1 /*
2  * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3  * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_proto.h>
45 #include <scsi/scsi_tcq.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric.h>
48 #include "ib_srpt.h"
49 
50 /* Name of this kernel module. */
51 #define DRV_NAME		"ib_srpt"
52 #define DRV_VERSION		"2.0.0"
53 #define DRV_RELDATE		"2011-02-14"
54 
55 #define SRPT_ID_STRING	"Linux SRP target"
56 
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
59 
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
62 		   "v" DRV_VERSION " (" DRV_RELDATE ")");
63 MODULE_LICENSE("Dual BSD/GPL");
64 
65 /*
66  * Global Variables
67  */
68 
69 static u64 srpt_service_guid;
70 static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
71 static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
72 
73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
74 module_param(srp_max_req_size, int, 0444);
75 MODULE_PARM_DESC(srp_max_req_size,
76 		 "Maximum size of SRP request messages in bytes.");
77 
78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
79 module_param(srpt_srq_size, int, 0444);
80 MODULE_PARM_DESC(srpt_srq_size,
81 		 "Shared receive queue (SRQ) size.");
82 
83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
84 {
85 	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
86 }
87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
88 		  0444);
89 MODULE_PARM_DESC(srpt_service_guid,
90 		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
91 		 " instead of using the node_guid of the first HCA.");
92 
93 static struct ib_client srpt_client;
94 static void srpt_release_channel(struct srpt_rdma_ch *ch);
95 static int srpt_queue_status(struct se_cmd *cmd);
96 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
97 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
98 
99 /**
100  * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
101  */
102 static inline
103 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
104 {
105 	switch (dir) {
106 	case DMA_TO_DEVICE:	return DMA_FROM_DEVICE;
107 	case DMA_FROM_DEVICE:	return DMA_TO_DEVICE;
108 	default:		return dir;
109 	}
110 }
111 
112 /**
113  * srpt_sdev_name() - Return the name associated with the HCA.
114  *
115  * Examples are ib0, ib1, ...
116  */
117 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
118 {
119 	return sdev->device->name;
120 }
121 
122 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
123 {
124 	unsigned long flags;
125 	enum rdma_ch_state state;
126 
127 	spin_lock_irqsave(&ch->spinlock, flags);
128 	state = ch->state;
129 	spin_unlock_irqrestore(&ch->spinlock, flags);
130 	return state;
131 }
132 
133 static enum rdma_ch_state
134 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
135 {
136 	unsigned long flags;
137 	enum rdma_ch_state prev;
138 
139 	spin_lock_irqsave(&ch->spinlock, flags);
140 	prev = ch->state;
141 	ch->state = new_state;
142 	spin_unlock_irqrestore(&ch->spinlock, flags);
143 	return prev;
144 }
145 
146 /**
147  * srpt_test_and_set_ch_state() - Test and set the channel state.
148  *
149  * Returns true if and only if the channel state has been set to the new state.
150  */
151 static bool
152 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
153 			   enum rdma_ch_state new)
154 {
155 	unsigned long flags;
156 	enum rdma_ch_state prev;
157 
158 	spin_lock_irqsave(&ch->spinlock, flags);
159 	prev = ch->state;
160 	if (prev == old)
161 		ch->state = new;
162 	spin_unlock_irqrestore(&ch->spinlock, flags);
163 	return prev == old;
164 }
165 
166 /**
167  * srpt_event_handler() - Asynchronous IB event callback function.
168  *
169  * Callback function called by the InfiniBand core when an asynchronous IB
170  * event occurs. This callback may occur in interrupt context. See also
171  * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
172  * Architecture Specification.
173  */
174 static void srpt_event_handler(struct ib_event_handler *handler,
175 			       struct ib_event *event)
176 {
177 	struct srpt_device *sdev;
178 	struct srpt_port *sport;
179 
180 	sdev = ib_get_client_data(event->device, &srpt_client);
181 	if (!sdev || sdev->device != event->device)
182 		return;
183 
184 	pr_debug("ASYNC event= %d on device= %s\n", event->event,
185 		 srpt_sdev_name(sdev));
186 
187 	switch (event->event) {
188 	case IB_EVENT_PORT_ERR:
189 		if (event->element.port_num <= sdev->device->phys_port_cnt) {
190 			sport = &sdev->port[event->element.port_num - 1];
191 			sport->lid = 0;
192 			sport->sm_lid = 0;
193 		}
194 		break;
195 	case IB_EVENT_PORT_ACTIVE:
196 	case IB_EVENT_LID_CHANGE:
197 	case IB_EVENT_PKEY_CHANGE:
198 	case IB_EVENT_SM_CHANGE:
199 	case IB_EVENT_CLIENT_REREGISTER:
200 	case IB_EVENT_GID_CHANGE:
201 		/* Refresh port data asynchronously. */
202 		if (event->element.port_num <= sdev->device->phys_port_cnt) {
203 			sport = &sdev->port[event->element.port_num - 1];
204 			if (!sport->lid && !sport->sm_lid)
205 				schedule_work(&sport->work);
206 		}
207 		break;
208 	default:
209 		pr_err("received unrecognized IB event %d\n",
210 		       event->event);
211 		break;
212 	}
213 }
214 
215 /**
216  * srpt_srq_event() - SRQ event callback function.
217  */
218 static void srpt_srq_event(struct ib_event *event, void *ctx)
219 {
220 	pr_info("SRQ event %d\n", event->event);
221 }
222 
223 /**
224  * srpt_qp_event() - QP event callback function.
225  */
226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
227 {
228 	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229 		 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
230 
231 	switch (event->event) {
232 	case IB_EVENT_COMM_EST:
233 		ib_cm_notify(ch->cm_id, event->event);
234 		break;
235 	case IB_EVENT_QP_LAST_WQE_REACHED:
236 		if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
237 					       CH_RELEASING))
238 			srpt_release_channel(ch);
239 		else
240 			pr_debug("%s: state %d - ignored LAST_WQE.\n",
241 				 ch->sess_name, srpt_get_ch_state(ch));
242 		break;
243 	default:
244 		pr_err("received unrecognized IB QP event %d\n", event->event);
245 		break;
246 	}
247 }
248 
249 /**
250  * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
251  *
252  * @slot: one-based slot number.
253  * @value: four-bit value.
254  *
255  * Copies the lowest four bits of value in element slot of the array of four
256  * bit elements called c_list (controller list). The index slot is one-based.
257  */
258 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
259 {
260 	u16 id;
261 	u8 tmp;
262 
263 	id = (slot - 1) / 2;
264 	if (slot & 0x1) {
265 		tmp = c_list[id] & 0xf;
266 		c_list[id] = (value << 4) | tmp;
267 	} else {
268 		tmp = c_list[id] & 0xf0;
269 		c_list[id] = (value & 0xf) | tmp;
270 	}
271 }
272 
273 /**
274  * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
275  *
276  * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
277  * Specification.
278  */
279 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
280 {
281 	struct ib_class_port_info *cif;
282 
283 	cif = (struct ib_class_port_info *)mad->data;
284 	memset(cif, 0, sizeof *cif);
285 	cif->base_version = 1;
286 	cif->class_version = 1;
287 	cif->resp_time_value = 20;
288 
289 	mad->mad_hdr.status = 0;
290 }
291 
292 /**
293  * srpt_get_iou() - Write IOUnitInfo to a management datagram.
294  *
295  * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
296  * Specification. See also section B.7, table B.6 in the SRP r16a document.
297  */
298 static void srpt_get_iou(struct ib_dm_mad *mad)
299 {
300 	struct ib_dm_iou_info *ioui;
301 	u8 slot;
302 	int i;
303 
304 	ioui = (struct ib_dm_iou_info *)mad->data;
305 	ioui->change_id = cpu_to_be16(1);
306 	ioui->max_controllers = 16;
307 
308 	/* set present for slot 1 and empty for the rest */
309 	srpt_set_ioc(ioui->controller_list, 1, 1);
310 	for (i = 1, slot = 2; i < 16; i++, slot++)
311 		srpt_set_ioc(ioui->controller_list, slot, 0);
312 
313 	mad->mad_hdr.status = 0;
314 }
315 
316 /**
317  * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
318  *
319  * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
320  * Architecture Specification. See also section B.7, table B.7 in the SRP
321  * r16a document.
322  */
323 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
324 			 struct ib_dm_mad *mad)
325 {
326 	struct srpt_device *sdev = sport->sdev;
327 	struct ib_dm_ioc_profile *iocp;
328 
329 	iocp = (struct ib_dm_ioc_profile *)mad->data;
330 
331 	if (!slot || slot > 16) {
332 		mad->mad_hdr.status
333 			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
334 		return;
335 	}
336 
337 	if (slot > 2) {
338 		mad->mad_hdr.status
339 			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
340 		return;
341 	}
342 
343 	memset(iocp, 0, sizeof *iocp);
344 	strcpy(iocp->id_string, SRPT_ID_STRING);
345 	iocp->guid = cpu_to_be64(srpt_service_guid);
346 	iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
347 	iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
348 	iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
349 	iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
350 	iocp->subsys_device_id = 0x0;
351 	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
352 	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
353 	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
354 	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
355 	iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
356 	iocp->rdma_read_depth = 4;
357 	iocp->send_size = cpu_to_be32(srp_max_req_size);
358 	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
359 					  1U << 24));
360 	iocp->num_svc_entries = 1;
361 	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
362 		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
363 
364 	mad->mad_hdr.status = 0;
365 }
366 
367 /**
368  * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
369  *
370  * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
371  * Specification. See also section B.7, table B.8 in the SRP r16a document.
372  */
373 static void srpt_get_svc_entries(u64 ioc_guid,
374 				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
375 {
376 	struct ib_dm_svc_entries *svc_entries;
377 
378 	WARN_ON(!ioc_guid);
379 
380 	if (!slot || slot > 16) {
381 		mad->mad_hdr.status
382 			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
383 		return;
384 	}
385 
386 	if (slot > 2 || lo > hi || hi > 1) {
387 		mad->mad_hdr.status
388 			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
389 		return;
390 	}
391 
392 	svc_entries = (struct ib_dm_svc_entries *)mad->data;
393 	memset(svc_entries, 0, sizeof *svc_entries);
394 	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
395 	snprintf(svc_entries->service_entries[0].name,
396 		 sizeof(svc_entries->service_entries[0].name),
397 		 "%s%016llx",
398 		 SRP_SERVICE_NAME_PREFIX,
399 		 ioc_guid);
400 
401 	mad->mad_hdr.status = 0;
402 }
403 
404 /**
405  * srpt_mgmt_method_get() - Process a received management datagram.
406  * @sp:      source port through which the MAD has been received.
407  * @rq_mad:  received MAD.
408  * @rsp_mad: response MAD.
409  */
410 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
411 				 struct ib_dm_mad *rsp_mad)
412 {
413 	u16 attr_id;
414 	u32 slot;
415 	u8 hi, lo;
416 
417 	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
418 	switch (attr_id) {
419 	case DM_ATTR_CLASS_PORT_INFO:
420 		srpt_get_class_port_info(rsp_mad);
421 		break;
422 	case DM_ATTR_IOU_INFO:
423 		srpt_get_iou(rsp_mad);
424 		break;
425 	case DM_ATTR_IOC_PROFILE:
426 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
427 		srpt_get_ioc(sp, slot, rsp_mad);
428 		break;
429 	case DM_ATTR_SVC_ENTRIES:
430 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
431 		hi = (u8) ((slot >> 8) & 0xff);
432 		lo = (u8) (slot & 0xff);
433 		slot = (u16) ((slot >> 16) & 0xffff);
434 		srpt_get_svc_entries(srpt_service_guid,
435 				     slot, hi, lo, rsp_mad);
436 		break;
437 	default:
438 		rsp_mad->mad_hdr.status =
439 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
440 		break;
441 	}
442 }
443 
444 /**
445  * srpt_mad_send_handler() - Post MAD-send callback function.
446  */
447 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
448 				  struct ib_mad_send_wc *mad_wc)
449 {
450 	ib_destroy_ah(mad_wc->send_buf->ah);
451 	ib_free_send_mad(mad_wc->send_buf);
452 }
453 
454 /**
455  * srpt_mad_recv_handler() - MAD reception callback function.
456  */
457 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
458 				  struct ib_mad_send_buf *send_buf,
459 				  struct ib_mad_recv_wc *mad_wc)
460 {
461 	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
462 	struct ib_ah *ah;
463 	struct ib_mad_send_buf *rsp;
464 	struct ib_dm_mad *dm_mad;
465 
466 	if (!mad_wc || !mad_wc->recv_buf.mad)
467 		return;
468 
469 	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
470 				  mad_wc->recv_buf.grh, mad_agent->port_num);
471 	if (IS_ERR(ah))
472 		goto err;
473 
474 	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
475 
476 	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
477 				 mad_wc->wc->pkey_index, 0,
478 				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
479 				 GFP_KERNEL,
480 				 IB_MGMT_BASE_VERSION);
481 	if (IS_ERR(rsp))
482 		goto err_rsp;
483 
484 	rsp->ah = ah;
485 
486 	dm_mad = rsp->mad;
487 	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
488 	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
489 	dm_mad->mad_hdr.status = 0;
490 
491 	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
492 	case IB_MGMT_METHOD_GET:
493 		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
494 		break;
495 	case IB_MGMT_METHOD_SET:
496 		dm_mad->mad_hdr.status =
497 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
498 		break;
499 	default:
500 		dm_mad->mad_hdr.status =
501 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
502 		break;
503 	}
504 
505 	if (!ib_post_send_mad(rsp, NULL)) {
506 		ib_free_recv_mad(mad_wc);
507 		/* will destroy_ah & free_send_mad in send completion */
508 		return;
509 	}
510 
511 	ib_free_send_mad(rsp);
512 
513 err_rsp:
514 	ib_destroy_ah(ah);
515 err:
516 	ib_free_recv_mad(mad_wc);
517 }
518 
519 /**
520  * srpt_refresh_port() - Configure a HCA port.
521  *
522  * Enable InfiniBand management datagram processing, update the cached sm_lid,
523  * lid and gid values, and register a callback function for processing MADs
524  * on the specified port.
525  *
526  * Note: It is safe to call this function more than once for the same port.
