1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <linux/inet.h> 45 #include <rdma/ib_cache.h> 46 #include <scsi/scsi_proto.h> 47 #include <scsi/scsi_tcq.h> 48 #include <target/target_core_base.h> 49 #include <target/target_core_fabric.h> 50 #include "ib_srpt.h" 51 52 /* Name of this kernel module. */ 53 #define DRV_NAME "ib_srpt" 54 55 #define SRPT_ID_STRING "Linux SRP target" 56 57 #undef pr_fmt 58 #define pr_fmt(fmt) DRV_NAME " " fmt 59 60 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 61 MODULE_DESCRIPTION("SCSI RDMA Protocol target driver"); 62 MODULE_LICENSE("Dual BSD/GPL"); 63 64 /* 65 * Global Variables 66 */ 67 68 static u64 srpt_service_guid; 69 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 70 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 71 72 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 73 module_param(srp_max_req_size, int, 0444); 74 MODULE_PARM_DESC(srp_max_req_size, 75 "Maximum size of SRP request messages in bytes."); 76 77 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 78 module_param(srpt_srq_size, int, 0444); 79 MODULE_PARM_DESC(srpt_srq_size, 80 "Shared receive queue (SRQ) size."); 81 82 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp) 83 { 84 return sprintf(buffer, "0x%016llx\n", *(u64 *)kp->arg); 85 } 86 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 87 0444); 88 MODULE_PARM_DESC(srpt_service_guid, 89 "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA."); 90 91 static struct ib_client srpt_client; 92 /* Protects both rdma_cm_port and rdma_cm_id. */ 93 static DEFINE_MUTEX(rdma_cm_mutex); 94 /* Port number RDMA/CM will bind to. */ 95 static u16 rdma_cm_port; 96 static struct rdma_cm_id *rdma_cm_id; 97 static void srpt_release_cmd(struct se_cmd *se_cmd); 98 static void srpt_free_ch(struct kref *kref); 99 static int srpt_queue_status(struct se_cmd *cmd); 100 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc); 101 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc); 102 static void srpt_process_wait_list(struct srpt_rdma_ch *ch); 103 104 /* 105 * The only allowed channel state changes are those that change the channel 106 * state into a state with a higher numerical value. Hence the new > prev test. 107 */ 108 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new) 109 { 110 unsigned long flags; 111 enum rdma_ch_state prev; 112 bool changed = false; 113 114 spin_lock_irqsave(&ch->spinlock, flags); 115 prev = ch->state; 116 if (new > prev) { 117 ch->state = new; 118 changed = true; 119 } 120 spin_unlock_irqrestore(&ch->spinlock, flags); 121 122 return changed; 123 } 124 125 /** 126 * srpt_event_handler - asynchronous IB event callback function 127 * @handler: IB event handler registered by ib_register_event_handler(). 128 * @event: Description of the event that occurred. 129 * 130 * Callback function called by the InfiniBand core when an asynchronous IB 131 * event occurs. This callback may occur in interrupt context. See also 132 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 133 * Architecture Specification. 134 */ 135 static void srpt_event_handler(struct ib_event_handler *handler, 136 struct ib_event *event) 137 { 138 struct srpt_device *sdev = 139 container_of(handler, struct srpt_device, event_handler); 140 struct srpt_port *sport; 141 u8 port_num; 142 143 pr_debug("ASYNC event= %d on device= %s\n", event->event, 144 dev_name(&sdev->device->dev)); 145 146 switch (event->event) { 147 case IB_EVENT_PORT_ERR: 148 port_num = event->element.port_num - 1; 149 if (port_num < sdev->device->phys_port_cnt) { 150 sport = &sdev->port[port_num]; 151 sport->lid = 0; 152 sport->sm_lid = 0; 153 } else { 154 WARN(true, "event %d: port_num %d out of range 1..%d\n", 155 event->event, port_num + 1, 156 sdev->device->phys_port_cnt); 157 } 158 break; 159 case IB_EVENT_PORT_ACTIVE: 160 case IB_EVENT_LID_CHANGE: 161 case IB_EVENT_PKEY_CHANGE: 162 case IB_EVENT_SM_CHANGE: 163 case IB_EVENT_CLIENT_REREGISTER: 164 case IB_EVENT_GID_CHANGE: 165 /* Refresh port data asynchronously. */ 166 port_num = event->element.port_num - 1; 167 if (port_num < sdev->device->phys_port_cnt) { 168 sport = &sdev->port[port_num]; 169 if (!sport->lid && !sport->sm_lid) 170 schedule_work(&sport->work); 171 } else { 172 WARN(true, "event %d: port_num %d out of range 1..%d\n", 173 event->event, port_num + 1, 174 sdev->device->phys_port_cnt); 175 } 176 break; 177 default: 178 pr_err("received unrecognized IB event %d\n", event->event); 179 break; 180 } 181 } 182 183 /** 184 * srpt_srq_event - SRQ event callback function 185 * @event: Description of the event that occurred. 186 * @ctx: Context pointer specified at SRQ creation time. 187 */ 188 static void srpt_srq_event(struct ib_event *event, void *ctx) 189 { 190 pr_debug("SRQ event %d\n", event->event); 191 } 192 193 static const char *get_ch_state_name(enum rdma_ch_state s) 194 { 195 switch (s) { 196 case CH_CONNECTING: 197 return "connecting"; 198 case CH_LIVE: 199 return "live"; 200 case CH_DISCONNECTING: 201 return "disconnecting"; 202 case CH_DRAINING: 203 return "draining"; 204 case CH_DISCONNECTED: 205 return "disconnected"; 206 } 207 return "???"; 208 } 209 210 /** 211 * srpt_qp_event - QP event callback function 212 * @event: Description of the event that occurred. 213 * @ch: SRPT RDMA channel. 214 */ 215 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 216 { 217 pr_debug("QP event %d on ch=%p sess_name=%s-%d state=%s\n", 218 event->event, ch, ch->sess_name, ch->qp->qp_num, 219 get_ch_state_name(ch->state)); 220 221 switch (event->event) { 222 case IB_EVENT_COMM_EST: 223 if (ch->using_rdma_cm) 224 rdma_notify(ch->rdma_cm.cm_id, event->event); 225 else 226 ib_cm_notify(ch->ib_cm.cm_id, event->event); 227 break; 228 case IB_EVENT_QP_LAST_WQE_REACHED: 229 pr_debug("%s-%d, state %s: received Last WQE event.\n", 230 ch->sess_name, ch->qp->qp_num, 231 get_ch_state_name(ch->state)); 232 break; 233 default: 234 pr_err("received unrecognized IB QP event %d\n", event->event); 235 break; 236 } 237 } 238 239 /** 240 * srpt_set_ioc - initialize a IOUnitInfo structure 241 * @c_list: controller list. 242 * @slot: one-based slot number. 243 * @value: four-bit value. 244 * 245 * Copies the lowest four bits of value in element slot of the array of four 246 * bit elements called c_list (controller list). The index slot is one-based. 247 */ 248 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 249 { 250 u16 id; 251 u8 tmp; 252 253 id = (slot - 1) / 2; 254 if (slot & 0x1) { 255 tmp = c_list[id] & 0xf; 256 c_list[id] = (value << 4) | tmp; 257 } else { 258 tmp = c_list[id] & 0xf0; 259 c_list[id] = (value & 0xf) | tmp; 260 } 261 } 262 263 /** 264 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram 265 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO. 266 * 267 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 268 * Specification. 269 */ 270 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 271 { 272 struct ib_class_port_info *cif; 273 274 cif = (struct ib_class_port_info *)mad->data; 275 memset(cif, 0, sizeof(*cif)); 276 cif->base_version = 1; 277 cif->class_version = 1; 278 279 ib_set_cpi_resp_time(cif, 20); 280 mad->mad_hdr.status = 0; 281 } 282 283 /** 284 * srpt_get_iou - write IOUnitInfo to a management datagram 285 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO. 286 * 287 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 288 * Specification. See also section B.7, table B.6 in the SRP r16a document. 289 */ 290 static void srpt_get_iou(struct ib_dm_mad *mad) 291 { 292 struct ib_dm_iou_info *ioui; 293 u8 slot; 294 int i; 295 296 ioui = (struct ib_dm_iou_info *)mad->data; 297 ioui->change_id = cpu_to_be16(1); 298 ioui->max_controllers = 16; 299 300 /* set present for slot 1 and empty for the rest */ 301 srpt_set_ioc(ioui->controller_list, 1, 1); 302 for (i = 1, slot = 2; i < 16; i++, slot++) 303 srpt_set_ioc(ioui->controller_list, slot, 0); 304 305 mad->mad_hdr.status = 0; 306 } 307 308 /** 309 * srpt_get_ioc - write IOControllerprofile to a management datagram 310 * @sport: HCA port through which the MAD has been received. 311 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query. 312 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE. 313 * 314 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 315 * Architecture Specification. See also section B.7, table B.7 in the SRP 316 * r16a document. 317 */ 318 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 319 struct ib_dm_mad *mad) 320 { 321 struct srpt_device *sdev = sport->sdev; 322 struct ib_dm_ioc_profile *iocp; 323 int send_queue_depth; 324 325 iocp = (struct ib_dm_ioc_profile *)mad->data; 326 327 if (!slot || slot > 16) { 328 mad->mad_hdr.status 329 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 330 return; 331 } 332 333 if (slot > 2) { 334 mad->mad_hdr.status 335 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 336 return; 337 } 338 339 if (sdev->use_srq) 340 send_queue_depth = sdev->srq_size; 341 else 342 send_queue_depth = min(MAX_SRPT_RQ_SIZE, 343 sdev->device->attrs.max_qp_wr); 344 345 memset(iocp, 0, sizeof(*iocp)); 346 strcpy(iocp->id_string, SRPT_ID_STRING); 347 iocp->guid = cpu_to_be64(srpt_service_guid); 348 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 349 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id); 350 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver); 351 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 352 iocp->subsys_device_id = 0x0; 353 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 354 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); 355 iocp->protocol = cpu_to_be16(SRP_PROTOCOL); 356 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); 357 iocp->send_queue_depth = cpu_to_be16(send_queue_depth); 358 iocp->rdma_read_depth = 4; 359 iocp->send_size = cpu_to_be32(srp_max_req_size); 360 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 361 1U << 24)); 362 iocp->num_svc_entries = 1; 363 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 364 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 365 366 mad->mad_hdr.status = 0; 367 } 368 369 /** 370 * srpt_get_svc_entries - write ServiceEntries to a management datagram 371 * @ioc_guid: I/O controller GUID to use in reply. 372 * @slot: I/O controller number. 373 * @hi: End of the range of service entries to be specified in the reply. 374 * @lo: Start of the range of service entries to be specified in the reply.. 375 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES. 376 * 377 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 378 * Specification. See also section B.7, table B.8 in the SRP r16a document. 379 */ 380 static void srpt_get_svc_entries(u64 ioc_guid, 381 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 382 { 383 struct ib_dm_svc_entries *svc_entries; 384 385 WARN_ON(!ioc_guid); 386 387 if (!slot || slot > 16) { 388 mad->mad_hdr.status 389 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 390 return; 391 } 392 393 if (slot > 2 || lo > hi || hi > 1) { 394 mad->mad_hdr.status 395 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 396 return; 397 } 398 399 svc_entries = (struct ib_dm_svc_entries *)mad->data; 400 memset(svc_entries, 0, sizeof(*svc_entries)); 401 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 402 snprintf(svc_entries->service_entries[0].name, 403 sizeof(svc_entries->service_entries[0].name), 404 "%s%016llx", 405 SRP_SERVICE_NAME_PREFIX, 406 ioc_guid); 407 408 mad->mad_hdr.status = 0; 409 } 410 411 /** 412 * srpt_mgmt_method_get - process a received management datagram 413 * @sp: HCA port through which the MAD has been received. 414 * @rq_mad: received MAD. 415 * @rsp_mad: response MAD. 416 */ 417 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 418 struct ib_dm_mad *rsp_mad) 419 { 420 u16 attr_id; 421 u32 slot; 422 u8 hi, lo; 423 424 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 425 switch (attr_id) { 426 case DM_ATTR_CLASS_PORT_INFO: 427 srpt_get_class_port_info(rsp_mad); 428 break; 429 case DM_ATTR_IOU_INFO: 430 srpt_get_iou(rsp_mad); 431 break; 432 case DM_ATTR_IOC_PROFILE: 433 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 434 srpt_get_ioc(sp, slot, rsp_mad); 435 break; 436 case DM_ATTR_SVC_ENTRIES: 437 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 438 hi = (u8) ((slot >> 8) & 0xff); 439 lo = (u8) (slot & 0xff); 440 slot = (u16) ((slot >> 16) & 0xffff); 441 srpt_get_svc_entries(srpt_service_guid, 442 slot, hi, lo, rsp_mad); 443 break; 444 default: 445 rsp_mad->mad_hdr.status = 446 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 447 break; 448 } 449 } 450 451 /** 452 * srpt_mad_send_handler - MAD send completion callback 453 * @mad_agent: Return value of ib_register_mad_agent(). 454 * @mad_wc: Work completion reporting that the MAD has been sent. 455 */ 456 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 457 struct ib_mad_send_wc *mad_wc) 458 { 459 rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE); 460 ib_free_send_mad(mad_wc->send_buf); 461 } 462 463 /** 464 * srpt_mad_recv_handler - MAD reception callback function 465 * @mad_agent: Return value of ib_register_mad_agent(). 466 * @send_buf: Not used. 467 * @mad_wc: Work completion reporting that a MAD has been received. 