connection has been 2461 * established and that the recipient may begin transmitting. 2462 */ 2463 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch) 2464 { 2465 int ret; 2466 2467 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp); 2468 if (ret < 0) { 2469 pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name, 2470 ch->qp->qp_num); 2471 srpt_close_ch(ch); 2472 return; 2473 } 2474 2475 /* 2476 * Note: calling srpt_close_ch() if the transition to the LIVE state 2477 * fails is not necessary since that means that that function has 2478 * already been invoked from another thread. 2479 */ 2480 if (!srpt_set_ch_state(ch, CH_LIVE)) { 2481 pr_err("%s-%d: channel transition to LIVE state failed\n", 2482 ch->sess_name, ch->qp->qp_num); 2483 return; 2484 } 2485 2486 /* Trigger wait list processing. */ 2487 ret = srpt_zerolength_write(ch); 2488 WARN_ONCE(ret < 0, "%d\n", ret); 2489 } 2490 2491 /** 2492 * srpt_cm_handler - IB connection manager callback function 2493 * @cm_id: IB/CM connection identifier. 2494 * @event: IB/CM event. 2495 * 2496 * A non-zero return value will cause the caller destroy the CM ID. 2497 * 2498 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2499 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2500 * a non-zero value in any other case will trigger a race with the 2501 * ib_destroy_cm_id() call in srpt_release_channel(). 2502 */ 2503 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2504 { 2505 struct srpt_rdma_ch *ch = cm_id->context; 2506 int ret; 2507 2508 ret = 0; 2509 switch (event->event) { 2510 case IB_CM_REQ_RECEIVED: 2511 ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd, 2512 event->private_data); 2513 break; 2514 case IB_CM_REJ_RECEIVED: 2515 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason, 2516 event->private_data, 2517 IB_CM_REJ_PRIVATE_DATA_SIZE); 2518 break; 2519 case IB_CM_RTU_RECEIVED: 2520 case IB_CM_USER_ESTABLISHED: 2521 srpt_cm_rtu_recv(ch); 2522 break; 2523 case IB_CM_DREQ_RECEIVED: 2524 srpt_disconnect_ch(ch); 2525 break; 2526 case IB_CM_DREP_RECEIVED: 2527 pr_info("Received CM DREP message for ch %s-%d.\n", 2528 ch->sess_name, ch->qp->qp_num); 2529 srpt_close_ch(ch); 2530 break; 2531 case IB_CM_TIMEWAIT_EXIT: 2532 pr_info("Received CM TimeWait exit for ch %s-%d.\n", 2533 ch->sess_name, ch->qp->qp_num); 2534 srpt_close_ch(ch); 2535 break; 2536 case IB_CM_REP_ERROR: 2537 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2538 ch->qp->qp_num); 2539 break; 2540 case IB_CM_DREQ_ERROR: 2541 pr_info("Received CM DREQ ERROR event.\n"); 2542 break; 2543 case IB_CM_MRA_RECEIVED: 2544 pr_info("Received CM MRA event\n"); 2545 break; 2546 default: 2547 pr_err("received unrecognized CM event %d\n", event->event); 2548 break; 2549 } 2550 2551 return ret; 2552 } 2553 2554 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id, 2555 struct rdma_cm_event *event) 2556 { 2557 struct srpt_rdma_ch *ch = cm_id->context; 2558 int ret = 0; 2559 2560 switch (event->event) { 2561 case RDMA_CM_EVENT_CONNECT_REQUEST: 2562 ret = srpt_rdma_cm_req_recv(cm_id, event); 2563 break; 2564 case RDMA_CM_EVENT_REJECTED: 2565 srpt_cm_rej_recv(ch, event->status, 2566 event->param.conn.private_data, 2567 event->param.conn.private_data_len); 2568 break; 2569 case RDMA_CM_EVENT_ESTABLISHED: 2570 srpt_cm_rtu_recv(ch); 2571 break; 2572 case RDMA_CM_EVENT_DISCONNECTED: 2573 if (ch->state < CH_DISCONNECTING) 2574 srpt_disconnect_ch(ch); 2575 else 2576 srpt_close_ch(ch); 2577 break; 2578 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 2579 srpt_close_ch(ch); 2580 break; 2581 case RDMA_CM_EVENT_UNREACHABLE: 2582 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2583 ch->qp->qp_num); 2584 break; 2585 case RDMA_CM_EVENT_DEVICE_REMOVAL: 2586 case RDMA_CM_EVENT_ADDR_CHANGE: 2587 break; 2588 default: 2589 pr_err("received unrecognized RDMA CM event %d\n", 2590 event->event); 2591 break; 2592 } 2593 2594 return ret; 2595 } 2596 2597 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2598 { 2599 struct srpt_send_ioctx *ioctx; 2600 2601 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2602 return ioctx->state == SRPT_STATE_NEED_DATA; 2603 } 2604 2605 /* 2606 * srpt_write_pending - Start data transfer from initiator to target (write). 