527  */
528 static int srpt_refresh_port(struct srpt_port *sport)
529 {
530 	struct ib_mad_reg_req reg_req;
531 	struct ib_port_modify port_modify;
532 	struct ib_port_attr port_attr;
533 	int ret;
534 
535 	memset(&port_modify, 0, sizeof port_modify);
536 	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
537 	port_modify.clr_port_cap_mask = 0;
538 
539 	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
540 	if (ret)
541 		goto err_mod_port;
542 
543 	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
544 	if (ret)
545 		goto err_query_port;
546 
547 	sport->sm_lid = port_attr.sm_lid;
548 	sport->lid = port_attr.lid;
549 
550 	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
551 			   NULL);
552 	if (ret)
553 		goto err_query_port;
554 
555 	if (!sport->mad_agent) {
556 		memset(&reg_req, 0, sizeof reg_req);
557 		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
558 		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
559 		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
560 		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
561 
562 		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
563 							 sport->port,
564 							 IB_QPT_GSI,
565 							 &reg_req, 0,
566 							 srpt_mad_send_handler,
567 							 srpt_mad_recv_handler,
568 							 sport, 0);
569 		if (IS_ERR(sport->mad_agent)) {
570 			ret = PTR_ERR(sport->mad_agent);
571 			sport->mad_agent = NULL;
572 			goto err_query_port;
573 		}
574 	}
575 
576 	return 0;
577 
578 err_query_port:
579 
580 	port_modify.set_port_cap_mask = 0;
581 	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
582 	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
583 
584 err_mod_port:
585 
586 	return ret;
587 }
588 
589 /**
590  * srpt_unregister_mad_agent() - Unregister MAD callback functions.
591  *
592  * Note: It is safe to call this function more than once for the same device.
593  */
594 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
595 {
596 	struct ib_port_modify port_modify = {
597 		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
598 	};
599 	struct srpt_port *sport;
600 	int i;
601 
602 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
603 		sport = &sdev->port[i - 1];
604 		WARN_ON(sport->port != i);
605 		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
606 			pr_err("disabling MAD processing failed.\n");
607 		if (sport->mad_agent) {
608 			ib_unregister_mad_agent(sport->mad_agent);
609 			sport->mad_agent = NULL;
610 		}
611 	}
612 }
613 
614 /**
615  * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
616  */
617 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
618 					   int ioctx_size, int dma_size,
619 					   enum dma_data_direction dir)
620 {
621 	struct srpt_ioctx *ioctx;
622 
623 	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
624 	if (!ioctx)
625 		goto err;
626 
627 	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
628 	if (!ioctx->buf)
629 		goto err_free_ioctx;
630 
631 	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
632 	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
633 		goto err_free_buf;
634 
635 	return ioctx;
636 
637 err_free_buf:
638 	kfree(ioctx->buf);
639 err_free_ioctx:
640 	kfree(ioctx);
641 err:
642 	return NULL;
643 }
644 
645 /**
646  * srpt_free_ioctx() - Free an SRPT I/O context structure.
647  */
648 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
649 			    int dma_size, enum dma_data_direction dir)
650 {
651 	if (!ioctx)
652 		return;
653 
654 	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
655 	kfree(ioctx->buf);
656 	kfree(ioctx);
657 }
658 
659 /**
660  * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
661  * @sdev:       Device to allocate the I/O context ring for.
662  * @ring_size:  Number of elements in the I/O context ring.
663  * @ioctx_size: I/O context size.
664  * @dma_size:   DMA buffer size.
665  * @dir:        DMA data direction.
666  */
667 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
668 				int ring_size, int ioctx_size,
669 				int dma_size, enum dma_data_direction dir)
670 {
671 	struct srpt_ioctx **ring;
672 	int i;
673 
674 	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
675 		&& ioctx_size != sizeof(struct srpt_send_ioctx));
676 
677 	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
678 	if (!ring)
679 		goto out;
680 	for (i = 0; i < ring_size; ++i) {
681 		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
682 		if (!ring[i])
683 			goto err;
684 		ring[i]->index = i;
685 	}
686 	goto out;
687 
688 err:
689 	while (--i >= 0)
690 		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
691 	kfree(ring);
692 	ring = NULL;
693 out:
694 	return ring;
695 }
696 
697 /**
698  * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
699  */
700 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
701 				 struct srpt_device *sdev, int ring_size,
702 				 int dma_size, enum dma_data_direction dir)
703 {
704 	int i;
705 
706 	for (i = 0; i < ring_size; ++i)
707 		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
708 	kfree(ioctx_ring);
709 }
710 
711 /**
712  * srpt_get_cmd_state() - Get the state of a SCSI command.
713  */
714 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
715 {
716 	enum srpt_command_state state;
717 	unsigned long flags;
718 
719 	BUG_ON(!ioctx);
720 
721 	spin_lock_irqsave(&ioctx->spinlock, flags);
722 	state = ioctx->state;
723 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
724 	return state;
725 }
726 
727 /**
728  * srpt_set_cmd_state() - Set the state of a SCSI command.
729  *
730  * Does not modify the state of aborted commands. Returns the previous command
731  * state.
732  */
733 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
734 						  enum srpt_command_state new)
735 {
736 	enum srpt_command_state previous;
737 	unsigned long flags;
738 
739 	BUG_ON(!ioctx);
740 
741 	spin_lock_irqsave(&ioctx->spinlock, flags);
742 	previous = ioctx->state;
743 	if (previous != SRPT_STATE_DONE)
744 		ioctx->state = new;
745 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
746 
747 	return previous;
748 }
749 
750 /**
751  * srpt_test_and_set_cmd_state() - Test and set the state of a command.
752  *
753  * Returns true if and only if the previous command state was equal to 'old'.
754  */
755 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
756 					enum srpt_command_state old,
757 					enum srpt_command_state new)
758 {
759 	enum srpt_command_state previous;
760 	unsigned long flags;
761 
762 	WARN_ON(!ioctx);
763 	WARN_ON(old == SRPT_STATE_DONE);
764 	WARN_ON(new == SRPT_STATE_NEW);
765 
766 	spin_lock_irqsave(&ioctx->spinlock, flags);
767 	previous = ioctx->state;
768 	if (previous == old)
769 		ioctx->state = new;
770 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
771 	return previous == old;
772 }
773 
774 /**
775  * srpt_post_recv() - Post an IB receive request.
776  */
777 static int srpt_post_recv(struct srpt_device *sdev,
778 			  struct srpt_recv_ioctx *ioctx)
779 {
780 	struct ib_sge list;
781 	struct ib_recv_wr wr, *bad_wr;
782 
783 	BUG_ON(!sdev);
784 	list.addr = ioctx->ioctx.dma;
785 	list.length = srp_max_req_size;
786 	list.lkey = sdev->pd->local_dma_lkey;
787 
788 	ioctx->ioctx.cqe.done = srpt_recv_done;
789 	wr.wr_cqe = &ioctx->ioctx.cqe;
790 	wr.next = NULL;
791 	wr.sg_list = &list;
792 	wr.num_sge = 1;
793 
794 	return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
795 }
796 
797 /**
798  * srpt_post_send() - Post an IB send request.
799  *
800  * Returns zero upon success and a non-zero value upon failure.
801  */
802 static int srpt_post_send(struct srpt_rdma_ch *ch,
803 			  struct srpt_send_ioctx *ioctx, int len)
804 {
805 	struct ib_sge list;
806 	struct ib_send_wr wr, *bad_wr;
807 	struct srpt_device *sdev = ch->sport->sdev;
808 	int ret;
809 
810 	atomic_inc(&ch->req_lim);
811 
812 	ret = -ENOMEM;
813 	if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
814 		pr_warn("IB send queue full (needed 1)\n");
815 		goto out;
816 	}
817 
818 	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
819 				      DMA_TO_DEVICE);
820 
821 	list.addr = ioctx->ioctx.dma;
822 	list.length = len;
823 	list.lkey = sdev->pd->local_dma_lkey;
824 
825 	ioctx->ioctx.cqe.done = srpt_send_done;
826 	wr.next = NULL;
827 	wr.wr_cqe = &ioctx->ioctx.cqe;
828 	wr.sg_list = &list;
829 	wr.num_sge = 1;
830 	wr.opcode = IB_WR_SEND;
831 	wr.send_flags = IB_SEND_SIGNALED;
832 
833 	ret = ib_post_send(ch->qp, &wr, &bad_wr);
834 
835 out:
836 	if (ret < 0) {
837 		atomic_inc(&ch->sq_wr_avail);
838 		atomic_dec(&ch->req_lim);
839 	}
840 	return ret;
841 }
842 
843 /**
844  * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
845  * @ioctx: Pointer to the I/O context associated with the request.
846  * @srp_cmd: Pointer to the SRP_CMD request data.
847  * @dir: Pointer to the variable to which the transfer direction will be
848  *   written.
849  * @data_len: Pointer to the variable to which the total data length of all
850  *   descriptors in the SRP_CMD request will be written.
851  *
852  * This function initializes ioctx->nrbuf and ioctx->r_bufs.
853  *
854  * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
855  * -ENOMEM when memory allocation fails and zero upon success.
856  */
857 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
858 			     struct srp_cmd *srp_cmd,
859 			     enum dma_data_direction *dir, u64 *data_len)
860 {
861 	struct srp_indirect_buf *idb;
862 	struct srp_direct_buf *db;
863 	unsigned add_cdb_offset;
864 	int ret;
865 
866 	/*
867 	 * The pointer computations below will only be compiled correctly
868 	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
869 	 * whether srp_cmd::add_data has been declared as a byte pointer.
870 	 */
871 	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
872 		     && !__same_type(srp_cmd->add_data[0], (u8)0));
873 
874 	BUG_ON(!dir);
875 	BUG_ON(!data_len);
876 
877 	ret = 0;
878 	*data_len = 0;
879 
880 	/*
881 	 * The lower four bits of the buffer format field contain the DATA-IN
882 	 * buffer descriptor format, and the highest four bits contain the
883 	 * DATA-OUT buffer descriptor format.
884 	 */
885 	*dir = DMA_NONE;
886 	if (srp_cmd->buf_fmt & 0xf)
887 		/* DATA-IN: transfer data from target to initiator (read). */
888 		*dir = DMA_FROM_DEVICE;
889 	else if (srp_cmd->buf_fmt >> 4)
890 		/* DATA-OUT: transfer data from initiator to target (write). */
891 		*dir = DMA_TO_DEVICE;
892 
893 	/*
894 	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
895 	 * CDB LENGTH' field are reserved and the size in bytes of this field
896 	 * is four times the value specified in bits 3..7. Hence the "& ~3".
897 	 */
898 	add_cdb_offset = srp_cmd->add_cdb_len & ~3;
899 	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
900 	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
901 		ioctx->n_rbuf = 1;
902 		ioctx->rbufs = &ioctx->single_rbuf;
903 
904 		db = (struct srp_direct_buf *)(srp_cmd->add_data
905 					       + add_cdb_offset);
906 		memcpy(ioctx->rbufs, db, sizeof *db);
907 		*data_len = be32_to_cpu(db->len);
908 	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
909 		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
910 		idb = (struct srp_indirect_buf *)(srp_cmd->add_data
911 						  + add_cdb_offset);
912 
913 		ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
914 
915 		if (ioctx->n_rbuf >
916 		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
917 			pr_err("received unsupported SRP_CMD request"
918 			       " type (%u out + %u in != %u / %zu)\n",
919 			       srp_cmd->data_out_desc_cnt,
920 			       srp_cmd->data_in_desc_cnt,
921 			       be32_to_cpu(idb->table_desc.len),
922 			       sizeof(*db));
923 			ioctx->n_rbuf = 0;
924 			ret = -EINVAL;
925 			goto out;
926 		}
927 
928 		if (ioctx->n_rbuf == 1)
929 			ioctx->rbufs = &ioctx->single_rbuf;
930 		else {
931 			ioctx->rbufs =
932 				kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
933 			if (!ioctx->rbufs) {
934 				ioctx->n_rbuf = 0;
935 				ret = -ENOMEM;
936 				goto out;
937 			}
938 		}
939 
940 		db = idb->desc_list;
941 		memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
942 		*data_len = be32_to_cpu(idb->len);
943 	}
944 out:
945 	return ret;
946 }
947 
948 /**
949  * srpt_init_ch_qp() - Initialize queue pair attributes.
950  *
951  * Initialized the attributes of queue pair 'qp' by allowing local write,
952  * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
953  */
954 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
955 {
956 	struct ib_qp_attr *attr;
957 	int ret;
958 
959 	attr = kzalloc(sizeof *attr, GFP_KERNEL);
960 	if (!attr)
961 		return -ENOMEM;
962 
963 	attr->qp_state = IB_QPS_INIT;
964 	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
965 	    IB_ACCESS_REMOTE_WRITE;
966 	attr->port_num = ch->sport->port;
967 	attr->pkey_index = 0;
968 
969 	ret = ib_modify_qp(qp, attr,
970 			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
971 			   IB_QP_PKEY_INDEX);
972 
973 	kfree(attr);
974 	return ret;
975 }
976 
977 /**
978  * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
979  * @ch: channel of the queue pair.
980  * @qp: queue pair to change the state of.
981  *
982  * Returns zero upon success and a negative value upon failure.
983  *
984  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
985  * If this structure ever becomes larger, it might be necessary to allocate
986  * it dynamically instead of on the stack.
987  */
988 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
989 {
990 	struct ib_qp_attr qp_attr;
991 	int attr_mask;
992 	int ret;
993 
994 	qp_attr.qp_state = IB_QPS_RTR;
995 	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
996 	if (ret)
997 		goto out;
998 
999 	qp_attr.max_dest_rd_atomic = 4;
1000 
1001 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1002 
1003 out:
1004 	return ret;
1005 }
1006 
1007 /**
1008  * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1009  * @ch: channel of the queue pair.
1010  * @qp: queue pair to change the state of.
1011  *
1012  * Returns zero upon success and a negative value upon failure.
1013  *
1014  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1015  * If this structure ever becomes larger, it might be necessary to allocate
1016  * it dynamically instead of on the stack.
