1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_proto.h> 45 #include <scsi/scsi_tcq.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric.h> 48 #include "ib_srpt.h" 49 50 /* Name of this kernel module. */ 51 #define DRV_NAME "ib_srpt" 52 #define DRV_VERSION "2.0.0" 53 #define DRV_RELDATE "2011-02-14" 54 55 #define SRPT_ID_STRING "Linux SRP target" 56 57 #undef pr_fmt 58 #define pr_fmt(fmt) DRV_NAME " " fmt 59 60 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 62 "v" DRV_VERSION " (" DRV_RELDATE ")"); 63 MODULE_LICENSE("Dual BSD/GPL"); 64 65 /* 66 * Global Variables 67 */ 68 69 static u64 srpt_service_guid; 70 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 71 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 72 73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 74 module_param(srp_max_req_size, int, 0444); 75 MODULE_PARM_DESC(srp_max_req_size, 76 "Maximum size of SRP request messages in bytes."); 77 78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 79 module_param(srpt_srq_size, int, 0444); 80 MODULE_PARM_DESC(srpt_srq_size, 81 "Shared receive queue (SRQ) size."); 82 83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 84 { 85 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 86 } 87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 88 0444); 89 MODULE_PARM_DESC(srpt_service_guid, 90 "Using this value for ioc_guid, id_ext, and cm_listen_id" 91 " instead of using the node_guid of the first HCA."); 92 93 static struct ib_client srpt_client; 94 static void srpt_release_channel(struct srpt_rdma_ch *ch); 95 static int srpt_queue_status(struct se_cmd *cmd); 96 97 /** 98 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE. 99 */ 100 static inline 101 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir) 102 { 103 switch (dir) { 104 case DMA_TO_DEVICE: return DMA_FROM_DEVICE; 105 case DMA_FROM_DEVICE: return DMA_TO_DEVICE; 106 default: return dir; 107 } 108 } 109 110 /** 111 * srpt_sdev_name() - Return the name associated with the HCA. 112 * 113 * Examples are ib0, ib1, ... 114 */ 115 static inline const char *srpt_sdev_name(struct srpt_device *sdev) 116 { 117 return sdev->device->name; 118 } 119 120 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch) 121 { 122 unsigned long flags; 123 enum rdma_ch_state state; 124 125 spin_lock_irqsave(&ch->spinlock, flags); 126 state = ch->state; 127 spin_unlock_irqrestore(&ch->spinlock, flags); 128 return state; 129 } 130 131 static enum rdma_ch_state 132 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state) 133 { 134 unsigned long flags; 135 enum rdma_ch_state prev; 136 137 spin_lock_irqsave(&ch->spinlock, flags); 138 prev = ch->state; 139 ch->state = new_state; 140 spin_unlock_irqrestore(&ch->spinlock, flags); 141 return prev; 142 } 143 144 /** 145 * srpt_test_and_set_ch_state() - Test and set the channel state. 146 * 147 * Returns true if and only if the channel state has been set to the new state. 148 */ 149 static bool 150 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old, 151 enum rdma_ch_state new) 152 { 153 unsigned long flags; 154 enum rdma_ch_state prev; 155 156 spin_lock_irqsave(&ch->spinlock, flags); 157 prev = ch->state; 158 if (prev == old) 159 ch->state = new; 160 spin_unlock_irqrestore(&ch->spinlock, flags); 161 return prev == old; 162 } 163 164 /** 165 * srpt_event_handler() - Asynchronous IB event callback function. 166 * 167 * Callback function called by the InfiniBand core when an asynchronous IB 168 * event occurs. This callback may occur in interrupt context. See also 169 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 170 * Architecture Specification. 171 */ 172 static void srpt_event_handler(struct ib_event_handler *handler, 173 struct ib_event *event) 174 { 175 struct srpt_device *sdev; 176 struct srpt_port *sport; 177 178 sdev = ib_get_client_data(event->device, &srpt_client); 179 if (!sdev || sdev->device != event->device) 180 return; 181 182 pr_debug("ASYNC event= %d on device= %s\n", event->event, 183 srpt_sdev_name(sdev)); 184 185 switch (event->event) { 186 case IB_EVENT_PORT_ERR: 187 if (event->element.port_num <= sdev->device->phys_port_cnt) { 188 sport = &sdev->port[event->element.port_num - 1]; 189 sport->lid = 0; 190 sport->sm_lid = 0; 191 } 192 break; 193 case IB_EVENT_PORT_ACTIVE: 194 case IB_EVENT_LID_CHANGE: 195 case IB_EVENT_PKEY_CHANGE: 196 case IB_EVENT_SM_CHANGE: 197 case IB_EVENT_CLIENT_REREGISTER: 198 case IB_EVENT_GID_CHANGE: 199 /* Refresh port data asynchronously. */ 200 if (event->element.port_num <= sdev->device->phys_port_cnt) { 201 sport = &sdev->port[event->element.port_num - 1]; 202 if (!sport->lid && !sport->sm_lid) 203 schedule_work(&sport->work); 204 } 205 break; 206 default: 207 pr_err("received unrecognized IB event %d\n", 208 event->event); 209 break; 210 } 211 } 212 213 /** 214 * srpt_srq_event() - SRQ event callback function. 215 */ 216 static void srpt_srq_event(struct ib_event *event, void *ctx) 217 { 218 pr_info("SRQ event %d\n", event->event); 219 } 220 221 /** 222 * srpt_qp_event() - QP event callback function. 223 */ 224 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 225 { 226 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 227 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch)); 228 229 switch (event->event) { 230 case IB_EVENT_COMM_EST: 231 ib_cm_notify(ch->cm_id, event->event); 232 break; 233 case IB_EVENT_QP_LAST_WQE_REACHED: 234 if (srpt_test_and_set_ch_state(ch, CH_DRAINING, 235 CH_RELEASING)) 236 srpt_release_channel(ch); 237 else 238 pr_debug("%s: state %d - ignored LAST_WQE.\n", 239 ch->sess_name, srpt_get_ch_state(ch)); 240 break; 241 default: 242 pr_err("received unrecognized IB QP event %d\n", event->event); 243 break; 244 } 245 } 246 247 /** 248 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 249 * 250 * @slot: one-based slot number. 251 * @value: four-bit value. 252 * 253 * Copies the lowest four bits of value in element slot of the array of four 254 * bit elements called c_list (controller list). The index slot is one-based. 255 */ 256 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 257 { 258 u16 id; 259 u8 tmp; 260 261 id = (slot - 1) / 2; 262 if (slot & 0x1) { 263 tmp = c_list[id] & 0xf; 264 c_list[id] = (value << 4) | tmp; 265 } else { 266 tmp = c_list[id] & 0xf0; 267 c_list[id] = (value & 0xf) | tmp; 268 } 269 } 270 271 /** 272 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 273 * 274 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 275 * Specification. 276 */ 277 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 278 { 279 struct ib_class_port_info *cif; 280 281 cif = (struct ib_class_port_info *)mad->data; 282 memset(cif, 0, sizeof *cif); 283 cif->base_version = 1; 284 cif->class_version = 1; 285 cif->resp_time_value = 20; 286 287 mad->mad_hdr.status = 0; 288 } 289 290 /** 291 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 292 * 293 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 294 * Specification. See also section B.7, table B.6 in the SRP r16a document. 295 */ 296 static void srpt_get_iou(struct ib_dm_mad *mad) 297 { 298 struct ib_dm_iou_info *ioui; 299 u8 slot; 300 int i; 301 302 ioui = (struct ib_dm_iou_info *)mad->data; 303 ioui->change_id = cpu_to_be16(1); 304 ioui->max_controllers = 16; 305 306 /* set present for slot 1 and empty for the rest */ 307 srpt_set_ioc(ioui->controller_list, 1, 1); 308 for (i = 1, slot = 2; i < 16; i++, slot++) 309 srpt_set_ioc(ioui->controller_list, slot, 0); 310 311 mad->mad_hdr.status = 0; 312 } 313 314 /** 315 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 316 * 317 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 318 * Architecture Specification. See also section B.7, table B.7 in the SRP 319 * r16a document. 320 */ 321 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 322 struct ib_dm_mad *mad) 323 { 324 struct srpt_device *sdev = sport->sdev; 325 struct ib_dm_ioc_profile *iocp; 326 327 iocp = (struct ib_dm_ioc_profile *)mad->data; 328 329 if (!slot || slot > 16) { 330 mad->mad_hdr.status 331 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 332 return; 333 } 334 335 if (slot > 2) { 336 mad->mad_hdr.status 337 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 338 return; 339 } 340 341 memset(iocp, 0, sizeof *iocp); 342 strcpy(iocp->id_string, SRPT_ID_STRING); 343 iocp->guid = cpu_to_be64(srpt_service_guid); 344 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 345 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id); 346 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver); 347 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 348 iocp->subsys_device_id = 0x0; 349 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 350 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); 351 iocp->protocol = cpu_to_be16(SRP_PROTOCOL); 352 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); 353 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 354 iocp->rdma_read_depth = 4; 355 iocp->send_size = cpu_to_be32(srp_max_req_size); 356 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 357 1U << 24)); 358 iocp->num_svc_entries = 1; 359 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 360 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 361 362 mad->mad_hdr.status = 0; 363 } 364 365 /** 366 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 367 * 368 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 369 * Specification. See also section B.7, table B.8 in the SRP r16a document. 370 */ 371 static void srpt_get_svc_entries(u64 ioc_guid, 372 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 373 { 374 struct ib_dm_svc_entries *svc_entries; 375 376 WARN_ON(!ioc_guid); 377 378 if (!slot || slot > 16) { 379 mad->mad_hdr.status 380 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 381 return; 382 } 383 384 if (slot > 2 || lo > hi || hi > 1) { 385 mad->mad_hdr.status 386 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 387 return; 388 } 389 390 svc_entries = (struct ib_dm_svc_entries *)mad->data; 391 memset(svc_entries, 0, sizeof *svc_entries); 392 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 393 snprintf(svc_entries->service_entries[0].name, 394 sizeof(svc_entries->service_entries[0].name), 395 "%s%016llx", 396 SRP_SERVICE_NAME_PREFIX, 397 ioc_guid); 398 399 mad->mad_hdr.status = 0; 400 } 401 402 /** 403 * srpt_mgmt_method_get() - Process a received management datagram. 404 * @sp: source port through which the MAD has been received. 405 * @rq_mad: received MAD. 406 * @rsp_mad: response MAD. 407 */ 408 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 409 struct ib_dm_mad *rsp_mad) 410 { 411 u16 attr_id; 412 u32 slot; 413 u8 hi, lo; 414 415 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 416 switch (attr_id) { 417 case DM_ATTR_CLASS_PORT_INFO: 418 srpt_get_class_port_info(rsp_mad); 419 break; 420 case DM_ATTR_IOU_INFO: 421 srpt_get_iou(rsp_mad); 422 break; 423 case DM_ATTR_IOC_PROFILE: 424 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 425 srpt_get_ioc(sp, slot, rsp_mad); 426 break; 427 case DM_ATTR_SVC_ENTRIES: 428 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 429 hi = (u8) ((slot >> 8) & 0xff); 430 lo = (u8) (slot & 0xff); 431 slot = (u16) ((slot >> 16) & 0xffff); 432 srpt_get_svc_entries(srpt_service_guid, 433 slot, hi, lo, rsp_mad); 434 break; 435 default: 436 rsp_mad->mad_hdr.status = 437 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 438 break; 439 } 440 } 441 442 /** 443 * srpt_mad_send_handler() - Post MAD-send callback function. 444 */ 445 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 446 struct ib_mad_send_wc *mad_wc) 447 { 448 ib_destroy_ah(mad_wc->send_buf->ah); 449 ib_free_send_mad(mad_wc->send_buf); 450 } 451 452 /** 453 * srpt_mad_recv_handler() - MAD reception callback function. 454 */ 455 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 456 struct ib_mad_recv_wc *mad_wc) 457 { 458 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 459 struct ib_ah *ah; 460 struct ib_mad_send_buf *rsp; 461 struct ib_dm_mad *dm_mad; 462 463 if (!mad_wc || !mad_wc->recv_buf.mad) 464 return; 465 466 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 467 mad_wc->recv_buf.grh, mad_agent->port_num); 468 if (IS_ERR(ah)) 469 goto err; 470 471 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 472 473 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 474 mad_wc->wc->pkey_index, 0, 475 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 476 GFP_KERNEL, 477 IB_MGMT_BASE_VERSION); 478 if (IS_ERR(rsp)) 479 goto err_rsp; 480 481 rsp->ah = ah; 482 483 dm_mad = rsp->mad; 484 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad); 485 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 486 dm_mad->mad_hdr.status = 0; 487 488 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 489 case IB_MGMT_METHOD_GET: 490 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 491 break; 492 case IB_MGMT_METHOD_SET: 493 dm_mad->mad_hdr.status = 494 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 495 break; 496 default: 497 dm_mad->mad_hdr.status = 498 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 499 break; 500 } 501 502 if (!ib_post_send_mad(rsp, NULL)) { 503 ib_free_recv_mad(mad_wc); 504 /* will destroy_ah & free_send_mad in send completion */ 505 return; 506 } 507 508 ib_free_send_mad(rsp); 509 510 err_rsp: 511 ib_destroy_ah(ah); 512 err: 513 ib_free_recv_mad(mad_wc); 514 } 515 516 /** 517 * srpt_refresh_port() - Configure a HCA port. 518 * 519 * Enable InfiniBand management datagram processing, update the cached sm_lid, 520 * lid and gid values, and register a callback function for processing MADs 521 * on the specified port. 522 * 523 * Note: It is safe to call this function more than once for the same port. 524 */ 525 static int srpt_refresh_port(struct srpt_port *sport) 526 { 527 struct ib_mad_reg_req reg_req; 528 struct ib_port_modify port_modify; 529 struct ib_port_attr port_attr; 530 int ret; 531 532 memset(&port_modify, 0, sizeof port_modify); 533 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 534 port_modify.clr_port_cap_mask = 0; 535 536 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 537 if (ret) 538 goto err_mod_port; 539 540 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 541 if (ret) 542 goto err_query_port; 543 544 sport->sm_lid = port_attr.sm_lid; 545 sport->lid = port_attr.lid; 546 547 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid, 548 NULL); 549 if (ret) 550 goto err_query_port; 551 552 if (!sport->mad_agent) { 553 memset(®_req, 0, sizeof reg_req); 554 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 555 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 556 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 557 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 558 559 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 560 sport->port, 561 IB_QPT_GSI, 562 ®_req, 0, 563 srpt_mad_send_handler, 564 srpt_mad_recv_handler, 565 sport, 0); 566 if (IS_ERR(sport->mad_agent)) { 567 ret = PTR_ERR(sport->mad_agent); 568 sport->mad_agent = NULL; 569 goto err_query_port; 570 } 571 } 572 573 return 0; 574 575 err_query_port: 576 577 port_modify.set_port_cap_mask = 0; 578 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 579 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 580 581 err_mod_port: 582 583 return ret; 584 } 585 586 /** 587 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 588 * 589 * Note: It is safe to call this function more than once for the same device. 