1 /*
2  * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3  * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46 #include <scsi/scsi_proto.h>
47 #include <scsi/scsi_tcq.h>
48 #include <target/target_core_base.h>
49 #include <target/target_core_fabric.h>
50 #include "ib_srpt.h"
51 
52 /* Name of this kernel module. */
53 #define DRV_NAME		"ib_srpt"
54 
55 #define SRPT_ID_STRING	"Linux SRP target"
56 
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
59 
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("SCSI RDMA Protocol target driver");
62 MODULE_LICENSE("Dual BSD/GPL");
63 
64 /*
65  * Global Variables
66  */
67 
68 static u64 srpt_service_guid;
69 static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
70 static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
71 
72 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
73 module_param(srp_max_req_size, int, 0444);
74 MODULE_PARM_DESC(srp_max_req_size,
75 		 "Maximum size of SRP request messages in bytes.");
76 
77 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
78 module_param(srpt_srq_size, int, 0444);
79 MODULE_PARM_DESC(srpt_srq_size,
80 		 "Shared receive queue (SRQ) size.");
81 
82 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
83 {
84 	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
85 }
86 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
87 		  0444);
88 MODULE_PARM_DESC(srpt_service_guid,
89 		 "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA.");
90 
91 static struct ib_client srpt_client;
92 /* Protects both rdma_cm_port and rdma_cm_id. */
93 static DEFINE_MUTEX(rdma_cm_mutex);
94 /* Port number RDMA/CM will bind to. */
95 static u16 rdma_cm_port;
96 static struct rdma_cm_id *rdma_cm_id;
97 static void srpt_release_cmd(struct se_cmd *se_cmd);
98 static void srpt_free_ch(struct kref *kref);
99 static int srpt_queue_status(struct se_cmd *cmd);
100 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
101 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
102 static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
103 
104 /*
105  * The only allowed channel state changes are those that change the channel
106  * state into a state with a higher numerical value. Hence the new > prev test.
107  */
108 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
109 {
110 	unsigned long flags;
111 	enum rdma_ch_state prev;
112 	bool changed = false;
113 
114 	spin_lock_irqsave(&ch->spinlock, flags);
115 	prev = ch->state;
116 	if (new > prev) {
117 		ch->state = new;
118 		changed = true;
119 	}
120 	spin_unlock_irqrestore(&ch->spinlock, flags);
121 
122 	return changed;
123 }
124 
125 /**
126  * srpt_event_handler - asynchronous IB event callback function
127  * @handler: IB event handler registered by ib_register_event_handler().
128  * @event: Description of the event that occurred.
129  *
130  * Callback function called by the InfiniBand core when an asynchronous IB
131  * event occurs. This callback may occur in interrupt context. See also
132  * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
133  * Architecture Specification.
134  */
135 static void srpt_event_handler(struct ib_event_handler *handler,
136 			       struct ib_event *event)
137 {
138 	struct srpt_device *sdev;
139 	struct srpt_port *sport;
140 	u8 port_num;
141 
142 	sdev = ib_get_client_data(event->device, &srpt_client);
143 	if (!sdev || sdev->device != event->device)
144 		return;
145 
146 	pr_debug("ASYNC event= %d on device= %s\n", event->event,
147 		 dev_name(&sdev->device->dev));
148 
149 	switch (event->event) {
150 	case IB_EVENT_PORT_ERR:
151 		port_num = event->element.port_num - 1;
152 		if (port_num < sdev->device->phys_port_cnt) {
153 			sport = &sdev->port[port_num];
154 			sport->lid = 0;
155 			sport->sm_lid = 0;
156 		} else {
157 			WARN(true, "event %d: port_num %d out of range 1..%d\n",
158 			     event->event, port_num + 1,
159 			     sdev->device->phys_port_cnt);
160 		}
161 		break;
162 	case IB_EVENT_PORT_ACTIVE:
163 	case IB_EVENT_LID_CHANGE:
164 	case IB_EVENT_PKEY_CHANGE:
165 	case IB_EVENT_SM_CHANGE:
166 	case IB_EVENT_CLIENT_REREGISTER:
167 	case IB_EVENT_GID_CHANGE:
168 		/* Refresh port data asynchronously. */
169 		port_num = event->element.port_num - 1;
170 		if (port_num < sdev->device->phys_port_cnt) {
171 			sport = &sdev->port[port_num];
172 			if (!sport->lid && !sport->sm_lid)
173 				schedule_work(&sport->work);
174 		} else {
175 			WARN(true, "event %d: port_num %d out of range 1..%d\n",
176 			     event->event, port_num + 1,
177 			     sdev->device->phys_port_cnt);
178 		}
179 		break;
180 	default:
181 		pr_err("received unrecognized IB event %d\n", event->event);
182 		break;
183 	}
184 }
185 
186 /**
187  * srpt_srq_event - SRQ event callback function
188  * @event: Description of the event that occurred.
189  * @ctx: Context pointer specified at SRQ creation time.
190  */
191 static void srpt_srq_event(struct ib_event *event, void *ctx)
192 {
193 	pr_debug("SRQ event %d\n", event->event);
194 }
195 
196 static const char *get_ch_state_name(enum rdma_ch_state s)
197 {
198 	switch (s) {
199 	case CH_CONNECTING:
200 		return "connecting";
201 	case CH_LIVE:
202 		return "live";
203 	case CH_DISCONNECTING:
204 		return "disconnecting";
205 	case CH_DRAINING:
206 		return "draining";
207 	case CH_DISCONNECTED:
208 		return "disconnected";
209 	}
210 	return "???";
211 }
212 
213 /**
214  * srpt_qp_event - QP event callback function
215  * @event: Description of the event that occurred.
216  * @ch: SRPT RDMA channel.
217  */
218 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
219 {
220 	pr_debug("QP event %d on ch=%p sess_name=%s state=%d\n",
221 		 event->event, ch, ch->sess_name, ch->state);
222 
223 	switch (event->event) {
224 	case IB_EVENT_COMM_EST:
225 		if (ch->using_rdma_cm)
226 			rdma_notify(ch->rdma_cm.cm_id, event->event);
227 		else
228 			ib_cm_notify(ch->ib_cm.cm_id, event->event);
229 		break;
230 	case IB_EVENT_QP_LAST_WQE_REACHED:
231 		pr_debug("%s-%d, state %s: received Last WQE event.\n",
232 			 ch->sess_name, ch->qp->qp_num,
233 			 get_ch_state_name(ch->state));
234 		break;
235 	default:
236 		pr_err("received unrecognized IB QP event %d\n", event->event);
237 		break;
238 	}
239 }
240 
241 /**
242  * srpt_set_ioc - initialize a IOUnitInfo structure
243  * @c_list: controller list.
244  * @slot: one-based slot number.
245  * @value: four-bit value.
246  *
247  * Copies the lowest four bits of value in element slot of the array of four
248  * bit elements called c_list (controller list). The index slot is one-based.
249  */
250 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
251 {
252 	u16 id;
253 	u8 tmp;
254 
255 	id = (slot - 1) / 2;
256 	if (slot & 0x1) {
257 		tmp = c_list[id] & 0xf;
258 		c_list[id] = (value << 4) | tmp;
259 	} else {
260 		tmp = c_list[id] & 0xf0;
261 		c_list[id] = (value & 0xf) | tmp;
262 	}
263 }
264 
265 /**
266  * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
267  * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
268  *
269  * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
270  * Specification.
271  */
272 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
273 {
274 	struct ib_class_port_info *cif;
275 
276 	cif = (struct ib_class_port_info *)mad->data;
277 	memset(cif, 0, sizeof(*cif));
278 	cif->base_version = 1;
279 	cif->class_version = 1;
280 
281 	ib_set_cpi_resp_time(cif, 20);
282 	mad->mad_hdr.status = 0;
283 }
284 
285 /**
286  * srpt_get_iou - write IOUnitInfo to a management datagram
287  * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
288  *
289  * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
290  * Specification. See also section B.7, table B.6 in the SRP r16a document.
291  */
292 static void srpt_get_iou(struct ib_dm_mad *mad)
293 {
294 	struct ib_dm_iou_info *ioui;
295 	u8 slot;
296 	int i;
297 
298 	ioui = (struct ib_dm_iou_info *)mad->data;
299 	ioui->change_id = cpu_to_be16(1);
300 	ioui->max_controllers = 16;
301 
302 	/* set present for slot 1 and empty for the rest */
303 	srpt_set_ioc(ioui->controller_list, 1, 1);
304 	for (i = 1, slot = 2; i < 16; i++, slot++)
305 		srpt_set_ioc(ioui->controller_list, slot, 0);
306 
307 	mad->mad_hdr.status = 0;
308 }
309 
310 /**
311  * srpt_get_ioc - write IOControllerprofile to a management datagram
312  * @sport: HCA port through which the MAD has been received.
313  * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
314  * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
315  *
316  * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
317  * Architecture Specification. See also section B.7, table B.7 in the SRP
318  * r16a document.
319  */
320 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
321 			 struct ib_dm_mad *mad)
322 {
323 	struct srpt_device *sdev = sport->sdev;
324 	struct ib_dm_ioc_profile *iocp;
325 	int send_queue_depth;
326 
327 	iocp = (struct ib_dm_ioc_profile *)mad->data;
328 
329 	if (!slot || slot > 16) {
330 		mad->mad_hdr.status
331 			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
332 		return;
333 	}
334 
335 	if (slot > 2) {
336 		mad->mad_hdr.status
337 			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
338 		return;
339 	}
340 
341 	if (sdev->use_srq)
342 		send_queue_depth = sdev->srq_size;
343 	else
344 		send_queue_depth = min(MAX_SRPT_RQ_SIZE,
345 				       sdev->device->attrs.max_qp_wr);
346 
347 	memset(iocp, 0, sizeof(*iocp));
348 	strcpy(iocp->id_string, SRPT_ID_STRING);
349 	iocp->guid = cpu_to_be64(srpt_service_guid);
350 	iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
351 	iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
352 	iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
353 	iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
354 	iocp->subsys_device_id = 0x0;
355 	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
356 	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
357 	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
358 	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
359 	iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
360 	iocp->rdma_read_depth = 4;
361 	iocp->send_size = cpu_to_be32(srp_max_req_size);
362 	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
363 					  1U << 24));
364 	iocp->num_svc_entries = 1;
365 	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
366 		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
367 
368 	mad->mad_hdr.status = 0;
369 }
370 
371 /**
372  * srpt_get_svc_entries - write ServiceEntries to a management datagram
373  * @ioc_guid: I/O controller GUID to use in reply.
374  * @slot: I/O controller number.
375  * @hi: End of the range of service entries to be specified in the reply.
376  * @lo: Start of the range of service entries to be specified in the reply..
377  * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
378  *
379  * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
380  * Specification. See also section B.7, table B.8 in the SRP r16a document.
381  */
382 static void srpt_get_svc_entries(u64 ioc_guid,
383 				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
384 {
385 	struct ib_dm_svc_entries *svc_entries;
386 
387 	WARN_ON(!ioc_guid);
388 
389 	if (!slot || slot > 16) {
390 		mad->mad_hdr.status
391 			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
392 		return;
393 	}
394 
395 	if (slot > 2 || lo > hi || hi > 1) {
396 		mad->mad_hdr.status
397 			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
398 		return;
399 	}
400 
401 	svc_entries = (struct ib_dm_svc_entries *)mad->data;
402 	memset(svc_entries, 0, sizeof(*svc_entries));
403 	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
404 	snprintf(svc_entries->service_entries[0].name,
405 		 sizeof(svc_entries->service_entries[0].name),
406 		 "%s%016llx",
407 		 SRP_SERVICE_NAME_PREFIX,
408 		 ioc_guid);
409 
410 	mad->mad_hdr.status = 0;
411 }
412 
413 /**
414  * srpt_mgmt_method_get - process a received management datagram
415  * @sp:      HCA port through which the MAD has been received.
416  * @rq_mad:  received MAD.
417  * @rsp_mad: response MAD.
418  */
419 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
420 				 struct ib_dm_mad *rsp_mad)
421 {
422 	u16 attr_id;
423 	u32 slot;
424 	u8 hi, lo;
425 
426 	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
427 	switch (attr_id) {
428 	case DM_ATTR_CLASS_PORT_INFO:
429 		srpt_get_class_port_info(rsp_mad);
430 		break;
431 	case DM_ATTR_IOU_INFO:
432 		srpt_get_iou(rsp_mad);
433 		break;
434 	case DM_ATTR_IOC_PROFILE:
435 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
436 		srpt_get_ioc(sp, slot, rsp_mad);
437 		break;
438 	case DM_ATTR_SVC_ENTRIES:
439 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
440 		hi = (u8) ((slot >> 8) & 0xff);
441 		lo = (u8) (slot & 0xff);
442 		slot = (u16) ((slot >> 16) & 0xffff);
443 		srpt_get_svc_entries(srpt_service_guid,
444 				     slot, hi, lo, rsp_mad);
445 		break;
446 	default:
447 		rsp_mad->mad_hdr.status =
448 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
449 		break;
450 	}
451 }
452 
453 /**
454  * srpt_mad_send_handler - MAD send completion callback
455  * @mad_agent: Return value of ib_register_mad_agent().
456  * @mad_wc: Work completion reporting that the MAD has been sent.
457  */
458 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
459 				  struct ib_mad_send_wc *mad_wc)
460 {
461 	rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE);
462 	ib_free_send_mad(mad_wc->send_buf);
463 }
464 
465 /**
466  * srpt_mad_recv_handler - MAD reception callback function
467  * @mad_agent: Return value of ib_register_mad_agent().
468  * @send_buf: Not used.
469  * @mad_wc: Work completion reporting that a MAD has been received.
470  */
471 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
472 				  struct ib_mad_send_buf *send_buf,
473 				  struct ib_mad_recv_wc *mad_wc)
474 {
475 	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
476 	struct ib_ah *ah;
477 	struct ib_mad_send_buf *rsp;
478 	struct ib_dm_mad *dm_mad;
479 
480 	if (!mad_wc || !mad_wc->recv_buf.mad)
481 		return;
482 
483 	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
484 				  mad_wc->recv_buf.grh, mad_agent->port_num);
485 	if (IS_ERR(ah))
486 		goto err;
487 
488 	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
489 
490 	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
491 				 mad_wc->wc->pkey_index, 0,
492 				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
493 				 GFP_KERNEL,
494 				 IB_MGMT_BASE_VERSION);
495 	if (IS_ERR(rsp))
496 		goto err_rsp;
497 
498 	rsp->ah = ah;
499 
500 	dm_mad = rsp->mad;
501 	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
502 	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
503 	dm_mad->mad_hdr.status = 0;
504 
505 	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
506 	case IB_MGMT_METHOD_GET:
507 		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
508 		break;
509 	case IB_MGMT_METHOD_SET:
510 		dm_mad->mad_hdr.status =
511 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
512 		break;
513 	default:
514 		dm_mad->mad_hdr.status =
515 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
516 		break;
517 	}
518 
519 	if (!ib_post_send_mad(rsp, NULL)) {
520 		ib_free_recv_mad(mad_wc);
521 		/* will destroy_ah & free_send_mad in send completion */
522 		return;
523 	}
524 
525 	ib_free_send_mad(rsp);
526 
527 err_rsp:
528 	rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE);
529 err:
530 	ib_free_recv_mad(mad_wc);
531 }
532 
533 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
534 {
535 	const __be16 *g = (const __be16 *)guid;
536 
537 	return snprintf(buf, size, "%04x:%04x:%04x:%04x",
538 			be16_to_cpu(g[0]), be16_to_cpu(g[1]),
539 			be16_to_cpu(g[2]), be16_to_cpu(g[3]));
540 }
541 
542 /**
543  * srpt_refresh_port - configure a HCA port
544  * @sport: SRPT HCA port.