1017  */
1018 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1019 {
1020 	struct ib_qp_attr qp_attr;
1021 	int attr_mask;
1022 	int ret;
1023 
1024 	qp_attr.qp_state = IB_QPS_RTS;
1025 	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1026 	if (ret)
1027 		goto out;
1028 
1029 	qp_attr.max_rd_atomic = 4;
1030 
1031 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1032 
1033 out:
1034 	return ret;
1035 }
1036 
1037 /**
1038  * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1039  */
1040 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1041 {
1042 	struct ib_qp_attr qp_attr;
1043 
1044 	qp_attr.qp_state = IB_QPS_ERR;
1045 	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1046 }
1047 
1048 /**
1049  * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1050  */
1051 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1052 				    struct srpt_send_ioctx *ioctx)
1053 {
1054 	struct scatterlist *sg;
1055 	enum dma_data_direction dir;
1056 
1057 	BUG_ON(!ch);
1058 	BUG_ON(!ioctx);
1059 	BUG_ON(ioctx->n_rdma && !ioctx->rdma_wrs);
1060 
1061 	while (ioctx->n_rdma)
1062 		kfree(ioctx->rdma_wrs[--ioctx->n_rdma].wr.sg_list);
1063 
1064 	kfree(ioctx->rdma_wrs);
1065 	ioctx->rdma_wrs = NULL;
1066 
1067 	if (ioctx->mapped_sg_count) {
1068 		sg = ioctx->sg;
1069 		WARN_ON(!sg);
1070 		dir = ioctx->cmd.data_direction;
1071 		BUG_ON(dir == DMA_NONE);
1072 		ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1073 				opposite_dma_dir(dir));
1074 		ioctx->mapped_sg_count = 0;
1075 	}
1076 }
1077 
1078 /**
1079  * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1080  */
1081 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1082 				 struct srpt_send_ioctx *ioctx)
1083 {
1084 	struct ib_device *dev = ch->sport->sdev->device;
1085 	struct se_cmd *cmd;
1086 	struct scatterlist *sg, *sg_orig;
1087 	int sg_cnt;
1088 	enum dma_data_direction dir;
1089 	struct ib_rdma_wr *riu;
1090 	struct srp_direct_buf *db;
1091 	dma_addr_t dma_addr;
1092 	struct ib_sge *sge;
1093 	u64 raddr;
1094 	u32 rsize;
1095 	u32 tsize;
1096 	u32 dma_len;
1097 	int count, nrdma;
1098 	int i, j, k;
1099 
1100 	BUG_ON(!ch);
1101 	BUG_ON(!ioctx);
1102 	cmd = &ioctx->cmd;
1103 	dir = cmd->data_direction;
1104 	BUG_ON(dir == DMA_NONE);
1105 
1106 	ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1107 	ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1108 
1109 	count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1110 			      opposite_dma_dir(dir));
1111 	if (unlikely(!count))
1112 		return -EAGAIN;
1113 
1114 	ioctx->mapped_sg_count = count;
1115 
1116 	if (ioctx->rdma_wrs && ioctx->n_rdma_wrs)
1117 		nrdma = ioctx->n_rdma_wrs;
1118 	else {
1119 		nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1120 			+ ioctx->n_rbuf;
1121 
1122 		ioctx->rdma_wrs = kcalloc(nrdma, sizeof(*ioctx->rdma_wrs),
1123 				GFP_KERNEL);
1124 		if (!ioctx->rdma_wrs)
1125 			goto free_mem;
1126 
1127 		ioctx->n_rdma_wrs = nrdma;
1128 	}
1129 
1130 	db = ioctx->rbufs;
1131 	tsize = cmd->data_length;
1132 	dma_len = ib_sg_dma_len(dev, &sg[0]);
1133 	riu = ioctx->rdma_wrs;
1134 
1135 	/*
1136 	 * For each remote desc - calculate the #ib_sge.
1137 	 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1138 	 *      each remote desc rdma_iu is required a rdma wr;
1139 	 * else
1140 	 *      we need to allocate extra rdma_iu to carry extra #ib_sge in
1141 	 *      another rdma wr
1142 	 */
1143 	for (i = 0, j = 0;
1144 	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1145 		rsize = be32_to_cpu(db->len);
1146 		raddr = be64_to_cpu(db->va);
1147 		riu->remote_addr = raddr;
1148 		riu->rkey = be32_to_cpu(db->key);
1149 		riu->wr.num_sge = 0;
1150 
1151 		/* calculate how many sge required for this remote_buf */
1152 		while (rsize > 0 && tsize > 0) {
1153 
1154 			if (rsize >= dma_len) {
1155 				tsize -= dma_len;
1156 				rsize -= dma_len;
1157 				raddr += dma_len;
1158 
1159 				if (tsize > 0) {
1160 					++j;
1161 					if (j < count) {
1162 						sg = sg_next(sg);
1163 						dma_len = ib_sg_dma_len(
1164 								dev, sg);
1165 					}
1166 				}
1167 			} else {
1168 				tsize -= rsize;
1169 				dma_len -= rsize;
1170 				rsize = 0;
1171 			}
1172 
1173 			++riu->wr.num_sge;
1174 
1175 			if (rsize > 0 &&
1176 			    riu->wr.num_sge == SRPT_DEF_SG_PER_WQE) {
1177 				++ioctx->n_rdma;
1178 				riu->wr.sg_list = kmalloc_array(riu->wr.num_sge,
1179 						sizeof(*riu->wr.sg_list),
1180 						GFP_KERNEL);
1181 				if (!riu->wr.sg_list)
1182 					goto free_mem;
1183 
1184 				++riu;
1185 				riu->wr.num_sge = 0;
1186 				riu->remote_addr = raddr;
1187 				riu->rkey = be32_to_cpu(db->key);
1188 			}
1189 		}
1190 
1191 		++ioctx->n_rdma;
1192 		riu->wr.sg_list = kmalloc_array(riu->wr.num_sge,
1193 					sizeof(*riu->wr.sg_list),
1194 					GFP_KERNEL);
1195 		if (!riu->wr.sg_list)
1196 			goto free_mem;
1197 	}
1198 
1199 	db = ioctx->rbufs;
1200 	tsize = cmd->data_length;
1201 	riu = ioctx->rdma_wrs;
1202 	sg = sg_orig;
1203 	dma_len = ib_sg_dma_len(dev, &sg[0]);
1204 	dma_addr = ib_sg_dma_address(dev, &sg[0]);
1205 
1206 	/* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1207 	for (i = 0, j = 0;
1208 	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1209 		rsize = be32_to_cpu(db->len);
1210 		sge = riu->wr.sg_list;
1211 		k = 0;
1212 
1213 		while (rsize > 0 && tsize > 0) {
1214 			sge->addr = dma_addr;
1215 			sge->lkey = ch->sport->sdev->pd->local_dma_lkey;
1216 
1217 			if (rsize >= dma_len) {
1218 				sge->length =
1219 					(tsize < dma_len) ? tsize : dma_len;
1220 				tsize -= dma_len;
1221 				rsize -= dma_len;
1222 
1223 				if (tsize > 0) {
1224 					++j;
1225 					if (j < count) {
1226 						sg = sg_next(sg);
1227 						dma_len = ib_sg_dma_len(
1228 								dev, sg);
1229 						dma_addr = ib_sg_dma_address(
1230 								dev, sg);
1231 					}
1232 				}
1233 			} else {
1234 				sge->length = (tsize < rsize) ? tsize : rsize;
1235 				tsize -= rsize;
1236 				dma_len -= rsize;
1237 				dma_addr += rsize;
1238 				rsize = 0;
1239 			}
1240 
1241 			++k;
1242 			if (k == riu->wr.num_sge && rsize > 0 && tsize > 0) {
1243 				++riu;
1244 				sge = riu->wr.sg_list;
1245 				k = 0;
1246 			} else if (rsize > 0 && tsize > 0)
1247 				++sge;
1248 		}
1249 	}
1250 
1251 	return 0;
1252 
1253 free_mem:
1254 	srpt_unmap_sg_to_ib_sge(ch, ioctx);
1255 
1256 	return -ENOMEM;
1257 }
1258 
1259 /**
1260  * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1261  */
1262 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1263 {
1264 	struct srpt_send_ioctx *ioctx;
1265 	unsigned long flags;
1266 
1267 	BUG_ON(!ch);
1268 
1269 	ioctx = NULL;
1270 	spin_lock_irqsave(&ch->spinlock, flags);
1271 	if (!list_empty(&ch->free_list)) {
1272 		ioctx = list_first_entry(&ch->free_list,
1273 					 struct srpt_send_ioctx, free_list);
1274 		list_del(&ioctx->free_list);
1275 	}
1276 	spin_unlock_irqrestore(&ch->spinlock, flags);
1277 
1278 	if (!ioctx)
1279 		return ioctx;
1280 
1281 	BUG_ON(ioctx->ch != ch);
1282 	spin_lock_init(&ioctx->spinlock);
1283 	ioctx->state = SRPT_STATE_NEW;
1284 	ioctx->n_rbuf = 0;
1285 	ioctx->rbufs = NULL;
1286 	ioctx->n_rdma = 0;
1287 	ioctx->n_rdma_wrs = 0;
1288 	ioctx->rdma_wrs = NULL;
1289 	ioctx->mapped_sg_count = 0;
1290 	init_completion(&ioctx->tx_done);
1291 	ioctx->queue_status_only = false;
1292 	/*
1293 	 * transport_init_se_cmd() does not initialize all fields, so do it
1294 	 * here.
1295 	 */
1296 	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1297 	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1298 
1299 	return ioctx;
1300 }
1301 
1302 /**
1303  * srpt_abort_cmd() - Abort a SCSI command.
1304  * @ioctx:   I/O context associated with the SCSI command.
1305  * @context: Preferred execution context.
1306  */
1307 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1308 {
1309 	enum srpt_command_state state;
1310 	unsigned long flags;
1311 
1312 	BUG_ON(!ioctx);
1313 
1314 	/*
1315 	 * If the command is in a state where the target core is waiting for
1316 	 * the ib_srpt driver, change the state to the next state. Changing
1317 	 * the state of the command from SRPT_STATE_NEED_DATA to
1318 	 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1319 	 * function a second time.
1320 	 */
1321 
1322 	spin_lock_irqsave(&ioctx->spinlock, flags);
1323 	state = ioctx->state;
1324 	switch (state) {
1325 	case SRPT_STATE_NEED_DATA:
1326 		ioctx->state = SRPT_STATE_DATA_IN;
1327 		break;
1328 	case SRPT_STATE_DATA_IN:
1329 	case SRPT_STATE_CMD_RSP_SENT:
1330 	case SRPT_STATE_MGMT_RSP_SENT:
1331 		ioctx->state = SRPT_STATE_DONE;
1332 		break;
1333 	default:
1334 		break;
1335 	}
1336 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
1337 
1338 	if (state == SRPT_STATE_DONE) {
1339 		struct srpt_rdma_ch *ch = ioctx->ch;
1340 
1341 		BUG_ON(ch->sess == NULL);
1342 
1343 		target_put_sess_cmd(&ioctx->cmd);
1344 		goto out;
1345 	}
1346 
1347 	pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1348 		 ioctx->cmd.tag);
1349 
1350 	switch (state) {
1351 	case SRPT_STATE_NEW:
1352 	case SRPT_STATE_DATA_IN:
1353 	case SRPT_STATE_MGMT:
1354 		/*
1355 		 * Do nothing - defer abort processing until
1356 		 * srpt_queue_response() is invoked.
1357 		 */
1358 		WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1359 		break;
1360 	case SRPT_STATE_NEED_DATA:
1361 		/* DMA_TO_DEVICE (write) - RDMA read error. */
1362 
1363 		/* XXX(hch): this is a horrible layering violation.. */
1364 		spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1365 		ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1366 		spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1367 		break;
1368 	case SRPT_STATE_CMD_RSP_SENT:
1369 		/*
1370 		 * SRP_RSP sending failed or the SRP_RSP send completion has
1371 		 * not been received in time.
1372 		 */
1373 		srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1374 		target_put_sess_cmd(&ioctx->cmd);
1375 		break;
1376 	case SRPT_STATE_MGMT_RSP_SENT:
1377 		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1378 		target_put_sess_cmd(&ioctx->cmd);
1379 		break;
1380 	default:
1381 		WARN(1, "Unexpected command state (%d)", state);
1382 		break;
1383 	}
1384 
1385 out:
1386 	return state;
1387 }
1388 
1389 /**
1390  * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1391  * the data that has been transferred via IB RDMA had to be postponed until the
1392  * check_stop_free() callback.  None of this is necessary anymore and needs to
1393  * be cleaned up.
1394  */
1395 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1396 {
1397 	struct srpt_rdma_ch *ch = cq->cq_context;
1398 	struct srpt_send_ioctx *ioctx =
1399 		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1400 
1401 	WARN_ON(ioctx->n_rdma <= 0);
1402 	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1403 
1404 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1405 		pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1406 			ioctx, wc->status);
1407 		srpt_abort_cmd(ioctx);
1408 		return;
1409 	}
1410 
1411 	if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1412 					SRPT_STATE_DATA_IN))
1413 		target_execute_cmd(&ioctx->cmd);
1414 	else
1415 		pr_err("%s[%d]: wrong state = %d\n", __func__,
1416 		       __LINE__, srpt_get_cmd_state(ioctx));
1417 }
1418 
1419 static void srpt_rdma_write_done(struct ib_cq *cq, struct ib_wc *wc)
1420 {
1421 	struct srpt_send_ioctx *ioctx =
1422 		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1423 
1424 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1425 		pr_info("RDMA_WRITE for ioctx 0x%p failed with status %d\n",
1426 			ioctx, wc->status);
1427 		srpt_abort_cmd(ioctx);
1428 	}
1429 }
1430 
1431 /**
1432  * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1433  * @ch: RDMA channel through which the request has been received.
1434  * @ioctx: I/O context associated with the SRP_CMD request. The response will
1435  *   be built in the buffer ioctx->buf points at and hence this function will
1436  *   overwrite the request data.
1437  * @tag: tag of the request for which this response is being generated.
1438  * @status: value for the STATUS field of the SRP_RSP information unit.
1439  *
1440  * Returns the size in bytes of the SRP_RSP response.
1441  *
1442  * An SRP_RSP response contains a SCSI status or service response. See also
1443  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1444  * response. See also SPC-2 for more information about sense data.
1445  */
1446 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1447 			      struct srpt_send_ioctx *ioctx, u64 tag,
1448 			      int status)
1449 {
1450 	struct srp_rsp *srp_rsp;
1451 	const u8 *sense_data;
1452 	int sense_data_len, max_sense_len;
1453 
1454 	/*
1455 	 * The lowest bit of all SAM-3 status codes is zero (see also
1456 	 * paragraph 5.3 in SAM-3).