590 */ 591 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 592 { 593 struct ib_port_modify port_modify = { 594 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 595 }; 596 struct srpt_port *sport; 597 int i; 598 599 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 600 sport = &sdev->port[i - 1]; 601 WARN_ON(sport->port != i); 602 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 603 pr_err("disabling MAD processing failed.\n"); 604 if (sport->mad_agent) { 605 ib_unregister_mad_agent(sport->mad_agent); 606 sport->mad_agent = NULL; 607 } 608 } 609 } 610 611 /** 612 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 613 */ 614 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 615 int ioctx_size, int dma_size, 616 enum dma_data_direction dir) 617 { 618 struct srpt_ioctx *ioctx; 619 620 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 621 if (!ioctx) 622 goto err; 623 624 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 625 if (!ioctx->buf) 626 goto err_free_ioctx; 627 628 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 629 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 630 goto err_free_buf; 631 632 return ioctx; 633 634 err_free_buf: 635 kfree(ioctx->buf); 636 err_free_ioctx: 637 kfree(ioctx); 638 err: 639 return NULL; 640 } 641 642 /** 643 * srpt_free_ioctx() - Free an SRPT I/O context structure. 644 */ 645 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 646 int dma_size, enum dma_data_direction dir) 647 { 648 if (!ioctx) 649 return; 650 651 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 652 kfree(ioctx->buf); 653 kfree(ioctx); 654 } 655 656 /** 657 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 658 * @sdev: Device to allocate the I/O context ring for. 659 * @ring_size: Number of elements in the I/O context ring. 660 * @ioctx_size: I/O context size. 661 * @dma_size: DMA buffer size. 662 * @dir: DMA data direction. 663 */ 664 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 665 int ring_size, int ioctx_size, 666 int dma_size, enum dma_data_direction dir) 667 { 668 struct srpt_ioctx **ring; 669 int i; 670 671 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 672 && ioctx_size != sizeof(struct srpt_send_ioctx)); 673 674 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 675 if (!ring) 676 goto out; 677 for (i = 0; i < ring_size; ++i) { 678 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 679 if (!ring[i]) 680 goto err; 681 ring[i]->index = i; 682 } 683 goto out; 684 685 err: 686 while (--i >= 0) 687 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 688 kfree(ring); 689 ring = NULL; 690 out: 691 return ring; 692 } 693 694 /** 695 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 696 */ 697 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 698 struct srpt_device *sdev, int ring_size, 699 int dma_size, enum dma_data_direction dir) 700 { 701 int i; 702 703 for (i = 0; i < ring_size; ++i) 704 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 705 kfree(ioctx_ring); 706 } 707 708 /** 709 * srpt_get_cmd_state() - Get the state of a SCSI command. 710 */ 711 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 712 { 713 enum srpt_command_state state; 714 unsigned long flags; 715 716 BUG_ON(!ioctx); 717 718 spin_lock_irqsave(&ioctx->spinlock, flags); 719 state = ioctx->state; 720 spin_unlock_irqrestore(&ioctx->spinlock, flags); 721 return state; 722 } 723 724 /** 725 * srpt_set_cmd_state() - Set the state of a SCSI command. 726 * 727 * Does not modify the state of aborted commands. Returns the previous command 728 * state. 729 */ 730 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 731 enum srpt_command_state new) 732 { 733 enum srpt_command_state previous; 734 unsigned long flags; 735 736 BUG_ON(!ioctx); 737 738 spin_lock_irqsave(&ioctx->spinlock, flags); 739 previous = ioctx->state; 740 if (previous != SRPT_STATE_DONE) 741 ioctx->state = new; 742 spin_unlock_irqrestore(&ioctx->spinlock, flags); 743 744 return previous; 745 } 746 747 /** 748 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 749 * 750 * Returns true if and only if the previous command state was equal to 'old'. 751 */ 752 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 753 enum srpt_command_state old, 754 enum srpt_command_state new) 755 { 756 enum srpt_command_state previous; 757 unsigned long flags; 758 759 WARN_ON(!ioctx); 760 WARN_ON(old == SRPT_STATE_DONE); 761 WARN_ON(new == SRPT_STATE_NEW); 762 763 spin_lock_irqsave(&ioctx->spinlock, flags); 764 previous = ioctx->state; 765 if (previous == old) 766 ioctx->state = new; 767 spin_unlock_irqrestore(&ioctx->spinlock, flags); 768 return previous == old; 769 } 770 771 /** 772 * srpt_post_recv() - Post an IB receive request. 773 */ 774 static int srpt_post_recv(struct srpt_device *sdev, 775 struct srpt_recv_ioctx *ioctx) 776 { 777 struct ib_sge list; 778 struct ib_recv_wr wr, *bad_wr; 779 780 BUG_ON(!sdev); 781 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index); 782 783 list.addr = ioctx->ioctx.dma; 784 list.length = srp_max_req_size; 785 list.lkey = sdev->pd->local_dma_lkey; 786 787 wr.next = NULL; 788 wr.sg_list = &list; 789 wr.num_sge = 1; 790 791 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 792 } 793 794 /** 795 * srpt_post_send() - Post an IB send request. 796 * 797 * Returns zero upon success and a non-zero value upon failure. 798 */ 799 static int srpt_post_send(struct srpt_rdma_ch *ch, 800 struct srpt_send_ioctx *ioctx, int len) 801 { 802 struct ib_sge list; 803 struct ib_send_wr wr, *bad_wr; 804 struct srpt_device *sdev = ch->sport->sdev; 805 int ret; 806 807 atomic_inc(&ch->req_lim); 808 809 ret = -ENOMEM; 810 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { 811 pr_warn("IB send queue full (needed 1)\n"); 812 goto out; 813 } 814 815 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, 816 DMA_TO_DEVICE); 817 818 list.addr = ioctx->ioctx.dma; 819 list.length = len; 820 list.lkey = sdev->pd->local_dma_lkey; 821 822 wr.next = NULL; 823 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index); 824 wr.sg_list = &list; 825 wr.num_sge = 1; 826 wr.opcode = IB_WR_SEND; 827 wr.send_flags = IB_SEND_SIGNALED; 828 829 ret = ib_post_send(ch->qp, &wr, &bad_wr); 830 831 out: 832 if (ret < 0) { 833 atomic_inc(&ch->sq_wr_avail); 834 atomic_dec(&ch->req_lim); 835 } 836 return ret; 837 } 838 839 /** 840 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 841 * @ioctx: Pointer to the I/O context associated with the request. 842 * @srp_cmd: Pointer to the SRP_CMD request data. 843 * @dir: Pointer to the variable to which the transfer direction will be 844 * written. 845 * @data_len: Pointer to the variable to which the total data length of all 846 * descriptors in the SRP_CMD request will be written. 847 * 848 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 849 * 850 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 851 * -ENOMEM when memory allocation fails and zero upon success. 852 */ 853 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 854 struct srp_cmd *srp_cmd, 855 enum dma_data_direction *dir, u64 *data_len) 856 { 857 struct srp_indirect_buf *idb; 858 struct srp_direct_buf *db; 859 unsigned add_cdb_offset; 860 int ret; 861 862 /* 863 * The pointer computations below will only be compiled correctly 864 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 865 * whether srp_cmd::add_data has been declared as a byte pointer. 866 */ 867 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) 868 && !__same_type(srp_cmd->add_data[0], (u8)0)); 869 870 BUG_ON(!dir); 871 BUG_ON(!data_len); 872 873 ret = 0; 874 *data_len = 0; 875 876 /* 877 * The lower four bits of the buffer format field contain the DATA-IN 878 * buffer descriptor format, and the highest four bits contain the 879 * DATA-OUT buffer descriptor format. 880 */ 881 *dir = DMA_NONE; 882 if (srp_cmd->buf_fmt & 0xf) 883 /* DATA-IN: transfer data from target to initiator (read). */ 884 *dir = DMA_FROM_DEVICE; 885 else if (srp_cmd->buf_fmt >> 4) 886 /* DATA-OUT: transfer data from initiator to target (write). */ 887 *dir = DMA_TO_DEVICE; 888 889 /* 890 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 891 * CDB LENGTH' field are reserved and the size in bytes of this field 892 * is four times the value specified in bits 3..7. Hence the "& ~3". 893 */ 894 add_cdb_offset = srp_cmd->add_cdb_len & ~3; 895 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 896 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 897 ioctx->n_rbuf = 1; 898 ioctx->rbufs = &ioctx->single_rbuf; 899 900 db = (struct srp_direct_buf *)(srp_cmd->add_data 901 + add_cdb_offset); 902 memcpy(ioctx->rbufs, db, sizeof *db); 903 *data_len = be32_to_cpu(db->len); 904 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 905 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 906 idb = (struct srp_indirect_buf *)(srp_cmd->add_data 907 + add_cdb_offset); 908 909 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db; 910 911 if (ioctx->n_rbuf > 912 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 913 pr_err("received unsupported SRP_CMD request" 914 " type (%u out + %u in != %u / %zu)\n", 915 srp_cmd->data_out_desc_cnt, 916 srp_cmd->data_in_desc_cnt, 917 be32_to_cpu(idb->table_desc.len), 918 sizeof(*db)); 919 ioctx->n_rbuf = 0; 920 ret = -EINVAL; 921 goto out; 922 } 923 924 if (ioctx->n_rbuf == 1) 925 ioctx->rbufs = &ioctx->single_rbuf; 926 else { 927 ioctx->rbufs = 928 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC); 929 if (!ioctx->rbufs) { 930 ioctx->n_rbuf = 0; 931 ret = -ENOMEM; 932 goto out; 933 } 934 } 935 936 db = idb->desc_list; 937 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db); 938 *data_len = be32_to_cpu(idb->len); 939 } 940 out: 941 return ret; 942 } 943 944 /** 945 * srpt_init_ch_qp() - Initialize queue pair attributes. 946 * 947 * Initialized the attributes of queue pair 'qp' by allowing local write, 948 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 949 */ 950 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 951 { 952 struct ib_qp_attr *attr; 953 int ret; 954 955 attr = kzalloc(sizeof *attr, GFP_KERNEL); 956 if (!attr) 957 return -ENOMEM; 958 959 attr->qp_state = IB_QPS_INIT; 960 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 961 IB_ACCESS_REMOTE_WRITE; 962 attr->port_num = ch->sport->port; 963 attr->pkey_index = 0; 964 965 ret = ib_modify_qp(qp, attr, 966 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 967 IB_QP_PKEY_INDEX); 968 969 kfree(attr); 970 return ret; 971 } 972 973 /** 974 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 975 * @ch: channel of the queue pair. 976 * @qp: queue pair to change the state of. 977 * 978 * Returns zero upon success and a negative value upon failure. 979 * 980 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 981 * If this structure ever becomes larger, it might be necessary to allocate 982 * it dynamically instead of on the stack. 983 */ 984 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 985 { 986 struct ib_qp_attr qp_attr; 987 int attr_mask; 988 int ret; 989 990 qp_attr.qp_state = IB_QPS_RTR; 991 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 992 if (ret) 993 goto out; 994 995 qp_attr.max_dest_rd_atomic = 4; 996 997 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 998 999 out: 1000 return ret; 1001 } 1002 1003 /** 1004 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1005 * @ch: channel of the queue pair. 1006 * @qp: queue pair to change the state of. 1007 * 1008 * Returns zero upon success and a negative value upon failure. 1009 * 1010 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1011 * If this structure ever becomes larger, it might be necessary to allocate 1012 * it dynamically instead of on the stack. 