xref: /openbmc/linux/drivers/infiniband/ulp/srpt/ib_srpt.c (revision ca90578000afb0d8f177ea36f7259a9c3640cf49)
1 /*
2  * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3  * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46 #include <scsi/scsi_proto.h>
47 #include <scsi/scsi_tcq.h>
48 #include <target/target_core_base.h>
49 #include <target/target_core_fabric.h>
50 #include "ib_srpt.h"
51 
52 /* Name of this kernel module. */
53 #define DRV_NAME		"ib_srpt"
54 #define DRV_VERSION		"2.0.0"
55 #define DRV_RELDATE		"2011-02-14"
56 
57 #define SRPT_ID_STRING	"Linux SRP target"
58 
59 #undef pr_fmt
60 #define pr_fmt(fmt) DRV_NAME " " fmt
61 
62 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 		   "v" DRV_VERSION " (" DRV_RELDATE ")");
65 MODULE_LICENSE("Dual BSD/GPL");
66 
67 /*
68  * Global Variables
69  */
70 
71 static u64 srpt_service_guid;
72 static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
73 static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
74 
75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76 module_param(srp_max_req_size, int, 0444);
77 MODULE_PARM_DESC(srp_max_req_size,
78 		 "Maximum size of SRP request messages in bytes.");
79 
80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81 module_param(srpt_srq_size, int, 0444);
82 MODULE_PARM_DESC(srpt_srq_size,
83 		 "Shared receive queue (SRQ) size.");
84 
85 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
86 {
87 	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88 }
89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 		  0444);
91 MODULE_PARM_DESC(srpt_service_guid,
92 		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 		 " instead of using the node_guid of the first HCA.");
94 
95 static struct ib_client srpt_client;
96 /* Protects both rdma_cm_port and rdma_cm_id. */
97 static DEFINE_MUTEX(rdma_cm_mutex);
98 /* Port number RDMA/CM will bind to. */
99 static u16 rdma_cm_port;
100 static struct rdma_cm_id *rdma_cm_id;
101 static void srpt_release_cmd(struct se_cmd *se_cmd);
102 static void srpt_free_ch(struct kref *kref);
103 static int srpt_queue_status(struct se_cmd *cmd);
104 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
105 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
106 static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
107 
108 /*
109  * The only allowed channel state changes are those that change the channel
110  * state into a state with a higher numerical value. Hence the new > prev test.
111  */
112 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
113 {
114 	unsigned long flags;
115 	enum rdma_ch_state prev;
116 	bool changed = false;
117 
118 	spin_lock_irqsave(&ch->spinlock, flags);
119 	prev = ch->state;
120 	if (new > prev) {
121 		ch->state = new;
122 		changed = true;
123 	}
124 	spin_unlock_irqrestore(&ch->spinlock, flags);
125 
126 	return changed;
127 }
128 
129 /**
130  * srpt_event_handler - asynchronous IB event callback function
131  * @handler: IB event handler registered by ib_register_event_handler().
132  * @event: Description of the event that occurred.
133  *
134  * Callback function called by the InfiniBand core when an asynchronous IB
135  * event occurs. This callback may occur in interrupt context. See also
136  * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
137  * Architecture Specification.
138  */
139 static void srpt_event_handler(struct ib_event_handler *handler,
140 			       struct ib_event *event)
141 {
142 	struct srpt_device *sdev;
143 	struct srpt_port *sport;
144 	u8 port_num;
145 
146 	sdev = ib_get_client_data(event->device, &srpt_client);
147 	if (!sdev || sdev->device != event->device)
148 		return;
149 
150 	pr_debug("ASYNC event= %d on device= %s\n", event->event,
151 		 sdev->device->name);
152 
153 	switch (event->event) {
154 	case IB_EVENT_PORT_ERR:
155 		port_num = event->element.port_num - 1;
156 		if (port_num < sdev->device->phys_port_cnt) {
157 			sport = &sdev->port[port_num];
158 			sport->lid = 0;
159 			sport->sm_lid = 0;
160 		} else {
161 			WARN(true, "event %d: port_num %d out of range 1..%d\n",
162 			     event->event, port_num + 1,
163 			     sdev->device->phys_port_cnt);
164 		}
165 		break;
166 	case IB_EVENT_PORT_ACTIVE:
167 	case IB_EVENT_LID_CHANGE:
168 	case IB_EVENT_PKEY_CHANGE:
169 	case IB_EVENT_SM_CHANGE:
170 	case IB_EVENT_CLIENT_REREGISTER:
171 	case IB_EVENT_GID_CHANGE:
172 		/* Refresh port data asynchronously. */
173 		port_num = event->element.port_num - 1;
174 		if (port_num < sdev->device->phys_port_cnt) {
175 			sport = &sdev->port[port_num];
176 			if (!sport->lid && !sport->sm_lid)
177 				schedule_work(&sport->work);
178 		} else {
179 			WARN(true, "event %d: port_num %d out of range 1..%d\n",
180 			     event->event, port_num + 1,
181 			     sdev->device->phys_port_cnt);
182 		}
183 		break;
184 	default:
185 		pr_err("received unrecognized IB event %d\n", event->event);
186 		break;
187 	}
188 }
189 
190 /**
191  * srpt_srq_event - SRQ event callback function
192  * @event: Description of the event that occurred.
193  * @ctx: Context pointer specified at SRQ creation time.
194  */
195 static void srpt_srq_event(struct ib_event *event, void *ctx)
196 {
197 	pr_debug("SRQ event %d\n", event->event);
198 }
199 
200 static const char *get_ch_state_name(enum rdma_ch_state s)
201 {
202 	switch (s) {
203 	case CH_CONNECTING:
204 		return "connecting";
205 	case CH_LIVE:
206 		return "live";
207 	case CH_DISCONNECTING:
208 		return "disconnecting";
209 	case CH_DRAINING:
210 		return "draining";
211 	case CH_DISCONNECTED:
212 		return "disconnected";
213 	}
214 	return "???";
215 }
216 
217 /**
218  * srpt_qp_event - QP event callback function
219  * @event: Description of the event that occurred.
220  * @ch: SRPT RDMA channel.
221  */
222 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
223 {
224 	pr_debug("QP event %d on ch=%p sess_name=%s state=%d\n",
225 		 event->event, ch, ch->sess_name, ch->state);
226 
227 	switch (event->event) {
228 	case IB_EVENT_COMM_EST:
229 		if (ch->using_rdma_cm)
230 			rdma_notify(ch->rdma_cm.cm_id, event->event);
231 		else
232 			ib_cm_notify(ch->ib_cm.cm_id, event->event);
233 		break;
234 	case IB_EVENT_QP_LAST_WQE_REACHED:
235 		pr_debug("%s-%d, state %s: received Last WQE event.\n",
236 			 ch->sess_name, ch->qp->qp_num,
237 			 get_ch_state_name(ch->state));
238 		break;
239 	default:
240 		pr_err("received unrecognized IB QP event %d\n", event->event);
241 		break;
242 	}
243 }
244 
245 /**
246  * srpt_set_ioc - initialize a IOUnitInfo structure
247  * @c_list: controller list.
248  * @slot: one-based slot number.
249  * @value: four-bit value.
250  *
251  * Copies the lowest four bits of value in element slot of the array of four
252  * bit elements called c_list (controller list). The index slot is one-based.
253  */
254 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
255 {
256 	u16 id;
257 	u8 tmp;
258 
259 	id = (slot - 1) / 2;
260 	if (slot & 0x1) {
261 		tmp = c_list[id] & 0xf;
262 		c_list[id] = (value << 4) | tmp;
263 	} else {
264 		tmp = c_list[id] & 0xf0;
265 		c_list[id] = (value & 0xf) | tmp;
266 	}
267 }
268 
269 /**
270  * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
271  * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
272  *
273  * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
274  * Specification.
275  */
276 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
277 {
278 	struct ib_class_port_info *cif;
279 
280 	cif = (struct ib_class_port_info *)mad->data;
281 	memset(cif, 0, sizeof(*cif));
282 	cif->base_version = 1;
283 	cif->class_version = 1;
284 
285 	ib_set_cpi_resp_time(cif, 20);
286 	mad->mad_hdr.status = 0;
287 }
288 
289 /**
290  * srpt_get_iou - write IOUnitInfo to a management datagram
291  * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
292  *
293  * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
294  * Specification. See also section B.7, table B.6 in the SRP r16a document.
295  */
296 static void srpt_get_iou(struct ib_dm_mad *mad)
297 {
298 	struct ib_dm_iou_info *ioui;
299 	u8 slot;
300 	int i;
301 
302 	ioui = (struct ib_dm_iou_info *)mad->data;
303 	ioui->change_id = cpu_to_be16(1);
304 	ioui->max_controllers = 16;
305 
306 	/* set present for slot 1 and empty for the rest */
307 	srpt_set_ioc(ioui->controller_list, 1, 1);
308 	for (i = 1, slot = 2; i < 16; i++, slot++)
309 		srpt_set_ioc(ioui->controller_list, slot, 0);
310 
311 	mad->mad_hdr.status = 0;
312 }
313 
314 /**
315  * srpt_get_ioc - write IOControllerprofile to a management datagram
316  * @sport: HCA port through which the MAD has been received.
317  * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
318  * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
319  *
320  * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321  * Architecture Specification. See also section B.7, table B.7 in the SRP
322  * r16a document.
323  */
324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325 			 struct ib_dm_mad *mad)
326 {
327 	struct srpt_device *sdev = sport->sdev;
328 	struct ib_dm_ioc_profile *iocp;
329 	int send_queue_depth;
330 
331 	iocp = (struct ib_dm_ioc_profile *)mad->data;
332 
333 	if (!slot || slot > 16) {
334 		mad->mad_hdr.status
335 			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
336 		return;
337 	}
338 
339 	if (slot > 2) {
340 		mad->mad_hdr.status
341 			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
342 		return;
343 	}
344 
345 	if (sdev->use_srq)
346 		send_queue_depth = sdev->srq_size;
347 	else
348 		send_queue_depth = min(MAX_SRPT_RQ_SIZE,
349 				       sdev->device->attrs.max_qp_wr);
350 
351 	memset(iocp, 0, sizeof(*iocp));
352 	strcpy(iocp->id_string, SRPT_ID_STRING);
353 	iocp->guid = cpu_to_be64(srpt_service_guid);
354 	iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
355 	iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
356 	iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
357 	iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
358 	iocp->subsys_device_id = 0x0;
359 	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
360 	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
361 	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
362 	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
363 	iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
364 	iocp->rdma_read_depth = 4;
365 	iocp->send_size = cpu_to_be32(srp_max_req_size);
366 	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
367 					  1U << 24));
368 	iocp->num_svc_entries = 1;
369 	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
370 		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
371 
372 	mad->mad_hdr.status = 0;
373 }
374 
375 /**
376  * srpt_get_svc_entries - write ServiceEntries to a management datagram
377  * @ioc_guid: I/O controller GUID to use in reply.
378  * @slot: I/O controller number.
379  * @hi: End of the range of service entries to be specified in the reply.
380  * @lo: Start of the range of service entries to be specified in the reply..
381  * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
382  *
383  * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
384  * Specification. See also section B.7, table B.8 in the SRP r16a document.
385  */
386 static void srpt_get_svc_entries(u64 ioc_guid,
387 				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
388 {
389 	struct ib_dm_svc_entries *svc_entries;
390 
391 	WARN_ON(!ioc_guid);
392 
393 	if (!slot || slot > 16) {
394 		mad->mad_hdr.status
395 			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
396 		return;
397 	}
398 
399 	if (slot > 2 || lo > hi || hi > 1) {
400 		mad->mad_hdr.status
401 			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
402 		return;
403 	}
404 
405 	svc_entries = (struct ib_dm_svc_entries *)mad->data;
406 	memset(svc_entries, 0, sizeof(*svc_entries));
407 	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
408 	snprintf(svc_entries->service_entries[0].name,
409 		 sizeof(svc_entries->service_entries[0].name),
410 		 "%s%016llx",
411 		 SRP_SERVICE_NAME_PREFIX,
412 		 ioc_guid);
413 
414 	mad->mad_hdr.status = 0;
415 }
416 
417 /**
418  * srpt_mgmt_method_get - process a received management datagram
419  * @sp:      HCA port through which the MAD has been received.
420  * @rq_mad:  received MAD.
421  * @rsp_mad: response MAD.
422  */
423 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
424 				 struct ib_dm_mad *rsp_mad)
425 {
426 	u16 attr_id;
427 	u32 slot;
428 	u8 hi, lo;
429 
430 	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
431 	switch (attr_id) {
432 	case DM_ATTR_CLASS_PORT_INFO:
433 		srpt_get_class_port_info(rsp_mad);
434 		break;
435 	case DM_ATTR_IOU_INFO:
436 		srpt_get_iou(rsp_mad);
437 		break;
438 	case DM_ATTR_IOC_PROFILE:
439 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
440 		srpt_get_ioc(sp, slot, rsp_mad);
441 		break;
442 	case DM_ATTR_SVC_ENTRIES:
443 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
444 		hi = (u8) ((slot >> 8) & 0xff);
445 		lo = (u8) (slot & 0xff);
446 		slot = (u16) ((slot >> 16) & 0xffff);
447 		srpt_get_svc_entries(srpt_service_guid,
448 				     slot, hi, lo, rsp_mad);
449 		break;
450 	default:
451 		rsp_mad->mad_hdr.status =
452 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
453 		break;
454 	}
455 }
456 
457 /**
458  * srpt_mad_send_handler - MAD send completion callback
459  * @mad_agent: Return value of ib_register_mad_agent().
460  * @mad_wc: Work completion reporting that the MAD has been sent.
461  */
462 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
463 				  struct ib_mad_send_wc *mad_wc)
464 {
465 	rdma_destroy_ah(mad_wc->send_buf->ah);
466 	ib_free_send_mad(mad_wc->send_buf);
467 }
468 
469 /**
470  * srpt_mad_recv_handler - MAD reception callback function
471  * @mad_agent: Return value of ib_register_mad_agent().
472  * @send_buf: Not used.
473  * @mad_wc: Work completion reporting that a MAD has been received.