468 */ 469 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 470 struct ib_mad_send_buf *send_buf, 471 struct ib_mad_recv_wc *mad_wc) 472 { 473 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 474 struct ib_ah *ah; 475 struct ib_mad_send_buf *rsp; 476 struct ib_dm_mad *dm_mad; 477 478 if (!mad_wc || !mad_wc->recv_buf.mad) 479 return; 480 481 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 482 mad_wc->recv_buf.grh, mad_agent->port_num); 483 if (IS_ERR(ah)) 484 goto err; 485 486 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 487 488 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 489 mad_wc->wc->pkey_index, 0, 490 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 491 GFP_KERNEL, 492 IB_MGMT_BASE_VERSION); 493 if (IS_ERR(rsp)) 494 goto err_rsp; 495 496 rsp->ah = ah; 497 498 dm_mad = rsp->mad; 499 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad)); 500 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 501 dm_mad->mad_hdr.status = 0; 502 503 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 504 case IB_MGMT_METHOD_GET: 505 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 506 break; 507 case IB_MGMT_METHOD_SET: 508 dm_mad->mad_hdr.status = 509 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 510 break; 511 default: 512 dm_mad->mad_hdr.status = 513 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 514 break; 515 } 516 517 if (!ib_post_send_mad(rsp, NULL)) { 518 ib_free_recv_mad(mad_wc); 519 /* will destroy_ah & free_send_mad in send completion */ 520 return; 521 } 522 523 ib_free_send_mad(rsp); 524 525 err_rsp: 526 rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE); 527 err: 528 ib_free_recv_mad(mad_wc); 529 } 530 531 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid) 532 { 533 const __be16 *g = (const __be16 *)guid; 534 535 return snprintf(buf, size, "%04x:%04x:%04x:%04x", 536 be16_to_cpu(g[0]), be16_to_cpu(g[1]), 537 be16_to_cpu(g[2]), be16_to_cpu(g[3])); 538 } 539 540 /** 541 * srpt_refresh_port - configure a HCA port 542 * @sport: SRPT HCA port. 543 * 544 * Enable InfiniBand management datagram processing, update the cached sm_lid, 545 * lid and gid values, and register a callback function for processing MADs 546 * on the specified port. 547 * 548 * Note: It is safe to call this function more than once for the same port. 549 */ 550 static int srpt_refresh_port(struct srpt_port *sport) 551 { 552 struct ib_mad_reg_req reg_req; 553 struct ib_port_modify port_modify; 554 struct ib_port_attr port_attr; 555 int ret; 556 557 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 558 if (ret) 559 return ret; 560 561 sport->sm_lid = port_attr.sm_lid; 562 sport->lid = port_attr.lid; 563 564 ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 565 if (ret) 566 return ret; 567 568 sport->port_guid_id.wwn.priv = sport; 569 srpt_format_guid(sport->port_guid_id.name, 570 sizeof(sport->port_guid_id.name), 571 &sport->gid.global.interface_id); 572 sport->port_gid_id.wwn.priv = sport; 573 snprintf(sport->port_gid_id.name, sizeof(sport->port_gid_id.name), 574 "0x%016llx%016llx", 575 be64_to_cpu(sport->gid.global.subnet_prefix), 576 be64_to_cpu(sport->gid.global.interface_id)); 577 578 if (rdma_protocol_iwarp(sport->sdev->device, sport->port)) 579 return 0; 580 581 memset(&port_modify, 0, sizeof(port_modify)); 582 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 583 port_modify.clr_port_cap_mask = 0; 584 585 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 586 if (ret) { 587 pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n", 588 dev_name(&sport->sdev->device->dev), sport->port, ret); 589 return 0; 590 } 591 592 if (!sport->mad_agent) { 593 memset(®_req, 0, sizeof(reg_req)); 594 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 595 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 596 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 597 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 598 599 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 600 sport->port, 601 IB_QPT_GSI, 602 ®_req, 0, 603 srpt_mad_send_handler, 604 srpt_mad_recv_handler, 605 sport, 0); 606 if (IS_ERR(sport->mad_agent)) { 607 pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n", 608 dev_name(&sport->sdev->device->dev), sport->port, 609 PTR_ERR(sport->mad_agent)); 610 sport->mad_agent = NULL; 611 memset(&port_modify, 0, sizeof(port_modify)); 612 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 613 ib_modify_port(sport->sdev->device, sport->port, 0, 614 &port_modify); 615 616 } 617 } 618 619 return 0; 620 } 621 622 /** 623 * srpt_unregister_mad_agent - unregister MAD callback functions 624 * @sdev: SRPT HCA pointer. 625 * @port_cnt: number of ports with registered MAD 626 * 627 * Note: It is safe to call this function more than once for the same device. 628 */ 629 static void srpt_unregister_mad_agent(struct srpt_device *sdev, int port_cnt) 630 { 631 struct ib_port_modify port_modify = { 632 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 633 }; 634 struct srpt_port *sport; 635 int i; 636 637 for (i = 1; i <= port_cnt; i++) { 638 sport = &sdev->port[i - 1]; 639 WARN_ON(sport->port != i); 640 if (sport->mad_agent) { 641 ib_modify_port(sdev->device, i, 0, &port_modify); 642 ib_unregister_mad_agent(sport->mad_agent); 643 sport->mad_agent = NULL; 644 } 645 } 646 } 647 648 /** 649 * srpt_alloc_ioctx - allocate a SRPT I/O context structure 650 * @sdev: SRPT HCA pointer. 651 * @ioctx_size: I/O context size. 652 * @buf_cache: I/O buffer cache. 653 * @dir: DMA data direction. 654 */ 655 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 656 int ioctx_size, 657 struct kmem_cache *buf_cache, 658 enum dma_data_direction dir) 659 { 660 struct srpt_ioctx *ioctx; 661 662 ioctx = kzalloc(ioctx_size, GFP_KERNEL); 663 if (!ioctx) 664 goto err; 665 666 ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL); 667 if (!ioctx->buf) 668 goto err_free_ioctx; 669 670 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, 671 kmem_cache_size(buf_cache), dir); 672 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 673 goto err_free_buf; 674 675 return ioctx; 676 677 err_free_buf: 678 kmem_cache_free(buf_cache, ioctx->buf); 679 err_free_ioctx: 680 kfree(ioctx); 681 err: 682 return NULL; 683 } 684 685 /** 686 * srpt_free_ioctx - free a SRPT I/O context structure 687 * @sdev: SRPT HCA pointer. 688 * @ioctx: I/O context pointer. 689 * @buf_cache: I/O buffer cache. 690 * @dir: DMA data direction. 691 */ 692 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 693 struct kmem_cache *buf_cache, 694 enum dma_data_direction dir) 695 { 696 if (!ioctx) 697 return; 698 699 ib_dma_unmap_single(sdev->device, ioctx->dma, 700 kmem_cache_size(buf_cache), dir); 701 kmem_cache_free(buf_cache, ioctx->buf); 702 kfree(ioctx); 703 } 704 705 /** 706 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures 707 * @sdev: Device to allocate the I/O context ring for. 708 * @ring_size: Number of elements in the I/O context ring. 709 * @ioctx_size: I/O context size. 710 * @buf_cache: I/O buffer cache. 711 * @alignment_offset: Offset in each ring buffer at which the SRP information 712 * unit starts. 713 * @dir: DMA data direction. 714 */ 715 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 716 int ring_size, int ioctx_size, 717 struct kmem_cache *buf_cache, 718 int alignment_offset, 719 enum dma_data_direction dir) 720 { 721 struct srpt_ioctx **ring; 722 int i; 723 724 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) && 725 ioctx_size != sizeof(struct srpt_send_ioctx)); 726 727 ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL); 728 if (!ring) 729 goto out; 730 for (i = 0; i < ring_size; ++i) { 731 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir); 732 if (!ring[i]) 733 goto err; 734 ring[i]->index = i; 735 ring[i]->offset = alignment_offset; 736 } 737 goto out; 738 739 err: 740 while (--i >= 0) 741 srpt_free_ioctx(sdev, ring[i], buf_cache, dir); 742 kvfree(ring); 743 ring = NULL; 744 out: 745 return ring; 746 } 747 748 /** 749 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures 750 * @ioctx_ring: I/O context ring to be freed. 751 * @sdev: SRPT HCA pointer. 752 * @ring_size: Number of ring elements. 753 * @buf_cache: I/O buffer cache. 754 * @dir: DMA data direction. 755 */ 756 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 757 struct srpt_device *sdev, int ring_size, 758 struct kmem_cache *buf_cache, 759 enum dma_data_direction dir) 760 { 761 int i; 762 763 if (!ioctx_ring) 764 return; 765 766 for (i = 0; i < ring_size; ++i) 767 srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir); 768 kvfree(ioctx_ring); 769 } 770 771 /** 772 * srpt_set_cmd_state - set the state of a SCSI command 773 * @ioctx: Send I/O context. 774 * @new: New I/O context state. 775 * 776 * Does not modify the state of aborted commands. Returns the previous command 777 * state. 778 */ 779 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 780 enum srpt_command_state new) 781 { 782 enum srpt_command_state previous; 783 784 previous = ioctx->state; 785 if (previous != SRPT_STATE_DONE) 786 ioctx->state = new; 787 788 return previous; 789 } 790 791 /** 792 * srpt_test_and_set_cmd_state - test and set the state of a command 793 * @ioctx: Send I/O context. 794 * @old: Current I/O context state. 795 * @new: New I/O context state. 796 * 797 * Returns true if and only if the previous command state was equal to 'old'. 798 */ 799 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 800 enum srpt_command_state old, 801 enum srpt_command_state new) 802 { 803 enum srpt_command_state previous; 804 805 WARN_ON(!ioctx); 806 WARN_ON(old == SRPT_STATE_DONE); 807 WARN_ON(new == SRPT_STATE_NEW); 808 809 previous = ioctx->state; 810 if (previous == old) 811 ioctx->state = new; 812 813 return previous == old; 814 } 815 816 /** 817 * srpt_post_recv - post an IB receive request 818 * @sdev: SRPT HCA pointer. 819 * @ch: SRPT RDMA channel. 820 * @ioctx: Receive I/O context pointer. 821 */ 822 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch, 823 struct srpt_recv_ioctx *ioctx) 824 { 825 struct ib_sge list; 826 struct ib_recv_wr wr; 827 828 BUG_ON(!sdev); 829 list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset; 830 list.length = srp_max_req_size; 831 list.lkey = sdev->lkey; 832 833 ioctx->ioctx.cqe.done = srpt_recv_done; 834 wr.wr_cqe = &ioctx->ioctx.cqe; 835 wr.next = NULL; 836 wr.sg_list = &list; 837 wr.num_sge = 1; 838 839 if (sdev->use_srq) 840 return ib_post_srq_recv(sdev->srq, &wr, NULL); 841 else 842 return ib_post_recv(ch->qp, &wr, NULL); 843 } 844 845 /** 846 * srpt_zerolength_write - perform a zero-length RDMA write 847 * @ch: SRPT RDMA channel. 848 * 849 * A quote from the InfiniBand specification: C9-88: For an HCA responder 850 * using Reliable Connection service, for each zero-length RDMA READ or WRITE 851 * request, the R_Key shall not be validated, even if the request includes 852 * Immediate data. 853 */ 854 static int srpt_zerolength_write(struct srpt_rdma_ch *ch) 855 { 856 struct ib_rdma_wr wr = { 857 .wr = { 858 .next = NULL, 859 { .wr_cqe = &ch->zw_cqe, }, 860 .opcode = IB_WR_RDMA_WRITE, 861 .send_flags = IB_SEND_SIGNALED, 862 } 863 }; 864 865 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name, 866 ch->qp->qp_num); 867 868 return ib_post_send(ch->qp, &wr.wr, NULL); 869 } 870 871 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc) 872 { 873 struct srpt_rdma_ch *ch = wc->qp->qp_context; 874 875 pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num, 876 wc->status); 877 878 if (wc->status == IB_WC_SUCCESS) { 879 srpt_process_wait_list(ch); 880 } else { 881 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 882 schedule_work(&ch->release_work); 883 else 884 pr_debug("%s-%d: already disconnected.\n", 885 ch->sess_name, ch->qp->qp_num); 886 } 887 } 888 889 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx, 890 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg, 891 unsigned *sg_cnt) 892 { 893 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 894 struct srpt_rdma_ch *ch = ioctx->ch; 895 struct scatterlist *prev = NULL; 896 unsigned prev_nents; 897 int ret, i; 898 899 if (nbufs == 1) { 900 ioctx->rw_ctxs = &ioctx->s_rw_ctx; 901 } else { 902 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs), 903 GFP_KERNEL); 904 if (!ioctx->rw_ctxs) 905 return -ENOMEM; 906 } 907 908 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) { 909 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 910 u64 remote_addr = be64_to_cpu(db->va); 911 u32 size = be32_to_cpu(db->len); 912 u32 rkey = be32_to_cpu(db->key); 913 914 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false, 915 i < nbufs - 1); 916 if (ret) 917 goto unwind; 918 919 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port, 920 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir); 921 if (ret < 0) { 922 target_free_sgl(ctx->sg, ctx->nents); 923 goto unwind; 924 } 925 926 ioctx->n_rdma += ret; 927 ioctx->n_rw_ctx++; 928 929 if (prev) { 930 sg_unmark_end(&prev[prev_nents - 1]); 931 sg_chain(prev, prev_nents + 1, ctx->sg); 932 } else { 933 *sg = ctx->sg; 934 } 935 936 prev = ctx->sg; 937 prev_nents = ctx->nents; 938 939 *sg_cnt += ctx->nents; 940 } 941 942 return 0; 943 944 unwind: 945 while (--i >= 0) { 946 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 947 948 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 949 ctx->sg, ctx->nents, dir); 950 target_free_sgl(ctx->sg, ctx->nents); 951 } 952 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 953 kfree(ioctx->rw_ctxs); 954 return ret; 955 } 956 957 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch, 958 struct srpt_send_ioctx *ioctx) 959 { 960 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 961 int i; 962 963 for (i = 0; i < ioctx->n_rw_ctx; i++) { 964 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 965 966 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 967 ctx->sg, ctx->nents, dir); 968 target_free_sgl(ctx->sg, ctx->nents); 969 } 970 971 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 972 kfree(ioctx->rw_ctxs); 973 } 974 975 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd) 976 { 977 /* 978 * The pointer computations below will only be compiled correctly 979 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 980 * whether srp_cmd::add_data has been declared as a byte pointer. 981 */ 982 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) && 983 !__same_type(srp_cmd->add_data[0], (u8)0)); 984 985 /* 986 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 987 * CDB LENGTH' field are reserved and the size in bytes of this field 988 * is four times the value specified in bits 3..7. Hence the "& ~3". 989 */ 990 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3); 991 } 992 993 /** 994 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request 995 * @recv_ioctx: I/O context associated with the received command @srp_cmd. 996 * @ioctx: I/O context that will be used for responding to the initiator. 997 * @srp_cmd: Pointer to the SRP_CMD request data. 998 * @dir: Pointer to the variable to which the transfer direction will be 999 * written. 1000 * @sg: [out] scatterlist for the parsed SRP_CMD. 1001 * @sg_cnt: [out] length of @sg. 1002 * @data_len: Pointer to the variable to which the total data length of all 1003 * descriptors in the SRP_CMD request will be written. 1004 * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data 1005 * starts. 1006 * 1007 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 1008 * 1009 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 1010 * -ENOMEM when memory allocation fails and zero upon success. 