1013 */ 1014 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1015 { 1016 struct ib_qp_attr qp_attr; 1017 int attr_mask; 1018 int ret; 1019 1020 qp_attr.qp_state = IB_QPS_RTS; 1021 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1022 if (ret) 1023 goto out; 1024 1025 qp_attr.max_rd_atomic = 4; 1026 1027 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1028 1029 out: 1030 return ret; 1031 } 1032 1033 /** 1034 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1035 */ 1036 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1037 { 1038 struct ib_qp_attr qp_attr; 1039 1040 qp_attr.qp_state = IB_QPS_ERR; 1041 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1042 } 1043 1044 /** 1045 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. 1046 */ 1047 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1048 struct srpt_send_ioctx *ioctx) 1049 { 1050 struct scatterlist *sg; 1051 enum dma_data_direction dir; 1052 1053 BUG_ON(!ch); 1054 BUG_ON(!ioctx); 1055 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius); 1056 1057 while (ioctx->n_rdma) 1058 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge); 1059 1060 kfree(ioctx->rdma_ius); 1061 ioctx->rdma_ius = NULL; 1062 1063 if (ioctx->mapped_sg_count) { 1064 sg = ioctx->sg; 1065 WARN_ON(!sg); 1066 dir = ioctx->cmd.data_direction; 1067 BUG_ON(dir == DMA_NONE); 1068 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, 1069 opposite_dma_dir(dir)); 1070 ioctx->mapped_sg_count = 0; 1071 } 1072 } 1073 1074 /** 1075 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. 1076 */ 1077 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1078 struct srpt_send_ioctx *ioctx) 1079 { 1080 struct ib_device *dev = ch->sport->sdev->device; 1081 struct se_cmd *cmd; 1082 struct scatterlist *sg, *sg_orig; 1083 int sg_cnt; 1084 enum dma_data_direction dir; 1085 struct rdma_iu *riu; 1086 struct srp_direct_buf *db; 1087 dma_addr_t dma_addr; 1088 struct ib_sge *sge; 1089 u64 raddr; 1090 u32 rsize; 1091 u32 tsize; 1092 u32 dma_len; 1093 int count, nrdma; 1094 int i, j, k; 1095 1096 BUG_ON(!ch); 1097 BUG_ON(!ioctx); 1098 cmd = &ioctx->cmd; 1099 dir = cmd->data_direction; 1100 BUG_ON(dir == DMA_NONE); 1101 1102 ioctx->sg = sg = sg_orig = cmd->t_data_sg; 1103 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents; 1104 1105 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, 1106 opposite_dma_dir(dir)); 1107 if (unlikely(!count)) 1108 return -EAGAIN; 1109 1110 ioctx->mapped_sg_count = count; 1111 1112 if (ioctx->rdma_ius && ioctx->n_rdma_ius) 1113 nrdma = ioctx->n_rdma_ius; 1114 else { 1115 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE 1116 + ioctx->n_rbuf; 1117 1118 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL); 1119 if (!ioctx->rdma_ius) 1120 goto free_mem; 1121 1122 ioctx->n_rdma_ius = nrdma; 1123 } 1124 1125 db = ioctx->rbufs; 1126 tsize = cmd->data_length; 1127 dma_len = ib_sg_dma_len(dev, &sg[0]); 1128 riu = ioctx->rdma_ius; 1129 1130 /* 1131 * For each remote desc - calculate the #ib_sge. 1132 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then 1133 * each remote desc rdma_iu is required a rdma wr; 1134 * else 1135 * we need to allocate extra rdma_iu to carry extra #ib_sge in 1136 * another rdma wr 1137 */ 1138 for (i = 0, j = 0; 1139 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1140 rsize = be32_to_cpu(db->len); 1141 raddr = be64_to_cpu(db->va); 1142 riu->raddr = raddr; 1143 riu->rkey = be32_to_cpu(db->key); 1144 riu->sge_cnt = 0; 1145 1146 /* calculate how many sge required for this remote_buf */ 1147 while (rsize > 0 && tsize > 0) { 1148 1149 if (rsize >= dma_len) { 1150 tsize -= dma_len; 1151 rsize -= dma_len; 1152 raddr += dma_len; 1153 1154 if (tsize > 0) { 1155 ++j; 1156 if (j < count) { 1157 sg = sg_next(sg); 1158 dma_len = ib_sg_dma_len( 1159 dev, sg); 1160 } 1161 } 1162 } else { 1163 tsize -= rsize; 1164 dma_len -= rsize; 1165 rsize = 0; 1166 } 1167 1168 ++riu->sge_cnt; 1169 1170 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) { 1171 ++ioctx->n_rdma; 1172 riu->sge = 1173 kmalloc(riu->sge_cnt * sizeof *riu->sge, 1174 GFP_KERNEL); 1175 if (!riu->sge) 1176 goto free_mem; 1177 1178 ++riu; 1179 riu->sge_cnt = 0; 1180 riu->raddr = raddr; 1181 riu->rkey = be32_to_cpu(db->key); 1182 } 1183 } 1184 1185 ++ioctx->n_rdma; 1186 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge, 1187 GFP_KERNEL); 1188 if (!riu->sge) 1189 goto free_mem; 1190 } 1191 1192 db = ioctx->rbufs; 1193 tsize = cmd->data_length; 1194 riu = ioctx->rdma_ius; 1195 sg = sg_orig; 1196 dma_len = ib_sg_dma_len(dev, &sg[0]); 1197 dma_addr = ib_sg_dma_address(dev, &sg[0]); 1198 1199 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ 1200 for (i = 0, j = 0; 1201 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1202 rsize = be32_to_cpu(db->len); 1203 sge = riu->sge; 1204 k = 0; 1205 1206 while (rsize > 0 && tsize > 0) { 1207 sge->addr = dma_addr; 1208 sge->lkey = ch->sport->sdev->pd->local_dma_lkey; 1209 1210 if (rsize >= dma_len) { 1211 sge->length = 1212 (tsize < dma_len) ? tsize : dma_len; 1213 tsize -= dma_len; 1214 rsize -= dma_len; 1215 1216 if (tsize > 0) { 1217 ++j; 1218 if (j < count) { 1219 sg = sg_next(sg); 1220 dma_len = ib_sg_dma_len( 1221 dev, sg); 1222 dma_addr = ib_sg_dma_address( 1223 dev, sg); 1224 } 1225 } 1226 } else { 1227 sge->length = (tsize < rsize) ? tsize : rsize; 1228 tsize -= rsize; 1229 dma_len -= rsize; 1230 dma_addr += rsize; 1231 rsize = 0; 1232 } 1233 1234 ++k; 1235 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) { 1236 ++riu; 1237 sge = riu->sge; 1238 k = 0; 1239 } else if (rsize > 0 && tsize > 0) 1240 ++sge; 1241 } 1242 } 1243 1244 return 0; 1245 1246 free_mem: 1247 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1248 1249 return -ENOMEM; 1250 } 1251 1252 /** 1253 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1254 */ 1255 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1256 { 1257 struct srpt_send_ioctx *ioctx; 1258 unsigned long flags; 1259 1260 BUG_ON(!ch); 1261 1262 ioctx = NULL; 1263 spin_lock_irqsave(&ch->spinlock, flags); 1264 if (!list_empty(&ch->free_list)) { 1265 ioctx = list_first_entry(&ch->free_list, 1266 struct srpt_send_ioctx, free_list); 1267 list_del(&ioctx->free_list); 1268 } 1269 spin_unlock_irqrestore(&ch->spinlock, flags); 1270 1271 if (!ioctx) 1272 return ioctx; 1273 1274 BUG_ON(ioctx->ch != ch); 1275 spin_lock_init(&ioctx->spinlock); 1276 ioctx->state = SRPT_STATE_NEW; 1277 ioctx->n_rbuf = 0; 1278 ioctx->rbufs = NULL; 1279 ioctx->n_rdma = 0; 1280 ioctx->n_rdma_ius = 0; 1281 ioctx->rdma_ius = NULL; 1282 ioctx->mapped_sg_count = 0; 1283 init_completion(&ioctx->tx_done); 1284 ioctx->queue_status_only = false; 1285 /* 1286 * transport_init_se_cmd() does not initialize all fields, so do it 1287 * here. 1288 */ 1289 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1290 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1291 1292 return ioctx; 1293 } 1294 1295 /** 1296 * srpt_abort_cmd() - Abort a SCSI command. 1297 * @ioctx: I/O context associated with the SCSI command. 1298 * @context: Preferred execution context. 1299 */ 1300 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1301 { 1302 enum srpt_command_state state; 1303 unsigned long flags; 1304 1305 BUG_ON(!ioctx); 1306 1307 /* 1308 * If the command is in a state where the target core is waiting for 1309 * the ib_srpt driver, change the state to the next state. Changing 1310 * the state of the command from SRPT_STATE_NEED_DATA to 1311 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this 1312 * function a second time. 1313 */ 1314 1315 spin_lock_irqsave(&ioctx->spinlock, flags); 1316 state = ioctx->state; 1317 switch (state) { 1318 case SRPT_STATE_NEED_DATA: 1319 ioctx->state = SRPT_STATE_DATA_IN; 1320 break; 1321 case SRPT_STATE_DATA_IN: 1322 case SRPT_STATE_CMD_RSP_SENT: 1323 case SRPT_STATE_MGMT_RSP_SENT: 1324 ioctx->state = SRPT_STATE_DONE; 1325 break; 1326 default: 1327 break; 1328 } 1329 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1330 1331 if (state == SRPT_STATE_DONE) { 1332 struct srpt_rdma_ch *ch = ioctx->ch; 1333 1334 BUG_ON(ch->sess == NULL); 1335 1336 target_put_sess_cmd(&ioctx->cmd); 1337 goto out; 1338 } 1339 1340 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1341 ioctx->cmd.tag); 1342 1343 switch (state) { 1344 case SRPT_STATE_NEW: 1345 case SRPT_STATE_DATA_IN: 1346 case SRPT_STATE_MGMT: 1347 /* 1348 * Do nothing - defer abort processing until 1349 * srpt_queue_response() is invoked. 1350 */ 1351 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false)); 1352 break; 1353 case SRPT_STATE_NEED_DATA: 1354 /* DMA_TO_DEVICE (write) - RDMA read error. */ 1355 1356 /* XXX(hch): this is a horrible layering violation.. */ 1357 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1358 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE; 1359 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1360 break; 1361 case SRPT_STATE_CMD_RSP_SENT: 1362 /* 1363 * SRP_RSP sending failed or the SRP_RSP send completion has 1364 * not been received in time. 1365 */ 1366 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1367 target_put_sess_cmd(&ioctx->cmd); 1368 break; 1369 case SRPT_STATE_MGMT_RSP_SENT: 1370 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1371 target_put_sess_cmd(&ioctx->cmd); 1372 break; 1373 default: 1374 WARN(1, "Unexpected command state (%d)", state); 1375 break; 1376 } 1377 1378 out: 1379 return state; 1380 } 1381 1382 /** 1383 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion. 1384 */ 1385 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id) 1386 { 1387 struct srpt_send_ioctx *ioctx; 1388 enum srpt_command_state state; 1389 u32 index; 1390 1391 atomic_inc(&ch->sq_wr_avail); 1392 1393 index = idx_from_wr_id(wr_id); 1394 ioctx = ch->ioctx_ring[index]; 1395 state = srpt_get_cmd_state(ioctx); 1396 1397 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1398 && state != SRPT_STATE_MGMT_RSP_SENT 1399 && state != SRPT_STATE_NEED_DATA 1400 && state != SRPT_STATE_DONE); 1401 1402 /* If SRP_RSP sending failed, undo the ch->req_lim change. */ 1403 if (state == SRPT_STATE_CMD_RSP_SENT 1404 || state == SRPT_STATE_MGMT_RSP_SENT) 1405 atomic_dec(&ch->req_lim); 1406 1407 srpt_abort_cmd(ioctx); 1408 } 1409 1410 /** 1411 * srpt_handle_send_comp() - Process an IB send completion notification. 1412 */ 1413 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch, 1414 struct srpt_send_ioctx *ioctx) 1415 { 1416 enum srpt_command_state state; 1417 1418 atomic_inc(&ch->sq_wr_avail); 1419 1420 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1421 1422 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1423 && state != SRPT_STATE_MGMT_RSP_SENT 1424 && state != SRPT_STATE_DONE)) 1425 pr_debug("state = %d\n", state); 1426 1427 if (state != SRPT_STATE_DONE) { 1428 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1429 transport_generic_free_cmd(&ioctx->cmd, 0); 1430 } else { 1431 pr_err("IB completion has been received too late for" 1432 " wr_id = %u.\n", ioctx->ioctx.index); 1433 } 1434 } 1435 1436 /** 1437 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification. 1438 * 1439 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1440 * the data that has been transferred via IB RDMA had to be postponed until the 1441 * check_stop_free() callback. None of this is necessary anymore and needs to 1442 * be cleaned up. 1443 */ 1444 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch, 1445 struct srpt_send_ioctx *ioctx, 1446 enum srpt_opcode opcode) 1447 { 1448 WARN_ON(ioctx->n_rdma <= 0); 1449 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1450 1451 if (opcode == SRPT_RDMA_READ_LAST) { 1452 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1453 SRPT_STATE_DATA_IN)) 1454 target_execute_cmd(&ioctx->cmd); 1455 else 1456 pr_err("%s[%d]: wrong state = %d\n", __func__, 1457 __LINE__, srpt_get_cmd_state(ioctx)); 1458 } else if (opcode == SRPT_RDMA_ABORT) { 1459 ioctx->rdma_aborted = true; 1460 } else { 1461 WARN(true, "unexpected opcode %d\n", opcode); 1462 } 1463 } 1464 1465 /** 1466 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion. 1467 */ 1468 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch, 1469 struct srpt_send_ioctx *ioctx, 1470 enum srpt_opcode opcode) 1471 { 1472 enum srpt_command_state state; 1473 1474 state = srpt_get_cmd_state(ioctx); 1475 switch (opcode) { 1476 case SRPT_RDMA_READ_LAST: 1477 if (ioctx->n_rdma <= 0) { 1478 pr_err("Received invalid RDMA read" 1479 " error completion with idx %d\n", 1480 ioctx->ioctx.index); 1481 break; 1482 } 1483 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1484 if (state == SRPT_STATE_NEED_DATA) 1485 srpt_abort_cmd(ioctx); 1486 else 1487 pr_err("%s[%d]: wrong state = %d\n", 1488 __func__, __LINE__, state); 1489 break; 1490 case SRPT_RDMA_WRITE_LAST: 1491 break; 1492 default: 1493 pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode); 1494 break; 1495 } 1496 } 1497 1498 /** 1499 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1500 * @ch: RDMA channel through which the request has been received. 1501 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1502 * be built in the buffer ioctx->buf points at and hence this function will 1503 * overwrite the request data. 1504 * @tag: tag of the request for which this response is being generated. 1505 * @status: value for the STATUS field of the SRP_RSP information unit. 1506 * 1507 * Returns the size in bytes of the SRP_RSP response. 1508 * 1509 * An SRP_RSP response contains a SCSI status or service response. See also 1510 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1511 * response. See also SPC-2 for more information about sense data. 1512 */ 1513 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1514 struct srpt_send_ioctx *ioctx, u64 tag, 1515 int status) 1516 { 1517 struct srp_rsp *srp_rsp; 1518 const u8 *sense_data; 1519 int sense_data_len, max_sense_len; 1520 1521 /* 1522 * The lowest bit of all SAM-3 status codes is zero (see also 1523 * paragraph 5.3 in SAM-3). 