474  */
475 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
476 				  struct ib_mad_send_buf *send_buf,
477 				  struct ib_mad_recv_wc *mad_wc)
478 {
479 	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
480 	struct ib_ah *ah;
481 	struct ib_mad_send_buf *rsp;
482 	struct ib_dm_mad *dm_mad;
483 
484 	if (!mad_wc || !mad_wc->recv_buf.mad)
485 		return;
486 
487 	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
488 				  mad_wc->recv_buf.grh, mad_agent->port_num);
489 	if (IS_ERR(ah))
490 		goto err;
491 
492 	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
493 
494 	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
495 				 mad_wc->wc->pkey_index, 0,
496 				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
497 				 GFP_KERNEL,
498 				 IB_MGMT_BASE_VERSION);
499 	if (IS_ERR(rsp))
500 		goto err_rsp;
501 
502 	rsp->ah = ah;
503 
504 	dm_mad = rsp->mad;
505 	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
506 	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
507 	dm_mad->mad_hdr.status = 0;
508 
509 	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
510 	case IB_MGMT_METHOD_GET:
511 		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
512 		break;
513 	case IB_MGMT_METHOD_SET:
514 		dm_mad->mad_hdr.status =
515 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
516 		break;
517 	default:
518 		dm_mad->mad_hdr.status =
519 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
520 		break;
521 	}
522 
523 	if (!ib_post_send_mad(rsp, NULL)) {
524 		ib_free_recv_mad(mad_wc);
525 		/* will destroy_ah & free_send_mad in send completion */
526 		return;
527 	}
528 
529 	ib_free_send_mad(rsp);
530 
531 err_rsp:
532 	rdma_destroy_ah(ah);
533 err:
534 	ib_free_recv_mad(mad_wc);
535 }
536 
537 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
538 {
539 	const __be16 *g = (const __be16 *)guid;
540 
541 	return snprintf(buf, size, "%04x:%04x:%04x:%04x",
542 			be16_to_cpu(g[0]), be16_to_cpu(g[1]),
543 			be16_to_cpu(g[2]), be16_to_cpu(g[3]));
544 }
545 
546 /**
547  * srpt_refresh_port - configure a HCA port
548  * @sport: SRPT HCA port.
549  *
550  * Enable InfiniBand management datagram processing, update the cached sm_lid,
551  * lid and gid values, and register a callback function for processing MADs
552  * on the specified port.
553  *
554  * Note: It is safe to call this function more than once for the same port.
555  */
556 static int srpt_refresh_port(struct srpt_port *sport)
557 {
558 	struct ib_mad_reg_req reg_req;
559 	struct ib_port_modify port_modify;
560 	struct ib_port_attr port_attr;
561 	int ret;
562 
563 	memset(&port_modify, 0, sizeof(port_modify));
564 	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
565 	port_modify.clr_port_cap_mask = 0;
566 
567 	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
568 	if (ret)
569 		goto err_mod_port;
570 
571 	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
572 	if (ret)
573 		goto err_query_port;
574 
575 	sport->sm_lid = port_attr.sm_lid;
576 	sport->lid = port_attr.lid;
577 
578 	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
579 			   NULL);
580 	if (ret)
581 		goto err_query_port;
582 
583 	sport->port_guid_wwn.priv = sport;
584 	srpt_format_guid(sport->port_guid, sizeof(sport->port_guid),
585 			 &sport->gid.global.interface_id);
586 	sport->port_gid_wwn.priv = sport;
587 	snprintf(sport->port_gid, sizeof(sport->port_gid),
588 		 "0x%016llx%016llx",
589 		 be64_to_cpu(sport->gid.global.subnet_prefix),
590 		 be64_to_cpu(sport->gid.global.interface_id));
591 
592 	if (!sport->mad_agent) {
593 		memset(&reg_req, 0, sizeof(reg_req));
594 		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
595 		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
596 		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
597 		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
598 
599 		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
600 							 sport->port,
601 							 IB_QPT_GSI,
602 							 &reg_req, 0,
603 							 srpt_mad_send_handler,
604 							 srpt_mad_recv_handler,
605 							 sport, 0);
606 		if (IS_ERR(sport->mad_agent)) {
607 			ret = PTR_ERR(sport->mad_agent);
608 			sport->mad_agent = NULL;
609 			goto err_query_port;
610 		}
611 	}
612 
613 	return 0;
614 
615 err_query_port:
616 
617 	port_modify.set_port_cap_mask = 0;
618 	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
619 	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
620 
621 err_mod_port:
622 
623 	return ret;
624 }
625 
626 /**
627  * srpt_unregister_mad_agent - unregister MAD callback functions
628  * @sdev: SRPT HCA pointer.
629  *
630  * Note: It is safe to call this function more than once for the same device.
631  */
632 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
633 {
634 	struct ib_port_modify port_modify = {
635 		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
636 	};
637 	struct srpt_port *sport;
638 	int i;
639 
640 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
641 		sport = &sdev->port[i - 1];
642 		WARN_ON(sport->port != i);
643 		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
644 			pr_err("disabling MAD processing failed.\n");
645 		if (sport->mad_agent) {
646 			ib_unregister_mad_agent(sport->mad_agent);
647 			sport->mad_agent = NULL;
648 		}
649 	}
650 }
651 
652 /**
653  * srpt_alloc_ioctx - allocate a SRPT I/O context structure
654  * @sdev: SRPT HCA pointer.
655  * @ioctx_size: I/O context size.
656  * @dma_size: Size of I/O context DMA buffer.
657  * @dir: DMA data direction.
658  */
659 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
660 					   int ioctx_size, int dma_size,
661 					   enum dma_data_direction dir)
662 {
663 	struct srpt_ioctx *ioctx;
664 
665 	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
666 	if (!ioctx)
667 		goto err;
668 
669 	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
670 	if (!ioctx->buf)
671 		goto err_free_ioctx;
672 
673 	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
674 	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
675 		goto err_free_buf;
676 
677 	return ioctx;
678 
679 err_free_buf:
680 	kfree(ioctx->buf);
681 err_free_ioctx:
682 	kfree(ioctx);
683 err:
684 	return NULL;
685 }
686 
687 /**
688  * srpt_free_ioctx - free a SRPT I/O context structure
689  * @sdev: SRPT HCA pointer.
690  * @ioctx: I/O context pointer.
691  * @dma_size: Size of I/O context DMA buffer.
692  * @dir: DMA data direction.
693  */
694 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
695 			    int dma_size, enum dma_data_direction dir)
696 {
697 	if (!ioctx)
698 		return;
699 
700 	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
701 	kfree(ioctx->buf);
702 	kfree(ioctx);
703 }
704 
705 /**
706  * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
707  * @sdev:       Device to allocate the I/O context ring for.
708  * @ring_size:  Number of elements in the I/O context ring.
709  * @ioctx_size: I/O context size.
710  * @dma_size:   DMA buffer size.
711  * @dir:        DMA data direction.
712  */
713 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
714 				int ring_size, int ioctx_size,
715 				int dma_size, enum dma_data_direction dir)
716 {
717 	struct srpt_ioctx **ring;
718 	int i;
719 
720 	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
721 		&& ioctx_size != sizeof(struct srpt_send_ioctx));
722 
723 	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
724 	if (!ring)
725 		goto out;
726 	for (i = 0; i < ring_size; ++i) {
727 		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
728 		if (!ring[i])
729 			goto err;
730 		ring[i]->index = i;
731 	}
732 	goto out;
733 
734 err:
735 	while (--i >= 0)
736 		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
737 	kfree(ring);
738 	ring = NULL;
739 out:
740 	return ring;
741 }
742 
743 /**
744  * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
745  * @ioctx_ring: I/O context ring to be freed.
746  * @sdev: SRPT HCA pointer.
747  * @ring_size: Number of ring elements.
748  * @dma_size: Size of I/O context DMA buffer.
749  * @dir: DMA data direction.
750  */
751 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
752 				 struct srpt_device *sdev, int ring_size,
753 				 int dma_size, enum dma_data_direction dir)
754 {
755 	int i;
756 
757 	if (!ioctx_ring)
758 		return;
759 
760 	for (i = 0; i < ring_size; ++i)
761 		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
762 	kfree(ioctx_ring);
763 }
764 
765 /**
766  * srpt_set_cmd_state - set the state of a SCSI command
767  * @ioctx: Send I/O context.
768  * @new: New I/O context state.
769  *
770  * Does not modify the state of aborted commands. Returns the previous command
771  * state.
772  */
773 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
774 						  enum srpt_command_state new)
775 {
776 	enum srpt_command_state previous;
777 
778 	previous = ioctx->state;
779 	if (previous != SRPT_STATE_DONE)
780 		ioctx->state = new;
781 
782 	return previous;
783 }
784 
785 /**
786  * srpt_test_and_set_cmd_state - test and set the state of a command
787  * @ioctx: Send I/O context.
788  * @old: Current I/O context state.
789  * @new: New I/O context state.
790  *
791  * Returns true if and only if the previous command state was equal to 'old'.
792  */
793 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
794 					enum srpt_command_state old,
795 					enum srpt_command_state new)
796 {
797 	enum srpt_command_state previous;
798 
799 	WARN_ON(!ioctx);
800 	WARN_ON(old == SRPT_STATE_DONE);
801 	WARN_ON(new == SRPT_STATE_NEW);
802 
803 	previous = ioctx->state;
804 	if (previous == old)
805 		ioctx->state = new;
806 
807 	return previous == old;
808 }
809 
810 /**
811  * srpt_post_recv - post an IB receive request
812  * @sdev: SRPT HCA pointer.
813  * @ch: SRPT RDMA channel.
814  * @ioctx: Receive I/O context pointer.
815  */
816 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
817 			  struct srpt_recv_ioctx *ioctx)
818 {
819 	struct ib_sge list;
820 	struct ib_recv_wr wr, *bad_wr;
821 
822 	BUG_ON(!sdev);
823 	list.addr = ioctx->ioctx.dma;
824 	list.length = srp_max_req_size;
825 	list.lkey = sdev->lkey;
826 
827 	ioctx->ioctx.cqe.done = srpt_recv_done;
828 	wr.wr_cqe = &ioctx->ioctx.cqe;
829 	wr.next = NULL;
830 	wr.sg_list = &list;
831 	wr.num_sge = 1;
832 
833 	if (sdev->use_srq)
834 		return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
835 	else
836 		return ib_post_recv(ch->qp, &wr, &bad_wr);
837 }
838 
839 /**
840  * srpt_zerolength_write - perform a zero-length RDMA write
841  * @ch: SRPT RDMA channel.
842  *
843  * A quote from the InfiniBand specification: C9-88: For an HCA responder
844  * using Reliable Connection service, for each zero-length RDMA READ or WRITE
845  * request, the R_Key shall not be validated, even if the request includes
846  * Immediate data.
847  */
848 static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
849 {
850 	struct ib_send_wr *bad_wr;
851 	struct ib_rdma_wr wr = {
852 		.wr = {
853 			.next		= NULL,
854 			{ .wr_cqe	= &ch->zw_cqe, },
855 			.opcode		= IB_WR_RDMA_WRITE,
856 			.send_flags	= IB_SEND_SIGNALED,
857 		}
858 	};
859 
860 	pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
861 		 ch->qp->qp_num);
862 
863 	return ib_post_send(ch->qp, &wr.wr, &bad_wr);
864 }
865 
866 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
867 {
868 	struct srpt_rdma_ch *ch = cq->cq_context;
869 
870 	pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
871 		 wc->status);
872 
873 	if (wc->status == IB_WC_SUCCESS) {
874 		srpt_process_wait_list(ch);
875 	} else {
876 		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
877 			schedule_work(&ch->release_work);
878 		else
879 			pr_debug("%s-%d: already disconnected.\n",
880 				 ch->sess_name, ch->qp->qp_num);
881 	}
882 }
883 
884 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
885 		struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
886 		unsigned *sg_cnt)
887 {
888 	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
889 	struct srpt_rdma_ch *ch = ioctx->ch;
890 	struct scatterlist *prev = NULL;
891 	unsigned prev_nents;
892 	int ret, i;
893 
894 	if (nbufs == 1) {
895 		ioctx->rw_ctxs = &ioctx->s_rw_ctx;
896 	} else {
897 		ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
898 			GFP_KERNEL);
899 		if (!ioctx->rw_ctxs)
900 			return -ENOMEM;
901 	}
902 
903 	for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
904 		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
905 		u64 remote_addr = be64_to_cpu(db->va);
906 		u32 size = be32_to_cpu(db->len);
907 		u32 rkey = be32_to_cpu(db->key);
908 
909 		ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
910 				i < nbufs - 1);
911 		if (ret)
912 			goto unwind;
913 
914 		ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
915 				ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
916 		if (ret < 0) {
917 			target_free_sgl(ctx->sg, ctx->nents);
918 			goto unwind;
919 		}
920 
921 		ioctx->n_rdma += ret;
922 		ioctx->n_rw_ctx++;
923 
924 		if (prev) {
925 			sg_unmark_end(&prev[prev_nents - 1]);
926 			sg_chain(prev, prev_nents + 1, ctx->sg);
927 		} else {
928 			*sg = ctx->sg;
929 		}
930 
931 		prev = ctx->sg;
932 		prev_nents = ctx->nents;
933 
934 		*sg_cnt += ctx->nents;
935 	}
936 
937 	return 0;
938 
939 unwind:
940 	while (--i >= 0) {
941 		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
942 
943 		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
944 				ctx->sg, ctx->nents, dir);
945 		target_free_sgl(ctx->sg, ctx->nents);
946 	}
947 	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
948 		kfree(ioctx->rw_ctxs);
949 	return ret;
950 }
951 
952 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
953 				    struct srpt_send_ioctx *ioctx)
954 {
955 	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
956 	int i;
957 
958 	for (i = 0; i < ioctx->n_rw_ctx; i++) {
959 		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
960 
961 		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
962 				ctx->sg, ctx->nents, dir);
963 		target_free_sgl(ctx->sg, ctx->nents);
964 	}
965 
966 	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
967 		kfree(ioctx->rw_ctxs);
968 }
969 
970 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
971 {
972 	/*
973 	 * The pointer computations below will only be compiled correctly
974 	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
975 	 * whether srp_cmd::add_data has been declared as a byte pointer.
976 	 */
977 	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
978 		     !__same_type(srp_cmd->add_data[0], (u8)0));
979 
980 	/*
981 	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
982 	 * CDB LENGTH' field are reserved and the size in bytes of this field
983 	 * is four times the value specified in bits 3..7. Hence the "& ~3".
984 	 */
985 	return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
986 }
987 
988 /**
989  * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
990  * @ioctx: Pointer to the I/O context associated with the request.
991  * @srp_cmd: Pointer to the SRP_CMD request data.
992  * @dir: Pointer to the variable to which the transfer direction will be
993  *   written.
994  * @sg: [out] scatterlist allocated for the parsed SRP_CMD.
995  * @sg_cnt: [out] length of @sg.
996  * @data_len: Pointer to the variable to which the total data length of all
997  *   descriptors in the SRP_CMD request will be written.
998  *
999  * This function initializes ioctx->nrbuf and ioctx->r_bufs.
1000  *
1001  * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1002  * -ENOMEM when memory allocation fails and zero upon success.
1003  */
1004 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
1005 		struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1006 		struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len)
1007 {
1008 	BUG_ON(!dir);
1009 	BUG_ON(!data_len);
1010 
1011 	/*
1012 	 * The lower four bits of the buffer format field contain the DATA-IN
1013 	 * buffer descriptor format, and the highest four bits contain the
1014 	 * DATA-OUT buffer descriptor format.