545  *
546  * Enable InfiniBand management datagram processing, update the cached sm_lid,
547  * lid and gid values, and register a callback function for processing MADs
548  * on the specified port.
549  *
550  * Note: It is safe to call this function more than once for the same port.
551  */
552 static int srpt_refresh_port(struct srpt_port *sport)
553 {
554 	struct ib_mad_reg_req reg_req;
555 	struct ib_port_modify port_modify;
556 	struct ib_port_attr port_attr;
557 	int ret;
558 
559 	memset(&port_modify, 0, sizeof(port_modify));
560 	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
561 	port_modify.clr_port_cap_mask = 0;
562 
563 	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
564 	if (ret)
565 		goto err_mod_port;
566 
567 	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
568 	if (ret)
569 		goto err_query_port;
570 
571 	sport->sm_lid = port_attr.sm_lid;
572 	sport->lid = port_attr.lid;
573 
574 	ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
575 	if (ret)
576 		goto err_query_port;
577 
578 	sport->port_guid_wwn.priv = sport;
579 	srpt_format_guid(sport->port_guid, sizeof(sport->port_guid),
580 			 &sport->gid.global.interface_id);
581 	sport->port_gid_wwn.priv = sport;
582 	snprintf(sport->port_gid, sizeof(sport->port_gid),
583 		 "0x%016llx%016llx",
584 		 be64_to_cpu(sport->gid.global.subnet_prefix),
585 		 be64_to_cpu(sport->gid.global.interface_id));
586 
587 	if (!sport->mad_agent) {
588 		memset(&reg_req, 0, sizeof(reg_req));
589 		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
590 		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
591 		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
592 		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
593 
594 		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
595 							 sport->port,
596 							 IB_QPT_GSI,
597 							 &reg_req, 0,
598 							 srpt_mad_send_handler,
599 							 srpt_mad_recv_handler,
600 							 sport, 0);
601 		if (IS_ERR(sport->mad_agent)) {
602 			ret = PTR_ERR(sport->mad_agent);
603 			sport->mad_agent = NULL;
604 			goto err_query_port;
605 		}
606 	}
607 
608 	return 0;
609 
610 err_query_port:
611 
612 	port_modify.set_port_cap_mask = 0;
613 	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
614 	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
615 
616 err_mod_port:
617 
618 	return ret;
619 }
620 
621 /**
622  * srpt_unregister_mad_agent - unregister MAD callback functions
623  * @sdev: SRPT HCA pointer.
624  *
625  * Note: It is safe to call this function more than once for the same device.
626  */
627 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
628 {
629 	struct ib_port_modify port_modify = {
630 		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
631 	};
632 	struct srpt_port *sport;
633 	int i;
634 
635 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
636 		sport = &sdev->port[i - 1];
637 		WARN_ON(sport->port != i);
638 		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
639 			pr_err("disabling MAD processing failed.\n");
640 		if (sport->mad_agent) {
641 			ib_unregister_mad_agent(sport->mad_agent);
642 			sport->mad_agent = NULL;
643 		}
644 	}
645 }
646 
647 /**
648  * srpt_alloc_ioctx - allocate a SRPT I/O context structure
649  * @sdev: SRPT HCA pointer.
650  * @ioctx_size: I/O context size.
651  * @buf_cache: I/O buffer cache.
652  * @dir: DMA data direction.
653  */
654 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
655 					   int ioctx_size,
656 					   struct kmem_cache *buf_cache,
657 					   enum dma_data_direction dir)
658 {
659 	struct srpt_ioctx *ioctx;
660 
661 	ioctx = kzalloc(ioctx_size, GFP_KERNEL);
662 	if (!ioctx)
663 		goto err;
664 
665 	ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL);
666 	if (!ioctx->buf)
667 		goto err_free_ioctx;
668 
669 	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf,
670 				       kmem_cache_size(buf_cache), dir);
671 	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
672 		goto err_free_buf;
673 
674 	return ioctx;
675 
676 err_free_buf:
677 	kmem_cache_free(buf_cache, ioctx->buf);
678 err_free_ioctx:
679 	kfree(ioctx);
680 err:
681 	return NULL;
682 }
683 
684 /**
685  * srpt_free_ioctx - free a SRPT I/O context structure
686  * @sdev: SRPT HCA pointer.
687  * @ioctx: I/O context pointer.
688  * @buf_cache: I/O buffer cache.
689  * @dir: DMA data direction.
690  */
691 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
692 			    struct kmem_cache *buf_cache,
693 			    enum dma_data_direction dir)
694 {
695 	if (!ioctx)
696 		return;
697 
698 	ib_dma_unmap_single(sdev->device, ioctx->dma,
699 			    kmem_cache_size(buf_cache), dir);
700 	kmem_cache_free(buf_cache, ioctx->buf);
701 	kfree(ioctx);
702 }
703 
704 /**
705  * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
706  * @sdev:       Device to allocate the I/O context ring for.
707  * @ring_size:  Number of elements in the I/O context ring.
708  * @ioctx_size: I/O context size.
709  * @buf_cache:  I/O buffer cache.
710  * @alignment_offset: Offset in each ring buffer at which the SRP information
711  *		unit starts.
712  * @dir:        DMA data direction.
713  */
714 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
715 				int ring_size, int ioctx_size,
716 				struct kmem_cache *buf_cache,
717 				int alignment_offset,
718 				enum dma_data_direction dir)
719 {
720 	struct srpt_ioctx **ring;
721 	int i;
722 
723 	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) &&
724 		ioctx_size != sizeof(struct srpt_send_ioctx));
725 
726 	ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL);
727 	if (!ring)
728 		goto out;
729 	for (i = 0; i < ring_size; ++i) {
730 		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir);
731 		if (!ring[i])
732 			goto err;
733 		ring[i]->index = i;
734 		ring[i]->offset = alignment_offset;
735 	}
736 	goto out;
737 
738 err:
739 	while (--i >= 0)
740 		srpt_free_ioctx(sdev, ring[i], buf_cache, dir);
741 	kvfree(ring);
742 	ring = NULL;
743 out:
744 	return ring;
745 }
746 
747 /**
748  * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
749  * @ioctx_ring: I/O context ring to be freed.
750  * @sdev: SRPT HCA pointer.
751  * @ring_size: Number of ring elements.
752  * @buf_cache: I/O buffer cache.
753  * @dir: DMA data direction.
754  */
755 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
756 				 struct srpt_device *sdev, int ring_size,
757 				 struct kmem_cache *buf_cache,
758 				 enum dma_data_direction dir)
759 {
760 	int i;
761 
762 	if (!ioctx_ring)
763 		return;
764 
765 	for (i = 0; i < ring_size; ++i)
766 		srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir);
767 	kvfree(ioctx_ring);
768 }
769 
770 /**
771  * srpt_set_cmd_state - set the state of a SCSI command
772  * @ioctx: Send I/O context.
773  * @new: New I/O context state.
774  *
775  * Does not modify the state of aborted commands. Returns the previous command
776  * state.
777  */
778 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
779 						  enum srpt_command_state new)
780 {
781 	enum srpt_command_state previous;
782 
783 	previous = ioctx->state;
784 	if (previous != SRPT_STATE_DONE)
785 		ioctx->state = new;
786 
787 	return previous;
788 }
789 
790 /**
791  * srpt_test_and_set_cmd_state - test and set the state of a command
792  * @ioctx: Send I/O context.
793  * @old: Current I/O context state.
794  * @new: New I/O context state.
795  *
796  * Returns true if and only if the previous command state was equal to 'old'.
797  */
798 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
799 					enum srpt_command_state old,
800 					enum srpt_command_state new)
801 {
802 	enum srpt_command_state previous;
803 
804 	WARN_ON(!ioctx);
805 	WARN_ON(old == SRPT_STATE_DONE);
806 	WARN_ON(new == SRPT_STATE_NEW);
807 
808 	previous = ioctx->state;
809 	if (previous == old)
810 		ioctx->state = new;
811 
812 	return previous == old;
813 }
814 
815 /**
816  * srpt_post_recv - post an IB receive request
817  * @sdev: SRPT HCA pointer.
818  * @ch: SRPT RDMA channel.
819  * @ioctx: Receive I/O context pointer.
820  */
821 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
822 			  struct srpt_recv_ioctx *ioctx)
823 {
824 	struct ib_sge list;
825 	struct ib_recv_wr wr;
826 
827 	BUG_ON(!sdev);
828 	list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset;
829 	list.length = srp_max_req_size;
830 	list.lkey = sdev->lkey;
831 
832 	ioctx->ioctx.cqe.done = srpt_recv_done;
833 	wr.wr_cqe = &ioctx->ioctx.cqe;
834 	wr.next = NULL;
835 	wr.sg_list = &list;
836 	wr.num_sge = 1;
837 
838 	if (sdev->use_srq)
839 		return ib_post_srq_recv(sdev->srq, &wr, NULL);
840 	else
841 		return ib_post_recv(ch->qp, &wr, NULL);
842 }
843 
844 /**
845  * srpt_zerolength_write - perform a zero-length RDMA write
846  * @ch: SRPT RDMA channel.
847  *
848  * A quote from the InfiniBand specification: C9-88: For an HCA responder
849  * using Reliable Connection service, for each zero-length RDMA READ or WRITE
850  * request, the R_Key shall not be validated, even if the request includes
851  * Immediate data.
852  */
853 static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
854 {
855 	struct ib_rdma_wr wr = {
856 		.wr = {
857 			.next		= NULL,
858 			{ .wr_cqe	= &ch->zw_cqe, },
859 			.opcode		= IB_WR_RDMA_WRITE,
860 			.send_flags	= IB_SEND_SIGNALED,
861 		}
862 	};
863 
864 	pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
865 		 ch->qp->qp_num);
866 
867 	return ib_post_send(ch->qp, &wr.wr, NULL);
868 }
869 
870 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
871 {
872 	struct srpt_rdma_ch *ch = cq->cq_context;
873 
874 	pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
875 		 wc->status);
876 
877 	if (wc->status == IB_WC_SUCCESS) {
878 		srpt_process_wait_list(ch);
879 	} else {
880 		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
881 			schedule_work(&ch->release_work);
882 		else
883 			pr_debug("%s-%d: already disconnected.\n",
884 				 ch->sess_name, ch->qp->qp_num);
885 	}
886 }
887 
888 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
889 		struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
890 		unsigned *sg_cnt)
891 {
892 	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
893 	struct srpt_rdma_ch *ch = ioctx->ch;
894 	struct scatterlist *prev = NULL;
895 	unsigned prev_nents;
896 	int ret, i;
897 
898 	if (nbufs == 1) {
899 		ioctx->rw_ctxs = &ioctx->s_rw_ctx;
900 	} else {
901 		ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
902 			GFP_KERNEL);
903 		if (!ioctx->rw_ctxs)
904 			return -ENOMEM;
905 	}
906 
907 	for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
908 		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
909 		u64 remote_addr = be64_to_cpu(db->va);
910 		u32 size = be32_to_cpu(db->len);
911 		u32 rkey = be32_to_cpu(db->key);
912 
913 		ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
914 				i < nbufs - 1);
915 		if (ret)
916 			goto unwind;
917 
918 		ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
919 				ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
920 		if (ret < 0) {
921 			target_free_sgl(ctx->sg, ctx->nents);
922 			goto unwind;
923 		}
924 
925 		ioctx->n_rdma += ret;
926 		ioctx->n_rw_ctx++;
927 
928 		if (prev) {
929 			sg_unmark_end(&prev[prev_nents - 1]);
930 			sg_chain(prev, prev_nents + 1, ctx->sg);
931 		} else {
932 			*sg = ctx->sg;
933 		}
934 
935 		prev = ctx->sg;
936 		prev_nents = ctx->nents;
937 
938 		*sg_cnt += ctx->nents;
939 	}
940 
941 	return 0;
942 
943 unwind:
944 	while (--i >= 0) {
945 		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
946 
947 		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
948 				ctx->sg, ctx->nents, dir);
949 		target_free_sgl(ctx->sg, ctx->nents);
950 	}
951 	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
952 		kfree(ioctx->rw_ctxs);
953 	return ret;
954 }
955 
956 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
957 				    struct srpt_send_ioctx *ioctx)
958 {
959 	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
960 	int i;
961 
962 	for (i = 0; i < ioctx->n_rw_ctx; i++) {
963 		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
964 
965 		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
966 				ctx->sg, ctx->nents, dir);
967 		target_free_sgl(ctx->sg, ctx->nents);
968 	}
969 
970 	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
971 		kfree(ioctx->rw_ctxs);
972 }
973 
974 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
975 {
976 	/*
977 	 * The pointer computations below will only be compiled correctly
978 	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
979 	 * whether srp_cmd::add_data has been declared as a byte pointer.
980 	 */
981 	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
982 		     !__same_type(srp_cmd->add_data[0], (u8)0));
983 
984 	/*
985 	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
986 	 * CDB LENGTH' field are reserved and the size in bytes of this field
987 	 * is four times the value specified in bits 3..7. Hence the "& ~3".
988 	 */
989 	return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
990 }
991 
992 /**
993  * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
994  * @recv_ioctx: I/O context associated with the received command @srp_cmd.
995  * @ioctx: I/O context that will be used for responding to the initiator.
996  * @srp_cmd: Pointer to the SRP_CMD request data.
997  * @dir: Pointer to the variable to which the transfer direction will be
998  *   written.
999  * @sg: [out] scatterlist for the parsed SRP_CMD.
1000  * @sg_cnt: [out] length of @sg.
1001  * @data_len: Pointer to the variable to which the total data length of all
1002  *   descriptors in the SRP_CMD request will be written.
1003  * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data
1004  *   starts.
1005  *
1006  * This function initializes ioctx->nrbuf and ioctx->r_bufs.
1007  *
1008  * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1009  * -ENOMEM when memory allocation fails and zero upon success.
1010  */
1011 static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx,
1012 		struct srpt_send_ioctx *ioctx,
1013 		struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1014 		struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len,
1015 		u16 imm_data_offset)
1016 {
1017 	BUG_ON(!dir);
1018 	BUG_ON(!data_len);
1019 
1020 	/*
1021 	 * The lower four bits of the buffer format field contain the DATA-IN
1022 	 * buffer descriptor format, and the highest four bits contain the
1023 	 * DATA-OUT buffer descriptor format.