2607 */ 2608 static int srpt_write_pending(struct se_cmd *se_cmd) 2609 { 2610 struct srpt_send_ioctx *ioctx = 2611 container_of(se_cmd, struct srpt_send_ioctx, cmd); 2612 struct srpt_rdma_ch *ch = ioctx->ch; 2613 struct ib_send_wr *first_wr = NULL, *bad_wr; 2614 struct ib_cqe *cqe = &ioctx->rdma_cqe; 2615 enum srpt_command_state new_state; 2616 int ret, i; 2617 2618 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2619 WARN_ON(new_state == SRPT_STATE_DONE); 2620 2621 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) { 2622 pr_warn("%s: IB send queue full (needed %d)\n", 2623 __func__, ioctx->n_rdma); 2624 ret = -ENOMEM; 2625 goto out_undo; 2626 } 2627 2628 cqe->done = srpt_rdma_read_done; 2629 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2630 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2631 2632 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port, 2633 cqe, first_wr); 2634 cqe = NULL; 2635 } 2636 2637 ret = ib_post_send(ch->qp, first_wr, &bad_wr); 2638 if (ret) { 2639 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n", 2640 __func__, ret, ioctx->n_rdma, 2641 atomic_read(&ch->sq_wr_avail)); 2642 goto out_undo; 2643 } 2644 2645 return 0; 2646 out_undo: 2647 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 2648 return ret; 2649 } 2650 2651 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2652 { 2653 switch (tcm_mgmt_status) { 2654 case TMR_FUNCTION_COMPLETE: 2655 return SRP_TSK_MGMT_SUCCESS; 2656 case TMR_FUNCTION_REJECTED: 2657 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2658 } 2659 return SRP_TSK_MGMT_FAILED; 2660 } 2661 2662 /** 2663 * srpt_queue_response - transmit the response to a SCSI command 2664 * @cmd: SCSI target command. 2665 * 2666 * Callback function called by the TCM core. Must not block since it can be 2667 * invoked on the context of the IB completion handler. 2668 */ 2669 static void srpt_queue_response(struct se_cmd *cmd) 2670 { 2671 struct srpt_send_ioctx *ioctx = 2672 container_of(cmd, struct srpt_send_ioctx, cmd); 2673 struct srpt_rdma_ch *ch = ioctx->ch; 2674 struct srpt_device *sdev = ch->sport->sdev; 2675 struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr; 2676 struct ib_sge sge; 2677 enum srpt_command_state state; 2678 int resp_len, ret, i; 2679 u8 srp_tm_status; 2680 2681 BUG_ON(!ch); 2682 2683 state = ioctx->state; 2684 switch (state) { 2685 case SRPT_STATE_NEW: 2686 case SRPT_STATE_DATA_IN: 2687 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 2688 break; 2689 case SRPT_STATE_MGMT: 2690 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 2691 break; 2692 default: 2693 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 2694 ch, ioctx->ioctx.index, ioctx->state); 2695 break; 2696 } 2697 2698 if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) 2699 return; 2700 2701 /* For read commands, transfer the data to the initiator. */ 2702 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE && 2703 ioctx->cmd.data_length && 2704 !ioctx->queue_status_only) { 2705 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2706 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2707 2708 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, 2709 ch->sport->port, NULL, first_wr); 2710 } 2711 } 2712 2713 if (state != SRPT_STATE_MGMT) 2714 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, 2715 cmd->scsi_status); 2716 else { 2717 srp_tm_status 2718 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 2719 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 2720 ioctx->cmd.tag); 2721 } 2722 2723 atomic_inc(&ch->req_lim); 2724 2725 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma, 2726 &ch->sq_wr_avail) < 0)) { 2727 pr_warn("%s: IB send queue full (needed %d)\n", 2728 __func__, ioctx->n_rdma); 2729 ret = -ENOMEM; 2730 goto out; 2731 } 2732 2733 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len, 2734 DMA_TO_DEVICE); 2735 2736 sge.addr = ioctx->ioctx.dma; 2737 sge.length = resp_len; 2738 sge.lkey = sdev->lkey; 2739 2740 ioctx->ioctx.cqe.done = srpt_send_done; 2741 send_wr.next = NULL; 2742 send_wr.wr_cqe = &ioctx->ioctx.cqe; 2743 send_wr.sg_list = &sge; 2744 send_wr.num_sge = 1; 2745 send_wr.opcode = IB_WR_SEND; 2746 send_wr.send_flags = IB_SEND_SIGNALED; 2747 2748 ret = ib_post_send(ch->qp, first_wr, &bad_wr); 2749 if (ret < 0) { 2750 pr_err("%s: sending cmd response failed for tag %llu (%d)\n", 2751 __func__, ioctx->cmd.tag, ret); 2752 goto out; 2753 } 2754 2755 return; 2756 2757 out: 2758 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 2759 atomic_dec(&ch->req_lim); 2760 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 2761 target_put_sess_cmd(&ioctx->cmd); 2762 } 2763 2764 static int srpt_queue_data_in(struct se_cmd *cmd) 2765 { 2766 srpt_queue_response(cmd); 2767 return 0; 2768 } 2769 2770 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 2771 { 2772 srpt_queue_response(cmd); 2773 } 2774 2775 static void srpt_aborted_task(struct se_cmd *cmd) 2776 { 2777 } 2778 2779 static int srpt_queue_status(struct se_cmd *cmd) 2780 { 2781 struct