1015 	 */
1016 	if (srp_cmd->buf_fmt & 0xf)
1017 		/* DATA-IN: transfer data from target to initiator (read). */
1018 		*dir = DMA_FROM_DEVICE;
1019 	else if (srp_cmd->buf_fmt >> 4)
1020 		/* DATA-OUT: transfer data from initiator to target (write). */
1021 		*dir = DMA_TO_DEVICE;
1022 	else
1023 		*dir = DMA_NONE;
1024 
1025 	/* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1026 	ioctx->cmd.data_direction = *dir;
1027 
1028 	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1029 	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1030 	    	struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1031 
1032 		*data_len = be32_to_cpu(db->len);
1033 		return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1034 	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1035 		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1036 		struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1037 		int nbufs = be32_to_cpu(idb->table_desc.len) /
1038 				sizeof(struct srp_direct_buf);
1039 
1040 		if (nbufs >
1041 		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1042 			pr_err("received unsupported SRP_CMD request"
1043 			       " type (%u out + %u in != %u / %zu)\n",
1044 			       srp_cmd->data_out_desc_cnt,
1045 			       srp_cmd->data_in_desc_cnt,
1046 			       be32_to_cpu(idb->table_desc.len),
1047 			       sizeof(struct srp_direct_buf));
1048 			return -EINVAL;
1049 		}
1050 
1051 		*data_len = be32_to_cpu(idb->len);
1052 		return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1053 				sg, sg_cnt);
1054 	} else {
1055 		*data_len = 0;
1056 		return 0;
1057 	}
1058 }
1059 
1060 /**
1061  * srpt_init_ch_qp - initialize queue pair attributes
1062  * @ch: SRPT RDMA channel.
1063  * @qp: Queue pair pointer.
1064  *
1065  * Initialized the attributes of queue pair 'qp' by allowing local write,
1066  * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1067  */
1068 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1069 {
1070 	struct ib_qp_attr *attr;
1071 	int ret;
1072 
1073 	WARN_ON_ONCE(ch->using_rdma_cm);
1074 
1075 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1076 	if (!attr)
1077 		return -ENOMEM;
1078 
1079 	attr->qp_state = IB_QPS_INIT;
1080 	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1081 	attr->port_num = ch->sport->port;
1082 
1083 	ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1084 				  ch->pkey, &attr->pkey_index);
1085 	if (ret < 0)
1086 		pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1087 		       ch->pkey, ret);
1088 
1089 	ret = ib_modify_qp(qp, attr,
1090 			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1091 			   IB_QP_PKEY_INDEX);
1092 
1093 	kfree(attr);
1094 	return ret;
1095 }
1096 
1097 /**
1098  * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1099  * @ch: channel of the queue pair.
1100  * @qp: queue pair to change the state of.
1101  *
1102  * Returns zero upon success and a negative value upon failure.
1103  *
1104  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1105  * If this structure ever becomes larger, it might be necessary to allocate
1106  * it dynamically instead of on the stack.
1107  */
1108 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1109 {
1110 	struct ib_qp_attr qp_attr;
1111 	int attr_mask;
1112 	int ret;
1113 
1114 	WARN_ON_ONCE(ch->using_rdma_cm);
1115 
1116 	qp_attr.qp_state = IB_QPS_RTR;
1117 	ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1118 	if (ret)
1119 		goto out;
1120 
1121 	qp_attr.max_dest_rd_atomic = 4;
1122 
1123 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1124 
1125 out:
1126 	return ret;
1127 }
1128 
1129 /**
1130  * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1131  * @ch: channel of the queue pair.
1132  * @qp: queue pair to change the state of.
1133  *
1134  * Returns zero upon success and a negative value upon failure.
1135  *
1136  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1137  * If this structure ever becomes larger, it might be necessary to allocate
1138  * it dynamically instead of on the stack.
1139  */
1140 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1141 {
1142 	struct ib_qp_attr qp_attr;
1143 	int attr_mask;
1144 	int ret;
1145 
1146 	qp_attr.qp_state = IB_QPS_RTS;
1147 	ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1148 	if (ret)
1149 		goto out;
1150 
1151 	qp_attr.max_rd_atomic = 4;
1152 
1153 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1154 
1155 out:
1156 	return ret;
1157 }
1158 
1159 /**
1160  * srpt_ch_qp_err - set the channel queue pair state to 'error'
1161  * @ch: SRPT RDMA channel.
1162  */
1163 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1164 {
1165 	struct ib_qp_attr qp_attr;
1166 
1167 	qp_attr.qp_state = IB_QPS_ERR;
1168 	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1169 }
1170 
1171 /**
1172  * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1173  * @ch: SRPT RDMA channel.
1174  */
1175 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1176 {
1177 	struct srpt_send_ioctx *ioctx;
1178 	unsigned long flags;
1179 
1180 	BUG_ON(!ch);
1181 
1182 	ioctx = NULL;
1183 	spin_lock_irqsave(&ch->spinlock, flags);
1184 	if (!list_empty(&ch->free_list)) {
1185 		ioctx = list_first_entry(&ch->free_list,
1186 					 struct srpt_send_ioctx, free_list);
1187 		list_del(&ioctx->free_list);
1188 	}
1189 	spin_unlock_irqrestore(&ch->spinlock, flags);
1190 
1191 	if (!ioctx)
1192 		return ioctx;
1193 
1194 	BUG_ON(ioctx->ch != ch);
1195 	ioctx->state = SRPT_STATE_NEW;
1196 	ioctx->n_rdma = 0;
1197 	ioctx->n_rw_ctx = 0;
1198 	ioctx->queue_status_only = false;
1199 	/*
1200 	 * transport_init_se_cmd() does not initialize all fields, so do it
1201 	 * here.
1202 	 */
1203 	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1204 	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1205 
1206 	return ioctx;
1207 }
1208 
1209 /**
1210  * srpt_abort_cmd - abort a SCSI command
1211  * @ioctx:   I/O context associated with the SCSI command.
1212  */
1213 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1214 {
1215 	enum srpt_command_state state;
1216 
1217 	BUG_ON(!ioctx);
1218 
1219 	/*
1220 	 * If the command is in a state where the target core is waiting for
1221 	 * the ib_srpt driver, change the state to the next state.
1222 	 */
1223 
1224 	state = ioctx->state;
1225 	switch (state) {
1226 	case SRPT_STATE_NEED_DATA:
1227 		ioctx->state = SRPT_STATE_DATA_IN;
1228 		break;
1229 	case SRPT_STATE_CMD_RSP_SENT:
1230 	case SRPT_STATE_MGMT_RSP_SENT:
1231 		ioctx->state = SRPT_STATE_DONE;
1232 		break;
1233 	default:
1234 		WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1235 			  __func__, state);
1236 		break;
1237 	}
1238 
1239 	pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1240 		 ioctx->state, ioctx->cmd.tag);
1241 
1242 	switch (state) {
1243 	case SRPT_STATE_NEW:
1244 	case SRPT_STATE_DATA_IN:
1245 	case SRPT_STATE_MGMT:
1246 	case SRPT_STATE_DONE:
1247 		/*
1248 		 * Do nothing - defer abort processing until
1249 		 * srpt_queue_response() is invoked.
1250 		 */
1251 		break;
1252 	case SRPT_STATE_NEED_DATA:
1253 		pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1254 		transport_generic_request_failure(&ioctx->cmd,
1255 					TCM_CHECK_CONDITION_ABORT_CMD);
1256 		break;
1257 	case SRPT_STATE_CMD_RSP_SENT:
1258 		/*
1259 		 * SRP_RSP sending failed or the SRP_RSP send completion has
1260 		 * not been received in time.
1261 		 */
1262 		transport_generic_free_cmd(&ioctx->cmd, 0);
1263 		break;
1264 	case SRPT_STATE_MGMT_RSP_SENT:
1265 		transport_generic_free_cmd(&ioctx->cmd, 0);
1266 		break;
1267 	default:
1268 		WARN(1, "Unexpected command state (%d)", state);
1269 		break;
1270 	}
1271 
1272 	return state;
1273 }
1274 
1275 /**
1276  * srpt_rdma_read_done - RDMA read completion callback
1277  * @cq: Completion queue.
1278  * @wc: Work completion.
1279  *
1280  * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1281  * the data that has been transferred via IB RDMA had to be postponed until the
1282  * check_stop_free() callback.  None of this is necessary anymore and needs to
1283  * be cleaned up.
1284  */
1285 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1286 {
1287 	struct srpt_rdma_ch *ch = cq->cq_context;
1288 	struct srpt_send_ioctx *ioctx =
1289 		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1290 
1291 	WARN_ON(ioctx->n_rdma <= 0);
1292 	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1293 	ioctx->n_rdma = 0;
1294 
1295 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1296 		pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1297 			ioctx, wc->status);
1298 		srpt_abort_cmd(ioctx);
1299 		return;
1300 	}
1301 
1302 	if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1303 					SRPT_STATE_DATA_IN))
1304 		target_execute_cmd(&ioctx->cmd);
1305 	else
1306 		pr_err("%s[%d]: wrong state = %d\n", __func__,
1307 		       __LINE__, ioctx->state);
1308 }
1309 
1310 /**
1311  * srpt_build_cmd_rsp - build a SRP_RSP response
1312  * @ch: RDMA channel through which the request has been received.
1313  * @ioctx: I/O context associated with the SRP_CMD request. The response will
1314  *   be built in the buffer ioctx->buf points at and hence this function will
1315  *   overwrite the request data.
1316  * @tag: tag of the request for which this response is being generated.
1317  * @status: value for the STATUS field of the SRP_RSP information unit.
1318  *
1319  * Returns the size in bytes of the SRP_RSP response.
1320  *
1321  * An SRP_RSP response contains a SCSI status or service response. See also
1322  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1323  * response. See also SPC-2 for more information about sense data.
1324  */
1325 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1326 			      struct srpt_send_ioctx *ioctx, u64 tag,
1327 			      int status)
1328 {
1329 	struct srp_rsp *srp_rsp;
1330 	const u8 *sense_data;
1331 	int sense_data_len, max_sense_len;
1332 
1333 	/*
1334 	 * The lowest bit of all SAM-3 status codes is zero (see also
1335 	 * paragraph 5.3 in SAM-3).
1336 	 */
1337 	WARN_ON(status & 1);
1338 
1339 	srp_rsp = ioctx->ioctx.buf;
1340 	BUG_ON(!srp_rsp);
1341 
1342 	sense_data = ioctx->sense_data;
1343 	sense_data_len = ioctx->cmd.scsi_sense_length;
1344 	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1345 
1346 	memset(srp_rsp, 0, sizeof(*srp_rsp));
1347 	srp_rsp->opcode = SRP_RSP;
1348 	srp_rsp->req_lim_delta =
1349 		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1350 	srp_rsp->tag = tag;
1351 	srp_rsp->status = status;
1352 
1353 	if (sense_data_len) {
1354 		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1355 		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1356 		if (sense_data_len > max_sense_len) {
1357 			pr_warn("truncated sense data from %d to %d"
1358 				" bytes\n", sense_data_len, max_sense_len);
1359 			sense_data_len = max_sense_len;
1360 		}
1361 
1362 		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1363 		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1364 		memcpy(srp_rsp + 1, sense_data, sense_data_len);
1365 	}
1366 
1367 	return sizeof(*srp_rsp) + sense_data_len;
1368 }
1369 
1370 /**
1371  * srpt_build_tskmgmt_rsp - build a task management response
1372  * @ch:       RDMA channel through which the request has been received.
1373  * @ioctx:    I/O context in which the SRP_RSP response will be built.
1374  * @rsp_code: RSP_CODE that will be stored in the response.
1375  * @tag:      Tag of the request for which this response is being generated.
1376  *
1377  * Returns the size in bytes of the SRP_RSP response.
1378  *
1379  * An SRP_RSP response contains a SCSI status or service response. See also
1380  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1381  * response.
1382  */
1383 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1384 				  struct srpt_send_ioctx *ioctx,
1385 				  u8 rsp_code, u64 tag)
1386 {
1387 	struct srp_rsp *srp_rsp;
1388 	int resp_data_len;
1389 	int resp_len;
1390 
1391 	resp_data_len = 4;
1392 	resp_len = sizeof(*srp_rsp) + resp_data_len;
1393 
1394 	srp_rsp = ioctx->ioctx.buf;
1395 	BUG_ON(!srp_rsp);
1396 	memset(srp_rsp, 0, sizeof(*srp_rsp));
1397 
1398 	srp_rsp->opcode = SRP_RSP;
1399 	srp_rsp->req_lim_delta =
1400 		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1401 	srp_rsp->tag = tag;
1402 
1403 	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1404 	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1405 	srp_rsp->data[3] = rsp_code;
1406 
1407 	return resp_len;
1408 }
1409 
1410 static int srpt_check_stop_free(struct se_cmd *cmd)
1411 {
1412 	struct srpt_send_ioctx *ioctx = container_of(cmd,
1413 				struct srpt_send_ioctx, cmd);
1414 
1415 	return target_put_sess_cmd(&ioctx->cmd);
1416 }
1417 
1418 /**
1419  * srpt_handle_cmd - process a SRP_CMD information unit
1420  * @ch: SRPT RDMA channel.
1421  * @recv_ioctx: Receive I/O context.
1422  * @send_ioctx: Send I/O context.
1423  */
1424 static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1425 			    struct srpt_recv_ioctx *recv_ioctx,
1426 			    struct srpt_send_ioctx *send_ioctx)
1427 {
1428 	struct se_cmd *cmd;
1429 	struct srp_cmd *srp_cmd;
1430 	struct scatterlist *sg = NULL;
1431 	unsigned sg_cnt = 0;
1432 	u64 data_len;
1433 	enum dma_data_direction dir;
1434 	int rc;
1435 
1436 	BUG_ON(!send_ioctx);
1437 
1438 	srp_cmd = recv_ioctx->ioctx.buf;
1439 	cmd = &send_ioctx->cmd;
1440 	cmd->tag = srp_cmd->tag;
1441 
1442 	switch (srp_cmd->task_attr) {
1443 	case SRP_CMD_SIMPLE_Q:
1444 		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1445 		break;
1446 	case SRP_CMD_ORDERED_Q:
1447 	default:
1448 		cmd->sam_task_attr = TCM_ORDERED_TAG;
1449 		break;
1450 	case SRP_CMD_HEAD_OF_Q:
1451 		cmd->sam_task_attr = TCM_HEAD_TAG;
1452 		break;
1453 	case SRP_CMD_ACA:
1454 		cmd->sam_task_attr = TCM_ACA_TAG;
1455 		break;
1456 	}
1457 
1458 	rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt,
1459 			&data_len);
1460 	if (rc) {
1461 		if (rc != -EAGAIN) {
1462 			pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1463 			       srp_cmd->tag);
1464 		}
1465 		goto release_ioctx;
1466 	}
1467 
1468 	rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
1469 			       &send_ioctx->sense_data[0],
1470 			       scsilun_to_int(&srp_cmd->lun), data_len,
1471 			       TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
1472 			       sg, sg_cnt, NULL, 0, NULL, 0);
1473 	if (rc != 0) {
1474 		pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1475 			 srp_cmd->tag);
1476 		goto release_ioctx;
1477 	}
1478 	return;
1479 
1480 release_ioctx:
1481 	send_ioctx->state = SRPT_STATE_DONE;
1482 	srpt_release_cmd(cmd);
1483 }
1484 
1485 static int srp_tmr_to_tcm(int fn)
1486 {
1487 	switch (fn) {
1488 	case SRP_TSK_ABORT_TASK:
1489 		return TMR_ABORT_TASK;
1490 	case SRP_TSK_ABORT_TASK_SET:
1491 		return TMR_ABORT_TASK_SET;
1492 	case SRP_TSK_CLEAR_TASK_SET:
1493 		return TMR_CLEAR_TASK_SET;
1494 	case SRP_TSK_LUN_RESET:
1495 		return TMR_LUN_RESET;
1496 	case SRP_TSK_CLEAR_ACA:
1497 		return TMR_CLEAR_ACA;
1498 	default:
1499 		return -1;
1500 	}
1501 }
1502 
1503 /**
1504  * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1505  * @ch: SRPT RDMA channel.