1024 	 */
1025 	if (srp_cmd->buf_fmt & 0xf)
1026 		/* DATA-IN: transfer data from target to initiator (read). */
1027 		*dir = DMA_FROM_DEVICE;
1028 	else if (srp_cmd->buf_fmt >> 4)
1029 		/* DATA-OUT: transfer data from initiator to target (write). */
1030 		*dir = DMA_TO_DEVICE;
1031 	else
1032 		*dir = DMA_NONE;
1033 
1034 	/* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1035 	ioctx->cmd.data_direction = *dir;
1036 
1037 	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1038 	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1039 		struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1040 
1041 		*data_len = be32_to_cpu(db->len);
1042 		return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1043 	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1044 		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1045 		struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1046 		int nbufs = be32_to_cpu(idb->table_desc.len) /
1047 				sizeof(struct srp_direct_buf);
1048 
1049 		if (nbufs >
1050 		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1051 			pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n",
1052 			       srp_cmd->data_out_desc_cnt,
1053 			       srp_cmd->data_in_desc_cnt,
1054 			       be32_to_cpu(idb->table_desc.len),
1055 			       sizeof(struct srp_direct_buf));
1056 			return -EINVAL;
1057 		}
1058 
1059 		*data_len = be32_to_cpu(idb->len);
1060 		return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1061 				sg, sg_cnt);
1062 	} else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) {
1063 		struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd);
1064 		void *data = (void *)srp_cmd + imm_data_offset;
1065 		uint32_t len = be32_to_cpu(imm_buf->len);
1066 		uint32_t req_size = imm_data_offset + len;
1067 
1068 		if (req_size > srp_max_req_size) {
1069 			pr_err("Immediate data (length %d + %d) exceeds request size %d\n",
1070 			       imm_data_offset, len, srp_max_req_size);
1071 			return -EINVAL;
1072 		}
1073 		if (recv_ioctx->byte_len < req_size) {
1074 			pr_err("Received too few data - %d < %d\n",
1075 			       recv_ioctx->byte_len, req_size);
1076 			return -EIO;
1077 		}
1078 		/*
1079 		 * The immediate data buffer descriptor must occur before the
1080 		 * immediate data itself.
1081 		 */
1082 		if ((void *)(imm_buf + 1) > (void *)data) {
1083 			pr_err("Received invalid write request\n");
1084 			return -EINVAL;
1085 		}
1086 		*data_len = len;
1087 		ioctx->recv_ioctx = recv_ioctx;
1088 		if ((uintptr_t)data & 511) {
1089 			pr_warn_once("Internal error - the receive buffers are not aligned properly.\n");
1090 			return -EINVAL;
1091 		}
1092 		sg_init_one(&ioctx->imm_sg, data, len);
1093 		*sg = &ioctx->imm_sg;
1094 		*sg_cnt = 1;
1095 		return 0;
1096 	} else {
1097 		*data_len = 0;
1098 		return 0;
1099 	}
1100 }
1101 
1102 /**
1103  * srpt_init_ch_qp - initialize queue pair attributes
1104  * @ch: SRPT RDMA channel.
1105  * @qp: Queue pair pointer.
1106  *
1107  * Initialized the attributes of queue pair 'qp' by allowing local write,
1108  * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1109  */
1110 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1111 {
1112 	struct ib_qp_attr *attr;
1113 	int ret;
1114 
1115 	WARN_ON_ONCE(ch->using_rdma_cm);
1116 
1117 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1118 	if (!attr)
1119 		return -ENOMEM;
1120 
1121 	attr->qp_state = IB_QPS_INIT;
1122 	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1123 	attr->port_num = ch->sport->port;
1124 
1125 	ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1126 				  ch->pkey, &attr->pkey_index);
1127 	if (ret < 0)
1128 		pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1129 		       ch->pkey, ret);
1130 
1131 	ret = ib_modify_qp(qp, attr,
1132 			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1133 			   IB_QP_PKEY_INDEX);
1134 
1135 	kfree(attr);
1136 	return ret;
1137 }
1138 
1139 /**
1140  * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1141  * @ch: channel of the queue pair.
1142  * @qp: queue pair to change the state of.
1143  *
1144  * Returns zero upon success and a negative value upon failure.
1145  *
1146  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1147  * If this structure ever becomes larger, it might be necessary to allocate
1148  * it dynamically instead of on the stack.
1149  */
1150 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1151 {
1152 	struct ib_qp_attr qp_attr;
1153 	int attr_mask;
1154 	int ret;
1155 
1156 	WARN_ON_ONCE(ch->using_rdma_cm);
1157 
1158 	qp_attr.qp_state = IB_QPS_RTR;
1159 	ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1160 	if (ret)
1161 		goto out;
1162 
1163 	qp_attr.max_dest_rd_atomic = 4;
1164 
1165 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1166 
1167 out:
1168 	return ret;
1169 }
1170 
1171 /**
1172  * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1173  * @ch: channel of the queue pair.
1174  * @qp: queue pair to change the state of.
1175  *
1176  * Returns zero upon success and a negative value upon failure.
1177  *
1178  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1179  * If this structure ever becomes larger, it might be necessary to allocate
1180  * it dynamically instead of on the stack.
1181  */
1182 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1183 {
1184 	struct ib_qp_attr qp_attr;
1185 	int attr_mask;
1186 	int ret;
1187 
1188 	qp_attr.qp_state = IB_QPS_RTS;
1189 	ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1190 	if (ret)
1191 		goto out;
1192 
1193 	qp_attr.max_rd_atomic = 4;
1194 
1195 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1196 
1197 out:
1198 	return ret;
1199 }
1200 
1201 /**
1202  * srpt_ch_qp_err - set the channel queue pair state to 'error'
1203  * @ch: SRPT RDMA channel.
1204  */
1205 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1206 {
1207 	struct ib_qp_attr qp_attr;
1208 
1209 	qp_attr.qp_state = IB_QPS_ERR;
1210 	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1211 }
1212 
1213 /**
1214  * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1215  * @ch: SRPT RDMA channel.
1216  */
1217 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1218 {
1219 	struct srpt_send_ioctx *ioctx;
1220 	int tag, cpu;
1221 
1222 	BUG_ON(!ch);
1223 
1224 	tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu);
1225 	if (tag < 0)
1226 		return NULL;
1227 
1228 	ioctx = ch->ioctx_ring[tag];
1229 	BUG_ON(ioctx->ch != ch);
1230 	ioctx->state = SRPT_STATE_NEW;
1231 	WARN_ON_ONCE(ioctx->recv_ioctx);
1232 	ioctx->n_rdma = 0;
1233 	ioctx->n_rw_ctx = 0;
1234 	ioctx->queue_status_only = false;
1235 	/*
1236 	 * transport_init_se_cmd() does not initialize all fields, so do it
1237 	 * here.
1238 	 */
1239 	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1240 	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1241 	ioctx->cmd.map_tag = tag;
1242 	ioctx->cmd.map_cpu = cpu;
1243 
1244 	return ioctx;
1245 }
1246 
1247 /**
1248  * srpt_abort_cmd - abort a SCSI command
1249  * @ioctx:   I/O context associated with the SCSI command.
1250  */
1251 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1252 {
1253 	enum srpt_command_state state;
1254 
1255 	BUG_ON(!ioctx);
1256 
1257 	/*
1258 	 * If the command is in a state where the target core is waiting for
1259 	 * the ib_srpt driver, change the state to the next state.
1260 	 */
1261 
1262 	state = ioctx->state;
1263 	switch (state) {
1264 	case SRPT_STATE_NEED_DATA:
1265 		ioctx->state = SRPT_STATE_DATA_IN;
1266 		break;
1267 	case SRPT_STATE_CMD_RSP_SENT:
1268 	case SRPT_STATE_MGMT_RSP_SENT:
1269 		ioctx->state = SRPT_STATE_DONE;
1270 		break;
1271 	default:
1272 		WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1273 			  __func__, state);
1274 		break;
1275 	}
1276 
1277 	pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1278 		 ioctx->state, ioctx->cmd.tag);
1279 
1280 	switch (state) {
1281 	case SRPT_STATE_NEW:
1282 	case SRPT_STATE_DATA_IN:
1283 	case SRPT_STATE_MGMT:
1284 	case SRPT_STATE_DONE:
1285 		/*
1286 		 * Do nothing - defer abort processing until
1287 		 * srpt_queue_response() is invoked.
1288 		 */
1289 		break;
1290 	case SRPT_STATE_NEED_DATA:
1291 		pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1292 		transport_generic_request_failure(&ioctx->cmd,
1293 					TCM_CHECK_CONDITION_ABORT_CMD);
1294 		break;
1295 	case SRPT_STATE_CMD_RSP_SENT:
1296 		/*
1297 		 * SRP_RSP sending failed or the SRP_RSP send completion has
1298 		 * not been received in time.
1299 		 */
1300 		transport_generic_free_cmd(&ioctx->cmd, 0);
1301 		break;
1302 	case SRPT_STATE_MGMT_RSP_SENT:
1303 		transport_generic_free_cmd(&ioctx->cmd, 0);
1304 		break;
1305 	default:
1306 		WARN(1, "Unexpected command state (%d)", state);
1307 		break;
1308 	}
1309 
1310 	return state;
1311 }
1312 
1313 /**
1314  * srpt_rdma_read_done - RDMA read completion callback
1315  * @cq: Completion queue.
1316  * @wc: Work completion.
1317  *
1318  * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1319  * the data that has been transferred via IB RDMA had to be postponed until the
1320  * check_stop_free() callback.  None of this is necessary anymore and needs to
1321  * be cleaned up.
1322  */
1323 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1324 {
1325 	struct srpt_rdma_ch *ch = cq->cq_context;
1326 	struct srpt_send_ioctx *ioctx =
1327 		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1328 
1329 	WARN_ON(ioctx->n_rdma <= 0);
1330 	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1331 	ioctx->n_rdma = 0;
1332 
1333 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1334 		pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1335 			ioctx, wc->status);
1336 		srpt_abort_cmd(ioctx);
1337 		return;
1338 	}
1339 
1340 	if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1341 					SRPT_STATE_DATA_IN))
1342 		target_execute_cmd(&ioctx->cmd);
1343 	else
1344 		pr_err("%s[%d]: wrong state = %d\n", __func__,
1345 		       __LINE__, ioctx->state);
1346 }
1347 
1348 /**
1349  * srpt_build_cmd_rsp - build a SRP_RSP response
1350  * @ch: RDMA channel through which the request has been received.
1351  * @ioctx: I/O context associated with the SRP_CMD request. The response will
1352  *   be built in the buffer ioctx->buf points at and hence this function will
1353  *   overwrite the request data.
1354  * @tag: tag of the request for which this response is being generated.
1355  * @status: value for the STATUS field of the SRP_RSP information unit.
1356  *
1357  * Returns the size in bytes of the SRP_RSP response.
1358  *
1359  * An SRP_RSP response contains a SCSI status or service response. See also
1360  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1361  * response. See also SPC-2 for more information about sense data.
1362  */
1363 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1364 			      struct srpt_send_ioctx *ioctx, u64 tag,
1365 			      int status)
1366 {
1367 	struct srp_rsp *srp_rsp;
1368 	const u8 *sense_data;
1369 	int sense_data_len, max_sense_len;
1370 
1371 	/*
1372 	 * The lowest bit of all SAM-3 status codes is zero (see also
1373 	 * paragraph 5.3 in SAM-3).
1374 	 */
1375 	WARN_ON(status & 1);
1376 
1377 	srp_rsp = ioctx->ioctx.buf;
1378 	BUG_ON(!srp_rsp);
1379 
1380 	sense_data = ioctx->sense_data;
1381 	sense_data_len = ioctx->cmd.scsi_sense_length;
1382 	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1383 
1384 	memset(srp_rsp, 0, sizeof(*srp_rsp));
1385 	srp_rsp->opcode = SRP_RSP;
1386 	srp_rsp->req_lim_delta =
1387 		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1388 	srp_rsp->tag = tag;
1389 	srp_rsp->status = status;
1390 
1391 	if (sense_data_len) {
1392 		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1393 		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1394 		if (sense_data_len > max_sense_len) {
1395 			pr_warn("truncated sense data from %d to %d bytes\n",
1396 				sense_data_len, max_sense_len);
1397 			sense_data_len = max_sense_len;
1398 		}
1399 
1400 		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1401 		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1402 		memcpy(srp_rsp + 1, sense_data, sense_data_len);
1403 	}
1404 
1405 	return sizeof(*srp_rsp) + sense_data_len;
1406 }
1407 
1408 /**
1409  * srpt_build_tskmgmt_rsp - build a task management response
1410  * @ch:       RDMA channel through which the request has been received.
1411  * @ioctx:    I/O context in which the SRP_RSP response will be built.
1412  * @rsp_code: RSP_CODE that will be stored in the response.
1413  * @tag:      Tag of the request for which this response is being generated.
1414  *
1415  * Returns the size in bytes of the SRP_RSP response.
1416  *
1417  * An SRP_RSP response contains a SCSI status or service response. See also
1418  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1419  * response.
1420  */
1421 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1422 				  struct srpt_send_ioctx *ioctx,
1423 				  u8 rsp_code, u64 tag)
1424 {
1425 	struct srp_rsp *srp_rsp;
1426 	int resp_data_len;
1427 	int resp_len;
1428 
1429 	resp_data_len = 4;
1430 	resp_len = sizeof(*srp_rsp) + resp_data_len;
1431 
1432 	srp_rsp = ioctx->ioctx.buf;
1433 	BUG_ON(!srp_rsp);
1434 	memset(srp_rsp, 0, sizeof(*srp_rsp));
1435 
1436 	srp_rsp->opcode = SRP_RSP;
1437 	srp_rsp->req_lim_delta =
1438 		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1439 	srp_rsp->tag = tag;
1440 
1441 	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1442 	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1443 	srp_rsp->data[3] = rsp_code;
1444 
1445 	return resp_len;
1446 }
1447 
1448 static int srpt_check_stop_free(struct se_cmd *cmd)
1449 {
1450 	struct srpt_send_ioctx *ioctx = container_of(cmd,
1451 				struct srpt_send_ioctx, cmd);
1452 
1453 	return target_put_sess_cmd(&ioctx->cmd);
1454 }
1455 
1456 /**
1457  * srpt_handle_cmd - process a SRP_CMD information unit
1458  * @ch: SRPT RDMA channel.
1459  * @recv_ioctx: Receive I/O context.
1460  * @send_ioctx: Send I/O context.
1461  */
1462 static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1463 			    struct srpt_recv_ioctx *recv_ioctx,
1464 			    struct srpt_send_ioctx *send_ioctx)
1465 {
1466 	struct se_cmd *cmd;
1467 	struct srp_cmd *srp_cmd;
1468 	struct scatterlist *sg = NULL;
1469 	unsigned sg_cnt = 0;
1470 	u64 data_len;
1471 	enum dma_data_direction dir;
1472 	int rc;
1473 
1474 	BUG_ON(!send_ioctx);
1475 
1476 	srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1477 	cmd = &send_ioctx->cmd;
1478 	cmd->tag = srp_cmd->tag;
1479 
1480 	switch (srp_cmd->task_attr) {
1481 	case SRP_CMD_SIMPLE_Q:
1482 		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1483 		break;
1484 	case SRP_CMD_ORDERED_Q:
1485 	default:
1486 		cmd->sam_task_attr = TCM_ORDERED_TAG;
1487 		break;
1488 	case SRP_CMD_HEAD_OF_Q:
1489 		cmd->sam_task_attr = TCM_HEAD_TAG;
1490 		break;
1491 	case SRP_CMD_ACA:
1492 		cmd->sam_task_attr = TCM_ACA_TAG;
1493 		break;
1494 	}
1495 
1496 	rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir,
1497 			       &sg, &sg_cnt, &data_len, ch->imm_data_offset);
1498 	if (rc) {
1499 		if (rc != -EAGAIN) {
1500 			pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1501 			       srp_cmd->tag);
1502 		}
1503 		goto busy;
1504 	}
1505 
1506 	rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
1507 			       &send_ioctx->sense_data[0],
1508 			       scsilun_to_int(&srp_cmd->lun), data_len,
1509 			       TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
1510 			       sg, sg_cnt, NULL, 0, NULL, 0);
1511 	if (rc != 0) {
1512 		pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1513 			 srp_cmd->tag);
1514 		goto busy;
1515 	}
1516 	return;
1517 
1518 busy:
1519 	target_send_busy(cmd);
1520 }
1521 
1522 static int srp_tmr_to_tcm(int fn)
1523 {
1524 	switch (fn) {
1525 	case SRP_TSK_ABORT_TASK:
1526 		return TMR_ABORT_TASK;
1527 	case SRP_TSK_ABORT_TASK_SET:
1528 		return TMR_ABORT_TASK_SET;
1529 	case SRP_TSK_CLEAR_TASK_SET:
1530 		return TMR_CLEAR_TASK_SET;
1531 	case SRP_TSK_LUN_RESET:
1532 		return TMR_LUN_RESET;
1533 	case SRP_TSK_CLEAR_ACA:
1534 		return TMR_CLEAR_ACA;
1535 	default:
1536 		return -1;
1537 	}
1538 }
1539 
1540 /**
1541  * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1542  * @ch: SRPT RDMA channel.