srpt_send_ioctx *ioctx; 2782 2783 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 2784 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 2785 if (cmd->se_cmd_flags & 2786 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 2787 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 2788 ioctx->queue_status_only = true; 2789 srpt_queue_response(cmd); 2790 return 0; 2791 } 2792 2793 static void srpt_refresh_port_work(struct work_struct *work) 2794 { 2795 struct srpt_port *sport = container_of(work, struct srpt_port, work); 2796 2797 srpt_refresh_port(sport); 2798 } 2799 2800 static bool srpt_ch_list_empty(struct srpt_port *sport) 2801 { 2802 struct srpt_nexus *nexus; 2803 bool res = true; 2804 2805 rcu_read_lock(); 2806 list_for_each_entry(nexus, &sport->nexus_list, entry) 2807 if (!list_empty(&nexus->ch_list)) 2808 res = false; 2809 rcu_read_unlock(); 2810 2811 return res; 2812 } 2813 2814 /** 2815 * srpt_release_sport - disable login and wait for associated channels 2816 * @sport: SRPT HCA port. 2817 */ 2818 static int srpt_release_sport(struct srpt_port *sport) 2819 { 2820 struct srpt_nexus *nexus, *next_n; 2821 struct srpt_rdma_ch *ch; 2822 2823 WARN_ON_ONCE(irqs_disabled()); 2824 2825 mutex_lock(&sport->mutex); 2826 srpt_set_enabled(sport, false); 2827 mutex_unlock(&sport->mutex); 2828 2829 while (wait_event_timeout(sport->ch_releaseQ, 2830 srpt_ch_list_empty(sport), 5 * HZ) <= 0) { 2831 pr_info("%s_%d: waiting for session unregistration ...\n", 2832 sport->sdev->device->name, sport->port); 2833 rcu_read_lock(); 2834 list_for_each_entry(nexus, &sport->nexus_list, entry) { 2835 list_for_each_entry(ch, &nexus->ch_list, list) { 2836 pr_info("%s-%d: state %s\n", 2837 ch->sess_name, ch->qp->qp_num, 2838 get_ch_state_name(ch->state)); 2839 } 2840 } 2841 rcu_read_unlock(); 2842 } 2843 2844 mutex_lock(&sport->mutex); 2845 list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) { 2846 list_del(&nexus->entry); 2847 kfree_rcu(nexus, rcu); 2848 } 2849 mutex_unlock(&sport->mutex); 2850 2851 return 0; 2852 } 2853 2854 static struct se_wwn *__srpt_lookup_wwn(const char *name) 2855 { 2856 struct ib_device *dev; 2857 struct srpt_device *sdev; 2858 struct srpt_port *sport; 2859 int i; 2860 2861 list_for_each_entry(sdev, &srpt_dev_list, list) { 2862 dev = sdev->device; 2863 if (!dev) 2864 continue; 2865 2866 for (i = 0; i < dev->phys_port_cnt; i++) { 2867 sport = &sdev->port[i]; 2868 2869 if (strcmp(sport->port_guid, name) == 0) 2870 return &sport->port_guid_wwn; 2871 if (strcmp(sport->port_gid, name) == 0) 2872 return &sport->port_gid_wwn; 2873 } 2874 } 2875 2876 return NULL; 2877 } 2878 2879 static struct se_wwn *srpt_lookup_wwn(const char *name) 2880 { 2881 struct se_wwn *wwn; 2882 2883 spin_lock(&srpt_dev_lock); 2884 wwn = __srpt_lookup_wwn(name); 2885 spin_unlock(&srpt_dev_lock); 2886 2887 return wwn; 2888 } 2889 2890 static void srpt_free_srq(struct srpt_device *sdev) 2891 { 2892 if (!sdev->srq) 2893 return; 2894 2895 ib_destroy_srq(sdev->srq); 2896 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 2897 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 2898 sdev->srq = NULL; 2899 } 2900 2901 static int srpt_alloc_srq(struct srpt_device *sdev) 2902 { 2903 struct ib_srq_init_attr srq_attr = { 2904 .event_handler = srpt_srq_event, 2905 .srq_context = (void *)sdev, 2906 .attr.max_wr = sdev->srq_size, 2907 .attr.max_sge = 1, 2908 .srq_type = IB_SRQT_BASIC, 2909 }; 2910 struct ib_device *device = sdev->device; 2911 struct ib_srq *srq; 2912 int i; 2913 2914 WARN_ON_ONCE(sdev->srq); 2915 srq = ib_create_srq(sdev->pd, &srq_attr); 2916 if (IS_ERR(srq)) { 2917 pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq)); 2918 return PTR_ERR(srq); 2919 } 2920 2921 pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size, 2922 sdev->device->attrs.max_srq_wr, device->name); 2923 2924 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 2925 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 2926 sizeof(*sdev->ioctx_ring[0]), 2927 srp_max_req_size, DMA_FROM_DEVICE); 2928 if (!sdev->ioctx_ring) { 2929 ib_destroy_srq(srq); 2930 return -ENOMEM; 2931 } 2932 2933 sdev->use_srq = true; 2934 sdev->srq = srq; 2935 2936 for (i = 0; i < sdev->srq_size; ++i) { 2937 INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list); 2938 srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]); 2939 } 2940 2941 return 0; 2942 } 2943 2944 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq) 2945 { 2946 struct ib_device *device = sdev->device; 2947 int ret = 0; 2948 2949 if (!use_srq) { 2950 srpt_free_srq(sdev); 2951 sdev->use_srq = false; 2952 } else if (use_srq && !sdev->srq) { 