1506  * @recv_ioctx: Receive I/O context.
1507  * @send_ioctx: Send I/O context.
1508  *
1509  * Returns 0 if and only if the request will be processed by the target core.
1510  *
1511  * For more information about SRP_TSK_MGMT information units, see also section
1512  * 6.7 in the SRP r16a document.
1513  */
1514 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1515 				 struct srpt_recv_ioctx *recv_ioctx,
1516 				 struct srpt_send_ioctx *send_ioctx)
1517 {
1518 	struct srp_tsk_mgmt *srp_tsk;
1519 	struct se_cmd *cmd;
1520 	struct se_session *sess = ch->sess;
1521 	int tcm_tmr;
1522 	int rc;
1523 
1524 	BUG_ON(!send_ioctx);
1525 
1526 	srp_tsk = recv_ioctx->ioctx.buf;
1527 	cmd = &send_ioctx->cmd;
1528 
1529 	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1530 		 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1531 		 ch->sess);
1532 
1533 	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1534 	send_ioctx->cmd.tag = srp_tsk->tag;
1535 	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1536 	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1537 			       scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1538 			       GFP_KERNEL, srp_tsk->task_tag,
1539 			       TARGET_SCF_ACK_KREF);
1540 	if (rc != 0) {
1541 		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1542 		goto fail;
1543 	}
1544 	return;
1545 fail:
1546 	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1547 }
1548 
1549 /**
1550  * srpt_handle_new_iu - process a newly received information unit
1551  * @ch:    RDMA channel through which the information unit has been received.
1552  * @recv_ioctx: Receive I/O context associated with the information unit.
1553  */
1554 static bool
1555 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1556 {
1557 	struct srpt_send_ioctx *send_ioctx = NULL;
1558 	struct srp_cmd *srp_cmd;
1559 	bool res = false;
1560 	u8 opcode;
1561 
1562 	BUG_ON(!ch);
1563 	BUG_ON(!recv_ioctx);
1564 
1565 	if (unlikely(ch->state == CH_CONNECTING))
1566 		goto push;
1567 
1568 	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1569 				   recv_ioctx->ioctx.dma, srp_max_req_size,
1570 				   DMA_FROM_DEVICE);
1571 
1572 	srp_cmd = recv_ioctx->ioctx.buf;
1573 	opcode = srp_cmd->opcode;
1574 	if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1575 		send_ioctx = srpt_get_send_ioctx(ch);
1576 		if (unlikely(!send_ioctx))
1577 			goto push;
1578 	}
1579 
1580 	if (!list_empty(&recv_ioctx->wait_list)) {
1581 		WARN_ON_ONCE(!ch->processing_wait_list);
1582 		list_del_init(&recv_ioctx->wait_list);
1583 	}
1584 
1585 	switch (opcode) {
1586 	case SRP_CMD:
1587 		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1588 		break;
1589 	case SRP_TSK_MGMT:
1590 		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1591 		break;
1592 	case SRP_I_LOGOUT:
1593 		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1594 		break;
1595 	case SRP_CRED_RSP:
1596 		pr_debug("received SRP_CRED_RSP\n");
1597 		break;
1598 	case SRP_AER_RSP:
1599 		pr_debug("received SRP_AER_RSP\n");
1600 		break;
1601 	case SRP_RSP:
1602 		pr_err("Received SRP_RSP\n");
1603 		break;
1604 	default:
1605 		pr_err("received IU with unknown opcode 0x%x\n", opcode);
1606 		break;
1607 	}
1608 
1609 	srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1610 	res = true;
1611 
1612 out:
1613 	return res;
1614 
1615 push:
1616 	if (list_empty(&recv_ioctx->wait_list)) {
1617 		WARN_ON_ONCE(ch->processing_wait_list);
1618 		list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1619 	}
1620 	goto out;
1621 }
1622 
1623 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1624 {
1625 	struct srpt_rdma_ch *ch = cq->cq_context;
1626 	struct srpt_recv_ioctx *ioctx =
1627 		container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1628 
1629 	if (wc->status == IB_WC_SUCCESS) {
1630 		int req_lim;
1631 
1632 		req_lim = atomic_dec_return(&ch->req_lim);
1633 		if (unlikely(req_lim < 0))
1634 			pr_err("req_lim = %d < 0\n", req_lim);
1635 		srpt_handle_new_iu(ch, ioctx);
1636 	} else {
1637 		pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1638 				    ioctx, wc->status);
1639 	}
1640 }
1641 
1642 /*
1643  * This function must be called from the context in which RDMA completions are
1644  * processed because it accesses the wait list without protection against
1645  * access from other threads.
1646  */
1647 static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1648 {
1649 	struct srpt_recv_ioctx *recv_ioctx, *tmp;
1650 
1651 	WARN_ON_ONCE(ch->state == CH_CONNECTING);
1652 
1653 	if (list_empty(&ch->cmd_wait_list))
1654 		return;
1655 
1656 	WARN_ON_ONCE(ch->processing_wait_list);
1657 	ch->processing_wait_list = true;
1658 	list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1659 				 wait_list) {
1660 		if (!srpt_handle_new_iu(ch, recv_ioctx))
1661 			break;
1662 	}
1663 	ch->processing_wait_list = false;
1664 }
1665 
1666 /**
1667  * srpt_send_done - send completion callback
1668  * @cq: Completion queue.
1669  * @wc: Work completion.
1670  *
1671  * Note: Although this has not yet been observed during tests, at least in
1672  * theory it is possible that the srpt_get_send_ioctx() call invoked by
1673  * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1674  * value in each response is set to one, and it is possible that this response
1675  * makes the initiator send a new request before the send completion for that
1676  * response has been processed. This could e.g. happen if the call to
1677  * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1678  * if IB retransmission causes generation of the send completion to be
1679  * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1680  * are queued on cmd_wait_list. The code below processes these delayed
1681  * requests one at a time.
1682  */
1683 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1684 {
1685 	struct srpt_rdma_ch *ch = cq->cq_context;
1686 	struct srpt_send_ioctx *ioctx =
1687 		container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1688 	enum srpt_command_state state;
1689 
1690 	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1691 
1692 	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1693 		state != SRPT_STATE_MGMT_RSP_SENT);
1694 
1695 	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1696 
1697 	if (wc->status != IB_WC_SUCCESS)
1698 		pr_info("sending response for ioctx 0x%p failed"
1699 			" with status %d\n", ioctx, wc->status);
1700 
1701 	if (state != SRPT_STATE_DONE) {
1702 		transport_generic_free_cmd(&ioctx->cmd, 0);
1703 	} else {
1704 		pr_err("IB completion has been received too late for"
1705 		       " wr_id = %u.\n", ioctx->ioctx.index);
1706 	}
1707 
1708 	srpt_process_wait_list(ch);
1709 }
1710 
1711 /**
1712  * srpt_create_ch_ib - create receive and send completion queues
1713  * @ch: SRPT RDMA channel.
1714  */
1715 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1716 {
1717 	struct ib_qp_init_attr *qp_init;
1718 	struct srpt_port *sport = ch->sport;
1719 	struct srpt_device *sdev = sport->sdev;
1720 	const struct ib_device_attr *attrs = &sdev->device->attrs;
1721 	int sq_size = sport->port_attrib.srp_sq_size;
1722 	int i, ret;
1723 
1724 	WARN_ON(ch->rq_size < 1);
1725 
1726 	ret = -ENOMEM;
1727 	qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1728 	if (!qp_init)
1729 		goto out;
1730 
1731 retry:
1732 	ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + sq_size,
1733 			0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1734 	if (IS_ERR(ch->cq)) {
1735 		ret = PTR_ERR(ch->cq);
1736 		pr_err("failed to create CQ cqe= %d ret= %d\n",
1737 		       ch->rq_size + sq_size, ret);
1738 		goto out;
1739 	}
1740 
1741 	qp_init->qp_context = (void *)ch;
1742 	qp_init->event_handler
1743 		= (void(*)(struct ib_event *, void*))srpt_qp_event;
1744 	qp_init->send_cq = ch->cq;
1745 	qp_init->recv_cq = ch->cq;
1746 	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1747 	qp_init->qp_type = IB_QPT_RC;
1748 	/*
1749 	 * We divide up our send queue size into half SEND WRs to send the
1750 	 * completions, and half R/W contexts to actually do the RDMA
1751 	 * READ/WRITE transfers.  Note that we need to allocate CQ slots for
1752 	 * both both, as RDMA contexts will also post completions for the
1753 	 * RDMA READ case.
1754 	 */
1755 	qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1756 	qp_init->cap.max_rdma_ctxs = sq_size / 2;
1757 	qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE);
1758 	qp_init->port_num = ch->sport->port;
1759 	if (sdev->use_srq) {
1760 		qp_init->srq = sdev->srq;
1761 	} else {
1762 		qp_init->cap.max_recv_wr = ch->rq_size;
1763 		qp_init->cap.max_recv_sge = qp_init->cap.max_send_sge;
1764 	}
1765 
1766 	if (ch->using_rdma_cm) {
1767 		ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1768 		ch->qp = ch->rdma_cm.cm_id->qp;
1769 	} else {
1770 		ch->qp = ib_create_qp(sdev->pd, qp_init);
1771 		if (!IS_ERR(ch->qp)) {
1772 			ret = srpt_init_ch_qp(ch, ch->qp);
1773 			if (ret)
1774 				ib_destroy_qp(ch->qp);
1775 		} else {
1776 			ret = PTR_ERR(ch->qp);
1777 		}
1778 	}
1779 	if (ret) {
1780 		bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1781 
1782 		if (retry) {
1783 			pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1784 				 sq_size, ret);
1785 			ib_free_cq(ch->cq);
1786 			sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1787 			goto retry;
1788 		} else {
1789 			pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1790 			       sq_size, ret);
1791 			goto err_destroy_cq;
1792 		}
1793 	}
1794 
1795 	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1796 
1797 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1798 		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1799 		 qp_init->cap.max_send_wr, ch);
1800 
1801 	if (!sdev->use_srq)
1802 		for (i = 0; i < ch->rq_size; i++)
1803 			srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1804 
1805 out:
1806 	kfree(qp_init);
1807 	return ret;
1808 
1809 err_destroy_cq:
1810 	ch->qp = NULL;
1811 	ib_free_cq(ch->cq);
1812 	goto out;
1813 }
1814 
1815 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1816 {
1817 	ib_destroy_qp(ch->qp);
1818 	ib_free_cq(ch->cq);
1819 }
1820 
1821 /**
1822  * srpt_close_ch - close a RDMA channel
1823  * @ch: SRPT RDMA channel.
1824  *
1825  * Make sure all resources associated with the channel will be deallocated at
1826  * an appropriate time.
1827  *
1828  * Returns true if and only if the channel state has been modified into
1829  * CH_DRAINING.
1830  */
1831 static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1832 {
1833 	int ret;
1834 
1835 	if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1836 		pr_debug("%s-%d: already closed\n", ch->sess_name,
1837 			 ch->qp->qp_num);
1838 		return false;
1839 	}
1840 
1841 	kref_get(&ch->kref);
1842 
1843 	ret = srpt_ch_qp_err(ch);
1844 	if (ret < 0)
1845 		pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1846 		       ch->sess_name, ch->qp->qp_num, ret);
1847 
1848 	ret = srpt_zerolength_write(ch);
1849 	if (ret < 0) {
1850 		pr_err("%s-%d: queuing zero-length write failed: %d\n",
1851 		       ch->sess_name, ch->qp->qp_num, ret);
1852 		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1853 			schedule_work(&ch->release_work);
1854 		else
1855 			WARN_ON_ONCE(true);
1856 	}
1857 
1858 	kref_put(&ch->kref, srpt_free_ch);
1859 
1860 	return true;
1861 }
1862 
1863 /*
1864  * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1865  * reached the connected state, close it. If a channel is in the connected
1866  * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1867  * the responsibility of the caller to ensure that this function is not
1868  * invoked concurrently with the code that accepts a connection. This means
1869  * that this function must either be invoked from inside a CM callback
1870  * function or that it must be invoked with the srpt_port.mutex held.
1871  */
1872 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1873 {
1874 	int ret;
1875 
1876 	if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1877 		return -ENOTCONN;
1878 
1879 	if (ch->using_rdma_cm) {
1880 		ret = rdma_disconnect(ch->rdma_cm.cm_id);
1881 	} else {
1882 		ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
1883 		if (ret < 0)
1884 			ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
1885 	}
1886 
1887 	if (ret < 0 && srpt_close_ch(ch))
1888 		ret = 0;
1889 
1890 	return ret;
1891 }
1892 
1893 static bool srpt_ch_closed(struct srpt_port *sport, struct srpt_rdma_ch *ch)
1894 {
1895 	struct srpt_nexus *nexus;
1896 	struct srpt_rdma_ch *ch2;
1897 	bool res = true;
1898 
1899 	rcu_read_lock();
1900 	list_for_each_entry(nexus, &sport->nexus_list, entry) {
1901 		list_for_each_entry(ch2, &nexus->ch_list, list) {
1902 			if (ch2 == ch) {
1903 				res = false;
1904 				goto done;
1905 			}
1906 		}
1907 	}
1908 done:
1909 	rcu_read_unlock();
1910 
1911 	return res;
1912 }
1913 
1914 /* Send DREQ and wait for DREP. */
1915 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1916 {
1917 	struct srpt_port *sport = ch->sport;
1918 
1919 	pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1920 		 ch->state);
1921 
1922 	mutex_lock(&sport->mutex);
1923 	srpt_disconnect_ch(ch);
1924 	mutex_unlock(&sport->mutex);
1925 
1926 	while (wait_event_timeout(sport->ch_releaseQ, srpt_ch_closed(sport, ch),
1927 				  5 * HZ) == 0)
1928 		pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1929 			ch->sess_name, ch->qp->qp_num, ch->state);
1930 
1931 }
1932 
1933 static void __srpt_close_all_ch(struct srpt_port *sport)
1934 {
1935 	struct srpt_nexus *nexus;
1936 	struct srpt_rdma_ch *ch;
1937 
1938 	lockdep_assert_held(&sport->mutex);
1939 
1940 	list_for_each_entry(nexus, &sport->nexus_list, entry) {
1941 		list_for_each_entry(ch, &nexus->ch_list, list) {
1942 			if (srpt_disconnect_ch(ch) >= 0)
1943 				pr_info("Closing channel %s-%d because target %s_%d has been disabled\n",
1944 					ch->sess_name, ch->qp->qp_num,
1945 					sport->sdev->device->name, sport->port);
1946 			srpt_close_ch(ch);
1947 		}
1948 	}
1949 }
1950 
1951 /*
1952  * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
1953  * it does not yet exist.
