1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_proto.h> 45 #include <scsi/scsi_tcq.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric.h> 48 #include "ib_srpt.h" 49 50 /* Name of this kernel module. */ 51 #define DRV_NAME "ib_srpt" 52 #define DRV_VERSION "2.0.0" 53 #define DRV_RELDATE "2011-02-14" 54 55 #define SRPT_ID_STRING "Linux SRP target" 56 57 #undef pr_fmt 58 #define pr_fmt(fmt) DRV_NAME " " fmt 59 60 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 62 "v" DRV_VERSION " (" DRV_RELDATE ")"); 63 MODULE_LICENSE("Dual BSD/GPL"); 64 65 /* 66 * Global Variables 67 */ 68 69 static u64 srpt_service_guid; 70 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 71 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 72 73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 74 module_param(srp_max_req_size, int, 0444); 75 MODULE_PARM_DESC(srp_max_req_size, 76 "Maximum size of SRP request messages in bytes."); 77 78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 79 module_param(srpt_srq_size, int, 0444); 80 MODULE_PARM_DESC(srpt_srq_size, 81 "Shared receive queue (SRQ) size."); 82 83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 84 { 85 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 86 } 87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 88 0444); 89 MODULE_PARM_DESC(srpt_service_guid, 90 "Using this value for ioc_guid, id_ext, and cm_listen_id" 91 " instead of using the node_guid of the first HCA."); 92 93 static struct ib_client srpt_client; 94 static void srpt_release_channel(struct srpt_rdma_ch *ch); 95 static int srpt_queue_status(struct se_cmd *cmd); 96 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc); 97 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc); 98 99 /** 100 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE. 101 */ 102 static inline 103 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir) 104 { 105 switch (dir) { 106 case DMA_TO_DEVICE: return DMA_FROM_DEVICE; 107 case DMA_FROM_DEVICE: return DMA_TO_DEVICE; 108 default: return dir; 109 } 110 } 111 112 /** 113 * srpt_sdev_name() - Return the name associated with the HCA. 114 * 115 * Examples are ib0, ib1, ... 116 */ 117 static inline const char *srpt_sdev_name(struct srpt_device *sdev) 118 { 119 return sdev->device->name; 120 } 121 122 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch) 123 { 124 unsigned long flags; 125 enum rdma_ch_state state; 126 127 spin_lock_irqsave(&ch->spinlock, flags); 128 state = ch->state; 129 spin_unlock_irqrestore(&ch->spinlock, flags); 130 return state; 131 } 132 133 static enum rdma_ch_state 134 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state) 135 { 136 unsigned long flags; 137 enum rdma_ch_state prev; 138 139 spin_lock_irqsave(&ch->spinlock, flags); 140 prev = ch->state; 141 ch->state = new_state; 142 spin_unlock_irqrestore(&ch->spinlock, flags); 143 return prev; 144 } 145 146 /** 147 * srpt_test_and_set_ch_state() - Test and set the channel state. 148 * 149 * Returns true if and only if the channel state has been set to the new state. 150 */ 151 static bool 152 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old, 153 enum rdma_ch_state new) 154 { 155 unsigned long flags; 156 enum rdma_ch_state prev; 157 158 spin_lock_irqsave(&ch->spinlock, flags); 159 prev = ch->state; 160 if (prev == old) 161 ch->state = new; 162 spin_unlock_irqrestore(&ch->spinlock, flags); 163 return prev == old; 164 } 165 166 /** 167 * srpt_event_handler() - Asynchronous IB event callback function. 168 * 169 * Callback function called by the InfiniBand core when an asynchronous IB 170 * event occurs. This callback may occur in interrupt context. See also 171 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 172 * Architecture Specification. 173 */ 174 static void srpt_event_handler(struct ib_event_handler *handler, 175 struct ib_event *event) 176 { 177 struct srpt_device *sdev; 178 struct srpt_port *sport; 179 180 sdev = ib_get_client_data(event->device, &srpt_client); 181 if (!sdev || sdev->device != event->device) 182 return; 183 184 pr_debug("ASYNC event= %d on device= %s\n", event->event, 185 srpt_sdev_name(sdev)); 186 187 switch (event->event) { 188 case IB_EVENT_PORT_ERR: 189 if (event->element.port_num <= sdev->device->phys_port_cnt) { 190 sport = &sdev->port[event->element.port_num - 1]; 191 sport->lid = 0; 192 sport->sm_lid = 0; 193 } 194 break; 195 case IB_EVENT_PORT_ACTIVE: 196 case IB_EVENT_LID_CHANGE: 197 case IB_EVENT_PKEY_CHANGE: 198 case IB_EVENT_SM_CHANGE: 199 case IB_EVENT_CLIENT_REREGISTER: 200 case IB_EVENT_GID_CHANGE: 201 /* Refresh port data asynchronously. */ 202 if (event->element.port_num <= sdev->device->phys_port_cnt) { 203 sport = &sdev->port[event->element.port_num - 1]; 204 if (!sport->lid && !sport->sm_lid) 205 schedule_work(&sport->work); 206 } 207 break; 208 default: 209 pr_err("received unrecognized IB event %d\n", 210 event->event); 211 break; 212 } 213 } 214 215 /** 216 * srpt_srq_event() - SRQ event callback function. 217 */ 218 static void srpt_srq_event(struct ib_event *event, void *ctx) 219 { 220 pr_info("SRQ event %d\n", event->event); 221 } 222 223 /** 224 * srpt_qp_event() - QP event callback function. 225 */ 226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 227 { 228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch)); 230 231 switch (event->event) { 232 case IB_EVENT_COMM_EST: 233 ib_cm_notify(ch->cm_id, event->event); 234 break; 235 case IB_EVENT_QP_LAST_WQE_REACHED: 236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING, 237 CH_RELEASING)) 238 srpt_release_channel(ch); 239 else 240 pr_debug("%s: state %d - ignored LAST_WQE.\n", 241 ch->sess_name, srpt_get_ch_state(ch)); 242 break; 243 default: 244 pr_err("received unrecognized IB QP event %d\n", event->event); 245 break; 246 } 247 } 248 249 /** 250 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 251 * 252 * @slot: one-based slot number. 253 * @value: four-bit value. 254 * 255 * Copies the lowest four bits of value in element slot of the array of four 256 * bit elements called c_list (controller list). The index slot is one-based. 257 */ 258 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 259 { 260 u16 id; 261 u8 tmp; 262 263 id = (slot - 1) / 2; 264 if (slot & 0x1) { 265 tmp = c_list[id] & 0xf; 266 c_list[id] = (value << 4) | tmp; 267 } else { 268 tmp = c_list[id] & 0xf0; 269 c_list[id] = (value & 0xf) | tmp; 270 } 271 } 272 273 /** 274 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 275 * 276 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 277 * Specification. 278 */ 279 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 280 { 281 struct ib_class_port_info *cif; 282 283 cif = (struct ib_class_port_info *)mad->data; 284 memset(cif, 0, sizeof *cif); 285 cif->base_version = 1; 286 cif->class_version = 1; 287 cif->resp_time_value = 20; 288 289 mad->mad_hdr.status = 0; 290 } 291 292 /** 293 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 294 * 295 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 296 * Specification. See also section B.7, table B.6 in the SRP r16a document. 297 */ 298 static void srpt_get_iou(struct ib_dm_mad *mad) 299 { 300 struct ib_dm_iou_info *ioui; 301 u8 slot; 302 int i; 303 304 ioui = (struct ib_dm_iou_info *)mad->data; 305 ioui->change_id = cpu_to_be16(1); 306 ioui->max_controllers = 16; 307 308 /* set present for slot 1 and empty for the rest */ 309 srpt_set_ioc(ioui->controller_list, 1, 1); 310 for (i = 1, slot = 2; i < 16; i++, slot++) 311 srpt_set_ioc(ioui->controller_list, slot, 0); 312 313 mad->mad_hdr.status = 0; 314 } 315 316 /** 317 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 318 * 319 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 320 * Architecture Specification. See also section B.7, table B.7 in the SRP 321 * r16a document. 322 */ 323 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 324 struct ib_dm_mad *mad) 325 { 326 struct srpt_device *sdev = sport->sdev; 327 struct ib_dm_ioc_profile *iocp; 328 329 iocp = (struct ib_dm_ioc_profile *)mad->data; 330 331 if (!slot || slot > 16) { 332 mad->mad_hdr.status 333 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 334 return; 335 } 336 337 if (slot > 2) { 338 mad->mad_hdr.status 339 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 340 return; 341 } 342 343 memset(iocp, 0, sizeof *iocp); 344 strcpy(iocp->id_string, SRPT_ID_STRING); 345 iocp->guid = cpu_to_be64(srpt_service_guid); 346 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 347 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id); 348 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver); 349 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 350 iocp->subsys_device_id = 0x0; 351 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 352 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); 353 iocp->protocol = cpu_to_be16(SRP_PROTOCOL); 354 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); 355 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 356 iocp->rdma_read_depth = 4; 357 iocp->send_size = cpu_to_be32(srp_max_req_size); 358 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 359 1U << 24)); 360 iocp->num_svc_entries = 1; 361 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 362 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 363 364 mad->mad_hdr.status = 0; 365 } 366 367 /** 368 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 369 * 370 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 371 * Specification. See also section B.7, table B.8 in the SRP r16a document. 372 */ 373 static void srpt_get_svc_entries(u64 ioc_guid, 374 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 375 { 376 struct ib_dm_svc_entries *svc_entries; 377 378 WARN_ON(!ioc_guid); 379 380 if (!slot || slot > 16) { 381 mad->mad_hdr.status 382 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 383 return; 384 } 385 386 if (slot > 2 || lo > hi || hi > 1) { 387 mad->mad_hdr.status 388 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 389 return; 390 } 391 392 svc_entries = (struct ib_dm_svc_entries *)mad->data; 393 memset(svc_entries, 0, sizeof *svc_entries); 394 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 395 snprintf(svc_entries->service_entries[0].name, 396 sizeof(svc_entries->service_entries[0].name), 397 "%s%016llx", 398 SRP_SERVICE_NAME_PREFIX, 399 ioc_guid); 400 401 mad->mad_hdr.status = 0; 402 } 403 404 /** 405 * srpt_mgmt_method_get() - Process a received management datagram. 406 * @sp: source port through which the MAD has been received. 407 * @rq_mad: received MAD. 408 * @rsp_mad: response MAD. 409 */ 410 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 411 struct ib_dm_mad *rsp_mad) 412 { 413 u16 attr_id; 414 u32 slot; 415 u8 hi, lo; 416 417 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 418 switch (attr_id) { 419 case DM_ATTR_CLASS_PORT_INFO: 420 srpt_get_class_port_info(rsp_mad); 421 break; 422 case DM_ATTR_IOU_INFO: 423 srpt_get_iou(rsp_mad); 424 break; 425 case DM_ATTR_IOC_PROFILE: 426 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 427 srpt_get_ioc(sp, slot, rsp_mad); 428 break; 429 case DM_ATTR_SVC_ENTRIES: 430 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 431 hi = (u8) ((slot >> 8) & 0xff); 432 lo = (u8) (slot & 0xff); 433 slot = (u16) ((slot >> 16) & 0xffff); 434 srpt_get_svc_entries(srpt_service_guid, 435 slot, hi, lo, rsp_mad); 436 break; 437 default: 438 rsp_mad->mad_hdr.status = 439 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 440 break; 441 } 442 } 443 444 /** 445 * srpt_mad_send_handler() - Post MAD-send callback function. 446 */ 447 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 448 struct ib_mad_send_wc *mad_wc) 449 { 450 ib_destroy_ah(mad_wc->send_buf->ah); 451 ib_free_send_mad(mad_wc->send_buf); 452 } 453 454 /** 455 * srpt_mad_recv_handler() - MAD reception callback function. 