2953 ret = srpt_alloc_srq(sdev); 2954 } 2955 pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, device->name, 2956 sdev->use_srq, ret); 2957 return ret; 2958 } 2959 2960 /** 2961 * srpt_add_one - InfiniBand device addition callback function 2962 * @device: Describes a HCA. 2963 */ 2964 static void srpt_add_one(struct ib_device *device) 2965 { 2966 struct srpt_device *sdev; 2967 struct srpt_port *sport; 2968 int i, ret; 2969 2970 pr_debug("device = %p\n", device); 2971 2972 sdev = kzalloc(sizeof(*sdev), GFP_KERNEL); 2973 if (!sdev) 2974 goto err; 2975 2976 sdev->device = device; 2977 mutex_init(&sdev->sdev_mutex); 2978 2979 sdev->pd = ib_alloc_pd(device, 0); 2980 if (IS_ERR(sdev->pd)) 2981 goto free_dev; 2982 2983 sdev->lkey = sdev->pd->local_dma_lkey; 2984 2985 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr); 2986 2987 srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq); 2988 2989 if (!srpt_service_guid) 2990 srpt_service_guid = be64_to_cpu(device->node_guid); 2991 2992 if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND) 2993 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 2994 if (IS_ERR(sdev->cm_id)) { 2995 pr_info("ib_create_cm_id() failed: %ld\n", 2996 PTR_ERR(sdev->cm_id)); 2997 sdev->cm_id = NULL; 2998 if (!rdma_cm_id) 2999 goto err_ring; 3000 } 3001 3002 /* print out target login information */ 3003 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3004 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3005 srpt_service_guid, srpt_service_guid); 3006 3007 /* 3008 * We do not have a consistent service_id (ie. also id_ext of target_id) 3009 * to identify this target. We currently use the guid of the first HCA 3010 * in the system as service_id; therefore, the target_id will change 3011 * if this HCA is gone bad and replaced by different HCA 3012 */ 3013 ret = sdev->cm_id ? 3014 ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) : 3015 0; 3016 if (ret < 0) { 3017 pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret, 3018 sdev->cm_id->state); 3019 goto err_cm; 3020 } 3021 3022 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3023 srpt_event_handler); 3024 ib_register_event_handler(&sdev->event_handler); 3025 3026 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 3027 3028 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3029 sport = &sdev->port[i - 1]; 3030 INIT_LIST_HEAD(&sport->nexus_list); 3031 init_waitqueue_head(&sport->ch_releaseQ); 3032 mutex_init(&sport->mutex); 3033 sport->sdev = sdev; 3034 sport->port = i; 3035 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3036 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3037 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3038 sport->port_attrib.use_srq = false; 3039 INIT_WORK(&sport->work, srpt_refresh_port_work); 3040 3041 if (srpt_refresh_port(sport)) { 3042 pr_err("MAD registration failed for %s-%d.\n", 3043 sdev->device->name, i); 3044 goto err_event; 3045 } 3046 } 3047 3048 spin_lock(&srpt_dev_lock); 3049 list_add_tail(&sdev->list, &srpt_dev_list); 3050 spin_unlock(&srpt_dev_lock); 3051 3052 out: 3053 ib_set_client_data(device, &srpt_client, sdev); 3054 pr_debug("added %s.\n", device->name); 3055 return; 3056 3057 err_event: 3058 ib_unregister_event_handler(&sdev->event_handler); 3059 err_cm: 3060 if (sdev->cm_id) 3061 ib_destroy_cm_id(sdev->cm_id); 3062 err_ring: 3063 srpt_free_srq(sdev); 3064 ib_dealloc_pd(sdev->pd); 3065 free_dev: 3066 kfree(sdev); 3067 err: 3068 sdev = NULL; 3069 pr_info("%s(%s) failed.\n", __func__, device->name); 3070 goto out; 3071 } 3072 3073 /** 3074 * srpt_remove_one - InfiniBand device removal callback function 3075 * @device: Describes a HCA. 3076 * @client_data: The value passed as the third argument to ib_set_client_data(). 3077 */ 3078 static void srpt_remove_one(struct ib_device *device, void *client_data) 3079 { 3080 struct srpt_device *sdev = client_data; 3081 int i; 3082 3083 if (!sdev) { 3084 pr_info("%s(%s): nothing to do.\n", __func__, device->name); 3085 return; 3086 } 3087 3088 srpt_unregister_mad_agent(sdev); 3089 3090 ib_unregister_event_handler(&sdev->event_handler); 3091 3092 /* Cancel any work queued by the just unregistered IB event handler. */ 3093 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3094 cancel_work_sync(&sdev->port[i].work); 3095 3096 if (sdev->cm_id) 3097 ib_destroy_cm_id(sdev->cm_id); 3098 3099 ib_set_client_data(device, &srpt_client, NULL); 3100 3101 /* 3102 * Unregistering a target must happen after destroying sdev->cm_id 3103 * such that no new SRP_LOGIN_REQ information units can arrive while 3104 * destroying the target. 