1954  */
1955 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
1956 					 const u8 i_port_id[16],
1957 					 const u8 t_port_id[16])
1958 {
1959 	struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
1960 
1961 	for (;;) {
1962 		mutex_lock(&sport->mutex);
1963 		list_for_each_entry(n, &sport->nexus_list, entry) {
1964 			if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
1965 			    memcmp(n->t_port_id, t_port_id, 16) == 0) {
1966 				nexus = n;
1967 				break;
1968 			}
1969 		}
1970 		if (!nexus && tmp_nexus) {
1971 			list_add_tail_rcu(&tmp_nexus->entry,
1972 					  &sport->nexus_list);
1973 			swap(nexus, tmp_nexus);
1974 		}
1975 		mutex_unlock(&sport->mutex);
1976 
1977 		if (nexus)
1978 			break;
1979 		tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
1980 		if (!tmp_nexus) {
1981 			nexus = ERR_PTR(-ENOMEM);
1982 			break;
1983 		}
1984 		INIT_LIST_HEAD(&tmp_nexus->ch_list);
1985 		memcpy(tmp_nexus->i_port_id, i_port_id, 16);
1986 		memcpy(tmp_nexus->t_port_id, t_port_id, 16);
1987 	}
1988 
1989 	kfree(tmp_nexus);
1990 
1991 	return nexus;
1992 }
1993 
1994 static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
1995 	__must_hold(&sport->mutex)
1996 {
1997 	lockdep_assert_held(&sport->mutex);
1998 
1999 	if (sport->enabled == enabled)
2000 		return;
2001 	sport->enabled = enabled;
2002 	if (!enabled)
2003 		__srpt_close_all_ch(sport);
2004 }
2005 
2006 static void srpt_free_ch(struct kref *kref)
2007 {
2008 	struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2009 
2010 	kfree_rcu(ch, rcu);
2011 }
2012 
2013 static void srpt_release_channel_work(struct work_struct *w)
2014 {
2015 	struct srpt_rdma_ch *ch;
2016 	struct srpt_device *sdev;
2017 	struct srpt_port *sport;
2018 	struct se_session *se_sess;
2019 
2020 	ch = container_of(w, struct srpt_rdma_ch, release_work);
2021 	pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2022 
2023 	sdev = ch->sport->sdev;
2024 	BUG_ON(!sdev);
2025 
2026 	se_sess = ch->sess;
2027 	BUG_ON(!se_sess);
2028 
2029 	target_sess_cmd_list_set_waiting(se_sess);
2030 	target_wait_for_sess_cmds(se_sess);
2031 
2032 	transport_deregister_session_configfs(se_sess);
2033 	transport_deregister_session(se_sess);
2034 	ch->sess = NULL;
2035 
2036 	if (ch->using_rdma_cm)
2037 		rdma_destroy_id(ch->rdma_cm.cm_id);
2038 	else
2039 		ib_destroy_cm_id(ch->ib_cm.cm_id);
2040 
2041 	srpt_destroy_ch_ib(ch);
2042 
2043 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2044 			     ch->sport->sdev, ch->rq_size,
2045 			     ch->max_rsp_size, DMA_TO_DEVICE);
2046 
2047 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2048 			     sdev, ch->rq_size,
2049 			     srp_max_req_size, DMA_FROM_DEVICE);
2050 
2051 	sport = ch->sport;
2052 	mutex_lock(&sport->mutex);
2053 	list_del_rcu(&ch->list);
2054 	mutex_unlock(&sport->mutex);
2055 
2056 	wake_up(&sport->ch_releaseQ);
2057 
2058 	kref_put(&ch->kref, srpt_free_ch);
2059 }
2060 
2061 /**
2062  * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2063  * @sdev: HCA through which the login request was received.
2064  * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2065  * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2066  * @port_num: Port through which the REQ message was received.
2067  * @pkey: P_Key of the incoming connection.
2068  * @req: SRP login request.
2069  * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2070  * the login request.
2071  *
2072  * Ownership of the cm_id is transferred to the target session if this
2073  * function returns zero. Otherwise the caller remains the owner of cm_id.
2074  */
2075 static int srpt_cm_req_recv(struct srpt_device *const sdev,
2076 			    struct ib_cm_id *ib_cm_id,
2077 			    struct rdma_cm_id *rdma_cm_id,
2078 			    u8 port_num, __be16 pkey,
2079 			    const struct srp_login_req *req,
2080 			    const char *src_addr)
2081 {
2082 	struct srpt_port *sport = &sdev->port[port_num - 1];
2083 	struct srpt_nexus *nexus;
2084 	struct srp_login_rsp *rsp = NULL;
2085 	struct srp_login_rej *rej = NULL;
2086 	union {
2087 		struct rdma_conn_param rdma_cm;
2088 		struct ib_cm_rep_param ib_cm;
2089 	} *rep_param = NULL;
2090 	struct srpt_rdma_ch *ch;
2091 	char i_port_id[36];
2092 	u32 it_iu_len;
2093 	int i, ret;
2094 
2095 	WARN_ON_ONCE(irqs_disabled());
2096 
2097 	if (WARN_ON(!sdev || !req))
2098 		return -EINVAL;
2099 
2100 	it_iu_len = be32_to_cpu(req->req_it_iu_len);
2101 
2102 	pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2103 		req->initiator_port_id, req->target_port_id, it_iu_len,
2104 		port_num, &sport->gid, be16_to_cpu(pkey));
2105 
2106 	nexus = srpt_get_nexus(sport, req->initiator_port_id,
2107 			       req->target_port_id);
2108 	if (IS_ERR(nexus)) {
2109 		ret = PTR_ERR(nexus);
2110 		goto out;
2111 	}
2112 
2113 	ret = -ENOMEM;
2114 	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2115 	rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2116 	rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2117 	if (!rsp || !rej || !rep_param)
2118 		goto out;
2119 
2120 	ret = -EINVAL;
2121 	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2122 		rej->reason = cpu_to_be32(
2123 				SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2124 		pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2125 		       it_iu_len, 64, srp_max_req_size);
2126 		goto reject;
2127 	}
2128 
2129 	if (!sport->enabled) {
2130 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2131 		pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2132 			sport->sdev->device->name, port_num);
2133 		goto reject;
2134 	}
2135 
2136 	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2137 	    || *(__be64 *)(req->target_port_id + 8) !=
2138 	       cpu_to_be64(srpt_service_guid)) {
2139 		rej->reason = cpu_to_be32(
2140 				SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2141 		pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2142 		goto reject;
2143 	}
2144 
2145 	ret = -ENOMEM;
2146 	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2147 	if (!ch) {
2148 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2149 		pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2150 		goto reject;
2151 	}
2152 
2153 	kref_init(&ch->kref);
2154 	ch->pkey = be16_to_cpu(pkey);
2155 	ch->nexus = nexus;
2156 	ch->zw_cqe.done = srpt_zerolength_write_done;
2157 	INIT_WORK(&ch->release_work, srpt_release_channel_work);
2158 	ch->sport = sport;
2159 	if (ib_cm_id) {
2160 		ch->ib_cm.cm_id = ib_cm_id;
2161 		ib_cm_id->context = ch;
2162 	} else {
2163 		ch->using_rdma_cm = true;
2164 		ch->rdma_cm.cm_id = rdma_cm_id;
2165 		rdma_cm_id->context = ch;
2166 	}
2167 	/*
2168 	 * ch->rq_size should be at least as large as the initiator queue
2169 	 * depth to avoid that the initiator driver has to report QUEUE_FULL
2170 	 * to the SCSI mid-layer.
2171 	 */
2172 	ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2173 	spin_lock_init(&ch->spinlock);
2174 	ch->state = CH_CONNECTING;
2175 	INIT_LIST_HEAD(&ch->cmd_wait_list);
2176 	ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2177 
2178 	ch->ioctx_ring = (struct srpt_send_ioctx **)
2179 		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2180 				      sizeof(*ch->ioctx_ring[0]),
2181 				      ch->max_rsp_size, DMA_TO_DEVICE);
2182 	if (!ch->ioctx_ring) {
2183 		pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2184 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2185 		goto free_ch;
2186 	}
2187 
2188 	INIT_LIST_HEAD(&ch->free_list);
2189 	for (i = 0; i < ch->rq_size; i++) {
2190 		ch->ioctx_ring[i]->ch = ch;
2191 		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2192 	}
2193 	if (!sdev->use_srq) {
2194 		ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2195 			srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2196 					      sizeof(*ch->ioctx_recv_ring[0]),
2197 					      srp_max_req_size,
2198 					      DMA_FROM_DEVICE);
2199 		if (!ch->ioctx_recv_ring) {
2200 			pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2201 			rej->reason =
2202 			    cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2203 			goto free_ring;
2204 		}
2205 		for (i = 0; i < ch->rq_size; i++)
2206 			INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2207 	}
2208 
2209 	ret = srpt_create_ch_ib(ch);
2210 	if (ret) {
2211 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2212 		pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2213 		goto free_recv_ring;
2214 	}
2215 
2216 	strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2217 	snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2218 			be64_to_cpu(*(__be64 *)nexus->i_port_id),
2219 			be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2220 
2221 	pr_debug("registering session %s\n", ch->sess_name);
2222 
2223 	if (sport->port_guid_tpg.se_tpg_wwn)
2224 		ch->sess = target_alloc_session(&sport->port_guid_tpg, 0, 0,
2225 						TARGET_PROT_NORMAL,
2226 						ch->sess_name, ch, NULL);
2227 	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
2228 		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2229 					TARGET_PROT_NORMAL, i_port_id, ch,
2230 					NULL);
2231 	/* Retry without leading "0x" */
2232 	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
2233 		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2234 						TARGET_PROT_NORMAL,
2235 						i_port_id + 2, ch, NULL);
2236 	if (IS_ERR_OR_NULL(ch->sess)) {
2237 		ret = PTR_ERR(ch->sess);
2238 		pr_info("Rejected login for initiator %s: ret = %d.\n",
2239 			ch->sess_name, ret);
2240 		rej->reason = cpu_to_be32(ret == -ENOMEM ?
2241 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2242 				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2243 		goto reject;
2244 	}
2245 
2246 	mutex_lock(&sport->mutex);
2247 
2248 	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2249 		struct srpt_rdma_ch *ch2;
2250 
2251 		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2252 
2253 		list_for_each_entry(ch2, &nexus->ch_list, list) {
2254 			if (srpt_disconnect_ch(ch2) < 0)
2255 				continue;
2256 			pr_info("Relogin - closed existing channel %s\n",
2257 				ch2->sess_name);
2258 			rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2259 		}
2260 	} else {
2261 		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2262 	}
2263 
2264 	list_add_tail_rcu(&ch->list, &nexus->ch_list);
2265 
2266 	if (!sport->enabled) {
2267 		rej->reason = cpu_to_be32(
2268 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2269 		pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2270 			sdev->device->name, port_num);
2271 		mutex_unlock(&sport->mutex);
2272 		goto reject;
2273 	}
2274 
2275 	mutex_unlock(&sport->mutex);
2276 
2277 	ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2278 	if (ret) {
2279 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2280 		pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2281 		       ret);
2282 		goto destroy_ib;
2283 	}
2284 
2285 	pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2286 		 ch->sess_name, ch);
2287 
2288 	/* create srp_login_response */
2289 	rsp->opcode = SRP_LOGIN_RSP;
2290 	rsp->tag = req->tag;
2291 	rsp->max_it_iu_len = req->req_it_iu_len;
2292 	rsp->max_ti_iu_len = req->req_it_iu_len;
2293 	ch->max_ti_iu_len = it_iu_len;
2294 	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2295 				   SRP_BUF_FORMAT_INDIRECT);
2296 	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2297 	atomic_set(&ch->req_lim, ch->rq_size);
2298 	atomic_set(&ch->req_lim_delta, 0);
2299 
2300 	/* create cm reply */
2301 	if (ch->using_rdma_cm) {
2302 		rep_param->rdma_cm.private_data = (void *)rsp;
2303 		rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2304 		rep_param->rdma_cm.rnr_retry_count = 7;
2305 		rep_param->rdma_cm.flow_control = 1;
2306 		rep_param->rdma_cm.responder_resources = 4;
2307 		rep_param->rdma_cm.initiator_depth = 4;
2308 	} else {
2309 		rep_param->ib_cm.qp_num = ch->qp->qp_num;
2310 		rep_param->ib_cm.private_data = (void *)rsp;
2311 		rep_param->ib_cm.private_data_len = sizeof(*rsp);
2312 		rep_param->ib_cm.rnr_retry_count = 7;
2313 		rep_param->ib_cm.flow_control = 1;
2314 		rep_param->ib_cm.failover_accepted = 0;
2315 		rep_param->ib_cm.srq = 1;
2316 		rep_param->ib_cm.responder_resources = 4;
2317 		rep_param->ib_cm.initiator_depth = 4;
2318 	}
2319 
2320 	/*
2321 	 * Hold the sport mutex while accepting a connection to avoid that
2322 	 * srpt_disconnect_ch() is invoked concurrently with this code.