1011 */ 1012 static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx, 1013 struct srpt_send_ioctx *ioctx, 1014 struct srp_cmd *srp_cmd, enum dma_data_direction *dir, 1015 struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len, 1016 u16 imm_data_offset) 1017 { 1018 BUG_ON(!dir); 1019 BUG_ON(!data_len); 1020 1021 /* 1022 * The lower four bits of the buffer format field contain the DATA-IN 1023 * buffer descriptor format, and the highest four bits contain the 1024 * DATA-OUT buffer descriptor format. 1025 */ 1026 if (srp_cmd->buf_fmt & 0xf) 1027 /* DATA-IN: transfer data from target to initiator (read). */ 1028 *dir = DMA_FROM_DEVICE; 1029 else if (srp_cmd->buf_fmt >> 4) 1030 /* DATA-OUT: transfer data from initiator to target (write). */ 1031 *dir = DMA_TO_DEVICE; 1032 else 1033 *dir = DMA_NONE; 1034 1035 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */ 1036 ioctx->cmd.data_direction = *dir; 1037 1038 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 1039 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 1040 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd); 1041 1042 *data_len = be32_to_cpu(db->len); 1043 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt); 1044 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 1045 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 1046 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd); 1047 int nbufs = be32_to_cpu(idb->table_desc.len) / 1048 sizeof(struct srp_direct_buf); 1049 1050 if (nbufs > 1051 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 1052 pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n", 1053 srp_cmd->data_out_desc_cnt, 1054 srp_cmd->data_in_desc_cnt, 1055 be32_to_cpu(idb->table_desc.len), 1056 sizeof(struct srp_direct_buf)); 1057 return -EINVAL; 1058 } 1059 1060 *data_len = be32_to_cpu(idb->len); 1061 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs, 1062 sg, sg_cnt); 1063 } else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) { 1064 struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd); 1065 void *data = (void *)srp_cmd + imm_data_offset; 1066 uint32_t len = be32_to_cpu(imm_buf->len); 1067 uint32_t req_size = imm_data_offset + len; 1068 1069 if (req_size > srp_max_req_size) { 1070 pr_err("Immediate data (length %d + %d) exceeds request size %d\n", 1071 imm_data_offset, len, srp_max_req_size); 1072 return -EINVAL; 1073 } 1074 if (recv_ioctx->byte_len < req_size) { 1075 pr_err("Received too few data - %d < %d\n", 1076 recv_ioctx->byte_len, req_size); 1077 return -EIO; 1078 } 1079 /* 1080 * The immediate data buffer descriptor must occur before the 1081 * immediate data itself. 1082 */ 1083 if ((void *)(imm_buf + 1) > (void *)data) { 1084 pr_err("Received invalid write request\n"); 1085 return -EINVAL; 1086 } 1087 *data_len = len; 1088 ioctx->recv_ioctx = recv_ioctx; 1089 if ((uintptr_t)data & 511) { 1090 pr_warn_once("Internal error - the receive buffers are not aligned properly.\n"); 1091 return -EINVAL; 1092 } 1093 sg_init_one(&ioctx->imm_sg, data, len); 1094 *sg = &ioctx->imm_sg; 1095 *sg_cnt = 1; 1096 return 0; 1097 } else { 1098 *data_len = 0; 1099 return 0; 1100 } 1101 } 1102 1103 /** 1104 * srpt_init_ch_qp - initialize queue pair attributes 1105 * @ch: SRPT RDMA channel. 1106 * @qp: Queue pair pointer. 1107 * 1108 * Initialized the attributes of queue pair 'qp' by allowing local write, 1109 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 1110 */ 1111 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1112 { 1113 struct ib_qp_attr *attr; 1114 int ret; 1115 1116 WARN_ON_ONCE(ch->using_rdma_cm); 1117 1118 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1119 if (!attr) 1120 return -ENOMEM; 1121 1122 attr->qp_state = IB_QPS_INIT; 1123 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE; 1124 attr->port_num = ch->sport->port; 1125 1126 ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port, 1127 ch->pkey, &attr->pkey_index); 1128 if (ret < 0) 1129 pr_err("Translating pkey %#x failed (%d) - using index 0\n", 1130 ch->pkey, ret); 1131 1132 ret = ib_modify_qp(qp, attr, 1133 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 1134 IB_QP_PKEY_INDEX); 1135 1136 kfree(attr); 1137 return ret; 1138 } 1139 1140 /** 1141 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR) 1142 * @ch: channel of the queue pair. 1143 * @qp: queue pair to change the state of. 1144 * 1145 * Returns zero upon success and a negative value upon failure. 1146 * 1147 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1148 * If this structure ever becomes larger, it might be necessary to allocate 1149 * it dynamically instead of on the stack. 1150 */ 1151 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1152 { 1153 struct ib_qp_attr qp_attr; 1154 int attr_mask; 1155 int ret; 1156 1157 WARN_ON_ONCE(ch->using_rdma_cm); 1158 1159 qp_attr.qp_state = IB_QPS_RTR; 1160 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask); 1161 if (ret) 1162 goto out; 1163 1164 qp_attr.max_dest_rd_atomic = 4; 1165 1166 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1167 1168 out: 1169 return ret; 1170 } 1171 1172 /** 1173 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS) 1174 * @ch: channel of the queue pair. 1175 * @qp: queue pair to change the state of. 1176 * 1177 * Returns zero upon success and a negative value upon failure. 1178 * 1179 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1180 * If this structure ever becomes larger, it might be necessary to allocate 1181 * it dynamically instead of on the stack. 1182 */ 1183 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1184 { 1185 struct ib_qp_attr qp_attr; 1186 int attr_mask; 1187 int ret; 1188 1189 qp_attr.qp_state = IB_QPS_RTS; 1190 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask); 1191 if (ret) 1192 goto out; 1193 1194 qp_attr.max_rd_atomic = 4; 1195 1196 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1197 1198 out: 1199 return ret; 1200 } 1201 1202 /** 1203 * srpt_ch_qp_err - set the channel queue pair state to 'error' 1204 * @ch: SRPT RDMA channel. 1205 */ 1206 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1207 { 1208 struct ib_qp_attr qp_attr; 1209 1210 qp_attr.qp_state = IB_QPS_ERR; 1211 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1212 } 1213 1214 /** 1215 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator 1216 * @ch: SRPT RDMA channel. 1217 */ 1218 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1219 { 1220 struct srpt_send_ioctx *ioctx; 1221 int tag, cpu; 1222 1223 BUG_ON(!ch); 1224 1225 tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu); 1226 if (tag < 0) 1227 return NULL; 1228 1229 ioctx = ch->ioctx_ring[tag]; 1230 BUG_ON(ioctx->ch != ch); 1231 ioctx->state = SRPT_STATE_NEW; 1232 WARN_ON_ONCE(ioctx->recv_ioctx); 1233 ioctx->n_rdma = 0; 1234 ioctx->n_rw_ctx = 0; 1235 ioctx->queue_status_only = false; 1236 /* 1237 * transport_init_se_cmd() does not initialize all fields, so do it 1238 * here. 1239 */ 1240 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1241 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1242 ioctx->cmd.map_tag = tag; 1243 ioctx->cmd.map_cpu = cpu; 1244 1245 return ioctx; 1246 } 1247 1248 /** 1249 * srpt_abort_cmd - abort a SCSI command 1250 * @ioctx: I/O context associated with the SCSI command. 1251 */ 1252 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1253 { 1254 enum srpt_command_state state; 1255 1256 BUG_ON(!ioctx); 1257 1258 /* 1259 * If the command is in a state where the target core is waiting for 1260 * the ib_srpt driver, change the state to the next state. 1261 */ 1262 1263 state = ioctx->state; 1264 switch (state) { 1265 case SRPT_STATE_NEED_DATA: 1266 ioctx->state = SRPT_STATE_DATA_IN; 1267 break; 1268 case SRPT_STATE_CMD_RSP_SENT: 1269 case SRPT_STATE_MGMT_RSP_SENT: 1270 ioctx->state = SRPT_STATE_DONE; 1271 break; 1272 default: 1273 WARN_ONCE(true, "%s: unexpected I/O context state %d\n", 1274 __func__, state); 1275 break; 1276 } 1277 1278 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state, 1279 ioctx->state, ioctx->cmd.tag); 1280 1281 switch (state) { 1282 case SRPT_STATE_NEW: 1283 case SRPT_STATE_DATA_IN: 1284 case SRPT_STATE_MGMT: 1285 case SRPT_STATE_DONE: 1286 /* 1287 * Do nothing - defer abort processing until 1288 * srpt_queue_response() is invoked. 1289 */ 1290 break; 1291 case SRPT_STATE_NEED_DATA: 1292 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag); 1293 transport_generic_request_failure(&ioctx->cmd, 1294 TCM_CHECK_CONDITION_ABORT_CMD); 1295 break; 1296 case SRPT_STATE_CMD_RSP_SENT: 1297 /* 1298 * SRP_RSP sending failed or the SRP_RSP send completion has 1299 * not been received in time. 1300 */ 1301 transport_generic_free_cmd(&ioctx->cmd, 0); 1302 break; 1303 case SRPT_STATE_MGMT_RSP_SENT: 1304 transport_generic_free_cmd(&ioctx->cmd, 0); 1305 break; 1306 default: 1307 WARN(1, "Unexpected command state (%d)", state); 1308 break; 1309 } 1310 1311 return state; 1312 } 1313 1314 /** 1315 * srpt_rdma_read_done - RDMA read completion callback 1316 * @cq: Completion queue. 1317 * @wc: Work completion. 1318 * 1319 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1320 * the data that has been transferred via IB RDMA had to be postponed until the 1321 * check_stop_free() callback. None of this is necessary anymore and needs to 1322 * be cleaned up. 1323 */ 1324 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc) 1325 { 1326 struct srpt_rdma_ch *ch = wc->qp->qp_context; 1327 struct srpt_send_ioctx *ioctx = 1328 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe); 1329 1330 WARN_ON(ioctx->n_rdma <= 0); 1331 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1332 ioctx->n_rdma = 0; 1333 1334 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1335 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n", 1336 ioctx, wc->status); 1337 srpt_abort_cmd(ioctx); 1338 return; 1339 } 1340 1341 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1342 SRPT_STATE_DATA_IN)) 1343 target_execute_cmd(&ioctx->cmd); 1344 else 1345 pr_err("%s[%d]: wrong state = %d\n", __func__, 1346 __LINE__, ioctx->state); 1347 } 1348 1349 /** 1350 * srpt_build_cmd_rsp - build a SRP_RSP response 1351 * @ch: RDMA channel through which the request has been received. 1352 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1353 * be built in the buffer ioctx->buf points at and hence this function will 1354 * overwrite the request data. 1355 * @tag: tag of the request for which this response is being generated. 1356 * @status: value for the STATUS field of the SRP_RSP information unit. 1357 * 1358 * Returns the size in bytes of the SRP_RSP response. 1359 * 1360 * An SRP_RSP response contains a SCSI status or service response. See also 1361 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1362 * response. See also SPC-2 for more information about sense data. 1363 */ 1364 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1365 struct srpt_send_ioctx *ioctx, u64 tag, 1366 int status) 1367 { 1368 struct se_cmd *cmd = &ioctx->cmd; 1369 struct srp_rsp *srp_rsp; 1370 const u8 *sense_data; 1371 int sense_data_len, max_sense_len; 1372 u32 resid = cmd->residual_count; 1373 1374 /* 1375 * The lowest bit of all SAM-3 status codes is zero (see also 1376 * paragraph 5.3 in SAM-3). 1377 */ 1378 WARN_ON(status & 1); 1379 1380 srp_rsp = ioctx->ioctx.buf; 1381 BUG_ON(!srp_rsp); 1382 1383 sense_data = ioctx->sense_data; 1384 sense_data_len = ioctx->cmd.scsi_sense_length; 1385 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1386 1387 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1388 srp_rsp->opcode = SRP_RSP; 1389 srp_rsp->req_lim_delta = 1390 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1391 srp_rsp->tag = tag; 1392 srp_rsp->status = status; 1393 1394 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1395 if (cmd->data_direction == DMA_TO_DEVICE) { 1396 /* residual data from an underflow write */ 1397 srp_rsp->flags = SRP_RSP_FLAG_DOUNDER; 1398 srp_rsp->data_out_res_cnt = cpu_to_be32(resid); 1399 } else if (cmd->data_direction == DMA_FROM_DEVICE) { 1400 /* residual data from an underflow read */ 1401 srp_rsp->flags = SRP_RSP_FLAG_DIUNDER; 1402 srp_rsp->data_in_res_cnt = cpu_to_be32(resid); 1403 } 1404 } else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1405 if (cmd->data_direction == DMA_TO_DEVICE) { 1406 /* residual data from an overflow write */ 1407 srp_rsp->flags = SRP_RSP_FLAG_DOOVER; 1408 srp_rsp->data_out_res_cnt = cpu_to_be32(resid); 1409 } else if (cmd->data_direction == DMA_FROM_DEVICE) { 1410 /* residual data from an overflow read */ 1411 srp_rsp->flags = SRP_RSP_FLAG_DIOVER; 1412 srp_rsp->data_in_res_cnt = cpu_to_be32(resid); 1413 } 1414 } 1415 1416 if (sense_data_len) { 1417 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1418 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1419 if (sense_data_len > max_sense_len) { 1420 pr_warn("truncated sense data from %d to %d bytes\n", 1421 sense_data_len, max_sense_len); 1422 sense_data_len = max_sense_len; 1423 } 1424 1425 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1426 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1427 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1428 } 1429 1430 return sizeof(*srp_rsp) + sense_data_len; 1431 } 1432 1433 /** 1434 * srpt_build_tskmgmt_rsp - build a task management response 1435 * @ch: RDMA channel through which the request has been received. 1436 * @ioctx: I/O context in which the SRP_RSP response will be built. 1437 * @rsp_code: RSP_CODE that will be stored in the response. 1438 * @tag: Tag of the request for which this response is being generated. 1439 * 1440 * Returns the size in bytes of the SRP_RSP response. 1441 * 1442 * An SRP_RSP response contains a SCSI status or service response. See also 1443 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1444 * response. 1445 */ 1446 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1447 struct srpt_send_ioctx *ioctx, 1448 u8 rsp_code, u64 tag) 1449 { 1450 struct srp_rsp *srp_rsp; 1451 int resp_data_len; 1452 int resp_len; 1453 1454 resp_data_len = 4; 1455 resp_len = sizeof(*srp_rsp) + resp_data_len; 1456 1457 srp_rsp = ioctx->ioctx.buf; 1458 BUG_ON(!srp_rsp); 1459 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1460 1461 srp_rsp->opcode = SRP_RSP; 1462 srp_rsp->req_lim_delta = 1463 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1464 srp_rsp->tag = tag; 1465 1466 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1467 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1468 srp_rsp->data[3] = rsp_code; 1469 1470 return resp_len; 1471 } 1472 1473 static int srpt_check_stop_free(struct se_cmd *cmd) 1474 { 1475 struct srpt_send_ioctx *ioctx = container_of(cmd, 1476 struct srpt_send_ioctx, cmd); 1477 1478 return target_put_sess_cmd(&ioctx->cmd); 1479 } 1480 1481 /** 1482 * srpt_handle_cmd - process a SRP_CMD information unit 1483 * @ch: SRPT RDMA channel. 