1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_tcq.h> 45 #include <target/configfs_macros.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric_configfs.h> 48 #include <target/target_core_fabric.h> 49 #include <target/target_core_configfs.h> 50 #include "ib_srpt.h" 51 52 /* Name of this kernel module. */ 53 #define DRV_NAME "ib_srpt" 54 #define DRV_VERSION "2.0.0" 55 #define DRV_RELDATE "2011-02-14" 56 57 #define SRPT_ID_STRING "Linux SRP target" 58 59 #undef pr_fmt 60 #define pr_fmt(fmt) DRV_NAME " " fmt 61 62 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 64 "v" DRV_VERSION " (" DRV_RELDATE ")"); 65 MODULE_LICENSE("Dual BSD/GPL"); 66 67 /* 68 * Global Variables 69 */ 70 71 static u64 srpt_service_guid; 72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 74 75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 76 module_param(srp_max_req_size, int, 0444); 77 MODULE_PARM_DESC(srp_max_req_size, 78 "Maximum size of SRP request messages in bytes."); 79 80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 81 module_param(srpt_srq_size, int, 0444); 82 MODULE_PARM_DESC(srpt_srq_size, 83 "Shared receive queue (SRQ) size."); 84 85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 86 { 87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 88 } 89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 90 0444); 91 MODULE_PARM_DESC(srpt_service_guid, 92 "Using this value for ioc_guid, id_ext, and cm_listen_id" 93 " instead of using the node_guid of the first HCA."); 94 95 static struct ib_client srpt_client; 96 static const struct target_core_fabric_ops srpt_template; 97 static void srpt_release_channel(struct srpt_rdma_ch *ch); 98 static int srpt_queue_status(struct se_cmd *cmd); 99 100 /** 101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE. 102 */ 103 static inline 104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir) 105 { 106 switch (dir) { 107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE; 108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE; 109 default: return dir; 110 } 111 } 112 113 /** 114 * srpt_sdev_name() - Return the name associated with the HCA. 115 * 116 * Examples are ib0, ib1, ... 117 */ 118 static inline const char *srpt_sdev_name(struct srpt_device *sdev) 119 { 120 return sdev->device->name; 121 } 122 123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch) 124 { 125 unsigned long flags; 126 enum rdma_ch_state state; 127 128 spin_lock_irqsave(&ch->spinlock, flags); 129 state = ch->state; 130 spin_unlock_irqrestore(&ch->spinlock, flags); 131 return state; 132 } 133 134 static enum rdma_ch_state 135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state) 136 { 137 unsigned long flags; 138 enum rdma_ch_state prev; 139 140 spin_lock_irqsave(&ch->spinlock, flags); 141 prev = ch->state; 142 ch->state = new_state; 143 spin_unlock_irqrestore(&ch->spinlock, flags); 144 return prev; 145 } 146 147 /** 148 * srpt_test_and_set_ch_state() - Test and set the channel state. 149 * 150 * Returns true if and only if the channel state has been set to the new state. 151 */ 152 static bool 153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old, 154 enum rdma_ch_state new) 155 { 156 unsigned long flags; 157 enum rdma_ch_state prev; 158 159 spin_lock_irqsave(&ch->spinlock, flags); 160 prev = ch->state; 161 if (prev == old) 162 ch->state = new; 163 spin_unlock_irqrestore(&ch->spinlock, flags); 164 return prev == old; 165 } 166 167 /** 168 * srpt_event_handler() - Asynchronous IB event callback function. 169 * 170 * Callback function called by the InfiniBand core when an asynchronous IB 171 * event occurs. This callback may occur in interrupt context. See also 172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 173 * Architecture Specification. 174 */ 175 static void srpt_event_handler(struct ib_event_handler *handler, 176 struct ib_event *event) 177 { 178 struct srpt_device *sdev; 179 struct srpt_port *sport; 180 181 sdev = ib_get_client_data(event->device, &srpt_client); 182 if (!sdev || sdev->device != event->device) 183 return; 184 185 pr_debug("ASYNC event= %d on device= %s\n", event->event, 186 srpt_sdev_name(sdev)); 187 188 switch (event->event) { 189 case IB_EVENT_PORT_ERR: 190 if (event->element.port_num <= sdev->device->phys_port_cnt) { 191 sport = &sdev->port[event->element.port_num - 1]; 192 sport->lid = 0; 193 sport->sm_lid = 0; 194 } 195 break; 196 case IB_EVENT_PORT_ACTIVE: 197 case IB_EVENT_LID_CHANGE: 198 case IB_EVENT_PKEY_CHANGE: 199 case IB_EVENT_SM_CHANGE: 200 case IB_EVENT_CLIENT_REREGISTER: 201 case IB_EVENT_GID_CHANGE: 202 /* Refresh port data asynchronously. */ 203 if (event->element.port_num <= sdev->device->phys_port_cnt) { 204 sport = &sdev->port[event->element.port_num - 1]; 205 if (!sport->lid && !sport->sm_lid) 206 schedule_work(&sport->work); 207 } 208 break; 209 default: 210 pr_err("received unrecognized IB event %d\n", 211 event->event); 212 break; 213 } 214 } 215 216 /** 217 * srpt_srq_event() - SRQ event callback function. 218 */ 219 static void srpt_srq_event(struct ib_event *event, void *ctx) 220 { 221 pr_info("SRQ event %d\n", event->event); 222 } 223 224 /** 225 * srpt_qp_event() - QP event callback function. 226 */ 227 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 228 { 229 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 230 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch)); 231 232 switch (event->event) { 233 case IB_EVENT_COMM_EST: 234 ib_cm_notify(ch->cm_id, event->event); 235 break; 236 case IB_EVENT_QP_LAST_WQE_REACHED: 237 if (srpt_test_and_set_ch_state(ch, CH_DRAINING, 238 CH_RELEASING)) 239 srpt_release_channel(ch); 240 else 241 pr_debug("%s: state %d - ignored LAST_WQE.\n", 242 ch->sess_name, srpt_get_ch_state(ch)); 243 break; 244 default: 245 pr_err("received unrecognized IB QP event %d\n", event->event); 246 break; 247 } 248 } 249 250 /** 251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 252 * 253 * @slot: one-based slot number. 254 * @value: four-bit value. 255 * 256 * Copies the lowest four bits of value in element slot of the array of four 257 * bit elements called c_list (controller list). The index slot is one-based. 258 */ 259 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 260 { 261 u16 id; 262 u8 tmp; 263 264 id = (slot - 1) / 2; 265 if (slot & 0x1) { 266 tmp = c_list[id] & 0xf; 267 c_list[id] = (value << 4) | tmp; 268 } else { 269 tmp = c_list[id] & 0xf0; 270 c_list[id] = (value & 0xf) | tmp; 271 } 272 } 273 274 /** 275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 276 * 277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 278 * Specification. 279 */ 280 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 281 { 282 struct ib_class_port_info *cif; 283 284 cif = (struct ib_class_port_info *)mad->data; 285 memset(cif, 0, sizeof *cif); 286 cif->base_version = 1; 287 cif->class_version = 1; 288 cif->resp_time_value = 20; 289 290 mad->mad_hdr.status = 0; 291 } 292 293 /** 294 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 295 * 296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 297 * Specification. See also section B.7, table B.6 in the SRP r16a document. 298 */ 299 static void srpt_get_iou(struct ib_dm_mad *mad) 300 { 301 struct ib_dm_iou_info *ioui; 302 u8 slot; 303 int i; 304 305 ioui = (struct ib_dm_iou_info *)mad->data; 306 ioui->change_id = __constant_cpu_to_be16(1); 307 ioui->max_controllers = 16; 308 309 /* set present for slot 1 and empty for the rest */ 310 srpt_set_ioc(ioui->controller_list, 1, 1); 311 for (i = 1, slot = 2; i < 16; i++, slot++) 312 srpt_set_ioc(ioui->controller_list, slot, 0); 313 314 mad->mad_hdr.status = 0; 315 } 316 317 /** 318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 319 * 320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 321 * Architecture Specification. See also section B.7, table B.7 in the SRP 322 * r16a document. 323 */ 324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 325 struct ib_dm_mad *mad) 326 { 327 struct srpt_device *sdev = sport->sdev; 328 struct ib_dm_ioc_profile *iocp; 329 330 iocp = (struct ib_dm_ioc_profile *)mad->data; 331 332 if (!slot || slot > 16) { 333 mad->mad_hdr.status 334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 335 return; 336 } 337 338 if (slot > 2) { 339 mad->mad_hdr.status 340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 341 return; 342 } 343 344 memset(iocp, 0, sizeof *iocp); 345 strcpy(iocp->id_string, SRPT_ID_STRING); 346 iocp->guid = cpu_to_be64(srpt_service_guid); 347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id); 349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver); 350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 351 iocp->subsys_device_id = 0x0; 352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS); 354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL); 355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION); 356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 357 iocp->rdma_read_depth = 4; 358 iocp->send_size = cpu_to_be32(srp_max_req_size); 359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 360 1U << 24)); 361 iocp->num_svc_entries = 1; 362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 364 365 mad->mad_hdr.status = 0; 366 } 367 368 /** 369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 370 * 371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 372 * Specification. See also section B.7, table B.8 in the SRP r16a document. 373 */ 374 static void srpt_get_svc_entries(u64 ioc_guid, 375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 376 { 377 struct ib_dm_svc_entries *svc_entries; 378 379 WARN_ON(!ioc_guid); 380 381 if (!slot || slot > 16) { 382 mad->mad_hdr.status 383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 384 return; 385 } 386 387 if (slot > 2 || lo > hi || hi > 1) { 388 mad->mad_hdr.status 389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 390 return; 391 } 392 393 svc_entries = (struct ib_dm_svc_entries *)mad->data; 394 memset(svc_entries, 0, sizeof *svc_entries); 395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 396 snprintf(svc_entries->service_entries[0].name, 397 sizeof(svc_entries->service_entries[0].name), 398 "%s%016llx", 399 SRP_SERVICE_NAME_PREFIX, 400 ioc_guid); 401 402 mad->mad_hdr.status = 0; 403 } 404 405 /** 406 * srpt_mgmt_method_get() - Process a received management datagram. 407 * @sp: source port through which the MAD has been received. 