2323 	 */
2324 	mutex_lock(&sport->mutex);
2325 	if (sport->enabled && ch->state == CH_CONNECTING) {
2326 		if (ch->using_rdma_cm)
2327 			ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2328 		else
2329 			ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2330 	} else {
2331 		ret = -EINVAL;
2332 	}
2333 	mutex_unlock(&sport->mutex);
2334 
2335 	switch (ret) {
2336 	case 0:
2337 		break;
2338 	case -EINVAL:
2339 		goto reject;
2340 	default:
2341 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2342 		pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2343 		       ret);
2344 		goto reject;
2345 	}
2346 
2347 	goto out;
2348 
2349 destroy_ib:
2350 	srpt_destroy_ch_ib(ch);
2351 
2352 free_recv_ring:
2353 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2354 			     ch->sport->sdev, ch->rq_size,
2355 			     srp_max_req_size, DMA_FROM_DEVICE);
2356 
2357 free_ring:
2358 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2359 			     ch->sport->sdev, ch->rq_size,
2360 			     ch->max_rsp_size, DMA_TO_DEVICE);
2361 free_ch:
2362 	if (ib_cm_id)
2363 		ib_cm_id->context = NULL;
2364 	kfree(ch);
2365 	ch = NULL;
2366 
2367 	WARN_ON_ONCE(ret == 0);
2368 
2369 reject:
2370 	pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2371 	rej->opcode = SRP_LOGIN_REJ;
2372 	rej->tag = req->tag;
2373 	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2374 				   SRP_BUF_FORMAT_INDIRECT);
2375 
2376 	if (rdma_cm_id)
2377 		rdma_reject(rdma_cm_id, rej, sizeof(*rej));
2378 	else
2379 		ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2380 			       rej, sizeof(*rej));
2381 
2382 out:
2383 	kfree(rep_param);
2384 	kfree(rsp);
2385 	kfree(rej);
2386 
2387 	return ret;
2388 }
2389 
2390 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2391 			       struct ib_cm_req_event_param *param,
2392 			       void *private_data)
2393 {
2394 	char sguid[40];
2395 
2396 	srpt_format_guid(sguid, sizeof(sguid),
2397 			 &param->primary_path->dgid.global.interface_id);
2398 
2399 	return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2400 				param->primary_path->pkey,
2401 				private_data, sguid);
2402 }
2403 
2404 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2405 				 struct rdma_cm_event *event)
2406 {
2407 	struct srpt_device *sdev;
2408 	struct srp_login_req req;
2409 	const struct srp_login_req_rdma *req_rdma;
2410 	char src_addr[40];
2411 
2412 	sdev = ib_get_client_data(cm_id->device, &srpt_client);
2413 	if (!sdev)
2414 		return -ECONNREFUSED;
2415 
2416 	if (event->param.conn.private_data_len < sizeof(*req_rdma))
2417 		return -EINVAL;
2418 
2419 	/* Transform srp_login_req_rdma into srp_login_req. */
2420 	req_rdma = event->param.conn.private_data;
2421 	memset(&req, 0, sizeof(req));
2422 	req.opcode		= req_rdma->opcode;
2423 	req.tag			= req_rdma->tag;
2424 	req.req_it_iu_len	= req_rdma->req_it_iu_len;
2425 	req.req_buf_fmt		= req_rdma->req_buf_fmt;
2426 	req.req_flags		= req_rdma->req_flags;
2427 	memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2428 	memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2429 
2430 	snprintf(src_addr, sizeof(src_addr), "%pIS",
2431 		 &cm_id->route.addr.src_addr);
2432 
2433 	return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2434 				cm_id->route.path_rec->pkey, &req, src_addr);
2435 }
2436 
2437 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2438 			     enum ib_cm_rej_reason reason,
2439 			     const u8 *private_data,
2440 			     u8 private_data_len)
2441 {
2442 	char *priv = NULL;
2443 	int i;
2444 
2445 	if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2446 						GFP_KERNEL))) {
2447 		for (i = 0; i < private_data_len; i++)
2448 			sprintf(priv + 3 * i, " %02x", private_data[i]);
2449 	}
2450 	pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2451 		ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2452 		"; private data" : "", priv ? priv : " (?)");
2453 	kfree(priv);
2454 }
2455 
2456 /**
2457  * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2458  * @ch: SRPT RDMA channel.
2459  *
2460  * An RTU (ready to use) message indicates that the connection has been
2461  * established and that the recipient may begin transmitting.
2462  */
2463 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2464 {
2465 	int ret;
2466 
2467 	ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2468 	if (ret < 0) {
2469 		pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2470 		       ch->qp->qp_num);
2471 		srpt_close_ch(ch);
2472 		return;
2473 	}
2474 
2475 	/*
2476 	 * Note: calling srpt_close_ch() if the transition to the LIVE state
2477 	 * fails is not necessary since that means that that function has
2478 	 * already been invoked from another thread.
2479 	 */
2480 	if (!srpt_set_ch_state(ch, CH_LIVE)) {
2481 		pr_err("%s-%d: channel transition to LIVE state failed\n",
2482 		       ch->sess_name, ch->qp->qp_num);
2483 		return;
2484 	}
2485 
2486 	/* Trigger wait list processing. */
2487 	ret = srpt_zerolength_write(ch);
2488 	WARN_ONCE(ret < 0, "%d\n", ret);
2489 }
2490 
2491 /**
2492  * srpt_cm_handler - IB connection manager callback function
2493  * @cm_id: IB/CM connection identifier.
2494  * @event: IB/CM event.
2495  *
2496  * A non-zero return value will cause the caller destroy the CM ID.
2497  *
2498  * Note: srpt_cm_handler() must only return a non-zero value when transferring
2499  * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2500  * a non-zero value in any other case will trigger a race with the
2501  * ib_destroy_cm_id() call in srpt_release_channel().
2502  */
2503 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2504 {
2505 	struct srpt_rdma_ch *ch = cm_id->context;
2506 	int ret;
2507 
2508 	ret = 0;
2509 	switch (event->event) {
2510 	case IB_CM_REQ_RECEIVED:
2511 		ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2512 					  event->private_data);
2513 		break;
2514 	case IB_CM_REJ_RECEIVED:
2515 		srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2516 				 event->private_data,
2517 				 IB_CM_REJ_PRIVATE_DATA_SIZE);
2518 		break;
2519 	case IB_CM_RTU_RECEIVED:
2520 	case IB_CM_USER_ESTABLISHED:
2521 		srpt_cm_rtu_recv(ch);
2522 		break;
2523 	case IB_CM_DREQ_RECEIVED:
2524 		srpt_disconnect_ch(ch);
2525 		break;
2526 	case IB_CM_DREP_RECEIVED:
2527 		pr_info("Received CM DREP message for ch %s-%d.\n",
2528 			ch->sess_name, ch->qp->qp_num);
2529 		srpt_close_ch(ch);
2530 		break;
2531 	case IB_CM_TIMEWAIT_EXIT:
2532 		pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2533 			ch->sess_name, ch->qp->qp_num);
2534 		srpt_close_ch(ch);
2535 		break;
2536 	case IB_CM_REP_ERROR:
2537 		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2538 			ch->qp->qp_num);
2539 		break;
2540 	case IB_CM_DREQ_ERROR:
2541 		pr_info("Received CM DREQ ERROR event.\n");
2542 		break;
2543 	case IB_CM_MRA_RECEIVED:
2544 		pr_info("Received CM MRA event\n");
2545 		break;
2546 	default:
2547 		pr_err("received unrecognized CM event %d\n", event->event);
2548 		break;
2549 	}
2550 
2551 	return ret;
2552 }
2553 
2554 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2555 				struct rdma_cm_event *event)
2556 {
2557 	struct srpt_rdma_ch *ch = cm_id->context;
2558 	int ret = 0;
2559 
2560 	switch (event->event) {
2561 	case RDMA_CM_EVENT_CONNECT_REQUEST:
2562 		ret = srpt_rdma_cm_req_recv(cm_id, event);
2563 		break;
2564 	case RDMA_CM_EVENT_REJECTED:
2565 		srpt_cm_rej_recv(ch, event->status,
2566 				 event->param.conn.private_data,
2567 				 event->param.conn.private_data_len);
2568 		break;
2569 	case RDMA_CM_EVENT_ESTABLISHED:
2570 		srpt_cm_rtu_recv(ch);
2571 		break;
2572 	case RDMA_CM_EVENT_DISCONNECTED:
2573 		if (ch->state < CH_DISCONNECTING)
2574 			srpt_disconnect_ch(ch);
2575 		else
2576 			srpt_close_ch(ch);
2577 		break;
2578 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2579 		srpt_close_ch(ch);
2580 		break;
2581 	case RDMA_CM_EVENT_UNREACHABLE:
2582 		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2583 			ch->qp->qp_num);
2584 		break;
2585 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
2586 	case RDMA_CM_EVENT_ADDR_CHANGE:
2587 		break;
2588 	default:
2589 		pr_err("received unrecognized RDMA CM event %d\n",
2590 		       event->event);
2591 		break;
2592 	}
2593 
2594 	return ret;
2595 }
2596 
2597 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2598 {
2599 	struct srpt_send_ioctx *ioctx;
2600 
2601 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2602 	return ioctx->state == SRPT_STATE_NEED_DATA;
2603 }
2604 
2605 /*
2606  * srpt_write_pending - Start data transfer from initiator to target (write).
2607  */
2608 static int srpt_write_pending(struct se_cmd *se_cmd)
2609 {
2610 	struct srpt_send_ioctx *ioctx =
2611 		container_of(se_cmd, struct srpt_send_ioctx, cmd);
2612 	struct srpt_rdma_ch *ch = ioctx->ch;
2613 	struct ib_send_wr *first_wr = NULL, *bad_wr;
2614 	struct ib_cqe *cqe = &ioctx->rdma_cqe;
2615 	enum srpt_command_state new_state;
2616 	int ret, i;
2617 
2618 	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2619 	WARN_ON(new_state == SRPT_STATE_DONE);
2620 
2621 	if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2622 		pr_warn("%s: IB send queue full (needed %d)\n",
2623 				__func__, ioctx->n_rdma);
2624 		ret = -ENOMEM;
2625 		goto out_undo;
2626 	}
2627 
2628 	cqe->done = srpt_rdma_read_done;
2629 	for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2630 		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2631 
2632 		first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2633 				cqe, first_wr);
2634 		cqe = NULL;
2635 	}
2636 
2637 	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
2638 	if (ret) {
2639 		pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2640 			 __func__, ret, ioctx->n_rdma,
2641 			 atomic_read(&ch->sq_wr_avail));
2642 		goto out_undo;
2643 	}
2644 
2645 	return 0;
2646 out_undo:
2647 	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2648 	return ret;
2649 }
2650 
2651 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2652 {
2653 	switch (tcm_mgmt_status) {
2654 	case TMR_FUNCTION_COMPLETE:
2655 		return SRP_TSK_MGMT_SUCCESS;
2656 	case TMR_FUNCTION_REJECTED:
2657 		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2658 	}
2659 	return SRP_TSK_MGMT_FAILED;
2660 }
2661 
2662 /**
2663  * srpt_queue_response - transmit the response to a SCSI command
2664  * @cmd: SCSI target command.
2665  *
2666  * Callback function called by the TCM core. Must not block since it can be
2667  * invoked on the context of the IB completion handler.
2668  */
2669 static void srpt_queue_response(struct se_cmd *cmd)
2670 {
2671 	struct srpt_send_ioctx *ioctx =
2672 		container_of(cmd, struct srpt_send_ioctx, cmd);
2673 	struct srpt_rdma_ch *ch = ioctx->ch;
2674 	struct srpt_device *sdev = ch->sport->sdev;
2675 	struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr;
2676 	struct ib_sge sge;
2677 	enum srpt_command_state state;
2678 	int resp_len, ret, i;
2679 	u8 srp_tm_status;
2680 
2681 	BUG_ON(!ch);
2682 
2683 	state = ioctx->state;
2684 	switch (state) {
2685 	case SRPT_STATE_NEW:
2686 	case SRPT_STATE_DATA_IN:
2687 		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2688 		break;
2689 	case SRPT_STATE_MGMT:
2690 		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2691 		break;
2692 	default:
2693 		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2694 			ch, ioctx->ioctx.index, ioctx->state);
2695 		break;
2696 	}
2697 
2698 	if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)))
2699 		return;
2700 
2701 	/* For read commands, transfer the data to the initiator. */
2702 	if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2703 	    ioctx->cmd.data_length &&
2704 	    !ioctx->queue_status_only) {
2705 		for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2706 			struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2707 
2708 			first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2709 					ch->sport->port, NULL, first_wr);
2710 		}
2711 	}
2712 
2713 	if (state != SRPT_STATE_MGMT)
2714 		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2715 					      cmd->scsi_status);
2716 	else {
2717 		srp_tm_status
2718 			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2719 		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2720 						 ioctx->cmd.tag);
2721 	}
2722 
2723 	atomic_inc(&ch->req_lim);
2724 
2725 	if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2726 			&ch->sq_wr_avail) < 0)) {
2727 		pr_warn("%s: IB send queue full (needed %d)\n",
2728 				__func__, ioctx->n_rdma);
2729 		ret = -ENOMEM;
2730 		goto out;
2731 	}
2732 
2733 	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2734 				      DMA_TO_DEVICE);
2735 
2736 	sge.addr = ioctx->ioctx.dma;
2737 	sge.length = resp_len;
2738 	sge.lkey = sdev->lkey;
2739 
2740 	ioctx->ioctx.cqe.done = srpt_send_done;
2741 	send_wr.next = NULL;
2742 	send_wr.wr_cqe = &ioctx->ioctx.cqe;
2743 	send_wr.sg_list = &sge;
2744 	send_wr.num_sge = 1;
2745 	send_wr.opcode = IB_WR_SEND;
2746 	send_wr.send_flags = IB_SEND_SIGNALED;
2747 
2748 	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
2749 	if (ret < 0) {
2750 		pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2751 			__func__, ioctx->cmd.tag, ret);
2752 		goto out;
2753 	}
2754 
2755 	return;
2756 
2757 out:
2758 	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2759 	atomic_dec(&ch->req_lim);
2760 	srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2761 	target_put_sess_cmd(&ioctx->cmd);
2762 }
2763 
2764 static int srpt_queue_data_in(struct se_cmd *cmd)
2765 {
2766 	srpt_queue_response(cmd);
2767 	return 0;
2768 }
2769 
2770 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2771 {
2772 	srpt_queue_response(cmd);
2773 }
2774 
2775 static void srpt_aborted_task(struct se_cmd *cmd)
2776 {
2777 }
2778 
2779 static int srpt_queue_status(struct se_cmd *cmd)
2780 {
2781 	struct srpt_send_ioctx *ioctx;
2782 
2783 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2784 	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2785 	if (cmd->se_cmd_flags &
2786 	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2787 		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2788 	ioctx->queue_status_only = true;
2789 	srpt_queue_response(cmd);
2790 	return 0;
2791 }
2792 
2793 static void srpt_refresh_port_work(struct work_struct *work)
2794 {
2795 	struct srpt_port *sport = container_of(work, struct srpt_port, work);
2796 
2797 	srpt_refresh_port(sport);
2798 }
2799 
2800 static bool srpt_ch_list_empty(struct srpt_port *sport)
2801 {
2802 	struct srpt_nexus *nexus;
2803 	bool res = true;
2804 
2805 	rcu_read_lock();
2806 	list_for_each_entry(nexus, &sport->nexus_list, entry)
2807 		if (!list_empty(&nexus->ch_list))
2808 			res = false;
2809 	rcu_read_unlock();
2810 
2811 	return res;
2812 }
2813 
2814 /**
2815  * srpt_release_sport - disable login and wait for associated channels
2816  * @sport: SRPT HCA port.