1457 	 */
1458 	WARN_ON(status & 1);
1459 
1460 	srp_rsp = ioctx->ioctx.buf;
1461 	BUG_ON(!srp_rsp);
1462 
1463 	sense_data = ioctx->sense_data;
1464 	sense_data_len = ioctx->cmd.scsi_sense_length;
1465 	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1466 
1467 	memset(srp_rsp, 0, sizeof *srp_rsp);
1468 	srp_rsp->opcode = SRP_RSP;
1469 	srp_rsp->req_lim_delta =
1470 		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1471 	srp_rsp->tag = tag;
1472 	srp_rsp->status = status;
1473 
1474 	if (sense_data_len) {
1475 		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1476 		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1477 		if (sense_data_len > max_sense_len) {
1478 			pr_warn("truncated sense data from %d to %d"
1479 				" bytes\n", sense_data_len, max_sense_len);
1480 			sense_data_len = max_sense_len;
1481 		}
1482 
1483 		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1484 		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1485 		memcpy(srp_rsp + 1, sense_data, sense_data_len);
1486 	}
1487 
1488 	return sizeof(*srp_rsp) + sense_data_len;
1489 }
1490 
1491 /**
1492  * srpt_build_tskmgmt_rsp() - Build a task management response.
1493  * @ch:       RDMA channel through which the request has been received.
1494  * @ioctx:    I/O context in which the SRP_RSP response will be built.
1495  * @rsp_code: RSP_CODE that will be stored in the response.
1496  * @tag:      Tag of the request for which this response is being generated.
1497  *
1498  * Returns the size in bytes of the SRP_RSP response.
1499  *
1500  * An SRP_RSP response contains a SCSI status or service response. See also
1501  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1502  * response.
1503  */
1504 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1505 				  struct srpt_send_ioctx *ioctx,
1506 				  u8 rsp_code, u64 tag)
1507 {
1508 	struct srp_rsp *srp_rsp;
1509 	int resp_data_len;
1510 	int resp_len;
1511 
1512 	resp_data_len = 4;
1513 	resp_len = sizeof(*srp_rsp) + resp_data_len;
1514 
1515 	srp_rsp = ioctx->ioctx.buf;
1516 	BUG_ON(!srp_rsp);
1517 	memset(srp_rsp, 0, sizeof *srp_rsp);
1518 
1519 	srp_rsp->opcode = SRP_RSP;
1520 	srp_rsp->req_lim_delta =
1521 		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1522 	srp_rsp->tag = tag;
1523 
1524 	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1525 	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1526 	srp_rsp->data[3] = rsp_code;
1527 
1528 	return resp_len;
1529 }
1530 
1531 #define NO_SUCH_LUN ((uint64_t)-1LL)
1532 
1533 /*
1534  * SCSI LUN addressing method. See also SAM-2 and the section about
1535  * eight byte LUNs.
1536  */
1537 enum scsi_lun_addr_method {
1538 	SCSI_LUN_ADDR_METHOD_PERIPHERAL   = 0,
1539 	SCSI_LUN_ADDR_METHOD_FLAT         = 1,
1540 	SCSI_LUN_ADDR_METHOD_LUN          = 2,
1541 	SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1542 };
1543 
1544 /*
1545  * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1546  *
1547  * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1548  * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1549  * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1550  */
1551 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1552 {
1553 	uint64_t res = NO_SUCH_LUN;
1554 	int addressing_method;
1555 
1556 	if (unlikely(len < 2)) {
1557 		pr_err("Illegal LUN length %d, expected 2 bytes or more\n",
1558 		       len);
1559 		goto out;
1560 	}
1561 
1562 	switch (len) {
1563 	case 8:
1564 		if ((*((__be64 *)lun) &
1565 		     cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1566 			goto out_err;
1567 		break;
1568 	case 4:
1569 		if (*((__be16 *)&lun[2]) != 0)
1570 			goto out_err;
1571 		break;
1572 	case 6:
1573 		if (*((__be32 *)&lun[2]) != 0)
1574 			goto out_err;
1575 		break;
1576 	case 2:
1577 		break;
1578 	default:
1579 		goto out_err;
1580 	}
1581 
1582 	addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1583 	switch (addressing_method) {
1584 	case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1585 	case SCSI_LUN_ADDR_METHOD_FLAT:
1586 	case SCSI_LUN_ADDR_METHOD_LUN:
1587 		res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1588 		break;
1589 
1590 	case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1591 	default:
1592 		pr_err("Unimplemented LUN addressing method %u\n",
1593 		       addressing_method);
1594 		break;
1595 	}
1596 
1597 out:
1598 	return res;
1599 
1600 out_err:
1601 	pr_err("Support for multi-level LUNs has not yet been implemented\n");
1602 	goto out;
1603 }
1604 
1605 static int srpt_check_stop_free(struct se_cmd *cmd)
1606 {
1607 	struct srpt_send_ioctx *ioctx = container_of(cmd,
1608 				struct srpt_send_ioctx, cmd);
1609 
1610 	return target_put_sess_cmd(&ioctx->cmd);
1611 }
1612 
1613 /**
1614  * srpt_handle_cmd() - Process SRP_CMD.
1615  */
1616 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1617 			   struct srpt_recv_ioctx *recv_ioctx,
1618 			   struct srpt_send_ioctx *send_ioctx)
1619 {
1620 	struct se_cmd *cmd;
1621 	struct srp_cmd *srp_cmd;
1622 	uint64_t unpacked_lun;
1623 	u64 data_len;
1624 	enum dma_data_direction dir;
1625 	sense_reason_t ret;
1626 	int rc;
1627 
1628 	BUG_ON(!send_ioctx);
1629 
1630 	srp_cmd = recv_ioctx->ioctx.buf;
1631 	cmd = &send_ioctx->cmd;
1632 	cmd->tag = srp_cmd->tag;
1633 
1634 	switch (srp_cmd->task_attr) {
1635 	case SRP_CMD_SIMPLE_Q:
1636 		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1637 		break;
1638 	case SRP_CMD_ORDERED_Q:
1639 	default:
1640 		cmd->sam_task_attr = TCM_ORDERED_TAG;
1641 		break;
1642 	case SRP_CMD_HEAD_OF_Q:
1643 		cmd->sam_task_attr = TCM_HEAD_TAG;
1644 		break;
1645 	case SRP_CMD_ACA:
1646 		cmd->sam_task_attr = TCM_ACA_TAG;
1647 		break;
1648 	}
1649 
1650 	if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1651 		pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1652 		       srp_cmd->tag);
1653 		ret = TCM_INVALID_CDB_FIELD;
1654 		goto send_sense;
1655 	}
1656 
1657 	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1658 				       sizeof(srp_cmd->lun));
1659 	rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1660 			&send_ioctx->sense_data[0], unpacked_lun, data_len,
1661 			TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1662 	if (rc != 0) {
1663 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1664 		goto send_sense;
1665 	}
1666 	return 0;
1667 
1668 send_sense:
1669 	transport_send_check_condition_and_sense(cmd, ret, 0);
1670 	return -1;
1671 }
1672 
1673 /**
1674  * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1675  * @ch: RDMA channel of the task management request.
1676  * @fn: Task management function to perform.
1677  * @req_tag: Tag of the SRP task management request.
1678  * @mgmt_ioctx: I/O context of the task management request.
1679  *
1680  * Returns zero if the target core will process the task management
1681  * request asynchronously.
1682  *
1683  * Note: It is assumed that the initiator serializes tag-based task management
1684  * requests.
1685  */
1686 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1687 {
1688 	struct srpt_device *sdev;
1689 	struct srpt_rdma_ch *ch;
1690 	struct srpt_send_ioctx *target;
1691 	int ret, i;
1692 
1693 	ret = -EINVAL;
1694 	ch = ioctx->ch;
1695 	BUG_ON(!ch);
1696 	BUG_ON(!ch->sport);
1697 	sdev = ch->sport->sdev;
1698 	BUG_ON(!sdev);
1699 	spin_lock_irq(&sdev->spinlock);
1700 	for (i = 0; i < ch->rq_size; ++i) {
1701 		target = ch->ioctx_ring[i];
1702 		if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1703 		    target->cmd.tag == tag &&
1704 		    srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1705 			ret = 0;
1706 			/* now let the target core abort &target->cmd; */
1707 			break;
1708 		}
1709 	}
1710 	spin_unlock_irq(&sdev->spinlock);
1711 	return ret;
1712 }
1713 
1714 static int srp_tmr_to_tcm(int fn)
1715 {
1716 	switch (fn) {
1717 	case SRP_TSK_ABORT_TASK:
1718 		return TMR_ABORT_TASK;
1719 	case SRP_TSK_ABORT_TASK_SET:
1720 		return TMR_ABORT_TASK_SET;
1721 	case SRP_TSK_CLEAR_TASK_SET:
1722 		return TMR_CLEAR_TASK_SET;
1723 	case SRP_TSK_LUN_RESET:
1724 		return TMR_LUN_RESET;
1725 	case SRP_TSK_CLEAR_ACA:
1726 		return TMR_CLEAR_ACA;
1727 	default:
1728 		return -1;
1729 	}
1730 }
1731 
1732 /**
1733  * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1734  *
1735  * Returns 0 if and only if the request will be processed by the target core.
1736  *
1737  * For more information about SRP_TSK_MGMT information units, see also section
1738  * 6.7 in the SRP r16a document.
1739  */
1740 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1741 				 struct srpt_recv_ioctx *recv_ioctx,
1742 				 struct srpt_send_ioctx *send_ioctx)
1743 {
1744 	struct srp_tsk_mgmt *srp_tsk;
1745 	struct se_cmd *cmd;
1746 	struct se_session *sess = ch->sess;
1747 	uint64_t unpacked_lun;
1748 	uint32_t tag = 0;
1749 	int tcm_tmr;
1750 	int rc;
1751 
1752 	BUG_ON(!send_ioctx);
1753 
1754 	srp_tsk = recv_ioctx->ioctx.buf;
1755 	cmd = &send_ioctx->cmd;
1756 
1757 	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1758 		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1759 		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1760 
1761 	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1762 	send_ioctx->cmd.tag = srp_tsk->tag;
1763 	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1764 	if (tcm_tmr < 0) {
1765 		send_ioctx->cmd.se_tmr_req->response =
1766 			TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1767 		goto fail;
1768 	}
1769 	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1770 				       sizeof(srp_tsk->lun));
1771 
1772 	if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
1773 		rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1774 		if (rc < 0) {
1775 			send_ioctx->cmd.se_tmr_req->response =
1776 					TMR_TASK_DOES_NOT_EXIST;
1777 			goto fail;
1778 		}
1779 		tag = srp_tsk->task_tag;
1780 	}
1781 	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1782 				srp_tsk, tcm_tmr, GFP_KERNEL, tag,
1783 				TARGET_SCF_ACK_KREF);
1784 	if (rc != 0) {
1785 		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1786 		goto fail;
1787 	}
1788 	return;
1789 fail:
1790 	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1791 }
1792 
1793 /**
1794  * srpt_handle_new_iu() - Process a newly received information unit.
1795  * @ch:    RDMA channel through which the information unit has been received.
1796  * @ioctx: SRPT I/O context associated with the information unit.
1797  */
1798 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1799 			       struct srpt_recv_ioctx *recv_ioctx,
1800 			       struct srpt_send_ioctx *send_ioctx)
1801 {
1802 	struct srp_cmd *srp_cmd;
1803 	enum rdma_ch_state ch_state;
1804 
1805 	BUG_ON(!ch);
1806 	BUG_ON(!recv_ioctx);
1807 
1808 	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1809 				   recv_ioctx->ioctx.dma, srp_max_req_size,
1810 				   DMA_FROM_DEVICE);
1811 
1812 	ch_state = srpt_get_ch_state(ch);
1813 	if (unlikely(ch_state == CH_CONNECTING)) {
1814 		list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1815 		goto out;
1816 	}
1817 
1818 	if (unlikely(ch_state != CH_LIVE))
1819 		goto out;
1820 
1821 	srp_cmd = recv_ioctx->ioctx.buf;
1822 	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1823 		if (!send_ioctx)
1824 			send_ioctx = srpt_get_send_ioctx(ch);
1825 		if (unlikely(!send_ioctx)) {
1826 			list_add_tail(&recv_ioctx->wait_list,
1827 				      &ch->cmd_wait_list);
1828 			goto out;
1829 		}
1830 	}
1831 
1832 	switch (srp_cmd->opcode) {
1833 	case SRP_CMD:
1834 		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1835 		break;
1836 	case SRP_TSK_MGMT:
1837 		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1838 		break;
1839 	case SRP_I_LOGOUT:
1840 		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1841 		break;
1842 	case SRP_CRED_RSP:
1843 		pr_debug("received SRP_CRED_RSP\n");
1844 		break;
1845 	case SRP_AER_RSP:
1846 		pr_debug("received SRP_AER_RSP\n");
1847 		break;
1848 	case SRP_RSP:
1849 		pr_err("Received SRP_RSP\n");
1850 		break;
1851 	default:
1852 		pr_err("received IU with unknown opcode 0x%x\n",
1853 		       srp_cmd->opcode);
1854 		break;
1855 	}
1856 
1857 	srpt_post_recv(ch->sport->sdev, recv_ioctx);
1858 out:
1859 	return;
1860 }
1861 
1862 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1863 {
1864 	struct srpt_rdma_ch *ch = cq->cq_context;
1865 	struct srpt_recv_ioctx *ioctx =
1866 		container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1867 
1868 	if (wc->status == IB_WC_SUCCESS) {
1869 		int req_lim;
1870 
1871 		req_lim = atomic_dec_return(&ch->req_lim);
1872 		if (unlikely(req_lim < 0))
1873 			pr_err("req_lim = %d < 0\n", req_lim);
1874 		srpt_handle_new_iu(ch, ioctx, NULL);
1875 	} else {
1876 		pr_info("receiving failed for ioctx %p with status %d\n",
1877 			ioctx, wc->status);
1878 	}
1879 }
1880 
1881 /**
1882  * Note: Although this has not yet been observed during tests, at least in
1883  * theory it is possible that the srpt_get_send_ioctx() call invoked by
1884  * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1885  * value in each response is set to one, and it is possible that this response
1886  * makes the initiator send a new request before the send completion for that
1887  * response has been processed. This could e.g. happen if the call to
1888  * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1889  * if IB retransmission causes generation of the send completion to be
1890  * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1891  * are queued on cmd_wait_list. The code below processes these delayed
1892  * requests one at a time.