1524 */ 1525 WARN_ON(status & 1); 1526 1527 srp_rsp = ioctx->ioctx.buf; 1528 BUG_ON(!srp_rsp); 1529 1530 sense_data = ioctx->sense_data; 1531 sense_data_len = ioctx->cmd.scsi_sense_length; 1532 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1533 1534 memset(srp_rsp, 0, sizeof *srp_rsp); 1535 srp_rsp->opcode = SRP_RSP; 1536 srp_rsp->req_lim_delta = 1537 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1538 srp_rsp->tag = tag; 1539 srp_rsp->status = status; 1540 1541 if (sense_data_len) { 1542 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1543 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1544 if (sense_data_len > max_sense_len) { 1545 pr_warn("truncated sense data from %d to %d" 1546 " bytes\n", sense_data_len, max_sense_len); 1547 sense_data_len = max_sense_len; 1548 } 1549 1550 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1551 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1552 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1553 } 1554 1555 return sizeof(*srp_rsp) + sense_data_len; 1556 } 1557 1558 /** 1559 * srpt_build_tskmgmt_rsp() - Build a task management response. 1560 * @ch: RDMA channel through which the request has been received. 1561 * @ioctx: I/O context in which the SRP_RSP response will be built. 1562 * @rsp_code: RSP_CODE that will be stored in the response. 1563 * @tag: Tag of the request for which this response is being generated. 1564 * 1565 * Returns the size in bytes of the SRP_RSP response. 1566 * 1567 * An SRP_RSP response contains a SCSI status or service response. See also 1568 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1569 * response. 1570 */ 1571 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1572 struct srpt_send_ioctx *ioctx, 1573 u8 rsp_code, u64 tag) 1574 { 1575 struct srp_rsp *srp_rsp; 1576 int resp_data_len; 1577 int resp_len; 1578 1579 resp_data_len = 4; 1580 resp_len = sizeof(*srp_rsp) + resp_data_len; 1581 1582 srp_rsp = ioctx->ioctx.buf; 1583 BUG_ON(!srp_rsp); 1584 memset(srp_rsp, 0, sizeof *srp_rsp); 1585 1586 srp_rsp->opcode = SRP_RSP; 1587 srp_rsp->req_lim_delta = 1588 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1589 srp_rsp->tag = tag; 1590 1591 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1592 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1593 srp_rsp->data[3] = rsp_code; 1594 1595 return resp_len; 1596 } 1597 1598 #define NO_SUCH_LUN ((uint64_t)-1LL) 1599 1600 /* 1601 * SCSI LUN addressing method. See also SAM-2 and the section about 1602 * eight byte LUNs. 1603 */ 1604 enum scsi_lun_addr_method { 1605 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0, 1606 SCSI_LUN_ADDR_METHOD_FLAT = 1, 1607 SCSI_LUN_ADDR_METHOD_LUN = 2, 1608 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3, 1609 }; 1610 1611 /* 1612 * srpt_unpack_lun() - Convert from network LUN to linear LUN. 1613 * 1614 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte 1615 * order (big endian) to a linear LUN. Supports three LUN addressing methods: 1616 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40). 1617 */ 1618 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len) 1619 { 1620 uint64_t res = NO_SUCH_LUN; 1621 int addressing_method; 1622 1623 if (unlikely(len < 2)) { 1624 pr_err("Illegal LUN length %d, expected 2 bytes or more\n", 1625 len); 1626 goto out; 1627 } 1628 1629 switch (len) { 1630 case 8: 1631 if ((*((__be64 *)lun) & 1632 cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0) 1633 goto out_err; 1634 break; 1635 case 4: 1636 if (*((__be16 *)&lun[2]) != 0) 1637 goto out_err; 1638 break; 1639 case 6: 1640 if (*((__be32 *)&lun[2]) != 0) 1641 goto out_err; 1642 break; 1643 case 2: 1644 break; 1645 default: 1646 goto out_err; 1647 } 1648 1649 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */ 1650 switch (addressing_method) { 1651 case SCSI_LUN_ADDR_METHOD_PERIPHERAL: 1652 case SCSI_LUN_ADDR_METHOD_FLAT: 1653 case SCSI_LUN_ADDR_METHOD_LUN: 1654 res = *(lun + 1) | (((*lun) & 0x3f) << 8); 1655 break; 1656 1657 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN: 1658 default: 1659 pr_err("Unimplemented LUN addressing method %u\n", 1660 addressing_method); 1661 break; 1662 } 1663 1664 out: 1665 return res; 1666 1667 out_err: 1668 pr_err("Support for multi-level LUNs has not yet been implemented\n"); 1669 goto out; 1670 } 1671 1672 static int srpt_check_stop_free(struct se_cmd *cmd) 1673 { 1674 struct srpt_send_ioctx *ioctx = container_of(cmd, 1675 struct srpt_send_ioctx, cmd); 1676 1677 return target_put_sess_cmd(&ioctx->cmd); 1678 } 1679 1680 /** 1681 * srpt_handle_cmd() - Process SRP_CMD. 1682 */ 1683 static int srpt_handle_cmd(struct srpt_rdma_ch *ch, 1684 struct srpt_recv_ioctx *recv_ioctx, 1685 struct srpt_send_ioctx *send_ioctx) 1686 { 1687 struct se_cmd *cmd; 1688 struct srp_cmd *srp_cmd; 1689 uint64_t unpacked_lun; 1690 u64 data_len; 1691 enum dma_data_direction dir; 1692 sense_reason_t ret; 1693 int rc; 1694 1695 BUG_ON(!send_ioctx); 1696 1697 srp_cmd = recv_ioctx->ioctx.buf; 1698 cmd = &send_ioctx->cmd; 1699 cmd->tag = srp_cmd->tag; 1700 1701 switch (srp_cmd->task_attr) { 1702 case SRP_CMD_SIMPLE_Q: 1703 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1704 break; 1705 case SRP_CMD_ORDERED_Q: 1706 default: 1707 cmd->sam_task_attr = TCM_ORDERED_TAG; 1708 break; 1709 case SRP_CMD_HEAD_OF_Q: 1710 cmd->sam_task_attr = TCM_HEAD_TAG; 1711 break; 1712 case SRP_CMD_ACA: 1713 cmd->sam_task_attr = TCM_ACA_TAG; 1714 break; 1715 } 1716 1717 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) { 1718 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1719 srp_cmd->tag); 1720 ret = TCM_INVALID_CDB_FIELD; 1721 goto send_sense; 1722 } 1723 1724 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun, 1725 sizeof(srp_cmd->lun)); 1726 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb, 1727 &send_ioctx->sense_data[0], unpacked_lun, data_len, 1728 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF); 1729 if (rc != 0) { 1730 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1731 goto send_sense; 1732 } 1733 return 0; 1734 1735 send_sense: 1736 transport_send_check_condition_and_sense(cmd, ret, 0); 1737 return -1; 1738 } 1739 1740 /** 1741 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag. 1742 * @ch: RDMA channel of the task management request. 1743 * @fn: Task management function to perform. 1744 * @req_tag: Tag of the SRP task management request. 1745 * @mgmt_ioctx: I/O context of the task management request. 1746 * 1747 * Returns zero if the target core will process the task management 1748 * request asynchronously. 1749 * 1750 * Note: It is assumed that the initiator serializes tag-based task management 1751 * requests. 1752 */ 1753 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag) 1754 { 1755 struct srpt_device *sdev; 1756 struct srpt_rdma_ch *ch; 1757 struct srpt_send_ioctx *target; 1758 int ret, i; 1759 1760 ret = -EINVAL; 1761 ch = ioctx->ch; 1762 BUG_ON(!ch); 1763 BUG_ON(!ch->sport); 1764 sdev = ch->sport->sdev; 1765 BUG_ON(!sdev); 1766 spin_lock_irq(&sdev->spinlock); 1767 for (i = 0; i < ch->rq_size; ++i) { 1768 target = ch->ioctx_ring[i]; 1769 if (target->cmd.se_lun == ioctx->cmd.se_lun && 1770 target->cmd.tag == tag && 1771 srpt_get_cmd_state(target) != SRPT_STATE_DONE) { 1772 ret = 0; 1773 /* now let the target core abort &target->cmd; */ 1774 break; 1775 } 1776 } 1777 spin_unlock_irq(&sdev->spinlock); 1778 return ret; 1779 } 1780 1781 static int srp_tmr_to_tcm(int fn) 1782 { 1783 switch (fn) { 1784 case SRP_TSK_ABORT_TASK: 1785 return TMR_ABORT_TASK; 1786 case SRP_TSK_ABORT_TASK_SET: 1787 return TMR_ABORT_TASK_SET; 1788 case SRP_TSK_CLEAR_TASK_SET: 1789 return TMR_CLEAR_TASK_SET; 1790 case SRP_TSK_LUN_RESET: 1791 return TMR_LUN_RESET; 1792 case SRP_TSK_CLEAR_ACA: 1793 return TMR_CLEAR_ACA; 1794 default: 1795 return -1; 1796 } 1797 } 1798 1799 /** 1800 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1801 * 1802 * Returns 0 if and only if the request will be processed by the target core. 1803 * 1804 * For more information about SRP_TSK_MGMT information units, see also section 1805 * 6.7 in the SRP r16a document. 1806 */ 1807 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1808 struct srpt_recv_ioctx *recv_ioctx, 1809 struct srpt_send_ioctx *send_ioctx) 1810 { 1811 struct srp_tsk_mgmt *srp_tsk; 1812 struct se_cmd *cmd; 1813 struct se_session *sess = ch->sess; 1814 uint64_t unpacked_lun; 1815 uint32_t tag = 0; 1816 int tcm_tmr; 1817 int rc; 1818 1819 BUG_ON(!send_ioctx); 1820 1821 srp_tsk = recv_ioctx->ioctx.buf; 1822 cmd = &send_ioctx->cmd; 1823 1824 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1825 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1826 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1827 1828 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1829 send_ioctx->cmd.tag = srp_tsk->tag; 1830 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1831 if (tcm_tmr < 0) { 1832 send_ioctx->cmd.se_tmr_req->response = 1833 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 1834 goto fail; 1835 } 1836 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun, 1837 sizeof(srp_tsk->lun)); 1838 1839 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) { 1840 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag); 1841 if (rc < 0) { 1842 send_ioctx->cmd.se_tmr_req->response = 1843 TMR_TASK_DOES_NOT_EXIST; 1844 goto fail; 1845 } 1846 tag = srp_tsk->task_tag; 1847 } 1848 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun, 1849 srp_tsk, tcm_tmr, GFP_KERNEL, tag, 1850 TARGET_SCF_ACK_KREF); 1851 if (rc != 0) { 1852 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1853 goto fail; 1854 } 1855 return; 1856 fail: 1857 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1858 } 1859 1860 /** 1861 * srpt_handle_new_iu() - Process a newly received information unit. 1862 * @ch: RDMA channel through which the information unit has been received. 1863 * @ioctx: SRPT I/O context associated with the information unit. 1864 */ 1865 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1866 struct srpt_recv_ioctx *recv_ioctx, 1867 struct srpt_send_ioctx *send_ioctx) 1868 { 1869 struct srp_cmd *srp_cmd; 1870 enum rdma_ch_state ch_state; 1871 1872 BUG_ON(!ch); 1873 BUG_ON(!recv_ioctx); 1874 1875 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1876 recv_ioctx->ioctx.dma, srp_max_req_size, 1877 DMA_FROM_DEVICE); 1878 1879 ch_state = srpt_get_ch_state(ch); 1880 if (unlikely(ch_state == CH_CONNECTING)) { 1881 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1882 goto out; 1883 } 1884 1885 if (unlikely(ch_state != CH_LIVE)) 1886 goto out; 1887 1888 srp_cmd = recv_ioctx->ioctx.buf; 1889 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1890 if (!send_ioctx) 1891 send_ioctx = srpt_get_send_ioctx(ch); 1892 if (unlikely(!send_ioctx)) { 1893 list_add_tail(&recv_ioctx->wait_list, 1894 &ch->cmd_wait_list); 1895 goto out; 1896 } 1897 } 1898 1899 switch (srp_cmd->opcode) { 1900 case SRP_CMD: 1901 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1902 break; 1903 case SRP_TSK_MGMT: 1904 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1905 break; 1906 case SRP_I_LOGOUT: 1907 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1908 break; 1909 case SRP_CRED_RSP: 1910 pr_debug("received SRP_CRED_RSP\n"); 1911 break; 1912 case SRP_AER_RSP: 1913 pr_debug("received SRP_AER_RSP\n"); 1914 break; 1915 case SRP_RSP: 1916 pr_err("Received SRP_RSP\n"); 1917 break; 1918 default: 1919 pr_err("received IU with unknown opcode 0x%x\n", 1920 srp_cmd->opcode); 1921 break; 1922 } 1923 1924 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1925 out: 1926 return; 1927 } 1928 1929 static void srpt_process_rcv_completion(struct ib_cq *cq, 1930 struct srpt_rdma_ch *ch, 1931 struct ib_wc *wc) 1932 { 1933 struct srpt_device *sdev = ch->sport->sdev; 1934 struct srpt_recv_ioctx *ioctx; 1935 u32 index; 1936 1937 index = idx_from_wr_id(wc->wr_id); 1938 if (wc->status == IB_WC_SUCCESS) { 1939 int req_lim; 1940 1941 req_lim = atomic_dec_return(&ch->req_lim); 1942 if (unlikely(req_lim < 0)) 1943 pr_err("req_lim = %d < 0\n", req_lim); 1944 ioctx = sdev->ioctx_ring[index]; 1945 srpt_handle_new_iu(ch, ioctx, NULL); 1946 } else { 1947 pr_info("receiving failed for idx %u with status %d\n", 1948 index, wc->status); 1949 } 1950 } 1951 1952 /** 1953 * srpt_process_send_completion() - Process an IB send completion. 