1543  * @recv_ioctx: Receive I/O context.
1544  * @send_ioctx: Send I/O context.
1545  *
1546  * Returns 0 if and only if the request will be processed by the target core.
1547  *
1548  * For more information about SRP_TSK_MGMT information units, see also section
1549  * 6.7 in the SRP r16a document.
1550  */
1551 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1552 				 struct srpt_recv_ioctx *recv_ioctx,
1553 				 struct srpt_send_ioctx *send_ioctx)
1554 {
1555 	struct srp_tsk_mgmt *srp_tsk;
1556 	struct se_cmd *cmd;
1557 	struct se_session *sess = ch->sess;
1558 	int tcm_tmr;
1559 	int rc;
1560 
1561 	BUG_ON(!send_ioctx);
1562 
1563 	srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1564 	cmd = &send_ioctx->cmd;
1565 
1566 	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1567 		 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1568 		 ch->sess);
1569 
1570 	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1571 	send_ioctx->cmd.tag = srp_tsk->tag;
1572 	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1573 	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1574 			       scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1575 			       GFP_KERNEL, srp_tsk->task_tag,
1576 			       TARGET_SCF_ACK_KREF);
1577 	if (rc != 0) {
1578 		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1579 		cmd->se_tfo->queue_tm_rsp(cmd);
1580 	}
1581 	return;
1582 }
1583 
1584 /**
1585  * srpt_handle_new_iu - process a newly received information unit
1586  * @ch:    RDMA channel through which the information unit has been received.
1587  * @recv_ioctx: Receive I/O context associated with the information unit.
1588  */
1589 static bool
1590 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1591 {
1592 	struct srpt_send_ioctx *send_ioctx = NULL;
1593 	struct srp_cmd *srp_cmd;
1594 	bool res = false;
1595 	u8 opcode;
1596 
1597 	BUG_ON(!ch);
1598 	BUG_ON(!recv_ioctx);
1599 
1600 	if (unlikely(ch->state == CH_CONNECTING))
1601 		goto push;
1602 
1603 	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1604 				   recv_ioctx->ioctx.dma,
1605 				   recv_ioctx->ioctx.offset + srp_max_req_size,
1606 				   DMA_FROM_DEVICE);
1607 
1608 	srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1609 	opcode = srp_cmd->opcode;
1610 	if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1611 		send_ioctx = srpt_get_send_ioctx(ch);
1612 		if (unlikely(!send_ioctx))
1613 			goto push;
1614 	}
1615 
1616 	if (!list_empty(&recv_ioctx->wait_list)) {
1617 		WARN_ON_ONCE(!ch->processing_wait_list);
1618 		list_del_init(&recv_ioctx->wait_list);
1619 	}
1620 
1621 	switch (opcode) {
1622 	case SRP_CMD:
1623 		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1624 		break;
1625 	case SRP_TSK_MGMT:
1626 		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1627 		break;
1628 	case SRP_I_LOGOUT:
1629 		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1630 		break;
1631 	case SRP_CRED_RSP:
1632 		pr_debug("received SRP_CRED_RSP\n");
1633 		break;
1634 	case SRP_AER_RSP:
1635 		pr_debug("received SRP_AER_RSP\n");
1636 		break;
1637 	case SRP_RSP:
1638 		pr_err("Received SRP_RSP\n");
1639 		break;
1640 	default:
1641 		pr_err("received IU with unknown opcode 0x%x\n", opcode);
1642 		break;
1643 	}
1644 
1645 	if (!send_ioctx || !send_ioctx->recv_ioctx)
1646 		srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1647 	res = true;
1648 
1649 out:
1650 	return res;
1651 
1652 push:
1653 	if (list_empty(&recv_ioctx->wait_list)) {
1654 		WARN_ON_ONCE(ch->processing_wait_list);
1655 		list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1656 	}
1657 	goto out;
1658 }
1659 
1660 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1661 {
1662 	struct srpt_rdma_ch *ch = cq->cq_context;
1663 	struct srpt_recv_ioctx *ioctx =
1664 		container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1665 
1666 	if (wc->status == IB_WC_SUCCESS) {
1667 		int req_lim;
1668 
1669 		req_lim = atomic_dec_return(&ch->req_lim);
1670 		if (unlikely(req_lim < 0))
1671 			pr_err("req_lim = %d < 0\n", req_lim);
1672 		ioctx->byte_len = wc->byte_len;
1673 		srpt_handle_new_iu(ch, ioctx);
1674 	} else {
1675 		pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1676 				    ioctx, wc->status);
1677 	}
1678 }
1679 
1680 /*
1681  * This function must be called from the context in which RDMA completions are
1682  * processed because it accesses the wait list without protection against
1683  * access from other threads.
1684  */
1685 static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1686 {
1687 	struct srpt_recv_ioctx *recv_ioctx, *tmp;
1688 
1689 	WARN_ON_ONCE(ch->state == CH_CONNECTING);
1690 
1691 	if (list_empty(&ch->cmd_wait_list))
1692 		return;
1693 
1694 	WARN_ON_ONCE(ch->processing_wait_list);
1695 	ch->processing_wait_list = true;
1696 	list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1697 				 wait_list) {
1698 		if (!srpt_handle_new_iu(ch, recv_ioctx))
1699 			break;
1700 	}
1701 	ch->processing_wait_list = false;
1702 }
1703 
1704 /**
1705  * srpt_send_done - send completion callback
1706  * @cq: Completion queue.
1707  * @wc: Work completion.
1708  *
1709  * Note: Although this has not yet been observed during tests, at least in
1710  * theory it is possible that the srpt_get_send_ioctx() call invoked by
1711  * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1712  * value in each response is set to one, and it is possible that this response
1713  * makes the initiator send a new request before the send completion for that
1714  * response has been processed. This could e.g. happen if the call to
1715  * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1716  * if IB retransmission causes generation of the send completion to be
1717  * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1718  * are queued on cmd_wait_list. The code below processes these delayed
1719  * requests one at a time.
1720  */
1721 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1722 {
1723 	struct srpt_rdma_ch *ch = cq->cq_context;
1724 	struct srpt_send_ioctx *ioctx =
1725 		container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1726 	enum srpt_command_state state;
1727 
1728 	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1729 
1730 	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1731 		state != SRPT_STATE_MGMT_RSP_SENT);
1732 
1733 	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1734 
1735 	if (wc->status != IB_WC_SUCCESS)
1736 		pr_info("sending response for ioctx 0x%p failed with status %d\n",
1737 			ioctx, wc->status);
1738 
1739 	if (state != SRPT_STATE_DONE) {
1740 		transport_generic_free_cmd(&ioctx->cmd, 0);
1741 	} else {
1742 		pr_err("IB completion has been received too late for wr_id = %u.\n",
1743 		       ioctx->ioctx.index);
1744 	}
1745 
1746 	srpt_process_wait_list(ch);
1747 }
1748 
1749 /**
1750  * srpt_create_ch_ib - create receive and send completion queues
1751  * @ch: SRPT RDMA channel.
1752  */
1753 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1754 {
1755 	struct ib_qp_init_attr *qp_init;
1756 	struct srpt_port *sport = ch->sport;
1757 	struct srpt_device *sdev = sport->sdev;
1758 	const struct ib_device_attr *attrs = &sdev->device->attrs;
1759 	int sq_size = sport->port_attrib.srp_sq_size;
1760 	int i, ret;
1761 
1762 	WARN_ON(ch->rq_size < 1);
1763 
1764 	ret = -ENOMEM;
1765 	qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1766 	if (!qp_init)
1767 		goto out;
1768 
1769 retry:
1770 	ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + sq_size,
1771 			0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1772 	if (IS_ERR(ch->cq)) {
1773 		ret = PTR_ERR(ch->cq);
1774 		pr_err("failed to create CQ cqe= %d ret= %d\n",
1775 		       ch->rq_size + sq_size, ret);
1776 		goto out;
1777 	}
1778 
1779 	qp_init->qp_context = (void *)ch;
1780 	qp_init->event_handler
1781 		= (void(*)(struct ib_event *, void*))srpt_qp_event;
1782 	qp_init->send_cq = ch->cq;
1783 	qp_init->recv_cq = ch->cq;
1784 	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1785 	qp_init->qp_type = IB_QPT_RC;
1786 	/*
1787 	 * We divide up our send queue size into half SEND WRs to send the
1788 	 * completions, and half R/W contexts to actually do the RDMA
1789 	 * READ/WRITE transfers.  Note that we need to allocate CQ slots for
1790 	 * both both, as RDMA contexts will also post completions for the
1791 	 * RDMA READ case.
1792 	 */
1793 	qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1794 	qp_init->cap.max_rdma_ctxs = sq_size / 2;
1795 	qp_init->cap.max_send_sge = min(attrs->max_send_sge,
1796 					SRPT_MAX_SG_PER_WQE);
1797 	qp_init->cap.max_recv_sge = min(attrs->max_recv_sge,
1798 					SRPT_MAX_SG_PER_WQE);
1799 	qp_init->port_num = ch->sport->port;
1800 	if (sdev->use_srq) {
1801 		qp_init->srq = sdev->srq;
1802 	} else {
1803 		qp_init->cap.max_recv_wr = ch->rq_size;
1804 		qp_init->cap.max_recv_sge = min(attrs->max_recv_sge,
1805 						SRPT_MAX_SG_PER_WQE);
1806 	}
1807 
1808 	if (ch->using_rdma_cm) {
1809 		ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1810 		ch->qp = ch->rdma_cm.cm_id->qp;
1811 	} else {
1812 		ch->qp = ib_create_qp(sdev->pd, qp_init);
1813 		if (!IS_ERR(ch->qp)) {
1814 			ret = srpt_init_ch_qp(ch, ch->qp);
1815 			if (ret)
1816 				ib_destroy_qp(ch->qp);
1817 		} else {
1818 			ret = PTR_ERR(ch->qp);
1819 		}
1820 	}
1821 	if (ret) {
1822 		bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1823 
1824 		if (retry) {
1825 			pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1826 				 sq_size, ret);
1827 			ib_free_cq(ch->cq);
1828 			sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1829 			goto retry;
1830 		} else {
1831 			pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1832 			       sq_size, ret);
1833 			goto err_destroy_cq;
1834 		}
1835 	}
1836 
1837 	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1838 
1839 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1840 		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1841 		 qp_init->cap.max_send_wr, ch);
1842 
1843 	if (!sdev->use_srq)
1844 		for (i = 0; i < ch->rq_size; i++)
1845 			srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1846 
1847 out:
1848 	kfree(qp_init);
1849 	return ret;
1850 
1851 err_destroy_cq:
1852 	ch->qp = NULL;
1853 	ib_free_cq(ch->cq);
1854 	goto out;
1855 }
1856 
1857 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1858 {
1859 	ib_destroy_qp(ch->qp);
1860 	ib_free_cq(ch->cq);
1861 }
1862 
1863 /**
1864  * srpt_close_ch - close a RDMA channel
1865  * @ch: SRPT RDMA channel.
1866  *
1867  * Make sure all resources associated with the channel will be deallocated at
1868  * an appropriate time.
1869  *
1870  * Returns true if and only if the channel state has been modified into
1871  * CH_DRAINING.
1872  */
1873 static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1874 {
1875 	int ret;
1876 
1877 	if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1878 		pr_debug("%s: already closed\n", ch->sess_name);
1879 		return false;
1880 	}
1881 
1882 	kref_get(&ch->kref);
1883 
1884 	ret = srpt_ch_qp_err(ch);
1885 	if (ret < 0)
1886 		pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1887 		       ch->sess_name, ch->qp->qp_num, ret);
1888 
1889 	ret = srpt_zerolength_write(ch);
1890 	if (ret < 0) {
1891 		pr_err("%s-%d: queuing zero-length write failed: %d\n",
1892 		       ch->sess_name, ch->qp->qp_num, ret);
1893 		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1894 			schedule_work(&ch->release_work);
1895 		else
1896 			WARN_ON_ONCE(true);
1897 	}
1898 
1899 	kref_put(&ch->kref, srpt_free_ch);
1900 
1901 	return true;
1902 }
1903 
1904 /*
1905  * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1906  * reached the connected state, close it. If a channel is in the connected
1907  * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1908  * the responsibility of the caller to ensure that this function is not
1909  * invoked concurrently with the code that accepts a connection. This means
1910  * that this function must either be invoked from inside a CM callback
1911  * function or that it must be invoked with the srpt_port.mutex held.
1912  */
1913 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1914 {
1915 	int ret;
1916 
1917 	if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1918 		return -ENOTCONN;
1919 
1920 	if (ch->using_rdma_cm) {
1921 		ret = rdma_disconnect(ch->rdma_cm.cm_id);
1922 	} else {
1923 		ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
1924 		if (ret < 0)
1925 			ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
1926 	}
1927 
1928 	if (ret < 0 && srpt_close_ch(ch))
1929 		ret = 0;
1930 
1931 	return ret;
1932 }
1933 
1934 static bool srpt_ch_closed(struct srpt_port *sport, struct srpt_rdma_ch *ch)
1935 {
1936 	struct srpt_nexus *nexus;
1937 	struct srpt_rdma_ch *ch2;
1938 	bool res = true;
1939 
1940 	rcu_read_lock();
1941 	list_for_each_entry(nexus, &sport->nexus_list, entry) {
1942 		list_for_each_entry(ch2, &nexus->ch_list, list) {
1943 			if (ch2 == ch) {
1944 				res = false;
1945 				goto done;
1946 			}
1947 		}
1948 	}
1949 done:
1950 	rcu_read_unlock();
1951 
1952 	return res;
1953 }
1954 
1955 /* Send DREQ and wait for DREP. */
1956 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1957 {
1958 	struct srpt_port *sport = ch->sport;
1959 
1960 	pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1961 		 ch->state);
1962 
1963 	mutex_lock(&sport->mutex);
1964 	srpt_disconnect_ch(ch);
1965 	mutex_unlock(&sport->mutex);
1966 
1967 	while (wait_event_timeout(sport->ch_releaseQ, srpt_ch_closed(sport, ch),
1968 				  5 * HZ) == 0)
1969 		pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1970 			ch->sess_name, ch->qp->qp_num, ch->state);
1971 
1972 }
1973 
1974 static void __srpt_close_all_ch(struct srpt_port *sport)
1975 {
1976 	struct srpt_nexus *nexus;
1977 	struct srpt_rdma_ch *ch;
1978 
1979 	lockdep_assert_held(&sport->mutex);
1980 
1981 	list_for_each_entry(nexus, &sport->nexus_list, entry) {
1982 		list_for_each_entry(ch, &nexus->ch_list, list) {
1983 			if (srpt_disconnect_ch(ch) >= 0)
1984 				pr_info("Closing channel %s because target %s_%d has been disabled\n",
1985 					ch->sess_name,
1986 					dev_name(&sport->sdev->device->dev),
1987 					sport->port);
1988 			srpt_close_ch(ch);
1989 		}
1990 	}
1991 }
1992 
1993 /*
1994  * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
1995  * it does not yet exist.