408 * @rq_mad: received MAD. 409 * @rsp_mad: response MAD. 410 */ 411 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 412 struct ib_dm_mad *rsp_mad) 413 { 414 u16 attr_id; 415 u32 slot; 416 u8 hi, lo; 417 418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 419 switch (attr_id) { 420 case DM_ATTR_CLASS_PORT_INFO: 421 srpt_get_class_port_info(rsp_mad); 422 break; 423 case DM_ATTR_IOU_INFO: 424 srpt_get_iou(rsp_mad); 425 break; 426 case DM_ATTR_IOC_PROFILE: 427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 428 srpt_get_ioc(sp, slot, rsp_mad); 429 break; 430 case DM_ATTR_SVC_ENTRIES: 431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 432 hi = (u8) ((slot >> 8) & 0xff); 433 lo = (u8) (slot & 0xff); 434 slot = (u16) ((slot >> 16) & 0xffff); 435 srpt_get_svc_entries(srpt_service_guid, 436 slot, hi, lo, rsp_mad); 437 break; 438 default: 439 rsp_mad->mad_hdr.status = 440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 441 break; 442 } 443 } 444 445 /** 446 * srpt_mad_send_handler() - Post MAD-send callback function. 447 */ 448 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 449 struct ib_mad_send_wc *mad_wc) 450 { 451 ib_destroy_ah(mad_wc->send_buf->ah); 452 ib_free_send_mad(mad_wc->send_buf); 453 } 454 455 /** 456 * srpt_mad_recv_handler() - MAD reception callback function. 457 */ 458 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 459 struct ib_mad_recv_wc *mad_wc) 460 { 461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 462 struct ib_ah *ah; 463 struct ib_mad_send_buf *rsp; 464 struct ib_dm_mad *dm_mad; 465 466 if (!mad_wc || !mad_wc->recv_buf.mad) 467 return; 468 469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 470 mad_wc->recv_buf.grh, mad_agent->port_num); 471 if (IS_ERR(ah)) 472 goto err; 473 474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 475 476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 477 mad_wc->wc->pkey_index, 0, 478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 479 GFP_KERNEL); 480 if (IS_ERR(rsp)) 481 goto err_rsp; 482 483 rsp->ah = ah; 484 485 dm_mad = rsp->mad; 486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad); 487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 488 dm_mad->mad_hdr.status = 0; 489 490 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 491 case IB_MGMT_METHOD_GET: 492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 493 break; 494 case IB_MGMT_METHOD_SET: 495 dm_mad->mad_hdr.status = 496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 497 break; 498 default: 499 dm_mad->mad_hdr.status = 500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 501 break; 502 } 503 504 if (!ib_post_send_mad(rsp, NULL)) { 505 ib_free_recv_mad(mad_wc); 506 /* will destroy_ah & free_send_mad in send completion */ 507 return; 508 } 509 510 ib_free_send_mad(rsp); 511 512 err_rsp: 513 ib_destroy_ah(ah); 514 err: 515 ib_free_recv_mad(mad_wc); 516 } 517 518 /** 519 * srpt_refresh_port() - Configure a HCA port. 520 * 521 * Enable InfiniBand management datagram processing, update the cached sm_lid, 522 * lid and gid values, and register a callback function for processing MADs 523 * on the specified port. 524 * 525 * Note: It is safe to call this function more than once for the same port. 526 */ 527 static int srpt_refresh_port(struct srpt_port *sport) 528 { 529 struct ib_mad_reg_req reg_req; 530 struct ib_port_modify port_modify; 531 struct ib_port_attr port_attr; 532 int ret; 533 534 memset(&port_modify, 0, sizeof port_modify); 535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 536 port_modify.clr_port_cap_mask = 0; 537 538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 539 if (ret) 540 goto err_mod_port; 541 542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 543 if (ret) 544 goto err_query_port; 545 546 sport->sm_lid = port_attr.sm_lid; 547 sport->lid = port_attr.lid; 548 549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 550 if (ret) 551 goto err_query_port; 552 553 if (!sport->mad_agent) { 554 memset(®_req, 0, sizeof reg_req); 555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 559 560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 561 sport->port, 562 IB_QPT_GSI, 563 ®_req, 0, 564 srpt_mad_send_handler, 565 srpt_mad_recv_handler, 566 sport, 0); 567 if (IS_ERR(sport->mad_agent)) { 568 ret = PTR_ERR(sport->mad_agent); 569 sport->mad_agent = NULL; 570 goto err_query_port; 571 } 572 } 573 574 return 0; 575 576 err_query_port: 577 578 port_modify.set_port_cap_mask = 0; 579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 581 582 err_mod_port: 583 584 return ret; 585 } 586 587 /** 588 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 589 * 590 * Note: It is safe to call this function more than once for the same device. 591 */ 592 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 593 { 594 struct ib_port_modify port_modify = { 595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 596 }; 597 struct srpt_port *sport; 598 int i; 599 600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 601 sport = &sdev->port[i - 1]; 602 WARN_ON(sport->port != i); 603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 604 pr_err("disabling MAD processing failed.\n"); 605 if (sport->mad_agent) { 606 ib_unregister_mad_agent(sport->mad_agent); 607 sport->mad_agent = NULL; 608 } 609 } 610 } 611 612 /** 613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 614 */ 615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 616 int ioctx_size, int dma_size, 617 enum dma_data_direction dir) 618 { 619 struct srpt_ioctx *ioctx; 620 621 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 622 if (!ioctx) 623 goto err; 624 625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 626 if (!ioctx->buf) 627 goto err_free_ioctx; 628 629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 630 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 631 goto err_free_buf; 632 633 return ioctx; 634 635 err_free_buf: 636 kfree(ioctx->buf); 637 err_free_ioctx: 638 kfree(ioctx); 639 err: 640 return NULL; 641 } 642 643 /** 644 * srpt_free_ioctx() - Free an SRPT I/O context structure. 645 */ 646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 647 int dma_size, enum dma_data_direction dir) 648 { 649 if (!ioctx) 650 return; 651 652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 653 kfree(ioctx->buf); 654 kfree(ioctx); 655 } 656 657 /** 658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 659 * @sdev: Device to allocate the I/O context ring for. 660 * @ring_size: Number of elements in the I/O context ring. 661 * @ioctx_size: I/O context size. 662 * @dma_size: DMA buffer size. 663 * @dir: DMA data direction. 664 */ 665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 666 int ring_size, int ioctx_size, 667 int dma_size, enum dma_data_direction dir) 668 { 669 struct srpt_ioctx **ring; 670 int i; 671 672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 673 && ioctx_size != sizeof(struct srpt_send_ioctx)); 674 675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 676 if (!ring) 677 goto out; 678 for (i = 0; i < ring_size; ++i) { 679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 680 if (!ring[i]) 681 goto err; 682 ring[i]->index = i; 683 } 684 goto out; 685 686 err: 687 while (--i >= 0) 688 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 689 kfree(ring); 690 ring = NULL; 691 out: 692 return ring; 693 } 694 695 /** 696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 697 */ 698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 699 struct srpt_device *sdev, int ring_size, 700 int dma_size, enum dma_data_direction dir) 701 { 702 int i; 703 704 for (i = 0; i < ring_size; ++i) 705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 706 kfree(ioctx_ring); 707 } 708 709 /** 710 * srpt_get_cmd_state() - Get the state of a SCSI command. 711 */ 712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 713 { 714 enum srpt_command_state state; 715 unsigned long flags; 716 717 BUG_ON(!ioctx); 718 719 spin_lock_irqsave(&ioctx->spinlock, flags); 720 state = ioctx->state; 721 spin_unlock_irqrestore(&ioctx->spinlock, flags); 722 return state; 723 } 724 725 /** 726 * srpt_set_cmd_state() - Set the state of a SCSI command. 727 * 728 * Does not modify the state of aborted commands. Returns the previous command 729 * state. 730 */ 731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 732 enum srpt_command_state new) 733 { 734 enum srpt_command_state previous; 735 unsigned long flags; 736 737 BUG_ON(!ioctx); 738 739 spin_lock_irqsave(&ioctx->spinlock, flags); 740 previous = ioctx->state; 741 if (previous != SRPT_STATE_DONE) 742 ioctx->state = new; 743 spin_unlock_irqrestore(&ioctx->spinlock, flags); 744 745 return previous; 746 } 747 748 /** 749 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 750 * 751 * Returns true if and only if the previous command state was equal to 'old'. 752 */ 753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 754 enum srpt_command_state old, 755 enum srpt_command_state new) 756 { 757 enum srpt_command_state previous; 758 unsigned long flags; 759 760 WARN_ON(!ioctx); 761 WARN_ON(old == SRPT_STATE_DONE); 762 WARN_ON(new == SRPT_STATE_NEW); 763 764 spin_lock_irqsave(&ioctx->spinlock, flags); 765 previous = ioctx->state; 766 if (previous == old) 767 ioctx->state = new; 768 spin_unlock_irqrestore(&ioctx->spinlock, flags); 769 return previous == old; 770 } 771 772 /** 773 * srpt_post_recv() - Post an IB receive request. 774 */ 775 static int srpt_post_recv(struct srpt_device *sdev, 776 struct srpt_recv_ioctx *ioctx) 777 { 778 struct ib_sge list; 779 struct ib_recv_wr wr, *bad_wr; 780 781 BUG_ON(!sdev); 782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index); 783 784 list.addr = ioctx->ioctx.dma; 785 list.length = srp_max_req_size; 786 list.lkey = sdev->mr->lkey; 787 788 wr.next = NULL; 789 wr.sg_list = &list; 790 wr.num_sge = 1; 791 792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 793 } 794 795 /** 796 * srpt_post_send() - Post an IB send request. 797 * 798 * Returns zero upon success and a non-zero value upon failure. 