1893  */
1894 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1895 {
1896 	struct srpt_rdma_ch *ch = cq->cq_context;
1897 	struct srpt_send_ioctx *ioctx =
1898 		container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1899 	enum srpt_command_state state;
1900 
1901 	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1902 
1903 	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1904 		state != SRPT_STATE_MGMT_RSP_SENT);
1905 
1906 	atomic_inc(&ch->sq_wr_avail);
1907 
1908 	if (wc->status != IB_WC_SUCCESS) {
1909 		pr_info("sending response for ioctx 0x%p failed"
1910 			" with status %d\n", ioctx, wc->status);
1911 
1912 		atomic_dec(&ch->req_lim);
1913 		srpt_abort_cmd(ioctx);
1914 		goto out;
1915 	}
1916 
1917 	if (state != SRPT_STATE_DONE) {
1918 		srpt_unmap_sg_to_ib_sge(ch, ioctx);
1919 		transport_generic_free_cmd(&ioctx->cmd, 0);
1920 	} else {
1921 		pr_err("IB completion has been received too late for"
1922 		       " wr_id = %u.\n", ioctx->ioctx.index);
1923 	}
1924 
1925 out:
1926 	while (!list_empty(&ch->cmd_wait_list) &&
1927 	       srpt_get_ch_state(ch) == CH_LIVE &&
1928 	       (ioctx = srpt_get_send_ioctx(ch)) != NULL) {
1929 		struct srpt_recv_ioctx *recv_ioctx;
1930 
1931 		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
1932 					      struct srpt_recv_ioctx,
1933 					      wait_list);
1934 		list_del(&recv_ioctx->wait_list);
1935 		srpt_handle_new_iu(ch, recv_ioctx, ioctx);
1936 	}
1937 }
1938 
1939 /**
1940  * srpt_create_ch_ib() - Create receive and send completion queues.
1941  */
1942 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1943 {
1944 	struct ib_qp_init_attr *qp_init;
1945 	struct srpt_port *sport = ch->sport;
1946 	struct srpt_device *sdev = sport->sdev;
1947 	u32 srp_sq_size = sport->port_attrib.srp_sq_size;
1948 	int ret;
1949 
1950 	WARN_ON(ch->rq_size < 1);
1951 
1952 	ret = -ENOMEM;
1953 	qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
1954 	if (!qp_init)
1955 		goto out;
1956 
1957 retry:
1958 	ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + srp_sq_size,
1959 			0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1960 	if (IS_ERR(ch->cq)) {
1961 		ret = PTR_ERR(ch->cq);
1962 		pr_err("failed to create CQ cqe= %d ret= %d\n",
1963 		       ch->rq_size + srp_sq_size, ret);
1964 		goto out;
1965 	}
1966 
1967 	qp_init->qp_context = (void *)ch;
1968 	qp_init->event_handler
1969 		= (void(*)(struct ib_event *, void*))srpt_qp_event;
1970 	qp_init->send_cq = ch->cq;
1971 	qp_init->recv_cq = ch->cq;
1972 	qp_init->srq = sdev->srq;
1973 	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1974 	qp_init->qp_type = IB_QPT_RC;
1975 	qp_init->cap.max_send_wr = srp_sq_size;
1976 	qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
1977 
1978 	ch->qp = ib_create_qp(sdev->pd, qp_init);
1979 	if (IS_ERR(ch->qp)) {
1980 		ret = PTR_ERR(ch->qp);
1981 		if (ret == -ENOMEM) {
1982 			srp_sq_size /= 2;
1983 			if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
1984 				ib_destroy_cq(ch->cq);
1985 				goto retry;
1986 			}
1987 		}
1988 		pr_err("failed to create_qp ret= %d\n", ret);
1989 		goto err_destroy_cq;
1990 	}
1991 
1992 	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1993 
1994 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1995 		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1996 		 qp_init->cap.max_send_wr, ch->cm_id);
1997 
1998 	ret = srpt_init_ch_qp(ch, ch->qp);
1999 	if (ret)
2000 		goto err_destroy_qp;
2001 
2002 out:
2003 	kfree(qp_init);
2004 	return ret;
2005 
2006 err_destroy_qp:
2007 	ib_destroy_qp(ch->qp);
2008 err_destroy_cq:
2009 	ib_free_cq(ch->cq);
2010 	goto out;
2011 }
2012 
2013 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2014 {
2015 	ib_destroy_qp(ch->qp);
2016 	ib_free_cq(ch->cq);
2017 }
2018 
2019 /**
2020  * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2021  *
2022  * Reset the QP and make sure all resources associated with the channel will
2023  * be deallocated at an appropriate time.
2024  *
2025  * Note: The caller must hold ch->sport->sdev->spinlock.
2026  */
2027 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2028 {
2029 	enum rdma_ch_state prev_state;
2030 	unsigned long flags;
2031 
2032 	spin_lock_irqsave(&ch->spinlock, flags);
2033 	prev_state = ch->state;
2034 	switch (prev_state) {
2035 	case CH_CONNECTING:
2036 	case CH_LIVE:
2037 		ch->state = CH_DISCONNECTING;
2038 		break;
2039 	default:
2040 		break;
2041 	}
2042 	spin_unlock_irqrestore(&ch->spinlock, flags);
2043 
2044 	switch (prev_state) {
2045 	case CH_CONNECTING:
2046 		ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2047 			       NULL, 0);
2048 		/* fall through */
2049 	case CH_LIVE:
2050 		if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2051 			pr_err("sending CM DREQ failed.\n");
2052 		break;
2053 	case CH_DISCONNECTING:
2054 		break;
2055 	case CH_DRAINING:
2056 	case CH_RELEASING:
2057 		break;
2058 	}
2059 }
2060 
2061 /**
2062  * srpt_close_ch() - Close an RDMA channel.
2063  */
2064 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2065 {
2066 	struct srpt_device *sdev;
2067 
2068 	sdev = ch->sport->sdev;
2069 	spin_lock_irq(&sdev->spinlock);
2070 	__srpt_close_ch(ch);
2071 	spin_unlock_irq(&sdev->spinlock);
2072 }
2073 
2074 /**
2075  * srpt_shutdown_session() - Whether or not a session may be shut down.
2076  */
2077 static int srpt_shutdown_session(struct se_session *se_sess)
2078 {
2079 	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2080 	unsigned long flags;
2081 
2082 	spin_lock_irqsave(&ch->spinlock, flags);
2083 	if (ch->in_shutdown) {
2084 		spin_unlock_irqrestore(&ch->spinlock, flags);
2085 		return true;
2086 	}
2087 
2088 	ch->in_shutdown = true;
2089 	target_sess_cmd_list_set_waiting(se_sess);
2090 	spin_unlock_irqrestore(&ch->spinlock, flags);
2091 
2092 	return true;
2093 }
2094 
2095 /**
2096  * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2097  * @cm_id: Pointer to the CM ID of the channel to be drained.
2098  *
2099  * Note: Must be called from inside srpt_cm_handler to avoid a race between
2100  * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2101  * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2102  * waits until all target sessions for the associated IB device have been
2103  * unregistered and target session registration involves a call to
2104  * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2105  * this function has finished).
2106  */
2107 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2108 {
2109 	struct srpt_device *sdev;
2110 	struct srpt_rdma_ch *ch;
2111 	int ret;
2112 	bool do_reset = false;
2113 
2114 	WARN_ON_ONCE(irqs_disabled());
2115 
2116 	sdev = cm_id->context;
2117 	BUG_ON(!sdev);
2118 	spin_lock_irq(&sdev->spinlock);
2119 	list_for_each_entry(ch, &sdev->rch_list, list) {
2120 		if (ch->cm_id == cm_id) {
2121 			do_reset = srpt_test_and_set_ch_state(ch,
2122 					CH_CONNECTING, CH_DRAINING) ||
2123 				   srpt_test_and_set_ch_state(ch,
2124 					CH_LIVE, CH_DRAINING) ||
2125 				   srpt_test_and_set_ch_state(ch,
2126 					CH_DISCONNECTING, CH_DRAINING);
2127 			break;
2128 		}
2129 	}
2130 	spin_unlock_irq(&sdev->spinlock);
2131 
2132 	if (do_reset) {
2133 		if (ch->sess)
2134 			srpt_shutdown_session(ch->sess);
2135 
2136 		ret = srpt_ch_qp_err(ch);
2137 		if (ret < 0)
2138 			pr_err("Setting queue pair in error state"
2139 			       " failed: %d\n", ret);
2140 	}
2141 }
2142 
2143 /**
2144  * srpt_find_channel() - Look up an RDMA channel.
2145  * @cm_id: Pointer to the CM ID of the channel to be looked up.
2146  *
2147  * Return NULL if no matching RDMA channel has been found.
2148  */
2149 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2150 					      struct ib_cm_id *cm_id)
2151 {
2152 	struct srpt_rdma_ch *ch;
2153 	bool found;
2154 
2155 	WARN_ON_ONCE(irqs_disabled());
2156 	BUG_ON(!sdev);
2157 
2158 	found = false;
2159 	spin_lock_irq(&sdev->spinlock);
2160 	list_for_each_entry(ch, &sdev->rch_list, list) {
2161 		if (ch->cm_id == cm_id) {
2162 			found = true;
2163 			break;
2164 		}
2165 	}
2166 	spin_unlock_irq(&sdev->spinlock);
2167 
2168 	return found ? ch : NULL;
2169 }
2170 
2171 /**
2172  * srpt_release_channel() - Release channel resources.
2173  *
2174  * Schedules the actual release because:
2175  * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2176  *   trigger a deadlock.
2177  * - It is not safe to call TCM transport_* functions from interrupt context.
2178  */
2179 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2180 {
2181 	schedule_work(&ch->release_work);
2182 }
2183 
2184 static void srpt_release_channel_work(struct work_struct *w)
2185 {
2186 	struct srpt_rdma_ch *ch;
2187 	struct srpt_device *sdev;
2188 	struct se_session *se_sess;
2189 
2190 	ch = container_of(w, struct srpt_rdma_ch, release_work);
2191 	pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2192 		 ch->release_done);
2193 
2194 	sdev = ch->sport->sdev;
2195 	BUG_ON(!sdev);
2196 
2197 	se_sess = ch->sess;
2198 	BUG_ON(!se_sess);
2199 
2200 	target_wait_for_sess_cmds(se_sess);
2201 
2202 	transport_deregister_session_configfs(se_sess);
2203 	transport_deregister_session(se_sess);
2204 	ch->sess = NULL;
2205 
2206 	ib_destroy_cm_id(ch->cm_id);
2207 
2208 	srpt_destroy_ch_ib(ch);
2209 
2210 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2211 			     ch->sport->sdev, ch->rq_size,
2212 			     ch->rsp_size, DMA_TO_DEVICE);
2213 
2214 	spin_lock_irq(&sdev->spinlock);
2215 	list_del(&ch->list);
2216 	spin_unlock_irq(&sdev->spinlock);
2217 
2218 	if (ch->release_done)
2219 		complete(ch->release_done);
2220 
2221 	wake_up(&sdev->ch_releaseQ);
2222 
2223 	kfree(ch);
2224 }
2225 
2226 /**
2227  * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2228  *
2229  * Ownership of the cm_id is transferred to the target session if this
2230  * functions returns zero. Otherwise the caller remains the owner of cm_id.
2231  */
2232 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2233 			    struct ib_cm_req_event_param *param,
2234 			    void *private_data)
2235 {
2236 	struct srpt_device *sdev = cm_id->context;
2237 	struct srpt_port *sport = &sdev->port[param->port - 1];
2238 	struct srp_login_req *req;
2239 	struct srp_login_rsp *rsp;
2240 	struct srp_login_rej *rej;
2241 	struct ib_cm_rep_param *rep_param;
2242 	struct srpt_rdma_ch *ch, *tmp_ch;
2243 	struct se_node_acl *se_acl;
2244 	u32 it_iu_len;
2245 	int i, ret = 0;
2246 	unsigned char *p;
2247 
2248 	WARN_ON_ONCE(irqs_disabled());
2249 
2250 	if (WARN_ON(!sdev || !private_data))
2251 		return -EINVAL;
2252 
2253 	req = (struct srp_login_req *)private_data;
2254 
2255 	it_iu_len = be32_to_cpu(req->req_it_iu_len);
2256 
2257 	pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2258 		" t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2259 		" (guid=0x%llx:0x%llx)\n",
2260 		be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2261 		be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2262 		be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2263 		be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2264 		it_iu_len,
2265 		param->port,
2266 		be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2267 		be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2268 
2269 	rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2270 	rej = kzalloc(sizeof *rej, GFP_KERNEL);
2271 	rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2272 
2273 	if (!rsp || !rej || !rep_param) {
2274 		ret = -ENOMEM;
2275 		goto out;
2276 	}
2277 
2278 	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2279 		rej->reason = cpu_to_be32(
2280 			      SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2281 		ret = -EINVAL;
2282 		pr_err("rejected SRP_LOGIN_REQ because its"
2283 		       " length (%d bytes) is out of range (%d .. %d)\n",
2284 		       it_iu_len, 64, srp_max_req_size);
2285 		goto reject;
2286 	}
2287 
2288 	if (!sport->enabled) {
2289 		rej->reason = cpu_to_be32(
2290 			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2291 		ret = -EINVAL;
2292 		pr_err("rejected SRP_LOGIN_REQ because the target port"
2293 		       " has not yet been enabled\n");
2294 		goto reject;
2295 	}
2296 
2297 	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2298 		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2299 
2300 		spin_lock_irq(&sdev->spinlock);
2301 
2302 		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2303 			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2304 			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
2305 			    && param->port == ch->sport->port
2306 			    && param->listen_id == ch->sport->sdev->cm_id
2307 			    && ch->cm_id) {
2308 				enum rdma_ch_state ch_state;
2309 
2310 				ch_state = srpt_get_ch_state(ch);
2311 				if (ch_state != CH_CONNECTING
2312 				    && ch_state != CH_LIVE)
2313 					continue;
2314 
2315 				/* found an existing channel */
2316 				pr_debug("Found existing channel %s"
2317 					 " cm_id= %p state= %d\n",
2318 					 ch->sess_name, ch->cm_id, ch_state);
2319 
2320 				__srpt_close_ch(ch);
2321 
2322 				rsp->rsp_flags =
2323 					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2324 			}
2325 		}
2326 
2327 		spin_unlock_irq(&sdev->spinlock);
2328 
2329 	} else
2330 		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2331 
2332 	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2333 	    || *(__be64 *)(req->target_port_id + 8) !=
2334 	       cpu_to_be64(srpt_service_guid)) {
2335 		rej->reason = cpu_to_be32(
2336 			      SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2337 		ret = -ENOMEM;
2338 		pr_err("rejected SRP_LOGIN_REQ because it"
2339 		       " has an invalid target port identifier.\n");
2340 		goto reject;
2341 	}
2342 
2343 	ch = kzalloc(sizeof *ch, GFP_KERNEL);
2344 	if (!ch) {
2345 		rej->reason = cpu_to_be32(
2346 			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2347 		pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2348 		ret = -ENOMEM;
2349 		goto reject;
2350 	}
2351 
2352 	INIT_WORK(&ch->release_work, srpt_release_channel_work);
2353 	memcpy(ch->i_port_id, req->initiator_port_id, 16);
2354 	memcpy(ch->t_port_id, req->target_port_id, 16);
2355 	ch->sport = &sdev->port[param->port - 1];
2356 	ch->cm_id = cm_id;
2357 	/*
2358 	 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2359 	 * for the SRP protocol to the command queue size.