1996  */
1997 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
1998 					 const u8 i_port_id[16],
1999 					 const u8 t_port_id[16])
2000 {
2001 	struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
2002 
2003 	for (;;) {
2004 		mutex_lock(&sport->mutex);
2005 		list_for_each_entry(n, &sport->nexus_list, entry) {
2006 			if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
2007 			    memcmp(n->t_port_id, t_port_id, 16) == 0) {
2008 				nexus = n;
2009 				break;
2010 			}
2011 		}
2012 		if (!nexus && tmp_nexus) {
2013 			list_add_tail_rcu(&tmp_nexus->entry,
2014 					  &sport->nexus_list);
2015 			swap(nexus, tmp_nexus);
2016 		}
2017 		mutex_unlock(&sport->mutex);
2018 
2019 		if (nexus)
2020 			break;
2021 		tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
2022 		if (!tmp_nexus) {
2023 			nexus = ERR_PTR(-ENOMEM);
2024 			break;
2025 		}
2026 		INIT_LIST_HEAD(&tmp_nexus->ch_list);
2027 		memcpy(tmp_nexus->i_port_id, i_port_id, 16);
2028 		memcpy(tmp_nexus->t_port_id, t_port_id, 16);
2029 	}
2030 
2031 	kfree(tmp_nexus);
2032 
2033 	return nexus;
2034 }
2035 
2036 static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
2037 	__must_hold(&sport->mutex)
2038 {
2039 	lockdep_assert_held(&sport->mutex);
2040 
2041 	if (sport->enabled == enabled)
2042 		return;
2043 	sport->enabled = enabled;
2044 	if (!enabled)
2045 		__srpt_close_all_ch(sport);
2046 }
2047 
2048 static void srpt_free_ch(struct kref *kref)
2049 {
2050 	struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2051 
2052 	kfree_rcu(ch, rcu);
2053 }
2054 
2055 /*
2056  * Shut down the SCSI target session, tell the connection manager to
2057  * disconnect the associated RDMA channel, transition the QP to the error
2058  * state and remove the channel from the channel list. This function is
2059  * typically called from inside srpt_zerolength_write_done(). Concurrent
2060  * srpt_zerolength_write() calls from inside srpt_close_ch() are possible
2061  * as long as the channel is on sport->nexus_list.
2062  */
2063 static void srpt_release_channel_work(struct work_struct *w)
2064 {
2065 	struct srpt_rdma_ch *ch;
2066 	struct srpt_device *sdev;
2067 	struct srpt_port *sport;
2068 	struct se_session *se_sess;
2069 
2070 	ch = container_of(w, struct srpt_rdma_ch, release_work);
2071 	pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2072 
2073 	sdev = ch->sport->sdev;
2074 	BUG_ON(!sdev);
2075 
2076 	se_sess = ch->sess;
2077 	BUG_ON(!se_sess);
2078 
2079 	target_sess_cmd_list_set_waiting(se_sess);
2080 	target_wait_for_sess_cmds(se_sess);
2081 
2082 	target_remove_session(se_sess);
2083 	ch->sess = NULL;
2084 
2085 	if (ch->using_rdma_cm)
2086 		rdma_destroy_id(ch->rdma_cm.cm_id);
2087 	else
2088 		ib_destroy_cm_id(ch->ib_cm.cm_id);
2089 
2090 	sport = ch->sport;
2091 	mutex_lock(&sport->mutex);
2092 	list_del_rcu(&ch->list);
2093 	mutex_unlock(&sport->mutex);
2094 
2095 	srpt_destroy_ch_ib(ch);
2096 
2097 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2098 			     ch->sport->sdev, ch->rq_size,
2099 			     ch->rsp_buf_cache, DMA_TO_DEVICE);
2100 
2101 	kmem_cache_destroy(ch->rsp_buf_cache);
2102 
2103 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2104 			     sdev, ch->rq_size,
2105 			     ch->req_buf_cache, DMA_FROM_DEVICE);
2106 
2107 	kmem_cache_destroy(ch->req_buf_cache);
2108 
2109 	wake_up(&sport->ch_releaseQ);
2110 
2111 	kref_put(&ch->kref, srpt_free_ch);
2112 }
2113 
2114 /**
2115  * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2116  * @sdev: HCA through which the login request was received.
2117  * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2118  * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2119  * @port_num: Port through which the REQ message was received.
2120  * @pkey: P_Key of the incoming connection.
2121  * @req: SRP login request.
2122  * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2123  * the login request.
2124  *
2125  * Ownership of the cm_id is transferred to the target session if this
2126  * function returns zero. Otherwise the caller remains the owner of cm_id.
2127  */
2128 static int srpt_cm_req_recv(struct srpt_device *const sdev,
2129 			    struct ib_cm_id *ib_cm_id,
2130 			    struct rdma_cm_id *rdma_cm_id,
2131 			    u8 port_num, __be16 pkey,
2132 			    const struct srp_login_req *req,
2133 			    const char *src_addr)
2134 {
2135 	struct srpt_port *sport = &sdev->port[port_num - 1];
2136 	struct srpt_nexus *nexus;
2137 	struct srp_login_rsp *rsp = NULL;
2138 	struct srp_login_rej *rej = NULL;
2139 	union {
2140 		struct rdma_conn_param rdma_cm;
2141 		struct ib_cm_rep_param ib_cm;
2142 	} *rep_param = NULL;
2143 	struct srpt_rdma_ch *ch = NULL;
2144 	char i_port_id[36];
2145 	u32 it_iu_len;
2146 	int i, tag_num, tag_size, ret;
2147 
2148 	WARN_ON_ONCE(irqs_disabled());
2149 
2150 	if (WARN_ON(!sdev || !req))
2151 		return -EINVAL;
2152 
2153 	it_iu_len = be32_to_cpu(req->req_it_iu_len);
2154 
2155 	pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2156 		req->initiator_port_id, req->target_port_id, it_iu_len,
2157 		port_num, &sport->gid, be16_to_cpu(pkey));
2158 
2159 	nexus = srpt_get_nexus(sport, req->initiator_port_id,
2160 			       req->target_port_id);
2161 	if (IS_ERR(nexus)) {
2162 		ret = PTR_ERR(nexus);
2163 		goto out;
2164 	}
2165 
2166 	ret = -ENOMEM;
2167 	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2168 	rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2169 	rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2170 	if (!rsp || !rej || !rep_param)
2171 		goto out;
2172 
2173 	ret = -EINVAL;
2174 	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2175 		rej->reason = cpu_to_be32(
2176 				SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2177 		pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2178 		       it_iu_len, 64, srp_max_req_size);
2179 		goto reject;
2180 	}
2181 
2182 	if (!sport->enabled) {
2183 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2184 		pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2185 			dev_name(&sport->sdev->device->dev), port_num);
2186 		goto reject;
2187 	}
2188 
2189 	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2190 	    || *(__be64 *)(req->target_port_id + 8) !=
2191 	       cpu_to_be64(srpt_service_guid)) {
2192 		rej->reason = cpu_to_be32(
2193 				SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2194 		pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2195 		goto reject;
2196 	}
2197 
2198 	ret = -ENOMEM;
2199 	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2200 	if (!ch) {
2201 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2202 		pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2203 		goto reject;
2204 	}
2205 
2206 	kref_init(&ch->kref);
2207 	ch->pkey = be16_to_cpu(pkey);
2208 	ch->nexus = nexus;
2209 	ch->zw_cqe.done = srpt_zerolength_write_done;
2210 	INIT_WORK(&ch->release_work, srpt_release_channel_work);
2211 	ch->sport = sport;
2212 	if (ib_cm_id) {
2213 		ch->ib_cm.cm_id = ib_cm_id;
2214 		ib_cm_id->context = ch;
2215 	} else {
2216 		ch->using_rdma_cm = true;
2217 		ch->rdma_cm.cm_id = rdma_cm_id;
2218 		rdma_cm_id->context = ch;
2219 	}
2220 	/*
2221 	 * ch->rq_size should be at least as large as the initiator queue
2222 	 * depth to avoid that the initiator driver has to report QUEUE_FULL
2223 	 * to the SCSI mid-layer.
2224 	 */
2225 	ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2226 	spin_lock_init(&ch->spinlock);
2227 	ch->state = CH_CONNECTING;
2228 	INIT_LIST_HEAD(&ch->cmd_wait_list);
2229 	ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2230 
2231 	ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size,
2232 					      512, 0, NULL);
2233 	if (!ch->rsp_buf_cache)
2234 		goto free_ch;
2235 
2236 	ch->ioctx_ring = (struct srpt_send_ioctx **)
2237 		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2238 				      sizeof(*ch->ioctx_ring[0]),
2239 				      ch->rsp_buf_cache, 0, DMA_TO_DEVICE);
2240 	if (!ch->ioctx_ring) {
2241 		pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2242 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2243 		goto free_rsp_cache;
2244 	}
2245 
2246 	for (i = 0; i < ch->rq_size; i++)
2247 		ch->ioctx_ring[i]->ch = ch;
2248 	if (!sdev->use_srq) {
2249 		u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ?
2250 			be16_to_cpu(req->imm_data_offset) : 0;
2251 		u16 alignment_offset;
2252 		u32 req_sz;
2253 
2254 		if (req->req_flags & SRP_IMMED_REQUESTED)
2255 			pr_debug("imm_data_offset = %d\n",
2256 				 be16_to_cpu(req->imm_data_offset));
2257 		if (imm_data_offset >= sizeof(struct srp_cmd)) {
2258 			ch->imm_data_offset = imm_data_offset;
2259 			rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP;
2260 		} else {
2261 			ch->imm_data_offset = 0;
2262 		}
2263 		alignment_offset = round_up(imm_data_offset, 512) -
2264 			imm_data_offset;
2265 		req_sz = alignment_offset + imm_data_offset + srp_max_req_size;
2266 		ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz,
2267 						      512, 0, NULL);
2268 		if (!ch->req_buf_cache)
2269 			goto free_rsp_ring;
2270 
2271 		ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2272 			srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2273 					      sizeof(*ch->ioctx_recv_ring[0]),
2274 					      ch->req_buf_cache,
2275 					      alignment_offset,
2276 					      DMA_FROM_DEVICE);
2277 		if (!ch->ioctx_recv_ring) {
2278 			pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2279 			rej->reason =
2280 			    cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2281 			goto free_recv_cache;
2282 		}
2283 		for (i = 0; i < ch->rq_size; i++)
2284 			INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2285 	}
2286 
2287 	ret = srpt_create_ch_ib(ch);
2288 	if (ret) {
2289 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2290 		pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2291 		goto free_recv_ring;
2292 	}
2293 
2294 	strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2295 	snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2296 			be64_to_cpu(*(__be64 *)nexus->i_port_id),
2297 			be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2298 
2299 	pr_debug("registering session %s\n", ch->sess_name);
2300 
2301 	tag_num = ch->rq_size;
2302 	tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */
2303 	if (sport->port_guid_tpg.se_tpg_wwn)
2304 		ch->sess = target_setup_session(&sport->port_guid_tpg, tag_num,
2305 						tag_size, TARGET_PROT_NORMAL,
2306 						ch->sess_name, ch, NULL);
2307 	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
2308 		ch->sess = target_setup_session(&sport->port_gid_tpg, tag_num,
2309 					tag_size, TARGET_PROT_NORMAL, i_port_id,
2310 					ch, NULL);
2311 	/* Retry without leading "0x" */
2312 	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
2313 		ch->sess = target_setup_session(&sport->port_gid_tpg, tag_num,
2314 						tag_size, TARGET_PROT_NORMAL,
2315 						i_port_id + 2, ch, NULL);
2316 	if (IS_ERR_OR_NULL(ch->sess)) {
2317 		WARN_ON_ONCE(ch->sess == NULL);
2318 		ret = PTR_ERR(ch->sess);
2319 		ch->sess = NULL;
2320 		pr_info("Rejected login for initiator %s: ret = %d.\n",
2321 			ch->sess_name, ret);
2322 		rej->reason = cpu_to_be32(ret == -ENOMEM ?
2323 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2324 				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2325 		goto destroy_ib;
2326 	}
2327 
2328 	mutex_lock(&sport->mutex);
2329 
2330 	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2331 		struct srpt_rdma_ch *ch2;
2332 
2333 		list_for_each_entry(ch2, &nexus->ch_list, list) {
2334 			if (srpt_disconnect_ch(ch2) < 0)
2335 				continue;
2336 			pr_info("Relogin - closed existing channel %s\n",
2337 				ch2->sess_name);
2338 			rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2339 		}
2340 	} else {
2341 		rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2342 	}
2343 
2344 	list_add_tail_rcu(&ch->list, &nexus->ch_list);
2345 
2346 	if (!sport->enabled) {
2347 		rej->reason = cpu_to_be32(
2348 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2349 		pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2350 			dev_name(&sdev->device->dev), port_num);
2351 		mutex_unlock(&sport->mutex);
2352 		goto reject;
2353 	}
2354 
2355 	mutex_unlock(&sport->mutex);
2356 
2357 	ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2358 	if (ret) {
2359 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2360 		pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2361 		       ret);
2362 		goto reject;
2363 	}
2364 
2365 	pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2366 		 ch->sess_name, ch);
2367 
2368 	/* create srp_login_response */
2369 	rsp->opcode = SRP_LOGIN_RSP;
2370 	rsp->tag = req->tag;
2371 	rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size);
2372 	rsp->max_ti_iu_len = req->req_it_iu_len;
2373 	ch->max_ti_iu_len = it_iu_len;
2374 	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2375 				   SRP_BUF_FORMAT_INDIRECT);
2376 	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2377 	atomic_set(&ch->req_lim, ch->rq_size);
2378 	atomic_set(&ch->req_lim_delta, 0);
2379 
2380 	/* create cm reply */
2381 	if (ch->using_rdma_cm) {
2382 		rep_param->rdma_cm.private_data = (void *)rsp;
2383 		rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2384 		rep_param->rdma_cm.rnr_retry_count = 7;
2385 		rep_param->rdma_cm.flow_control = 1;
2386 		rep_param->rdma_cm.responder_resources = 4;
2387 		rep_param->rdma_cm.initiator_depth = 4;
2388 	} else {
2389 		rep_param->ib_cm.qp_num = ch->qp->qp_num;
2390 		rep_param->ib_cm.private_data = (void *)rsp;
2391 		rep_param->ib_cm.private_data_len = sizeof(*rsp);
2392 		rep_param->ib_cm.rnr_retry_count = 7;
2393 		rep_param->ib_cm.flow_control = 1;
2394 		rep_param->ib_cm.failover_accepted = 0;
2395 		rep_param->ib_cm.srq = 1;
2396 		rep_param->ib_cm.responder_resources = 4;
2397 		rep_param->ib_cm.initiator_depth = 4;
2398 	}
2399 
2400 	/*
2401 	 * Hold the sport mutex while accepting a connection to avoid that
2402 	 * srpt_disconnect_ch() is invoked concurrently with this code.