799 */ 800 static int srpt_post_send(struct srpt_rdma_ch *ch, 801 struct srpt_send_ioctx *ioctx, int len) 802 { 803 struct ib_sge list; 804 struct ib_send_wr wr, *bad_wr; 805 struct srpt_device *sdev = ch->sport->sdev; 806 int ret; 807 808 atomic_inc(&ch->req_lim); 809 810 ret = -ENOMEM; 811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { 812 pr_warn("IB send queue full (needed 1)\n"); 813 goto out; 814 } 815 816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, 817 DMA_TO_DEVICE); 818 819 list.addr = ioctx->ioctx.dma; 820 list.length = len; 821 list.lkey = sdev->mr->lkey; 822 823 wr.next = NULL; 824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index); 825 wr.sg_list = &list; 826 wr.num_sge = 1; 827 wr.opcode = IB_WR_SEND; 828 wr.send_flags = IB_SEND_SIGNALED; 829 830 ret = ib_post_send(ch->qp, &wr, &bad_wr); 831 832 out: 833 if (ret < 0) { 834 atomic_inc(&ch->sq_wr_avail); 835 atomic_dec(&ch->req_lim); 836 } 837 return ret; 838 } 839 840 /** 841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 842 * @ioctx: Pointer to the I/O context associated with the request. 843 * @srp_cmd: Pointer to the SRP_CMD request data. 844 * @dir: Pointer to the variable to which the transfer direction will be 845 * written. 846 * @data_len: Pointer to the variable to which the total data length of all 847 * descriptors in the SRP_CMD request will be written. 848 * 849 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 850 * 851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 852 * -ENOMEM when memory allocation fails and zero upon success. 853 */ 854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 855 struct srp_cmd *srp_cmd, 856 enum dma_data_direction *dir, u64 *data_len) 857 { 858 struct srp_indirect_buf *idb; 859 struct srp_direct_buf *db; 860 unsigned add_cdb_offset; 861 int ret; 862 863 /* 864 * The pointer computations below will only be compiled correctly 865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 866 * whether srp_cmd::add_data has been declared as a byte pointer. 867 */ 868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) 869 && !__same_type(srp_cmd->add_data[0], (u8)0)); 870 871 BUG_ON(!dir); 872 BUG_ON(!data_len); 873 874 ret = 0; 875 *data_len = 0; 876 877 /* 878 * The lower four bits of the buffer format field contain the DATA-IN 879 * buffer descriptor format, and the highest four bits contain the 880 * DATA-OUT buffer descriptor format. 881 */ 882 *dir = DMA_NONE; 883 if (srp_cmd->buf_fmt & 0xf) 884 /* DATA-IN: transfer data from target to initiator (read). */ 885 *dir = DMA_FROM_DEVICE; 886 else if (srp_cmd->buf_fmt >> 4) 887 /* DATA-OUT: transfer data from initiator to target (write). */ 888 *dir = DMA_TO_DEVICE; 889 890 /* 891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 892 * CDB LENGTH' field are reserved and the size in bytes of this field 893 * is four times the value specified in bits 3..7. Hence the "& ~3". 894 */ 895 add_cdb_offset = srp_cmd->add_cdb_len & ~3; 896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 898 ioctx->n_rbuf = 1; 899 ioctx->rbufs = &ioctx->single_rbuf; 900 901 db = (struct srp_direct_buf *)(srp_cmd->add_data 902 + add_cdb_offset); 903 memcpy(ioctx->rbufs, db, sizeof *db); 904 *data_len = be32_to_cpu(db->len); 905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data 908 + add_cdb_offset); 909 910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db; 911 912 if (ioctx->n_rbuf > 913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 914 pr_err("received unsupported SRP_CMD request" 915 " type (%u out + %u in != %u / %zu)\n", 916 srp_cmd->data_out_desc_cnt, 917 srp_cmd->data_in_desc_cnt, 918 be32_to_cpu(idb->table_desc.len), 919 sizeof(*db)); 920 ioctx->n_rbuf = 0; 921 ret = -EINVAL; 922 goto out; 923 } 924 925 if (ioctx->n_rbuf == 1) 926 ioctx->rbufs = &ioctx->single_rbuf; 927 else { 928 ioctx->rbufs = 929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC); 930 if (!ioctx->rbufs) { 931 ioctx->n_rbuf = 0; 932 ret = -ENOMEM; 933 goto out; 934 } 935 } 936 937 db = idb->desc_list; 938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db); 939 *data_len = be32_to_cpu(idb->len); 940 } 941 out: 942 return ret; 943 } 944 945 /** 946 * srpt_init_ch_qp() - Initialize queue pair attributes. 947 * 948 * Initialized the attributes of queue pair 'qp' by allowing local write, 949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 950 */ 951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 952 { 953 struct ib_qp_attr *attr; 954 int ret; 955 956 attr = kzalloc(sizeof *attr, GFP_KERNEL); 957 if (!attr) 958 return -ENOMEM; 959 960 attr->qp_state = IB_QPS_INIT; 961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 962 IB_ACCESS_REMOTE_WRITE; 963 attr->port_num = ch->sport->port; 964 attr->pkey_index = 0; 965 966 ret = ib_modify_qp(qp, attr, 967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 968 IB_QP_PKEY_INDEX); 969 970 kfree(attr); 971 return ret; 972 } 973 974 /** 975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 976 * @ch: channel of the queue pair. 977 * @qp: queue pair to change the state of. 978 * 979 * Returns zero upon success and a negative value upon failure. 980 * 981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 982 * If this structure ever becomes larger, it might be necessary to allocate 983 * it dynamically instead of on the stack. 984 */ 985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 986 { 987 struct ib_qp_attr qp_attr; 988 int attr_mask; 989 int ret; 990 991 qp_attr.qp_state = IB_QPS_RTR; 992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 993 if (ret) 994 goto out; 995 996 qp_attr.max_dest_rd_atomic = 4; 997 998 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 999 1000 out: 1001 return ret; 1002 } 1003 1004 /** 1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1006 * @ch: channel of the queue pair. 1007 * @qp: queue pair to change the state of. 1008 * 1009 * Returns zero upon success and a negative value upon failure. 1010 * 1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1012 * If this structure ever becomes larger, it might be necessary to allocate 1013 * it dynamically instead of on the stack. 1014 */ 1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1016 { 1017 struct ib_qp_attr qp_attr; 1018 int attr_mask; 1019 int ret; 1020 1021 qp_attr.qp_state = IB_QPS_RTS; 1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1023 if (ret) 1024 goto out; 1025 1026 qp_attr.max_rd_atomic = 4; 1027 1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1029 1030 out: 1031 return ret; 1032 } 1033 1034 /** 1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1036 */ 1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1038 { 1039 struct ib_qp_attr qp_attr; 1040 1041 qp_attr.qp_state = IB_QPS_ERR; 1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1043 } 1044 1045 /** 1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. 1047 */ 1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1049 struct srpt_send_ioctx *ioctx) 1050 { 1051 struct scatterlist *sg; 1052 enum dma_data_direction dir; 1053 1054 BUG_ON(!ch); 1055 BUG_ON(!ioctx); 1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius); 1057 1058 while (ioctx->n_rdma) 1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge); 1060 1061 kfree(ioctx->rdma_ius); 1062 ioctx->rdma_ius = NULL; 1063 1064 if (ioctx->mapped_sg_count) { 1065 sg = ioctx->sg; 1066 WARN_ON(!sg); 1067 dir = ioctx->cmd.data_direction; 1068 BUG_ON(dir == DMA_NONE); 1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, 1070 opposite_dma_dir(dir)); 1071 ioctx->mapped_sg_count = 0; 1072 } 1073 } 1074 1075 /** 1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. 1077 */ 1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1079 struct srpt_send_ioctx *ioctx) 1080 { 1081 struct ib_device *dev = ch->sport->sdev->device; 1082 struct se_cmd *cmd; 1083 struct scatterlist *sg, *sg_orig; 1084 int sg_cnt; 1085 enum dma_data_direction dir; 1086 struct rdma_iu *riu; 1087 struct srp_direct_buf *db; 1088 dma_addr_t dma_addr; 1089 struct ib_sge *sge; 1090 u64 raddr; 1091 u32 rsize; 1092 u32 tsize; 1093 u32 dma_len; 1094 int count, nrdma; 1095 int i, j, k; 1096 1097 BUG_ON(!ch); 1098 BUG_ON(!ioctx); 1099 cmd = &ioctx->cmd; 1100 dir = cmd->data_direction; 1101 BUG_ON(dir == DMA_NONE); 1102 1103 ioctx->sg = sg = sg_orig = cmd->t_data_sg; 1104 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents; 1105 1106 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, 1107 opposite_dma_dir(dir)); 1108 if (unlikely(!count)) 1109 return -EAGAIN; 1110 1111 ioctx->mapped_sg_count = count; 1112 1113 if (ioctx->rdma_ius && ioctx->n_rdma_ius) 1114 nrdma = ioctx->n_rdma_ius; 1115 else { 1116 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE 1117 + ioctx->n_rbuf; 1118 1119 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL); 1120 if (!ioctx->rdma_ius) 1121 goto free_mem; 1122 1123 ioctx->n_rdma_ius = nrdma; 1124 } 1125 1126 db = ioctx->rbufs; 1127 tsize = cmd->data_length; 1128 dma_len = ib_sg_dma_len(dev, &sg[0]); 1129 riu = ioctx->rdma_ius; 1130 1131 /* 1132 * For each remote desc - calculate the #ib_sge. 1133 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then 1134 * each remote desc rdma_iu is required a rdma wr; 1135 * else 1136 * we need to allocate extra rdma_iu to carry extra #ib_sge in 1137 * another rdma wr 1138 */ 1139 for (i = 0, j = 0; 1140 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1141 rsize = be32_to_cpu(db->len); 1142 raddr = be64_to_cpu(db->va); 1143 riu->raddr = raddr; 1144 riu->rkey = be32_to_cpu(db->key); 1145 riu->sge_cnt = 0; 1146 1147 /* calculate how many sge required for this remote_buf */ 1148 while (rsize > 0 && tsize > 0) { 1149 1150 if (rsize >= dma_len) { 1151 tsize -= dma_len; 1152 rsize -= dma_len; 1153 raddr += dma_len; 1154 1155 if (tsize > 0) { 1156 ++j; 1157 if (j < count) { 1158 sg = sg_next(sg); 1159 dma_len = ib_sg_dma_len( 1160 dev, sg); 1161 } 1162 } 1163 } else { 1164 tsize -= rsize; 1165 dma_len -= rsize; 1166 rsize = 0; 1167 } 1168 1169 ++riu->sge_cnt; 1170 1171 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) { 1172 ++ioctx->n_rdma; 1173 riu->sge = 1174 kmalloc(riu->sge_cnt * sizeof *riu->sge, 1175 GFP_KERNEL); 1176 if (!riu->sge) 1177 goto free_mem; 1178 1179 ++riu; 1180 riu->sge_cnt = 0; 1181 riu->raddr = raddr; 1182 riu->rkey = be32_to_cpu(db->key); 1183 } 1184 } 1185 1186 ++ioctx->n_rdma; 1187 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge, 1188 GFP_KERNEL); 1189 if (!riu->sge) 1190 goto free_mem; 1191 } 1192 1193 db = ioctx->rbufs; 1194 tsize = cmd->data_length; 1195 riu = ioctx->rdma_ius; 1196 sg = sg_orig; 1197 dma_len = ib_sg_dma_len(dev, &sg[0]); 1198 dma_addr = ib_sg_dma_address(dev, &sg[0]); 1199 1200 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ 1201 for (i = 0, j = 0; 1202 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1203 rsize = be32_to_cpu(db->len); 1204 sge = riu->sge; 1205 k = 0; 1206 1207 while (rsize > 0 && tsize > 0) { 1208 sge->addr = dma_addr; 1209 sge->lkey = ch->sport->sdev->mr->lkey; 1210 1211 if (rsize >= dma_len) { 1212 sge->length = 1213 (tsize < dma_len) ? tsize : dma_len; 1214 tsize -= dma_len; 1215 rsize -= dma_len; 1216 1217 if (tsize > 0) { 1218 ++j; 1219 if (j < count) { 1220 sg = sg_next(sg); 1221 dma_len = ib_sg_dma_len( 1222 dev, sg); 1223 dma_addr = ib_sg_dma_address( 1224 dev, sg); 1225 } 1226 } 1227 } else { 1228 sge->length = (tsize < rsize) ? tsize : rsize; 1229 tsize -= rsize; 1230 dma_len -= rsize; 1231 dma_addr += rsize; 1232 rsize = 0; 1233 } 1234 1235 ++k; 1236 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) { 1237 ++riu; 1238 sge = riu->sge; 1239 k = 0; 1240 } else if (rsize > 0 && tsize > 0) 1241 ++sge; 1242 } 1243 } 1244 1245 return 0; 1246 1247 free_mem: 1248 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1249 1250 return -ENOMEM; 1251 } 1252 1253 /** 1254 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1255 */ 1256 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1257 { 1258 struct srpt_send_ioctx *ioctx; 1259 unsigned long flags; 1260 1261 BUG_ON(!ch); 1262 1263 ioctx = NULL; 1264 spin_lock_irqsave(&ch->spinlock, flags); 1265 if (!list_empty(&ch->free_list)) { 1266 ioctx = list_first_entry(&ch->free_list, 1267 struct srpt_send_ioctx, free_list); 1268 list_del(&ioctx->free_list); 1269 } 1270 spin_unlock_irqrestore(&ch->spinlock, flags); 1271 1272 if (!ioctx) 1273 return ioctx; 1274 1275 BUG_ON(ioctx->ch != ch); 1276 spin_lock_init(&ioctx->spinlock); 1277 ioctx->state = SRPT_STATE_NEW; 1278 ioctx->n_rbuf = 0; 1279 ioctx->rbufs = NULL; 1280 ioctx->n_rdma = 0; 1281 ioctx->n_rdma_ius = 0; 1282 ioctx->rdma_ius = NULL; 1283 ioctx->mapped_sg_count = 0; 1284 init_completion(&ioctx->tx_done); 1285 ioctx->queue_status_only = false; 1286 /* 1287 * transport_init_se_cmd() does not initialize all fields, so do it 1288 * here. 1289 */ 1290 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1291 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1292 1293 return ioctx; 1294 } 1295 1296 /** 1297 * srpt_abort_cmd() - Abort a SCSI command. 1298 * @ioctx: I/O context associated with the SCSI command. 1299 * @context: Preferred execution context. 1300 */ 1301 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1302 { 1303 enum srpt_command_state state; 1304 unsigned long flags; 1305 1306 BUG_ON(!ioctx); 1307 1308 /* 1309 * If the command is in a state where the target core is waiting for 1310 * the ib_srpt driver, change the state to the next state. Changing 1311 * the state of the command from SRPT_STATE_NEED_DATA to 1312 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this 1313 * function a second time. 1314 */ 1315 1316 spin_lock_irqsave(&ioctx->spinlock, flags); 1317 state = ioctx->state; 1318 switch (state) { 1319 case SRPT_STATE_NEED_DATA: 1320 ioctx->state = SRPT_STATE_DATA_IN; 1321 break; 1322 case SRPT_STATE_DATA_IN: 1323 case SRPT_STATE_CMD_RSP_SENT: 1324 case SRPT_STATE_MGMT_RSP_SENT: 1325 ioctx->state = SRPT_STATE_DONE; 1326 break; 1327 default: 1328 break; 1329 } 1330 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1331 1332 if (state == SRPT_STATE_DONE) { 1333 struct srpt_rdma_ch *ch = ioctx->ch; 1334 1335 BUG_ON(ch->sess == NULL); 1336 1337 target_put_sess_cmd(ch->sess, &ioctx->cmd); 1338 goto out; 1339 } 1340 1341 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1342 ioctx->tag); 1343 1344 switch (state) { 1345 case SRPT_STATE_NEW: 1346 case SRPT_STATE_DATA_IN: 1347 case SRPT_STATE_MGMT: 1348 /* 1349 * Do nothing - defer abort processing until 1350 * srpt_queue_response() is invoked. 1351 */ 1352 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false)); 1353 break; 1354 case SRPT_STATE_NEED_DATA: 1355 /* DMA_TO_DEVICE (write) - RDMA read error. */ 1356 1357 /* XXX(hch): this is a horrible layering violation.. */ 1358 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1359 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE; 1360 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1361 break; 1362 case SRPT_STATE_CMD_RSP_SENT: 1363 /* 1364 * SRP_RSP sending failed or the SRP_RSP send completion has 1365 * not been received in time. 1366 */ 1367 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1368 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1369 break; 1370 case SRPT_STATE_MGMT_RSP_SENT: 1371 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1372 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1373 break; 1374 default: 1375 WARN(1, "Unexpected command state (%d)", state); 1376 break; 1377 } 1378 1379 out: 1380 return state; 1381 } 1382 1383 /** 1384 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion. 1385 */ 1386 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id) 1387 { 1388 struct srpt_send_ioctx *ioctx; 1389 enum srpt_command_state state; 1390 struct se_cmd *cmd; 1391 u32 index; 1392 1393 atomic_inc(&ch->sq_wr_avail); 1394 1395 index = idx_from_wr_id(wr_id); 1396 ioctx = ch->ioctx_ring[index]; 1397 state = srpt_get_cmd_state(ioctx); 1398 cmd = &ioctx->cmd; 1399 1400 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1401 && state != SRPT_STATE_MGMT_RSP_SENT 1402 && state != SRPT_STATE_NEED_DATA 1403 && state != SRPT_STATE_DONE); 1404 1405 /* If SRP_RSP sending failed, undo the ch->req_lim change. */ 1406 if (state == SRPT_STATE_CMD_RSP_SENT 1407 || state == SRPT_STATE_MGMT_RSP_SENT) 1408 atomic_dec(&ch->req_lim); 1409 1410 srpt_abort_cmd(ioctx); 1411 } 1412 1413 /** 1414 * srpt_handle_send_comp() - Process an IB send completion notification. 1415 */ 1416 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch, 1417 struct srpt_send_ioctx *ioctx) 1418 { 1419 enum srpt_command_state state; 1420 1421 atomic_inc(&ch->sq_wr_avail); 1422 1423 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1424 1425 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1426 && state != SRPT_STATE_MGMT_RSP_SENT 1427 && state != SRPT_STATE_DONE)) 1428 pr_debug("state = %d\n", state); 1429 1430 if (state != SRPT_STATE_DONE) { 1431 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1432 transport_generic_free_cmd(&ioctx->cmd, 0); 1433 } else { 1434 pr_err("IB completion has been received too late for" 1435 " wr_id = %u.\n", ioctx->ioctx.index); 1436 } 1437 } 1438 1439 /** 1440 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification. 1441 * 1442 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1443 * the data that has been transferred via IB RDMA had to be postponed until the 1444 * check_stop_free() callback. None of this is necessary anymore and needs to 1445 * be cleaned up. 1446 */ 1447 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch, 1448 struct srpt_send_ioctx *ioctx, 1449 enum srpt_opcode opcode) 1450 { 1451 WARN_ON(ioctx->n_rdma <= 0); 1452 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1453 1454 if (opcode == SRPT_RDMA_READ_LAST) { 1455 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1456 SRPT_STATE_DATA_IN)) 1457 target_execute_cmd(&ioctx->cmd); 1458 else 1459 pr_err("%s[%d]: wrong state = %d\n", __func__, 1460 __LINE__, srpt_get_cmd_state(ioctx)); 1461 } else if (opcode == SRPT_RDMA_ABORT) { 1462 ioctx->rdma_aborted = true; 1463 } else { 1464 WARN(true, "unexpected opcode %d\n", opcode); 1465 } 1466 } 1467 1468 /** 1469 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion. 1470 */ 1471 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch, 1472 struct srpt_send_ioctx *ioctx, 1473 enum srpt_opcode opcode) 1474 { 1475 struct se_cmd *cmd; 1476 enum srpt_command_state state; 1477 1478 cmd = &ioctx->cmd; 1479 state = srpt_get_cmd_state(ioctx); 1480 switch (opcode) { 1481 case SRPT_RDMA_READ_LAST: 1482 if (ioctx->n_rdma <= 0) { 1483 pr_err("Received invalid RDMA read" 1484 " error completion with idx %d\n", 1485 ioctx->ioctx.index); 1486 break; 1487 } 1488 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1489 if (state == SRPT_STATE_NEED_DATA) 1490 srpt_abort_cmd(ioctx); 1491 else 1492 pr_err("%s[%d]: wrong state = %d\n", 1493 __func__, __LINE__, state); 1494 break; 1495 case SRPT_RDMA_WRITE_LAST: 1496 break; 1497 default: 1498 pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode); 1499 break; 1500 } 1501 } 1502 1503 /** 1504 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1505 * @ch: RDMA channel through which the request has been received. 1506 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1507 * be built in the buffer ioctx->buf points at and hence this function will 1508 * overwrite the request data. 1509 * @tag: tag of the request for which this response is being generated. 1510 * @status: value for the STATUS field of the SRP_RSP information unit. 1511 * 1512 * Returns the size in bytes of the SRP_RSP response. 1513 * 1514 * An SRP_RSP response contains a SCSI status or service response. See also 1515 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1516 * response. See also SPC-2 for more information about sense data. 1517 */ 1518 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1519 struct srpt_send_ioctx *ioctx, u64 tag, 1520 int status) 1521 { 1522 struct srp_rsp *srp_rsp; 1523 const u8 *sense_data; 1524 int sense_data_len, max_sense_len; 1525 1526 /* 1527 * The lowest bit of all SAM-3 status codes is zero (see also 1528 * paragraph 5.3 in SAM-3). 1529 */ 1530 WARN_ON(status & 1); 1531 1532 srp_rsp = ioctx->ioctx.buf; 1533 BUG_ON(!srp_rsp); 1534 1535 sense_data = ioctx->sense_data; 1536 sense_data_len = ioctx->cmd.scsi_sense_length; 1537 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1538 1539 memset(srp_rsp, 0, sizeof *srp_rsp); 1540 srp_rsp->opcode = SRP_RSP; 1541 srp_rsp->req_lim_delta = 1542 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1543 srp_rsp->tag = tag; 1544 srp_rsp->status = status; 1545 1546 if (sense_data_len) { 1547 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1548 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1549 if (sense_data_len > max_sense_len) { 1550 pr_warn("truncated sense data from %d to %d" 1551 " bytes\n", sense_data_len, max_sense_len); 1552 sense_data_len = max_sense_len; 1553 } 1554 1555 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1556 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1557 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1558 } 1559 1560 return sizeof(*srp_rsp) + sense_data_len; 1561 } 1562 1563 /** 1564 * srpt_build_tskmgmt_rsp() - Build a task management response. 1565 * @ch: RDMA channel through which the request has been received. 