1484 * @recv_ioctx: Receive I/O context. 1485 * @send_ioctx: Send I/O context. 1486 */ 1487 static void srpt_handle_cmd(struct srpt_rdma_ch *ch, 1488 struct srpt_recv_ioctx *recv_ioctx, 1489 struct srpt_send_ioctx *send_ioctx) 1490 { 1491 struct se_cmd *cmd; 1492 struct srp_cmd *srp_cmd; 1493 struct scatterlist *sg = NULL; 1494 unsigned sg_cnt = 0; 1495 u64 data_len; 1496 enum dma_data_direction dir; 1497 int rc; 1498 1499 BUG_ON(!send_ioctx); 1500 1501 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset; 1502 cmd = &send_ioctx->cmd; 1503 cmd->tag = srp_cmd->tag; 1504 1505 switch (srp_cmd->task_attr) { 1506 case SRP_CMD_SIMPLE_Q: 1507 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1508 break; 1509 case SRP_CMD_ORDERED_Q: 1510 default: 1511 cmd->sam_task_attr = TCM_ORDERED_TAG; 1512 break; 1513 case SRP_CMD_HEAD_OF_Q: 1514 cmd->sam_task_attr = TCM_HEAD_TAG; 1515 break; 1516 case SRP_CMD_ACA: 1517 cmd->sam_task_attr = TCM_ACA_TAG; 1518 break; 1519 } 1520 1521 rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir, 1522 &sg, &sg_cnt, &data_len, ch->imm_data_offset); 1523 if (rc) { 1524 if (rc != -EAGAIN) { 1525 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1526 srp_cmd->tag); 1527 } 1528 goto busy; 1529 } 1530 1531 rc = target_init_cmd(cmd, ch->sess, &send_ioctx->sense_data[0], 1532 scsilun_to_int(&srp_cmd->lun), data_len, 1533 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF); 1534 if (rc != 0) { 1535 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc, 1536 srp_cmd->tag); 1537 goto busy; 1538 } 1539 1540 if (target_submit_prep(cmd, srp_cmd->cdb, sg, sg_cnt, NULL, 0, NULL, 0, 1541 GFP_KERNEL)) 1542 return; 1543 1544 target_submit(cmd); 1545 return; 1546 1547 busy: 1548 target_send_busy(cmd); 1549 } 1550 1551 static int srp_tmr_to_tcm(int fn) 1552 { 1553 switch (fn) { 1554 case SRP_TSK_ABORT_TASK: 1555 return TMR_ABORT_TASK; 1556 case SRP_TSK_ABORT_TASK_SET: 1557 return TMR_ABORT_TASK_SET; 1558 case SRP_TSK_CLEAR_TASK_SET: 1559 return TMR_CLEAR_TASK_SET; 1560 case SRP_TSK_LUN_RESET: 1561 return TMR_LUN_RESET; 1562 case SRP_TSK_CLEAR_ACA: 1563 return TMR_CLEAR_ACA; 1564 default: 1565 return -1; 1566 } 1567 } 1568 1569 /** 1570 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit 1571 * @ch: SRPT RDMA channel. 1572 * @recv_ioctx: Receive I/O context. 1573 * @send_ioctx: Send I/O context. 1574 * 1575 * Returns 0 if and only if the request will be processed by the target core. 1576 * 1577 * For more information about SRP_TSK_MGMT information units, see also section 1578 * 6.7 in the SRP r16a document. 1579 */ 1580 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1581 struct srpt_recv_ioctx *recv_ioctx, 1582 struct srpt_send_ioctx *send_ioctx) 1583 { 1584 struct srp_tsk_mgmt *srp_tsk; 1585 struct se_cmd *cmd; 1586 struct se_session *sess = ch->sess; 1587 int tcm_tmr; 1588 int rc; 1589 1590 BUG_ON(!send_ioctx); 1591 1592 srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset; 1593 cmd = &send_ioctx->cmd; 1594 1595 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n", 1596 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch, 1597 ch->sess); 1598 1599 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1600 send_ioctx->cmd.tag = srp_tsk->tag; 1601 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1602 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, 1603 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr, 1604 GFP_KERNEL, srp_tsk->task_tag, 1605 TARGET_SCF_ACK_KREF); 1606 if (rc != 0) { 1607 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1608 cmd->se_tfo->queue_tm_rsp(cmd); 1609 } 1610 return; 1611 } 1612 1613 /** 1614 * srpt_handle_new_iu - process a newly received information unit 1615 * @ch: RDMA channel through which the information unit has been received. 1616 * @recv_ioctx: Receive I/O context associated with the information unit. 1617 */ 1618 static bool 1619 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx) 1620 { 1621 struct srpt_send_ioctx *send_ioctx = NULL; 1622 struct srp_cmd *srp_cmd; 1623 bool res = false; 1624 u8 opcode; 1625 1626 BUG_ON(!ch); 1627 BUG_ON(!recv_ioctx); 1628 1629 if (unlikely(ch->state == CH_CONNECTING)) 1630 goto push; 1631 1632 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1633 recv_ioctx->ioctx.dma, 1634 recv_ioctx->ioctx.offset + srp_max_req_size, 1635 DMA_FROM_DEVICE); 1636 1637 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset; 1638 opcode = srp_cmd->opcode; 1639 if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) { 1640 send_ioctx = srpt_get_send_ioctx(ch); 1641 if (unlikely(!send_ioctx)) 1642 goto push; 1643 } 1644 1645 if (!list_empty(&recv_ioctx->wait_list)) { 1646 WARN_ON_ONCE(!ch->processing_wait_list); 1647 list_del_init(&recv_ioctx->wait_list); 1648 } 1649 1650 switch (opcode) { 1651 case SRP_CMD: 1652 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1653 break; 1654 case SRP_TSK_MGMT: 1655 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1656 break; 1657 case SRP_I_LOGOUT: 1658 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1659 break; 1660 case SRP_CRED_RSP: 1661 pr_debug("received SRP_CRED_RSP\n"); 1662 break; 1663 case SRP_AER_RSP: 1664 pr_debug("received SRP_AER_RSP\n"); 1665 break; 1666 case SRP_RSP: 1667 pr_err("Received SRP_RSP\n"); 1668 break; 1669 default: 1670 pr_err("received IU with unknown opcode 0x%x\n", opcode); 1671 break; 1672 } 1673 1674 if (!send_ioctx || !send_ioctx->recv_ioctx) 1675 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx); 1676 res = true; 1677 1678 out: 1679 return res; 1680 1681 push: 1682 if (list_empty(&recv_ioctx->wait_list)) { 1683 WARN_ON_ONCE(ch->processing_wait_list); 1684 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1685 } 1686 goto out; 1687 } 1688 1689 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1690 { 1691 struct srpt_rdma_ch *ch = wc->qp->qp_context; 1692 struct srpt_recv_ioctx *ioctx = 1693 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe); 1694 1695 if (wc->status == IB_WC_SUCCESS) { 1696 int req_lim; 1697 1698 req_lim = atomic_dec_return(&ch->req_lim); 1699 if (unlikely(req_lim < 0)) 1700 pr_err("req_lim = %d < 0\n", req_lim); 1701 ioctx->byte_len = wc->byte_len; 1702 srpt_handle_new_iu(ch, ioctx); 1703 } else { 1704 pr_info_ratelimited("receiving failed for ioctx %p with status %d\n", 1705 ioctx, wc->status); 1706 } 1707 } 1708 1709 /* 1710 * This function must be called from the context in which RDMA completions are 1711 * processed because it accesses the wait list without protection against 1712 * access from other threads. 1713 */ 1714 static void srpt_process_wait_list(struct srpt_rdma_ch *ch) 1715 { 1716 struct srpt_recv_ioctx *recv_ioctx, *tmp; 1717 1718 WARN_ON_ONCE(ch->state == CH_CONNECTING); 1719 1720 if (list_empty(&ch->cmd_wait_list)) 1721 return; 1722 1723 WARN_ON_ONCE(ch->processing_wait_list); 1724 ch->processing_wait_list = true; 1725 list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list, 1726 wait_list) { 1727 if (!srpt_handle_new_iu(ch, recv_ioctx)) 1728 break; 1729 } 1730 ch->processing_wait_list = false; 1731 } 1732 1733 /** 1734 * srpt_send_done - send completion callback 1735 * @cq: Completion queue. 1736 * @wc: Work completion. 1737 * 1738 * Note: Although this has not yet been observed during tests, at least in 1739 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1740 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1741 * value in each response is set to one, and it is possible that this response 1742 * makes the initiator send a new request before the send completion for that 1743 * response has been processed. This could e.g. happen if the call to 1744 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1745 * if IB retransmission causes generation of the send completion to be 1746 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1747 * are queued on cmd_wait_list. The code below processes these delayed 1748 * requests one at a time. 1749 */ 1750 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc) 1751 { 1752 struct srpt_rdma_ch *ch = wc->qp->qp_context; 1753 struct srpt_send_ioctx *ioctx = 1754 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe); 1755 enum srpt_command_state state; 1756 1757 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1758 1759 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT && 1760 state != SRPT_STATE_MGMT_RSP_SENT); 1761 1762 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 1763 1764 if (wc->status != IB_WC_SUCCESS) 1765 pr_info("sending response for ioctx 0x%p failed with status %d\n", 1766 ioctx, wc->status); 1767 1768 if (state != SRPT_STATE_DONE) { 1769 transport_generic_free_cmd(&ioctx->cmd, 0); 1770 } else { 1771 pr_err("IB completion has been received too late for wr_id = %u.\n", 1772 ioctx->ioctx.index); 1773 } 1774 1775 srpt_process_wait_list(ch); 1776 } 1777 1778 /** 1779 * srpt_create_ch_ib - create receive and send completion queues 1780 * @ch: SRPT RDMA channel. 1781 */ 1782 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 1783 { 1784 struct ib_qp_init_attr *qp_init; 1785 struct srpt_port *sport = ch->sport; 1786 struct srpt_device *sdev = sport->sdev; 1787 const struct ib_device_attr *attrs = &sdev->device->attrs; 1788 int sq_size = sport->port_attrib.srp_sq_size; 1789 int i, ret; 1790 1791 WARN_ON(ch->rq_size < 1); 1792 1793 ret = -ENOMEM; 1794 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL); 1795 if (!qp_init) 1796 goto out; 1797 1798 retry: 1799 ch->cq = ib_cq_pool_get(sdev->device, ch->rq_size + sq_size, -1, 1800 IB_POLL_WORKQUEUE); 1801 if (IS_ERR(ch->cq)) { 1802 ret = PTR_ERR(ch->cq); 1803 pr_err("failed to create CQ cqe= %d ret= %d\n", 1804 ch->rq_size + sq_size, ret); 1805 goto out; 1806 } 1807 ch->cq_size = ch->rq_size + sq_size; 1808 1809 qp_init->qp_context = (void *)ch; 1810 qp_init->event_handler 1811 = (void(*)(struct ib_event *, void*))srpt_qp_event; 1812 qp_init->send_cq = ch->cq; 1813 qp_init->recv_cq = ch->cq; 1814 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 1815 qp_init->qp_type = IB_QPT_RC; 1816 /* 1817 * We divide up our send queue size into half SEND WRs to send the 1818 * completions, and half R/W contexts to actually do the RDMA 1819 * READ/WRITE transfers. Note that we need to allocate CQ slots for 1820 * both both, as RDMA contexts will also post completions for the 1821 * RDMA READ case. 1822 */ 1823 qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr); 1824 qp_init->cap.max_rdma_ctxs = sq_size / 2; 1825 qp_init->cap.max_send_sge = attrs->max_send_sge; 1826 qp_init->cap.max_recv_sge = 1; 1827 qp_init->port_num = ch->sport->port; 1828 if (sdev->use_srq) 1829 qp_init->srq = sdev->srq; 1830 else 1831 qp_init->cap.max_recv_wr = ch->rq_size; 1832 1833 if (ch->using_rdma_cm) { 1834 ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init); 1835 ch->qp = ch->rdma_cm.cm_id->qp; 1836 } else { 1837 ch->qp = ib_create_qp(sdev->pd, qp_init); 1838 if (!IS_ERR(ch->qp)) { 1839 ret = srpt_init_ch_qp(ch, ch->qp); 1840 if (ret) 1841 ib_destroy_qp(ch->qp); 1842 } else { 1843 ret = PTR_ERR(ch->qp); 1844 } 1845 } 1846 if (ret) { 1847 bool retry = sq_size > MIN_SRPT_SQ_SIZE; 1848 1849 if (retry) { 1850 pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n", 1851 sq_size, ret); 1852 ib_cq_pool_put(ch->cq, ch->cq_size); 1853 sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE); 1854 goto retry; 1855 } else { 1856 pr_err("failed to create queue pair with sq_size = %d (%d)\n", 1857 sq_size, ret); 1858 goto err_destroy_cq; 1859 } 1860 } 1861 1862 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 1863 1864 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n", 1865 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 1866 qp_init->cap.max_send_wr, ch); 1867 1868 if (!sdev->use_srq) 1869 for (i = 0; i < ch->rq_size; i++) 1870 srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]); 1871 1872 out: 1873 kfree(qp_init); 1874 return ret; 1875 1876 err_destroy_cq: 1877 ch->qp = NULL; 1878 ib_cq_pool_put(ch->cq, ch->cq_size); 1879 goto out; 1880 } 1881 1882 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 1883 { 1884 ib_destroy_qp(ch->qp); 1885 ib_cq_pool_put(ch->cq, ch->cq_size); 1886 } 1887 1888 /** 1889 * srpt_close_ch - close a RDMA channel 1890 * @ch: SRPT RDMA channel. 1891 * 1892 * Make sure all resources associated with the channel will be deallocated at 1893 * an appropriate time. 1894 * 1895 * Returns true if and only if the channel state has been modified into 1896 * CH_DRAINING. 1897 */ 1898 static bool srpt_close_ch(struct srpt_rdma_ch *ch) 1899 { 1900 int ret; 1901 1902 if (!srpt_set_ch_state(ch, CH_DRAINING)) { 1903 pr_debug("%s: already closed\n", ch->sess_name); 1904 return false; 1905 } 1906 1907 kref_get(&ch->kref); 1908 1909 ret = srpt_ch_qp_err(ch); 1910 if (ret < 0) 1911 pr_err("%s-%d: changing queue pair into error state failed: %d\n", 1912 ch->sess_name, ch->qp->qp_num, ret); 1913 1914 ret = srpt_zerolength_write(ch); 1915 if (ret < 0) { 1916 pr_err("%s-%d: queuing zero-length write failed: %d\n", 1917 ch->sess_name, ch->qp->qp_num, ret); 1918 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 1919 schedule_work(&ch->release_work); 1920 else 1921 WARN_ON_ONCE(true); 1922 } 1923 1924 kref_put(&ch->kref, srpt_free_ch); 1925 1926 return true; 1927 } 1928 1929 /* 1930 * Change the channel state into CH_DISCONNECTING. If a channel has not yet 1931 * reached the connected state, close it. If a channel is in the connected 1932 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is 1933 * the responsibility of the caller to ensure that this function is not 1934 * invoked concurrently with the code that accepts a connection. This means 1935 * that this function must either be invoked from inside a CM callback 1936 * function or that it must be invoked with the srpt_port.mutex held. 1937 */ 1938 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch) 1939 { 1940 int ret; 1941 1942 if (!srpt_set_ch_state(ch, CH_DISCONNECTING)) 1943 return -ENOTCONN; 1944 1945 if (ch->using_rdma_cm) { 1946 ret = rdma_disconnect(ch->rdma_cm.cm_id); 1947 } else { 1948 ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0); 1949 if (ret < 0) 1950 ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0); 1951 } 1952 1953 if (ret < 0 && srpt_close_ch(ch)) 1954 ret = 0; 1955 1956 return ret; 1957 } 1958 1959 /* Send DREQ and wait for DREP. */ 1960 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch) 1961 { 1962 DECLARE_COMPLETION_ONSTACK(closed); 1963 struct srpt_port *sport = ch->sport; 1964 1965 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num, 1966 ch->state); 1967 1968 ch->closed = &closed; 1969 1970 mutex_lock(&sport->mutex); 1971 srpt_disconnect_ch(ch); 1972 mutex_unlock(&sport->mutex); 1973 1974 while (wait_for_completion_timeout(&closed, 5 * HZ) == 0) 1975 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__, 1976 ch->sess_name, ch->qp->qp_num, ch->state); 1977 1978 } 1979 1980 static void __srpt_close_all_ch(struct srpt_port *sport) 1981 { 1982 struct srpt_nexus *nexus; 1983 struct srpt_rdma_ch *ch; 1984 1985 lockdep_assert_held(&sport->mutex); 1986 1987 list_for_each_entry(nexus, &sport->nexus_list, entry) { 1988 list_for_each_entry(ch, &nexus->ch_list, list) { 1989 if (srpt_disconnect_ch(ch) >= 0) 1990 pr_info("Closing channel %s-%d because target %s_%d has been disabled\n", 1991 ch->sess_name, ch->qp->qp_num, 1992 dev_name(&sport->sdev->device->dev), 1993 sport->port); 1994 srpt_close_ch(ch); 1995 } 1996 } 1997 } 1998 1999 /* 2000 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if 2001 * it does not yet exist. 