2403 	 */
2404 	mutex_lock(&sport->mutex);
2405 	if (sport->enabled && ch->state == CH_CONNECTING) {
2406 		if (ch->using_rdma_cm)
2407 			ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2408 		else
2409 			ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2410 	} else {
2411 		ret = -EINVAL;
2412 	}
2413 	mutex_unlock(&sport->mutex);
2414 
2415 	switch (ret) {
2416 	case 0:
2417 		break;
2418 	case -EINVAL:
2419 		goto reject;
2420 	default:
2421 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2422 		pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2423 		       ret);
2424 		goto reject;
2425 	}
2426 
2427 	goto out;
2428 
2429 destroy_ib:
2430 	srpt_destroy_ch_ib(ch);
2431 
2432 free_recv_ring:
2433 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2434 			     ch->sport->sdev, ch->rq_size,
2435 			     ch->req_buf_cache, DMA_FROM_DEVICE);
2436 
2437 free_recv_cache:
2438 	kmem_cache_destroy(ch->req_buf_cache);
2439 
2440 free_rsp_ring:
2441 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2442 			     ch->sport->sdev, ch->rq_size,
2443 			     ch->rsp_buf_cache, DMA_TO_DEVICE);
2444 
2445 free_rsp_cache:
2446 	kmem_cache_destroy(ch->rsp_buf_cache);
2447 
2448 free_ch:
2449 	if (rdma_cm_id)
2450 		rdma_cm_id->context = NULL;
2451 	else
2452 		ib_cm_id->context = NULL;
2453 	kfree(ch);
2454 	ch = NULL;
2455 
2456 	WARN_ON_ONCE(ret == 0);
2457 
2458 reject:
2459 	pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2460 	rej->opcode = SRP_LOGIN_REJ;
2461 	rej->tag = req->tag;
2462 	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2463 				   SRP_BUF_FORMAT_INDIRECT);
2464 
2465 	if (rdma_cm_id)
2466 		rdma_reject(rdma_cm_id, rej, sizeof(*rej));
2467 	else
2468 		ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2469 			       rej, sizeof(*rej));
2470 
2471 	if (ch && ch->sess) {
2472 		srpt_close_ch(ch);
2473 		/*
2474 		 * Tell the caller not to free cm_id since
2475 		 * srpt_release_channel_work() will do that.
2476 		 */
2477 		ret = 0;
2478 	}
2479 
2480 out:
2481 	kfree(rep_param);
2482 	kfree(rsp);
2483 	kfree(rej);
2484 
2485 	return ret;
2486 }
2487 
2488 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2489 			       const struct ib_cm_req_event_param *param,
2490 			       void *private_data)
2491 {
2492 	char sguid[40];
2493 
2494 	srpt_format_guid(sguid, sizeof(sguid),
2495 			 &param->primary_path->dgid.global.interface_id);
2496 
2497 	return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2498 				param->primary_path->pkey,
2499 				private_data, sguid);
2500 }
2501 
2502 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2503 				 struct rdma_cm_event *event)
2504 {
2505 	struct srpt_device *sdev;
2506 	struct srp_login_req req;
2507 	const struct srp_login_req_rdma *req_rdma;
2508 	char src_addr[40];
2509 
2510 	sdev = ib_get_client_data(cm_id->device, &srpt_client);
2511 	if (!sdev)
2512 		return -ECONNREFUSED;
2513 
2514 	if (event->param.conn.private_data_len < sizeof(*req_rdma))
2515 		return -EINVAL;
2516 
2517 	/* Transform srp_login_req_rdma into srp_login_req. */
2518 	req_rdma = event->param.conn.private_data;
2519 	memset(&req, 0, sizeof(req));
2520 	req.opcode		= req_rdma->opcode;
2521 	req.tag			= req_rdma->tag;
2522 	req.req_it_iu_len	= req_rdma->req_it_iu_len;
2523 	req.req_buf_fmt		= req_rdma->req_buf_fmt;
2524 	req.req_flags		= req_rdma->req_flags;
2525 	memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2526 	memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2527 	req.imm_data_offset	= req_rdma->imm_data_offset;
2528 
2529 	snprintf(src_addr, sizeof(src_addr), "%pIS",
2530 		 &cm_id->route.addr.src_addr);
2531 
2532 	return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2533 				cm_id->route.path_rec->pkey, &req, src_addr);
2534 }
2535 
2536 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2537 			     enum ib_cm_rej_reason reason,
2538 			     const u8 *private_data,
2539 			     u8 private_data_len)
2540 {
2541 	char *priv = NULL;
2542 	int i;
2543 
2544 	if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2545 						GFP_KERNEL))) {
2546 		for (i = 0; i < private_data_len; i++)
2547 			sprintf(priv + 3 * i, " %02x", private_data[i]);
2548 	}
2549 	pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2550 		ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2551 		"; private data" : "", priv ? priv : " (?)");
2552 	kfree(priv);
2553 }
2554 
2555 /**
2556  * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2557  * @ch: SRPT RDMA channel.
2558  *
2559  * An RTU (ready to use) message indicates that the connection has been
2560  * established and that the recipient may begin transmitting.
2561  */
2562 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2563 {
2564 	int ret;
2565 
2566 	ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2567 	if (ret < 0) {
2568 		pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2569 		       ch->qp->qp_num);
2570 		srpt_close_ch(ch);
2571 		return;
2572 	}
2573 
2574 	/*
2575 	 * Note: calling srpt_close_ch() if the transition to the LIVE state
2576 	 * fails is not necessary since that means that that function has
2577 	 * already been invoked from another thread.
2578 	 */
2579 	if (!srpt_set_ch_state(ch, CH_LIVE)) {
2580 		pr_err("%s-%d: channel transition to LIVE state failed\n",
2581 		       ch->sess_name, ch->qp->qp_num);
2582 		return;
2583 	}
2584 
2585 	/* Trigger wait list processing. */
2586 	ret = srpt_zerolength_write(ch);
2587 	WARN_ONCE(ret < 0, "%d\n", ret);
2588 }
2589 
2590 /**
2591  * srpt_cm_handler - IB connection manager callback function
2592  * @cm_id: IB/CM connection identifier.
2593  * @event: IB/CM event.
2594  *
2595  * A non-zero return value will cause the caller destroy the CM ID.
2596  *
2597  * Note: srpt_cm_handler() must only return a non-zero value when transferring
2598  * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2599  * a non-zero value in any other case will trigger a race with the
2600  * ib_destroy_cm_id() call in srpt_release_channel().
2601  */
2602 static int srpt_cm_handler(struct ib_cm_id *cm_id,
2603 			   const struct ib_cm_event *event)
2604 {
2605 	struct srpt_rdma_ch *ch = cm_id->context;
2606 	int ret;
2607 
2608 	ret = 0;
2609 	switch (event->event) {
2610 	case IB_CM_REQ_RECEIVED:
2611 		ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2612 					  event->private_data);
2613 		break;
2614 	case IB_CM_REJ_RECEIVED:
2615 		srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2616 				 event->private_data,
2617 				 IB_CM_REJ_PRIVATE_DATA_SIZE);
2618 		break;
2619 	case IB_CM_RTU_RECEIVED:
2620 	case IB_CM_USER_ESTABLISHED:
2621 		srpt_cm_rtu_recv(ch);
2622 		break;
2623 	case IB_CM_DREQ_RECEIVED:
2624 		srpt_disconnect_ch(ch);
2625 		break;
2626 	case IB_CM_DREP_RECEIVED:
2627 		pr_info("Received CM DREP message for ch %s-%d.\n",
2628 			ch->sess_name, ch->qp->qp_num);
2629 		srpt_close_ch(ch);
2630 		break;
2631 	case IB_CM_TIMEWAIT_EXIT:
2632 		pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2633 			ch->sess_name, ch->qp->qp_num);
2634 		srpt_close_ch(ch);
2635 		break;
2636 	case IB_CM_REP_ERROR:
2637 		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2638 			ch->qp->qp_num);
2639 		break;
2640 	case IB_CM_DREQ_ERROR:
2641 		pr_info("Received CM DREQ ERROR event.\n");
2642 		break;
2643 	case IB_CM_MRA_RECEIVED:
2644 		pr_info("Received CM MRA event\n");
2645 		break;
2646 	default:
2647 		pr_err("received unrecognized CM event %d\n", event->event);
2648 		break;
2649 	}
2650 
2651 	return ret;
2652 }
2653 
2654 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2655 				struct rdma_cm_event *event)
2656 {
2657 	struct srpt_rdma_ch *ch = cm_id->context;
2658 	int ret = 0;
2659 
2660 	switch (event->event) {
2661 	case RDMA_CM_EVENT_CONNECT_REQUEST:
2662 		ret = srpt_rdma_cm_req_recv(cm_id, event);
2663 		break;
2664 	case RDMA_CM_EVENT_REJECTED:
2665 		srpt_cm_rej_recv(ch, event->status,
2666 				 event->param.conn.private_data,
2667 				 event->param.conn.private_data_len);
2668 		break;
2669 	case RDMA_CM_EVENT_ESTABLISHED:
2670 		srpt_cm_rtu_recv(ch);
2671 		break;
2672 	case RDMA_CM_EVENT_DISCONNECTED:
2673 		if (ch->state < CH_DISCONNECTING)
2674 			srpt_disconnect_ch(ch);
2675 		else
2676 			srpt_close_ch(ch);
2677 		break;
2678 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2679 		srpt_close_ch(ch);
2680 		break;
2681 	case RDMA_CM_EVENT_UNREACHABLE:
2682 		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2683 			ch->qp->qp_num);
2684 		break;
2685 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
2686 	case RDMA_CM_EVENT_ADDR_CHANGE:
2687 		break;
2688 	default:
2689 		pr_err("received unrecognized RDMA CM event %d\n",
2690 		       event->event);
2691 		break;
2692 	}
2693 
2694 	return ret;
2695 }
2696 
2697 /*
2698  * srpt_write_pending - Start data transfer from initiator to target (write).
2699  */
2700 static int srpt_write_pending(struct se_cmd *se_cmd)
2701 {
2702 	struct srpt_send_ioctx *ioctx =
2703 		container_of(se_cmd, struct srpt_send_ioctx, cmd);
2704 	struct srpt_rdma_ch *ch = ioctx->ch;
2705 	struct ib_send_wr *first_wr = NULL;
2706 	struct ib_cqe *cqe = &ioctx->rdma_cqe;
2707 	enum srpt_command_state new_state;
2708 	int ret, i;
2709 
2710 	if (ioctx->recv_ioctx) {
2711 		srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2712 		target_execute_cmd(&ioctx->cmd);
2713 		return 0;
2714 	}
2715 
2716 	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2717 	WARN_ON(new_state == SRPT_STATE_DONE);
2718 
2719 	if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2720 		pr_warn("%s: IB send queue full (needed %d)\n",
2721 				__func__, ioctx->n_rdma);
2722 		ret = -ENOMEM;
2723 		goto out_undo;
2724 	}
2725 
2726 	cqe->done = srpt_rdma_read_done;
2727 	for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2728 		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2729 
2730 		first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2731 				cqe, first_wr);
2732 		cqe = NULL;
2733 	}
2734 
2735 	ret = ib_post_send(ch->qp, first_wr, NULL);
2736 	if (ret) {
2737 		pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2738 			 __func__, ret, ioctx->n_rdma,
2739 			 atomic_read(&ch->sq_wr_avail));
2740 		goto out_undo;
2741 	}
2742 
2743 	return 0;
2744 out_undo:
2745 	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2746 	return ret;
2747 }
2748 
2749 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2750 {
2751 	switch (tcm_mgmt_status) {
2752 	case TMR_FUNCTION_COMPLETE:
2753 		return SRP_TSK_MGMT_SUCCESS;
2754 	case TMR_FUNCTION_REJECTED:
2755 		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2756 	}
2757 	return SRP_TSK_MGMT_FAILED;
2758 }
2759 
2760 /**
2761  * srpt_queue_response - transmit the response to a SCSI command
2762  * @cmd: SCSI target command.
2763  *
2764  * Callback function called by the TCM core. Must not block since it can be
2765  * invoked on the context of the IB completion handler.
2766  */
2767 static void srpt_queue_response(struct se_cmd *cmd)
2768 {
2769 	struct srpt_send_ioctx *ioctx =
2770 		container_of(cmd, struct srpt_send_ioctx, cmd);
2771 	struct srpt_rdma_ch *ch = ioctx->ch;
2772 	struct srpt_device *sdev = ch->sport->sdev;
2773 	struct ib_send_wr send_wr, *first_wr = &send_wr;
2774 	struct ib_sge sge;
2775 	enum srpt_command_state state;
2776 	int resp_len, ret, i;
2777 	u8 srp_tm_status;
2778 
2779 	BUG_ON(!ch);
2780 
2781 	state = ioctx->state;
2782 	switch (state) {
2783 	case SRPT_STATE_NEW:
2784 	case SRPT_STATE_DATA_IN:
2785 		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2786 		break;
2787 	case SRPT_STATE_MGMT:
2788 		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2789 		break;
2790 	default:
2791 		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2792 			ch, ioctx->ioctx.index, ioctx->state);
2793 		break;
2794 	}
2795 
2796 	if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))
2797 		return;
2798 
2799 	/* For read commands, transfer the data to the initiator. */
2800 	if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2801 	    ioctx->cmd.data_length &&
2802 	    !ioctx->queue_status_only) {
2803 		for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2804 			struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2805 
2806 			first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2807 					ch->sport->port, NULL, first_wr);
2808 		}
2809 	}
2810 
2811 	if (state != SRPT_STATE_MGMT)
2812 		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2813 					      cmd->scsi_status);
2814 	else {
2815 		srp_tm_status
2816 			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2817 		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2818 						 ioctx->cmd.tag);
2819 	}
2820 
2821 	atomic_inc(&ch->req_lim);
2822 
2823 	if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2824 			&ch->sq_wr_avail) < 0)) {
2825 		pr_warn("%s: IB send queue full (needed %d)\n",
2826 				__func__, ioctx->n_rdma);
2827 		ret = -ENOMEM;
2828 		goto out;
2829 	}
2830 
2831 	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2832 				      DMA_TO_DEVICE);
2833 
2834 	sge.addr = ioctx->ioctx.dma;
2835 	sge.length = resp_len;
2836 	sge.lkey = sdev->lkey;
2837 
2838 	ioctx->ioctx.cqe.done = srpt_send_done;
2839 	send_wr.next = NULL;
2840 	send_wr.wr_cqe = &ioctx->ioctx.cqe;
2841 	send_wr.sg_list = &sge;
2842 	send_wr.num_sge = 1;
2843 	send_wr.opcode = IB_WR_SEND;
2844 	send_wr.send_flags = IB_SEND_SIGNALED;
2845 
2846 	ret = ib_post_send(ch->qp, first_wr, NULL);
2847 	if (ret < 0) {
2848 		pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2849 			__func__, ioctx->cmd.tag, ret);
2850 		goto out;
2851 	}
2852 
2853 	return;
2854 
2855 out:
2856 	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2857 	atomic_dec(&ch->req_lim);
2858 	srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2859 	target_put_sess_cmd(&ioctx->cmd);
2860 }
2861 
2862 static int srpt_queue_data_in(struct se_cmd *cmd)
2863 {
2864 	srpt_queue_response(cmd);
2865 	return 0;
2866 }
2867 
2868 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2869 {
2870 	srpt_queue_response(cmd);
2871 }
2872 
2873 /*
2874  * This function is called for aborted commands if no response is sent to the
2875  * initiator. Make sure that the credits freed by aborting a command are
2876  * returned to the initiator the next time a response is sent by incrementing
2877  * ch->req_lim_delta.