1566 * @ioctx: I/O context in which the SRP_RSP response will be built. 1567 * @rsp_code: RSP_CODE that will be stored in the response. 1568 * @tag: Tag of the request for which this response is being generated. 1569 * 1570 * Returns the size in bytes of the SRP_RSP response. 1571 * 1572 * An SRP_RSP response contains a SCSI status or service response. See also 1573 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1574 * response. 1575 */ 1576 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1577 struct srpt_send_ioctx *ioctx, 1578 u8 rsp_code, u64 tag) 1579 { 1580 struct srp_rsp *srp_rsp; 1581 int resp_data_len; 1582 int resp_len; 1583 1584 resp_data_len = 4; 1585 resp_len = sizeof(*srp_rsp) + resp_data_len; 1586 1587 srp_rsp = ioctx->ioctx.buf; 1588 BUG_ON(!srp_rsp); 1589 memset(srp_rsp, 0, sizeof *srp_rsp); 1590 1591 srp_rsp->opcode = SRP_RSP; 1592 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1 1593 + atomic_xchg(&ch->req_lim_delta, 0)); 1594 srp_rsp->tag = tag; 1595 1596 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1597 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1598 srp_rsp->data[3] = rsp_code; 1599 1600 return resp_len; 1601 } 1602 1603 #define NO_SUCH_LUN ((uint64_t)-1LL) 1604 1605 /* 1606 * SCSI LUN addressing method. See also SAM-2 and the section about 1607 * eight byte LUNs. 1608 */ 1609 enum scsi_lun_addr_method { 1610 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0, 1611 SCSI_LUN_ADDR_METHOD_FLAT = 1, 1612 SCSI_LUN_ADDR_METHOD_LUN = 2, 1613 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3, 1614 }; 1615 1616 /* 1617 * srpt_unpack_lun() - Convert from network LUN to linear LUN. 1618 * 1619 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte 1620 * order (big endian) to a linear LUN. Supports three LUN addressing methods: 1621 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40). 1622 */ 1623 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len) 1624 { 1625 uint64_t res = NO_SUCH_LUN; 1626 int addressing_method; 1627 1628 if (unlikely(len < 2)) { 1629 pr_err("Illegal LUN length %d, expected 2 bytes or more\n", 1630 len); 1631 goto out; 1632 } 1633 1634 switch (len) { 1635 case 8: 1636 if ((*((__be64 *)lun) & 1637 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0) 1638 goto out_err; 1639 break; 1640 case 4: 1641 if (*((__be16 *)&lun[2]) != 0) 1642 goto out_err; 1643 break; 1644 case 6: 1645 if (*((__be32 *)&lun[2]) != 0) 1646 goto out_err; 1647 break; 1648 case 2: 1649 break; 1650 default: 1651 goto out_err; 1652 } 1653 1654 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */ 1655 switch (addressing_method) { 1656 case SCSI_LUN_ADDR_METHOD_PERIPHERAL: 1657 case SCSI_LUN_ADDR_METHOD_FLAT: 1658 case SCSI_LUN_ADDR_METHOD_LUN: 1659 res = *(lun + 1) | (((*lun) & 0x3f) << 8); 1660 break; 1661 1662 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN: 1663 default: 1664 pr_err("Unimplemented LUN addressing method %u\n", 1665 addressing_method); 1666 break; 1667 } 1668 1669 out: 1670 return res; 1671 1672 out_err: 1673 pr_err("Support for multi-level LUNs has not yet been implemented\n"); 1674 goto out; 1675 } 1676 1677 static int srpt_check_stop_free(struct se_cmd *cmd) 1678 { 1679 struct srpt_send_ioctx *ioctx = container_of(cmd, 1680 struct srpt_send_ioctx, cmd); 1681 1682 return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1683 } 1684 1685 /** 1686 * srpt_handle_cmd() - Process SRP_CMD. 1687 */ 1688 static int srpt_handle_cmd(struct srpt_rdma_ch *ch, 1689 struct srpt_recv_ioctx *recv_ioctx, 1690 struct srpt_send_ioctx *send_ioctx) 1691 { 1692 struct se_cmd *cmd; 1693 struct srp_cmd *srp_cmd; 1694 uint64_t unpacked_lun; 1695 u64 data_len; 1696 enum dma_data_direction dir; 1697 sense_reason_t ret; 1698 int rc; 1699 1700 BUG_ON(!send_ioctx); 1701 1702 srp_cmd = recv_ioctx->ioctx.buf; 1703 cmd = &send_ioctx->cmd; 1704 send_ioctx->tag = srp_cmd->tag; 1705 1706 switch (srp_cmd->task_attr) { 1707 case SRP_CMD_SIMPLE_Q: 1708 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1709 break; 1710 case SRP_CMD_ORDERED_Q: 1711 default: 1712 cmd->sam_task_attr = TCM_ORDERED_TAG; 1713 break; 1714 case SRP_CMD_HEAD_OF_Q: 1715 cmd->sam_task_attr = TCM_HEAD_TAG; 1716 break; 1717 case SRP_CMD_ACA: 1718 cmd->sam_task_attr = TCM_ACA_TAG; 1719 break; 1720 } 1721 1722 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) { 1723 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1724 srp_cmd->tag); 1725 ret = TCM_INVALID_CDB_FIELD; 1726 goto send_sense; 1727 } 1728 1729 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun, 1730 sizeof(srp_cmd->lun)); 1731 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb, 1732 &send_ioctx->sense_data[0], unpacked_lun, data_len, 1733 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF); 1734 if (rc != 0) { 1735 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1736 goto send_sense; 1737 } 1738 return 0; 1739 1740 send_sense: 1741 transport_send_check_condition_and_sense(cmd, ret, 0); 1742 return -1; 1743 } 1744 1745 /** 1746 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag. 1747 * @ch: RDMA channel of the task management request. 1748 * @fn: Task management function to perform. 1749 * @req_tag: Tag of the SRP task management request. 1750 * @mgmt_ioctx: I/O context of the task management request. 1751 * 1752 * Returns zero if the target core will process the task management 1753 * request asynchronously. 1754 * 1755 * Note: It is assumed that the initiator serializes tag-based task management 1756 * requests. 1757 */ 1758 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag) 1759 { 1760 struct srpt_device *sdev; 1761 struct srpt_rdma_ch *ch; 1762 struct srpt_send_ioctx *target; 1763 int ret, i; 1764 1765 ret = -EINVAL; 1766 ch = ioctx->ch; 1767 BUG_ON(!ch); 1768 BUG_ON(!ch->sport); 1769 sdev = ch->sport->sdev; 1770 BUG_ON(!sdev); 1771 spin_lock_irq(&sdev->spinlock); 1772 for (i = 0; i < ch->rq_size; ++i) { 1773 target = ch->ioctx_ring[i]; 1774 if (target->cmd.se_lun == ioctx->cmd.se_lun && 1775 target->tag == tag && 1776 srpt_get_cmd_state(target) != SRPT_STATE_DONE) { 1777 ret = 0; 1778 /* now let the target core abort &target->cmd; */ 1779 break; 1780 } 1781 } 1782 spin_unlock_irq(&sdev->spinlock); 1783 return ret; 1784 } 1785 1786 static int srp_tmr_to_tcm(int fn) 1787 { 1788 switch (fn) { 1789 case SRP_TSK_ABORT_TASK: 1790 return TMR_ABORT_TASK; 1791 case SRP_TSK_ABORT_TASK_SET: 1792 return TMR_ABORT_TASK_SET; 1793 case SRP_TSK_CLEAR_TASK_SET: 1794 return TMR_CLEAR_TASK_SET; 1795 case SRP_TSK_LUN_RESET: 1796 return TMR_LUN_RESET; 1797 case SRP_TSK_CLEAR_ACA: 1798 return TMR_CLEAR_ACA; 1799 default: 1800 return -1; 1801 } 1802 } 1803 1804 /** 1805 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1806 * 1807 * Returns 0 if and only if the request will be processed by the target core. 1808 * 1809 * For more information about SRP_TSK_MGMT information units, see also section 1810 * 6.7 in the SRP r16a document. 1811 */ 1812 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1813 struct srpt_recv_ioctx *recv_ioctx, 1814 struct srpt_send_ioctx *send_ioctx) 1815 { 1816 struct srp_tsk_mgmt *srp_tsk; 1817 struct se_cmd *cmd; 1818 struct se_session *sess = ch->sess; 1819 uint64_t unpacked_lun; 1820 uint32_t tag = 0; 1821 int tcm_tmr; 1822 int rc; 1823 1824 BUG_ON(!send_ioctx); 1825 1826 srp_tsk = recv_ioctx->ioctx.buf; 1827 cmd = &send_ioctx->cmd; 1828 1829 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1830 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1831 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1832 1833 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1834 send_ioctx->tag = srp_tsk->tag; 1835 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1836 if (tcm_tmr < 0) { 1837 send_ioctx->cmd.se_tmr_req->response = 1838 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 1839 goto fail; 1840 } 1841 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun, 1842 sizeof(srp_tsk->lun)); 1843 1844 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) { 1845 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag); 1846 if (rc < 0) { 1847 send_ioctx->cmd.se_tmr_req->response = 1848 TMR_TASK_DOES_NOT_EXIST; 1849 goto fail; 1850 } 1851 tag = srp_tsk->task_tag; 1852 } 1853 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun, 1854 srp_tsk, tcm_tmr, GFP_KERNEL, tag, 1855 TARGET_SCF_ACK_KREF); 1856 if (rc != 0) { 1857 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1858 goto fail; 1859 } 1860 return; 1861 fail: 1862 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1863 } 1864 1865 /** 1866 * srpt_handle_new_iu() - Process a newly received information unit. 1867 * @ch: RDMA channel through which the information unit has been received. 1868 * @ioctx: SRPT I/O context associated with the information unit. 1869 */ 1870 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1871 struct srpt_recv_ioctx *recv_ioctx, 1872 struct srpt_send_ioctx *send_ioctx) 1873 { 1874 struct srp_cmd *srp_cmd; 1875 enum rdma_ch_state ch_state; 1876 1877 BUG_ON(!ch); 1878 BUG_ON(!recv_ioctx); 1879 1880 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1881 recv_ioctx->ioctx.dma, srp_max_req_size, 1882 DMA_FROM_DEVICE); 1883 1884 ch_state = srpt_get_ch_state(ch); 1885 if (unlikely(ch_state == CH_CONNECTING)) { 1886 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1887 goto out; 1888 } 1889 1890 if (unlikely(ch_state != CH_LIVE)) 1891 goto out; 1892 1893 srp_cmd = recv_ioctx->ioctx.buf; 1894 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1895 if (!send_ioctx) 1896 send_ioctx = srpt_get_send_ioctx(ch); 1897 if (unlikely(!send_ioctx)) { 1898 list_add_tail(&recv_ioctx->wait_list, 1899 &ch->cmd_wait_list); 1900 goto out; 1901 } 1902 } 1903 1904 switch (srp_cmd->opcode) { 1905 case SRP_CMD: 1906 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1907 break; 1908 case SRP_TSK_MGMT: 1909 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1910 break; 1911 case SRP_I_LOGOUT: 1912 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1913 break; 1914 case SRP_CRED_RSP: 1915 pr_debug("received SRP_CRED_RSP\n"); 1916 break; 1917 case SRP_AER_RSP: 1918 pr_debug("received SRP_AER_RSP\n"); 1919 break; 1920 case SRP_RSP: 1921 pr_err("Received SRP_RSP\n"); 1922 break; 1923 default: 1924 pr_err("received IU with unknown opcode 0x%x\n", 1925 srp_cmd->opcode); 1926 break; 1927 } 1928 1929 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1930 out: 1931 return; 1932 } 1933 1934 static void srpt_process_rcv_completion(struct ib_cq *cq, 1935 struct srpt_rdma_ch *ch, 1936 struct ib_wc *wc) 1937 { 1938 struct srpt_device *sdev = ch->sport->sdev; 1939 struct srpt_recv_ioctx *ioctx; 1940 u32 index; 1941 1942 index = idx_from_wr_id(wc->wr_id); 1943 if (wc->status == IB_WC_SUCCESS) { 1944 int req_lim; 1945 1946 req_lim = atomic_dec_return(&ch->req_lim); 1947 if (unlikely(req_lim < 0)) 1948 pr_err("req_lim = %d < 0\n", req_lim); 1949 ioctx = sdev->ioctx_ring[index]; 1950 srpt_handle_new_iu(ch, ioctx, NULL); 1951 } else { 1952 pr_info("receiving failed for idx %u with status %d\n", 1953 index, wc->status); 1954 } 1955 } 1956 1957 /** 1958 * srpt_process_send_completion() - Process an IB send completion. 