2360 	 */
2361 	ch->rq_size = SRPT_RQ_SIZE;
2362 	spin_lock_init(&ch->spinlock);
2363 	ch->state = CH_CONNECTING;
2364 	INIT_LIST_HEAD(&ch->cmd_wait_list);
2365 	ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2366 
2367 	ch->ioctx_ring = (struct srpt_send_ioctx **)
2368 		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2369 				      sizeof(*ch->ioctx_ring[0]),
2370 				      ch->rsp_size, DMA_TO_DEVICE);
2371 	if (!ch->ioctx_ring)
2372 		goto free_ch;
2373 
2374 	INIT_LIST_HEAD(&ch->free_list);
2375 	for (i = 0; i < ch->rq_size; i++) {
2376 		ch->ioctx_ring[i]->ch = ch;
2377 		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2378 	}
2379 
2380 	ret = srpt_create_ch_ib(ch);
2381 	if (ret) {
2382 		rej->reason = cpu_to_be32(
2383 			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2384 		pr_err("rejected SRP_LOGIN_REQ because creating"
2385 		       " a new RDMA channel failed.\n");
2386 		goto free_ring;
2387 	}
2388 
2389 	ret = srpt_ch_qp_rtr(ch, ch->qp);
2390 	if (ret) {
2391 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2392 		pr_err("rejected SRP_LOGIN_REQ because enabling"
2393 		       " RTR failed (error code = %d)\n", ret);
2394 		goto destroy_ib;
2395 	}
2396 
2397 	/*
2398 	 * Use the initator port identifier as the session name, when
2399 	 * checking against se_node_acl->initiatorname[] this can be
2400 	 * with or without preceeding '0x'.
2401 	 */
2402 	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2403 			be64_to_cpu(*(__be64 *)ch->i_port_id),
2404 			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2405 
2406 	pr_debug("registering session %s\n", ch->sess_name);
2407 	p = &ch->sess_name[0];
2408 
2409 	ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2410 	if (IS_ERR(ch->sess)) {
2411 		rej->reason = cpu_to_be32(
2412 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2413 		pr_debug("Failed to create session\n");
2414 		goto destroy_ib;
2415 	}
2416 
2417 try_again:
2418 	se_acl = core_tpg_get_initiator_node_acl(&sport->port_tpg_1, p);
2419 	if (!se_acl) {
2420 		pr_info("Rejected login because no ACL has been"
2421 			" configured yet for initiator %s.\n", ch->sess_name);
2422 		/*
2423 		 * XXX: Hack to retry of ch->i_port_id without leading '0x'
2424 		 */
2425 		if (p == &ch->sess_name[0]) {
2426 			p += 2;
2427 			goto try_again;
2428 		}
2429 		rej->reason = cpu_to_be32(
2430 				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2431 		transport_free_session(ch->sess);
2432 		goto destroy_ib;
2433 	}
2434 	ch->sess->se_node_acl = se_acl;
2435 
2436 	transport_register_session(&sport->port_tpg_1, se_acl, ch->sess, ch);
2437 
2438 	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2439 		 ch->sess_name, ch->cm_id);
2440 
2441 	/* create srp_login_response */
2442 	rsp->opcode = SRP_LOGIN_RSP;
2443 	rsp->tag = req->tag;
2444 	rsp->max_it_iu_len = req->req_it_iu_len;
2445 	rsp->max_ti_iu_len = req->req_it_iu_len;
2446 	ch->max_ti_iu_len = it_iu_len;
2447 	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2448 				   | SRP_BUF_FORMAT_INDIRECT);
2449 	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2450 	atomic_set(&ch->req_lim, ch->rq_size);
2451 	atomic_set(&ch->req_lim_delta, 0);
2452 
2453 	/* create cm reply */
2454 	rep_param->qp_num = ch->qp->qp_num;
2455 	rep_param->private_data = (void *)rsp;
2456 	rep_param->private_data_len = sizeof *rsp;
2457 	rep_param->rnr_retry_count = 7;
2458 	rep_param->flow_control = 1;
2459 	rep_param->failover_accepted = 0;
2460 	rep_param->srq = 1;
2461 	rep_param->responder_resources = 4;
2462 	rep_param->initiator_depth = 4;
2463 
2464 	ret = ib_send_cm_rep(cm_id, rep_param);
2465 	if (ret) {
2466 		pr_err("sending SRP_LOGIN_REQ response failed"
2467 		       " (error code = %d)\n", ret);
2468 		goto release_channel;
2469 	}
2470 
2471 	spin_lock_irq(&sdev->spinlock);
2472 	list_add_tail(&ch->list, &sdev->rch_list);
2473 	spin_unlock_irq(&sdev->spinlock);
2474 
2475 	goto out;
2476 
2477 release_channel:
2478 	srpt_set_ch_state(ch, CH_RELEASING);
2479 	transport_deregister_session_configfs(ch->sess);
2480 	transport_deregister_session(ch->sess);
2481 	ch->sess = NULL;
2482 
2483 destroy_ib:
2484 	srpt_destroy_ch_ib(ch);
2485 
2486 free_ring:
2487 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2488 			     ch->sport->sdev, ch->rq_size,
2489 			     ch->rsp_size, DMA_TO_DEVICE);
2490 free_ch:
2491 	kfree(ch);
2492 
2493 reject:
2494 	rej->opcode = SRP_LOGIN_REJ;
2495 	rej->tag = req->tag;
2496 	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2497 				   | SRP_BUF_FORMAT_INDIRECT);
2498 
2499 	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2500 			     (void *)rej, sizeof *rej);
2501 
2502 out:
2503 	kfree(rep_param);
2504 	kfree(rsp);
2505 	kfree(rej);
2506 
2507 	return ret;
2508 }
2509 
2510 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2511 {
2512 	pr_info("Received IB REJ for cm_id %p.\n", cm_id);
2513 	srpt_drain_channel(cm_id);
2514 }
2515 
2516 /**
2517  * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2518  *
2519  * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2520  * and that the recipient may begin transmitting (RTU = ready to use).
2521  */
2522 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2523 {
2524 	struct srpt_rdma_ch *ch;
2525 	int ret;
2526 
2527 	ch = srpt_find_channel(cm_id->context, cm_id);
2528 	BUG_ON(!ch);
2529 
2530 	if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2531 		struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2532 
2533 		ret = srpt_ch_qp_rts(ch, ch->qp);
2534 
2535 		list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2536 					 wait_list) {
2537 			list_del(&ioctx->wait_list);
2538 			srpt_handle_new_iu(ch, ioctx, NULL);
2539 		}
2540 		if (ret)
2541 			srpt_close_ch(ch);
2542 	}
2543 }
2544 
2545 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2546 {
2547 	pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id);
2548 	srpt_drain_channel(cm_id);
2549 }
2550 
2551 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2552 {
2553 	pr_info("Received IB REP error for cm_id %p.\n", cm_id);
2554 	srpt_drain_channel(cm_id);
2555 }
2556 
2557 /**
2558  * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2559  */
2560 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2561 {
2562 	struct srpt_rdma_ch *ch;
2563 	unsigned long flags;
2564 	bool send_drep = false;
2565 
2566 	ch = srpt_find_channel(cm_id->context, cm_id);
2567 	BUG_ON(!ch);
2568 
2569 	pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2570 
2571 	spin_lock_irqsave(&ch->spinlock, flags);
2572 	switch (ch->state) {
2573 	case CH_CONNECTING:
2574 	case CH_LIVE:
2575 		send_drep = true;
2576 		ch->state = CH_DISCONNECTING;
2577 		break;
2578 	case CH_DISCONNECTING:
2579 	case CH_DRAINING:
2580 	case CH_RELEASING:
2581 		WARN(true, "unexpected channel state %d\n", ch->state);
2582 		break;
2583 	}
2584 	spin_unlock_irqrestore(&ch->spinlock, flags);
2585 
2586 	if (send_drep) {
2587 		if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2588 			pr_err("Sending IB DREP failed.\n");
2589 		pr_info("Received DREQ and sent DREP for session %s.\n",
2590 			ch->sess_name);
2591 	}
2592 }
2593 
2594 /**
2595  * srpt_cm_drep_recv() - Process reception of a DREP message.
2596  */
2597 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2598 {
2599 	pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id);
2600 	srpt_drain_channel(cm_id);
2601 }
2602 
2603 /**
2604  * srpt_cm_handler() - IB connection manager callback function.
2605  *
2606  * A non-zero return value will cause the caller destroy the CM ID.
2607  *
2608  * Note: srpt_cm_handler() must only return a non-zero value when transferring
2609  * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2610  * a non-zero value in any other case will trigger a race with the
2611  * ib_destroy_cm_id() call in srpt_release_channel().
2612  */
2613 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2614 {
2615 	int ret;
2616 
2617 	ret = 0;
2618 	switch (event->event) {
2619 	case IB_CM_REQ_RECEIVED:
2620 		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2621 				       event->private_data);
2622 		break;
2623 	case IB_CM_REJ_RECEIVED:
2624 		srpt_cm_rej_recv(cm_id);
2625 		break;
2626 	case IB_CM_RTU_RECEIVED:
2627 	case IB_CM_USER_ESTABLISHED:
2628 		srpt_cm_rtu_recv(cm_id);
2629 		break;
2630 	case IB_CM_DREQ_RECEIVED:
2631 		srpt_cm_dreq_recv(cm_id);
2632 		break;
2633 	case IB_CM_DREP_RECEIVED:
2634 		srpt_cm_drep_recv(cm_id);
2635 		break;
2636 	case IB_CM_TIMEWAIT_EXIT:
2637 		srpt_cm_timewait_exit(cm_id);
2638 		break;
2639 	case IB_CM_REP_ERROR:
2640 		srpt_cm_rep_error(cm_id);
2641 		break;
2642 	case IB_CM_DREQ_ERROR:
2643 		pr_info("Received IB DREQ ERROR event.\n");
2644 		break;
2645 	case IB_CM_MRA_RECEIVED:
2646 		pr_info("Received IB MRA event\n");
2647 		break;
2648 	default:
2649 		pr_err("received unrecognized IB CM event %d\n", event->event);
2650 		break;
2651 	}
2652 
2653 	return ret;
2654 }
2655 
2656 /**
2657  * srpt_perform_rdmas() - Perform IB RDMA.
2658  *
2659  * Returns zero upon success or a negative number upon failure.
2660  */
2661 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2662 			      struct srpt_send_ioctx *ioctx)
2663 {
2664 	struct ib_send_wr *bad_wr;
2665 	int sq_wr_avail, ret, i;
2666 	enum dma_data_direction dir;
2667 	const int n_rdma = ioctx->n_rdma;
2668 
2669 	dir = ioctx->cmd.data_direction;
2670 	if (dir == DMA_TO_DEVICE) {
2671 		/* write */
2672 		ret = -ENOMEM;
2673 		sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2674 		if (sq_wr_avail < 0) {
2675 			pr_warn("IB send queue full (needed %d)\n",
2676 				n_rdma);
2677 			goto out;
2678 		}
2679 	}
2680 
2681 	for (i = 0; i < n_rdma; i++) {
2682 		struct ib_send_wr *wr = &ioctx->rdma_wrs[i].wr;
2683 
2684 		wr->opcode = (dir == DMA_FROM_DEVICE) ?
2685 				IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
2686 
2687 		if (i == n_rdma - 1) {
2688 			/* only get completion event for the last rdma read */
2689 			if (dir == DMA_TO_DEVICE) {
2690 				wr->send_flags = IB_SEND_SIGNALED;
2691 				ioctx->rdma_cqe.done = srpt_rdma_read_done;
2692 			} else {
2693 				ioctx->rdma_cqe.done = srpt_rdma_write_done;
2694 			}
2695 			wr->wr_cqe = &ioctx->rdma_cqe;
2696 			wr->next = NULL;
2697 		} else {
2698 			wr->wr_cqe = NULL;
2699 			wr->next = &ioctx->rdma_wrs[i + 1].wr;
2700 		}
2701 	}
2702 
2703 	ret = ib_post_send(ch->qp, &ioctx->rdma_wrs->wr, &bad_wr);
2704 	if (ret)
2705 		pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n",
2706 				 __func__, __LINE__, ret, i, n_rdma);
2707 out:
2708 	if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2709 		atomic_add(n_rdma, &ch->sq_wr_avail);
2710 	return ret;
2711 }
2712 
2713 /**
2714  * srpt_xfer_data() - Start data transfer from initiator to target.
2715  */
2716 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2717 			  struct srpt_send_ioctx *ioctx)
2718 {
2719 	int ret;
2720 
2721 	ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2722 	if (ret) {
2723 		pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret);
2724 		goto out;
2725 	}
2726 
2727 	ret = srpt_perform_rdmas(ch, ioctx);
2728 	if (ret) {
2729 		if (ret == -EAGAIN || ret == -ENOMEM)
2730 			pr_info("%s[%d] queue full -- ret=%d\n",
2731 				__func__, __LINE__, ret);
2732 		else
2733 			pr_err("%s[%d] fatal error -- ret=%d\n",
2734 			       __func__, __LINE__, ret);
2735 		goto out_unmap;
2736 	}
2737 
2738 out:
2739 	return ret;
2740 out_unmap:
2741 	srpt_unmap_sg_to_ib_sge(ch, ioctx);
2742 	goto out;
2743 }
2744 
2745 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2746 {
2747 	struct srpt_send_ioctx *ioctx;
2748 
2749 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2750 	return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2751 }
2752 
2753 /*
2754  * srpt_write_pending() - Start data transfer from initiator to target (write).