2878  */
2879 static void srpt_aborted_task(struct se_cmd *cmd)
2880 {
2881 	struct srpt_send_ioctx *ioctx = container_of(cmd,
2882 				struct srpt_send_ioctx, cmd);
2883 	struct srpt_rdma_ch *ch = ioctx->ch;
2884 
2885 	atomic_inc(&ch->req_lim_delta);
2886 }
2887 
2888 static int srpt_queue_status(struct se_cmd *cmd)
2889 {
2890 	struct srpt_send_ioctx *ioctx;
2891 
2892 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2893 	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2894 	if (cmd->se_cmd_flags &
2895 	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2896 		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2897 	ioctx->queue_status_only = true;
2898 	srpt_queue_response(cmd);
2899 	return 0;
2900 }
2901 
2902 static void srpt_refresh_port_work(struct work_struct *work)
2903 {
2904 	struct srpt_port *sport = container_of(work, struct srpt_port, work);
2905 
2906 	srpt_refresh_port(sport);
2907 }
2908 
2909 static bool srpt_ch_list_empty(struct srpt_port *sport)
2910 {
2911 	struct srpt_nexus *nexus;
2912 	bool res = true;
2913 
2914 	rcu_read_lock();
2915 	list_for_each_entry(nexus, &sport->nexus_list, entry)
2916 		if (!list_empty(&nexus->ch_list))
2917 			res = false;
2918 	rcu_read_unlock();
2919 
2920 	return res;
2921 }
2922 
2923 /**
2924  * srpt_release_sport - disable login and wait for associated channels
2925  * @sport: SRPT HCA port.
2926  */
2927 static int srpt_release_sport(struct srpt_port *sport)
2928 {
2929 	struct srpt_nexus *nexus, *next_n;
2930 	struct srpt_rdma_ch *ch;
2931 
2932 	WARN_ON_ONCE(irqs_disabled());
2933 
2934 	mutex_lock(&sport->mutex);
2935 	srpt_set_enabled(sport, false);
2936 	mutex_unlock(&sport->mutex);
2937 
2938 	while (wait_event_timeout(sport->ch_releaseQ,
2939 				  srpt_ch_list_empty(sport), 5 * HZ) <= 0) {
2940 		pr_info("%s_%d: waiting for session unregistration ...\n",
2941 			dev_name(&sport->sdev->device->dev), sport->port);
2942 		rcu_read_lock();
2943 		list_for_each_entry(nexus, &sport->nexus_list, entry) {
2944 			list_for_each_entry(ch, &nexus->ch_list, list) {
2945 				pr_info("%s-%d: state %s\n",
2946 					ch->sess_name, ch->qp->qp_num,
2947 					get_ch_state_name(ch->state));
2948 			}
2949 		}
2950 		rcu_read_unlock();
2951 	}
2952 
2953 	mutex_lock(&sport->mutex);
2954 	list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
2955 		list_del(&nexus->entry);
2956 		kfree_rcu(nexus, rcu);
2957 	}
2958 	mutex_unlock(&sport->mutex);
2959 
2960 	return 0;
2961 }
2962 
2963 static struct se_wwn *__srpt_lookup_wwn(const char *name)
2964 {
2965 	struct ib_device *dev;
2966 	struct srpt_device *sdev;
2967 	struct srpt_port *sport;
2968 	int i;
2969 
2970 	list_for_each_entry(sdev, &srpt_dev_list, list) {
2971 		dev = sdev->device;
2972 		if (!dev)
2973 			continue;
2974 
2975 		for (i = 0; i < dev->phys_port_cnt; i++) {
2976 			sport = &sdev->port[i];
2977 
2978 			if (strcmp(sport->port_guid, name) == 0)
2979 				return &sport->port_guid_wwn;
2980 			if (strcmp(sport->port_gid, name) == 0)
2981 				return &sport->port_gid_wwn;
2982 		}
2983 	}
2984 
2985 	return NULL;
2986 }
2987 
2988 static struct se_wwn *srpt_lookup_wwn(const char *name)
2989 {
2990 	struct se_wwn *wwn;
2991 
2992 	spin_lock(&srpt_dev_lock);
2993 	wwn = __srpt_lookup_wwn(name);
2994 	spin_unlock(&srpt_dev_lock);
2995 
2996 	return wwn;
2997 }
2998 
2999 static void srpt_free_srq(struct srpt_device *sdev)
3000 {
3001 	if (!sdev->srq)
3002 		return;
3003 
3004 	ib_destroy_srq(sdev->srq);
3005 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3006 			     sdev->srq_size, sdev->req_buf_cache,
3007 			     DMA_FROM_DEVICE);
3008 	kmem_cache_destroy(sdev->req_buf_cache);
3009 	sdev->srq = NULL;
3010 }
3011 
3012 static int srpt_alloc_srq(struct srpt_device *sdev)
3013 {
3014 	struct ib_srq_init_attr srq_attr = {
3015 		.event_handler = srpt_srq_event,
3016 		.srq_context = (void *)sdev,
3017 		.attr.max_wr = sdev->srq_size,
3018 		.attr.max_sge = 1,
3019 		.srq_type = IB_SRQT_BASIC,
3020 	};
3021 	struct ib_device *device = sdev->device;
3022 	struct ib_srq *srq;
3023 	int i;
3024 
3025 	WARN_ON_ONCE(sdev->srq);
3026 	srq = ib_create_srq(sdev->pd, &srq_attr);
3027 	if (IS_ERR(srq)) {
3028 		pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
3029 		return PTR_ERR(srq);
3030 	}
3031 
3032 	pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
3033 		 sdev->device->attrs.max_srq_wr, dev_name(&device->dev));
3034 
3035 	sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf",
3036 						srp_max_req_size, 0, 0, NULL);
3037 	if (!sdev->req_buf_cache)
3038 		goto free_srq;
3039 
3040 	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3041 		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3042 				      sizeof(*sdev->ioctx_ring[0]),
3043 				      sdev->req_buf_cache, 0, DMA_FROM_DEVICE);
3044 	if (!sdev->ioctx_ring)
3045 		goto free_cache;
3046 
3047 	sdev->use_srq = true;
3048 	sdev->srq = srq;
3049 
3050 	for (i = 0; i < sdev->srq_size; ++i) {
3051 		INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
3052 		srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
3053 	}
3054 
3055 	return 0;
3056 
3057 free_cache:
3058 	kmem_cache_destroy(sdev->req_buf_cache);
3059 
3060 free_srq:
3061 	ib_destroy_srq(srq);
3062 	return -ENOMEM;
3063 }
3064 
3065 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
3066 {
3067 	struct ib_device *device = sdev->device;
3068 	int ret = 0;
3069 
3070 	if (!use_srq) {
3071 		srpt_free_srq(sdev);
3072 		sdev->use_srq = false;
3073 	} else if (use_srq && !sdev->srq) {
3074 		ret = srpt_alloc_srq(sdev);
3075 	}
3076 	pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__,
3077 		 dev_name(&device->dev), sdev->use_srq, ret);
3078 	return ret;
3079 }
3080 
3081 /**
3082  * srpt_add_one - InfiniBand device addition callback function
3083  * @device: Describes a HCA.
3084  */
3085 static void srpt_add_one(struct ib_device *device)
3086 {
3087 	struct srpt_device *sdev;
3088 	struct srpt_port *sport;
3089 	int i, ret;
3090 
3091 	pr_debug("device = %p\n", device);
3092 
3093 	sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt),
3094 		       GFP_KERNEL);
3095 	if (!sdev)
3096 		goto err;
3097 
3098 	sdev->device = device;
3099 	mutex_init(&sdev->sdev_mutex);
3100 
3101 	sdev->pd = ib_alloc_pd(device, 0);
3102 	if (IS_ERR(sdev->pd))
3103 		goto free_dev;
3104 
3105 	sdev->lkey = sdev->pd->local_dma_lkey;
3106 
3107 	sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
3108 
3109 	srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
3110 
3111 	if (!srpt_service_guid)
3112 		srpt_service_guid = be64_to_cpu(device->node_guid);
3113 
3114 	if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
3115 		sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3116 	if (IS_ERR(sdev->cm_id)) {
3117 		pr_info("ib_create_cm_id() failed: %ld\n",
3118 			PTR_ERR(sdev->cm_id));
3119 		sdev->cm_id = NULL;
3120 		if (!rdma_cm_id)
3121 			goto err_ring;
3122 	}
3123 
3124 	/* print out target login information */
3125 	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n",
3126 		 srpt_service_guid, srpt_service_guid, srpt_service_guid);
3127 
3128 	/*
3129 	 * We do not have a consistent service_id (ie. also id_ext of target_id)
3130 	 * to identify this target. We currently use the guid of the first HCA
3131 	 * in the system as service_id; therefore, the target_id will change
3132 	 * if this HCA is gone bad and replaced by different HCA
3133 	 */
3134 	ret = sdev->cm_id ?
3135 		ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) :
3136 		0;
3137 	if (ret < 0) {
3138 		pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3139 		       sdev->cm_id->state);
3140 		goto err_cm;
3141 	}
3142 
3143 	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3144 			      srpt_event_handler);
3145 	ib_register_event_handler(&sdev->event_handler);
3146 
3147 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3148 		sport = &sdev->port[i - 1];
3149 		INIT_LIST_HEAD(&sport->nexus_list);
3150 		init_waitqueue_head(&sport->ch_releaseQ);
3151 		mutex_init(&sport->mutex);
3152 		sport->sdev = sdev;
3153 		sport->port = i;
3154 		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3155 		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3156 		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3157 		sport->port_attrib.use_srq = false;
3158 		INIT_WORK(&sport->work, srpt_refresh_port_work);
3159 
3160 		if (srpt_refresh_port(sport)) {
3161 			pr_err("MAD registration failed for %s-%d.\n",
3162 			       dev_name(&sdev->device->dev), i);
3163 			goto err_event;
3164 		}
3165 	}
3166 
3167 	spin_lock(&srpt_dev_lock);
3168 	list_add_tail(&sdev->list, &srpt_dev_list);
3169 	spin_unlock(&srpt_dev_lock);
3170 
3171 out:
3172 	ib_set_client_data(device, &srpt_client, sdev);
3173 	pr_debug("added %s.\n", dev_name(&device->dev));
3174 	return;
3175 
3176 err_event:
3177 	ib_unregister_event_handler(&sdev->event_handler);
3178 err_cm:
3179 	if (sdev->cm_id)
3180 		ib_destroy_cm_id(sdev->cm_id);
3181 err_ring:
3182 	srpt_free_srq(sdev);
3183 	ib_dealloc_pd(sdev->pd);
3184 free_dev:
3185 	kfree(sdev);
3186 err:
3187 	sdev = NULL;
3188 	pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev));
3189 	goto out;
3190 }
3191 
3192 /**
3193  * srpt_remove_one - InfiniBand device removal callback function
3194  * @device: Describes a HCA.
3195  * @client_data: The value passed as the third argument to ib_set_client_data().
3196  */
3197 static void srpt_remove_one(struct ib_device *device, void *client_data)
3198 {
3199 	struct srpt_device *sdev = client_data;
3200 	int i;
3201 
3202 	if (!sdev) {
3203 		pr_info("%s(%s): nothing to do.\n", __func__,
3204 			dev_name(&device->dev));
3205 		return;
3206 	}
3207 
3208 	srpt_unregister_mad_agent(sdev);
3209 
3210 	ib_unregister_event_handler(&sdev->event_handler);
3211 
3212 	/* Cancel any work queued by the just unregistered IB event handler. */
3213 	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3214 		cancel_work_sync(&sdev->port[i].work);
3215 
3216 	if (sdev->cm_id)
3217 		ib_destroy_cm_id(sdev->cm_id);
3218 
3219 	ib_set_client_data(device, &srpt_client, NULL);
3220 
3221 	/*
3222 	 * Unregistering a target must happen after destroying sdev->cm_id
3223 	 * such that no new SRP_LOGIN_REQ information units can arrive while
3224 	 * destroying the target.
3225 	 */
3226 	spin_lock(&srpt_dev_lock);
3227 	list_del(&sdev->list);
3228 	spin_unlock(&srpt_dev_lock);
3229 
3230 	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3231 		srpt_release_sport(&sdev->port[i]);
3232 
3233 	srpt_free_srq(sdev);
3234 
3235 	ib_dealloc_pd(sdev->pd);
3236 
3237 	kfree(sdev);
3238 }
3239 
3240 static struct ib_client srpt_client = {
3241 	.name = DRV_NAME,
3242 	.add = srpt_add_one,
3243 	.remove = srpt_remove_one
3244 };
3245 
3246 static int srpt_check_true(struct se_portal_group *se_tpg)
3247 {
3248 	return 1;
3249 }
3250 
3251 static int srpt_check_false(struct se_portal_group *se_tpg)
3252 {
3253 	return 0;
3254 }
3255 
3256 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3257 {
3258 	return tpg->se_tpg_wwn->priv;
3259 }
3260 
3261 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3262 {
3263 	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3264 
3265 	WARN_ON_ONCE(tpg != &sport->port_guid_tpg &&
3266 		     tpg != &sport->port_gid_tpg);
3267 	return tpg == &sport->port_guid_tpg ? sport->port_guid :
3268 		sport->port_gid;
3269 }
3270 
3271 static u16 srpt_get_tag(struct se_portal_group *tpg)
3272 {
3273 	return 1;
3274 }
3275 
3276 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3277 {
3278 	return 1;
3279 }
3280 
3281 static void srpt_release_cmd(struct se_cmd *se_cmd)
3282 {
3283 	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3284 				struct srpt_send_ioctx, cmd);
3285 	struct srpt_rdma_ch *ch = ioctx->ch;
3286 	struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx;
3287 
3288 	WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3289 		     !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3290 
3291 	if (recv_ioctx) {
3292 		WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list));
3293 		ioctx->recv_ioctx = NULL;
3294 		srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
3295 	}
3296 
3297 	if (ioctx->n_rw_ctx) {
3298 		srpt_free_rw_ctxs(ch, ioctx);
3299 		ioctx->n_rw_ctx = 0;
3300 	}
3301 
3302 	target_free_tag(se_cmd->se_sess, se_cmd);
3303 }
3304 
3305 /**
3306  * srpt_close_session - forcibly close a session
3307  * @se_sess: SCSI target session.
3308  *
3309  * Callback function invoked by the TCM core to clean up sessions associated
3310  * with a node ACL when the user invokes
3311  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3312  */
3313 static void srpt_close_session(struct se_session *se_sess)
3314 {
3315 	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3316 
3317 	srpt_disconnect_ch_sync(ch);
3318 }
3319 
3320 /**
3321  * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
3322  * @se_sess: SCSI target session.
3323  *
3324  * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3325  * This object represents an arbitrary integer used to uniquely identify a
3326  * particular attached remote initiator port to a particular SCSI target port
3327  * within a particular SCSI target device within a particular SCSI instance.
3328  */
3329 static u32 srpt_sess_get_index(struct se_session *se_sess)
3330 {
3331 	return 0;
3332 }
3333 
3334 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3335 {
3336 }
3337 
3338 /* Note: only used from inside debug printk's by the TCM core. */
3339 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3340 {
3341 	struct srpt_send_ioctx *ioctx;
3342 
3343 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3344 	return ioctx->state;
3345 }
3346 
3347 static int srpt_parse_guid(u64 *guid, const char *name)
3348 {
3349 	u16 w[4];
3350 	int ret = -EINVAL;
3351 
3352 	if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3353 		goto out;
3354 	*guid = get_unaligned_be64(w);
3355 	ret = 0;
3356 out:
3357 	return ret;
3358 }
3359 
3360 /**
3361  * srpt_parse_i_port_id - parse an initiator port ID
3362  * @name: ASCII representation of a 128-bit initiator port ID.