2002 */ 2003 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport, 2004 const u8 i_port_id[16], 2005 const u8 t_port_id[16]) 2006 { 2007 struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n; 2008 2009 for (;;) { 2010 mutex_lock(&sport->mutex); 2011 list_for_each_entry(n, &sport->nexus_list, entry) { 2012 if (memcmp(n->i_port_id, i_port_id, 16) == 0 && 2013 memcmp(n->t_port_id, t_port_id, 16) == 0) { 2014 nexus = n; 2015 break; 2016 } 2017 } 2018 if (!nexus && tmp_nexus) { 2019 list_add_tail_rcu(&tmp_nexus->entry, 2020 &sport->nexus_list); 2021 swap(nexus, tmp_nexus); 2022 } 2023 mutex_unlock(&sport->mutex); 2024 2025 if (nexus) 2026 break; 2027 tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL); 2028 if (!tmp_nexus) { 2029 nexus = ERR_PTR(-ENOMEM); 2030 break; 2031 } 2032 INIT_LIST_HEAD(&tmp_nexus->ch_list); 2033 memcpy(tmp_nexus->i_port_id, i_port_id, 16); 2034 memcpy(tmp_nexus->t_port_id, t_port_id, 16); 2035 } 2036 2037 kfree(tmp_nexus); 2038 2039 return nexus; 2040 } 2041 2042 static void srpt_set_enabled(struct srpt_port *sport, bool enabled) 2043 __must_hold(&sport->mutex) 2044 { 2045 lockdep_assert_held(&sport->mutex); 2046 2047 if (sport->enabled == enabled) 2048 return; 2049 sport->enabled = enabled; 2050 if (!enabled) 2051 __srpt_close_all_ch(sport); 2052 } 2053 2054 static void srpt_drop_sport_ref(struct srpt_port *sport) 2055 { 2056 if (atomic_dec_return(&sport->refcount) == 0 && sport->freed_channels) 2057 complete(sport->freed_channels); 2058 } 2059 2060 static void srpt_free_ch(struct kref *kref) 2061 { 2062 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref); 2063 2064 srpt_drop_sport_ref(ch->sport); 2065 kfree_rcu(ch, rcu); 2066 } 2067 2068 /* 2069 * Shut down the SCSI target session, tell the connection manager to 2070 * disconnect the associated RDMA channel, transition the QP to the error 2071 * state and remove the channel from the channel list. This function is 2072 * typically called from inside srpt_zerolength_write_done(). Concurrent 2073 * srpt_zerolength_write() calls from inside srpt_close_ch() are possible 2074 * as long as the channel is on sport->nexus_list. 2075 */ 2076 static void srpt_release_channel_work(struct work_struct *w) 2077 { 2078 struct srpt_rdma_ch *ch; 2079 struct srpt_device *sdev; 2080 struct srpt_port *sport; 2081 struct se_session *se_sess; 2082 2083 ch = container_of(w, struct srpt_rdma_ch, release_work); 2084 pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num); 2085 2086 sdev = ch->sport->sdev; 2087 BUG_ON(!sdev); 2088 2089 se_sess = ch->sess; 2090 BUG_ON(!se_sess); 2091 2092 target_stop_session(se_sess); 2093 target_wait_for_sess_cmds(se_sess); 2094 2095 target_remove_session(se_sess); 2096 ch->sess = NULL; 2097 2098 if (ch->using_rdma_cm) 2099 rdma_destroy_id(ch->rdma_cm.cm_id); 2100 else 2101 ib_destroy_cm_id(ch->ib_cm.cm_id); 2102 2103 sport = ch->sport; 2104 mutex_lock(&sport->mutex); 2105 list_del_rcu(&ch->list); 2106 mutex_unlock(&sport->mutex); 2107 2108 if (ch->closed) 2109 complete(ch->closed); 2110 2111 srpt_destroy_ch_ib(ch); 2112 2113 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2114 ch->sport->sdev, ch->rq_size, 2115 ch->rsp_buf_cache, DMA_TO_DEVICE); 2116 2117 kmem_cache_destroy(ch->rsp_buf_cache); 2118 2119 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring, 2120 sdev, ch->rq_size, 2121 ch->req_buf_cache, DMA_FROM_DEVICE); 2122 2123 kmem_cache_destroy(ch->req_buf_cache); 2124 2125 kref_put(&ch->kref, srpt_free_ch); 2126 } 2127 2128 /** 2129 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED 2130 * @sdev: HCA through which the login request was received. 2131 * @ib_cm_id: IB/CM connection identifier in case of IB/CM. 2132 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM. 2133 * @port_num: Port through which the REQ message was received. 2134 * @pkey: P_Key of the incoming connection. 2135 * @req: SRP login request. 2136 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted 2137 * the login request. 2138 * 2139 * Ownership of the cm_id is transferred to the target session if this 2140 * function returns zero. Otherwise the caller remains the owner of cm_id. 2141 */ 2142 static int srpt_cm_req_recv(struct srpt_device *const sdev, 2143 struct ib_cm_id *ib_cm_id, 2144 struct rdma_cm_id *rdma_cm_id, 2145 u8 port_num, __be16 pkey, 2146 const struct srp_login_req *req, 2147 const char *src_addr) 2148 { 2149 struct srpt_port *sport = &sdev->port[port_num - 1]; 2150 struct srpt_nexus *nexus; 2151 struct srp_login_rsp *rsp = NULL; 2152 struct srp_login_rej *rej = NULL; 2153 union { 2154 struct rdma_conn_param rdma_cm; 2155 struct ib_cm_rep_param ib_cm; 2156 } *rep_param = NULL; 2157 struct srpt_rdma_ch *ch = NULL; 2158 char i_port_id[36]; 2159 u32 it_iu_len; 2160 int i, tag_num, tag_size, ret; 2161 struct srpt_tpg *stpg; 2162 2163 WARN_ON_ONCE(irqs_disabled()); 2164 2165 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2166 2167 pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n", 2168 req->initiator_port_id, req->target_port_id, it_iu_len, 2169 port_num, &sport->gid, be16_to_cpu(pkey)); 2170 2171 nexus = srpt_get_nexus(sport, req->initiator_port_id, 2172 req->target_port_id); 2173 if (IS_ERR(nexus)) { 2174 ret = PTR_ERR(nexus); 2175 goto out; 2176 } 2177 2178 ret = -ENOMEM; 2179 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 2180 rej = kzalloc(sizeof(*rej), GFP_KERNEL); 2181 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL); 2182 if (!rsp || !rej || !rep_param) 2183 goto out; 2184 2185 ret = -EINVAL; 2186 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2187 rej->reason = cpu_to_be32( 2188 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2189 pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n", 2190 it_iu_len, 64, srp_max_req_size); 2191 goto reject; 2192 } 2193 2194 if (!sport->enabled) { 2195 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2196 pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n", 2197 dev_name(&sport->sdev->device->dev), port_num); 2198 goto reject; 2199 } 2200 2201 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2202 || *(__be64 *)(req->target_port_id + 8) != 2203 cpu_to_be64(srpt_service_guid)) { 2204 rej->reason = cpu_to_be32( 2205 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2206 pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n"); 2207 goto reject; 2208 } 2209 2210 ret = -ENOMEM; 2211 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 2212 if (!ch) { 2213 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2214 pr_err("rejected SRP_LOGIN_REQ because out of memory.\n"); 2215 goto reject; 2216 } 2217 2218 kref_init(&ch->kref); 2219 ch->pkey = be16_to_cpu(pkey); 2220 ch->nexus = nexus; 2221 ch->zw_cqe.done = srpt_zerolength_write_done; 2222 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2223 ch->sport = sport; 2224 if (ib_cm_id) { 2225 ch->ib_cm.cm_id = ib_cm_id; 2226 ib_cm_id->context = ch; 2227 } else { 2228 ch->using_rdma_cm = true; 2229 ch->rdma_cm.cm_id = rdma_cm_id; 2230 rdma_cm_id->context = ch; 2231 } 2232 /* 2233 * ch->rq_size should be at least as large as the initiator queue 2234 * depth to avoid that the initiator driver has to report QUEUE_FULL 2235 * to the SCSI mid-layer. 2236 */ 2237 ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr); 2238 spin_lock_init(&ch->spinlock); 2239 ch->state = CH_CONNECTING; 2240 INIT_LIST_HEAD(&ch->cmd_wait_list); 2241 ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2242 2243 ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size, 2244 512, 0, NULL); 2245 if (!ch->rsp_buf_cache) 2246 goto free_ch; 2247 2248 ch->ioctx_ring = (struct srpt_send_ioctx **) 2249 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2250 sizeof(*ch->ioctx_ring[0]), 2251 ch->rsp_buf_cache, 0, DMA_TO_DEVICE); 2252 if (!ch->ioctx_ring) { 2253 pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n"); 2254 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2255 goto free_rsp_cache; 2256 } 2257 2258 for (i = 0; i < ch->rq_size; i++) 2259 ch->ioctx_ring[i]->ch = ch; 2260 if (!sdev->use_srq) { 2261 u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ? 2262 be16_to_cpu(req->imm_data_offset) : 0; 2263 u16 alignment_offset; 2264 u32 req_sz; 2265 2266 if (req->req_flags & SRP_IMMED_REQUESTED) 2267 pr_debug("imm_data_offset = %d\n", 2268 be16_to_cpu(req->imm_data_offset)); 2269 if (imm_data_offset >= sizeof(struct srp_cmd)) { 2270 ch->imm_data_offset = imm_data_offset; 2271 rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP; 2272 } else { 2273 ch->imm_data_offset = 0; 2274 } 2275 alignment_offset = round_up(imm_data_offset, 512) - 2276 imm_data_offset; 2277 req_sz = alignment_offset + imm_data_offset + srp_max_req_size; 2278 ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz, 2279 512, 0, NULL); 2280 if (!ch->req_buf_cache) 2281 goto free_rsp_ring; 2282 2283 ch->ioctx_recv_ring = (struct srpt_recv_ioctx **) 2284 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2285 sizeof(*ch->ioctx_recv_ring[0]), 2286 ch->req_buf_cache, 2287 alignment_offset, 2288 DMA_FROM_DEVICE); 2289 if (!ch->ioctx_recv_ring) { 2290 pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n"); 2291 rej->reason = 2292 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2293 goto free_recv_cache; 2294 } 2295 for (i = 0; i < ch->rq_size; i++) 2296 INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list); 2297 } 2298 2299 ret = srpt_create_ch_ib(ch); 2300 if (ret) { 2301 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2302 pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n"); 2303 goto free_recv_ring; 2304 } 2305 2306 strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name)); 2307 snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx", 2308 be64_to_cpu(*(__be64 *)nexus->i_port_id), 2309 be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8))); 2310 2311 pr_debug("registering src addr %s or i_port_id %s\n", ch->sess_name, 2312 i_port_id); 2313 2314 tag_num = ch->rq_size; 2315 tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */ 2316 2317 mutex_lock(&sport->port_guid_id.mutex); 2318 list_for_each_entry(stpg, &sport->port_guid_id.tpg_list, entry) { 2319 if (!IS_ERR_OR_NULL(ch->sess)) 2320 break; 2321 ch->sess = target_setup_session(&stpg->tpg, tag_num, 2322 tag_size, TARGET_PROT_NORMAL, 2323 ch->sess_name, ch, NULL); 2324 } 2325 mutex_unlock(&sport->port_guid_id.mutex); 2326 2327 mutex_lock(&sport->port_gid_id.mutex); 2328 list_for_each_entry(stpg, &sport->port_gid_id.tpg_list, entry) { 2329 if (!IS_ERR_OR_NULL(ch->sess)) 2330 break; 2331 ch->sess = target_setup_session(&stpg->tpg, tag_num, 2332 tag_size, TARGET_PROT_NORMAL, i_port_id, 2333 ch, NULL); 2334 if (!IS_ERR_OR_NULL(ch->sess)) 2335 break; 2336 /* Retry without leading "0x" */ 2337 ch->sess = target_setup_session(&stpg->tpg, tag_num, 2338 tag_size, TARGET_PROT_NORMAL, 2339 i_port_id + 2, ch, NULL); 2340 } 2341 mutex_unlock(&sport->port_gid_id.mutex); 2342 2343 if (IS_ERR_OR_NULL(ch->sess)) { 2344 WARN_ON_ONCE(ch->sess == NULL); 2345 ret = PTR_ERR(ch->sess); 2346 ch->sess = NULL; 2347 pr_info("Rejected login for initiator %s: ret = %d.\n", 2348 ch->sess_name, ret); 2349 rej->reason = cpu_to_be32(ret == -ENOMEM ? 