1954 * 1955 * Note: Although this has not yet been observed during tests, at least in 1956 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1957 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1958 * value in each response is set to one, and it is possible that this response 1959 * makes the initiator send a new request before the send completion for that 1960 * response has been processed. This could e.g. happen if the call to 1961 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1962 * if IB retransmission causes generation of the send completion to be 1963 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1964 * are queued on cmd_wait_list. The code below processes these delayed 1965 * requests one at a time. 1966 */ 1967 static void srpt_process_send_completion(struct ib_cq *cq, 1968 struct srpt_rdma_ch *ch, 1969 struct ib_wc *wc) 1970 { 1971 struct srpt_send_ioctx *send_ioctx; 1972 uint32_t index; 1973 enum srpt_opcode opcode; 1974 1975 index = idx_from_wr_id(wc->wr_id); 1976 opcode = opcode_from_wr_id(wc->wr_id); 1977 send_ioctx = ch->ioctx_ring[index]; 1978 if (wc->status == IB_WC_SUCCESS) { 1979 if (opcode == SRPT_SEND) 1980 srpt_handle_send_comp(ch, send_ioctx); 1981 else { 1982 WARN_ON(opcode != SRPT_RDMA_ABORT && 1983 wc->opcode != IB_WC_RDMA_READ); 1984 srpt_handle_rdma_comp(ch, send_ioctx, opcode); 1985 } 1986 } else { 1987 if (opcode == SRPT_SEND) { 1988 pr_info("sending response for idx %u failed" 1989 " with status %d\n", index, wc->status); 1990 srpt_handle_send_err_comp(ch, wc->wr_id); 1991 } else if (opcode != SRPT_RDMA_MID) { 1992 pr_info("RDMA t %d for idx %u failed with" 1993 " status %d\n", opcode, index, wc->status); 1994 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode); 1995 } 1996 } 1997 1998 while (unlikely(opcode == SRPT_SEND 1999 && !list_empty(&ch->cmd_wait_list) 2000 && srpt_get_ch_state(ch) == CH_LIVE 2001 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) { 2002 struct srpt_recv_ioctx *recv_ioctx; 2003 2004 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 2005 struct srpt_recv_ioctx, 2006 wait_list); 2007 list_del(&recv_ioctx->wait_list); 2008 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx); 2009 } 2010 } 2011 2012 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch) 2013 { 2014 struct ib_wc *const wc = ch->wc; 2015 int i, n; 2016 2017 WARN_ON(cq != ch->cq); 2018 2019 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 2020 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) { 2021 for (i = 0; i < n; i++) { 2022 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV) 2023 srpt_process_rcv_completion(cq, ch, &wc[i]); 2024 else 2025 srpt_process_send_completion(cq, ch, &wc[i]); 2026 } 2027 } 2028 } 2029 2030 /** 2031 * srpt_completion() - IB completion queue callback function. 2032 * 2033 * Notes: 2034 * - It is guaranteed that a completion handler will never be invoked 2035 * concurrently on two different CPUs for the same completion queue. See also 2036 * Documentation/infiniband/core_locking.txt and the implementation of 2037 * handle_edge_irq() in kernel/irq/chip.c. 2038 * - When threaded IRQs are enabled, completion handlers are invoked in thread 2039 * context instead of interrupt context. 2040 */ 2041 static void srpt_completion(struct ib_cq *cq, void *ctx) 2042 { 2043 struct srpt_rdma_ch *ch = ctx; 2044 2045 wake_up_interruptible(&ch->wait_queue); 2046 } 2047 2048 static int srpt_compl_thread(void *arg) 2049 { 2050 struct srpt_rdma_ch *ch; 2051 2052 /* Hibernation / freezing of the SRPT kernel thread is not supported. */ 2053 current->flags |= PF_NOFREEZE; 2054 2055 ch = arg; 2056 BUG_ON(!ch); 2057 pr_info("Session %s: kernel thread %s (PID %d) started\n", 2058 ch->sess_name, ch->thread->comm, current->pid); 2059 while (!kthread_should_stop()) { 2060 wait_event_interruptible(ch->wait_queue, 2061 (srpt_process_completion(ch->cq, ch), 2062 kthread_should_stop())); 2063 } 2064 pr_info("Session %s: kernel thread %s (PID %d) stopped\n", 2065 ch->sess_name, ch->thread->comm, current->pid); 2066 return 0; 2067 } 2068 2069 /** 2070 * srpt_create_ch_ib() - Create receive and send completion queues. 2071 */ 2072 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 2073 { 2074 struct ib_qp_init_attr *qp_init; 2075 struct srpt_port *sport = ch->sport; 2076 struct srpt_device *sdev = sport->sdev; 2077 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 2078 struct ib_cq_init_attr cq_attr = {}; 2079 int ret; 2080 2081 WARN_ON(ch->rq_size < 1); 2082 2083 ret = -ENOMEM; 2084 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL); 2085 if (!qp_init) 2086 goto out; 2087 2088 retry: 2089 cq_attr.cqe = ch->rq_size + srp_sq_size; 2090 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch, 2091 &cq_attr); 2092 if (IS_ERR(ch->cq)) { 2093 ret = PTR_ERR(ch->cq); 2094 pr_err("failed to create CQ cqe= %d ret= %d\n", 2095 ch->rq_size + srp_sq_size, ret); 2096 goto out; 2097 } 2098 2099 qp_init->qp_context = (void *)ch; 2100 qp_init->event_handler 2101 = (void(*)(struct ib_event *, void*))srpt_qp_event; 2102 qp_init->send_cq = ch->cq; 2103 qp_init->recv_cq = ch->cq; 2104 qp_init->srq = sdev->srq; 2105 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 2106 qp_init->qp_type = IB_QPT_RC; 2107 qp_init->cap.max_send_wr = srp_sq_size; 2108 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 2109 2110 ch->qp = ib_create_qp(sdev->pd, qp_init); 2111 if (IS_ERR(ch->qp)) { 2112 ret = PTR_ERR(ch->qp); 2113 if (ret == -ENOMEM) { 2114 srp_sq_size /= 2; 2115 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) { 2116 ib_destroy_cq(ch->cq); 2117 goto retry; 2118 } 2119 } 2120 pr_err("failed to create_qp ret= %d\n", ret); 2121 goto err_destroy_cq; 2122 } 2123 2124 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 2125 2126 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 2127 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 2128 qp_init->cap.max_send_wr, ch->cm_id); 2129 2130 ret = srpt_init_ch_qp(ch, ch->qp); 2131 if (ret) 2132 goto err_destroy_qp; 2133 2134 init_waitqueue_head(&ch->wait_queue); 2135 2136 pr_debug("creating thread for session %s\n", ch->sess_name); 2137 2138 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl"); 2139 if (IS_ERR(ch->thread)) { 2140 pr_err("failed to create kernel thread %ld\n", 2141 PTR_ERR(ch->thread)); 2142 ch->thread = NULL; 2143 goto err_destroy_qp; 2144 } 2145 2146 out: 2147 kfree(qp_init); 2148 return ret; 2149 2150 err_destroy_qp: 2151 ib_destroy_qp(ch->qp); 2152 err_destroy_cq: 2153 ib_destroy_cq(ch->cq); 2154 goto out; 2155 } 2156 2157 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 2158 { 2159 if (ch->thread) 2160 kthread_stop(ch->thread); 2161 2162 ib_destroy_qp(ch->qp); 2163 ib_destroy_cq(ch->cq); 2164 } 2165 2166 /** 2167 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state. 2168 * 2169 * Reset the QP and make sure all resources associated with the channel will 2170 * be deallocated at an appropriate time. 2171 * 2172 * Note: The caller must hold ch->sport->sdev->spinlock. 2173 */ 2174 static void __srpt_close_ch(struct srpt_rdma_ch *ch) 2175 { 2176 enum rdma_ch_state prev_state; 2177 unsigned long flags; 2178 2179 spin_lock_irqsave(&ch->spinlock, flags); 2180 prev_state = ch->state; 2181 switch (prev_state) { 2182 case CH_CONNECTING: 2183 case CH_LIVE: 2184 ch->state = CH_DISCONNECTING; 2185 break; 2186 default: 2187 break; 2188 } 2189 spin_unlock_irqrestore(&ch->spinlock, flags); 2190 2191 switch (prev_state) { 2192 case CH_CONNECTING: 2193 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0, 2194 NULL, 0); 2195 /* fall through */ 2196 case CH_LIVE: 2197 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0) 2198 pr_err("sending CM DREQ failed.\n"); 2199 break; 2200 case CH_DISCONNECTING: 2201 break; 2202 case CH_DRAINING: 2203 case CH_RELEASING: 2204 break; 2205 } 2206 } 2207 2208 /** 2209 * srpt_close_ch() - Close an RDMA channel. 2210 */ 2211 static void srpt_close_ch(struct srpt_rdma_ch *ch) 2212 { 2213 struct srpt_device *sdev; 2214 2215 sdev = ch->sport->sdev; 2216 spin_lock_irq(&sdev->spinlock); 2217 __srpt_close_ch(ch); 2218 spin_unlock_irq(&sdev->spinlock); 2219 } 2220 2221 /** 2222 * srpt_shutdown_session() - Whether or not a session may be shut down. 2223 */ 2224 static int srpt_shutdown_session(struct se_session *se_sess) 2225 { 2226 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2227 unsigned long flags; 2228 2229 spin_lock_irqsave(&ch->spinlock, flags); 2230 if (ch->in_shutdown) { 2231 spin_unlock_irqrestore(&ch->spinlock, flags); 2232 return true; 2233 } 2234 2235 ch->in_shutdown = true; 2236 target_sess_cmd_list_set_waiting(se_sess); 2237 spin_unlock_irqrestore(&ch->spinlock, flags); 2238 2239 return true; 2240 } 2241 2242 /** 2243 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair. 2244 * @cm_id: Pointer to the CM ID of the channel to be drained. 2245 * 2246 * Note: Must be called from inside srpt_cm_handler to avoid a race between 2247 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one() 2248 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one() 2249 * waits until all target sessions for the associated IB device have been 2250 * unregistered and target session registration involves a call to 2251 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until 2252 * this function has finished). 2253 */ 2254 static void srpt_drain_channel(struct ib_cm_id *cm_id) 2255 { 2256 struct srpt_device *sdev; 2257 struct srpt_rdma_ch *ch; 2258 int ret; 2259 bool do_reset = false; 2260 2261 WARN_ON_ONCE(irqs_disabled()); 2262 2263 sdev = cm_id->context; 2264 BUG_ON(!sdev); 2265 spin_lock_irq(&sdev->spinlock); 2266 list_for_each_entry(ch, &sdev->rch_list, list) { 2267 if (ch->cm_id == cm_id) { 2268 do_reset = srpt_test_and_set_ch_state(ch, 2269 CH_CONNECTING, CH_DRAINING) || 2270 srpt_test_and_set_ch_state(ch, 2271 CH_LIVE, CH_DRAINING) || 2272 srpt_test_and_set_ch_state(ch, 2273 CH_DISCONNECTING, CH_DRAINING); 2274 break; 2275 } 2276 } 2277 spin_unlock_irq(&sdev->spinlock); 2278 2279 if (do_reset) { 2280 if (ch->sess) 2281 srpt_shutdown_session(ch->sess); 2282 2283 ret = srpt_ch_qp_err(ch); 2284 if (ret < 0) 2285 pr_err("Setting queue pair in error state" 2286 " failed: %d\n", ret); 2287 } 2288 } 2289 2290 /** 2291 * srpt_find_channel() - Look up an RDMA channel. 2292 * @cm_id: Pointer to the CM ID of the channel to be looked up. 2293 * 2294 * Return NULL if no matching RDMA channel has been found. 2295 */ 2296 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev, 2297 struct ib_cm_id *cm_id) 2298 { 2299 struct srpt_rdma_ch *ch; 2300 bool found; 2301 2302 WARN_ON_ONCE(irqs_disabled()); 2303 BUG_ON(!sdev); 2304 2305 found = false; 2306 spin_lock_irq(&sdev->spinlock); 2307 list_for_each_entry(ch, &sdev->rch_list, list) { 2308 if (ch->cm_id == cm_id) { 2309 found = true; 2310 break; 2311 } 2312 } 2313 spin_unlock_irq(&sdev->spinlock); 2314 2315 return found ? ch : NULL; 2316 } 2317 2318 /** 2319 * srpt_release_channel() - Release channel resources. 2320 * 2321 * Schedules the actual release because: 2322 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would 2323 * trigger a deadlock. 2324 * - It is not safe to call TCM transport_* functions from interrupt context. 2325 */ 2326 static void srpt_release_channel(struct srpt_rdma_ch *ch) 2327 { 2328 schedule_work(&ch->release_work); 2329 } 2330 2331 static void srpt_release_channel_work(struct work_struct *w) 2332 { 2333 struct srpt_rdma_ch *ch; 2334 struct srpt_device *sdev; 2335 struct se_session *se_sess; 2336 2337 ch = container_of(w, struct srpt_rdma_ch, release_work); 2338 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess, 2339 ch->release_done); 2340 2341 sdev = ch->sport->sdev; 2342 BUG_ON(!sdev); 2343 2344 se_sess = ch->sess; 2345 BUG_ON(!se_sess); 2346 2347 target_wait_for_sess_cmds(se_sess); 2348 2349 transport_deregister_session_configfs(se_sess); 2350 transport_deregister_session(se_sess); 2351 ch->sess = NULL; 2352 2353 ib_destroy_cm_id(ch->cm_id); 2354 2355 srpt_destroy_ch_ib(ch); 2356 2357 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2358 ch->sport->sdev, ch->rq_size, 2359 ch->rsp_size, DMA_TO_DEVICE); 2360 2361 spin_lock_irq(&sdev->spinlock); 2362 list_del(&ch->list); 2363 spin_unlock_irq(&sdev->spinlock); 2364 2365 if (ch->release_done) 2366 complete(ch->release_done); 2367 2368 wake_up(&sdev->ch_releaseQ); 2369 2370 kfree(ch); 2371 } 2372 2373 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport, 2374 u8 i_port_id[16]) 2375 { 2376 struct srpt_node_acl *nacl; 2377 2378 list_for_each_entry(nacl, &sport->port_acl_list, list) 2379 if (memcmp(nacl->i_port_id, i_port_id, 2380 sizeof(nacl->i_port_id)) == 0) 2381 return nacl; 2382 2383 return NULL; 2384 } 2385 2386 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport, 2387 u8 i_port_id[16]) 2388 { 2389 struct srpt_node_acl *nacl; 2390 2391 spin_lock_irq(&sport->port_acl_lock); 2392 nacl = __srpt_lookup_acl(sport, i_port_id); 2393 spin_unlock_irq(&sport->port_acl_lock); 2394 2395 return nacl; 2396 } 2397 2398 /** 2399 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 2400 * 2401 * Ownership of the cm_id is transferred to the target session if this 2402 * functions returns zero. Otherwise the caller remains the owner of cm_id. 2403 */ 2404 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 2405 struct ib_cm_req_event_param *param, 2406 void *private_data) 2407 { 2408 struct srpt_device *sdev = cm_id->context; 2409 struct srpt_port *sport = &sdev->port[param->port - 1]; 2410 struct srp_login_req *req; 2411 struct srp_login_rsp *rsp; 2412 struct srp_login_rej *rej; 2413 struct ib_cm_rep_param *rep_param; 2414 struct srpt_rdma_ch *ch, *tmp_ch; 2415 struct srpt_node_acl *nacl; 2416 u32 it_iu_len; 2417 int i; 2418 int ret = 0; 2419 2420 WARN_ON_ONCE(irqs_disabled()); 2421 2422 if (WARN_ON(!sdev || !private_data)) 2423 return -EINVAL; 2424 2425 req = (struct srp_login_req *)private_data; 2426 2427 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2428 2429 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 2430 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 2431 " (guid=0x%llx:0x%llx)\n", 2432 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 2433 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 2434 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 2435 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 2436 it_iu_len, 2437 param->port, 2438 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 2439 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 2440 2441 rsp = kzalloc(sizeof *rsp, GFP_KERNEL); 2442 rej = kzalloc(sizeof *rej, GFP_KERNEL); 2443 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL); 2444 2445 if (!rsp || !rej || !rep_param) { 2446 ret = -ENOMEM; 2447 goto out; 2448 } 2449 2450 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2451 rej->reason = cpu_to_be32( 2452 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2453 ret = -EINVAL; 2454 pr_err("rejected SRP_LOGIN_REQ because its" 2455 " length (%d bytes) is out of range (%d .. %d)\n", 2456 it_iu_len, 64, srp_max_req_size); 2457 goto reject; 2458 } 2459 2460 if (!sport->enabled) { 2461 rej->reason = cpu_to_be32( 2462 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2463 ret = -EINVAL; 2464 pr_err("rejected SRP_LOGIN_REQ because the target port" 2465 " has not yet been enabled\n"); 2466 goto reject; 2467 } 2468 2469 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2470 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2471 2472 spin_lock_irq(&sdev->spinlock); 2473 2474 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 2475 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 2476 && !memcmp(ch->t_port_id, req->target_port_id, 16) 2477 && param->port == ch->sport->port 2478 && param->listen_id == ch->sport->sdev->cm_id 2479 && ch->cm_id) { 2480 enum rdma_ch_state ch_state; 2481 2482 ch_state = srpt_get_ch_state(ch); 2483 if (ch_state != CH_CONNECTING 2484 && ch_state != CH_LIVE) 2485 continue; 2486 2487 /* found an existing channel */ 2488 pr_debug("Found existing channel %s" 2489 " cm_id= %p state= %d\n", 2490 ch->sess_name, ch->cm_id, ch_state); 2491 2492 __srpt_close_ch(ch); 2493 2494 rsp->rsp_flags = 2495 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2496 } 2497 } 2498 2499 spin_unlock_irq(&sdev->spinlock); 2500 2501 } else 2502 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2503 2504 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2505 || *(__be64 *)(req->target_port_id + 8) != 2506 cpu_to_be64(srpt_service_guid)) { 2507 rej->reason = cpu_to_be32( 2508 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2509 ret = -ENOMEM; 2510 pr_err("rejected SRP_LOGIN_REQ because it" 2511 " has an invalid target port identifier.