3105 */ 3106 spin_lock(&srpt_dev_lock); 3107 list_del(&sdev->list); 3108 spin_unlock(&srpt_dev_lock); 3109 3110 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3111 srpt_release_sport(&sdev->port[i]); 3112 3113 srpt_free_srq(sdev); 3114 3115 ib_dealloc_pd(sdev->pd); 3116 3117 kfree(sdev); 3118 } 3119 3120 static struct ib_client srpt_client = { 3121 .name = DRV_NAME, 3122 .add = srpt_add_one, 3123 .remove = srpt_remove_one 3124 }; 3125 3126 static int srpt_check_true(struct se_portal_group *se_tpg) 3127 { 3128 return 1; 3129 } 3130 3131 static int srpt_check_false(struct se_portal_group *se_tpg) 3132 { 3133 return 0; 3134 } 3135 3136 static char *srpt_get_fabric_name(void) 3137 { 3138 return "srpt"; 3139 } 3140 3141 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg) 3142 { 3143 return tpg->se_tpg_wwn->priv; 3144 } 3145 3146 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3147 { 3148 struct srpt_port *sport = srpt_tpg_to_sport(tpg); 3149 3150 WARN_ON_ONCE(tpg != &sport->port_guid_tpg && 3151 tpg != &sport->port_gid_tpg); 3152 return tpg == &sport->port_guid_tpg ? sport->port_guid : 3153 sport->port_gid; 3154 } 3155 3156 static u16 srpt_get_tag(struct se_portal_group *tpg) 3157 { 3158 return 1; 3159 } 3160 3161 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3162 { 3163 return 1; 3164 } 3165 3166 static void srpt_release_cmd(struct se_cmd *se_cmd) 3167 { 3168 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3169 struct srpt_send_ioctx, cmd); 3170 struct srpt_rdma_ch *ch = ioctx->ch; 3171 unsigned long flags; 3172 3173 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE && 3174 !(ioctx->cmd.transport_state & CMD_T_ABORTED)); 3175 3176 if (ioctx->n_rw_ctx) { 3177 srpt_free_rw_ctxs(ch, ioctx); 3178 ioctx->n_rw_ctx = 0; 3179 } 3180 3181 spin_lock_irqsave(&ch->spinlock, flags); 3182 list_add(&ioctx->free_list, &ch->free_list); 3183 spin_unlock_irqrestore(&ch->spinlock, flags); 3184 } 3185 3186 /** 3187 * srpt_close_session - forcibly close a session 3188 * @se_sess: SCSI target session. 3189 * 3190 * Callback function invoked by the TCM core to clean up sessions associated 3191 * with a node ACL when the user invokes 3192 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3193 */ 3194 static void srpt_close_session(struct se_session *se_sess) 3195 { 3196 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 3197 3198 srpt_disconnect_ch_sync(ch); 3199 } 3200 3201 /** 3202 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB) 3203 * @se_sess: SCSI target session. 3204 * 3205 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3206 * This object represents an arbitrary integer used to uniquely identify a 3207 * particular attached remote initiator port to a particular SCSI target port 3208 * within a particular SCSI target device within a particular SCSI instance. 3209 */ 3210 static u32 srpt_sess_get_index(struct se_session *se_sess) 3211 { 3212 return 0; 3213 } 3214 3215 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3216 { 3217 } 3218 3219 /* Note: only used from inside debug printk's by the TCM core. */ 3220 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3221 { 3222 struct srpt_send_ioctx *ioctx; 3223 3224 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3225 return ioctx->state; 3226 } 3227 3228 static int srpt_parse_guid(u64 *guid, const char *name) 3229 { 3230 u16 w[4]; 3231 int ret = -EINVAL; 3232 3233 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4) 3234 goto out; 3235 *guid = get_unaligned_be64(w); 3236 ret = 0; 3237 out: 3238 return ret; 3239 } 3240 3241 /** 3242 * srpt_parse_i_port_id - parse an initiator port ID 3243 * @name: ASCII representation of a 128-bit initiator port ID. 3244 * @i_port_id: Binary 128-bit port ID. 3245 */ 3246 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3247 { 3248 const char *p; 3249 unsigned len, count, leading_zero_bytes; 3250 int ret; 3251 3252 p = name; 3253 if (strncasecmp(p, "0x", 2) == 0) 3254 p += 2; 3255 ret = -EINVAL; 3256 len = strlen(p); 3257 if (len % 2) 3258 goto out; 3259 count = min(len / 2, 16U); 3260 leading_zero_bytes = 16 - count; 3261 memset(i_port_id, 0, leading_zero_bytes); 3262 ret = hex2bin(i_port_id + leading_zero_bytes, p, count); 3263 3264 out: 3265 return ret; 3266 } 3267 3268 /* 3269 * configfs callback function invoked for mkdir 3270 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3271 * 3272 * i_port_id must be an initiator port GUID, GID or IP address. See also the 3273 * target_alloc_session() calls in this driver. Examples of valid initiator 3274 * port IDs: 3275 * 0x0000000000000000505400fffe4a0b7b 3276 * 0000000000000000505400fffe4a0b7b 3277 * 5054:00ff:fe4a:0b7b 3278 * 