456 */ 457 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 458 struct ib_mad_send_buf *send_buf, 459 struct ib_mad_recv_wc *mad_wc) 460 { 461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 462 struct ib_ah *ah; 463 struct ib_mad_send_buf *rsp; 464 struct ib_dm_mad *dm_mad; 465 466 if (!mad_wc || !mad_wc->recv_buf.mad) 467 return; 468 469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 470 mad_wc->recv_buf.grh, mad_agent->port_num); 471 if (IS_ERR(ah)) 472 goto err; 473 474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 475 476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 477 mad_wc->wc->pkey_index, 0, 478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 479 GFP_KERNEL, 480 IB_MGMT_BASE_VERSION); 481 if (IS_ERR(rsp)) 482 goto err_rsp; 483 484 rsp->ah = ah; 485 486 dm_mad = rsp->mad; 487 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad); 488 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 489 dm_mad->mad_hdr.status = 0; 490 491 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 492 case IB_MGMT_METHOD_GET: 493 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 494 break; 495 case IB_MGMT_METHOD_SET: 496 dm_mad->mad_hdr.status = 497 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 498 break; 499 default: 500 dm_mad->mad_hdr.status = 501 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 502 break; 503 } 504 505 if (!ib_post_send_mad(rsp, NULL)) { 506 ib_free_recv_mad(mad_wc); 507 /* will destroy_ah & free_send_mad in send completion */ 508 return; 509 } 510 511 ib_free_send_mad(rsp); 512 513 err_rsp: 514 ib_destroy_ah(ah); 515 err: 516 ib_free_recv_mad(mad_wc); 517 } 518 519 /** 520 * srpt_refresh_port() - Configure a HCA port. 521 * 522 * Enable InfiniBand management datagram processing, update the cached sm_lid, 523 * lid and gid values, and register a callback function for processing MADs 524 * on the specified port. 525 * 526 * Note: It is safe to call this function more than once for the same port. 527 */ 528 static int srpt_refresh_port(struct srpt_port *sport) 529 { 530 struct ib_mad_reg_req reg_req; 531 struct ib_port_modify port_modify; 532 struct ib_port_attr port_attr; 533 int ret; 534 535 memset(&port_modify, 0, sizeof port_modify); 536 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 537 port_modify.clr_port_cap_mask = 0; 538 539 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 540 if (ret) 541 goto err_mod_port; 542 543 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 544 if (ret) 545 goto err_query_port; 546 547 sport->sm_lid = port_attr.sm_lid; 548 sport->lid = port_attr.lid; 549 550 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid, 551 NULL); 552 if (ret) 553 goto err_query_port; 554 555 if (!sport->mad_agent) { 556 memset(®_req, 0, sizeof reg_req); 557 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 558 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 559 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 560 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 561 562 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 563 sport->port, 564 IB_QPT_GSI, 565 ®_req, 0, 566 srpt_mad_send_handler, 567 srpt_mad_recv_handler, 568 sport, 0); 569 if (IS_ERR(sport->mad_agent)) { 570 ret = PTR_ERR(sport->mad_agent); 571 sport->mad_agent = NULL; 572 goto err_query_port; 573 } 574 } 575 576 return 0; 577 578 err_query_port: 579 580 port_modify.set_port_cap_mask = 0; 581 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 582 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 583 584 err_mod_port: 585 586 return ret; 587 } 588 589 /** 590 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 591 * 592 * Note: It is safe to call this function more than once for the same device. 593 */ 594 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 595 { 596 struct ib_port_modify port_modify = { 597 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 598 }; 599 struct srpt_port *sport; 600 int i; 601 602 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 603 sport = &sdev->port[i - 1]; 604 WARN_ON(sport->port != i); 605 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 606 pr_err("disabling MAD processing failed.\n"); 607 if (sport->mad_agent) { 608 ib_unregister_mad_agent(sport->mad_agent); 609 sport->mad_agent = NULL; 610 } 611 } 612 } 613 614 /** 615 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 616 */ 617 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 618 int ioctx_size, int dma_size, 619 enum dma_data_direction dir) 620 { 621 struct srpt_ioctx *ioctx; 622 623 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 624 if (!ioctx) 625 goto err; 626 627 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 628 if (!ioctx->buf) 629 goto err_free_ioctx; 630 631 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 632 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 633 goto err_free_buf; 634 635 return ioctx; 636 637 err_free_buf: 638 kfree(ioctx->buf); 639 err_free_ioctx: 640 kfree(ioctx); 641 err: 642 return NULL; 643 } 644 645 /** 646 * srpt_free_ioctx() - Free an SRPT I/O context structure. 647 */ 648 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 649 int dma_size, enum dma_data_direction dir) 650 { 651 if (!ioctx) 652 return; 653 654 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 655 kfree(ioctx->buf); 656 kfree(ioctx); 657 } 658 659 /** 660 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 661 * @sdev: Device to allocate the I/O context ring for. 662 * @ring_size: Number of elements in the I/O context ring. 663 * @ioctx_size: I/O context size. 664 * @dma_size: DMA buffer size. 665 * @dir: DMA data direction. 666 */ 667 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 668 int ring_size, int ioctx_size, 669 int dma_size, enum dma_data_direction dir) 670 { 671 struct srpt_ioctx **ring; 672 int i; 673 674 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 675 && ioctx_size != sizeof(struct srpt_send_ioctx)); 676 677 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 678 if (!ring) 679 goto out; 680 for (i = 0; i < ring_size; ++i) { 681 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 682 if (!ring[i]) 683 goto err; 684 ring[i]->index = i; 685 } 686 goto out; 687 688 err: 689 while (--i >= 0) 690 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 691 kfree(ring); 692 ring = NULL; 693 out: 694 return ring; 695 } 696 697 /** 698 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 699 */ 700 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 701 struct srpt_device *sdev, int ring_size, 702 int dma_size, enum dma_data_direction dir) 703 { 704 int i; 705 706 for (i = 0; i < ring_size; ++i) 707 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 708 kfree(ioctx_ring); 709 } 710 711 /** 712 * srpt_get_cmd_state() - Get the state of a SCSI command. 713 */ 714 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 715 { 716 enum srpt_command_state state; 717 unsigned long flags; 718 719 BUG_ON(!ioctx); 720 721 spin_lock_irqsave(&ioctx->spinlock, flags); 722 state = ioctx->state; 723 spin_unlock_irqrestore(&ioctx->spinlock, flags); 724 return state; 725 } 726 727 /** 728 * srpt_set_cmd_state() - Set the state of a SCSI command. 729 * 730 * Does not modify the state of aborted commands. Returns the previous command 731 * state. 732 */ 733 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 734 enum srpt_command_state new) 735 { 736 enum srpt_command_state previous; 737 unsigned long flags; 738 739 BUG_ON(!ioctx); 740 741 spin_lock_irqsave(&ioctx->spinlock, flags); 742 previous = ioctx->state; 743 if (previous != SRPT_STATE_DONE) 744 ioctx->state = new; 745 spin_unlock_irqrestore(&ioctx->spinlock, flags); 746 747 return previous; 748 } 749 750 /** 751 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 752 * 753 * Returns true if and only if the previous command state was equal to 'old'. 754 */ 755 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 756 enum srpt_command_state old, 757 enum srpt_command_state new) 758 { 759 enum srpt_command_state previous; 760 unsigned long flags; 761 762 WARN_ON(!ioctx); 763 WARN_ON(old == SRPT_STATE_DONE); 764 WARN_ON(new == SRPT_STATE_NEW); 765 766 spin_lock_irqsave(&ioctx->spinlock, flags); 767 previous = ioctx->state; 768 if (previous == old) 769 ioctx->state = new; 770 spin_unlock_irqrestore(&ioctx->spinlock, flags); 771 return previous == old; 772 } 773 774 /** 775 * srpt_post_recv() - Post an IB receive request. 776 */ 777 static int srpt_post_recv(struct srpt_device *sdev, 778 struct srpt_recv_ioctx *ioctx) 779 { 780 struct ib_sge list; 781 struct ib_recv_wr wr, *bad_wr; 782 783 BUG_ON(!sdev); 784 list.addr = ioctx->ioctx.dma; 785 list.length = srp_max_req_size; 786 list.lkey = sdev->pd->local_dma_lkey; 787 788 ioctx->ioctx.cqe.done = srpt_recv_done; 789 wr.wr_cqe = &ioctx->ioctx.cqe; 790 wr.next = NULL; 791 wr.sg_list = &list; 792 wr.num_sge = 1; 793 794 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 795 } 796 797 /** 798 * srpt_post_send() - Post an IB send request. 799 * 800 * Returns zero upon success and a non-zero value upon failure. 801 */ 802 static int srpt_post_send(struct srpt_rdma_ch *ch, 803 struct srpt_send_ioctx *ioctx, int len) 804 { 805 struct ib_sge list; 806 struct ib_send_wr wr, *bad_wr; 807 struct srpt_device *sdev = ch->sport->sdev; 808 int ret; 809 810 atomic_inc(&ch->req_lim); 811 812 ret = -ENOMEM; 813 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { 814 pr_warn("IB send queue full (needed 1)\n"); 815 goto out; 816 } 817 818 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, 819 DMA_TO_DEVICE); 820 821 list.addr = ioctx->ioctx.dma; 822 list.length = len; 823 list.lkey = sdev->pd->local_dma_lkey; 824 825 ioctx->ioctx.cqe.done = srpt_send_done; 826 wr.next = NULL; 827 wr.wr_cqe = &ioctx->ioctx.cqe; 828 wr.sg_list = &list; 829 wr.num_sge = 1; 830 wr.opcode = IB_WR_SEND; 831 wr.send_flags = IB_SEND_SIGNALED; 832 833 ret = ib_post_send(ch->qp, &wr, &bad_wr); 834 835 out: 836 if (ret < 0) { 837 atomic_inc(&ch->sq_wr_avail); 838 atomic_dec(&ch->req_lim); 839 } 840 return ret; 841 } 842 843 /** 844 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 845 * @ioctx: Pointer to the I/O context associated with the request. 846 * @srp_cmd: Pointer to the SRP_CMD request data. 847 * @dir: Pointer to the variable to which the transfer direction will be 848 * written. 849 * @data_len: Pointer to the variable to which the total data length of all 850 * descriptors in the SRP_CMD request will be written. 851 * 852 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 853 * 854 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 855 * -ENOMEM when memory allocation fails and zero upon success. 856 */ 857 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 858 struct srp_cmd *srp_cmd, 859 enum dma_data_direction *dir, u64 *data_len) 860 { 861 struct srp_indirect_buf *idb; 862 struct srp_direct_buf *db; 863 unsigned add_cdb_offset; 864 int ret; 865 866 /* 867 * The pointer computations below will only be compiled correctly 868 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 869 * whether srp_cmd::add_data has been declared as a byte pointer. 870 */ 871 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) 872 && !__same_type(srp_cmd->add_data[0], (u8)0)); 873 874 BUG_ON(!dir); 875 BUG_ON(!data_len); 876 877 ret = 0; 878 *data_len = 0; 879 880 /* 881 * The lower four bits of the buffer format field contain the DATA-IN 882 * buffer descriptor format, and the highest four bits contain the 883 * DATA-OUT buffer descriptor format. 884 */ 885 *dir = DMA_NONE; 886 if (srp_cmd->buf_fmt & 0xf) 887 /* DATA-IN: transfer data from target to initiator (read). */ 888 *dir = DMA_FROM_DEVICE; 889 else if (srp_cmd->buf_fmt >> 4) 890 /* DATA-OUT: transfer data from initiator to target (write). */ 891 *dir = DMA_TO_DEVICE; 892 893 /* 894 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 895 * CDB LENGTH' field are reserved and the size in bytes of this field 896 * is four times the value specified in bits 3..7. Hence the "& ~3". 897 */ 898 add_cdb_offset = srp_cmd->add_cdb_len & ~3; 899 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 900 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 901 ioctx->n_rbuf = 1; 902 ioctx->rbufs = &ioctx->single_rbuf; 903 904 db = (struct srp_direct_buf *)(srp_cmd->add_data 905 + add_cdb_offset); 906 memcpy(ioctx->rbufs, db, sizeof *db); 907 *data_len = be32_to_cpu(db->len); 908 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 909 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 910 idb = (struct srp_indirect_buf *)(srp_cmd->add_data 911 + add_cdb_offset); 912 913 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db; 914 915 if (ioctx->n_rbuf > 916 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 917 pr_err("received unsupported SRP_CMD request" 918 " type (%u out + %u in != %u / %zu)\n", 919 srp_cmd->data_out_desc_cnt, 920 srp_cmd->data_in_desc_cnt, 921 be32_to_cpu(idb->table_desc.len), 922 sizeof(*db)); 923 ioctx->n_rbuf = 0; 924 ret = -EINVAL; 925 goto out; 926 } 927 928 if (ioctx->n_rbuf == 1) 929 ioctx->rbufs = &ioctx->single_rbuf; 930 else { 931 ioctx->rbufs = 932 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC); 933 if (!ioctx->rbufs) { 934 ioctx->n_rbuf = 0; 935 ret = -ENOMEM; 936 goto out; 937 } 938 } 939 940 db = idb->desc_list; 941 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db); 942 *data_len = be32_to_cpu(idb->len); 943 } 944 out: 945 return ret; 946 } 947 948 /** 949 * srpt_init_ch_qp() - Initialize queue pair attributes. 