\n"); 2512 goto reject; 2513 } 2514 2515 ch = kzalloc(sizeof *ch, GFP_KERNEL); 2516 if (!ch) { 2517 rej->reason = cpu_to_be32( 2518 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2519 pr_err("rejected SRP_LOGIN_REQ because no memory.\n"); 2520 ret = -ENOMEM; 2521 goto reject; 2522 } 2523 2524 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2525 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2526 memcpy(ch->t_port_id, req->target_port_id, 16); 2527 ch->sport = &sdev->port[param->port - 1]; 2528 ch->cm_id = cm_id; 2529 /* 2530 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 2531 * for the SRP protocol to the command queue size. 2532 */ 2533 ch->rq_size = SRPT_RQ_SIZE; 2534 spin_lock_init(&ch->spinlock); 2535 ch->state = CH_CONNECTING; 2536 INIT_LIST_HEAD(&ch->cmd_wait_list); 2537 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2538 2539 ch->ioctx_ring = (struct srpt_send_ioctx **) 2540 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2541 sizeof(*ch->ioctx_ring[0]), 2542 ch->rsp_size, DMA_TO_DEVICE); 2543 if (!ch->ioctx_ring) 2544 goto free_ch; 2545 2546 INIT_LIST_HEAD(&ch->free_list); 2547 for (i = 0; i < ch->rq_size; i++) { 2548 ch->ioctx_ring[i]->ch = ch; 2549 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2550 } 2551 2552 ret = srpt_create_ch_ib(ch); 2553 if (ret) { 2554 rej->reason = cpu_to_be32( 2555 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2556 pr_err("rejected SRP_LOGIN_REQ because creating" 2557 " a new RDMA channel failed.\n"); 2558 goto free_ring; 2559 } 2560 2561 ret = srpt_ch_qp_rtr(ch, ch->qp); 2562 if (ret) { 2563 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2564 pr_err("rejected SRP_LOGIN_REQ because enabling" 2565 " RTR failed (error code = %d)\n", ret); 2566 goto destroy_ib; 2567 } 2568 /* 2569 * Use the initator port identifier as the session name. 2570 */ 2571 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2572 be64_to_cpu(*(__be64 *)ch->i_port_id), 2573 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2574 2575 pr_debug("registering session %s\n", ch->sess_name); 2576 2577 nacl = srpt_lookup_acl(sport, ch->i_port_id); 2578 if (!nacl) { 2579 pr_info("Rejected login because no ACL has been" 2580 " configured yet for initiator %s.\n", ch->sess_name); 2581 rej->reason = cpu_to_be32( 2582 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2583 goto destroy_ib; 2584 } 2585 2586 ch->sess = transport_init_session(TARGET_PROT_NORMAL); 2587 if (IS_ERR(ch->sess)) { 2588 rej->reason = cpu_to_be32( 2589 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2590 pr_debug("Failed to create session\n"); 2591 goto deregister_session; 2592 } 2593 ch->sess->se_node_acl = &nacl->nacl; 2594 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch); 2595 2596 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2597 ch->sess_name, ch->cm_id); 2598 2599 /* create srp_login_response */ 2600 rsp->opcode = SRP_LOGIN_RSP; 2601 rsp->tag = req->tag; 2602 rsp->max_it_iu_len = req->req_it_iu_len; 2603 rsp->max_ti_iu_len = req->req_it_iu_len; 2604 ch->max_ti_iu_len = it_iu_len; 2605 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2606 | SRP_BUF_FORMAT_INDIRECT); 2607 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2608 atomic_set(&ch->req_lim, ch->rq_size); 2609 atomic_set(&ch->req_lim_delta, 0); 2610 2611 /* create cm reply */ 2612 rep_param->qp_num = ch->qp->qp_num; 2613 rep_param->private_data = (void *)rsp; 2614 rep_param->private_data_len = sizeof *rsp; 2615 rep_param->rnr_retry_count = 7; 2616 rep_param->flow_control = 1; 2617 rep_param->failover_accepted = 0; 2618 rep_param->srq = 1; 2619 rep_param->responder_resources = 4; 2620 rep_param->initiator_depth = 4; 2621 2622 ret = ib_send_cm_rep(cm_id, rep_param); 2623 if (ret) { 2624 pr_err("sending SRP_LOGIN_REQ response failed" 2625 " (error code = %d)\n", ret); 2626 goto release_channel; 2627 } 2628 2629 spin_lock_irq(&sdev->spinlock); 2630 list_add_tail(&ch->list, &sdev->rch_list); 2631 spin_unlock_irq(&sdev->spinlock); 2632 2633 goto out; 2634 2635 release_channel: 2636 srpt_set_ch_state(ch, CH_RELEASING); 2637 transport_deregister_session_configfs(ch->sess); 2638 2639 deregister_session: 2640 transport_deregister_session(ch->sess); 2641 ch->sess = NULL; 2642 2643 destroy_ib: 2644 srpt_destroy_ch_ib(ch); 2645 2646 free_ring: 2647 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2648 ch->sport->sdev, ch->rq_size, 2649 ch->rsp_size, DMA_TO_DEVICE); 2650 free_ch: 2651 kfree(ch); 2652 2653 reject: 2654 rej->opcode = SRP_LOGIN_REJ; 2655 rej->tag = req->tag; 2656 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2657 | SRP_BUF_FORMAT_INDIRECT); 2658 2659 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2660 (void *)rej, sizeof *rej); 2661 2662 out: 2663 kfree(rep_param); 2664 kfree(rsp); 2665 kfree(rej); 2666 2667 return ret; 2668 } 2669 2670 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id) 2671 { 2672 pr_info("Received IB REJ for cm_id %p.\n", cm_id); 2673 srpt_drain_channel(cm_id); 2674 } 2675 2676 /** 2677 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2678 * 2679 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2680 * and that the recipient may begin transmitting (RTU = ready to use). 2681 */ 2682 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id) 2683 { 2684 struct srpt_rdma_ch *ch; 2685 int ret; 2686 2687 ch = srpt_find_channel(cm_id->context, cm_id); 2688 BUG_ON(!ch); 2689 2690 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) { 2691 struct srpt_recv_ioctx *ioctx, *ioctx_tmp; 2692 2693 ret = srpt_ch_qp_rts(ch, ch->qp); 2694 2695 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list, 2696 wait_list) { 2697 list_del(&ioctx->wait_list); 2698 srpt_handle_new_iu(ch, ioctx, NULL); 2699 } 2700 if (ret) 2701 srpt_close_ch(ch); 2702 } 2703 } 2704 2705 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id) 2706 { 2707 pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id); 2708 srpt_drain_channel(cm_id); 2709 } 2710 2711 static void srpt_cm_rep_error(struct ib_cm_id *cm_id) 2712 { 2713 pr_info("Received IB REP error for cm_id %p.\n", cm_id); 2714 srpt_drain_channel(cm_id); 2715 } 2716 2717 /** 2718 * srpt_cm_dreq_recv() - Process reception of a DREQ message. 2719 */ 2720 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id) 2721 { 2722 struct srpt_rdma_ch *ch; 2723 unsigned long flags; 2724 bool send_drep = false; 2725 2726 ch = srpt_find_channel(cm_id->context, cm_id); 2727 BUG_ON(!ch); 2728 2729 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch)); 2730 2731 spin_lock_irqsave(&ch->spinlock, flags); 2732 switch (ch->state) { 2733 case CH_CONNECTING: 2734 case CH_LIVE: 2735 send_drep = true; 2736 ch->state = CH_DISCONNECTING; 2737 break; 2738 case CH_DISCONNECTING: 2739 case CH_DRAINING: 2740 case CH_RELEASING: 2741 WARN(true, "unexpected channel state %d\n", ch->state); 2742 break; 2743 } 2744 spin_unlock_irqrestore(&ch->spinlock, flags); 2745 2746 if (send_drep) { 2747 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0) 2748 pr_err("Sending IB DREP failed.\n"); 2749 pr_info("Received DREQ and sent DREP for session %s.\n", 2750 ch->sess_name); 2751 } 2752 } 2753 2754 /** 2755 * srpt_cm_drep_recv() - Process reception of a DREP message. 2756 */ 2757 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id) 2758 { 2759 pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id); 2760 srpt_drain_channel(cm_id); 2761 } 2762 2763 /** 2764 * srpt_cm_handler() - IB connection manager callback function. 2765 * 2766 * A non-zero return value will cause the caller destroy the CM ID. 2767 * 2768 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2769 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2770 * a non-zero value in any other case will trigger a race with the 2771 * ib_destroy_cm_id() call in srpt_release_channel(). 2772 */ 2773 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2774 { 2775 int ret; 2776 2777 ret = 0; 2778 switch (event->event) { 2779 case IB_CM_REQ_RECEIVED: 2780 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2781 event->private_data); 2782 break; 2783 case IB_CM_REJ_RECEIVED: 2784 srpt_cm_rej_recv(cm_id); 2785 break; 2786 case IB_CM_RTU_RECEIVED: 2787 case IB_CM_USER_ESTABLISHED: 2788 srpt_cm_rtu_recv(cm_id); 2789 break; 2790 case IB_CM_DREQ_RECEIVED: 2791 srpt_cm_dreq_recv(cm_id); 2792 break; 2793 case IB_CM_DREP_RECEIVED: 2794 srpt_cm_drep_recv(cm_id); 2795 break; 2796 case IB_CM_TIMEWAIT_EXIT: 2797 srpt_cm_timewait_exit(cm_id); 2798 break; 2799 case IB_CM_REP_ERROR: 2800 srpt_cm_rep_error(cm_id); 2801 break; 2802 case IB_CM_DREQ_ERROR: 2803 pr_info("Received IB DREQ ERROR event.\n"); 2804 break; 2805 case IB_CM_MRA_RECEIVED: 2806 pr_info("Received IB MRA event\n"); 2807 break; 2808 default: 2809 pr_err("received unrecognized IB CM event %d\n", event->event); 2810 break; 2811 } 2812 2813 return ret; 2814 } 2815 2816 /** 2817 * srpt_perform_rdmas() - Perform IB RDMA. 2818 * 2819 * Returns zero upon success or a negative number upon failure. 2820 */ 2821 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, 2822 struct srpt_send_ioctx *ioctx) 2823 { 2824 struct ib_rdma_wr wr; 2825 struct ib_send_wr *bad_wr; 2826 struct rdma_iu *riu; 2827 int i; 2828 int ret; 2829 int sq_wr_avail; 2830 enum dma_data_direction dir; 2831 const int n_rdma = ioctx->n_rdma; 2832 2833 dir = ioctx->cmd.data_direction; 2834 if (dir == DMA_TO_DEVICE) { 2835 /* write */ 2836 ret = -ENOMEM; 2837 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); 2838 if (sq_wr_avail < 0) { 2839 pr_warn("IB send queue full (needed %d)\n", 2840 n_rdma); 2841 goto out; 2842 } 2843 } 2844 2845 ioctx->rdma_aborted = false; 2846 ret = 0; 2847 riu = ioctx->rdma_ius; 2848 memset(&wr, 0, sizeof wr); 2849 2850 for (i = 0; i < n_rdma; ++i, ++riu) { 2851 if (dir == DMA_FROM_DEVICE) { 2852 wr.wr.opcode = IB_WR_RDMA_WRITE; 2853 wr.wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2854 SRPT_RDMA_WRITE_LAST : 2855 SRPT_RDMA_MID, 2856 ioctx->ioctx.index); 2857 } else { 2858 wr.wr.opcode = IB_WR_RDMA_READ; 2859 wr.wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2860 SRPT_RDMA_READ_LAST : 2861 SRPT_RDMA_MID, 2862 ioctx->ioctx.index); 2863 } 2864 wr.wr.next = NULL; 2865 wr.remote_addr = riu->raddr; 2866 wr.rkey = riu->rkey; 2867 wr.wr.num_sge = riu->sge_cnt; 2868 wr.wr.sg_list = riu->sge; 2869 2870 /* only get completion event for the last rdma write */ 2871 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE) 2872 wr.wr.send_flags = IB_SEND_SIGNALED; 2873 2874 ret = ib_post_send(ch->qp, &wr.wr, &bad_wr); 2875 if (ret) 2876 break; 2877 } 2878 2879 if (ret) 2880 pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n", 2881 __func__, __LINE__, ret, i, n_rdma); 2882 if (ret && i > 0) { 2883 wr.wr.num_sge = 0; 2884 wr.wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index); 2885 wr.wr.send_flags = IB_SEND_SIGNALED; 2886 while (ch->state == CH_LIVE && 2887 ib_post_send(ch->qp, &wr.wr, &bad_wr) != 0) { 2888 pr_info("Trying to abort failed RDMA transfer [%d]\n", 2889 ioctx->ioctx.index); 2890 msleep(1000); 2891 } 2892 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) { 2893 pr_info("Waiting until RDMA abort finished [%d]\n", 2894 ioctx->ioctx.index); 2895 msleep(1000); 2896 } 2897 } 2898 out: 2899 if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) 2900 atomic_add(n_rdma, &ch->sq_wr_avail); 2901 return ret; 2902 } 2903 2904 /** 2905 * srpt_xfer_data() - Start data transfer from initiator to target. 2906 */ 2907 static int srpt_xfer_data(struct srpt_rdma_ch *ch, 2908 struct srpt_send_ioctx *ioctx) 2909 { 2910 int ret; 2911 2912 ret = srpt_map_sg_to_ib_sge(ch, ioctx); 2913 if (ret) { 2914 pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret); 2915 goto out; 2916 } 2917 2918 ret = srpt_perform_rdmas(ch, ioctx); 2919 if (ret) { 2920 if (ret == -EAGAIN || ret == -ENOMEM) 2921 pr_info("%s[%d] queue full -- ret=%d\n", 2922 __func__, __LINE__, ret); 2923 else 2924 pr_err("%s[%d] fatal error -- ret=%d\n", 2925 __func__, __LINE__, ret); 2926 goto out_unmap; 2927 } 2928 2929 out: 2930 return ret; 2931 out_unmap: 2932 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2933 goto out; 2934 } 2935 2936 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2937 { 2938 struct srpt_send_ioctx *ioctx; 2939 2940 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2941 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2942 } 2943 2944 /* 2945 * srpt_write_pending() - Start data transfer from initiator to target (write). 