192.168.122.76 3279 */ 3280 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) 3281 { 3282 struct sockaddr_storage sa; 3283 u64 guid; 3284 u8 i_port_id[16]; 3285 int ret; 3286 3287 ret = srpt_parse_guid(&guid, name); 3288 if (ret < 0) 3289 ret = srpt_parse_i_port_id(i_port_id, name); 3290 if (ret < 0) 3291 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL, 3292 &sa); 3293 if (ret < 0) 3294 pr_err("invalid initiator port ID %s\n", name); 3295 return ret; 3296 } 3297 3298 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, 3299 char *page) 3300 { 3301 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3302 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3303 3304 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3305 } 3306 3307 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, 3308 const char *page, size_t count) 3309 { 3310 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3311 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3312 unsigned long val; 3313 int ret; 3314 3315 ret = kstrtoul(page, 0, &val); 3316 if (ret < 0) { 3317 pr_err("kstrtoul() failed with ret: %d\n", ret); 3318 return -EINVAL; 3319 } 3320 if (val > MAX_SRPT_RDMA_SIZE) { 3321 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3322 MAX_SRPT_RDMA_SIZE); 3323 return -EINVAL; 3324 } 3325 if (val < DEFAULT_MAX_RDMA_SIZE) { 3326 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3327 val, DEFAULT_MAX_RDMA_SIZE); 3328 return -EINVAL; 3329 } 3330 sport->port_attrib.srp_max_rdma_size = val; 3331 3332 return count; 3333 } 3334 3335 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, 3336 char *page) 3337 { 3338 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3339 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3340 3341 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3342 } 3343 3344 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, 3345 const char *page, size_t count) 3346 { 3347 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3348 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3349 unsigned long val; 3350 int ret; 3351 3352 ret = kstrtoul(page, 0, &val); 3353 if (ret < 0) { 3354 pr_err("kstrtoul() failed with ret: %d\n", ret); 3355 return -EINVAL; 3356 } 3357 if (val > MAX_SRPT_RSP_SIZE) { 3358 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3359 MAX_SRPT_RSP_SIZE); 3360 return -EINVAL; 3361 } 3362 if (val < MIN_MAX_RSP_SIZE) { 3363 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3364 MIN_MAX_RSP_SIZE); 3365 return -EINVAL; 3366 } 3367 sport->port_attrib.srp_max_rsp_size = val; 3368 3369 return count; 3370 } 3371 3372 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, 3373 char *page) 3374 { 3375 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3376 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3377 3378 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3379 } 3380 3381 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, 3382 const char *page, size_t count) 3383 { 3384 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3385 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3386 unsigned long val; 3387 int ret; 3388 3389 ret = kstrtoul(page, 0, &val); 3390 if (ret < 0) { 3391 pr_err("kstrtoul() failed with ret: %d\n", ret); 3392 return -EINVAL; 3393 } 3394 if (val > MAX_SRPT_SRQ_SIZE) { 3395 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3396 MAX_SRPT_SRQ_SIZE); 3397 return -EINVAL; 3398 } 3399 if (val < MIN_SRPT_SRQ_SIZE) { 3400 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3401 MIN_SRPT_SRQ_SIZE); 3402 return -EINVAL; 3403 } 3404 sport->port_attrib.srp_sq_size = val; 3405 3406 return count; 3407 } 3408 3409 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item, 3410 char *page) 3411 { 3412 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3413 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3414 3415 return sprintf(page, "%d\n", sport->port_attrib.use_srq); 3416 } 3417 3418 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item, 3419 const char *page, size_t count) 3420 { 3421 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3422 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3423 struct srpt_device *sdev = sport->sdev; 3424 unsigned long val; 3425 bool enabled; 3426 int ret; 3427 3428 ret = kstrtoul(page, 0, &val); 3429 if (ret < 0) 3430 return ret; 3431 if (val != !!val) 3432 return -EINVAL; 3433 3434 ret = mutex_lock_interruptible(&sdev->sdev_mutex); 3435 if (ret < 0) 3436 return ret; 3437 ret = mutex_lock_interruptible(&sport->mutex); 3438 if (ret < 0) 3439 goto unlock_sdev; 3440 enabled = sport->enabled; 3441 /* Log out all initiator systems before changing 