950 * 951 * Initialized the attributes of queue pair 'qp' by allowing local write, 952 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 953 */ 954 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 955 { 956 struct ib_qp_attr *attr; 957 int ret; 958 959 attr = kzalloc(sizeof *attr, GFP_KERNEL); 960 if (!attr) 961 return -ENOMEM; 962 963 attr->qp_state = IB_QPS_INIT; 964 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 965 IB_ACCESS_REMOTE_WRITE; 966 attr->port_num = ch->sport->port; 967 attr->pkey_index = 0; 968 969 ret = ib_modify_qp(qp, attr, 970 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 971 IB_QP_PKEY_INDEX); 972 973 kfree(attr); 974 return ret; 975 } 976 977 /** 978 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 979 * @ch: channel of the queue pair. 980 * @qp: queue pair to change the state of. 981 * 982 * Returns zero upon success and a negative value upon failure. 983 * 984 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 985 * If this structure ever becomes larger, it might be necessary to allocate 986 * it dynamically instead of on the stack. 987 */ 988 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 989 { 990 struct ib_qp_attr qp_attr; 991 int attr_mask; 992 int ret; 993 994 qp_attr.qp_state = IB_QPS_RTR; 995 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 996 if (ret) 997 goto out; 998 999 qp_attr.max_dest_rd_atomic = 4; 1000 1001 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1002 1003 out: 1004 return ret; 1005 } 1006 1007 /** 1008 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1009 * @ch: channel of the queue pair. 1010 * @qp: queue pair to change the state of. 1011 * 1012 * Returns zero upon success and a negative value upon failure. 1013 * 1014 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1015 * If this structure ever becomes larger, it might be necessary to allocate 1016 * it dynamically instead of on the stack. 1017 */ 1018 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1019 { 1020 struct ib_qp_attr qp_attr; 1021 int attr_mask; 1022 int ret; 1023 1024 qp_attr.qp_state = IB_QPS_RTS; 1025 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1026 if (ret) 1027 goto out; 1028 1029 qp_attr.max_rd_atomic = 4; 1030 1031 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1032 1033 out: 1034 return ret; 1035 } 1036 1037 /** 1038 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1039 */ 1040 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1041 { 1042 struct ib_qp_attr qp_attr; 1043 1044 qp_attr.qp_state = IB_QPS_ERR; 1045 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1046 } 1047 1048 /** 1049 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. 1050 */ 1051 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1052 struct srpt_send_ioctx *ioctx) 1053 { 1054 struct scatterlist *sg; 1055 enum dma_data_direction dir; 1056 1057 BUG_ON(!ch); 1058 BUG_ON(!ioctx); 1059 BUG_ON(ioctx->n_rdma && !ioctx->rdma_wrs); 1060 1061 while (ioctx->n_rdma) 1062 kfree(ioctx->rdma_wrs[--ioctx->n_rdma].wr.sg_list); 1063 1064 kfree(ioctx->rdma_wrs); 1065 ioctx->rdma_wrs = NULL; 1066 1067 if (ioctx->mapped_sg_count) { 1068 sg = ioctx->sg; 1069 WARN_ON(!sg); 1070 dir = ioctx->cmd.data_direction; 1071 BUG_ON(dir == DMA_NONE); 1072 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, 1073 opposite_dma_dir(dir)); 1074 ioctx->mapped_sg_count = 0; 1075 } 1076 } 1077 1078 /** 1079 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. 1080 */ 1081 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1082 struct srpt_send_ioctx *ioctx) 1083 { 1084 struct ib_device *dev = ch->sport->sdev->device; 1085 struct se_cmd *cmd; 1086 struct scatterlist *sg, *sg_orig; 1087 int sg_cnt; 1088 enum dma_data_direction dir; 1089 struct ib_rdma_wr *riu; 1090 struct srp_direct_buf *db; 1091 dma_addr_t dma_addr; 1092 struct ib_sge *sge; 1093 u64 raddr; 1094 u32 rsize; 1095 u32 tsize; 1096 u32 dma_len; 1097 int count, nrdma; 1098 int i, j, k; 1099 1100 BUG_ON(!ch); 1101 BUG_ON(!ioctx); 1102 cmd = &ioctx->cmd; 1103 dir = cmd->data_direction; 1104 BUG_ON(dir == DMA_NONE); 1105 1106 ioctx->sg = sg = sg_orig = cmd->t_data_sg; 1107 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents; 1108 1109 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, 1110 opposite_dma_dir(dir)); 1111 if (unlikely(!count)) 1112 return -EAGAIN; 1113 1114 ioctx->mapped_sg_count = count; 1115 1116 if (ioctx->rdma_wrs && ioctx->n_rdma_wrs) 1117 nrdma = ioctx->n_rdma_wrs; 1118 else { 1119 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE 1120 + ioctx->n_rbuf; 1121 1122 ioctx->rdma_wrs = kcalloc(nrdma, sizeof(*ioctx->rdma_wrs), 1123 GFP_KERNEL); 1124 if (!ioctx->rdma_wrs) 1125 goto free_mem; 1126 1127 ioctx->n_rdma_wrs = nrdma; 1128 } 1129 1130 db = ioctx->rbufs; 1131 tsize = cmd->data_length; 1132 dma_len = ib_sg_dma_len(dev, &sg[0]); 1133 riu = ioctx->rdma_wrs; 1134 1135 /* 1136 * For each remote desc - calculate the #ib_sge. 1137 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then 1138 * each remote desc rdma_iu is required a rdma wr; 1139 * else 1140 * we need to allocate extra rdma_iu to carry extra #ib_sge in 1141 * another rdma wr 1142 */ 1143 for (i = 0, j = 0; 1144 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1145 rsize = be32_to_cpu(db->len); 1146 raddr = be64_to_cpu(db->va); 1147 riu->remote_addr = raddr; 1148 riu->rkey = be32_to_cpu(db->key); 1149 riu->wr.num_sge = 0; 1150 1151 /* calculate how many sge required for this remote_buf */ 1152 while (rsize > 0 && tsize > 0) { 1153 1154 if (rsize >= dma_len) { 1155 tsize -= dma_len; 1156 rsize -= dma_len; 1157 raddr += dma_len; 1158 1159 if (tsize > 0) { 1160 ++j; 1161 if (j < count) { 1162 sg = sg_next(sg); 1163 dma_len = ib_sg_dma_len( 1164 dev, sg); 1165 } 1166 } 1167 } else { 1168 tsize -= rsize; 1169 dma_len -= rsize; 1170 rsize = 0; 1171 } 1172 1173 ++riu->wr.num_sge; 1174 1175 if (rsize > 0 && 1176 riu->wr.num_sge == SRPT_DEF_SG_PER_WQE) { 1177 ++ioctx->n_rdma; 1178 riu->wr.sg_list = kmalloc_array(riu->wr.num_sge, 1179 sizeof(*riu->wr.sg_list), 1180 GFP_KERNEL); 1181 if (!riu->wr.sg_list) 1182 goto free_mem; 1183 1184 ++riu; 1185 riu->wr.num_sge = 0; 1186 riu->remote_addr = raddr; 1187 riu->rkey = be32_to_cpu(db->key); 1188 } 1189 } 1190 1191 ++ioctx->n_rdma; 1192 riu->wr.sg_list = kmalloc_array(riu->wr.num_sge, 1193 sizeof(*riu->wr.sg_list), 1194 GFP_KERNEL); 1195 if (!riu->wr.sg_list) 1196 goto free_mem; 1197 } 1198 1199 db = ioctx->rbufs; 1200 tsize = cmd->data_length; 1201 riu = ioctx->rdma_wrs; 1202 sg = sg_orig; 1203 dma_len = ib_sg_dma_len(dev, &sg[0]); 1204 dma_addr = ib_sg_dma_address(dev, &sg[0]); 1205 1206 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ 1207 for (i = 0, j = 0; 1208 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1209 rsize = be32_to_cpu(db->len); 1210 sge = riu->wr.sg_list; 1211 k = 0; 1212 1213 while (rsize > 0 && tsize > 0) { 1214 sge->addr = dma_addr; 1215 sge->lkey = ch->sport->sdev->pd->local_dma_lkey; 1216 1217 if (rsize >= dma_len) { 1218 sge->length = 1219 (tsize < dma_len) ? tsize : dma_len; 1220 tsize -= dma_len; 1221 rsize -= dma_len; 1222 1223 if (tsize > 0) { 1224 ++j; 1225 if (j < count) { 1226 sg = sg_next(sg); 1227 dma_len = ib_sg_dma_len( 1228 dev, sg); 1229 dma_addr = ib_sg_dma_address( 1230 dev, sg); 1231 } 1232 } 1233 } else { 1234 sge->length = (tsize < rsize) ? tsize : rsize; 1235 tsize -= rsize; 1236 dma_len -= rsize; 1237 dma_addr += rsize; 1238 rsize = 0; 1239 } 1240 1241 ++k; 1242 if (k == riu->wr.num_sge && rsize > 0 && tsize > 0) { 1243 ++riu; 1244 sge = riu->wr.sg_list; 1245 k = 0; 1246 } else if (rsize > 0 && tsize > 0) 1247 ++sge; 1248 } 1249 } 1250 1251 return 0; 1252 1253 free_mem: 1254 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1255 1256 return -ENOMEM; 1257 } 1258 1259 /** 1260 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1261 */ 1262 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1263 { 1264 struct srpt_send_ioctx *ioctx; 1265 unsigned long flags; 1266 1267 BUG_ON(!ch); 1268 1269 ioctx = NULL; 1270 spin_lock_irqsave(&ch->spinlock, flags); 1271 if (!list_empty(&ch->free_list)) { 1272 ioctx = list_first_entry(&ch->free_list, 1273 struct srpt_send_ioctx, free_list); 1274 list_del(&ioctx->free_list); 1275 } 1276 spin_unlock_irqrestore(&ch->spinlock, flags); 1277 1278 if (!ioctx) 1279 return ioctx; 1280 1281 BUG_ON(ioctx->ch != ch); 1282 spin_lock_init(&ioctx->spinlock); 1283 ioctx->state = SRPT_STATE_NEW; 1284 ioctx->n_rbuf = 0; 1285 ioctx->rbufs = NULL; 1286 ioctx->n_rdma = 0; 1287 ioctx->n_rdma_wrs = 0; 1288 ioctx->rdma_wrs = NULL; 1289 ioctx->mapped_sg_count = 0; 1290 init_completion(&ioctx->tx_done); 1291 ioctx->queue_status_only = false; 1292 /* 1293 * transport_init_se_cmd() does not initialize all fields, so do it 1294 * here. 1295 */ 1296 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1297 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1298 1299 return ioctx; 1300 } 1301 1302 /** 1303 * srpt_abort_cmd() - Abort a SCSI command. 1304 * @ioctx: I/O context associated with the SCSI command. 1305 * @context: Preferred execution context. 1306 */ 1307 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1308 { 1309 enum srpt_command_state state; 1310 unsigned long flags; 1311 1312 BUG_ON(!ioctx); 1313 1314 /* 1315 * If the command is in a state where the target core is waiting for 1316 * the ib_srpt driver, change the state to the next state. Changing 1317 * the state of the command from SRPT_STATE_NEED_DATA to 1318 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this 1319 * function a second time. 1320 */ 1321 1322 spin_lock_irqsave(&ioctx->spinlock, flags); 1323 state = ioctx->state; 1324 switch (state) { 1325 case SRPT_STATE_NEED_DATA: 1326 ioctx->state = SRPT_STATE_DATA_IN; 1327 break; 1328 case SRPT_STATE_DATA_IN: 1329 case SRPT_STATE_CMD_RSP_SENT: 1330 case SRPT_STATE_MGMT_RSP_SENT: 1331 ioctx->state = SRPT_STATE_DONE; 1332 break; 1333 default: 1334 break; 1335 } 1336 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1337 1338 if (state == SRPT_STATE_DONE) { 1339 struct srpt_rdma_ch *ch = ioctx->ch; 1340 1341 BUG_ON(ch->sess == NULL); 1342 1343 target_put_sess_cmd(&ioctx->cmd); 1344 goto out; 1345 } 1346 1347 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1348 ioctx->cmd.tag); 1349 1350 switch (state) { 1351 case SRPT_STATE_NEW: 1352 case SRPT_STATE_DATA_IN: 1353 case SRPT_STATE_MGMT: 1354 /* 1355 * Do nothing - defer abort processing until 1356 * srpt_queue_response() is invoked. 1357 */ 1358 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false)); 1359 break; 1360 case SRPT_STATE_NEED_DATA: 1361 /* DMA_TO_DEVICE (write) - RDMA read error. */ 1362 1363 /* XXX(hch): this is a horrible layering violation.. */ 1364 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1365 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE; 1366 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1367 break; 1368 case SRPT_STATE_CMD_RSP_SENT: 1369 /* 1370 * SRP_RSP sending failed or the SRP_RSP send completion has 1371 * not been received in time. 1372 */ 1373 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1374 target_put_sess_cmd(&ioctx->cmd); 1375 break; 1376 case SRPT_STATE_MGMT_RSP_SENT: 1377 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1378 target_put_sess_cmd(&ioctx->cmd); 1379 break; 1380 default: 1381 WARN(1, "Unexpected command state (%d)", state); 1382 break; 1383 } 1384 1385 out: 1386 return state; 1387 } 1388 1389 /** 1390 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1391 * the data that has been transferred via IB RDMA had to be postponed until the 1392 * check_stop_free() callback. None of this is necessary anymore and needs to 1393 * be cleaned up. 1394 */ 1395 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc) 1396 { 1397 struct srpt_rdma_ch *ch = cq->cq_context; 1398 struct srpt_send_ioctx *ioctx = 1399 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe); 1400 1401 WARN_ON(ioctx->n_rdma <= 0); 1402 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1403 1404 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1405 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n", 1406 ioctx, wc->status); 1407 srpt_abort_cmd(ioctx); 1408 return; 1409 } 1410 1411 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1412 SRPT_STATE_DATA_IN)) 1413 target_execute_cmd(&ioctx->cmd); 1414 else 1415 pr_err("%s[%d]: wrong state = %d\n", __func__, 1416 __LINE__, srpt_get_cmd_state(ioctx)); 1417 } 1418 1419 static void srpt_rdma_write_done(struct ib_cq *cq, struct ib_wc *wc) 1420 { 1421 struct srpt_send_ioctx *ioctx = 1422 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe); 1423 1424 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1425 pr_info("RDMA_WRITE for ioctx 0x%p failed with status %d\n", 1426 ioctx, wc->status); 1427 srpt_abort_cmd(ioctx); 1428 } 1429 } 1430 1431 /** 1432 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1433 * @ch: RDMA channel through which the request has been received. 1434 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1435 * be built in the buffer ioctx->buf points at and hence this function will 1436 * overwrite the request data. 1437 * @tag: tag of the request for which this response is being generated. 