1959 * 1960 * Note: Although this has not yet been observed during tests, at least in 1961 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1962 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1963 * value in each response is set to one, and it is possible that this response 1964 * makes the initiator send a new request before the send completion for that 1965 * response has been processed. This could e.g. happen if the call to 1966 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1967 * if IB retransmission causes generation of the send completion to be 1968 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1969 * are queued on cmd_wait_list. The code below processes these delayed 1970 * requests one at a time. 1971 */ 1972 static void srpt_process_send_completion(struct ib_cq *cq, 1973 struct srpt_rdma_ch *ch, 1974 struct ib_wc *wc) 1975 { 1976 struct srpt_send_ioctx *send_ioctx; 1977 uint32_t index; 1978 enum srpt_opcode opcode; 1979 1980 index = idx_from_wr_id(wc->wr_id); 1981 opcode = opcode_from_wr_id(wc->wr_id); 1982 send_ioctx = ch->ioctx_ring[index]; 1983 if (wc->status == IB_WC_SUCCESS) { 1984 if (opcode == SRPT_SEND) 1985 srpt_handle_send_comp(ch, send_ioctx); 1986 else { 1987 WARN_ON(opcode != SRPT_RDMA_ABORT && 1988 wc->opcode != IB_WC_RDMA_READ); 1989 srpt_handle_rdma_comp(ch, send_ioctx, opcode); 1990 } 1991 } else { 1992 if (opcode == SRPT_SEND) { 1993 pr_info("sending response for idx %u failed" 1994 " with status %d\n", index, wc->status); 1995 srpt_handle_send_err_comp(ch, wc->wr_id); 1996 } else if (opcode != SRPT_RDMA_MID) { 1997 pr_info("RDMA t %d for idx %u failed with" 1998 " status %d\n", opcode, index, wc->status); 1999 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode); 2000 } 2001 } 2002 2003 while (unlikely(opcode == SRPT_SEND 2004 && !list_empty(&ch->cmd_wait_list) 2005 && srpt_get_ch_state(ch) == CH_LIVE 2006 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) { 2007 struct srpt_recv_ioctx *recv_ioctx; 2008 2009 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 2010 struct srpt_recv_ioctx, 2011 wait_list); 2012 list_del(&recv_ioctx->wait_list); 2013 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx); 2014 } 2015 } 2016 2017 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch) 2018 { 2019 struct ib_wc *const wc = ch->wc; 2020 int i, n; 2021 2022 WARN_ON(cq != ch->cq); 2023 2024 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 2025 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) { 2026 for (i = 0; i < n; i++) { 2027 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV) 2028 srpt_process_rcv_completion(cq, ch, &wc[i]); 2029 else 2030 srpt_process_send_completion(cq, ch, &wc[i]); 2031 } 2032 } 2033 } 2034 2035 /** 2036 * srpt_completion() - IB completion queue callback function. 2037 * 2038 * Notes: 2039 * - It is guaranteed that a completion handler will never be invoked 2040 * concurrently on two different CPUs for the same completion queue. See also 2041 * Documentation/infiniband/core_locking.txt and the implementation of 2042 * handle_edge_irq() in kernel/irq/chip.c. 2043 * - When threaded IRQs are enabled, completion handlers are invoked in thread 2044 * context instead of interrupt context. 2045 */ 2046 static void srpt_completion(struct ib_cq *cq, void *ctx) 2047 { 2048 struct srpt_rdma_ch *ch = ctx; 2049 2050 wake_up_interruptible(&ch->wait_queue); 2051 } 2052 2053 static int srpt_compl_thread(void *arg) 2054 { 2055 struct srpt_rdma_ch *ch; 2056 2057 /* Hibernation / freezing of the SRPT kernel thread is not supported. */ 2058 current->flags |= PF_NOFREEZE; 2059 2060 ch = arg; 2061 BUG_ON(!ch); 2062 pr_info("Session %s: kernel thread %s (PID %d) started\n", 2063 ch->sess_name, ch->thread->comm, current->pid); 2064 while (!kthread_should_stop()) { 2065 wait_event_interruptible(ch->wait_queue, 2066 (srpt_process_completion(ch->cq, ch), 2067 kthread_should_stop())); 2068 } 2069 pr_info("Session %s: kernel thread %s (PID %d) stopped\n", 2070 ch->sess_name, ch->thread->comm, current->pid); 2071 return 0; 2072 } 2073 2074 /** 2075 * srpt_create_ch_ib() - Create receive and send completion queues. 2076 */ 2077 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 2078 { 2079 struct ib_qp_init_attr *qp_init; 2080 struct srpt_port *sport = ch->sport; 2081 struct srpt_device *sdev = sport->sdev; 2082 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 2083 int ret; 2084 2085 WARN_ON(ch->rq_size < 1); 2086 2087 ret = -ENOMEM; 2088 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL); 2089 if (!qp_init) 2090 goto out; 2091 2092 retry: 2093 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch, 2094 ch->rq_size + srp_sq_size, 0); 2095 if (IS_ERR(ch->cq)) { 2096 ret = PTR_ERR(ch->cq); 2097 pr_err("failed to create CQ cqe= %d ret= %d\n", 2098 ch->rq_size + srp_sq_size, ret); 2099 goto out; 2100 } 2101 2102 qp_init->qp_context = (void *)ch; 2103 qp_init->event_handler 2104 = (void(*)(struct ib_event *, void*))srpt_qp_event; 2105 qp_init->send_cq = ch->cq; 2106 qp_init->recv_cq = ch->cq; 2107 qp_init->srq = sdev->srq; 2108 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 2109 qp_init->qp_type = IB_QPT_RC; 2110 qp_init->cap.max_send_wr = srp_sq_size; 2111 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 2112 2113 ch->qp = ib_create_qp(sdev->pd, qp_init); 2114 if (IS_ERR(ch->qp)) { 2115 ret = PTR_ERR(ch->qp); 2116 if (ret == -ENOMEM) { 2117 srp_sq_size /= 2; 2118 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) { 2119 ib_destroy_cq(ch->cq); 2120 goto retry; 2121 } 2122 } 2123 pr_err("failed to create_qp ret= %d\n", ret); 2124 goto err_destroy_cq; 2125 } 2126 2127 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 2128 2129 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 2130 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 2131 qp_init->cap.max_send_wr, ch->cm_id); 2132 2133 ret = srpt_init_ch_qp(ch, ch->qp); 2134 if (ret) 2135 goto err_destroy_qp; 2136 2137 init_waitqueue_head(&ch->wait_queue); 2138 2139 pr_debug("creating thread for session %s\n", ch->sess_name); 2140 2141 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl"); 2142 if (IS_ERR(ch->thread)) { 2143 pr_err("failed to create kernel thread %ld\n", 2144 PTR_ERR(ch->thread)); 2145 ch->thread = NULL; 2146 goto err_destroy_qp; 2147 } 2148 2149 out: 2150 kfree(qp_init); 2151 return ret; 2152 2153 err_destroy_qp: 2154 ib_destroy_qp(ch->qp); 2155 err_destroy_cq: 2156 ib_destroy_cq(ch->cq); 2157 goto out; 2158 } 2159 2160 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 2161 { 2162 if (ch->thread) 2163 kthread_stop(ch->thread); 2164 2165 ib_destroy_qp(ch->qp); 2166 ib_destroy_cq(ch->cq); 2167 } 2168 2169 /** 2170 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state. 2171 * 2172 * Reset the QP and make sure all resources associated with the channel will 2173 * be deallocated at an appropriate time. 2174 * 2175 * Note: The caller must hold ch->sport->sdev->spinlock. 2176 */ 2177 static void __srpt_close_ch(struct srpt_rdma_ch *ch) 2178 { 2179 struct srpt_device *sdev; 2180 enum rdma_ch_state prev_state; 2181 unsigned long flags; 2182 2183 sdev = ch->sport->sdev; 2184 2185 spin_lock_irqsave(&ch->spinlock, flags); 2186 prev_state = ch->state; 2187 switch (prev_state) { 2188 case CH_CONNECTING: 2189 case CH_LIVE: 2190 ch->state = CH_DISCONNECTING; 2191 break; 2192 default: 2193 break; 2194 } 2195 spin_unlock_irqrestore(&ch->spinlock, flags); 2196 2197 switch (prev_state) { 2198 case CH_CONNECTING: 2199 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0, 2200 NULL, 0); 2201 /* fall through */ 2202 case CH_LIVE: 2203 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0) 2204 pr_err("sending CM DREQ failed.\n"); 2205 break; 2206 case CH_DISCONNECTING: 2207 break; 2208 case CH_DRAINING: 2209 case CH_RELEASING: 2210 break; 2211 } 2212 } 2213 2214 /** 2215 * srpt_close_ch() - Close an RDMA channel. 2216 */ 2217 static void srpt_close_ch(struct srpt_rdma_ch *ch) 2218 { 2219 struct srpt_device *sdev; 2220 2221 sdev = ch->sport->sdev; 2222 spin_lock_irq(&sdev->spinlock); 2223 __srpt_close_ch(ch); 2224 spin_unlock_irq(&sdev->spinlock); 2225 } 2226 2227 /** 2228 * srpt_shutdown_session() - Whether or not a session may be shut down. 2229 */ 2230 static int srpt_shutdown_session(struct se_session *se_sess) 2231 { 2232 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2233 unsigned long flags; 2234 2235 spin_lock_irqsave(&ch->spinlock, flags); 2236 if (ch->in_shutdown) { 2237 spin_unlock_irqrestore(&ch->spinlock, flags); 2238 return true; 2239 } 2240 2241 ch->in_shutdown = true; 2242 target_sess_cmd_list_set_waiting(se_sess); 2243 spin_unlock_irqrestore(&ch->spinlock, flags); 2244 2245 return true; 2246 } 2247 2248 /** 2249 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair. 2250 * @cm_id: Pointer to the CM ID of the channel to be drained. 2251 * 2252 * Note: Must be called from inside srpt_cm_handler to avoid a race between 2253 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one() 2254 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one() 2255 * waits until all target sessions for the associated IB device have been 2256 * unregistered and target session registration involves a call to 2257 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until 2258 * this function has finished). 