2755  */
2756 static int srpt_write_pending(struct se_cmd *se_cmd)
2757 {
2758 	struct srpt_rdma_ch *ch;
2759 	struct srpt_send_ioctx *ioctx;
2760 	enum srpt_command_state new_state;
2761 	enum rdma_ch_state ch_state;
2762 	int ret;
2763 
2764 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2765 
2766 	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2767 	WARN_ON(new_state == SRPT_STATE_DONE);
2768 
2769 	ch = ioctx->ch;
2770 	BUG_ON(!ch);
2771 
2772 	ch_state = srpt_get_ch_state(ch);
2773 	switch (ch_state) {
2774 	case CH_CONNECTING:
2775 		WARN(true, "unexpected channel state %d\n", ch_state);
2776 		ret = -EINVAL;
2777 		goto out;
2778 	case CH_LIVE:
2779 		break;
2780 	case CH_DISCONNECTING:
2781 	case CH_DRAINING:
2782 	case CH_RELEASING:
2783 		pr_debug("cmd with tag %lld: channel disconnecting\n",
2784 			 ioctx->cmd.tag);
2785 		srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2786 		ret = -EINVAL;
2787 		goto out;
2788 	}
2789 	ret = srpt_xfer_data(ch, ioctx);
2790 
2791 out:
2792 	return ret;
2793 }
2794 
2795 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2796 {
2797 	switch (tcm_mgmt_status) {
2798 	case TMR_FUNCTION_COMPLETE:
2799 		return SRP_TSK_MGMT_SUCCESS;
2800 	case TMR_FUNCTION_REJECTED:
2801 		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2802 	}
2803 	return SRP_TSK_MGMT_FAILED;
2804 }
2805 
2806 /**
2807  * srpt_queue_response() - Transmits the response to a SCSI command.
2808  *
2809  * Callback function called by the TCM core. Must not block since it can be
2810  * invoked on the context of the IB completion handler.
2811  */
2812 static void srpt_queue_response(struct se_cmd *cmd)
2813 {
2814 	struct srpt_rdma_ch *ch;
2815 	struct srpt_send_ioctx *ioctx;
2816 	enum srpt_command_state state;
2817 	unsigned long flags;
2818 	int ret;
2819 	enum dma_data_direction dir;
2820 	int resp_len;
2821 	u8 srp_tm_status;
2822 
2823 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2824 	ch = ioctx->ch;
2825 	BUG_ON(!ch);
2826 
2827 	spin_lock_irqsave(&ioctx->spinlock, flags);
2828 	state = ioctx->state;
2829 	switch (state) {
2830 	case SRPT_STATE_NEW:
2831 	case SRPT_STATE_DATA_IN:
2832 		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2833 		break;
2834 	case SRPT_STATE_MGMT:
2835 		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2836 		break;
2837 	default:
2838 		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2839 			ch, ioctx->ioctx.index, ioctx->state);
2840 		break;
2841 	}
2842 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
2843 
2844 	if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
2845 		     || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
2846 		atomic_inc(&ch->req_lim_delta);
2847 		srpt_abort_cmd(ioctx);
2848 		return;
2849 	}
2850 
2851 	dir = ioctx->cmd.data_direction;
2852 
2853 	/* For read commands, transfer the data to the initiator. */
2854 	if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
2855 	    !ioctx->queue_status_only) {
2856 		ret = srpt_xfer_data(ch, ioctx);
2857 		if (ret) {
2858 			pr_err("xfer_data failed for tag %llu\n",
2859 			       ioctx->cmd.tag);
2860 			return;
2861 		}
2862 	}
2863 
2864 	if (state != SRPT_STATE_MGMT)
2865 		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2866 					      cmd->scsi_status);
2867 	else {
2868 		srp_tm_status
2869 			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2870 		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2871 						 ioctx->cmd.tag);
2872 	}
2873 	ret = srpt_post_send(ch, ioctx, resp_len);
2874 	if (ret) {
2875 		pr_err("sending cmd response failed for tag %llu\n",
2876 		       ioctx->cmd.tag);
2877 		srpt_unmap_sg_to_ib_sge(ch, ioctx);
2878 		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2879 		target_put_sess_cmd(&ioctx->cmd);
2880 	}
2881 }
2882 
2883 static int srpt_queue_data_in(struct se_cmd *cmd)
2884 {
2885 	srpt_queue_response(cmd);
2886 	return 0;
2887 }
2888 
2889 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2890 {
2891 	srpt_queue_response(cmd);
2892 }
2893 
2894 static void srpt_aborted_task(struct se_cmd *cmd)
2895 {
2896 	struct srpt_send_ioctx *ioctx = container_of(cmd,
2897 				struct srpt_send_ioctx, cmd);
2898 
2899 	srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
2900 }
2901 
2902 static int srpt_queue_status(struct se_cmd *cmd)
2903 {
2904 	struct srpt_send_ioctx *ioctx;
2905 
2906 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2907 	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2908 	if (cmd->se_cmd_flags &
2909 	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2910 		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2911 	ioctx->queue_status_only = true;
2912 	srpt_queue_response(cmd);
2913 	return 0;
2914 }
2915 
2916 static void srpt_refresh_port_work(struct work_struct *work)
2917 {
2918 	struct srpt_port *sport = container_of(work, struct srpt_port, work);
2919 
2920 	srpt_refresh_port(sport);
2921 }
2922 
2923 static int srpt_ch_list_empty(struct srpt_device *sdev)
2924 {
2925 	int res;
2926 
2927 	spin_lock_irq(&sdev->spinlock);
2928 	res = list_empty(&sdev->rch_list);
2929 	spin_unlock_irq(&sdev->spinlock);
2930 
2931 	return res;
2932 }
2933 
2934 /**
2935  * srpt_release_sdev() - Free the channel resources associated with a target.
2936  */
2937 static int srpt_release_sdev(struct srpt_device *sdev)
2938 {
2939 	struct srpt_rdma_ch *ch, *tmp_ch;
2940 	int res;
2941 
2942 	WARN_ON_ONCE(irqs_disabled());
2943 
2944 	BUG_ON(!sdev);
2945 
2946 	spin_lock_irq(&sdev->spinlock);
2947 	list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
2948 		__srpt_close_ch(ch);
2949 	spin_unlock_irq(&sdev->spinlock);
2950 
2951 	res = wait_event_interruptible(sdev->ch_releaseQ,
2952 				       srpt_ch_list_empty(sdev));
2953 	if (res)
2954 		pr_err("%s: interrupted.\n", __func__);
2955 
2956 	return 0;
2957 }
2958 
2959 static struct srpt_port *__srpt_lookup_port(const char *name)
2960 {
2961 	struct ib_device *dev;
2962 	struct srpt_device *sdev;
2963 	struct srpt_port *sport;
2964 	int i;
2965 
2966 	list_for_each_entry(sdev, &srpt_dev_list, list) {
2967 		dev = sdev->device;
2968 		if (!dev)
2969 			continue;
2970 
2971 		for (i = 0; i < dev->phys_port_cnt; i++) {
2972 			sport = &sdev->port[i];
2973 
2974 			if (!strcmp(sport->port_guid, name))
2975 				return sport;
2976 		}
2977 	}
2978 
2979 	return NULL;
2980 }
2981 
2982 static struct srpt_port *srpt_lookup_port(const char *name)
2983 {
2984 	struct srpt_port *sport;
2985 
2986 	spin_lock(&srpt_dev_lock);
2987 	sport = __srpt_lookup_port(name);
2988 	spin_unlock(&srpt_dev_lock);
2989 
2990 	return sport;
2991 }
2992 
2993 /**
2994  * srpt_add_one() - Infiniband device addition callback function.
2995  */
2996 static void srpt_add_one(struct ib_device *device)
2997 {
2998 	struct srpt_device *sdev;
2999 	struct srpt_port *sport;
3000 	struct ib_srq_init_attr srq_attr;
3001 	int i;
3002 
3003 	pr_debug("device = %p, device->dma_ops = %p\n", device,
3004 		 device->dma_ops);
3005 
3006 	sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3007 	if (!sdev)
3008 		goto err;
3009 
3010 	sdev->device = device;
3011 	INIT_LIST_HEAD(&sdev->rch_list);
3012 	init_waitqueue_head(&sdev->ch_releaseQ);
3013 	spin_lock_init(&sdev->spinlock);
3014 
3015 	sdev->pd = ib_alloc_pd(device);
3016 	if (IS_ERR(sdev->pd))
3017 		goto free_dev;
3018 
3019 	sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
3020 
3021 	srq_attr.event_handler = srpt_srq_event;
3022 	srq_attr.srq_context = (void *)sdev;
3023 	srq_attr.attr.max_wr = sdev->srq_size;
3024 	srq_attr.attr.max_sge = 1;
3025 	srq_attr.attr.srq_limit = 0;
3026 	srq_attr.srq_type = IB_SRQT_BASIC;
3027 
3028 	sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3029 	if (IS_ERR(sdev->srq))
3030 		goto err_pd;
3031 
3032 	pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3033 		 __func__, sdev->srq_size, sdev->device->attrs.max_srq_wr,
3034 		 device->name);
3035 
3036 	if (!srpt_service_guid)
3037 		srpt_service_guid = be64_to_cpu(device->node_guid);
3038 
3039 	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3040 	if (IS_ERR(sdev->cm_id))
3041 		goto err_srq;
3042 
3043 	/* print out target login information */
3044 	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3045 		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3046 		 srpt_service_guid, srpt_service_guid);
3047 
3048 	/*
3049 	 * We do not have a consistent service_id (ie. also id_ext of target_id)
3050 	 * to identify this target. We currently use the guid of the first HCA
3051 	 * in the system as service_id; therefore, the target_id will change
3052 	 * if this HCA is gone bad and replaced by different HCA
3053 	 */
3054 	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
3055 		goto err_cm;
3056 
3057 	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3058 			      srpt_event_handler);
3059 	if (ib_register_event_handler(&sdev->event_handler))
3060 		goto err_cm;
3061 
3062 	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3063 		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3064 				      sizeof(*sdev->ioctx_ring[0]),
3065 				      srp_max_req_size, DMA_FROM_DEVICE);
3066 	if (!sdev->ioctx_ring)
3067 		goto err_event;
3068 
3069 	for (i = 0; i < sdev->srq_size; ++i)
3070 		srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3071 
3072 	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3073 
3074 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3075 		sport = &sdev->port[i - 1];
3076 		sport->sdev = sdev;
3077 		sport->port = i;
3078 		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3079 		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3080 		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3081 		INIT_WORK(&sport->work, srpt_refresh_port_work);
3082 
3083 		if (srpt_refresh_port(sport)) {
3084 			pr_err("MAD registration failed for %s-%d.\n",
3085 			       srpt_sdev_name(sdev), i);
3086 			goto err_ring;
3087 		}
3088 		snprintf(sport->port_guid, sizeof(sport->port_guid),
3089 			"0x%016llx%016llx",
3090 			be64_to_cpu(sport->gid.global.subnet_prefix),
3091 			be64_to_cpu(sport->gid.global.interface_id));
3092 	}
3093 
3094 	spin_lock(&srpt_dev_lock);
3095 	list_add_tail(&sdev->list, &srpt_dev_list);
3096 	spin_unlock(&srpt_dev_lock);
3097 
3098 out:
3099 	ib_set_client_data(device, &srpt_client, sdev);
3100 	pr_debug("added %s.\n", device->name);
3101 	return;
3102 
3103 err_ring:
3104 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3105 			     sdev->srq_size, srp_max_req_size,
3106 			     DMA_FROM_DEVICE);
3107 err_event:
3108 	ib_unregister_event_handler(&sdev->event_handler);
3109 err_cm:
3110 	ib_destroy_cm_id(sdev->cm_id);
3111 err_srq:
3112 	ib_destroy_srq(sdev->srq);
3113 err_pd:
3114 	ib_dealloc_pd(sdev->pd);
3115 free_dev:
3116 	kfree(sdev);
3117 err:
3118 	sdev = NULL;
3119 	pr_info("%s(%s) failed.\n", __func__, device->name);
3120 	goto out;
3121 }
3122 
3123 /**
3124  * srpt_remove_one() - InfiniBand device removal callback function.
3125  */
3126 static void srpt_remove_one(struct ib_device *device, void *client_data)
3127 {
3128 	struct srpt_device *sdev = client_data;
3129 	int i;
3130 
3131 	if (!sdev) {
3132 		pr_info("%s(%s): nothing to do.\n", __func__, device->name);
3133 		return;
3134 	}
3135 
3136 	srpt_unregister_mad_agent(sdev);
3137 
3138 	ib_unregister_event_handler(&sdev->event_handler);
3139 
3140 	/* Cancel any work queued by the just unregistered IB event handler. */
3141 	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3142 		cancel_work_sync(&sdev->port[i].work);
3143 
3144 	ib_destroy_cm_id(sdev->cm_id);
3145 
3146 	/*
3147 	 * Unregistering a target must happen after destroying sdev->cm_id
3148 	 * such that no new SRP_LOGIN_REQ information units can arrive while
3149 	 * destroying the target.