1438 * @status: value for the STATUS field of the SRP_RSP information unit. 1439 * 1440 * Returns the size in bytes of the SRP_RSP response. 1441 * 1442 * An SRP_RSP response contains a SCSI status or service response. See also 1443 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1444 * response. See also SPC-2 for more information about sense data. 1445 */ 1446 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1447 struct srpt_send_ioctx *ioctx, u64 tag, 1448 int status) 1449 { 1450 struct srp_rsp *srp_rsp; 1451 const u8 *sense_data; 1452 int sense_data_len, max_sense_len; 1453 1454 /* 1455 * The lowest bit of all SAM-3 status codes is zero (see also 1456 * paragraph 5.3 in SAM-3). 1457 */ 1458 WARN_ON(status & 1); 1459 1460 srp_rsp = ioctx->ioctx.buf; 1461 BUG_ON(!srp_rsp); 1462 1463 sense_data = ioctx->sense_data; 1464 sense_data_len = ioctx->cmd.scsi_sense_length; 1465 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1466 1467 memset(srp_rsp, 0, sizeof *srp_rsp); 1468 srp_rsp->opcode = SRP_RSP; 1469 srp_rsp->req_lim_delta = 1470 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1471 srp_rsp->tag = tag; 1472 srp_rsp->status = status; 1473 1474 if (sense_data_len) { 1475 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1476 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1477 if (sense_data_len > max_sense_len) { 1478 pr_warn("truncated sense data from %d to %d" 1479 " bytes\n", sense_data_len, max_sense_len); 1480 sense_data_len = max_sense_len; 1481 } 1482 1483 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1484 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1485 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1486 } 1487 1488 return sizeof(*srp_rsp) + sense_data_len; 1489 } 1490 1491 /** 1492 * srpt_build_tskmgmt_rsp() - Build a task management response. 1493 * @ch: RDMA channel through which the request has been received. 1494 * @ioctx: I/O context in which the SRP_RSP response will be built. 1495 * @rsp_code: RSP_CODE that will be stored in the response. 1496 * @tag: Tag of the request for which this response is being generated. 1497 * 1498 * Returns the size in bytes of the SRP_RSP response. 1499 * 1500 * An SRP_RSP response contains a SCSI status or service response. See also 1501 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1502 * response. 1503 */ 1504 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1505 struct srpt_send_ioctx *ioctx, 1506 u8 rsp_code, u64 tag) 1507 { 1508 struct srp_rsp *srp_rsp; 1509 int resp_data_len; 1510 int resp_len; 1511 1512 resp_data_len = 4; 1513 resp_len = sizeof(*srp_rsp) + resp_data_len; 1514 1515 srp_rsp = ioctx->ioctx.buf; 1516 BUG_ON(!srp_rsp); 1517 memset(srp_rsp, 0, sizeof *srp_rsp); 1518 1519 srp_rsp->opcode = SRP_RSP; 1520 srp_rsp->req_lim_delta = 1521 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1522 srp_rsp->tag = tag; 1523 1524 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1525 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1526 srp_rsp->data[3] = rsp_code; 1527 1528 return resp_len; 1529 } 1530 1531 #define NO_SUCH_LUN ((uint64_t)-1LL) 1532 1533 /* 1534 * SCSI LUN addressing method. See also SAM-2 and the section about 1535 * eight byte LUNs. 1536 */ 1537 enum scsi_lun_addr_method { 1538 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0, 1539 SCSI_LUN_ADDR_METHOD_FLAT = 1, 1540 SCSI_LUN_ADDR_METHOD_LUN = 2, 1541 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3, 1542 }; 1543 1544 /* 1545 * srpt_unpack_lun() - Convert from network LUN to linear LUN. 1546 * 1547 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte 1548 * order (big endian) to a linear LUN. Supports three LUN addressing methods: 1549 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40). 1550 */ 1551 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len) 1552 { 1553 uint64_t res = NO_SUCH_LUN; 1554 int addressing_method; 1555 1556 if (unlikely(len < 2)) { 1557 pr_err("Illegal LUN length %d, expected 2 bytes or more\n", 1558 len); 1559 goto out; 1560 } 1561 1562 switch (len) { 1563 case 8: 1564 if ((*((__be64 *)lun) & 1565 cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0) 1566 goto out_err; 1567 break; 1568 case 4: 1569 if (*((__be16 *)&lun[2]) != 0) 1570 goto out_err; 1571 break; 1572 case 6: 1573 if (*((__be32 *)&lun[2]) != 0) 1574 goto out_err; 1575 break; 1576 case 2: 1577 break; 1578 default: 1579 goto out_err; 1580 } 1581 1582 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */ 1583 switch (addressing_method) { 1584 case SCSI_LUN_ADDR_METHOD_PERIPHERAL: 1585 case SCSI_LUN_ADDR_METHOD_FLAT: 1586 case SCSI_LUN_ADDR_METHOD_LUN: 1587 res = *(lun + 1) | (((*lun) & 0x3f) << 8); 1588 break; 1589 1590 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN: 1591 default: 1592 pr_err("Unimplemented LUN addressing method %u\n", 1593 addressing_method); 1594 break; 1595 } 1596 1597 out: 1598 return res; 1599 1600 out_err: 1601 pr_err("Support for multi-level LUNs has not yet been implemented\n"); 1602 goto out; 1603 } 1604 1605 static int srpt_check_stop_free(struct se_cmd *cmd) 1606 { 1607 struct srpt_send_ioctx *ioctx = container_of(cmd, 1608 struct srpt_send_ioctx, cmd); 1609 1610 return target_put_sess_cmd(&ioctx->cmd); 1611 } 1612 1613 /** 1614 * srpt_handle_cmd() - Process SRP_CMD. 1615 */ 1616 static int srpt_handle_cmd(struct srpt_rdma_ch *ch, 1617 struct srpt_recv_ioctx *recv_ioctx, 1618 struct srpt_send_ioctx *send_ioctx) 1619 { 1620 struct se_cmd *cmd; 1621 struct srp_cmd *srp_cmd; 1622 uint64_t unpacked_lun; 1623 u64 data_len; 1624 enum dma_data_direction dir; 1625 sense_reason_t ret; 1626 int rc; 1627 1628 BUG_ON(!send_ioctx); 1629 1630 srp_cmd = recv_ioctx->ioctx.buf; 1631 cmd = &send_ioctx->cmd; 1632 cmd->tag = srp_cmd->tag; 1633 1634 switch (srp_cmd->task_attr) { 1635 case SRP_CMD_SIMPLE_Q: 1636 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1637 break; 1638 case SRP_CMD_ORDERED_Q: 1639 default: 1640 cmd->sam_task_attr = TCM_ORDERED_TAG; 1641 break; 1642 case SRP_CMD_HEAD_OF_Q: 1643 cmd->sam_task_attr = TCM_HEAD_TAG; 1644 break; 1645 case SRP_CMD_ACA: 1646 cmd->sam_task_attr = TCM_ACA_TAG; 1647 break; 1648 } 1649 1650 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) { 1651 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1652 srp_cmd->tag); 1653 ret = TCM_INVALID_CDB_FIELD; 1654 goto send_sense; 1655 } 1656 1657 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun, 1658 sizeof(srp_cmd->lun)); 1659 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb, 1660 &send_ioctx->sense_data[0], unpacked_lun, data_len, 1661 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF); 1662 if (rc != 0) { 1663 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1664 goto send_sense; 1665 } 1666 return 0; 1667 1668 send_sense: 1669 transport_send_check_condition_and_sense(cmd, ret, 0); 1670 return -1; 1671 } 1672 1673 /** 1674 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag. 1675 * @ch: RDMA channel of the task management request. 1676 * @fn: Task management function to perform. 1677 * @req_tag: Tag of the SRP task management request. 1678 * @mgmt_ioctx: I/O context of the task management request. 1679 * 1680 * Returns zero if the target core will process the task management 1681 * request asynchronously. 1682 * 1683 * Note: It is assumed that the initiator serializes tag-based task management 1684 * requests. 1685 */ 1686 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag) 1687 { 1688 struct srpt_device *sdev; 1689 struct srpt_rdma_ch *ch; 1690 struct srpt_send_ioctx *target; 1691 int ret, i; 1692 1693 ret = -EINVAL; 1694 ch = ioctx->ch; 1695 BUG_ON(!ch); 1696 BUG_ON(!ch->sport); 1697 sdev = ch->sport->sdev; 1698 BUG_ON(!sdev); 1699 spin_lock_irq(&sdev->spinlock); 1700 for (i = 0; i < ch->rq_size; ++i) { 1701 target = ch->ioctx_ring[i]; 1702 if (target->cmd.se_lun == ioctx->cmd.se_lun && 1703 target->cmd.tag == tag && 1704 srpt_get_cmd_state(target) != SRPT_STATE_DONE) { 1705 ret = 0; 1706 /* now let the target core abort &target->cmd; */ 1707 break; 1708 } 1709 } 1710 spin_unlock_irq(&sdev->spinlock); 1711 return ret; 1712 } 1713 1714 static int srp_tmr_to_tcm(int fn) 1715 { 1716 switch (fn) { 1717 case SRP_TSK_ABORT_TASK: 1718 return TMR_ABORT_TASK; 1719 case SRP_TSK_ABORT_TASK_SET: 1720 return TMR_ABORT_TASK_SET; 1721 case SRP_TSK_CLEAR_TASK_SET: 1722 return TMR_CLEAR_TASK_SET; 1723 case SRP_TSK_LUN_RESET: 1724 return TMR_LUN_RESET; 1725 case SRP_TSK_CLEAR_ACA: 1726 return TMR_CLEAR_ACA; 1727 default: 1728 return -1; 1729 } 1730 } 1731 1732 /** 1733 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1734 * 1735 * Returns 0 if and only if the request will be processed by the target core. 1736 * 1737 * For more information about SRP_TSK_MGMT information units, see also section 1738 * 6.7 in the SRP r16a document. 1739 */ 1740 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1741 struct srpt_recv_ioctx *recv_ioctx, 1742 struct srpt_send_ioctx *send_ioctx) 1743 { 1744 struct srp_tsk_mgmt *srp_tsk; 1745 struct se_cmd *cmd; 1746 struct se_session *sess = ch->sess; 1747 uint64_t unpacked_lun; 1748 uint32_t tag = 0; 1749 int tcm_tmr; 1750 int rc; 1751 1752 BUG_ON(!send_ioctx); 1753 1754 srp_tsk = recv_ioctx->ioctx.buf; 1755 cmd = &send_ioctx->cmd; 1756 1757 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1758 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1759 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1760 1761 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1762 send_ioctx->cmd.tag = srp_tsk->tag; 1763 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1764 if (tcm_tmr < 0) { 1765 send_ioctx->cmd.se_tmr_req->response = 1766 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 1767 goto fail; 1768 } 1769 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun, 1770 sizeof(srp_tsk->lun)); 1771 1772 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) { 1773 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag); 1774 if (rc < 0) { 1775 send_ioctx->cmd.se_tmr_req->response = 1776 TMR_TASK_DOES_NOT_EXIST; 1777 goto fail; 1778 } 1779 tag = srp_tsk->task_tag; 1780 } 1781 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun, 1782 srp_tsk, tcm_tmr, GFP_KERNEL, tag, 1783 TARGET_SCF_ACK_KREF); 1784 if (rc != 0) { 1785 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1786 goto fail; 1787 } 1788 return; 1789 fail: 1790 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1791 } 1792 1793 /** 1794 * srpt_handle_new_iu() - Process a newly received information unit. 1795 * @ch: RDMA channel through which the information unit has been received. 1796 * @ioctx: SRPT I/O context associated with the information unit. 1797 */ 1798 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1799 struct srpt_recv_ioctx *recv_ioctx, 1800 struct srpt_send_ioctx *send_ioctx) 1801 { 1802 struct srp_cmd *srp_cmd; 1803 enum rdma_ch_state ch_state; 1804 1805 BUG_ON(!ch); 1806 BUG_ON(!recv_ioctx); 1807 1808 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1809 recv_ioctx->ioctx.dma, srp_max_req_size, 1810 DMA_FROM_DEVICE); 1811 1812 ch_state = srpt_get_ch_state(ch); 1813 if (unlikely(ch_state == CH_CONNECTING)) { 1814 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1815 goto out; 1816 } 1817 1818 if (unlikely(ch_state != CH_LIVE)) 1819 goto out; 1820 1821 srp_cmd = recv_ioctx->ioctx.buf; 1822 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1823 if (!send_ioctx) 1824 send_ioctx = srpt_get_send_ioctx(ch); 1825 if (unlikely(!send_ioctx)) { 1826 list_add_tail(&recv_ioctx->wait_list, 1827 &ch->cmd_wait_list); 1828 goto out; 1829 } 1830 } 1831 1832 switch (srp_cmd->opcode) { 1833 case SRP_CMD: 1834 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1835 break; 1836 case SRP_TSK_MGMT: 1837 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1838 break; 1839 case SRP_I_LOGOUT: 1840 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1841 break; 1842 case SRP_CRED_RSP: 1843 pr_debug("received SRP_CRED_RSP\n"); 1844 break; 1845 case SRP_AER_RSP: 1846 pr_debug("received SRP_AER_RSP\n"); 1847 break; 1848 case SRP_RSP: 1849 pr_err("Received SRP_RSP\n"); 1850 break; 1851 default: 1852 pr_err("received IU with unknown opcode 0x%x\n", 1853 srp_cmd->opcode); 1854 break; 1855 } 1856 1857 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1858 out: 1859 return; 1860 } 1861 1862 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1863 { 1864 struct srpt_rdma_ch *ch = cq->cq_context; 1865 struct srpt_recv_ioctx *ioctx = 1866 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe); 1867 1868 if (wc->status == IB_WC_SUCCESS) { 1869 int req_lim; 1870 1871 req_lim = atomic_dec_return(&ch->req_lim); 1872 if (unlikely(req_lim < 0)) 1873 pr_err("req_lim = %d < 0\n", req_lim); 1874 srpt_handle_new_iu(ch, ioctx, NULL); 1875 } else { 1876 pr_info("receiving failed for ioctx %p with status %d\n", 1877 ioctx, wc->status); 1878 } 1879 } 1880 1881 /** 1882 * Note: Although this has not yet been observed during tests, at least in 1883 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1884 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1885 * value in each response is set to one, and it is possible that this response 1886 * makes the initiator send a new request before the send completion for that 1887 * response has been processed. This could e.g. happen if the call to 1888 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1889 * if IB retransmission causes generation of the send completion to be 1890 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1891 * are queued on cmd_wait_list. The code below processes these delayed 1892 * requests one at a time. 1893 */ 1894 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc) 1895 { 1896 struct srpt_rdma_ch *ch = cq->cq_context; 1897 struct srpt_send_ioctx *ioctx = 1898 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe); 1899 enum srpt_command_state state; 1900 1901 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1902 1903 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT && 1904 state != SRPT_STATE_MGMT_RSP_SENT); 1905 1906 atomic_inc(&ch->sq_wr_avail); 1907 1908 if (wc->status != IB_WC_SUCCESS) { 1909 pr_info("sending response for ioctx 0x%p failed" 1910 " with status %d\n", ioctx, wc->status); 1911 1912 atomic_dec(&ch->req_lim); 1913 srpt_abort_cmd(ioctx); 1914 goto out; 1915 } 1916 1917 if (state != SRPT_STATE_DONE) { 1918 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1919 transport_generic_free_cmd(&ioctx->cmd, 0); 1920 } else { 1921 pr_err("IB completion has been received too late for" 1922 " wr_id = %u.