2259 */ 2260 static void srpt_drain_channel(struct ib_cm_id *cm_id) 2261 { 2262 struct srpt_device *sdev; 2263 struct srpt_rdma_ch *ch; 2264 int ret; 2265 bool do_reset = false; 2266 2267 WARN_ON_ONCE(irqs_disabled()); 2268 2269 sdev = cm_id->context; 2270 BUG_ON(!sdev); 2271 spin_lock_irq(&sdev->spinlock); 2272 list_for_each_entry(ch, &sdev->rch_list, list) { 2273 if (ch->cm_id == cm_id) { 2274 do_reset = srpt_test_and_set_ch_state(ch, 2275 CH_CONNECTING, CH_DRAINING) || 2276 srpt_test_and_set_ch_state(ch, 2277 CH_LIVE, CH_DRAINING) || 2278 srpt_test_and_set_ch_state(ch, 2279 CH_DISCONNECTING, CH_DRAINING); 2280 break; 2281 } 2282 } 2283 spin_unlock_irq(&sdev->spinlock); 2284 2285 if (do_reset) { 2286 if (ch->sess) 2287 srpt_shutdown_session(ch->sess); 2288 2289 ret = srpt_ch_qp_err(ch); 2290 if (ret < 0) 2291 pr_err("Setting queue pair in error state" 2292 " failed: %d\n", ret); 2293 } 2294 } 2295 2296 /** 2297 * srpt_find_channel() - Look up an RDMA channel. 2298 * @cm_id: Pointer to the CM ID of the channel to be looked up. 2299 * 2300 * Return NULL if no matching RDMA channel has been found. 2301 */ 2302 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev, 2303 struct ib_cm_id *cm_id) 2304 { 2305 struct srpt_rdma_ch *ch; 2306 bool found; 2307 2308 WARN_ON_ONCE(irqs_disabled()); 2309 BUG_ON(!sdev); 2310 2311 found = false; 2312 spin_lock_irq(&sdev->spinlock); 2313 list_for_each_entry(ch, &sdev->rch_list, list) { 2314 if (ch->cm_id == cm_id) { 2315 found = true; 2316 break; 2317 } 2318 } 2319 spin_unlock_irq(&sdev->spinlock); 2320 2321 return found ? ch : NULL; 2322 } 2323 2324 /** 2325 * srpt_release_channel() - Release channel resources. 2326 * 2327 * Schedules the actual release because: 2328 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would 2329 * trigger a deadlock. 2330 * - It is not safe to call TCM transport_* functions from interrupt context. 2331 */ 2332 static void srpt_release_channel(struct srpt_rdma_ch *ch) 2333 { 2334 schedule_work(&ch->release_work); 2335 } 2336 2337 static void srpt_release_channel_work(struct work_struct *w) 2338 { 2339 struct srpt_rdma_ch *ch; 2340 struct srpt_device *sdev; 2341 struct se_session *se_sess; 2342 2343 ch = container_of(w, struct srpt_rdma_ch, release_work); 2344 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess, 2345 ch->release_done); 2346 2347 sdev = ch->sport->sdev; 2348 BUG_ON(!sdev); 2349 2350 se_sess = ch->sess; 2351 BUG_ON(!se_sess); 2352 2353 target_wait_for_sess_cmds(se_sess); 2354 2355 transport_deregister_session_configfs(se_sess); 2356 transport_deregister_session(se_sess); 2357 ch->sess = NULL; 2358 2359 ib_destroy_cm_id(ch->cm_id); 2360 2361 srpt_destroy_ch_ib(ch); 2362 2363 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2364 ch->sport->sdev, ch->rq_size, 2365 ch->rsp_size, DMA_TO_DEVICE); 2366 2367 spin_lock_irq(&sdev->spinlock); 2368 list_del(&ch->list); 2369 spin_unlock_irq(&sdev->spinlock); 2370 2371 if (ch->release_done) 2372 complete(ch->release_done); 2373 2374 wake_up(&sdev->ch_releaseQ); 2375 2376 kfree(ch); 2377 } 2378 2379 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport, 2380 u8 i_port_id[16]) 2381 { 2382 struct srpt_node_acl *nacl; 2383 2384 list_for_each_entry(nacl, &sport->port_acl_list, list) 2385 if (memcmp(nacl->i_port_id, i_port_id, 2386 sizeof(nacl->i_port_id)) == 0) 2387 return nacl; 2388 2389 return NULL; 2390 } 2391 2392 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport, 2393 u8 i_port_id[16]) 2394 { 2395 struct srpt_node_acl *nacl; 2396 2397 spin_lock_irq(&sport->port_acl_lock); 2398 nacl = __srpt_lookup_acl(sport, i_port_id); 2399 spin_unlock_irq(&sport->port_acl_lock); 2400 2401 return nacl; 2402 } 2403 2404 /** 2405 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 2406 * 2407 * Ownership of the cm_id is transferred to the target session if this 2408 * functions returns zero. Otherwise the caller remains the owner of cm_id. 2409 */ 2410 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 2411 struct ib_cm_req_event_param *param, 2412 void *private_data) 2413 { 2414 struct srpt_device *sdev = cm_id->context; 2415 struct srpt_port *sport = &sdev->port[param->port - 1]; 2416 struct srp_login_req *req; 2417 struct srp_login_rsp *rsp; 2418 struct srp_login_rej *rej; 2419 struct ib_cm_rep_param *rep_param; 2420 struct srpt_rdma_ch *ch, *tmp_ch; 2421 struct srpt_node_acl *nacl; 2422 u32 it_iu_len; 2423 int i; 2424 int ret = 0; 2425 2426 WARN_ON_ONCE(irqs_disabled()); 2427 2428 if (WARN_ON(!sdev || !private_data)) 2429 return -EINVAL; 2430 2431 req = (struct srp_login_req *)private_data; 2432 2433 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2434 2435 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 2436 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 2437 " (guid=0x%llx:0x%llx)\n", 2438 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 2439 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 2440 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 2441 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 2442 it_iu_len, 2443 param->port, 2444 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 2445 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 2446 2447 rsp = kzalloc(sizeof *rsp, GFP_KERNEL); 2448 rej = kzalloc(sizeof *rej, GFP_KERNEL); 2449 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL); 2450 2451 if (!rsp || !rej || !rep_param) { 2452 ret = -ENOMEM; 2453 goto out; 2454 } 2455 2456 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2457 rej->reason = __constant_cpu_to_be32( 2458 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2459 ret = -EINVAL; 2460 pr_err("rejected SRP_LOGIN_REQ because its" 2461 " length (%d bytes) is out of range (%d .. %d)\n", 2462 it_iu_len, 64, srp_max_req_size); 2463 goto reject; 2464 } 2465 2466 if (!sport->enabled) { 2467 rej->reason = __constant_cpu_to_be32( 2468 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2469 ret = -EINVAL; 2470 pr_err("rejected SRP_LOGIN_REQ because the target port" 2471 " has not yet been enabled\n"); 2472 goto reject; 2473 } 2474 2475 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2476 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2477 2478 spin_lock_irq(&sdev->spinlock); 2479 2480 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 2481 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 2482 && !memcmp(ch->t_port_id, req->target_port_id, 16) 2483 && param->port == ch->sport->port 2484 && param->listen_id == ch->sport->sdev->cm_id 2485 && ch->cm_id) { 2486 enum rdma_ch_state ch_state; 2487 2488 ch_state = srpt_get_ch_state(ch); 2489 if (ch_state != CH_CONNECTING 2490 && ch_state != CH_LIVE) 2491 continue; 2492 2493 /* found an existing channel */ 2494 pr_debug("Found existing channel %s" 2495 " cm_id= %p state= %d\n", 2496 ch->sess_name, ch->cm_id, ch_state); 2497 2498 __srpt_close_ch(ch); 2499 2500 rsp->rsp_flags = 2501 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2502 } 2503 } 2504 2505 spin_unlock_irq(&sdev->spinlock); 2506 2507 } else 2508 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2509 2510 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2511 || *(__be64 *)(req->target_port_id + 8) != 2512 cpu_to_be64(srpt_service_guid)) { 2513 rej->reason = __constant_cpu_to_be32( 2514 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2515 ret = -ENOMEM; 2516 pr_err("rejected SRP_LOGIN_REQ because it" 2517 " has an invalid target port identifier.\n"); 2518 goto reject; 2519 } 2520 2521 ch = kzalloc(sizeof *ch, GFP_KERNEL); 2522 if (!ch) { 2523 rej->reason = __constant_cpu_to_be32( 2524 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2525 pr_err("rejected SRP_LOGIN_REQ because no memory.\n"); 2526 ret = -ENOMEM; 2527 goto reject; 2528 } 2529 2530 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2531 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2532 memcpy(ch->t_port_id, req->target_port_id, 16); 2533 ch->sport = &sdev->port[param->port - 1]; 2534 ch->cm_id = cm_id; 2535 /* 2536 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 2537 * for the SRP protocol to the command queue size. 2538 */ 2539 ch->rq_size = SRPT_RQ_SIZE; 2540 spin_lock_init(&ch->spinlock); 2541 ch->state = CH_CONNECTING; 2542 INIT_LIST_HEAD(&ch->cmd_wait_list); 2543 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2544 2545 ch->ioctx_ring = (struct srpt_send_ioctx **) 2546 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2547 sizeof(*ch->ioctx_ring[0]), 2548 ch->rsp_size, DMA_TO_DEVICE); 2549 if (!ch->ioctx_ring) 2550 goto free_ch; 2551 2552 INIT_LIST_HEAD(&ch->free_list); 2553 for (i = 0; i < ch->rq_size; i++) { 2554 ch->ioctx_ring[i]->ch = ch; 2555 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2556 } 2557 2558 ret = srpt_create_ch_ib(ch); 2559 if (ret) { 2560 rej->reason = __constant_cpu_to_be32( 2561 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2562 pr_err("rejected SRP_LOGIN_REQ because creating" 2563 " a new RDMA channel failed.\n"); 2564 goto free_ring; 2565 } 2566 2567 ret = srpt_ch_qp_rtr(ch, ch->qp); 2568 if (ret) { 2569 rej->reason = __constant_cpu_to_be32( 2570 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2571 pr_err("rejected SRP_LOGIN_REQ because enabling" 2572 " RTR failed (error code = %d)\n", ret); 2573 goto destroy_ib; 2574 } 2575 /* 2576 * Use the initator port identifier as the session name. 2577 */ 2578 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2579 be64_to_cpu(*(__be64 *)ch->i_port_id), 2580 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2581 2582 pr_debug("registering session %s\n", ch->sess_name); 2583 2584 nacl = srpt_lookup_acl(sport, ch->i_port_id); 2585 if (!nacl) { 2586 pr_info("Rejected login because no ACL has been" 2587 " configured yet for initiator %s.