2817  */
2818 static int srpt_release_sport(struct srpt_port *sport)
2819 {
2820 	struct srpt_nexus *nexus, *next_n;
2821 	struct srpt_rdma_ch *ch;
2822 
2823 	WARN_ON_ONCE(irqs_disabled());
2824 
2825 	mutex_lock(&sport->mutex);
2826 	srpt_set_enabled(sport, false);
2827 	mutex_unlock(&sport->mutex);
2828 
2829 	while (wait_event_timeout(sport->ch_releaseQ,
2830 				  srpt_ch_list_empty(sport), 5 * HZ) <= 0) {
2831 		pr_info("%s_%d: waiting for session unregistration ...\n",
2832 			sport->sdev->device->name, sport->port);
2833 		rcu_read_lock();
2834 		list_for_each_entry(nexus, &sport->nexus_list, entry) {
2835 			list_for_each_entry(ch, &nexus->ch_list, list) {
2836 				pr_info("%s-%d: state %s\n",
2837 					ch->sess_name, ch->qp->qp_num,
2838 					get_ch_state_name(ch->state));
2839 			}
2840 		}
2841 		rcu_read_unlock();
2842 	}
2843 
2844 	mutex_lock(&sport->mutex);
2845 	list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
2846 		list_del(&nexus->entry);
2847 		kfree_rcu(nexus, rcu);
2848 	}
2849 	mutex_unlock(&sport->mutex);
2850 
2851 	return 0;
2852 }
2853 
2854 static struct se_wwn *__srpt_lookup_wwn(const char *name)
2855 {
2856 	struct ib_device *dev;
2857 	struct srpt_device *sdev;
2858 	struct srpt_port *sport;
2859 	int i;
2860 
2861 	list_for_each_entry(sdev, &srpt_dev_list, list) {
2862 		dev = sdev->device;
2863 		if (!dev)
2864 			continue;
2865 
2866 		for (i = 0; i < dev->phys_port_cnt; i++) {
2867 			sport = &sdev->port[i];
2868 
2869 			if (strcmp(sport->port_guid, name) == 0)
2870 				return &sport->port_guid_wwn;
2871 			if (strcmp(sport->port_gid, name) == 0)
2872 				return &sport->port_gid_wwn;
2873 		}
2874 	}
2875 
2876 	return NULL;
2877 }
2878 
2879 static struct se_wwn *srpt_lookup_wwn(const char *name)
2880 {
2881 	struct se_wwn *wwn;
2882 
2883 	spin_lock(&srpt_dev_lock);
2884 	wwn = __srpt_lookup_wwn(name);
2885 	spin_unlock(&srpt_dev_lock);
2886 
2887 	return wwn;
2888 }
2889 
2890 static void srpt_free_srq(struct srpt_device *sdev)
2891 {
2892 	if (!sdev->srq)
2893 		return;
2894 
2895 	ib_destroy_srq(sdev->srq);
2896 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
2897 			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
2898 	sdev->srq = NULL;
2899 }
2900 
2901 static int srpt_alloc_srq(struct srpt_device *sdev)
2902 {
2903 	struct ib_srq_init_attr srq_attr = {
2904 		.event_handler = srpt_srq_event,
2905 		.srq_context = (void *)sdev,
2906 		.attr.max_wr = sdev->srq_size,
2907 		.attr.max_sge = 1,
2908 		.srq_type = IB_SRQT_BASIC,
2909 	};
2910 	struct ib_device *device = sdev->device;
2911 	struct ib_srq *srq;
2912 	int i;
2913 
2914 	WARN_ON_ONCE(sdev->srq);
2915 	srq = ib_create_srq(sdev->pd, &srq_attr);
2916 	if (IS_ERR(srq)) {
2917 		pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
2918 		return PTR_ERR(srq);
2919 	}
2920 
2921 	pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
2922 		 sdev->device->attrs.max_srq_wr, device->name);
2923 
2924 	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
2925 		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
2926 				      sizeof(*sdev->ioctx_ring[0]),
2927 				      srp_max_req_size, DMA_FROM_DEVICE);
2928 	if (!sdev->ioctx_ring) {
2929 		ib_destroy_srq(srq);
2930 		return -ENOMEM;
2931 	}
2932 
2933 	sdev->use_srq = true;
2934 	sdev->srq = srq;
2935 
2936 	for (i = 0; i < sdev->srq_size; ++i) {
2937 		INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
2938 		srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
2939 	}
2940 
2941 	return 0;
2942 }
2943 
2944 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
2945 {
2946 	struct ib_device *device = sdev->device;
2947 	int ret = 0;
2948 
2949 	if (!use_srq) {
2950 		srpt_free_srq(sdev);
2951 		sdev->use_srq = false;
2952 	} else if (use_srq && !sdev->srq) {
2953 		ret = srpt_alloc_srq(sdev);
2954 	}
2955 	pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, device->name,
2956 		 sdev->use_srq, ret);
2957 	return ret;
2958 }
2959 
2960 /**
2961  * srpt_add_one - InfiniBand device addition callback function
2962  * @device: Describes a HCA.
2963  */
2964 static void srpt_add_one(struct ib_device *device)
2965 {
2966 	struct srpt_device *sdev;
2967 	struct srpt_port *sport;
2968 	int i, ret;
2969 
2970 	pr_debug("device = %p\n", device);
2971 
2972 	sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2973 	if (!sdev)
2974 		goto err;
2975 
2976 	sdev->device = device;
2977 	mutex_init(&sdev->sdev_mutex);
2978 
2979 	sdev->pd = ib_alloc_pd(device, 0);
2980 	if (IS_ERR(sdev->pd))
2981 		goto free_dev;
2982 
2983 	sdev->lkey = sdev->pd->local_dma_lkey;
2984 
2985 	sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2986 
2987 	srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
2988 
2989 	if (!srpt_service_guid)
2990 		srpt_service_guid = be64_to_cpu(device->node_guid);
2991 
2992 	if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
2993 		sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
2994 	if (IS_ERR(sdev->cm_id)) {
2995 		pr_info("ib_create_cm_id() failed: %ld\n",
2996 			PTR_ERR(sdev->cm_id));
2997 		sdev->cm_id = NULL;
2998 		if (!rdma_cm_id)
2999 			goto err_ring;
3000 	}
3001 
3002 	/* print out target login information */
3003 	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3004 		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3005 		 srpt_service_guid, srpt_service_guid);
3006 
3007 	/*
3008 	 * We do not have a consistent service_id (ie. also id_ext of target_id)
3009 	 * to identify this target. We currently use the guid of the first HCA
3010 	 * in the system as service_id; therefore, the target_id will change
3011 	 * if this HCA is gone bad and replaced by different HCA
3012 	 */
3013 	ret = sdev->cm_id ?
3014 		ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) :
3015 		0;
3016 	if (ret < 0) {
3017 		pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3018 		       sdev->cm_id->state);
3019 		goto err_cm;
3020 	}
3021 
3022 	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3023 			      srpt_event_handler);
3024 	ib_register_event_handler(&sdev->event_handler);
3025 
3026 	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3027 
3028 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3029 		sport = &sdev->port[i - 1];
3030 		INIT_LIST_HEAD(&sport->nexus_list);
3031 		init_waitqueue_head(&sport->ch_releaseQ);
3032 		mutex_init(&sport->mutex);
3033 		sport->sdev = sdev;
3034 		sport->port = i;
3035 		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3036 		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3037 		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3038 		sport->port_attrib.use_srq = false;
3039 		INIT_WORK(&sport->work, srpt_refresh_port_work);
3040 
3041 		if (srpt_refresh_port(sport)) {
3042 			pr_err("MAD registration failed for %s-%d.\n",
3043 			       sdev->device->name, i);
3044 			goto err_event;
3045 		}
3046 	}
3047 
3048 	spin_lock(&srpt_dev_lock);
3049 	list_add_tail(&sdev->list, &srpt_dev_list);
3050 	spin_unlock(&srpt_dev_lock);
3051 
3052 out:
3053 	ib_set_client_data(device, &srpt_client, sdev);
3054 	pr_debug("added %s.\n", device->name);
3055 	return;
3056 
3057 err_event:
3058 	ib_unregister_event_handler(&sdev->event_handler);
3059 err_cm:
3060 	if (sdev->cm_id)
3061 		ib_destroy_cm_id(sdev->cm_id);
3062 err_ring:
3063 	srpt_free_srq(sdev);
3064 	ib_dealloc_pd(sdev->pd);
3065 free_dev:
3066 	kfree(sdev);
3067 err:
3068 	sdev = NULL;
3069 	pr_info("%s(%s) failed.\n", __func__, device->name);
3070 	goto out;
3071 }
3072 
3073 /**
3074  * srpt_remove_one - InfiniBand device removal callback function
3075  * @device: Describes a HCA.
3076  * @client_data: The value passed as the third argument to ib_set_client_data().
3077  */
3078 static void srpt_remove_one(struct ib_device *device, void *client_data)
3079 {
3080 	struct srpt_device *sdev = client_data;
3081 	int i;
3082 
3083 	if (!sdev) {
3084 		pr_info("%s(%s): nothing to do.\n", __func__, device->name);
3085 		return;
3086 	}
3087 
3088 	srpt_unregister_mad_agent(sdev);
3089 
3090 	ib_unregister_event_handler(&sdev->event_handler);
3091 
3092 	/* Cancel any work queued by the just unregistered IB event handler. */
3093 	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3094 		cancel_work_sync(&sdev->port[i].work);
3095 
3096 	if (sdev->cm_id)
3097 		ib_destroy_cm_id(sdev->cm_id);
3098 
3099 	ib_set_client_data(device, &srpt_client, NULL);
3100 
3101 	/*
3102 	 * Unregistering a target must happen after destroying sdev->cm_id
3103 	 * such that no new SRP_LOGIN_REQ information units can arrive while
3104 	 * destroying the target.
3105 	 */
3106 	spin_lock(&srpt_dev_lock);
3107 	list_del(&sdev->list);
3108 	spin_unlock(&srpt_dev_lock);
3109 
3110 	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3111 		srpt_release_sport(&sdev->port[i]);
3112 
3113 	srpt_free_srq(sdev);
3114 
3115 	ib_dealloc_pd(sdev->pd);
3116 
3117 	kfree(sdev);
3118 }
3119 
3120 static struct ib_client srpt_client = {
3121 	.name = DRV_NAME,
3122 	.add = srpt_add_one,
3123 	.remove = srpt_remove_one
3124 };
3125 
3126 static int srpt_check_true(struct se_portal_group *se_tpg)
3127 {
3128 	return 1;
3129 }
3130 
3131 static int srpt_check_false(struct se_portal_group *se_tpg)
3132 {
3133 	return 0;
3134 }
3135 
3136 static char *srpt_get_fabric_name(void)
3137 {
3138 	return "srpt";
3139 }
3140 
3141 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3142 {
3143 	return tpg->se_tpg_wwn->priv;
3144 }
3145 
3146 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3147 {
3148 	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3149 
3150 	WARN_ON_ONCE(tpg != &sport->port_guid_tpg &&
3151 		     tpg != &sport->port_gid_tpg);
3152 	return tpg == &sport->port_guid_tpg ? sport->port_guid :
3153 		sport->port_gid;
3154 }
3155 
3156 static u16 srpt_get_tag(struct se_portal_group *tpg)
3157 {
3158 	return 1;
3159 }
3160 
3161 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3162 {
3163 	return 1;
3164 }
3165 
3166 static void srpt_release_cmd(struct se_cmd *se_cmd)
3167 {
3168 	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3169 				struct srpt_send_ioctx, cmd);
3170 	struct srpt_rdma_ch *ch = ioctx->ch;
3171 	unsigned long flags;
3172 
3173 	WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3174 		     !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3175 
3176 	if (ioctx->n_rw_ctx) {
3177 		srpt_free_rw_ctxs(ch, ioctx);
3178 		ioctx->n_rw_ctx = 0;
3179 	}
3180 
3181 	spin_lock_irqsave(&ch->spinlock, flags);
3182 	list_add(&ioctx->free_list, &ch->free_list);
3183 	spin_unlock_irqrestore(&ch->spinlock, flags);
3184 }
3185 
3186 /**
3187  * srpt_close_session - forcibly close a session
3188  * @se_sess: SCSI target session.
3189  *
3190  * Callback function invoked by the TCM core to clean up sessions associated
3191  * with a node ACL when the user invokes
3192  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3193  */
3194 static void srpt_close_session(struct se_session *se_sess)
3195 {
3196 	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3197 
3198 	srpt_disconnect_ch_sync(ch);
3199 }
3200 
3201 /**
3202  * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
3203  * @se_sess: SCSI target session.
3204  *
3205  * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3206  * This object represents an arbitrary integer used to uniquely identify a
3207  * particular attached remote initiator port to a particular SCSI target port
3208  * within a particular SCSI target device within a particular SCSI instance.
3209  */
3210 static u32 srpt_sess_get_index(struct se_session *se_sess)
3211 {
3212 	return 0;
3213 }
3214 
3215 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3216 {
3217 }
3218 
3219 /* Note: only used from inside debug printk's by the TCM core. */
3220 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3221 {
3222 	struct srpt_send_ioctx *ioctx;
3223 
3224 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3225 	return ioctx->state;
3226 }
3227 
3228 static int srpt_parse_guid(u64 *guid, const char *name)
3229 {
3230 	u16 w[4];
3231 	int ret = -EINVAL;
3232 
3233 	if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3234 		goto out;
3235 	*guid = get_unaligned_be64(w);
3236 	ret = 0;
3237 out:
3238 	return ret;
3239 }
3240 
3241 /**
3242  * srpt_parse_i_port_id - parse an initiator port ID
3243  * @name: ASCII representation of a 128-bit initiator port ID.
3244  * @i_port_id: Binary 128-bit port ID.