\n", ioctx->ioctx.index); 1923 } 1924 1925 out: 1926 while (!list_empty(&ch->cmd_wait_list) && 1927 srpt_get_ch_state(ch) == CH_LIVE && 1928 (ioctx = srpt_get_send_ioctx(ch)) != NULL) { 1929 struct srpt_recv_ioctx *recv_ioctx; 1930 1931 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 1932 struct srpt_recv_ioctx, 1933 wait_list); 1934 list_del(&recv_ioctx->wait_list); 1935 srpt_handle_new_iu(ch, recv_ioctx, ioctx); 1936 } 1937 } 1938 1939 /** 1940 * srpt_create_ch_ib() - Create receive and send completion queues. 1941 */ 1942 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 1943 { 1944 struct ib_qp_init_attr *qp_init; 1945 struct srpt_port *sport = ch->sport; 1946 struct srpt_device *sdev = sport->sdev; 1947 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 1948 int ret; 1949 1950 WARN_ON(ch->rq_size < 1); 1951 1952 ret = -ENOMEM; 1953 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL); 1954 if (!qp_init) 1955 goto out; 1956 1957 retry: 1958 ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + srp_sq_size, 1959 0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE); 1960 if (IS_ERR(ch->cq)) { 1961 ret = PTR_ERR(ch->cq); 1962 pr_err("failed to create CQ cqe= %d ret= %d\n", 1963 ch->rq_size + srp_sq_size, ret); 1964 goto out; 1965 } 1966 1967 qp_init->qp_context = (void *)ch; 1968 qp_init->event_handler 1969 = (void(*)(struct ib_event *, void*))srpt_qp_event; 1970 qp_init->send_cq = ch->cq; 1971 qp_init->recv_cq = ch->cq; 1972 qp_init->srq = sdev->srq; 1973 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 1974 qp_init->qp_type = IB_QPT_RC; 1975 qp_init->cap.max_send_wr = srp_sq_size; 1976 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 1977 1978 ch->qp = ib_create_qp(sdev->pd, qp_init); 1979 if (IS_ERR(ch->qp)) { 1980 ret = PTR_ERR(ch->qp); 1981 if (ret == -ENOMEM) { 1982 srp_sq_size /= 2; 1983 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) { 1984 ib_destroy_cq(ch->cq); 1985 goto retry; 1986 } 1987 } 1988 pr_err("failed to create_qp ret= %d\n", ret); 1989 goto err_destroy_cq; 1990 } 1991 1992 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 1993 1994 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1995 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 1996 qp_init->cap.max_send_wr, ch->cm_id); 1997 1998 ret = srpt_init_ch_qp(ch, ch->qp); 1999 if (ret) 2000 goto err_destroy_qp; 2001 2002 out: 2003 kfree(qp_init); 2004 return ret; 2005 2006 err_destroy_qp: 2007 ib_destroy_qp(ch->qp); 2008 err_destroy_cq: 2009 ib_free_cq(ch->cq); 2010 goto out; 2011 } 2012 2013 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 2014 { 2015 ib_destroy_qp(ch->qp); 2016 ib_free_cq(ch->cq); 2017 } 2018 2019 /** 2020 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state. 2021 * 2022 * Reset the QP and make sure all resources associated with the channel will 2023 * be deallocated at an appropriate time. 2024 * 2025 * Note: The caller must hold ch->sport->sdev->spinlock. 2026 */ 2027 static void __srpt_close_ch(struct srpt_rdma_ch *ch) 2028 { 2029 enum rdma_ch_state prev_state; 2030 unsigned long flags; 2031 2032 spin_lock_irqsave(&ch->spinlock, flags); 2033 prev_state = ch->state; 2034 switch (prev_state) { 2035 case CH_CONNECTING: 2036 case CH_LIVE: 2037 ch->state = CH_DISCONNECTING; 2038 break; 2039 default: 2040 break; 2041 } 2042 spin_unlock_irqrestore(&ch->spinlock, flags); 2043 2044 switch (prev_state) { 2045 case CH_CONNECTING: 2046 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0, 2047 NULL, 0); 2048 /* fall through */ 2049 case CH_LIVE: 2050 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0) 2051 pr_err("sending CM DREQ failed.\n"); 2052 break; 2053 case CH_DISCONNECTING: 2054 break; 2055 case CH_DRAINING: 2056 case CH_RELEASING: 2057 break; 2058 } 2059 } 2060 2061 /** 2062 * srpt_close_ch() - Close an RDMA channel. 2063 */ 2064 static void srpt_close_ch(struct srpt_rdma_ch *ch) 2065 { 2066 struct srpt_device *sdev; 2067 2068 sdev = ch->sport->sdev; 2069 spin_lock_irq(&sdev->spinlock); 2070 __srpt_close_ch(ch); 2071 spin_unlock_irq(&sdev->spinlock); 2072 } 2073 2074 /** 2075 * srpt_shutdown_session() - Whether or not a session may be shut down. 2076 */ 2077 static int srpt_shutdown_session(struct se_session *se_sess) 2078 { 2079 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2080 unsigned long flags; 2081 2082 spin_lock_irqsave(&ch->spinlock, flags); 2083 if (ch->in_shutdown) { 2084 spin_unlock_irqrestore(&ch->spinlock, flags); 2085 return true; 2086 } 2087 2088 ch->in_shutdown = true; 2089 target_sess_cmd_list_set_waiting(se_sess); 2090 spin_unlock_irqrestore(&ch->spinlock, flags); 2091 2092 return true; 2093 } 2094 2095 /** 2096 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair. 2097 * @cm_id: Pointer to the CM ID of the channel to be drained. 2098 * 2099 * Note: Must be called from inside srpt_cm_handler to avoid a race between 2100 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one() 2101 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one() 2102 * waits until all target sessions for the associated IB device have been 2103 * unregistered and target session registration involves a call to 2104 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until 2105 * this function has finished). 2106 */ 2107 static void srpt_drain_channel(struct ib_cm_id *cm_id) 2108 { 2109 struct srpt_device *sdev; 2110 struct srpt_rdma_ch *ch; 2111 int ret; 2112 bool do_reset = false; 2113 2114 WARN_ON_ONCE(irqs_disabled()); 2115 2116 sdev = cm_id->context; 2117 BUG_ON(!sdev); 2118 spin_lock_irq(&sdev->spinlock); 2119 list_for_each_entry(ch, &sdev->rch_list, list) { 2120 if (ch->cm_id == cm_id) { 2121 do_reset = srpt_test_and_set_ch_state(ch, 2122 CH_CONNECTING, CH_DRAINING) || 2123 srpt_test_and_set_ch_state(ch, 2124 CH_LIVE, CH_DRAINING) || 2125 srpt_test_and_set_ch_state(ch, 2126 CH_DISCONNECTING, CH_DRAINING); 2127 break; 2128 } 2129 } 2130 spin_unlock_irq(&sdev->spinlock); 2131 2132 if (do_reset) { 2133 if (ch->sess) 2134 srpt_shutdown_session(ch->sess); 2135 2136 ret = srpt_ch_qp_err(ch); 2137 if (ret < 0) 2138 pr_err("Setting queue pair in error state" 2139 " failed: %d\n", ret); 2140 } 2141 } 2142 2143 /** 2144 * srpt_find_channel() - Look up an RDMA channel. 2145 * @cm_id: Pointer to the CM ID of the channel to be looked up. 2146 * 2147 * Return NULL if no matching RDMA channel has been found. 2148 */ 2149 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev, 2150 struct ib_cm_id *cm_id) 2151 { 2152 struct srpt_rdma_ch *ch; 2153 bool found; 2154 2155 WARN_ON_ONCE(irqs_disabled()); 2156 BUG_ON(!sdev); 2157 2158 found = false; 2159 spin_lock_irq(&sdev->spinlock); 2160 list_for_each_entry(ch, &sdev->rch_list, list) { 2161 if (ch->cm_id == cm_id) { 2162 found = true; 2163 break; 2164 } 2165 } 2166 spin_unlock_irq(&sdev->spinlock); 2167 2168 return found ? ch : NULL; 2169 } 2170 2171 /** 2172 * srpt_release_channel() - Release channel resources. 2173 * 2174 * Schedules the actual release because: 2175 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would 2176 * trigger a deadlock. 2177 * - It is not safe to call TCM transport_* functions from interrupt context. 2178 */ 2179 static void srpt_release_channel(struct srpt_rdma_ch *ch) 2180 { 2181 schedule_work(&ch->release_work); 2182 } 2183 2184 static void srpt_release_channel_work(struct work_struct *w) 2185 { 2186 struct srpt_rdma_ch *ch; 2187 struct srpt_device *sdev; 2188 struct se_session *se_sess; 2189 2190 ch = container_of(w, struct srpt_rdma_ch, release_work); 2191 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess, 2192 ch->release_done); 2193 2194 sdev = ch->sport->sdev; 2195 BUG_ON(!sdev); 2196 2197 se_sess = ch->sess; 2198 BUG_ON(!se_sess); 2199 2200 target_wait_for_sess_cmds(se_sess); 2201 2202 transport_deregister_session_configfs(se_sess); 2203 transport_deregister_session(se_sess); 2204 ch->sess = NULL; 2205 2206 ib_destroy_cm_id(ch->cm_id); 2207 2208 srpt_destroy_ch_ib(ch); 2209 2210 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2211 ch->sport->sdev, ch->rq_size, 2212 ch->rsp_size, DMA_TO_DEVICE); 2213 2214 spin_lock_irq(&sdev->spinlock); 2215 list_del(&ch->list); 2216 spin_unlock_irq(&sdev->spinlock); 2217 2218 if (ch->release_done) 2219 complete(ch->release_done); 2220 2221 wake_up(&sdev->ch_releaseQ); 2222 2223 kfree(ch); 2224 } 2225 2226 /** 2227 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 2228 * 2229 * Ownership of the cm_id is transferred to the target session if this 2230 * functions returns zero. Otherwise the caller remains the owner of cm_id. 2231 */ 2232 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 2233 struct ib_cm_req_event_param *param, 2234 void *private_data) 2235 { 2236 struct srpt_device *sdev = cm_id->context; 2237 struct srpt_port *sport = &sdev->port[param->port - 1]; 2238 struct srp_login_req *req; 2239 struct srp_login_rsp *rsp; 2240 struct srp_login_rej *rej; 2241 struct ib_cm_rep_param *rep_param; 2242 struct srpt_rdma_ch *ch, *tmp_ch; 2243 struct se_node_acl *se_acl; 2244 u32 it_iu_len; 2245 int i, ret = 0; 2246 unsigned char *p; 2247 2248 WARN_ON_ONCE(irqs_disabled()); 2249 2250 if (WARN_ON(!sdev || !private_data)) 2251 return -EINVAL; 2252 2253 req = (struct srp_login_req *)private_data; 2254 2255 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2256 2257 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 2258 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 2259 " (guid=0x%llx:0x%llx)\n", 2260 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 2261 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 2262 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 2263 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 2264 it_iu_len, 2265 param->port, 2266 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 2267 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 2268 2269 rsp = kzalloc(sizeof *rsp, GFP_KERNEL); 2270 rej = kzalloc(sizeof *rej, GFP_KERNEL); 2271 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL); 2272 2273 if (!rsp || !rej || !rep_param) { 2274 ret = -ENOMEM; 2275 goto out; 2276 } 2277 2278 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2279 rej->reason = cpu_to_be32( 2280 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2281 ret = -EINVAL; 2282 pr_err("rejected SRP_LOGIN_REQ because its" 2283 " length (%d bytes) is out of range (%d .. %d)\n", 2284 it_iu_len, 64, srp_max_req_size); 2285 goto reject; 2286 } 2287 2288 if (!sport->enabled) { 2289 rej->reason = cpu_to_be32( 2290 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2291 ret = -EINVAL; 2292 pr_err("rejected SRP_LOGIN_REQ because the target port" 2293 " has not yet been enabled\n"); 2294 goto reject; 2295 } 2296 2297 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2298 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2299 2300 spin_lock_irq(&sdev->spinlock); 2301 2302 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 2303 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 2304 && !memcmp(ch->t_port_id, req->target_port_id, 16) 2305 && param->port == ch->sport->port 2306 && param->listen_id == ch->sport->sdev->cm_id 2307 && ch->cm_id) { 2308 enum rdma_ch_state ch_state; 2309 2310 ch_state = srpt_get_ch_state(ch); 2311 if (ch_state != CH_CONNECTING 2312 && ch_state != CH_LIVE) 2313 continue; 2314 2315 /* found an existing channel */ 2316 pr_debug("Found existing channel %s" 2317 " cm_id= %p state= %d\n", 2318 ch->sess_name, ch->cm_id, ch_state); 2319 2320 __srpt_close_ch(ch); 2321 2322 rsp->rsp_flags = 2323 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2324 } 2325 } 2326 2327 spin_unlock_irq(&sdev->spinlock); 2328 2329 } else 2330 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2331 2332 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2333 || *(__be64 *)(req->target_port_id + 8) != 2334 cpu_to_be64(srpt_service_guid)) { 2335 rej->reason = cpu_to_be32( 2336 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2337 ret = -ENOMEM; 2338 pr_err("rejected SRP_LOGIN_REQ because it" 2339 " has an invalid target port identifier.