2350 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES : 2351 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2352 goto destroy_ib; 2353 } 2354 2355 /* 2356 * Once a session has been created destruction of srpt_rdma_ch objects 2357 * will decrement sport->refcount. Hence increment sport->refcount now. 2358 */ 2359 atomic_inc(&sport->refcount); 2360 2361 mutex_lock(&sport->mutex); 2362 2363 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2364 struct srpt_rdma_ch *ch2; 2365 2366 list_for_each_entry(ch2, &nexus->ch_list, list) { 2367 if (srpt_disconnect_ch(ch2) < 0) 2368 continue; 2369 pr_info("Relogin - closed existing channel %s\n", 2370 ch2->sess_name); 2371 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2372 } 2373 } else { 2374 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2375 } 2376 2377 list_add_tail_rcu(&ch->list, &nexus->ch_list); 2378 2379 if (!sport->enabled) { 2380 rej->reason = cpu_to_be32( 2381 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2382 pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n", 2383 dev_name(&sdev->device->dev), port_num); 2384 mutex_unlock(&sport->mutex); 2385 ret = -EINVAL; 2386 goto reject; 2387 } 2388 2389 mutex_unlock(&sport->mutex); 2390 2391 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp); 2392 if (ret) { 2393 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2394 pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n", 2395 ret); 2396 goto reject; 2397 } 2398 2399 pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess, 2400 ch->sess_name, ch); 2401 2402 /* create srp_login_response */ 2403 rsp->opcode = SRP_LOGIN_RSP; 2404 rsp->tag = req->tag; 2405 rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size); 2406 rsp->max_ti_iu_len = req->req_it_iu_len; 2407 ch->max_ti_iu_len = it_iu_len; 2408 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 2409 SRP_BUF_FORMAT_INDIRECT); 2410 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2411 atomic_set(&ch->req_lim, ch->rq_size); 2412 atomic_set(&ch->req_lim_delta, 0); 2413 2414 /* create cm reply */ 2415 if (ch->using_rdma_cm) { 2416 rep_param->rdma_cm.private_data = (void *)rsp; 2417 rep_param->rdma_cm.private_data_len = sizeof(*rsp); 2418 rep_param->rdma_cm.rnr_retry_count = 7; 2419 rep_param->rdma_cm.flow_control = 1; 2420 rep_param->rdma_cm.responder_resources = 4; 2421 rep_param->rdma_cm.initiator_depth = 4; 2422 } else { 2423 rep_param->ib_cm.qp_num = ch->qp->qp_num; 2424 rep_param->ib_cm.private_data = (void *)rsp; 2425 rep_param->ib_cm.private_data_len = sizeof(*rsp); 2426 rep_param->ib_cm.rnr_retry_count = 7; 2427 rep_param->ib_cm.flow_control = 1; 2428 rep_param->ib_cm.failover_accepted = 0; 2429 rep_param->ib_cm.srq = 1; 2430 rep_param->ib_cm.responder_resources = 4; 2431 rep_param->ib_cm.initiator_depth = 4; 2432 } 2433 2434 /* 2435 * Hold the sport mutex while accepting a connection to avoid that 2436 * srpt_disconnect_ch() is invoked concurrently with this code. 2437 */ 2438 mutex_lock(&sport->mutex); 2439 if (sport->enabled && ch->state == CH_CONNECTING) { 2440 if (ch->using_rdma_cm) 2441 ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm); 2442 else 2443 ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm); 2444 } else { 2445 ret = -EINVAL; 2446 } 2447 mutex_unlock(&sport->mutex); 2448 2449 switch (ret) { 2450 case 0: 2451 break; 2452 case -EINVAL: 2453 goto reject; 2454 default: 2455 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2456 pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n", 2457 ret); 2458 goto reject; 2459 } 2460 2461 goto out; 2462 2463 destroy_ib: 2464 srpt_destroy_ch_ib(ch); 2465 2466 free_recv_ring: 2467 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring, 2468 ch->sport->sdev, ch->rq_size, 2469 ch->req_buf_cache, DMA_FROM_DEVICE); 2470 2471 free_recv_cache: 2472 kmem_cache_destroy(ch->req_buf_cache); 2473 2474 free_rsp_ring: 2475 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2476 ch->sport->sdev, ch->rq_size, 2477 ch->rsp_buf_cache, DMA_TO_DEVICE); 2478 2479 free_rsp_cache: 2480 kmem_cache_destroy(ch->rsp_buf_cache); 2481 2482 free_ch: 2483 if (rdma_cm_id) 2484 rdma_cm_id->context = NULL; 2485 else 2486 ib_cm_id->context = NULL; 2487 kfree(ch); 2488 ch = NULL; 2489 2490 WARN_ON_ONCE(ret == 0); 2491 2492 reject: 2493 pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason)); 2494 rej->opcode = SRP_LOGIN_REJ; 2495 rej->tag = req->tag; 2496 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 2497 SRP_BUF_FORMAT_INDIRECT); 2498 2499 if (rdma_cm_id) 2500 rdma_reject(rdma_cm_id, rej, sizeof(*rej), 2501 IB_CM_REJ_CONSUMER_DEFINED); 2502 else 2503 ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2504 rej, sizeof(*rej)); 2505 2506 if (ch && ch->sess) { 2507 srpt_close_ch(ch); 2508 /* 2509 * Tell the caller not to free cm_id since 2510 * srpt_release_channel_work() will do that. 2511 */ 2512 ret = 0; 2513 } 2514 2515 out: 2516 kfree(rep_param); 2517 kfree(rsp); 2518 kfree(rej); 2519 2520 return ret; 2521 } 2522 2523 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id, 2524 const struct ib_cm_req_event_param *param, 2525 void *private_data) 2526 { 2527 char sguid[40]; 2528 2529 srpt_format_guid(sguid, sizeof(sguid), 2530 ¶m->primary_path->dgid.global.interface_id); 2531 2532 return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port, 2533 param->primary_path->pkey, 2534 private_data, sguid); 2535 } 2536 2537 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id, 2538 struct rdma_cm_event *event) 2539 { 2540 struct srpt_device *sdev; 2541 struct srp_login_req req; 2542 const struct srp_login_req_rdma *req_rdma; 2543 struct sa_path_rec *path_rec = cm_id->route.path_rec; 2544 char src_addr[40]; 2545 2546 sdev = ib_get_client_data(cm_id->device, &srpt_client); 2547 if (!sdev) 2548 return -ECONNREFUSED; 2549 2550 if (event->param.conn.private_data_len < sizeof(*req_rdma)) 2551 return -EINVAL; 2552 2553 /* Transform srp_login_req_rdma into srp_login_req. */ 2554 req_rdma = event->param.conn.private_data; 2555 memset(&req, 0, sizeof(req)); 2556 req.opcode = req_rdma->opcode; 2557 req.tag = req_rdma->tag; 2558 req.req_it_iu_len = req_rdma->req_it_iu_len; 2559 req.req_buf_fmt = req_rdma->req_buf_fmt; 2560 req.req_flags = req_rdma->req_flags; 2561 memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16); 2562 memcpy(req.target_port_id, req_rdma->target_port_id, 16); 2563 req.imm_data_offset = req_rdma->imm_data_offset; 2564 2565 snprintf(src_addr, sizeof(src_addr), "%pIS", 2566 &cm_id->route.addr.src_addr); 2567 2568 return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num, 2569 path_rec ? path_rec->pkey : 0, &req, src_addr); 2570 } 2571 2572 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch, 2573 enum ib_cm_rej_reason reason, 2574 const u8 *private_data, 2575 u8 private_data_len) 2576 { 2577 char *priv = NULL; 2578 int i; 2579 2580 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1, 2581 GFP_KERNEL))) { 2582 for (i = 0; i < private_data_len; i++) 2583 sprintf(priv + 3 * i, " %02x", private_data[i]); 2584 } 2585 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n", 2586 ch->sess_name, ch->qp->qp_num, reason, private_data_len ? 2587 "; private data" : "", priv ? priv : " (?)"); 2588 kfree(priv); 2589 } 2590 2591 /** 2592 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event 2593 * @ch: SRPT RDMA channel. 2594 * 2595 * An RTU (ready to use) message indicates that the connection has been 2596 * established and that the recipient may begin transmitting. 2597 */ 2598 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch) 2599 { 2600 int ret; 2601 2602 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp); 2603 if (ret < 0) { 2604 pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name, 2605 ch->qp->qp_num); 2606 srpt_close_ch(ch); 2607 return; 2608 } 2609 2610 /* 2611 * Note: calling srpt_close_ch() if the transition to the LIVE state 2612 * fails is not necessary since that means that that function has 2613 * already been invoked from another thread. 2614 */ 2615 if (!srpt_set_ch_state(ch, CH_LIVE)) { 2616 pr_err("%s-%d: channel transition to LIVE state failed\n", 2617 ch->sess_name, ch->qp->qp_num); 2618 return; 2619 } 2620 2621 /* Trigger wait list processing. */ 2622 ret = srpt_zerolength_write(ch); 2623 WARN_ONCE(ret < 0, "%d\n", ret); 2624 } 2625 2626 /** 2627 * srpt_cm_handler - IB connection manager callback function 2628 * @cm_id: IB/CM connection identifier. 2629 * @event: IB/CM event. 2630 * 2631 * A non-zero return value will cause the caller destroy the CM ID. 2632 * 2633 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2634 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2635 * a non-zero value in any other case will trigger a race with the 2636 * ib_destroy_cm_id() call in srpt_release_channel(). 2637 */ 2638 static int srpt_cm_handler(struct ib_cm_id *cm_id, 2639 const struct ib_cm_event *event) 2640 { 2641 struct srpt_rdma_ch *ch = cm_id->context; 2642 int ret; 2643 2644 ret = 0; 2645 switch (event->event) { 2646 case IB_CM_REQ_RECEIVED: 2647 ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd, 2648 event->private_data); 2649 break; 2650 case IB_CM_REJ_RECEIVED: 2651 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason, 2652 event->private_data, 2653 IB_CM_REJ_PRIVATE_DATA_SIZE); 2654 break; 2655 case IB_CM_RTU_RECEIVED: 2656 case IB_CM_USER_ESTABLISHED: 2657 srpt_cm_rtu_recv(ch); 2658 break; 2659 case IB_CM_DREQ_RECEIVED: 2660 srpt_disconnect_ch(ch); 2661 break; 2662 case IB_CM_DREP_RECEIVED: 2663 pr_info("Received CM DREP message for ch %s-%d.\n", 2664 ch->sess_name, ch->qp->qp_num); 2665 srpt_close_ch(ch); 2666 break; 2667 case IB_CM_TIMEWAIT_EXIT: 2668 pr_info("Received CM TimeWait exit for ch %s-%d.\n", 2669 ch->sess_name, ch->qp->qp_num); 2670 srpt_close_ch(ch); 2671 break; 2672 case IB_CM_REP_ERROR: 2673 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2674 ch->qp->qp_num); 2675 break; 2676 case IB_CM_DREQ_ERROR: 2677 pr_info("Received CM DREQ ERROR event.\n"); 2678 break; 2679 case IB_CM_MRA_RECEIVED: 2680 pr_info("Received CM MRA event\n"); 2681 break; 2682 default: 2683 pr_err("received unrecognized CM event %d\n", event->event); 2684 break; 2685 } 2686 2687 return ret; 2688 } 2689 2690 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id, 2691 struct rdma_cm_event *event) 2692 { 2693 struct srpt_rdma_ch *ch = cm_id->context; 2694 int ret = 0; 2695 2696 switch (event->event) { 2697 case RDMA_CM_EVENT_CONNECT_REQUEST: 2698 ret = srpt_rdma_cm_req_recv(cm_id, event); 2699 break; 2700 case RDMA_CM_EVENT_REJECTED: 2701 srpt_cm_rej_recv(ch, event->status, 2702 event->param.conn.private_data, 2703 event->param.conn.private_data_len); 2704 break; 2705 case RDMA_CM_EVENT_ESTABLISHED: 2706 srpt_cm_rtu_recv(ch); 2707 break; 2708 case RDMA_CM_EVENT_DISCONNECTED: 2709 if (ch->state < CH_DISCONNECTING) 2710 srpt_disconnect_ch(ch); 2711 else 2712 srpt_close_ch(ch); 2713 break; 2714 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 2715 srpt_close_ch(ch); 2716 break; 2717 case RDMA_CM_EVENT_UNREACHABLE: 2718 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2719 ch->qp->qp_num); 2720 break; 2721 case RDMA_CM_EVENT_DEVICE_REMOVAL: 2722 case RDMA_CM_EVENT_ADDR_CHANGE: 2723 break; 2724 default: 2725 pr_err("received unrecognized RDMA CM event %d\n", 2726 event->event); 2727 break; 2728 } 2729 2730 return ret; 2731 } 2732 2733 /* 2734 * srpt_write_pending - Start data transfer from initiator to target (write). 2735 */ 2736 static int srpt_write_pending(struct se_cmd *se_cmd) 2737 { 2738 struct srpt_send_ioctx *ioctx = 2739 container_of(se_cmd, struct srpt_send_ioctx, cmd); 2740 struct srpt_rdma_ch *ch = ioctx->ch; 2741 struct ib_send_wr *first_wr = NULL; 2742 struct ib_cqe *cqe = &ioctx->rdma_cqe; 2743 enum srpt_command_state new_state; 2744 int ret, i; 2745 2746 if (ioctx->recv_ioctx) { 2747 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2748 target_execute_cmd(&ioctx->cmd); 2749 return 0; 2750 } 2751 2752 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2753 WARN_ON(new_state == SRPT_STATE_DONE); 2754 2755 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) { 2756 pr_warn("%s: IB send queue full (needed %d)\n", 2757 __func__, ioctx->n_rdma); 2758 ret = -ENOMEM; 2759 goto out_undo; 2760 } 2761 2762 cqe->done = srpt_rdma_read_done; 2763 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2764 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2765 2766 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port, 2767 cqe, first_wr); 2768 cqe = NULL; 2769 } 2770 2771 ret = ib_post_send(ch->qp, first_wr, NULL); 2772 if (ret) { 2773 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n", 2774 __func__, ret, ioctx->n_rdma, 2775 atomic_read(&ch->sq_wr_avail)); 2776 goto out_undo; 2777 } 2778 2779 return 0; 2780 out_undo: 2781 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 2782 return ret; 2783 } 2784 2785 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2786 { 2787 switch (tcm_mgmt_status) { 2788 case TMR_FUNCTION_COMPLETE: 2789 return SRP_TSK_MGMT_SUCCESS; 2790 case TMR_FUNCTION_REJECTED: 2791 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2792 } 2793 return SRP_TSK_MGMT_FAILED; 2794 } 2795 2796 /** 2797 * srpt_queue_response - transmit the response to a SCSI command 2798 * @cmd: SCSI target command. 2799 * 2800 * Callback function called by the TCM core. Must not block since it can be 2801 * invoked on the context of the IB completion handler. 2802 */ 2803 static void srpt_queue_response(struct se_cmd *cmd) 2804 { 2805 struct srpt_send_ioctx *ioctx = 2806 container_of(cmd, struct srpt_send_ioctx, cmd); 2807 struct srpt_rdma_ch *ch = ioctx->ch; 2808 struct srpt_device *sdev = ch->sport->sdev; 2809 struct ib_send_wr send_wr, *first_wr = &send_wr; 2810 struct ib_sge sge; 2811 enum srpt_command_state state; 2812 int resp_len, ret, i; 2813 u8 srp_tm_status; 2814 2815 state = ioctx->state; 2816 switch (state) { 2817 case SRPT_STATE_NEW: 2818 case SRPT_STATE_DATA_IN: 2819 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 2820 break; 2821 case SRPT_STATE_MGMT: 2822 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 2823 break; 2824 default: 2825 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 2826 ch, ioctx->ioctx.index, ioctx->state); 2827 break; 2828 } 2829 2830 if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)) 2831 return; 2832 2833 /* For read commands, transfer the data to the initiator. */ 2834 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE && 2835 ioctx->cmd.data_length && 2836 !ioctx->queue_status_only) { 2837 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2838 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2839 2840 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, 2841 ch->sport->port, NULL, first_wr); 2842 } 2843 } 2844 2845 if (state != SRPT_STATE_MGMT) 2846 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, 2847 cmd->scsi_status); 2848 else { 2849 srp_tm_status 2850 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 2851 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 2852 ioctx->cmd.tag); 2853 } 2854 2855 atomic_inc(&ch->req_lim); 2856 2857 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma, 2858 &ch->sq_wr_avail) < 0)) { 2859 pr_warn("%s: IB send queue full (needed %d)\n", 2860 __func__, ioctx->n_rdma); 2861 ret = -ENOMEM; 2862 goto out; 2863 } 2864 2865 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len, 2866 DMA_TO_DEVICE); 2867 2868 sge.addr = ioctx->ioctx.dma; 2869 sge.length = resp_len; 2870 sge.lkey = sdev->lkey; 2871 2872 ioctx->ioctx.cqe.done = srpt_send_done; 2873 send_wr.next = NULL; 2874 send_wr.wr_cqe = &ioctx->ioctx.cqe; 2875 send_wr.sg_list = &sge; 2876 send_wr.num_sge = 1; 2877 send_wr.opcode = IB_WR_SEND; 2878 send_wr.send_flags = IB_SEND_SIGNALED; 2879 2880 ret = ib_post_send(ch->qp, first_wr, NULL); 2881 if (ret < 0) { 2882 pr_err("%s: sending cmd response failed for tag %llu (%d)\n", 2883 __func__, ioctx->cmd.tag, ret); 2884 goto out; 2885 } 2886 2887 return; 2888 2889 out: 2890 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 2891 atomic_dec(&ch->req_lim); 2892 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 2893 target_put_sess_cmd(&ioctx->cmd); 2894 } 2895 2896 static int srpt_queue_data_in(struct se_cmd *cmd) 2897 { 2898 srpt_queue_response(cmd); 2899 return 0; 2900 } 2901 2902 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 2903 { 2904 srpt_queue_response(cmd); 2905 } 2906 2907 /* 2908 * This function is called for aborted commands if no response is sent to the 2909 * initiator. Make sure that the credits freed by aborting a command are 2910 * returned to the initiator the next time a response is sent by incrementing 2911 * ch->req_lim_delta. 