3245  */
3246 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3247 {
3248 	const char *p;
3249 	unsigned len, count, leading_zero_bytes;
3250 	int ret;
3251 
3252 	p = name;
3253 	if (strncasecmp(p, "0x", 2) == 0)
3254 		p += 2;
3255 	ret = -EINVAL;
3256 	len = strlen(p);
3257 	if (len % 2)
3258 		goto out;
3259 	count = min(len / 2, 16U);
3260 	leading_zero_bytes = 16 - count;
3261 	memset(i_port_id, 0, leading_zero_bytes);
3262 	ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3263 
3264 out:
3265 	return ret;
3266 }
3267 
3268 /*
3269  * configfs callback function invoked for mkdir
3270  * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3271  *
3272  * i_port_id must be an initiator port GUID, GID or IP address. See also the
3273  * target_alloc_session() calls in this driver. Examples of valid initiator
3274  * port IDs:
3275  * 0x0000000000000000505400fffe4a0b7b
3276  * 0000000000000000505400fffe4a0b7b
3277  * 5054:00ff:fe4a:0b7b
3278  * 192.168.122.76
3279  */
3280 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3281 {
3282 	struct sockaddr_storage sa;
3283 	u64 guid;
3284 	u8 i_port_id[16];
3285 	int ret;
3286 
3287 	ret = srpt_parse_guid(&guid, name);
3288 	if (ret < 0)
3289 		ret = srpt_parse_i_port_id(i_port_id, name);
3290 	if (ret < 0)
3291 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3292 					   &sa);
3293 	if (ret < 0)
3294 		pr_err("invalid initiator port ID %s\n", name);
3295 	return ret;
3296 }
3297 
3298 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3299 		char *page)
3300 {
3301 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3302 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3303 
3304 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3305 }
3306 
3307 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3308 		const char *page, size_t count)
3309 {
3310 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3311 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3312 	unsigned long val;
3313 	int ret;
3314 
3315 	ret = kstrtoul(page, 0, &val);
3316 	if (ret < 0) {
3317 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3318 		return -EINVAL;
3319 	}
3320 	if (val > MAX_SRPT_RDMA_SIZE) {
3321 		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3322 			MAX_SRPT_RDMA_SIZE);
3323 		return -EINVAL;
3324 	}
3325 	if (val < DEFAULT_MAX_RDMA_SIZE) {
3326 		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3327 			val, DEFAULT_MAX_RDMA_SIZE);
3328 		return -EINVAL;
3329 	}
3330 	sport->port_attrib.srp_max_rdma_size = val;
3331 
3332 	return count;
3333 }
3334 
3335 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3336 		char *page)
3337 {
3338 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3339 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3340 
3341 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3342 }
3343 
3344 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3345 		const char *page, size_t count)
3346 {
3347 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3348 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3349 	unsigned long val;
3350 	int ret;
3351 
3352 	ret = kstrtoul(page, 0, &val);
3353 	if (ret < 0) {
3354 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3355 		return -EINVAL;
3356 	}
3357 	if (val > MAX_SRPT_RSP_SIZE) {
3358 		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3359 			MAX_SRPT_RSP_SIZE);
3360 		return -EINVAL;
3361 	}
3362 	if (val < MIN_MAX_RSP_SIZE) {
3363 		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3364 			MIN_MAX_RSP_SIZE);
3365 		return -EINVAL;
3366 	}
3367 	sport->port_attrib.srp_max_rsp_size = val;
3368 
3369 	return count;
3370 }
3371 
3372 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3373 		char *page)
3374 {
3375 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3376 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3377 
3378 	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3379 }
3380 
3381 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3382 		const char *page, size_t count)
3383 {
3384 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3385 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3386 	unsigned long val;
3387 	int ret;
3388 
3389 	ret = kstrtoul(page, 0, &val);
3390 	if (ret < 0) {
3391 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3392 		return -EINVAL;
3393 	}
3394 	if (val > MAX_SRPT_SRQ_SIZE) {
3395 		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3396 			MAX_SRPT_SRQ_SIZE);
3397 		return -EINVAL;
3398 	}
3399 	if (val < MIN_SRPT_SRQ_SIZE) {
3400 		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3401 			MIN_SRPT_SRQ_SIZE);
3402 		return -EINVAL;
3403 	}
3404 	sport->port_attrib.srp_sq_size = val;
3405 
3406 	return count;
3407 }
3408 
3409 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3410 					    char *page)
3411 {
3412 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3413 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3414 
3415 	return sprintf(page, "%d\n", sport->port_attrib.use_srq);
3416 }
3417 
3418 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3419 					     const char *page, size_t count)
3420 {
3421 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3422 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3423 	struct srpt_device *sdev = sport->sdev;
3424 	unsigned long val;
3425 	bool enabled;
3426 	int ret;
3427 
3428 	ret = kstrtoul(page, 0, &val);
3429 	if (ret < 0)
3430 		return ret;
3431 	if (val != !!val)
3432 		return -EINVAL;
3433 
3434 	ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3435 	if (ret < 0)
3436 		return ret;
3437 	ret = mutex_lock_interruptible(&sport->mutex);
3438 	if (ret < 0)
3439 		goto unlock_sdev;
3440 	enabled = sport->enabled;
3441 	/* Log out all initiator systems before changing 'use_srq'. */
3442 	srpt_set_enabled(sport, false);
3443 	sport->port_attrib.use_srq = val;
3444 	srpt_use_srq(sdev, sport->port_attrib.use_srq);
3445 	srpt_set_enabled(sport, enabled);
3446 	ret = count;
3447 	mutex_unlock(&sport->mutex);
3448 unlock_sdev:
3449 	mutex_unlock(&sdev->sdev_mutex);
3450 
3451 	return ret;
3452 }
3453 
3454 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
3455 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
3456 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3457 CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3458 
3459 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3460 	&srpt_tpg_attrib_attr_srp_max_rdma_size,
3461 	&srpt_tpg_attrib_attr_srp_max_rsp_size,
3462 	&srpt_tpg_attrib_attr_srp_sq_size,
3463 	&srpt_tpg_attrib_attr_use_srq,
3464 	NULL,
3465 };
3466 
3467 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3468 {
3469 	struct rdma_cm_id *rdma_cm_id;
3470 	int ret;
3471 
3472 	rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3473 				    NULL, RDMA_PS_TCP, IB_QPT_RC);
3474 	if (IS_ERR(rdma_cm_id)) {
3475 		pr_err("RDMA/CM ID creation failed: %ld\n",
3476 		       PTR_ERR(rdma_cm_id));
3477 		goto out;
3478 	}
3479 
3480 	ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3481 	if (ret) {
3482 		char addr_str[64];
3483 
3484 		snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3485 		pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3486 		       addr_str, ret);
3487 		rdma_destroy_id(rdma_cm_id);
3488 		rdma_cm_id = ERR_PTR(ret);
3489 		goto out;
3490 	}
3491 
3492 	ret = rdma_listen(rdma_cm_id, 128);
3493 	if (ret) {
3494 		pr_err("rdma_listen() failed: %d\n", ret);
3495 		rdma_destroy_id(rdma_cm_id);
3496 		rdma_cm_id = ERR_PTR(ret);
3497 	}
3498 
3499 out:
3500 	return rdma_cm_id;
3501 }
3502 
3503 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3504 {
3505 	return sprintf(page, "%d\n", rdma_cm_port);
3506 }
3507 
3508 static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3509 				       const char *page, size_t count)
3510 {
3511 	struct sockaddr_in  addr4 = { .sin_family  = AF_INET  };
3512 	struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3513 	struct rdma_cm_id *new_id = NULL;
3514 	u16 val;
3515 	int ret;
3516 
3517 	ret = kstrtou16(page, 0, &val);
3518 	if (ret < 0)
3519 		return ret;
3520 	ret = count;
3521 	if (rdma_cm_port == val)
3522 		goto out;
3523 
3524 	if (val) {
3525 		addr6.sin6_port = cpu_to_be16(val);
3526 		new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3527 		if (IS_ERR(new_id)) {
3528 			addr4.sin_port = cpu_to_be16(val);
3529 			new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3530 			if (IS_ERR(new_id)) {
3531 				ret = PTR_ERR(new_id);
3532 				goto out;
3533 			}
3534 		}
3535 	}
3536 
3537 	mutex_lock(&rdma_cm_mutex);
3538 	rdma_cm_port = val;
3539 	swap(rdma_cm_id, new_id);
3540 	mutex_unlock(&rdma_cm_mutex);
3541 
3542 	if (new_id)
3543 		rdma_destroy_id(new_id);
3544 	ret = count;
3545 out:
3546 	return ret;
3547 }
3548 
3549 CONFIGFS_ATTR(srpt_, rdma_cm_port);
3550 
3551 static struct configfs_attribute *srpt_da_attrs[] = {
3552 	&srpt_attr_rdma_cm_port,
3553 	NULL,
3554 };
3555 
3556 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3557 {
3558 	struct se_portal_group *se_tpg = to_tpg(item);
3559 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3560 
3561 	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3562 }
3563 
3564 static ssize_t srpt_tpg_enable_store(struct config_item *item,
3565 		const char *page, size_t count)
3566 {
3567 	struct se_portal_group *se_tpg = to_tpg(item);
3568 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3569 	unsigned long tmp;
3570         int ret;
3571 
3572 	ret = kstrtoul(page, 0, &tmp);
3573 	if (ret < 0) {
3574 		pr_err("Unable to extract srpt_tpg_store_enable\n");
3575 		return -EINVAL;
3576 	}
3577 
3578 	if ((tmp != 0) && (tmp != 1)) {
3579 		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3580 		return -EINVAL;
3581 	}
3582 
3583 	mutex_lock(&sport->mutex);
3584 	srpt_set_enabled(sport, tmp);
3585 	mutex_unlock(&sport->mutex);
3586 
3587 	return count;
3588 }
3589 
3590 CONFIGFS_ATTR(srpt_tpg_, enable);
3591 
3592 static struct configfs_attribute *srpt_tpg_attrs[] = {
3593 	&srpt_tpg_attr_enable,
3594 	NULL,
3595 };
3596 
3597 /**
3598  * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3599  * @wwn: Corresponds to $driver/$port.
3600  * @group: Not used.
3601  * @name: $tpg.
3602  */
3603 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3604 					     struct config_group *group,
3605 					     const char *name)
3606 {
3607 	struct srpt_port *sport = wwn->priv;
3608 	static struct se_portal_group *tpg;
3609 	int res;
3610 
3611 	WARN_ON_ONCE(wwn != &sport->port_guid_wwn &&
3612 		     wwn != &sport->port_gid_wwn);
3613 	tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg :
3614 		&sport->port_gid_tpg;
3615 	res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP);
3616 	if (res)
3617 		return ERR_PTR(res);
3618 
3619 	return tpg;
3620 }
3621 
3622 /**
3623  * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3624  * @tpg: Target portal group to deregister.
3625  */
3626 static void srpt_drop_tpg(struct se_portal_group *tpg)
3627 {
3628 	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3629 
3630 	sport->enabled = false;
3631 	core_tpg_deregister(tpg);
3632 }
3633 
3634 /**
3635  * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3636  * @tf: Not used.
3637  * @group: Not used.
3638  * @name: $port.
3639  */
3640 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3641 				      struct config_group *group,
3642 				      const char *name)
3643 {
3644 	return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3645 }
3646 
3647 /**
3648  * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3649  * @wwn: $port.
3650  */
3651 static void srpt_drop_tport(struct se_wwn *wwn)
3652 {
3653 }
3654 
3655 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3656 {
3657 	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3658 }
3659 
3660 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3661 
3662 static struct configfs_attribute *srpt_wwn_attrs[] = {
3663 	&srpt_wwn_attr_version,
3664 	NULL,
3665 };
3666 
3667 static const struct target_core_fabric_ops srpt_template = {
3668 	.module				= THIS_MODULE,
3669 	.name				= "srpt",
3670 	.get_fabric_name		= srpt_get_fabric_name,
3671 	.tpg_get_wwn			= srpt_get_fabric_wwn,
3672 	.tpg_get_tag			= srpt_get_tag,
3673 	.tpg_check_demo_mode		= srpt_check_false,
3674 	.tpg_check_demo_mode_cache	= srpt_check_true,
3675 	.tpg_check_demo_mode_write_protect = srpt_check_true,
3676 	.tpg_check_prod_mode_write_protect = srpt_check_false,
3677 	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
3678 	.release_cmd			= srpt_release_cmd,
3679 	.check_stop_free		= srpt_check_stop_free,
3680 	.close_session			= srpt_close_session,
3681 	.sess_get_index			= srpt_sess_get_index,
3682 	.sess_get_initiator_sid		= NULL,
3683 	.write_pending			= srpt_write_pending,
3684 	.write_pending_status		= srpt_write_pending_status,
3685 	.set_default_node_attributes	= srpt_set_default_node_attrs,
3686 	.get_cmd_state			= srpt_get_tcm_cmd_state,
3687 	.queue_data_in			= srpt_queue_data_in,
3688 	.queue_status			= srpt_queue_status,
3689 	.queue_tm_rsp			= srpt_queue_tm_rsp,
3690 	.aborted_task			= srpt_aborted_task,
3691 	/*
3692 	 * Setup function pointers for generic logic in
3693 	 * target_core_fabric_configfs.c
3694 	 */
3695 	.fabric_make_wwn		= srpt_make_tport,
3696 	.fabric_drop_wwn		= srpt_drop_tport,
3697 	.fabric_make_tpg		= srpt_make_tpg,
3698 	.fabric_drop_tpg		= srpt_drop_tpg,
3699 	.fabric_init_nodeacl		= srpt_init_nodeacl,
3700 
3701 	.tfc_discovery_attrs		= srpt_da_attrs,
3702 	.tfc_wwn_attrs			= srpt_wwn_attrs,
3703 	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
3704 	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3705 };
3706 
3707 /**
3708  * srpt_init_module - kernel module initialization
3709  *
3710  * Note: Since ib_register_client() registers callback functions, and since at
3711  * least one of these callback functions (srpt_add_one()) calls target core
3712  * functions, this driver must be registered with the target core before
3713  * ib_register_client() is called.
3714  */
3715 static int __init srpt_init_module(void)
3716 {
3717 	int ret;
3718 
3719 	ret = -EINVAL;
3720 	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3721 		pr_err("invalid value %d for kernel module parameter"
3722 		       " srp_max_req_size -- must be at least %d.\n",
3723 		       srp_max_req_size, MIN_MAX_REQ_SIZE);
3724 		goto out;
3725 	}
3726 
3727 	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3728 	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3729 		pr_err("invalid value %d for kernel module parameter"
3730 		       " srpt_srq_size -- must be in the range [%d..%d].\n",
3731 		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3732 		goto out;
3733 	}
3734 
3735 	ret = target_register_template(&srpt_template);
3736 	if (ret)
3737 		goto out;
3738 
3739 	ret = ib_register_client(&srpt_client);
3740 	if (ret) {
3741 		pr_err("couldn't register IB client\n");
3742 		goto out_unregister_target;
3743 	}
3744 
3745 	return 0;
3746 
3747 out_unregister_target:
3748 	target_unregister_template(&srpt_template);
3749 out:
3750 	return ret;
3751 }
3752 
3753 static void __exit srpt_cleanup_module(void)
3754 {
3755 	if (rdma_cm_id)
3756 		rdma_destroy_id(rdma_cm_id);
3757 	ib_unregister_client(&srpt_client);
3758 	target_unregister_template(&srpt_template);
3759 }
3760 
3761 module_init(srpt_init_module);
3762 module_exit(srpt_cleanup_module);
3763