\n"); 2340 goto reject; 2341 } 2342 2343 ch = kzalloc(sizeof *ch, GFP_KERNEL); 2344 if (!ch) { 2345 rej->reason = cpu_to_be32( 2346 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2347 pr_err("rejected SRP_LOGIN_REQ because no memory.\n"); 2348 ret = -ENOMEM; 2349 goto reject; 2350 } 2351 2352 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2353 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2354 memcpy(ch->t_port_id, req->target_port_id, 16); 2355 ch->sport = &sdev->port[param->port - 1]; 2356 ch->cm_id = cm_id; 2357 /* 2358 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 2359 * for the SRP protocol to the command queue size. 2360 */ 2361 ch->rq_size = SRPT_RQ_SIZE; 2362 spin_lock_init(&ch->spinlock); 2363 ch->state = CH_CONNECTING; 2364 INIT_LIST_HEAD(&ch->cmd_wait_list); 2365 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2366 2367 ch->ioctx_ring = (struct srpt_send_ioctx **) 2368 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2369 sizeof(*ch->ioctx_ring[0]), 2370 ch->rsp_size, DMA_TO_DEVICE); 2371 if (!ch->ioctx_ring) 2372 goto free_ch; 2373 2374 INIT_LIST_HEAD(&ch->free_list); 2375 for (i = 0; i < ch->rq_size; i++) { 2376 ch->ioctx_ring[i]->ch = ch; 2377 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2378 } 2379 2380 ret = srpt_create_ch_ib(ch); 2381 if (ret) { 2382 rej->reason = cpu_to_be32( 2383 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2384 pr_err("rejected SRP_LOGIN_REQ because creating" 2385 " a new RDMA channel failed.\n"); 2386 goto free_ring; 2387 } 2388 2389 ret = srpt_ch_qp_rtr(ch, ch->qp); 2390 if (ret) { 2391 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2392 pr_err("rejected SRP_LOGIN_REQ because enabling" 2393 " RTR failed (error code = %d)\n", ret); 2394 goto destroy_ib; 2395 } 2396 2397 /* 2398 * Use the initator port identifier as the session name, when 2399 * checking against se_node_acl->initiatorname[] this can be 2400 * with or without preceeding '0x'. 2401 */ 2402 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2403 be64_to_cpu(*(__be64 *)ch->i_port_id), 2404 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2405 2406 pr_debug("registering session %s\n", ch->sess_name); 2407 p = &ch->sess_name[0]; 2408 2409 ch->sess = transport_init_session(TARGET_PROT_NORMAL); 2410 if (IS_ERR(ch->sess)) { 2411 rej->reason = cpu_to_be32( 2412 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2413 pr_debug("Failed to create session\n"); 2414 goto destroy_ib; 2415 } 2416 2417 try_again: 2418 se_acl = core_tpg_get_initiator_node_acl(&sport->port_tpg_1, p); 2419 if (!se_acl) { 2420 pr_info("Rejected login because no ACL has been" 2421 " configured yet for initiator %s.\n", ch->sess_name); 2422 /* 2423 * XXX: Hack to retry of ch->i_port_id without leading '0x' 2424 */ 2425 if (p == &ch->sess_name[0]) { 2426 p += 2; 2427 goto try_again; 2428 } 2429 rej->reason = cpu_to_be32( 2430 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2431 transport_free_session(ch->sess); 2432 goto destroy_ib; 2433 } 2434 ch->sess->se_node_acl = se_acl; 2435 2436 transport_register_session(&sport->port_tpg_1, se_acl, ch->sess, ch); 2437 2438 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2439 ch->sess_name, ch->cm_id); 2440 2441 /* create srp_login_response */ 2442 rsp->opcode = SRP_LOGIN_RSP; 2443 rsp->tag = req->tag; 2444 rsp->max_it_iu_len = req->req_it_iu_len; 2445 rsp->max_ti_iu_len = req->req_it_iu_len; 2446 ch->max_ti_iu_len = it_iu_len; 2447 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2448 | SRP_BUF_FORMAT_INDIRECT); 2449 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2450 atomic_set(&ch->req_lim, ch->rq_size); 2451 atomic_set(&ch->req_lim_delta, 0); 2452 2453 /* create cm reply */ 2454 rep_param->qp_num = ch->qp->qp_num; 2455 rep_param->private_data = (void *)rsp; 2456 rep_param->private_data_len = sizeof *rsp; 2457 rep_param->rnr_retry_count = 7; 2458 rep_param->flow_control = 1; 2459 rep_param->failover_accepted = 0; 2460 rep_param->srq = 1; 2461 rep_param->responder_resources = 4; 2462 rep_param->initiator_depth = 4; 2463 2464 ret = ib_send_cm_rep(cm_id, rep_param); 2465 if (ret) { 2466 pr_err("sending SRP_LOGIN_REQ response failed" 2467 " (error code = %d)\n", ret); 2468 goto release_channel; 2469 } 2470 2471 spin_lock_irq(&sdev->spinlock); 2472 list_add_tail(&ch->list, &sdev->rch_list); 2473 spin_unlock_irq(&sdev->spinlock); 2474 2475 goto out; 2476 2477 release_channel: 2478 srpt_set_ch_state(ch, CH_RELEASING); 2479 transport_deregister_session_configfs(ch->sess); 2480 transport_deregister_session(ch->sess); 2481 ch->sess = NULL; 2482 2483 destroy_ib: 2484 srpt_destroy_ch_ib(ch); 2485 2486 free_ring: 2487 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2488 ch->sport->sdev, ch->rq_size, 2489 ch->rsp_size, DMA_TO_DEVICE); 2490 free_ch: 2491 kfree(ch); 2492 2493 reject: 2494 rej->opcode = SRP_LOGIN_REJ; 2495 rej->tag = req->tag; 2496 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2497 | SRP_BUF_FORMAT_INDIRECT); 2498 2499 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2500 (void *)rej, sizeof *rej); 2501 2502 out: 2503 kfree(rep_param); 2504 kfree(rsp); 2505 kfree(rej); 2506 2507 return ret; 2508 } 2509 2510 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id) 2511 { 2512 pr_info("Received IB REJ for cm_id %p.\n", cm_id); 2513 srpt_drain_channel(cm_id); 2514 } 2515 2516 /** 2517 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2518 * 2519 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2520 * and that the recipient may begin transmitting (RTU = ready to use). 2521 */ 2522 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id) 2523 { 2524 struct srpt_rdma_ch *ch; 2525 int ret; 2526 2527 ch = srpt_find_channel(cm_id->context, cm_id); 2528 BUG_ON(!ch); 2529 2530 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) { 2531 struct srpt_recv_ioctx *ioctx, *ioctx_tmp; 2532 2533 ret = srpt_ch_qp_rts(ch, ch->qp); 2534 2535 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list, 2536 wait_list) { 2537 list_del(&ioctx->wait_list); 2538 srpt_handle_new_iu(ch, ioctx, NULL); 2539 } 2540 if (ret) 2541 srpt_close_ch(ch); 2542 } 2543 } 2544 2545 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id) 2546 { 2547 pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id); 2548 srpt_drain_channel(cm_id); 2549 } 2550 2551 static void srpt_cm_rep_error(struct ib_cm_id *cm_id) 2552 { 2553 pr_info("Received IB REP error for cm_id %p.\n", cm_id); 2554 srpt_drain_channel(cm_id); 2555 } 2556 2557 /** 2558 * srpt_cm_dreq_recv() - Process reception of a DREQ message. 2559 */ 2560 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id) 2561 { 2562 struct srpt_rdma_ch *ch; 2563 unsigned long flags; 2564 bool send_drep = false; 2565 2566 ch = srpt_find_channel(cm_id->context, cm_id); 2567 BUG_ON(!ch); 2568 2569 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch)); 2570 2571 spin_lock_irqsave(&ch->spinlock, flags); 2572 switch (ch->state) { 2573 case CH_CONNECTING: 2574 case CH_LIVE: 2575 send_drep = true; 2576 ch->state = CH_DISCONNECTING; 2577 break; 2578 case CH_DISCONNECTING: 2579 case CH_DRAINING: 2580 case CH_RELEASING: 2581 WARN(true, "unexpected channel state %d\n", ch->state); 2582 break; 2583 } 2584 spin_unlock_irqrestore(&ch->spinlock, flags); 2585 2586 if (send_drep) { 2587 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0) 2588 pr_err("Sending IB DREP failed.\n"); 2589 pr_info("Received DREQ and sent DREP for session %s.\n", 2590 ch->sess_name); 2591 } 2592 } 2593 2594 /** 2595 * srpt_cm_drep_recv() - Process reception of a DREP message. 2596 */ 2597 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id) 2598 { 2599 pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id); 2600 srpt_drain_channel(cm_id); 2601 } 2602 2603 /** 2604 * srpt_cm_handler() - IB connection manager callback function. 2605 * 2606 * A non-zero return value will cause the caller destroy the CM ID. 2607 * 2608 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2609 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2610 * a non-zero value in any other case will trigger a race with the 2611 * ib_destroy_cm_id() call in srpt_release_channel(). 2612 */ 2613 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2614 { 2615 int ret; 2616 2617 ret = 0; 2618 switch (event->event) { 2619 case IB_CM_REQ_RECEIVED: 2620 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2621 event->private_data); 2622 break; 2623 case IB_CM_REJ_RECEIVED: 2624 srpt_cm_rej_recv(cm_id); 2625 break; 2626 case IB_CM_RTU_RECEIVED: 2627 case IB_CM_USER_ESTABLISHED: 2628 srpt_cm_rtu_recv(cm_id); 2629 break; 2630 case IB_CM_DREQ_RECEIVED: 2631 srpt_cm_dreq_recv(cm_id); 2632 break; 2633 case IB_CM_DREP_RECEIVED: 2634 srpt_cm_drep_recv(cm_id); 2635 break; 2636 case IB_CM_TIMEWAIT_EXIT: 2637 srpt_cm_timewait_exit(cm_id); 2638 break; 2639 case IB_CM_REP_ERROR: 2640 srpt_cm_rep_error(cm_id); 2641 break; 2642 case IB_CM_DREQ_ERROR: 2643 pr_info("Received IB DREQ ERROR event.\n"); 2644 break; 2645 case IB_CM_MRA_RECEIVED: 2646 pr_info("Received IB MRA event\n"); 2647 break; 2648 default: 2649 pr_err("received unrecognized IB CM event %d\n", event->event); 2650 break; 2651 } 2652 2653 return ret; 2654 } 2655 2656 /** 2657 * srpt_perform_rdmas() - Perform IB RDMA. 2658 * 2659 * Returns zero upon success or a negative number upon failure. 2660 */ 2661 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, 2662 struct srpt_send_ioctx *ioctx) 2663 { 2664 struct ib_send_wr *bad_wr; 2665 int sq_wr_avail, ret, i; 2666 enum dma_data_direction dir; 2667 const int n_rdma = ioctx->n_rdma; 2668 2669 dir = ioctx->cmd.data_direction; 2670 if (dir == DMA_TO_DEVICE) { 2671 /* write */ 2672 ret = -ENOMEM; 2673 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); 2674 if (sq_wr_avail < 0) { 2675 pr_warn("IB send queue full (needed %d)\n", 2676 n_rdma); 2677 goto out; 2678 } 2679 } 2680 2681 for (i = 0; i < n_rdma; i++) { 2682 struct ib_send_wr *wr = &ioctx->rdma_wrs[i].wr; 2683 2684 wr->opcode = (dir == DMA_FROM_DEVICE) ? 2685 IB_WR_RDMA_WRITE : IB_WR_RDMA_READ; 2686 2687 if (i == n_rdma - 1) { 2688 /* only get completion event for the last rdma read */ 2689 if (dir == DMA_TO_DEVICE) { 2690 wr->send_flags = IB_SEND_SIGNALED; 2691 ioctx->rdma_cqe.done = srpt_rdma_read_done; 2692 } else { 2693 ioctx->rdma_cqe.done = srpt_rdma_write_done; 2694 } 2695 wr->wr_cqe = &ioctx->rdma_cqe; 2696 wr->next = NULL; 2697 } else { 2698 wr->wr_cqe = NULL; 2699 wr->next = &ioctx->rdma_wrs[i + 1].wr; 2700 } 2701 } 2702 2703 ret = ib_post_send(ch->qp, &ioctx->rdma_wrs->wr, &bad_wr); 2704 if (ret) 2705 pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n", 2706 __func__, __LINE__, ret, i, n_rdma); 2707 out: 2708 if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) 2709 atomic_add(n_rdma, &ch->sq_wr_avail); 2710 return ret; 2711 } 2712 2713 /** 2714 * srpt_xfer_data() - Start data transfer from initiator to target. 2715 */ 2716 static int srpt_xfer_data(struct srpt_rdma_ch *ch, 2717 struct srpt_send_ioctx *ioctx) 2718 { 2719 int ret; 2720 2721 ret = srpt_map_sg_to_ib_sge(ch, ioctx); 2722 if (ret) { 2723 pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret); 2724 goto out; 2725 } 2726 2727 ret = srpt_perform_rdmas(ch, ioctx); 2728 if (ret) { 2729 if (ret == -EAGAIN || ret == -ENOMEM) 2730 pr_info("%s[%d] queue full -- ret=%d\n", 2731 __func__, __LINE__, ret); 2732 else 2733 pr_err("%s[%d] fatal error -- ret=%d\n", 2734 __func__, __LINE__, ret); 2735 goto out_unmap; 2736 } 2737 2738 out: 2739 return ret; 2740 out_unmap: 2741 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2742 goto out; 2743 } 2744 2745 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2746 { 2747 struct srpt_send_ioctx *ioctx; 2748 2749 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2750 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2751 } 2752 2753 /* 2754 * srpt_write_pending() - Start data transfer from initiator to target (write). 