'use_srq'. */ 3442 srpt_set_enabled(sport, false); 3443 sport->port_attrib.use_srq = val; 3444 srpt_use_srq(sdev, sport->port_attrib.use_srq); 3445 srpt_set_enabled(sport, enabled); 3446 ret = count; 3447 mutex_unlock(&sport->mutex); 3448 unlock_sdev: 3449 mutex_unlock(&sdev->sdev_mutex); 3450 3451 return ret; 3452 } 3453 3454 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size); 3455 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size); 3456 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size); 3457 CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq); 3458 3459 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3460 &srpt_tpg_attrib_attr_srp_max_rdma_size, 3461 &srpt_tpg_attrib_attr_srp_max_rsp_size, 3462 &srpt_tpg_attrib_attr_srp_sq_size, 3463 &srpt_tpg_attrib_attr_use_srq, 3464 NULL, 3465 }; 3466 3467 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr) 3468 { 3469 struct rdma_cm_id *rdma_cm_id; 3470 int ret; 3471 3472 rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler, 3473 NULL, RDMA_PS_TCP, IB_QPT_RC); 3474 if (IS_ERR(rdma_cm_id)) { 3475 pr_err("RDMA/CM ID creation failed: %ld\n", 3476 PTR_ERR(rdma_cm_id)); 3477 goto out; 3478 } 3479 3480 ret = rdma_bind_addr(rdma_cm_id, listen_addr); 3481 if (ret) { 3482 char addr_str[64]; 3483 3484 snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr); 3485 pr_err("Binding RDMA/CM ID to address %s failed: %d\n", 3486 addr_str, ret); 3487 rdma_destroy_id(rdma_cm_id); 3488 rdma_cm_id = ERR_PTR(ret); 3489 goto out; 3490 } 3491 3492 ret = rdma_listen(rdma_cm_id, 128); 3493 if (ret) { 3494 pr_err("rdma_listen() failed: %d\n", ret); 3495 rdma_destroy_id(rdma_cm_id); 3496 rdma_cm_id = ERR_PTR(ret); 3497 } 3498 3499 out: 3500 return rdma_cm_id; 3501 } 3502 3503 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page) 3504 { 3505 return sprintf(page, "%d\n", rdma_cm_port); 3506 } 3507 3508 static ssize_t srpt_rdma_cm_port_store(struct config_item *item, 3509 const char *page, size_t count) 3510 { 3511 struct sockaddr_in addr4 = { .sin_family = AF_INET }; 3512 struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 }; 3513 struct rdma_cm_id *new_id = NULL; 3514 u16 val; 3515 int ret; 3516 3517 ret = kstrtou16(page, 0, &val); 3518 if (ret < 0) 3519 return ret; 3520 ret = count; 3521 if (rdma_cm_port == val) 3522 goto out; 3523 3524 if (val) { 3525 addr6.sin6_port = cpu_to_be16(val); 3526 new_id = srpt_create_rdma_id((struct sockaddr *)&addr6); 3527 if (IS_ERR(new_id)) { 3528 addr4.sin_port = cpu_to_be16(val); 3529 new_id = srpt_create_rdma_id((struct sockaddr *)&addr4); 3530 if (IS_ERR(new_id)) { 3531 ret = PTR_ERR(new_id); 3532 goto out; 3533 } 3534 } 3535 } 3536 3537 mutex_lock(&rdma_cm_mutex); 3538 rdma_cm_port = val; 3539 swap(rdma_cm_id, new_id); 3540 mutex_unlock(&rdma_cm_mutex); 3541 3542 if (new_id) 3543 rdma_destroy_id(new_id); 3544 ret = count; 3545 out: 3546 return ret; 3547 } 3548 3549 CONFIGFS_ATTR(srpt_, rdma_cm_port); 3550 3551 static struct configfs_attribute *srpt_da_attrs[] = { 3552 &srpt_attr_rdma_cm_port, 3553 NULL, 3554 }; 3555 3556 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page) 3557 { 3558 struct se_portal_group *se_tpg = to_tpg(item); 3559 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3560 3561 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3562 } 3563 3564 static ssize_t srpt_tpg_enable_store(struct config_item *item, 3565 const char *page, size_t count) 3566 { 3567 struct se_portal_group *se_tpg = to_tpg(item); 3568 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3569 unsigned long tmp; 3570 int ret; 3571 3572 ret = kstrtoul(page, 0, &tmp); 3573 if (ret < 0) { 3574 pr_err("Unable to extract srpt_tpg_store_enable\n"); 3575 return -EINVAL; 3576 } 3577 3578 if ((tmp != 0) && (tmp != 1)) { 3579 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3580 return -EINVAL; 3581 } 3582 3583 mutex_lock(&sport->mutex); 3584 srpt_set_enabled(sport, tmp); 3585 mutex_unlock(&sport->mutex); 3586 3587 return count; 3588 } 3589 3590 CONFIGFS_ATTR(srpt_tpg_, enable); 3591 3592 static struct configfs_attribute *srpt_tpg_attrs[] = { 3593 &srpt_tpg_attr_enable, 3594 NULL, 3595 }; 3596 3597 /** 3598 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg 3599 * @wwn: Corresponds to $driver/$port. 3600 * @group: Not used. 3601 * @name: $tpg. 3602 */ 3603 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3604 struct config_group *group, 3605 const char *name) 3606 { 3607 struct srpt_port *sport = wwn->priv; 3608 static struct se_portal_group *tpg; 3609 int res; 3610 3611 WARN_ON_ONCE(wwn != &sport->port_guid_wwn && 3612 wwn != &sport->port_gid_wwn); 3613 tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg : 3614 &sport->port_gid_tpg; 3615 res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP); 3616 if (res) 3617 return ERR_PTR(res); 3618 3619 return tpg; 3620 } 3621 3622 /** 3623 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg 3624 * @tpg: Target portal group to deregister. 