3150 	 */
3151 	spin_lock(&srpt_dev_lock);
3152 	list_del(&sdev->list);
3153 	spin_unlock(&srpt_dev_lock);
3154 	srpt_release_sdev(sdev);
3155 
3156 	ib_destroy_srq(sdev->srq);
3157 	ib_dealloc_pd(sdev->pd);
3158 
3159 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3160 			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3161 	sdev->ioctx_ring = NULL;
3162 	kfree(sdev);
3163 }
3164 
3165 static struct ib_client srpt_client = {
3166 	.name = DRV_NAME,
3167 	.add = srpt_add_one,
3168 	.remove = srpt_remove_one
3169 };
3170 
3171 static int srpt_check_true(struct se_portal_group *se_tpg)
3172 {
3173 	return 1;
3174 }
3175 
3176 static int srpt_check_false(struct se_portal_group *se_tpg)
3177 {
3178 	return 0;
3179 }
3180 
3181 static char *srpt_get_fabric_name(void)
3182 {
3183 	return "srpt";
3184 }
3185 
3186 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3187 {
3188 	struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3189 
3190 	return sport->port_guid;
3191 }
3192 
3193 static u16 srpt_get_tag(struct se_portal_group *tpg)
3194 {
3195 	return 1;
3196 }
3197 
3198 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3199 {
3200 	return 1;
3201 }
3202 
3203 static void srpt_release_cmd(struct se_cmd *se_cmd)
3204 {
3205 	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3206 				struct srpt_send_ioctx, cmd);
3207 	struct srpt_rdma_ch *ch = ioctx->ch;
3208 	unsigned long flags;
3209 
3210 	WARN_ON(ioctx->state != SRPT_STATE_DONE);
3211 	WARN_ON(ioctx->mapped_sg_count != 0);
3212 
3213 	if (ioctx->n_rbuf > 1) {
3214 		kfree(ioctx->rbufs);
3215 		ioctx->rbufs = NULL;
3216 		ioctx->n_rbuf = 0;
3217 	}
3218 
3219 	spin_lock_irqsave(&ch->spinlock, flags);
3220 	list_add(&ioctx->free_list, &ch->free_list);
3221 	spin_unlock_irqrestore(&ch->spinlock, flags);
3222 }
3223 
3224 /**
3225  * srpt_close_session() - Forcibly close a session.
3226  *
3227  * Callback function invoked by the TCM core to clean up sessions associated
3228  * with a node ACL when the user invokes
3229  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3230  */
3231 static void srpt_close_session(struct se_session *se_sess)
3232 {
3233 	DECLARE_COMPLETION_ONSTACK(release_done);
3234 	struct srpt_rdma_ch *ch;
3235 	struct srpt_device *sdev;
3236 	unsigned long res;
3237 
3238 	ch = se_sess->fabric_sess_ptr;
3239 	WARN_ON(ch->sess != se_sess);
3240 
3241 	pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3242 
3243 	sdev = ch->sport->sdev;
3244 	spin_lock_irq(&sdev->spinlock);
3245 	BUG_ON(ch->release_done);
3246 	ch->release_done = &release_done;
3247 	__srpt_close_ch(ch);
3248 	spin_unlock_irq(&sdev->spinlock);
3249 
3250 	res = wait_for_completion_timeout(&release_done, 60 * HZ);
3251 	WARN_ON(res == 0);
3252 }
3253 
3254 /**
3255  * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3256  *
3257  * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3258  * This object represents an arbitrary integer used to uniquely identify a
3259  * particular attached remote initiator port to a particular SCSI target port
3260  * within a particular SCSI target device within a particular SCSI instance.
3261  */
3262 static u32 srpt_sess_get_index(struct se_session *se_sess)
3263 {
3264 	return 0;
3265 }
3266 
3267 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3268 {
3269 }
3270 
3271 /* Note: only used from inside debug printk's by the TCM core. */
3272 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3273 {
3274 	struct srpt_send_ioctx *ioctx;
3275 
3276 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3277 	return srpt_get_cmd_state(ioctx);
3278 }
3279 
3280 /**
3281  * srpt_parse_i_port_id() - Parse an initiator port ID.
3282  * @name: ASCII representation of a 128-bit initiator port ID.
3283  * @i_port_id: Binary 128-bit port ID.
3284  */
3285 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3286 {
3287 	const char *p;
3288 	unsigned len, count, leading_zero_bytes;
3289 	int ret, rc;
3290 
3291 	p = name;
3292 	if (strncasecmp(p, "0x", 2) == 0)
3293 		p += 2;
3294 	ret = -EINVAL;
3295 	len = strlen(p);
3296 	if (len % 2)
3297 		goto out;
3298 	count = min(len / 2, 16U);
3299 	leading_zero_bytes = 16 - count;
3300 	memset(i_port_id, 0, leading_zero_bytes);
3301 	rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3302 	if (rc < 0)
3303 		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3304 	ret = 0;
3305 out:
3306 	return ret;
3307 }
3308 
3309 /*
3310  * configfs callback function invoked for
3311  * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3312  */
3313 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3314 {
3315 	u8 i_port_id[16];
3316 
3317 	if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3318 		pr_err("invalid initiator port ID %s\n", name);
3319 		return -EINVAL;
3320 	}
3321 	return 0;
3322 }
3323 
3324 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3325 		char *page)
3326 {
3327 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3328 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3329 
3330 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3331 }
3332 
3333 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3334 		const char *page, size_t count)
3335 {
3336 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3337 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3338 	unsigned long val;
3339 	int ret;
3340 
3341 	ret = kstrtoul(page, 0, &val);
3342 	if (ret < 0) {
3343 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3344 		return -EINVAL;
3345 	}
3346 	if (val > MAX_SRPT_RDMA_SIZE) {
3347 		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3348 			MAX_SRPT_RDMA_SIZE);
3349 		return -EINVAL;
3350 	}
3351 	if (val < DEFAULT_MAX_RDMA_SIZE) {
3352 		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3353 			val, DEFAULT_MAX_RDMA_SIZE);
3354 		return -EINVAL;
3355 	}
3356 	sport->port_attrib.srp_max_rdma_size = val;
3357 
3358 	return count;
3359 }
3360 
3361 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3362 		char *page)
3363 {
3364 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3365 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3366 
3367 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3368 }
3369 
3370 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3371 		const char *page, size_t count)
3372 {
3373 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3374 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3375 	unsigned long val;
3376 	int ret;
3377 
3378 	ret = kstrtoul(page, 0, &val);
3379 	if (ret < 0) {
3380 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3381 		return -EINVAL;
3382 	}
3383 	if (val > MAX_SRPT_RSP_SIZE) {
3384 		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3385 			MAX_SRPT_RSP_SIZE);
3386 		return -EINVAL;
3387 	}
3388 	if (val < MIN_MAX_RSP_SIZE) {
3389 		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3390 			MIN_MAX_RSP_SIZE);
3391 		return -EINVAL;
3392 	}
3393 	sport->port_attrib.srp_max_rsp_size = val;
3394 
3395 	return count;
3396 }
3397 
3398 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3399 		char *page)
3400 {
3401 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3402 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3403 
3404 	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3405 }
3406 
3407 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3408 		const char *page, size_t count)
3409 {
3410 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3411 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3412 	unsigned long val;
3413 	int ret;
3414 
3415 	ret = kstrtoul(page, 0, &val);
3416 	if (ret < 0) {
3417 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3418 		return -EINVAL;
3419 	}
3420 	if (val > MAX_SRPT_SRQ_SIZE) {
3421 		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3422 			MAX_SRPT_SRQ_SIZE);
3423 		return -EINVAL;
3424 	}
3425 	if (val < MIN_SRPT_SRQ_SIZE) {
3426 		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3427 			MIN_SRPT_SRQ_SIZE);
3428 		return -EINVAL;
3429 	}
3430 	sport->port_attrib.srp_sq_size = val;
3431 
3432 	return count;
3433 }
3434 
3435 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
3436 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
3437 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3438 
3439 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3440 	&srpt_tpg_attrib_attr_srp_max_rdma_size,
3441 	&srpt_tpg_attrib_attr_srp_max_rsp_size,
3442 	&srpt_tpg_attrib_attr_srp_sq_size,
3443 	NULL,
3444 };
3445 
3446 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3447 {
3448 	struct se_portal_group *se_tpg = to_tpg(item);
3449 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3450 
3451 	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3452 }
3453 
3454 static ssize_t srpt_tpg_enable_store(struct config_item *item,
3455 		const char *page, size_t count)
3456 {
3457 	struct se_portal_group *se_tpg = to_tpg(item);
3458 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3459 	unsigned long tmp;
3460         int ret;
3461 
3462 	ret = kstrtoul(page, 0, &tmp);
3463 	if (ret < 0) {
3464 		pr_err("Unable to extract srpt_tpg_store_enable\n");
3465 		return -EINVAL;
3466 	}
3467 
3468 	if ((tmp != 0) && (tmp != 1)) {
3469 		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3470 		return -EINVAL;
3471 	}
3472 	if (tmp == 1)
3473 		sport->enabled = true;
3474 	else
3475 		sport->enabled = false;
3476 
3477 	return count;
3478 }
3479 
3480 CONFIGFS_ATTR(srpt_tpg_, enable);
3481 
3482 static struct configfs_attribute *srpt_tpg_attrs[] = {
3483 	&srpt_tpg_attr_enable,
3484 	NULL,
3485 };
3486 
3487 /**
3488  * configfs callback invoked for
3489  * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3490  */
3491 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3492 					     struct config_group *group,
3493 					     const char *name)
3494 {
3495 	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3496 	int res;
3497 
3498 	/* Initialize sport->port_wwn and sport->port_tpg_1 */
3499 	res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP);
3500 	if (res)
3501 		return ERR_PTR(res);
3502 
3503 	return &sport->port_tpg_1;
3504 }
3505 
3506 /**
3507  * configfs callback invoked for
3508  * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3509  */
3510 static void srpt_drop_tpg(struct se_portal_group *tpg)
3511 {
3512 	struct srpt_port *sport = container_of(tpg,
3513 				struct srpt_port, port_tpg_1);
3514 
3515 	sport->enabled = false;
3516 	core_tpg_deregister(&sport->port_tpg_1);
3517 }
3518 
3519 /**
3520  * configfs callback invoked for
3521  * mkdir /sys/kernel/config/target/$driver/$port
3522  */
3523 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3524 				      struct config_group *group,
3525 				      const char *name)
3526 {
3527 	struct srpt_port *sport;
3528 	int ret;
3529 
3530 	sport = srpt_lookup_port(name);
3531 	pr_debug("make_tport(%s)\n", name);
3532 	ret = -EINVAL;
3533 	if (!sport)
3534 		goto err;
3535 
3536 	return &sport->port_wwn;
3537 
3538 err:
3539 	return ERR_PTR(ret);
3540 }
3541 
3542 /**
3543  * configfs callback invoked for
3544  * rmdir /sys/kernel/config/target/$driver/$port
3545  */
3546 static void srpt_drop_tport(struct se_wwn *wwn)
3547 {
3548 	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3549 
3550 	pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3551 }
3552 
3553 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3554 {
3555 	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3556 }
3557 
3558 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3559 
3560 static struct configfs_attribute *srpt_wwn_attrs[] = {
3561 	&srpt_wwn_attr_version,
3562 	NULL,
3563 };
3564 
3565 static const struct target_core_fabric_ops srpt_template = {
3566 	.module				= THIS_MODULE,
3567 	.name				= "srpt",
3568 	.node_acl_size			= sizeof(struct srpt_node_acl),
3569 	.get_fabric_name		= srpt_get_fabric_name,
3570 	.tpg_get_wwn			= srpt_get_fabric_wwn,
3571 	.tpg_get_tag			= srpt_get_tag,
3572 	.tpg_check_demo_mode		= srpt_check_false,
3573 	.tpg_check_demo_mode_cache	= srpt_check_true,
3574 	.tpg_check_demo_mode_write_protect = srpt_check_true,
3575 	.tpg_check_prod_mode_write_protect = srpt_check_false,
3576 	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
3577 	.release_cmd			= srpt_release_cmd,
3578 	.check_stop_free		= srpt_check_stop_free,
3579 	.shutdown_session		= srpt_shutdown_session,
3580 	.close_session			= srpt_close_session,
3581 	.sess_get_index			= srpt_sess_get_index,
3582 	.sess_get_initiator_sid		= NULL,
3583 	.write_pending			= srpt_write_pending,
3584 	.write_pending_status		= srpt_write_pending_status,
3585 	.set_default_node_attributes	= srpt_set_default_node_attrs,
3586 	.get_cmd_state			= srpt_get_tcm_cmd_state,
3587 	.queue_data_in			= srpt_queue_data_in,
3588 	.queue_status			= srpt_queue_status,
3589 	.queue_tm_rsp			= srpt_queue_tm_rsp,
3590 	.aborted_task			= srpt_aborted_task,
3591 	/*
3592 	 * Setup function pointers for generic logic in
3593 	 * target_core_fabric_configfs.c
3594 	 */
3595 	.fabric_make_wwn		= srpt_make_tport,
3596 	.fabric_drop_wwn		= srpt_drop_tport,
3597 	.fabric_make_tpg		= srpt_make_tpg,
3598 	.fabric_drop_tpg		= srpt_drop_tpg,
3599 	.fabric_init_nodeacl		= srpt_init_nodeacl,
3600 
3601 	.tfc_wwn_attrs			= srpt_wwn_attrs,
3602 	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
3603 	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3604 };
3605 
3606 /**
3607  * srpt_init_module() - Kernel module initialization.
3608  *
3609  * Note: Since ib_register_client() registers callback functions, and since at
3610  * least one of these callback functions (srpt_add_one()) calls target core
3611  * functions, this driver must be registered with the target core before
3612  * ib_register_client() is called.
3613  */
3614 static int __init srpt_init_module(void)
3615 {
3616 	int ret;
3617 
3618 	ret = -EINVAL;
3619 	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3620 		pr_err("invalid value %d for kernel module parameter"
3621 		       " srp_max_req_size -- must be at least %d.\n",
3622 		       srp_max_req_size, MIN_MAX_REQ_SIZE);
3623 		goto out;
3624 	}
3625 
3626 	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3627 	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3628 		pr_err("invalid value %d for kernel module parameter"
3629 		       " srpt_srq_size -- must be in the range [%d..%d].\n",
3630 		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3631 		goto out;
3632 	}
3633 
3634 	ret = target_register_template(&srpt_template);
3635 	if (ret)
3636 		goto out;
3637 
3638 	ret = ib_register_client(&srpt_client);
3639 	if (ret) {
3640 		pr_err("couldn't register IB client\n");
3641 		goto out_unregister_target;
3642 	}
3643 
3644 	return 0;
3645 
3646 out_unregister_target:
3647 	target_unregister_template(&srpt_template);
3648 out:
3649 	return ret;
3650 }
3651 
3652 static void __exit srpt_cleanup_module(void)
3653 {
3654 	ib_unregister_client(&srpt_client);
3655 	target_unregister_template(&srpt_template);
3656 }
3657 
3658 module_init(srpt_init_module);
3659 module_exit(srpt_cleanup_module);
3660