2912 */ 2913 static void srpt_aborted_task(struct se_cmd *cmd) 2914 { 2915 struct srpt_send_ioctx *ioctx = container_of(cmd, 2916 struct srpt_send_ioctx, cmd); 2917 struct srpt_rdma_ch *ch = ioctx->ch; 2918 2919 atomic_inc(&ch->req_lim_delta); 2920 } 2921 2922 static int srpt_queue_status(struct se_cmd *cmd) 2923 { 2924 struct srpt_send_ioctx *ioctx; 2925 2926 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 2927 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 2928 if (cmd->se_cmd_flags & 2929 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 2930 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 2931 ioctx->queue_status_only = true; 2932 srpt_queue_response(cmd); 2933 return 0; 2934 } 2935 2936 static void srpt_refresh_port_work(struct work_struct *work) 2937 { 2938 struct srpt_port *sport = container_of(work, struct srpt_port, work); 2939 2940 srpt_refresh_port(sport); 2941 } 2942 2943 /** 2944 * srpt_release_sport - disable login and wait for associated channels 2945 * @sport: SRPT HCA port. 2946 */ 2947 static int srpt_release_sport(struct srpt_port *sport) 2948 { 2949 DECLARE_COMPLETION_ONSTACK(c); 2950 struct srpt_nexus *nexus, *next_n; 2951 struct srpt_rdma_ch *ch; 2952 2953 WARN_ON_ONCE(irqs_disabled()); 2954 2955 sport->freed_channels = &c; 2956 2957 mutex_lock(&sport->mutex); 2958 srpt_set_enabled(sport, false); 2959 mutex_unlock(&sport->mutex); 2960 2961 while (atomic_read(&sport->refcount) > 0 && 2962 wait_for_completion_timeout(&c, 5 * HZ) <= 0) { 2963 pr_info("%s_%d: waiting for unregistration of %d sessions ...\n", 2964 dev_name(&sport->sdev->device->dev), sport->port, 2965 atomic_read(&sport->refcount)); 2966 rcu_read_lock(); 2967 list_for_each_entry(nexus, &sport->nexus_list, entry) { 2968 list_for_each_entry(ch, &nexus->ch_list, list) { 2969 pr_info("%s-%d: state %s\n", 2970 ch->sess_name, ch->qp->qp_num, 2971 get_ch_state_name(ch->state)); 2972 } 2973 } 2974 rcu_read_unlock(); 2975 } 2976 2977 mutex_lock(&sport->mutex); 2978 list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) { 2979 list_del(&nexus->entry); 2980 kfree_rcu(nexus, rcu); 2981 } 2982 mutex_unlock(&sport->mutex); 2983 2984 return 0; 2985 } 2986 2987 static struct se_wwn *__srpt_lookup_wwn(const char *name) 2988 { 2989 struct ib_device *dev; 2990 struct srpt_device *sdev; 2991 struct srpt_port *sport; 2992 int i; 2993 2994 list_for_each_entry(sdev, &srpt_dev_list, list) { 2995 dev = sdev->device; 2996 if (!dev) 2997 continue; 2998 2999 for (i = 0; i < dev->phys_port_cnt; i++) { 3000 sport = &sdev->port[i]; 3001 3002 if (strcmp(sport->port_guid_id.name, name) == 0) 3003 return &sport->port_guid_id.wwn; 3004 if (strcmp(sport->port_gid_id.name, name) == 0) 3005 return &sport->port_gid_id.wwn; 3006 } 3007 } 3008 3009 return NULL; 3010 } 3011 3012 static struct se_wwn *srpt_lookup_wwn(const char *name) 3013 { 3014 struct se_wwn *wwn; 3015 3016 spin_lock(&srpt_dev_lock); 3017 wwn = __srpt_lookup_wwn(name); 3018 spin_unlock(&srpt_dev_lock); 3019 3020 return wwn; 3021 } 3022 3023 static void srpt_free_srq(struct srpt_device *sdev) 3024 { 3025 if (!sdev->srq) 3026 return; 3027 3028 ib_destroy_srq(sdev->srq); 3029 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3030 sdev->srq_size, sdev->req_buf_cache, 3031 DMA_FROM_DEVICE); 3032 kmem_cache_destroy(sdev->req_buf_cache); 3033 sdev->srq = NULL; 3034 } 3035 3036 static int srpt_alloc_srq(struct srpt_device *sdev) 3037 { 3038 struct ib_srq_init_attr srq_attr = { 3039 .event_handler = srpt_srq_event, 3040 .srq_context = (void *)sdev, 3041 .attr.max_wr = sdev->srq_size, 3042 .attr.max_sge = 1, 3043 .srq_type = IB_SRQT_BASIC, 3044 }; 3045 struct ib_device *device = sdev->device; 3046 struct ib_srq *srq; 3047 int i; 3048 3049 WARN_ON_ONCE(sdev->srq); 3050 srq = ib_create_srq(sdev->pd, &srq_attr); 3051 if (IS_ERR(srq)) { 3052 pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq)); 3053 return PTR_ERR(srq); 3054 } 3055 3056 pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size, 3057 sdev->device->attrs.max_srq_wr, dev_name(&device->dev)); 3058 3059 sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf", 3060 srp_max_req_size, 0, 0, NULL); 3061 if (!sdev->req_buf_cache) 3062 goto free_srq; 3063 3064 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3065 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3066 sizeof(*sdev->ioctx_ring[0]), 3067 sdev->req_buf_cache, 0, DMA_FROM_DEVICE); 3068 if (!sdev->ioctx_ring) 3069 goto free_cache; 3070 3071 sdev->use_srq = true; 3072 sdev->srq = srq; 3073 3074 for (i = 0; i < sdev->srq_size; ++i) { 3075 INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list); 3076 srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]); 3077 } 3078 3079 return 0; 3080 3081 free_cache: 3082 kmem_cache_destroy(sdev->req_buf_cache); 3083 3084 free_srq: 3085 ib_destroy_srq(srq); 3086 return -ENOMEM; 3087 } 3088 3089 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq) 3090 { 3091 struct ib_device *device = sdev->device; 3092 int ret = 0; 3093 3094 if (!use_srq) { 3095 srpt_free_srq(sdev); 3096 sdev->use_srq = false; 3097 } else if (use_srq && !sdev->srq) { 3098 ret = srpt_alloc_srq(sdev); 3099 } 3100 pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, 3101 dev_name(&device->dev), sdev->use_srq, ret); 3102 return ret; 3103 } 3104 3105 /** 3106 * srpt_add_one - InfiniBand device addition callback function 3107 * @device: Describes a HCA. 3108 */ 3109 static int srpt_add_one(struct ib_device *device) 3110 { 3111 struct srpt_device *sdev; 3112 struct srpt_port *sport; 3113 int ret; 3114 u32 i; 3115 3116 pr_debug("device = %p\n", device); 3117 3118 sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt), 3119 GFP_KERNEL); 3120 if (!sdev) 3121 return -ENOMEM; 3122 3123 sdev->device = device; 3124 mutex_init(&sdev->sdev_mutex); 3125 3126 sdev->pd = ib_alloc_pd(device, 0); 3127 if (IS_ERR(sdev->pd)) { 3128 ret = PTR_ERR(sdev->pd); 3129 goto free_dev; 3130 } 3131 3132 sdev->lkey = sdev->pd->local_dma_lkey; 3133 3134 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr); 3135 3136 srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq); 3137 3138 if (!srpt_service_guid) 3139 srpt_service_guid = be64_to_cpu(device->node_guid); 3140 3141 if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND) 3142 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3143 if (IS_ERR(sdev->cm_id)) { 3144 pr_info("ib_create_cm_id() failed: %ld\n", 3145 PTR_ERR(sdev->cm_id)); 3146 ret = PTR_ERR(sdev->cm_id); 3147 sdev->cm_id = NULL; 3148 if (!rdma_cm_id) 3149 goto err_ring; 3150 } 3151 3152 /* print out target login information */ 3153 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n", 3154 srpt_service_guid, srpt_service_guid, srpt_service_guid); 3155 3156 /* 3157 * We do not have a consistent service_id (ie. also id_ext of target_id) 3158 * to identify this target. We currently use the guid of the first HCA 3159 * in the system as service_id; therefore, the target_id will change 3160 * if this HCA is gone bad and replaced by different HCA 3161 */ 3162 ret = sdev->cm_id ? 3163 ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) : 3164 0; 3165 if (ret < 0) { 3166 pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret, 3167 sdev->cm_id->state); 3168 goto err_cm; 3169 } 3170 3171 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3172 srpt_event_handler); 3173 ib_register_event_handler(&sdev->event_handler); 3174 3175 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3176 sport = &sdev->port[i - 1]; 3177 INIT_LIST_HEAD(&sport->nexus_list); 3178 mutex_init(&sport->mutex); 3179 sport->sdev = sdev; 3180 sport->port = i; 3181 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3182 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3183 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3184 sport->port_attrib.use_srq = false; 3185 INIT_WORK(&sport->work, srpt_refresh_port_work); 3186 mutex_init(&sport->port_guid_id.mutex); 3187 INIT_LIST_HEAD(&sport->port_guid_id.tpg_list); 3188 mutex_init(&sport->port_gid_id.mutex); 3189 INIT_LIST_HEAD(&sport->port_gid_id.tpg_list); 3190 3191 ret = srpt_refresh_port(sport); 3192 if (ret) { 3193 pr_err("MAD registration failed for %s-%d.\n", 3194 dev_name(&sdev->device->dev), i); 3195 i--; 3196 goto err_port; 3197 } 3198 } 3199 3200 spin_lock(&srpt_dev_lock); 3201 list_add_tail(&sdev->list, &srpt_dev_list); 3202 spin_unlock(&srpt_dev_lock); 3203 3204 ib_set_client_data(device, &srpt_client, sdev); 3205 pr_debug("added %s.\n", dev_name(&device->dev)); 3206 return 0; 3207 3208 err_port: 3209 srpt_unregister_mad_agent(sdev, i); 3210 ib_unregister_event_handler(&sdev->event_handler); 3211 err_cm: 3212 if (sdev->cm_id) 3213 ib_destroy_cm_id(sdev->cm_id); 3214 err_ring: 3215 srpt_free_srq(sdev); 3216 ib_dealloc_pd(sdev->pd); 3217 free_dev: 3218 kfree(sdev); 3219 pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev)); 3220 return ret; 3221 } 3222 3223 /** 3224 * srpt_remove_one - InfiniBand device removal callback function 3225 * @device: Describes a HCA. 3226 * @client_data: The value passed as the third argument to ib_set_client_data(). 3227 */ 3228 static void srpt_remove_one(struct ib_device *device, void *client_data) 3229 { 3230 struct srpt_device *sdev = client_data; 3231 int i; 3232 3233 srpt_unregister_mad_agent(sdev, sdev->device->phys_port_cnt); 3234 3235 ib_unregister_event_handler(&sdev->event_handler); 3236 3237 /* Cancel any work queued by the just unregistered IB event handler. */ 3238 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3239 cancel_work_sync(&sdev->port[i].work); 3240 3241 if (sdev->cm_id) 3242 ib_destroy_cm_id(sdev->cm_id); 3243 3244 ib_set_client_data(device, &srpt_client, NULL); 3245 3246 /* 3247 * Unregistering a target must happen after destroying sdev->cm_id 3248 * such that no new SRP_LOGIN_REQ information units can arrive while 3249 * destroying the target. 3250 */ 3251 spin_lock(&srpt_dev_lock); 3252 list_del(&sdev->list); 3253 spin_unlock(&srpt_dev_lock); 3254 3255 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3256 srpt_release_sport(&sdev->port[i]); 3257 3258 srpt_free_srq(sdev); 3259 3260 ib_dealloc_pd(sdev->pd); 3261 3262 kfree(sdev); 3263 } 3264 3265 static struct ib_client srpt_client = { 3266 .name = DRV_NAME, 3267 .add = srpt_add_one, 3268 .remove = srpt_remove_one 3269 }; 3270 3271 static int srpt_check_true(struct se_portal_group *se_tpg) 3272 { 3273 return 1; 3274 } 3275 3276 static int srpt_check_false(struct se_portal_group *se_tpg) 3277 { 3278 return 0; 3279 } 3280 3281 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg) 3282 { 3283 return tpg->se_tpg_wwn->priv; 3284 } 3285 3286 static struct srpt_port_id *srpt_wwn_to_sport_id(struct se_wwn *wwn) 3287 { 3288 struct srpt_port *sport = wwn->priv; 3289 3290 if (wwn == &sport->port_guid_id.wwn) 3291 return &sport->port_guid_id; 3292 if (wwn == &sport->port_gid_id.wwn) 3293 return &sport->port_gid_id; 3294 WARN_ON_ONCE(true); 3295 return NULL; 3296 } 3297 3298 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3299 { 3300 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg); 3301 3302 return stpg->sport_id->name; 3303 } 3304 3305 static u16 srpt_get_tag(struct se_portal_group *tpg) 3306 { 3307 return 1; 3308 } 3309 3310 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3311 { 3312 return 1; 3313 } 3314 3315 static void srpt_release_cmd(struct se_cmd *se_cmd) 3316 { 3317 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3318 struct srpt_send_ioctx, cmd); 3319 struct srpt_rdma_ch *ch = ioctx->ch; 3320 struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx; 3321 3322 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE && 3323 !(ioctx->cmd.transport_state & CMD_T_ABORTED)); 3324 3325 if (recv_ioctx) { 3326 WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list)); 3327 ioctx->recv_ioctx = NULL; 3328 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx); 3329 } 3330 3331 if (ioctx->n_rw_ctx) { 3332 srpt_free_rw_ctxs(ch, ioctx); 3333 ioctx->n_rw_ctx = 0; 3334 } 3335 3336 target_free_tag(se_cmd->se_sess, se_cmd); 3337 } 3338 3339 /** 3340 * srpt_close_session - forcibly close a session 3341 * @se_sess: SCSI target session. 3342 * 3343 * Callback function invoked by the TCM core to clean up sessions associated 3344 * with a node ACL when the user invokes 3345 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3346 */ 3347 static void srpt_close_session(struct se_session *se_sess) 3348 { 3349 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 3350 3351 srpt_disconnect_ch_sync(ch); 3352 } 3353 3354 /** 3355 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB) 3356 * @se_sess: SCSI target session. 3357 * 3358 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3359 * This object represents an arbitrary integer used to uniquely identify a 3360 * particular attached remote initiator port to a particular SCSI target port 3361 * within a particular SCSI target device within a particular SCSI instance. 