2755 */ 2756 static int srpt_write_pending(struct se_cmd *se_cmd) 2757 { 2758 struct srpt_rdma_ch *ch; 2759 struct srpt_send_ioctx *ioctx; 2760 enum srpt_command_state new_state; 2761 enum rdma_ch_state ch_state; 2762 int ret; 2763 2764 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2765 2766 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2767 WARN_ON(new_state == SRPT_STATE_DONE); 2768 2769 ch = ioctx->ch; 2770 BUG_ON(!ch); 2771 2772 ch_state = srpt_get_ch_state(ch); 2773 switch (ch_state) { 2774 case CH_CONNECTING: 2775 WARN(true, "unexpected channel state %d\n", ch_state); 2776 ret = -EINVAL; 2777 goto out; 2778 case CH_LIVE: 2779 break; 2780 case CH_DISCONNECTING: 2781 case CH_DRAINING: 2782 case CH_RELEASING: 2783 pr_debug("cmd with tag %lld: channel disconnecting\n", 2784 ioctx->cmd.tag); 2785 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2786 ret = -EINVAL; 2787 goto out; 2788 } 2789 ret = srpt_xfer_data(ch, ioctx); 2790 2791 out: 2792 return ret; 2793 } 2794 2795 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2796 { 2797 switch (tcm_mgmt_status) { 2798 case TMR_FUNCTION_COMPLETE: 2799 return SRP_TSK_MGMT_SUCCESS; 2800 case TMR_FUNCTION_REJECTED: 2801 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2802 } 2803 return SRP_TSK_MGMT_FAILED; 2804 } 2805 2806 /** 2807 * srpt_queue_response() - Transmits the response to a SCSI command. 2808 * 2809 * Callback function called by the TCM core. Must not block since it can be 2810 * invoked on the context of the IB completion handler. 2811 */ 2812 static void srpt_queue_response(struct se_cmd *cmd) 2813 { 2814 struct srpt_rdma_ch *ch; 2815 struct srpt_send_ioctx *ioctx; 2816 enum srpt_command_state state; 2817 unsigned long flags; 2818 int ret; 2819 enum dma_data_direction dir; 2820 int resp_len; 2821 u8 srp_tm_status; 2822 2823 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 2824 ch = ioctx->ch; 2825 BUG_ON(!ch); 2826 2827 spin_lock_irqsave(&ioctx->spinlock, flags); 2828 state = ioctx->state; 2829 switch (state) { 2830 case SRPT_STATE_NEW: 2831 case SRPT_STATE_DATA_IN: 2832 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 2833 break; 2834 case SRPT_STATE_MGMT: 2835 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 2836 break; 2837 default: 2838 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 2839 ch, ioctx->ioctx.index, ioctx->state); 2840 break; 2841 } 2842 spin_unlock_irqrestore(&ioctx->spinlock, flags); 2843 2844 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 2845 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 2846 atomic_inc(&ch->req_lim_delta); 2847 srpt_abort_cmd(ioctx); 2848 return; 2849 } 2850 2851 dir = ioctx->cmd.data_direction; 2852 2853 /* For read commands, transfer the data to the initiator. */ 2854 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && 2855 !ioctx->queue_status_only) { 2856 ret = srpt_xfer_data(ch, ioctx); 2857 if (ret) { 2858 pr_err("xfer_data failed for tag %llu\n", 2859 ioctx->cmd.tag); 2860 return; 2861 } 2862 } 2863 2864 if (state != SRPT_STATE_MGMT) 2865 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, 2866 cmd->scsi_status); 2867 else { 2868 srp_tm_status 2869 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 2870 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 2871 ioctx->cmd.tag); 2872 } 2873 ret = srpt_post_send(ch, ioctx, resp_len); 2874 if (ret) { 2875 pr_err("sending cmd response failed for tag %llu\n", 2876 ioctx->cmd.tag); 2877 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2878 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 2879 target_put_sess_cmd(&ioctx->cmd); 2880 } 2881 } 2882 2883 static int srpt_queue_data_in(struct se_cmd *cmd) 2884 { 2885 srpt_queue_response(cmd); 2886 return 0; 2887 } 2888 2889 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 2890 { 2891 srpt_queue_response(cmd); 2892 } 2893 2894 static void srpt_aborted_task(struct se_cmd *cmd) 2895 { 2896 struct srpt_send_ioctx *ioctx = container_of(cmd, 2897 struct srpt_send_ioctx, cmd); 2898 2899 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 2900 } 2901 2902 static int srpt_queue_status(struct se_cmd *cmd) 2903 { 2904 struct srpt_send_ioctx *ioctx; 2905 2906 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 2907 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 2908 if (cmd->se_cmd_flags & 2909 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 2910 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 2911 ioctx->queue_status_only = true; 2912 srpt_queue_response(cmd); 2913 return 0; 2914 } 2915 2916 static void srpt_refresh_port_work(struct work_struct *work) 2917 { 2918 struct srpt_port *sport = container_of(work, struct srpt_port, work); 2919 2920 srpt_refresh_port(sport); 2921 } 2922 2923 static int srpt_ch_list_empty(struct srpt_device *sdev) 2924 { 2925 int res; 2926 2927 spin_lock_irq(&sdev->spinlock); 2928 res = list_empty(&sdev->rch_list); 2929 spin_unlock_irq(&sdev->spinlock); 2930 2931 return res; 2932 } 2933 2934 /** 2935 * srpt_release_sdev() - Free the channel resources associated with a target. 2936 */ 2937 static int srpt_release_sdev(struct srpt_device *sdev) 2938 { 2939 struct srpt_rdma_ch *ch, *tmp_ch; 2940 int res; 2941 2942 WARN_ON_ONCE(irqs_disabled()); 2943 2944 BUG_ON(!sdev); 2945 2946 spin_lock_irq(&sdev->spinlock); 2947 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) 2948 __srpt_close_ch(ch); 2949 spin_unlock_irq(&sdev->spinlock); 2950 2951 res = wait_event_interruptible(sdev->ch_releaseQ, 2952 srpt_ch_list_empty(sdev)); 2953 if (res) 2954 pr_err("%s: interrupted.\n", __func__); 2955 2956 return 0; 2957 } 2958 2959 static struct srpt_port *__srpt_lookup_port(const char *name) 2960 { 2961 struct ib_device *dev; 2962 struct srpt_device *sdev; 2963 struct srpt_port *sport; 2964 int i; 2965 2966 list_for_each_entry(sdev, &srpt_dev_list, list) { 2967 dev = sdev->device; 2968 if (!dev) 2969 continue; 2970 2971 for (i = 0; i < dev->phys_port_cnt; i++) { 2972 sport = &sdev->port[i]; 2973 2974 if (!strcmp(sport->port_guid, name)) 2975 return sport; 2976 } 2977 } 2978 2979 return NULL; 2980 } 2981 2982 static struct srpt_port *srpt_lookup_port(const char *name) 2983 { 2984 struct srpt_port *sport; 2985 2986 spin_lock(&srpt_dev_lock); 2987 sport = __srpt_lookup_port(name); 2988 spin_unlock(&srpt_dev_lock); 2989 2990 return sport; 2991 } 2992 2993 /** 2994 * srpt_add_one() - Infiniband device addition callback function. 2995 */ 2996 static void srpt_add_one(struct ib_device *device) 2997 { 2998 struct srpt_device *sdev; 2999 struct srpt_port *sport; 3000 struct ib_srq_init_attr srq_attr; 3001 int i; 3002 3003 pr_debug("device = %p, device->dma_ops = %p\n", device, 3004 device->dma_ops); 3005 3006 sdev = kzalloc(sizeof *sdev, GFP_KERNEL); 3007 if (!sdev) 3008 goto err; 3009 3010 sdev->device = device; 3011 INIT_LIST_HEAD(&sdev->rch_list); 3012 init_waitqueue_head(&sdev->ch_releaseQ); 3013 spin_lock_init(&sdev->spinlock); 3014 3015 sdev->pd = ib_alloc_pd(device); 3016 if (IS_ERR(sdev->pd)) 3017 goto free_dev; 3018 3019 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr); 3020 3021 srq_attr.event_handler = srpt_srq_event; 3022 srq_attr.srq_context = (void *)sdev; 3023 srq_attr.attr.max_wr = sdev->srq_size; 3024 srq_attr.attr.max_sge = 1; 3025 srq_attr.attr.srq_limit = 0; 3026 srq_attr.srq_type = IB_SRQT_BASIC; 3027 3028 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 3029 if (IS_ERR(sdev->srq)) 3030 goto err_pd; 3031 3032 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 3033 __func__, sdev->srq_size, sdev->device->attrs.max_srq_wr, 3034 device->name); 3035 3036 if (!srpt_service_guid) 3037 srpt_service_guid = be64_to_cpu(device->node_guid); 3038 3039 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3040 if (IS_ERR(sdev->cm_id)) 3041 goto err_srq; 3042 3043 /* print out target login information */ 3044 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3045 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3046 srpt_service_guid, srpt_service_guid); 3047 3048 /* 3049 * We do not have a consistent service_id (ie. also id_ext of target_id) 3050 * to identify this target. We currently use the guid of the first HCA 3051 * in the system as service_id; therefore, the target_id will change 3052 * if this HCA is gone bad and replaced by different HCA 3053 */ 3054 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0)) 3055 goto err_cm; 3056 3057 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3058 srpt_event_handler); 3059 if (ib_register_event_handler(&sdev->event_handler)) 3060 goto err_cm; 3061 3062 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3063 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3064 sizeof(*sdev->ioctx_ring[0]), 3065 srp_max_req_size, DMA_FROM_DEVICE); 3066 if (!sdev->ioctx_ring) 3067 goto err_event; 3068 3069 for (i = 0; i < sdev->srq_size; ++i) 3070 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 3071 3072 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 3073 3074 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3075 sport = &sdev->port[i - 1]; 3076 sport->sdev = sdev; 3077 sport->port = i; 3078 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3079 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3080 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3081 INIT_WORK(&sport->work, srpt_refresh_port_work); 3082 3083 if (srpt_refresh_port(sport)) { 3084 pr_err("MAD registration failed for %s-%d.\n", 3085 srpt_sdev_name(sdev), i); 3086 goto err_ring; 3087 } 3088 snprintf(sport->port_guid, sizeof(sport->port_guid), 3089 "0x%016llx%016llx", 3090 be64_to_cpu(sport->gid.global.subnet_prefix), 3091 be64_to_cpu(sport->gid.global.interface_id)); 3092 } 3093 3094 spin_lock(&srpt_dev_lock); 3095 list_add_tail(&sdev->list, &srpt_dev_list); 3096 spin_unlock(&srpt_dev_lock); 3097 3098 out: 3099 ib_set_client_data(device, &srpt_client, sdev); 3100 pr_debug("added %s.\n", device->name); 3101 return; 3102 3103 err_ring: 3104 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3105 sdev->srq_size, srp_max_req_size, 3106 DMA_FROM_DEVICE); 3107 err_event: 3108 ib_unregister_event_handler(&sdev->event_handler); 3109 err_cm: 3110 ib_destroy_cm_id(sdev->cm_id); 3111 err_srq: 3112 ib_destroy_srq(sdev->srq); 3113 err_pd: 3114 ib_dealloc_pd(sdev->pd); 3115 free_dev: 3116 kfree(sdev); 3117 err: 3118 sdev = NULL; 3119 pr_info("%s(%s) failed.\n", __func__, device->name); 3120 goto out; 3121 } 3122 3123 /** 3124 * srpt_remove_one() - InfiniBand device removal callback function. 3125 */ 3126 static void srpt_remove_one(struct ib_device *device, void *client_data) 3127 { 3128 struct srpt_device *sdev = client_data; 3129 int i; 3130 3131 if (!sdev) { 3132 pr_info("%s(%s): nothing to do.\n", __func__, device->name); 3133 return; 3134 } 3135 3136 srpt_unregister_mad_agent(sdev); 3137 3138 ib_unregister_event_handler(&sdev->event_handler); 3139 3140 /* Cancel any work queued by the just unregistered IB event handler. */ 3141 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3142 cancel_work_sync(&sdev->port[i].work); 3143 3144 ib_destroy_cm_id(sdev->cm_id); 3145 3146 /* 3147 * Unregistering a target must happen after destroying sdev->cm_id 3148 * such that no new SRP_LOGIN_REQ information units can arrive while 3149 * destroying the target. 3150 */ 3151 spin_lock(&srpt_dev_lock); 3152 list_del(&sdev->list); 3153 spin_unlock(&srpt_dev_lock); 3154 srpt_release_sdev(sdev); 3155 3156 ib_destroy_srq(sdev->srq); 3157 ib_dealloc_pd(sdev->pd); 3158 3159 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3160 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 3161 sdev->ioctx_ring = NULL; 3162 kfree(sdev); 3163 } 3164 3165 static struct ib_client srpt_client = { 3166 .name = DRV_NAME, 3167 .add = srpt_add_one, 3168 .remove = srpt_remove_one 3169 }; 3170 3171 static int srpt_check_true(struct se_portal_group *se_tpg) 3172 { 3173 return 1; 3174 } 3175 3176 static int srpt_check_false(struct se_portal_group *se_tpg) 3177 { 3178 return 0; 3179 } 3180 3181 static char *srpt_get_fabric_name(void) 3182 { 3183 return "srpt"; 3184 } 3185 3186 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3187 { 3188 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3189 3190 return sport->port_guid; 3191 } 3192 3193 static u16 srpt_get_tag(struct se_portal_group *tpg) 3194 { 3195 return 1; 3196 } 3197 3198 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3199 { 3200 return 1; 3201 } 3202 3203 static void srpt_release_cmd(struct se_cmd *se_cmd) 3204 { 3205 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3206 struct srpt_send_ioctx, cmd); 3207 struct srpt_rdma_ch *ch = ioctx->ch; 3208 unsigned long flags; 3209 3210 WARN_ON(ioctx->state != SRPT_STATE_DONE); 3211 WARN_ON(ioctx->mapped_sg_count != 0); 3212 3213 if (ioctx->n_rbuf > 1) { 3214 kfree(ioctx->rbufs); 3215 ioctx->rbufs = NULL; 3216 ioctx->n_rbuf = 0; 3217 } 3218 3219 spin_lock_irqsave(&ch->spinlock, flags); 3220 list_add(&ioctx->free_list, &ch->free_list); 3221 spin_unlock_irqrestore(&ch->spinlock, flags); 3222 } 3223 3224 /** 3225 * srpt_close_session() - Forcibly close a session. 