3363  * @i_port_id: Binary 128-bit port ID.
3364  */
3365 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3366 {
3367 	const char *p;
3368 	unsigned len, count, leading_zero_bytes;
3369 	int ret;
3370 
3371 	p = name;
3372 	if (strncasecmp(p, "0x", 2) == 0)
3373 		p += 2;
3374 	ret = -EINVAL;
3375 	len = strlen(p);
3376 	if (len % 2)
3377 		goto out;
3378 	count = min(len / 2, 16U);
3379 	leading_zero_bytes = 16 - count;
3380 	memset(i_port_id, 0, leading_zero_bytes);
3381 	ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3382 
3383 out:
3384 	return ret;
3385 }
3386 
3387 /*
3388  * configfs callback function invoked for mkdir
3389  * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3390  *
3391  * i_port_id must be an initiator port GUID, GID or IP address. See also the
3392  * target_alloc_session() calls in this driver. Examples of valid initiator
3393  * port IDs:
3394  * 0x0000000000000000505400fffe4a0b7b
3395  * 0000000000000000505400fffe4a0b7b
3396  * 5054:00ff:fe4a:0b7b
3397  * 192.168.122.76
3398  */
3399 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3400 {
3401 	struct sockaddr_storage sa;
3402 	u64 guid;
3403 	u8 i_port_id[16];
3404 	int ret;
3405 
3406 	ret = srpt_parse_guid(&guid, name);
3407 	if (ret < 0)
3408 		ret = srpt_parse_i_port_id(i_port_id, name);
3409 	if (ret < 0)
3410 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3411 					   &sa);
3412 	if (ret < 0)
3413 		pr_err("invalid initiator port ID %s\n", name);
3414 	return ret;
3415 }
3416 
3417 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3418 		char *page)
3419 {
3420 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3421 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3422 
3423 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3424 }
3425 
3426 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3427 		const char *page, size_t count)
3428 {
3429 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3430 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3431 	unsigned long val;
3432 	int ret;
3433 
3434 	ret = kstrtoul(page, 0, &val);
3435 	if (ret < 0) {
3436 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3437 		return -EINVAL;
3438 	}
3439 	if (val > MAX_SRPT_RDMA_SIZE) {
3440 		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3441 			MAX_SRPT_RDMA_SIZE);
3442 		return -EINVAL;
3443 	}
3444 	if (val < DEFAULT_MAX_RDMA_SIZE) {
3445 		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3446 			val, DEFAULT_MAX_RDMA_SIZE);
3447 		return -EINVAL;
3448 	}
3449 	sport->port_attrib.srp_max_rdma_size = val;
3450 
3451 	return count;
3452 }
3453 
3454 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3455 		char *page)
3456 {
3457 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3458 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3459 
3460 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3461 }
3462 
3463 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3464 		const char *page, size_t count)
3465 {
3466 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3467 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3468 	unsigned long val;
3469 	int ret;
3470 
3471 	ret = kstrtoul(page, 0, &val);
3472 	if (ret < 0) {
3473 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3474 		return -EINVAL;
3475 	}
3476 	if (val > MAX_SRPT_RSP_SIZE) {
3477 		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3478 			MAX_SRPT_RSP_SIZE);
3479 		return -EINVAL;
3480 	}
3481 	if (val < MIN_MAX_RSP_SIZE) {
3482 		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3483 			MIN_MAX_RSP_SIZE);
3484 		return -EINVAL;
3485 	}
3486 	sport->port_attrib.srp_max_rsp_size = val;
3487 
3488 	return count;
3489 }
3490 
3491 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3492 		char *page)
3493 {
3494 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3495 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3496 
3497 	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3498 }
3499 
3500 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3501 		const char *page, size_t count)
3502 {
3503 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3504 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3505 	unsigned long val;
3506 	int ret;
3507 
3508 	ret = kstrtoul(page, 0, &val);
3509 	if (ret < 0) {
3510 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3511 		return -EINVAL;
3512 	}
3513 	if (val > MAX_SRPT_SRQ_SIZE) {
3514 		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3515 			MAX_SRPT_SRQ_SIZE);
3516 		return -EINVAL;
3517 	}
3518 	if (val < MIN_SRPT_SRQ_SIZE) {
3519 		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3520 			MIN_SRPT_SRQ_SIZE);
3521 		return -EINVAL;
3522 	}
3523 	sport->port_attrib.srp_sq_size = val;
3524 
3525 	return count;
3526 }
3527 
3528 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3529 					    char *page)
3530 {
3531 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3532 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3533 
3534 	return sprintf(page, "%d\n", sport->port_attrib.use_srq);
3535 }
3536 
3537 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3538 					     const char *page, size_t count)
3539 {
3540 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3541 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3542 	struct srpt_device *sdev = sport->sdev;
3543 	unsigned long val;
3544 	bool enabled;
3545 	int ret;
3546 
3547 	ret = kstrtoul(page, 0, &val);
3548 	if (ret < 0)
3549 		return ret;
3550 	if (val != !!val)
3551 		return -EINVAL;
3552 
3553 	ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3554 	if (ret < 0)
3555 		return ret;
3556 	ret = mutex_lock_interruptible(&sport->mutex);
3557 	if (ret < 0)
3558 		goto unlock_sdev;
3559 	enabled = sport->enabled;
3560 	/* Log out all initiator systems before changing 'use_srq'. */
3561 	srpt_set_enabled(sport, false);
3562 	sport->port_attrib.use_srq = val;
3563 	srpt_use_srq(sdev, sport->port_attrib.use_srq);
3564 	srpt_set_enabled(sport, enabled);
3565 	ret = count;
3566 	mutex_unlock(&sport->mutex);
3567 unlock_sdev:
3568 	mutex_unlock(&sdev->sdev_mutex);
3569 
3570 	return ret;
3571 }
3572 
3573 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
3574 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
3575 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3576 CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3577 
3578 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3579 	&srpt_tpg_attrib_attr_srp_max_rdma_size,
3580 	&srpt_tpg_attrib_attr_srp_max_rsp_size,
3581 	&srpt_tpg_attrib_attr_srp_sq_size,
3582 	&srpt_tpg_attrib_attr_use_srq,
3583 	NULL,
3584 };
3585 
3586 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3587 {
3588 	struct rdma_cm_id *rdma_cm_id;
3589 	int ret;
3590 
3591 	rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3592 				    NULL, RDMA_PS_TCP, IB_QPT_RC);
3593 	if (IS_ERR(rdma_cm_id)) {
3594 		pr_err("RDMA/CM ID creation failed: %ld\n",
3595 		       PTR_ERR(rdma_cm_id));
3596 		goto out;
3597 	}
3598 
3599 	ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3600 	if (ret) {
3601 		char addr_str[64];
3602 
3603 		snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3604 		pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3605 		       addr_str, ret);
3606 		rdma_destroy_id(rdma_cm_id);
3607 		rdma_cm_id = ERR_PTR(ret);
3608 		goto out;
3609 	}
3610 
3611 	ret = rdma_listen(rdma_cm_id, 128);
3612 	if (ret) {
3613 		pr_err("rdma_listen() failed: %d\n", ret);
3614 		rdma_destroy_id(rdma_cm_id);
3615 		rdma_cm_id = ERR_PTR(ret);
3616 	}
3617 
3618 out:
3619 	return rdma_cm_id;
3620 }
3621 
3622 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3623 {
3624 	return sprintf(page, "%d\n", rdma_cm_port);
3625 }
3626 
3627 static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3628 				       const char *page, size_t count)
3629 {
3630 	struct sockaddr_in  addr4 = { .sin_family  = AF_INET  };
3631 	struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3632 	struct rdma_cm_id *new_id = NULL;
3633 	u16 val;
3634 	int ret;
3635 
3636 	ret = kstrtou16(page, 0, &val);
3637 	if (ret < 0)
3638 		return ret;
3639 	ret = count;
3640 	if (rdma_cm_port == val)
3641 		goto out;
3642 
3643 	if (val) {
3644 		addr6.sin6_port = cpu_to_be16(val);
3645 		new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3646 		if (IS_ERR(new_id)) {
3647 			addr4.sin_port = cpu_to_be16(val);
3648 			new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3649 			if (IS_ERR(new_id)) {
3650 				ret = PTR_ERR(new_id);
3651 				goto out;
3652 			}
3653 		}
3654 	}
3655 
3656 	mutex_lock(&rdma_cm_mutex);
3657 	rdma_cm_port = val;
3658 	swap(rdma_cm_id, new_id);
3659 	mutex_unlock(&rdma_cm_mutex);
3660 
3661 	if (new_id)
3662 		rdma_destroy_id(new_id);
3663 	ret = count;
3664 out:
3665 	return ret;
3666 }
3667 
3668 CONFIGFS_ATTR(srpt_, rdma_cm_port);
3669 
3670 static struct configfs_attribute *srpt_da_attrs[] = {
3671 	&srpt_attr_rdma_cm_port,
3672 	NULL,
3673 };
3674 
3675 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3676 {
3677 	struct se_portal_group *se_tpg = to_tpg(item);
3678 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3679 
3680 	return snprintf(page, PAGE_SIZE, "%d\n", sport->enabled);
3681 }
3682 
3683 static ssize_t srpt_tpg_enable_store(struct config_item *item,
3684 		const char *page, size_t count)
3685 {
3686 	struct se_portal_group *se_tpg = to_tpg(item);
3687 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3688 	unsigned long tmp;
3689 	int ret;
3690 
3691 	ret = kstrtoul(page, 0, &tmp);
3692 	if (ret < 0) {
3693 		pr_err("Unable to extract srpt_tpg_store_enable\n");
3694 		return -EINVAL;
3695 	}
3696 
3697 	if ((tmp != 0) && (tmp != 1)) {
3698 		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3699 		return -EINVAL;
3700 	}
3701 
3702 	mutex_lock(&sport->mutex);
3703 	srpt_set_enabled(sport, tmp);
3704 	mutex_unlock(&sport->mutex);
3705 
3706 	return count;
3707 }
3708 
3709 CONFIGFS_ATTR(srpt_tpg_, enable);
3710 
3711 static struct configfs_attribute *srpt_tpg_attrs[] = {
3712 	&srpt_tpg_attr_enable,
3713 	NULL,
3714 };
3715 
3716 /**
3717  * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3718  * @wwn: Corresponds to $driver/$port.
3719  * @name: $tpg.
3720  */
3721 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3722 					     const char *name)
3723 {
3724 	struct srpt_port *sport = wwn->priv;
3725 	struct se_portal_group *tpg;
3726 	int res;
3727 
3728 	WARN_ON_ONCE(wwn != &sport->port_guid_wwn &&
3729 		     wwn != &sport->port_gid_wwn);
3730 	tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg :
3731 		&sport->port_gid_tpg;
3732 	res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP);
3733 	if (res)
3734 		return ERR_PTR(res);
3735 
3736 	return tpg;
3737 }
3738 
3739 /**
3740  * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3741  * @tpg: Target portal group to deregister.
3742  */
3743 static void srpt_drop_tpg(struct se_portal_group *tpg)
3744 {
3745 	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3746 
3747 	sport->enabled = false;
3748 	core_tpg_deregister(tpg);
3749 }
3750 
3751 /**
3752  * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3753  * @tf: Not used.
3754  * @group: Not used.
3755  * @name: $port.
3756  */
3757 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3758 				      struct config_group *group,
3759 				      const char *name)
3760 {
3761 	return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3762 }
3763 
3764 /**
3765  * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3766  * @wwn: $port.
3767  */
3768 static void srpt_drop_tport(struct se_wwn *wwn)
3769 {
3770 }
3771 
3772 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3773 {
3774 	return scnprintf(buf, PAGE_SIZE, "\n");
3775 }
3776 
3777 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3778 
3779 static struct configfs_attribute *srpt_wwn_attrs[] = {
3780 	&srpt_wwn_attr_version,
3781 	NULL,
3782 };
3783 
3784 static const struct target_core_fabric_ops srpt_template = {
3785 	.module				= THIS_MODULE,
3786 	.fabric_name			= "srpt",
3787 	.tpg_get_wwn			= srpt_get_fabric_wwn,
3788 	.tpg_get_tag			= srpt_get_tag,
3789 	.tpg_check_demo_mode		= srpt_check_false,
3790 	.tpg_check_demo_mode_cache	= srpt_check_true,
3791 	.tpg_check_demo_mode_write_protect = srpt_check_true,
3792 	.tpg_check_prod_mode_write_protect = srpt_check_false,
3793 	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
3794 	.release_cmd			= srpt_release_cmd,
3795 	.check_stop_free		= srpt_check_stop_free,
3796 	.close_session			= srpt_close_session,
3797 	.sess_get_index			= srpt_sess_get_index,
3798 	.sess_get_initiator_sid		= NULL,
3799 	.write_pending			= srpt_write_pending,
3800 	.set_default_node_attributes	= srpt_set_default_node_attrs,
3801 	.get_cmd_state			= srpt_get_tcm_cmd_state,
3802 	.queue_data_in			= srpt_queue_data_in,
3803 	.queue_status			= srpt_queue_status,
3804 	.queue_tm_rsp			= srpt_queue_tm_rsp,
3805 	.aborted_task			= srpt_aborted_task,
3806 	/*
3807 	 * Setup function pointers for generic logic in
3808 	 * target_core_fabric_configfs.c
3809 	 */
3810 	.fabric_make_wwn		= srpt_make_tport,
3811 	.fabric_drop_wwn		= srpt_drop_tport,
3812 	.fabric_make_tpg		= srpt_make_tpg,
3813 	.fabric_drop_tpg		= srpt_drop_tpg,
3814 	.fabric_init_nodeacl		= srpt_init_nodeacl,
3815 
3816 	.tfc_discovery_attrs		= srpt_da_attrs,
3817 	.tfc_wwn_attrs			= srpt_wwn_attrs,
3818 	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
3819 	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3820 };
3821 
3822 /**
3823  * srpt_init_module - kernel module initialization
3824  *
3825  * Note: Since ib_register_client() registers callback functions, and since at
3826  * least one of these callback functions (srpt_add_one()) calls target core
3827  * functions, this driver must be registered with the target core before
3828  * ib_register_client() is called.
3829  */
3830 static int __init srpt_init_module(void)
3831 {
3832 	int ret;
3833 
3834 	ret = -EINVAL;
3835 	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3836 		pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n",
3837 		       srp_max_req_size, MIN_MAX_REQ_SIZE);
3838 		goto out;
3839 	}
3840 
3841 	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3842 	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3843 		pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n",
3844 		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3845 		goto out;
3846 	}
3847 
3848 	ret = target_register_template(&srpt_template);
3849 	if (ret)
3850 		goto out;
3851 
3852 	ret = ib_register_client(&srpt_client);
3853 	if (ret) {
3854 		pr_err("couldn't register IB client\n");
3855 		goto out_unregister_target;
3856 	}
3857 
3858 	return 0;
3859 
3860 out_unregister_target:
3861 	target_unregister_template(&srpt_template);
3862 out:
3863 	return ret;
3864 }
3865 
3866 static void __exit srpt_cleanup_module(void)
3867 {
3868 	if (rdma_cm_id)
3869 		rdma_destroy_id(rdma_cm_id);
3870 	ib_unregister_client(&srpt_client);
3871 	target_unregister_template(&srpt_template);
3872 }
3873 
3874 module_init(srpt_init_module);
3875 module_exit(srpt_cleanup_module);
3876