2946 */ 2947 static int srpt_write_pending(struct se_cmd *se_cmd) 2948 { 2949 struct srpt_rdma_ch *ch; 2950 struct srpt_send_ioctx *ioctx; 2951 enum srpt_command_state new_state; 2952 enum rdma_ch_state ch_state; 2953 int ret; 2954 2955 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2956 2957 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2958 WARN_ON(new_state == SRPT_STATE_DONE); 2959 2960 ch = ioctx->ch; 2961 BUG_ON(!ch); 2962 2963 ch_state = srpt_get_ch_state(ch); 2964 switch (ch_state) { 2965 case CH_CONNECTING: 2966 WARN(true, "unexpected channel state %d\n", ch_state); 2967 ret = -EINVAL; 2968 goto out; 2969 case CH_LIVE: 2970 break; 2971 case CH_DISCONNECTING: 2972 case CH_DRAINING: 2973 case CH_RELEASING: 2974 pr_debug("cmd with tag %lld: channel disconnecting\n", 2975 ioctx->cmd.tag); 2976 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2977 ret = -EINVAL; 2978 goto out; 2979 } 2980 ret = srpt_xfer_data(ch, ioctx); 2981 2982 out: 2983 return ret; 2984 } 2985 2986 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2987 { 2988 switch (tcm_mgmt_status) { 2989 case TMR_FUNCTION_COMPLETE: 2990 return SRP_TSK_MGMT_SUCCESS; 2991 case TMR_FUNCTION_REJECTED: 2992 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2993 } 2994 return SRP_TSK_MGMT_FAILED; 2995 } 2996 2997 /** 2998 * srpt_queue_response() - Transmits the response to a SCSI command. 2999 * 3000 * Callback function called by the TCM core. Must not block since it can be 3001 * invoked on the context of the IB completion handler. 3002 */ 3003 static void srpt_queue_response(struct se_cmd *cmd) 3004 { 3005 struct srpt_rdma_ch *ch; 3006 struct srpt_send_ioctx *ioctx; 3007 enum srpt_command_state state; 3008 unsigned long flags; 3009 int ret; 3010 enum dma_data_direction dir; 3011 int resp_len; 3012 u8 srp_tm_status; 3013 3014 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3015 ch = ioctx->ch; 3016 BUG_ON(!ch); 3017 3018 spin_lock_irqsave(&ioctx->spinlock, flags); 3019 state = ioctx->state; 3020 switch (state) { 3021 case SRPT_STATE_NEW: 3022 case SRPT_STATE_DATA_IN: 3023 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 3024 break; 3025 case SRPT_STATE_MGMT: 3026 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 3027 break; 3028 default: 3029 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 3030 ch, ioctx->ioctx.index, ioctx->state); 3031 break; 3032 } 3033 spin_unlock_irqrestore(&ioctx->spinlock, flags); 3034 3035 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 3036 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 3037 atomic_inc(&ch->req_lim_delta); 3038 srpt_abort_cmd(ioctx); 3039 return; 3040 } 3041 3042 dir = ioctx->cmd.data_direction; 3043 3044 /* For read commands, transfer the data to the initiator. */ 3045 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && 3046 !ioctx->queue_status_only) { 3047 ret = srpt_xfer_data(ch, ioctx); 3048 if (ret) { 3049 pr_err("xfer_data failed for tag %llu\n", 3050 ioctx->cmd.tag); 3051 return; 3052 } 3053 } 3054 3055 if (state != SRPT_STATE_MGMT) 3056 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, 3057 cmd->scsi_status); 3058 else { 3059 srp_tm_status 3060 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 3061 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 3062 ioctx->cmd.tag); 3063 } 3064 ret = srpt_post_send(ch, ioctx, resp_len); 3065 if (ret) { 3066 pr_err("sending cmd response failed for tag %llu\n", 3067 ioctx->cmd.tag); 3068 srpt_unmap_sg_to_ib_sge(ch, ioctx); 3069 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 3070 target_put_sess_cmd(&ioctx->cmd); 3071 } 3072 } 3073 3074 static int srpt_queue_data_in(struct se_cmd *cmd) 3075 { 3076 srpt_queue_response(cmd); 3077 return 0; 3078 } 3079 3080 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 3081 { 3082 srpt_queue_response(cmd); 3083 } 3084 3085 static void srpt_aborted_task(struct se_cmd *cmd) 3086 { 3087 struct srpt_send_ioctx *ioctx = container_of(cmd, 3088 struct srpt_send_ioctx, cmd); 3089 3090 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 3091 } 3092 3093 static int srpt_queue_status(struct se_cmd *cmd) 3094 { 3095 struct srpt_send_ioctx *ioctx; 3096 3097 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3098 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 3099 if (cmd->se_cmd_flags & 3100 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 3101 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 3102 ioctx->queue_status_only = true; 3103 srpt_queue_response(cmd); 3104 return 0; 3105 } 3106 3107 static void srpt_refresh_port_work(struct work_struct *work) 3108 { 3109 struct srpt_port *sport = container_of(work, struct srpt_port, work); 3110 3111 srpt_refresh_port(sport); 3112 } 3113 3114 static int srpt_ch_list_empty(struct srpt_device *sdev) 3115 { 3116 int res; 3117 3118 spin_lock_irq(&sdev->spinlock); 3119 res = list_empty(&sdev->rch_list); 3120 spin_unlock_irq(&sdev->spinlock); 3121 3122 return res; 3123 } 3124 3125 /** 3126 * srpt_release_sdev() - Free the channel resources associated with a target. 3127 */ 3128 static int srpt_release_sdev(struct srpt_device *sdev) 3129 { 3130 struct srpt_rdma_ch *ch, *tmp_ch; 3131 int res; 3132 3133 WARN_ON_ONCE(irqs_disabled()); 3134 3135 BUG_ON(!sdev); 3136 3137 spin_lock_irq(&sdev->spinlock); 3138 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) 3139 __srpt_close_ch(ch); 3140 spin_unlock_irq(&sdev->spinlock); 3141 3142 res = wait_event_interruptible(sdev->ch_releaseQ, 3143 srpt_ch_list_empty(sdev)); 3144 if (res) 3145 pr_err("%s: interrupted.\n", __func__); 3146 3147 return 0; 3148 } 3149 3150 static struct srpt_port *__srpt_lookup_port(const char *name) 3151 { 3152 struct ib_device *dev; 3153 struct srpt_device *sdev; 3154 struct srpt_port *sport; 3155 int i; 3156 3157 list_for_each_entry(sdev, &srpt_dev_list, list) { 3158 dev = sdev->device; 3159 if (!dev) 3160 continue; 3161 3162 for (i = 0; i < dev->phys_port_cnt; i++) { 3163 sport = &sdev->port[i]; 3164 3165 if (!strcmp(sport->port_guid, name)) 3166 return sport; 3167 } 3168 } 3169 3170 return NULL; 3171 } 3172 3173 static struct srpt_port *srpt_lookup_port(const char *name) 3174 { 3175 struct srpt_port *sport; 3176 3177 spin_lock(&srpt_dev_lock); 3178 sport = __srpt_lookup_port(name); 3179 spin_unlock(&srpt_dev_lock); 3180 3181 return sport; 3182 } 3183 3184 /** 3185 * srpt_add_one() - Infiniband device addition callback function. 3186 */ 3187 static void srpt_add_one(struct ib_device *device) 3188 { 3189 struct srpt_device *sdev; 3190 struct srpt_port *sport; 3191 struct ib_srq_init_attr srq_attr; 3192 int i; 3193 3194 pr_debug("device = %p, device->dma_ops = %p\n", device, 3195 device->dma_ops); 3196 3197 sdev = kzalloc(sizeof *sdev, GFP_KERNEL); 3198 if (!sdev) 3199 goto err; 3200 3201 sdev->device = device; 3202 INIT_LIST_HEAD(&sdev->rch_list); 3203 init_waitqueue_head(&sdev->ch_releaseQ); 3204 spin_lock_init(&sdev->spinlock); 3205 3206 if (ib_query_device(device, &sdev->dev_attr)) 3207 goto free_dev; 3208 3209 sdev->pd = ib_alloc_pd(device); 3210 if (IS_ERR(sdev->pd)) 3211 goto free_dev; 3212 3213 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr); 3214 3215 srq_attr.event_handler = srpt_srq_event; 3216 srq_attr.srq_context = (void *)sdev; 3217 srq_attr.attr.max_wr = sdev->srq_size; 3218 srq_attr.attr.max_sge = 1; 3219 srq_attr.attr.srq_limit = 0; 3220 srq_attr.srq_type = IB_SRQT_BASIC; 3221 3222 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 3223 if (IS_ERR(sdev->srq)) 3224 goto err_pd; 3225 3226 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 3227 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr, 3228 device->name); 3229 3230 if (!srpt_service_guid) 3231 srpt_service_guid = be64_to_cpu(device->node_guid); 3232 3233 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3234 if (IS_ERR(sdev->cm_id)) 3235 goto err_srq; 3236 3237 /* print out target login information */ 3238 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3239 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3240 srpt_service_guid, srpt_service_guid); 3241 3242 /* 3243 * We do not have a consistent service_id (ie. also id_ext of target_id) 3244 * to identify this target. We currently use the guid of the first HCA 3245 * in the system as service_id; therefore, the target_id will change 3246 * if this HCA is gone bad and replaced by different HCA 3247 */ 3248 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0)) 3249 goto err_cm; 3250 3251 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3252 srpt_event_handler); 3253 if (ib_register_event_handler(&sdev->event_handler)) 3254 goto err_cm; 3255 3256 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3257 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3258 sizeof(*sdev->ioctx_ring[0]), 3259 srp_max_req_size, DMA_FROM_DEVICE); 3260 if (!sdev->ioctx_ring) 3261 goto err_event; 3262 3263 for (i = 0; i < sdev->srq_size; ++i) 3264 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 3265 3266 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 3267 3268 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3269 sport = &sdev->port[i - 1]; 3270 sport->sdev = sdev; 3271 sport->port = i; 3272 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3273 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3274 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3275 INIT_WORK(&sport->work, srpt_refresh_port_work); 3276 INIT_LIST_HEAD(&sport->port_acl_list); 3277 spin_lock_init(&sport->port_acl_lock); 3278 3279 if (srpt_refresh_port(sport)) { 3280 pr_err("MAD registration failed for %s-%d.\n", 3281 srpt_sdev_name(sdev), i); 3282 goto err_ring; 3283 } 3284 snprintf(sport->port_guid, sizeof(sport->port_guid), 3285 "0x%016llx%016llx", 3286 be64_to_cpu(sport->gid.global.subnet_prefix), 3287 be64_to_cpu(sport->gid.global.interface_id)); 3288 } 3289 3290 spin_lock(&srpt_dev_lock); 3291 list_add_tail(&sdev->list, &srpt_dev_list); 3292 spin_unlock(&srpt_dev_lock); 3293 3294 out: 3295 ib_set_client_data(device, &srpt_client, sdev); 3296 pr_debug("added %s.\n", device->name); 3297 return; 3298 3299 err_ring: 3300 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3301 sdev->srq_size, srp_max_req_size, 3302 DMA_FROM_DEVICE); 3303 err_event: 3304 ib_unregister_event_handler(&sdev->event_handler); 3305 err_cm: 3306 ib_destroy_cm_id(sdev->cm_id); 3307 err_srq: 3308 ib_destroy_srq(sdev->srq); 3309 err_pd: 3310 ib_dealloc_pd(sdev->pd); 3311 free_dev: 3312 kfree(sdev); 3313 err: 3314 sdev = NULL; 3315 pr_info("%s(%s) failed.\n", __func__, device->name); 3316 goto out; 3317 } 3318 3319 /** 3320 * srpt_remove_one() - InfiniBand device removal callback function. 3321 */ 3322 static void srpt_remove_one(struct ib_device *device, void *client_data) 3323 { 3324 struct srpt_device *sdev = client_data; 3325 int i; 3326 3327 if (!sdev) { 3328 pr_info("%s(%s): nothing to do.\n", __func__, device->name); 3329 return; 3330 } 3331 3332 srpt_unregister_mad_agent(sdev); 3333 3334 ib_unregister_event_handler(&sdev->event_handler); 3335 3336 /* Cancel any work queued by the just unregistered IB event handler. */ 3337 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3338 cancel_work_sync(&sdev->port[i].work); 3339 3340 ib_destroy_cm_id(sdev->cm_id); 3341 3342 /* 3343 * Unregistering a target must happen after destroying sdev->cm_id 3344 * such that no new SRP_LOGIN_REQ information units can arrive while 3345 * destroying the target. 3346 */ 3347 spin_lock(&srpt_dev_lock); 3348 list_del(&sdev->list); 3349 spin_unlock(&srpt_dev_lock); 3350 srpt_release_sdev(sdev); 3351 3352 ib_destroy_srq(sdev->srq); 3353 ib_dealloc_pd(sdev->pd); 3354 3355 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3356 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 3357 sdev->ioctx_ring = NULL; 3358 kfree(sdev); 3359 } 3360 3361 static struct ib_client srpt_client = { 3362 .name = DRV_NAME, 3363 .add = srpt_add_one, 3364 .remove = srpt_remove_one 3365 }; 3366 3367 static int srpt_check_true(struct se_portal_group *se_tpg) 3368 { 3369 return 1; 3370 } 3371 3372 static int srpt_check_false(struct se_portal_group *se_tpg) 3373 { 3374 return 0; 3375 } 3376 3377 static char *srpt_get_fabric_name(void) 3378 { 3379 return "srpt"; 3380 } 3381 3382 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3383 { 3384 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3385 3386 return sport->port_guid; 3387 } 3388 3389 static u16 srpt_get_tag(struct se_portal_group *tpg) 3390 { 3391 return 1; 3392 } 3393 3394 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3395 { 3396 return 1; 3397 } 3398 3399 static void srpt_release_cmd(struct se_cmd *se_cmd) 3400 { 3401 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3402 struct srpt_send_ioctx, cmd); 3403 struct srpt_rdma_ch *ch = ioctx->ch; 3404 unsigned long flags; 3405 3406 WARN_ON(ioctx->state != SRPT_STATE_DONE); 3407 WARN_ON(ioctx->mapped_sg_count != 0); 3408 3409 if (ioctx->n_rbuf > 1) { 3410 kfree(ioctx->rbufs); 3411 ioctx->rbufs = NULL; 3412 ioctx->n_rbuf = 0; 3413 } 3414 3415 spin_lock_irqsave(&ch->spinlock, flags); 3416 list_add(&ioctx->free_list, &ch->free_list); 3417 spin_unlock_irqrestore(&ch->spinlock, flags); 3418 } 3419 3420 /** 3421 * srpt_close_session() - Forcibly close a session. 