3226 * 3227 * Callback function invoked by the TCM core to clean up sessions associated 3228 * with a node ACL when the user invokes 3229 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3230 */ 3231 static void srpt_close_session(struct se_session *se_sess) 3232 { 3233 DECLARE_COMPLETION_ONSTACK(release_done); 3234 struct srpt_rdma_ch *ch; 3235 struct srpt_device *sdev; 3236 unsigned long res; 3237 3238 ch = se_sess->fabric_sess_ptr; 3239 WARN_ON(ch->sess != se_sess); 3240 3241 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch)); 3242 3243 sdev = ch->sport->sdev; 3244 spin_lock_irq(&sdev->spinlock); 3245 BUG_ON(ch->release_done); 3246 ch->release_done = &release_done; 3247 __srpt_close_ch(ch); 3248 spin_unlock_irq(&sdev->spinlock); 3249 3250 res = wait_for_completion_timeout(&release_done, 60 * HZ); 3251 WARN_ON(res == 0); 3252 } 3253 3254 /** 3255 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 3256 * 3257 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3258 * This object represents an arbitrary integer used to uniquely identify a 3259 * particular attached remote initiator port to a particular SCSI target port 3260 * within a particular SCSI target device within a particular SCSI instance. 3261 */ 3262 static u32 srpt_sess_get_index(struct se_session *se_sess) 3263 { 3264 return 0; 3265 } 3266 3267 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3268 { 3269 } 3270 3271 /* Note: only used from inside debug printk's by the TCM core. */ 3272 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3273 { 3274 struct srpt_send_ioctx *ioctx; 3275 3276 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3277 return srpt_get_cmd_state(ioctx); 3278 } 3279 3280 /** 3281 * srpt_parse_i_port_id() - Parse an initiator port ID. 3282 * @name: ASCII representation of a 128-bit initiator port ID. 3283 * @i_port_id: Binary 128-bit port ID. 3284 */ 3285 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3286 { 3287 const char *p; 3288 unsigned len, count, leading_zero_bytes; 3289 int ret, rc; 3290 3291 p = name; 3292 if (strncasecmp(p, "0x", 2) == 0) 3293 p += 2; 3294 ret = -EINVAL; 3295 len = strlen(p); 3296 if (len % 2) 3297 goto out; 3298 count = min(len / 2, 16U); 3299 leading_zero_bytes = 16 - count; 3300 memset(i_port_id, 0, leading_zero_bytes); 3301 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 3302 if (rc < 0) 3303 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 3304 ret = 0; 3305 out: 3306 return ret; 3307 } 3308 3309 /* 3310 * configfs callback function invoked for 3311 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3312 */ 3313 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) 3314 { 3315 u8 i_port_id[16]; 3316 3317 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 3318 pr_err("invalid initiator port ID %s\n", name); 3319 return -EINVAL; 3320 } 3321 return 0; 3322 } 3323 3324 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, 3325 char *page) 3326 { 3327 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3328 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3329 3330 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3331 } 3332 3333 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, 3334 const char *page, size_t count) 3335 { 3336 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3337 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3338 unsigned long val; 3339 int ret; 3340 3341 ret = kstrtoul(page, 0, &val); 3342 if (ret < 0) { 3343 pr_err("kstrtoul() failed with ret: %d\n", ret); 3344 return -EINVAL; 3345 } 3346 if (val > MAX_SRPT_RDMA_SIZE) { 3347 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3348 MAX_SRPT_RDMA_SIZE); 3349 return -EINVAL; 3350 } 3351 if (val < DEFAULT_MAX_RDMA_SIZE) { 3352 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3353 val, DEFAULT_MAX_RDMA_SIZE); 3354 return -EINVAL; 3355 } 3356 sport->port_attrib.srp_max_rdma_size = val; 3357 3358 return count; 3359 } 3360 3361 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, 3362 char *page) 3363 { 3364 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3365 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3366 3367 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3368 } 3369 3370 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, 3371 const char *page, size_t count) 3372 { 3373 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3374 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3375 unsigned long val; 3376 int ret; 3377 3378 ret = kstrtoul(page, 0, &val); 3379 if (ret < 0) { 3380 pr_err("kstrtoul() failed with ret: %d\n", ret); 3381 return -EINVAL; 3382 } 3383 if (val > MAX_SRPT_RSP_SIZE) { 3384 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3385 MAX_SRPT_RSP_SIZE); 3386 return -EINVAL; 3387 } 3388 if (val < MIN_MAX_RSP_SIZE) { 3389 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3390 MIN_MAX_RSP_SIZE); 3391 return -EINVAL; 3392 } 3393 sport->port_attrib.srp_max_rsp_size = val; 3394 3395 return count; 3396 } 3397 3398 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, 3399 char *page) 3400 { 3401 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3402 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3403 3404 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3405 } 3406 3407 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, 3408 const char *page, size_t count) 3409 { 3410 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3411 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3412 unsigned long val; 3413 int ret; 3414 3415 ret = kstrtoul(page, 0, &val); 3416 if (ret < 0) { 3417 pr_err("kstrtoul() failed with ret: %d\n", ret); 3418 return -EINVAL; 3419 } 3420 if (val > MAX_SRPT_SRQ_SIZE) { 3421 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3422 MAX_SRPT_SRQ_SIZE); 3423 return -EINVAL; 3424 } 3425 if (val < MIN_SRPT_SRQ_SIZE) { 3426 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3427 MIN_SRPT_SRQ_SIZE); 3428 return -EINVAL; 3429 } 3430 sport->port_attrib.srp_sq_size = val; 3431 3432 return count; 3433 } 3434 3435 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size); 3436 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size); 3437 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size); 3438 3439 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3440 &srpt_tpg_attrib_attr_srp_max_rdma_size, 3441 &srpt_tpg_attrib_attr_srp_max_rsp_size, 3442 &srpt_tpg_attrib_attr_srp_sq_size, 3443 NULL, 3444 }; 3445 3446 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page) 3447 { 3448 struct se_portal_group *se_tpg = to_tpg(item); 3449 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3450 3451 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3452 } 3453 3454 static ssize_t srpt_tpg_enable_store(struct config_item *item, 3455 const char *page, size_t count) 3456 { 3457 struct se_portal_group *se_tpg = to_tpg(item); 3458 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3459 unsigned long tmp; 3460 int ret; 3461 3462 ret = kstrtoul(page, 0, &tmp); 3463 if (ret < 0) { 3464 pr_err("Unable to extract srpt_tpg_store_enable\n"); 3465 return -EINVAL; 3466 } 3467 3468 if ((tmp != 0) && (tmp != 1)) { 3469 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3470 return -EINVAL; 3471 } 3472 if (tmp == 1) 3473 sport->enabled = true; 3474 else 3475 sport->enabled = false; 3476 3477 return count; 3478 } 3479 3480 CONFIGFS_ATTR(srpt_tpg_, enable); 3481 3482 static struct configfs_attribute *srpt_tpg_attrs[] = { 3483 &srpt_tpg_attr_enable, 3484 NULL, 3485 }; 3486 3487 /** 3488 * configfs callback invoked for 3489 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3490 */ 3491 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3492 struct config_group *group, 3493 const char *name) 3494 { 3495 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3496 int res; 3497 3498 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 3499 res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP); 3500 if (res) 3501 return ERR_PTR(res); 3502 3503 return &sport->port_tpg_1; 3504 } 3505 3506 /** 3507 * configfs callback invoked for 3508 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3509 */ 3510 static void srpt_drop_tpg(struct se_portal_group *tpg) 3511 { 3512 struct srpt_port *sport = container_of(tpg, 3513 struct srpt_port, port_tpg_1); 3514 3515 sport->enabled = false; 3516 core_tpg_deregister(&sport->port_tpg_1); 3517 } 3518 3519 /** 3520 * configfs callback invoked for 3521 * mkdir /sys/kernel/config/target/$driver/$port 3522 */ 3523 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3524 struct config_group *group, 3525 const char *name) 3526 { 3527 struct srpt_port *sport; 3528 int ret; 3529 3530 sport = srpt_lookup_port(name); 3531 pr_debug("make_tport(%s)\n", name); 3532 ret = -EINVAL; 3533 if (!sport) 3534 goto err; 3535 3536 return &sport->port_wwn; 3537 3538 err: 3539 return ERR_PTR(ret); 3540 } 3541 3542 /** 3543 * configfs callback invoked for 3544 * rmdir /sys/kernel/config/target/$driver/$port 3545 */ 3546 static void srpt_drop_tport(struct se_wwn *wwn) 3547 { 3548 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3549 3550 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3551 } 3552 3553 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf) 3554 { 3555 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3556 } 3557 3558 CONFIGFS_ATTR_RO(srpt_wwn_, version); 3559 3560 static struct configfs_attribute *srpt_wwn_attrs[] = { 3561 &srpt_wwn_attr_version, 3562 NULL, 3563 }; 3564 3565 static const struct target_core_fabric_ops srpt_template = { 3566 .module = THIS_MODULE, 3567 .name = "srpt", 3568 .node_acl_size = sizeof(struct srpt_node_acl), 3569 .get_fabric_name = srpt_get_fabric_name, 3570 .tpg_get_wwn = srpt_get_fabric_wwn, 3571 .tpg_get_tag = srpt_get_tag, 3572 .tpg_check_demo_mode = srpt_check_false, 3573 .tpg_check_demo_mode_cache = srpt_check_true, 3574 .tpg_check_demo_mode_write_protect = srpt_check_true, 3575 .tpg_check_prod_mode_write_protect = srpt_check_false, 3576 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3577 .release_cmd = srpt_release_cmd, 3578 .check_stop_free = srpt_check_stop_free, 3579 .shutdown_session = srpt_shutdown_session, 3580 .close_session = srpt_close_session, 3581 .sess_get_index = srpt_sess_get_index, 3582 .sess_get_initiator_sid = NULL, 3583 .write_pending = srpt_write_pending, 3584 .write_pending_status = srpt_write_pending_status, 3585 .set_default_node_attributes = srpt_set_default_node_attrs, 3586 .get_cmd_state = srpt_get_tcm_cmd_state, 3587 .queue_data_in = srpt_queue_data_in, 3588 .queue_status = srpt_queue_status, 3589 .queue_tm_rsp = srpt_queue_tm_rsp, 3590 .aborted_task = srpt_aborted_task, 3591 /* 3592 * Setup function pointers for generic logic in 3593 * target_core_fabric_configfs.c 3594 */ 3595 .fabric_make_wwn = srpt_make_tport, 3596 .fabric_drop_wwn = srpt_drop_tport, 3597 .fabric_make_tpg = srpt_make_tpg, 3598 .fabric_drop_tpg = srpt_drop_tpg, 3599 .fabric_init_nodeacl = srpt_init_nodeacl, 3600 3601 .tfc_wwn_attrs = srpt_wwn_attrs, 3602 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3603 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3604 }; 3605 3606 /** 3607 * srpt_init_module() - Kernel module initialization. 3608 * 3609 * Note: Since ib_register_client() registers callback functions, and since at 3610 * least one of these callback functions (srpt_add_one()) calls target core 3611 * functions, this driver must be registered with the target core before 3612 * ib_register_client() is called. 3613 */ 3614 static int __init srpt_init_module(void) 3615 { 3616 int ret; 3617 3618 ret = -EINVAL; 3619 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3620 pr_err("invalid value %d for kernel module parameter" 3621 " srp_max_req_size -- must be at least %d.\n", 3622 srp_max_req_size, MIN_MAX_REQ_SIZE); 3623 goto out; 3624 } 3625 3626 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3627 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3628 pr_err("invalid value %d for kernel module parameter" 3629 " srpt_srq_size -- must be in the range [%d..%d].\n", 3630 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3631 goto out; 3632 } 3633 3634 ret = target_register_template(&srpt_template); 3635 if (ret) 3636 goto out; 3637 3638 ret = ib_register_client(&srpt_client); 3639 if (ret) { 3640 pr_err("couldn't register IB client\n"); 3641 goto out_unregister_target; 3642 } 3643 3644 return 0; 3645 3646 out_unregister_target: 3647 target_unregister_template(&srpt_template); 3648 out: 3649 return ret; 3650 } 3651 3652 static void __exit srpt_cleanup_module(void) 3653 { 3654 ib_unregister_client(&srpt_client); 3655 target_unregister_template(&srpt_template); 3656 } 3657 3658 module_init(srpt_init_module); 3659 module_exit(srpt_cleanup_module); 3660