3362 */ 3363 static u32 srpt_sess_get_index(struct se_session *se_sess) 3364 { 3365 return 0; 3366 } 3367 3368 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3369 { 3370 } 3371 3372 /* Note: only used from inside debug printk's by the TCM core. */ 3373 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3374 { 3375 struct srpt_send_ioctx *ioctx; 3376 3377 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3378 return ioctx->state; 3379 } 3380 3381 static int srpt_parse_guid(u64 *guid, const char *name) 3382 { 3383 u16 w[4]; 3384 int ret = -EINVAL; 3385 3386 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4) 3387 goto out; 3388 *guid = get_unaligned_be64(w); 3389 ret = 0; 3390 out: 3391 return ret; 3392 } 3393 3394 /** 3395 * srpt_parse_i_port_id - parse an initiator port ID 3396 * @name: ASCII representation of a 128-bit initiator port ID. 3397 * @i_port_id: Binary 128-bit port ID. 3398 */ 3399 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3400 { 3401 const char *p; 3402 unsigned len, count, leading_zero_bytes; 3403 int ret; 3404 3405 p = name; 3406 if (strncasecmp(p, "0x", 2) == 0) 3407 p += 2; 3408 ret = -EINVAL; 3409 len = strlen(p); 3410 if (len % 2) 3411 goto out; 3412 count = min(len / 2, 16U); 3413 leading_zero_bytes = 16 - count; 3414 memset(i_port_id, 0, leading_zero_bytes); 3415 ret = hex2bin(i_port_id + leading_zero_bytes, p, count); 3416 3417 out: 3418 return ret; 3419 } 3420 3421 /* 3422 * configfs callback function invoked for mkdir 3423 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3424 * 3425 * i_port_id must be an initiator port GUID, GID or IP address. See also the 3426 * target_alloc_session() calls in this driver. Examples of valid initiator 3427 * port IDs: 3428 * 0x0000000000000000505400fffe4a0b7b 3429 * 0000000000000000505400fffe4a0b7b 3430 * 5054:00ff:fe4a:0b7b 3431 * 192.168.122.76 3432 */ 3433 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) 3434 { 3435 struct sockaddr_storage sa; 3436 u64 guid; 3437 u8 i_port_id[16]; 3438 int ret; 3439 3440 ret = srpt_parse_guid(&guid, name); 3441 if (ret < 0) 3442 ret = srpt_parse_i_port_id(i_port_id, name); 3443 if (ret < 0) 3444 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL, 3445 &sa); 3446 if (ret < 0) 3447 pr_err("invalid initiator port ID %s\n", name); 3448 return ret; 3449 } 3450 3451 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, 3452 char *page) 3453 { 3454 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3455 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3456 3457 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3458 } 3459 3460 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, 3461 const char *page, size_t count) 3462 { 3463 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3464 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3465 unsigned long val; 3466 int ret; 3467 3468 ret = kstrtoul(page, 0, &val); 3469 if (ret < 0) { 3470 pr_err("kstrtoul() failed with ret: %d\n", ret); 3471 return -EINVAL; 3472 } 3473 if (val > MAX_SRPT_RDMA_SIZE) { 3474 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3475 MAX_SRPT_RDMA_SIZE); 3476 return -EINVAL; 3477 } 3478 if (val < DEFAULT_MAX_RDMA_SIZE) { 3479 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3480 val, DEFAULT_MAX_RDMA_SIZE); 3481 return -EINVAL; 3482 } 3483 sport->port_attrib.srp_max_rdma_size = val; 3484 3485 return count; 3486 } 3487 3488 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, 3489 char *page) 3490 { 3491 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3492 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3493 3494 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3495 } 3496 3497 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, 3498 const char *page, size_t count) 3499 { 3500 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3501 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3502 unsigned long val; 3503 int ret; 3504 3505 ret = kstrtoul(page, 0, &val); 3506 if (ret < 0) { 3507 pr_err("kstrtoul() failed with ret: %d\n", ret); 3508 return -EINVAL; 3509 } 3510 if (val > MAX_SRPT_RSP_SIZE) { 3511 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3512 MAX_SRPT_RSP_SIZE); 3513 return -EINVAL; 3514 } 3515 if (val < MIN_MAX_RSP_SIZE) { 3516 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3517 MIN_MAX_RSP_SIZE); 3518 return -EINVAL; 3519 } 3520 sport->port_attrib.srp_max_rsp_size = val; 3521 3522 return count; 3523 } 3524 3525 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, 3526 char *page) 3527 { 3528 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3529 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3530 3531 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_sq_size); 3532 } 3533 3534 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, 3535 const char *page, size_t count) 3536 { 3537 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3538 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3539 unsigned long val; 3540 int ret; 3541 3542 ret = kstrtoul(page, 0, &val); 3543 if (ret < 0) { 3544 pr_err("kstrtoul() failed with ret: %d\n", ret); 3545 return -EINVAL; 3546 } 3547 if (val > MAX_SRPT_SRQ_SIZE) { 3548 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3549 MAX_SRPT_SRQ_SIZE); 3550 return -EINVAL; 3551 } 3552 if (val < MIN_SRPT_SRQ_SIZE) { 3553 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3554 MIN_SRPT_SRQ_SIZE); 3555 return -EINVAL; 3556 } 3557 sport->port_attrib.srp_sq_size = val; 3558 3559 return count; 3560 } 3561 3562 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item, 3563 char *page) 3564 { 3565 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3566 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3567 3568 return sysfs_emit(page, "%d\n", sport->port_attrib.use_srq); 3569 } 3570 3571 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item, 3572 const char *page, size_t count) 3573 { 3574 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3575 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3576 struct srpt_device *sdev = sport->sdev; 3577 unsigned long val; 3578 bool enabled; 3579 int ret; 3580 3581 ret = kstrtoul(page, 0, &val); 3582 if (ret < 0) 3583 return ret; 3584 if (val != !!val) 3585 return -EINVAL; 3586 3587 ret = mutex_lock_interruptible(&sdev->sdev_mutex); 3588 if (ret < 0) 3589 return ret; 3590 ret = mutex_lock_interruptible(&sport->mutex); 3591 if (ret < 0) 3592 goto unlock_sdev; 3593 enabled = sport->enabled; 3594 /* Log out all initiator systems before changing 'use_srq'. */ 3595 srpt_set_enabled(sport, false); 3596 sport->port_attrib.use_srq = val; 3597 srpt_use_srq(sdev, sport->port_attrib.use_srq); 3598 srpt_set_enabled(sport, enabled); 3599 ret = count; 3600 mutex_unlock(&sport->mutex); 3601 unlock_sdev: 3602 mutex_unlock(&sdev->sdev_mutex); 3603 3604 return ret; 3605 } 3606 3607 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size); 3608 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size); 3609 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size); 3610 CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq); 3611 3612 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3613 &srpt_tpg_attrib_attr_srp_max_rdma_size, 3614 &srpt_tpg_attrib_attr_srp_max_rsp_size, 3615 &srpt_tpg_attrib_attr_srp_sq_size, 3616 &srpt_tpg_attrib_attr_use_srq, 3617 NULL, 3618 }; 3619 3620 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr) 3621 { 3622 struct rdma_cm_id *rdma_cm_id; 3623 int ret; 3624 3625 rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler, 3626 NULL, RDMA_PS_TCP, IB_QPT_RC); 3627 if (IS_ERR(rdma_cm_id)) { 3628 pr_err("RDMA/CM ID creation failed: %ld\n", 3629 PTR_ERR(rdma_cm_id)); 3630 goto out; 3631 } 3632 3633 ret = rdma_bind_addr(rdma_cm_id, listen_addr); 3634 if (ret) { 3635 char addr_str[64]; 3636 3637 snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr); 3638 pr_err("Binding RDMA/CM ID to address %s failed: %d\n", 3639 addr_str, ret); 3640 rdma_destroy_id(rdma_cm_id); 3641 rdma_cm_id = ERR_PTR(ret); 3642 goto out; 3643 } 3644 3645 ret = rdma_listen(rdma_cm_id, 128); 3646 if (ret) { 3647 pr_err("rdma_listen() failed: %d\n", ret); 3648 rdma_destroy_id(rdma_cm_id); 3649 rdma_cm_id = ERR_PTR(ret); 3650 } 3651 3652 out: 3653 return rdma_cm_id; 3654 } 3655 3656 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page) 3657 { 3658 return sysfs_emit(page, "%d\n", rdma_cm_port); 3659 } 3660 3661 static ssize_t srpt_rdma_cm_port_store(struct config_item *item, 3662 const char *page, size_t count) 3663 { 3664 struct sockaddr_in addr4 = { .sin_family = AF_INET }; 3665 struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 }; 3666 struct rdma_cm_id *new_id = NULL; 3667 u16 val; 3668 int ret; 3669 3670 ret = kstrtou16(page, 0, &val); 3671 if (ret < 0) 3672 return ret; 3673 ret = count; 3674 if (rdma_cm_port == val) 3675 goto out; 3676 3677 if (val) { 3678 addr6.sin6_port = cpu_to_be16(val); 3679 new_id = srpt_create_rdma_id((struct sockaddr *)&addr6); 3680 if (IS_ERR(new_id)) { 3681 addr4.sin_port = cpu_to_be16(val); 3682 new_id = srpt_create_rdma_id((struct sockaddr *)&addr4); 3683 if (IS_ERR(new_id)) { 3684 ret = PTR_ERR(new_id); 3685 goto out; 3686 } 3687 } 3688 } 3689 3690 mutex_lock(&rdma_cm_mutex); 3691 rdma_cm_port = val; 3692 swap(rdma_cm_id, new_id); 3693 mutex_unlock(&rdma_cm_mutex); 3694 3695 if (new_id) 3696 rdma_destroy_id(new_id); 3697 ret = count; 3698 out: 3699 return ret; 3700 } 3701 3702 CONFIGFS_ATTR(srpt_, rdma_cm_port); 3703 3704 static struct configfs_attribute *srpt_da_attrs[] = { 3705 &srpt_attr_rdma_cm_port, 3706 NULL, 3707 }; 3708 3709 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page) 3710 { 3711 struct se_portal_group *se_tpg = to_tpg(item); 3712 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3713 3714 return sysfs_emit(page, "%d\n", sport->enabled); 3715 } 3716 3717 static ssize_t srpt_tpg_enable_store(struct config_item *item, 3718 const char *page, size_t count) 3719 { 3720 struct se_portal_group *se_tpg = to_tpg(item); 3721 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3722 unsigned long tmp; 3723 int ret; 3724 3725 ret = kstrtoul(page, 0, &tmp); 3726 if (ret < 0) { 3727 pr_err("Unable to extract srpt_tpg_store_enable\n"); 3728 return -EINVAL; 3729 } 3730 3731 if ((tmp != 0) && (tmp != 1)) { 3732 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3733 return -EINVAL; 3734 } 3735 3736 mutex_lock(&sport->mutex); 3737 srpt_set_enabled(sport, tmp); 3738 mutex_unlock(&sport->mutex); 3739 3740 return count; 3741 } 3742 3743 CONFIGFS_ATTR(srpt_tpg_, enable); 3744 3745 static struct configfs_attribute *srpt_tpg_attrs[] = { 3746 &srpt_tpg_attr_enable, 3747 NULL, 3748 }; 3749 3750 /** 3751 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg 3752 * @wwn: Corresponds to $driver/$port. 3753 * @name: $tpg. 3754 */ 3755 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3756 const char *name) 3757 { 3758 struct srpt_port_id *sport_id = srpt_wwn_to_sport_id(wwn); 3759 struct srpt_tpg *stpg; 3760 int res = -ENOMEM; 3761 3762 stpg = kzalloc(sizeof(*stpg), GFP_KERNEL); 3763 if (!stpg) 3764 return ERR_PTR(res); 3765 stpg->sport_id = sport_id; 3766 res = core_tpg_register(wwn, &stpg->tpg, SCSI_PROTOCOL_SRP); 3767 if (res) { 3768 kfree(stpg); 3769 return ERR_PTR(res); 3770 } 3771 3772 mutex_lock(&sport_id->mutex); 3773 list_add_tail(&stpg->entry, &sport_id->tpg_list); 3774 mutex_unlock(&sport_id->mutex); 3775 3776 return &stpg->tpg; 3777 } 3778 3779 /** 3780 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg 3781 * @tpg: Target portal group to deregister. 3782 */ 3783 static void srpt_drop_tpg(struct se_portal_group *tpg) 3784 { 3785 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg); 3786 struct srpt_port_id *sport_id = stpg->sport_id; 3787 struct srpt_port *sport = srpt_tpg_to_sport(tpg); 3788 3789 mutex_lock(&sport_id->mutex); 3790 list_del(&stpg->entry); 3791 mutex_unlock(&sport_id->mutex); 3792 3793 sport->enabled = false; 3794 core_tpg_deregister(tpg); 3795 kfree(stpg); 3796 } 3797 3798 /** 3799 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port 3800 * @tf: Not used. 3801 * @group: Not used. 3802 * @name: $port. 3803 */ 3804 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3805 struct config_group *group, 3806 const char *name) 3807 { 3808 return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL); 3809 } 3810 3811 /** 3812 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port 3813 * @wwn: $port. 3814 */ 3815 static void srpt_drop_tport(struct se_wwn *wwn) 3816 { 3817 } 3818 3819 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf) 3820 { 3821 return sysfs_emit(buf, "\n"); 3822 } 3823 3824 CONFIGFS_ATTR_RO(srpt_wwn_, version); 3825 3826 static struct configfs_attribute *srpt_wwn_attrs[] = { 3827 &srpt_wwn_attr_version, 3828 NULL, 3829 }; 3830 3831 static const struct target_core_fabric_ops srpt_template = { 3832 .module = THIS_MODULE, 3833 .fabric_name = "srpt", 3834 .tpg_get_wwn = srpt_get_fabric_wwn, 3835 .tpg_get_tag = srpt_get_tag, 3836 .tpg_check_demo_mode = srpt_check_false, 3837 .tpg_check_demo_mode_cache = srpt_check_true, 3838 .tpg_check_demo_mode_write_protect = srpt_check_true, 3839 .tpg_check_prod_mode_write_protect = srpt_check_false, 3840 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3841 .release_cmd = srpt_release_cmd, 3842 .check_stop_free = srpt_check_stop_free, 3843 .close_session = srpt_close_session, 3844 .sess_get_index = srpt_sess_get_index, 3845 .sess_get_initiator_sid = NULL, 3846 .write_pending = srpt_write_pending, 3847 .set_default_node_attributes = srpt_set_default_node_attrs, 3848 .get_cmd_state = srpt_get_tcm_cmd_state, 3849 .queue_data_in = srpt_queue_data_in, 3850 .queue_status = srpt_queue_status, 3851 .queue_tm_rsp = srpt_queue_tm_rsp, 3852 .aborted_task = srpt_aborted_task, 3853 /* 3854 * Setup function pointers for generic logic in 3855 * target_core_fabric_configfs.c 3856 */ 3857 .fabric_make_wwn = srpt_make_tport, 3858 .fabric_drop_wwn = srpt_drop_tport, 3859 .fabric_make_tpg = srpt_make_tpg, 3860 .fabric_drop_tpg = srpt_drop_tpg, 3861 .fabric_init_nodeacl = srpt_init_nodeacl, 3862 3863 .tfc_discovery_attrs = srpt_da_attrs, 3864 .tfc_wwn_attrs = srpt_wwn_attrs, 3865 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3866 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3867 }; 3868 3869 /** 3870 * srpt_init_module - kernel module initialization 3871 * 3872 * Note: Since ib_register_client() registers callback functions, and since at 3873 * least one of these callback functions (srpt_add_one()) calls target core 3874 * functions, this driver must be registered with the target core before 3875 * ib_register_client() is called. 3876 */ 3877 static int __init srpt_init_module(void) 3878 { 3879 int ret; 3880 3881 ret = -EINVAL; 3882 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3883 pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n", 3884 srp_max_req_size, MIN_MAX_REQ_SIZE); 3885 goto out; 3886 } 3887 3888 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3889 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3890 pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n", 3891 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3892 goto out; 3893 } 3894 3895 ret = target_register_template(&srpt_template); 3896 if (ret) 3897 goto out; 3898 3899 ret = ib_register_client(&srpt_client); 3900 if (ret) { 3901 pr_err("couldn't register IB client\n"); 3902 goto out_unregister_target; 3903 } 3904 3905 return 0; 3906 3907 out_unregister_target: 3908 target_unregister_template(&srpt_template); 3909 out: 3910 return ret; 3911 } 3912 3913 static void __exit srpt_cleanup_module(void) 3914 { 3915 if (rdma_cm_id) 3916 rdma_destroy_id(rdma_cm_id); 3917 ib_unregister_client(&srpt_client); 3918 target_unregister_template(&srpt_template); 3919 } 3920 3921 module_init(srpt_init_module); 3922 module_exit(srpt_cleanup_module); 3923