3422 * 3423 * Callback function invoked by the TCM core to clean up sessions associated 3424 * with a node ACL when the user invokes 3425 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3426 */ 3427 static void srpt_close_session(struct se_session *se_sess) 3428 { 3429 DECLARE_COMPLETION_ONSTACK(release_done); 3430 struct srpt_rdma_ch *ch; 3431 struct srpt_device *sdev; 3432 unsigned long res; 3433 3434 ch = se_sess->fabric_sess_ptr; 3435 WARN_ON(ch->sess != se_sess); 3436 3437 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch)); 3438 3439 sdev = ch->sport->sdev; 3440 spin_lock_irq(&sdev->spinlock); 3441 BUG_ON(ch->release_done); 3442 ch->release_done = &release_done; 3443 __srpt_close_ch(ch); 3444 spin_unlock_irq(&sdev->spinlock); 3445 3446 res = wait_for_completion_timeout(&release_done, 60 * HZ); 3447 WARN_ON(res == 0); 3448 } 3449 3450 /** 3451 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 3452 * 3453 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3454 * This object represents an arbitrary integer used to uniquely identify a 3455 * particular attached remote initiator port to a particular SCSI target port 3456 * within a particular SCSI target device within a particular SCSI instance. 3457 */ 3458 static u32 srpt_sess_get_index(struct se_session *se_sess) 3459 { 3460 return 0; 3461 } 3462 3463 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3464 { 3465 } 3466 3467 /* Note: only used from inside debug printk's by the TCM core. */ 3468 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3469 { 3470 struct srpt_send_ioctx *ioctx; 3471 3472 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3473 return srpt_get_cmd_state(ioctx); 3474 } 3475 3476 /** 3477 * srpt_parse_i_port_id() - Parse an initiator port ID. 3478 * @name: ASCII representation of a 128-bit initiator port ID. 3479 * @i_port_id: Binary 128-bit port ID. 3480 */ 3481 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3482 { 3483 const char *p; 3484 unsigned len, count, leading_zero_bytes; 3485 int ret, rc; 3486 3487 p = name; 3488 if (strncasecmp(p, "0x", 2) == 0) 3489 p += 2; 3490 ret = -EINVAL; 3491 len = strlen(p); 3492 if (len % 2) 3493 goto out; 3494 count = min(len / 2, 16U); 3495 leading_zero_bytes = 16 - count; 3496 memset(i_port_id, 0, leading_zero_bytes); 3497 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 3498 if (rc < 0) 3499 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 3500 ret = 0; 3501 out: 3502 return ret; 3503 } 3504 3505 /* 3506 * configfs callback function invoked for 3507 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3508 */ 3509 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) 3510 { 3511 struct srpt_port *sport = 3512 container_of(se_nacl->se_tpg, struct srpt_port, port_tpg_1); 3513 struct srpt_node_acl *nacl = 3514 container_of(se_nacl, struct srpt_node_acl, nacl); 3515 u8 i_port_id[16]; 3516 3517 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 3518 pr_err("invalid initiator port ID %s\n", name); 3519 return -EINVAL; 3520 } 3521 3522 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16); 3523 nacl->sport = sport; 3524 3525 spin_lock_irq(&sport->port_acl_lock); 3526 list_add_tail(&nacl->list, &sport->port_acl_list); 3527 spin_unlock_irq(&sport->port_acl_lock); 3528 3529 return 0; 3530 } 3531 3532 /* 3533 * configfs callback function invoked for 3534 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3535 */ 3536 static void srpt_cleanup_nodeacl(struct se_node_acl *se_nacl) 3537 { 3538 struct srpt_node_acl *nacl = 3539 container_of(se_nacl, struct srpt_node_acl, nacl); 3540 struct srpt_port *sport = nacl->sport; 3541 3542 spin_lock_irq(&sport->port_acl_lock); 3543 list_del(&nacl->list); 3544 spin_unlock_irq(&sport->port_acl_lock); 3545 } 3546 3547 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, 3548 char *page) 3549 { 3550 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3551 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3552 3553 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3554 } 3555 3556 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, 3557 const char *page, size_t count) 3558 { 3559 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3560 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3561 unsigned long val; 3562 int ret; 3563 3564 ret = kstrtoul(page, 0, &val); 3565 if (ret < 0) { 3566 pr_err("kstrtoul() failed with ret: %d\n", ret); 3567 return -EINVAL; 3568 } 3569 if (val > MAX_SRPT_RDMA_SIZE) { 3570 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3571 MAX_SRPT_RDMA_SIZE); 3572 return -EINVAL; 3573 } 3574 if (val < DEFAULT_MAX_RDMA_SIZE) { 3575 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3576 val, DEFAULT_MAX_RDMA_SIZE); 3577 return -EINVAL; 3578 } 3579 sport->port_attrib.srp_max_rdma_size = val; 3580 3581 return count; 3582 } 3583 3584 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, 3585 char *page) 3586 { 3587 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3588 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3589 3590 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3591 } 3592 3593 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, 3594 const char *page, size_t count) 3595 { 3596 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3597 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3598 unsigned long val; 3599 int ret; 3600 3601 ret = kstrtoul(page, 0, &val); 3602 if (ret < 0) { 3603 pr_err("kstrtoul() failed with ret: %d\n", ret); 3604 return -EINVAL; 3605 } 3606 if (val > MAX_SRPT_RSP_SIZE) { 3607 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3608 MAX_SRPT_RSP_SIZE); 3609 return -EINVAL; 3610 } 3611 if (val < MIN_MAX_RSP_SIZE) { 3612 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3613 MIN_MAX_RSP_SIZE); 3614 return -EINVAL; 3615 } 3616 sport->port_attrib.srp_max_rsp_size = val; 3617 3618 return count; 3619 } 3620 3621 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, 3622 char *page) 3623 { 3624 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3625 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3626 3627 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3628 } 3629 3630 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, 3631 const char *page, size_t count) 3632 { 3633 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3634 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3635 unsigned long val; 3636 int ret; 3637 3638 ret = kstrtoul(page, 0, &val); 3639 if (ret < 0) { 3640 pr_err("kstrtoul() failed with ret: %d\n", ret); 3641 return -EINVAL; 3642 } 3643 if (val > MAX_SRPT_SRQ_SIZE) { 3644 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3645 MAX_SRPT_SRQ_SIZE); 3646 return -EINVAL; 3647 } 3648 if (val < MIN_SRPT_SRQ_SIZE) { 3649 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3650 MIN_SRPT_SRQ_SIZE); 3651 return -EINVAL; 3652 } 3653 sport->port_attrib.srp_sq_size = val; 3654 3655 return count; 3656 } 3657 3658 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size); 3659 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size); 3660 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size); 3661 3662 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3663 &srpt_tpg_attrib_attr_srp_max_rdma_size, 3664 &srpt_tpg_attrib_attr_srp_max_rsp_size, 3665 &srpt_tpg_attrib_attr_srp_sq_size, 3666 NULL, 3667 }; 3668 3669 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page) 3670 { 3671 struct se_portal_group *se_tpg = to_tpg(item); 3672 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3673 3674 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3675 } 3676 3677 static ssize_t srpt_tpg_enable_store(struct config_item *item, 3678 const char *page, size_t count) 3679 { 3680 struct se_portal_group *se_tpg = to_tpg(item); 3681 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3682 unsigned long tmp; 3683 int ret; 3684 3685 ret = kstrtoul(page, 0, &tmp); 3686 if (ret < 0) { 3687 pr_err("Unable to extract srpt_tpg_store_enable\n"); 3688 return -EINVAL; 3689 } 3690 3691 if ((tmp != 0) && (tmp != 1)) { 3692 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3693 return -EINVAL; 3694 } 3695 if (tmp == 1) 3696 sport->enabled = true; 3697 else 3698 sport->enabled = false; 3699 3700 return count; 3701 } 3702 3703 CONFIGFS_ATTR(srpt_tpg_, enable); 3704 3705 static struct configfs_attribute *srpt_tpg_attrs[] = { 3706 &srpt_tpg_attr_enable, 3707 NULL, 3708 }; 3709 3710 /** 3711 * configfs callback invoked for 3712 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3713 */ 3714 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3715 struct config_group *group, 3716 const char *name) 3717 { 3718 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3719 int res; 3720 3721 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 3722 res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP); 3723 if (res) 3724 return ERR_PTR(res); 3725 3726 return &sport->port_tpg_1; 3727 } 3728 3729 /** 3730 * configfs callback invoked for 3731 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3732 */ 3733 static void srpt_drop_tpg(struct se_portal_group *tpg) 3734 { 3735 struct srpt_port *sport = container_of(tpg, 3736 struct srpt_port, port_tpg_1); 3737 3738 sport->enabled = false; 3739 core_tpg_deregister(&sport->port_tpg_1); 3740 } 3741 3742 /** 3743 * configfs callback invoked for 3744 * mkdir /sys/kernel/config/target/$driver/$port 3745 */ 3746 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3747 struct config_group *group, 3748 const char *name) 3749 { 3750 struct srpt_port *sport; 3751 int ret; 3752 3753 sport = srpt_lookup_port(name); 3754 pr_debug("make_tport(%s)\n", name); 3755 ret = -EINVAL; 3756 if (!sport) 3757 goto err; 3758 3759 return &sport->port_wwn; 3760 3761 err: 3762 return ERR_PTR(ret); 3763 } 3764 3765 /** 3766 * configfs callback invoked for 3767 * rmdir /sys/kernel/config/target/$driver/$port 3768 */ 3769 static void srpt_drop_tport(struct se_wwn *wwn) 3770 { 3771 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3772 3773 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3774 } 3775 3776 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf) 3777 { 3778 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3779 } 3780 3781 CONFIGFS_ATTR_RO(srpt_wwn_, version); 3782 3783 static struct configfs_attribute *srpt_wwn_attrs[] = { 3784 &srpt_wwn_attr_version, 3785 NULL, 3786 }; 3787 3788 static const struct target_core_fabric_ops srpt_template = { 3789 .module = THIS_MODULE, 3790 .name = "srpt", 3791 .node_acl_size = sizeof(struct srpt_node_acl), 3792 .get_fabric_name = srpt_get_fabric_name, 3793 .tpg_get_wwn = srpt_get_fabric_wwn, 3794 .tpg_get_tag = srpt_get_tag, 3795 .tpg_check_demo_mode = srpt_check_false, 3796 .tpg_check_demo_mode_cache = srpt_check_true, 3797 .tpg_check_demo_mode_write_protect = srpt_check_true, 3798 .tpg_check_prod_mode_write_protect = srpt_check_false, 3799 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3800 .release_cmd = srpt_release_cmd, 3801 .check_stop_free = srpt_check_stop_free, 3802 .shutdown_session = srpt_shutdown_session, 3803 .close_session = srpt_close_session, 3804 .sess_get_index = srpt_sess_get_index, 3805 .sess_get_initiator_sid = NULL, 3806 .write_pending = srpt_write_pending, 3807 .write_pending_status = srpt_write_pending_status, 3808 .set_default_node_attributes = srpt_set_default_node_attrs, 3809 .get_cmd_state = srpt_get_tcm_cmd_state, 3810 .queue_data_in = srpt_queue_data_in, 3811 .queue_status = srpt_queue_status, 3812 .queue_tm_rsp = srpt_queue_tm_rsp, 3813 .aborted_task = srpt_aborted_task, 3814 /* 3815 * Setup function pointers for generic logic in 3816 * target_core_fabric_configfs.c 3817 */ 3818 .fabric_make_wwn = srpt_make_tport, 3819 .fabric_drop_wwn = srpt_drop_tport, 3820 .fabric_make_tpg = srpt_make_tpg, 3821 .fabric_drop_tpg = srpt_drop_tpg, 3822 .fabric_init_nodeacl = srpt_init_nodeacl, 3823 .fabric_cleanup_nodeacl = srpt_cleanup_nodeacl, 3824 3825 .tfc_wwn_attrs = srpt_wwn_attrs, 3826 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3827 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3828 }; 3829 3830 /** 3831 * srpt_init_module() - Kernel module initialization. 3832 * 3833 * Note: Since ib_register_client() registers callback functions, and since at 3834 * least one of these callback functions (srpt_add_one()) calls target core 3835 * functions, this driver must be registered with the target core before 3836 * ib_register_client() is called. 3837 */ 3838 static int __init srpt_init_module(void) 3839 { 3840 int ret; 3841 3842 ret = -EINVAL; 3843 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3844 pr_err("invalid value %d for kernel module parameter" 3845 " srp_max_req_size -- must be at least %d.\n", 3846 srp_max_req_size, MIN_MAX_REQ_SIZE); 3847 goto out; 3848 } 3849 3850 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3851 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3852 pr_err("invalid value %d for kernel module parameter" 3853 " srpt_srq_size -- must be in the range [%d..%d].\n", 3854 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3855 goto out; 3856 } 3857 3858 ret = target_register_template(&srpt_template); 3859 if (ret) 3860 goto out; 3861 3862 ret = ib_register_client(&srpt_client); 3863 if (ret) { 3864 pr_err("couldn't register IB client\n"); 3865 goto out_unregister_target; 3866 } 3867 3868 return 0; 3869 3870 out_unregister_target: 3871 target_unregister_template(&srpt_template); 3872 out: 3873 return ret; 3874 } 3875 3876 static void __exit srpt_cleanup_module(void) 3877 { 3878 ib_unregister_client(&srpt_client); 3879 target_unregister_template(&srpt_template); 3880 } 3881 3882 module_init(srpt_init_module); 3883 module_exit(srpt_cleanup_module); 3884