3625 */ 3626 static void srpt_drop_tpg(struct se_portal_group *tpg) 3627 { 3628 struct srpt_port *sport = srpt_tpg_to_sport(tpg); 3629 3630 sport->enabled = false; 3631 core_tpg_deregister(tpg); 3632 } 3633 3634 /** 3635 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port 3636 * @tf: Not used. 3637 * @group: Not used. 3638 * @name: $port. 3639 */ 3640 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3641 struct config_group *group, 3642 const char *name) 3643 { 3644 return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL); 3645 } 3646 3647 /** 3648 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port 3649 * @wwn: $port. 3650 */ 3651 static void srpt_drop_tport(struct se_wwn *wwn) 3652 { 3653 } 3654 3655 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf) 3656 { 3657 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3658 } 3659 3660 CONFIGFS_ATTR_RO(srpt_wwn_, version); 3661 3662 static struct configfs_attribute *srpt_wwn_attrs[] = { 3663 &srpt_wwn_attr_version, 3664 NULL, 3665 }; 3666 3667 static const struct target_core_fabric_ops srpt_template = { 3668 .module = THIS_MODULE, 3669 .name = "srpt", 3670 .get_fabric_name = srpt_get_fabric_name, 3671 .tpg_get_wwn = srpt_get_fabric_wwn, 3672 .tpg_get_tag = srpt_get_tag, 3673 .tpg_check_demo_mode = srpt_check_false, 3674 .tpg_check_demo_mode_cache = srpt_check_true, 3675 .tpg_check_demo_mode_write_protect = srpt_check_true, 3676 .tpg_check_prod_mode_write_protect = srpt_check_false, 3677 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3678 .release_cmd = srpt_release_cmd, 3679 .check_stop_free = srpt_check_stop_free, 3680 .close_session = srpt_close_session, 3681 .sess_get_index = srpt_sess_get_index, 3682 .sess_get_initiator_sid = NULL, 3683 .write_pending = srpt_write_pending, 3684 .write_pending_status = srpt_write_pending_status, 3685 .set_default_node_attributes = srpt_set_default_node_attrs, 3686 .get_cmd_state = srpt_get_tcm_cmd_state, 3687 .queue_data_in = srpt_queue_data_in, 3688 .queue_status = srpt_queue_status, 3689 .queue_tm_rsp = srpt_queue_tm_rsp, 3690 .aborted_task = srpt_aborted_task, 3691 /* 3692 * Setup function pointers for generic logic in 3693 * target_core_fabric_configfs.c 3694 */ 3695 .fabric_make_wwn = srpt_make_tport, 3696 .fabric_drop_wwn = srpt_drop_tport, 3697 .fabric_make_tpg = srpt_make_tpg, 3698 .fabric_drop_tpg = srpt_drop_tpg, 3699 .fabric_init_nodeacl = srpt_init_nodeacl, 3700 3701 .tfc_discovery_attrs = srpt_da_attrs, 3702 .tfc_wwn_attrs = srpt_wwn_attrs, 3703 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3704 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3705 }; 3706 3707 /** 3708 * srpt_init_module - kernel module initialization 3709 * 3710 * Note: Since ib_register_client() registers callback functions, and since at 3711 * least one of these callback functions (srpt_add_one()) calls target core 3712 * functions, this driver must be registered with the target core before 3713 * ib_register_client() is called. 3714 */ 3715 static int __init srpt_init_module(void) 3716 { 3717 int ret; 3718 3719 ret = -EINVAL; 3720 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3721 pr_err("invalid value %d for kernel module parameter" 3722 " srp_max_req_size -- must be at least %d.\n", 3723 srp_max_req_size, MIN_MAX_REQ_SIZE); 3724 goto out; 3725 } 3726 3727 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3728 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3729 pr_err("invalid value %d for kernel module parameter" 3730 " srpt_srq_size -- must be in the range [%d..%d].\n", 3731 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3732 goto out; 3733 } 3734 3735 ret = target_register_template(&srpt_template); 3736 if (ret) 3737 goto out; 3738 3739 ret = ib_register_client(&srpt_client); 3740 if (ret) { 3741 pr_err("couldn't register IB client\n"); 3742 goto out_unregister_target; 3743 } 3744 3745 return 0; 3746 3747 out_unregister_target: 3748 target_unregister_template(&srpt_template); 3749 out: 3750 return ret; 3751 } 3752 3753 static void __exit srpt_cleanup_module(void) 3754 { 3755 if (rdma_cm_id) 3756 rdma_destroy_id(rdma_cm_id); 3757 ib_unregister_client(&srpt_client); 3758 target_unregister_template(&srpt_template); 3759 } 3760 3761 module_init(srpt_init_module); 3762 module_exit(srpt_cleanup_module); 3763