\n", ch->sess_name); 2588 rej->reason = __constant_cpu_to_be32( 2589 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2590 goto destroy_ib; 2591 } 2592 2593 ch->sess = transport_init_session(TARGET_PROT_NORMAL); 2594 if (IS_ERR(ch->sess)) { 2595 rej->reason = __constant_cpu_to_be32( 2596 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2597 pr_debug("Failed to create session\n"); 2598 goto deregister_session; 2599 } 2600 ch->sess->se_node_acl = &nacl->nacl; 2601 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch); 2602 2603 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2604 ch->sess_name, ch->cm_id); 2605 2606 /* create srp_login_response */ 2607 rsp->opcode = SRP_LOGIN_RSP; 2608 rsp->tag = req->tag; 2609 rsp->max_it_iu_len = req->req_it_iu_len; 2610 rsp->max_ti_iu_len = req->req_it_iu_len; 2611 ch->max_ti_iu_len = it_iu_len; 2612 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2613 | SRP_BUF_FORMAT_INDIRECT); 2614 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2615 atomic_set(&ch->req_lim, ch->rq_size); 2616 atomic_set(&ch->req_lim_delta, 0); 2617 2618 /* create cm reply */ 2619 rep_param->qp_num = ch->qp->qp_num; 2620 rep_param->private_data = (void *)rsp; 2621 rep_param->private_data_len = sizeof *rsp; 2622 rep_param->rnr_retry_count = 7; 2623 rep_param->flow_control = 1; 2624 rep_param->failover_accepted = 0; 2625 rep_param->srq = 1; 2626 rep_param->responder_resources = 4; 2627 rep_param->initiator_depth = 4; 2628 2629 ret = ib_send_cm_rep(cm_id, rep_param); 2630 if (ret) { 2631 pr_err("sending SRP_LOGIN_REQ response failed" 2632 " (error code = %d)\n", ret); 2633 goto release_channel; 2634 } 2635 2636 spin_lock_irq(&sdev->spinlock); 2637 list_add_tail(&ch->list, &sdev->rch_list); 2638 spin_unlock_irq(&sdev->spinlock); 2639 2640 goto out; 2641 2642 release_channel: 2643 srpt_set_ch_state(ch, CH_RELEASING); 2644 transport_deregister_session_configfs(ch->sess); 2645 2646 deregister_session: 2647 transport_deregister_session(ch->sess); 2648 ch->sess = NULL; 2649 2650 destroy_ib: 2651 srpt_destroy_ch_ib(ch); 2652 2653 free_ring: 2654 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2655 ch->sport->sdev, ch->rq_size, 2656 ch->rsp_size, DMA_TO_DEVICE); 2657 free_ch: 2658 kfree(ch); 2659 2660 reject: 2661 rej->opcode = SRP_LOGIN_REJ; 2662 rej->tag = req->tag; 2663 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2664 | SRP_BUF_FORMAT_INDIRECT); 2665 2666 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2667 (void *)rej, sizeof *rej); 2668 2669 out: 2670 kfree(rep_param); 2671 kfree(rsp); 2672 kfree(rej); 2673 2674 return ret; 2675 } 2676 2677 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id) 2678 { 2679 pr_info("Received IB REJ for cm_id %p.\n", cm_id); 2680 srpt_drain_channel(cm_id); 2681 } 2682 2683 /** 2684 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2685 * 2686 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2687 * and that the recipient may begin transmitting (RTU = ready to use). 2688 */ 2689 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id) 2690 { 2691 struct srpt_rdma_ch *ch; 2692 int ret; 2693 2694 ch = srpt_find_channel(cm_id->context, cm_id); 2695 BUG_ON(!ch); 2696 2697 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) { 2698 struct srpt_recv_ioctx *ioctx, *ioctx_tmp; 2699 2700 ret = srpt_ch_qp_rts(ch, ch->qp); 2701 2702 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list, 2703 wait_list) { 2704 list_del(&ioctx->wait_list); 2705 srpt_handle_new_iu(ch, ioctx, NULL); 2706 } 2707 if (ret) 2708 srpt_close_ch(ch); 2709 } 2710 } 2711 2712 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id) 2713 { 2714 pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id); 2715 srpt_drain_channel(cm_id); 2716 } 2717 2718 static void srpt_cm_rep_error(struct ib_cm_id *cm_id) 2719 { 2720 pr_info("Received IB REP error for cm_id %p.\n", cm_id); 2721 srpt_drain_channel(cm_id); 2722 } 2723 2724 /** 2725 * srpt_cm_dreq_recv() - Process reception of a DREQ message. 2726 */ 2727 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id) 2728 { 2729 struct srpt_rdma_ch *ch; 2730 unsigned long flags; 2731 bool send_drep = false; 2732 2733 ch = srpt_find_channel(cm_id->context, cm_id); 2734 BUG_ON(!ch); 2735 2736 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch)); 2737 2738 spin_lock_irqsave(&ch->spinlock, flags); 2739 switch (ch->state) { 2740 case CH_CONNECTING: 2741 case CH_LIVE: 2742 send_drep = true; 2743 ch->state = CH_DISCONNECTING; 2744 break; 2745 case CH_DISCONNECTING: 2746 case CH_DRAINING: 2747 case CH_RELEASING: 2748 WARN(true, "unexpected channel state %d\n", ch->state); 2749 break; 2750 } 2751 spin_unlock_irqrestore(&ch->spinlock, flags); 2752 2753 if (send_drep) { 2754 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0) 2755 pr_err("Sending IB DREP failed.\n"); 2756 pr_info("Received DREQ and sent DREP for session %s.\n", 2757 ch->sess_name); 2758 } 2759 } 2760 2761 /** 2762 * srpt_cm_drep_recv() - Process reception of a DREP message. 2763 */ 2764 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id) 2765 { 2766 pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id); 2767 srpt_drain_channel(cm_id); 2768 } 2769 2770 /** 2771 * srpt_cm_handler() - IB connection manager callback function. 2772 * 2773 * A non-zero return value will cause the caller destroy the CM ID. 2774 * 2775 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2776 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2777 * a non-zero value in any other case will trigger a race with the 2778 * ib_destroy_cm_id() call in srpt_release_channel(). 2779 */ 2780 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2781 { 2782 int ret; 2783 2784 ret = 0; 2785 switch (event->event) { 2786 case IB_CM_REQ_RECEIVED: 2787 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2788 event->private_data); 2789 break; 2790 case IB_CM_REJ_RECEIVED: 2791 srpt_cm_rej_recv(cm_id); 2792 break; 2793 case IB_CM_RTU_RECEIVED: 2794 case IB_CM_USER_ESTABLISHED: 2795 srpt_cm_rtu_recv(cm_id); 2796 break; 2797 case IB_CM_DREQ_RECEIVED: 2798 srpt_cm_dreq_recv(cm_id); 2799 break; 2800 case IB_CM_DREP_RECEIVED: 2801 srpt_cm_drep_recv(cm_id); 2802 break; 2803 case IB_CM_TIMEWAIT_EXIT: 2804 srpt_cm_timewait_exit(cm_id); 2805 break; 2806 case IB_CM_REP_ERROR: 2807 srpt_cm_rep_error(cm_id); 2808 break; 2809 case IB_CM_DREQ_ERROR: 2810 pr_info("Received IB DREQ ERROR event.\n"); 2811 break; 2812 case IB_CM_MRA_RECEIVED: 2813 pr_info("Received IB MRA event\n"); 2814 break; 2815 default: 2816 pr_err("received unrecognized IB CM event %d\n", event->event); 2817 break; 2818 } 2819 2820 return ret; 2821 } 2822 2823 /** 2824 * srpt_perform_rdmas() - Perform IB RDMA. 2825 * 2826 * Returns zero upon success or a negative number upon failure. 2827 */ 2828 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, 2829 struct srpt_send_ioctx *ioctx) 2830 { 2831 struct ib_send_wr wr; 2832 struct ib_send_wr *bad_wr; 2833 struct rdma_iu *riu; 2834 int i; 2835 int ret; 2836 int sq_wr_avail; 2837 enum dma_data_direction dir; 2838 const int n_rdma = ioctx->n_rdma; 2839 2840 dir = ioctx->cmd.data_direction; 2841 if (dir == DMA_TO_DEVICE) { 2842 /* write */ 2843 ret = -ENOMEM; 2844 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); 2845 if (sq_wr_avail < 0) { 2846 pr_warn("IB send queue full (needed %d)\n", 2847 n_rdma); 2848 goto out; 2849 } 2850 } 2851 2852 ioctx->rdma_aborted = false; 2853 ret = 0; 2854 riu = ioctx->rdma_ius; 2855 memset(&wr, 0, sizeof wr); 2856 2857 for (i = 0; i < n_rdma; ++i, ++riu) { 2858 if (dir == DMA_FROM_DEVICE) { 2859 wr.opcode = IB_WR_RDMA_WRITE; 2860 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2861 SRPT_RDMA_WRITE_LAST : 2862 SRPT_RDMA_MID, 2863 ioctx->ioctx.index); 2864 } else { 2865 wr.opcode = IB_WR_RDMA_READ; 2866 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2867 SRPT_RDMA_READ_LAST : 2868 SRPT_RDMA_MID, 2869 ioctx->ioctx.index); 2870 } 2871 wr.next = NULL; 2872 wr.wr.rdma.remote_addr = riu->raddr; 2873 wr.wr.rdma.rkey = riu->rkey; 2874 wr.num_sge = riu->sge_cnt; 2875 wr.sg_list = riu->sge; 2876 2877 /* only get completion event for the last rdma write */ 2878 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE) 2879 wr.send_flags = IB_SEND_SIGNALED; 2880 2881 ret = ib_post_send(ch->qp, &wr, &bad_wr); 2882 if (ret) 2883 break; 2884 } 2885 2886 if (ret) 2887 pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n", 2888 __func__, __LINE__, ret, i, n_rdma); 2889 if (ret && i > 0) { 2890 wr.num_sge = 0; 2891 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index); 2892 wr.send_flags = IB_SEND_SIGNALED; 2893 while (ch->state == CH_LIVE && 2894 ib_post_send(ch->qp, &wr, &bad_wr) != 0) { 2895 pr_info("Trying to abort failed RDMA transfer [%d]\n", 2896 ioctx->ioctx.index); 2897 msleep(1000); 2898 } 2899 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) { 2900 pr_info("Waiting until RDMA abort finished [%d]\n", 2901 ioctx->ioctx.index); 2902 msleep(1000); 2903 } 2904 } 2905 out: 2906 if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) 2907 atomic_add(n_rdma, &ch->sq_wr_avail); 2908 return ret; 2909 } 2910 2911 /** 2912 * srpt_xfer_data() - Start data transfer from initiator to target. 2913 */ 2914 static int srpt_xfer_data(struct srpt_rdma_ch *ch, 2915 struct srpt_send_ioctx *ioctx) 2916 { 2917 int ret; 2918 2919 ret = srpt_map_sg_to_ib_sge(ch, ioctx); 2920 if (ret) { 2921 pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret); 2922 goto out; 2923 } 2924 2925 ret = srpt_perform_rdmas(ch, ioctx); 2926 if (ret) { 2927 if (ret == -EAGAIN || ret == -ENOMEM) 2928 pr_info("%s[%d] queue full -- ret=%d\n", 2929 __func__, __LINE__, ret); 2930 else 2931 pr_err("%s[%d] fatal error -- ret=%d\n", 2932 __func__, __LINE__, ret); 2933 goto out_unmap; 2934 } 2935 2936 out: 2937 return ret; 2938 out_unmap: 2939 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2940 goto out; 2941 } 2942 2943 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2944 { 2945 struct srpt_send_ioctx *ioctx; 2946 2947 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2948 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2949 } 2950 2951 /* 2952 * srpt_write_pending() - Start data transfer from initiator to target (write). 2953 */ 2954 static int srpt_write_pending(struct se_cmd *se_cmd) 2955 { 2956 struct srpt_rdma_ch *ch; 2957 struct srpt_send_ioctx *ioctx; 2958 enum srpt_command_state new_state; 2959 enum rdma_ch_state ch_state; 2960 int ret; 2961 2962 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2963 2964 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2965 WARN_ON(new_state == SRPT_STATE_DONE); 2966 2967 ch = ioctx->ch; 2968 BUG_ON(!ch); 2969 2970 ch_state = srpt_get_ch_state(ch); 2971 switch (ch_state) { 2972 case CH_CONNECTING: 2973 WARN(true, "unexpected channel state %d\n", ch_state); 2974 ret = -EINVAL; 2975 goto out; 2976 case CH_LIVE: 2977 break; 2978 case CH_DISCONNECTING: 2979 case CH_DRAINING: 2980 case CH_RELEASING: 2981 pr_debug("cmd with tag %lld: channel disconnecting\n", 2982 ioctx->tag); 2983 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2984 ret = -EINVAL; 2985 goto out; 2986 } 2987 ret = srpt_xfer_data(ch, ioctx); 2988 2989 out: 2990 return ret; 2991 } 2992 2993 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2994 { 2995 switch (tcm_mgmt_status) { 2996 case TMR_FUNCTION_COMPLETE: 2997 return SRP_TSK_MGMT_SUCCESS; 2998 case TMR_FUNCTION_REJECTED: 2999 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 3000 } 3001 return SRP_TSK_MGMT_FAILED; 3002 } 3003 3004 /** 3005 * srpt_queue_response() - Transmits the response to a SCSI command. 3006 * 3007 * Callback function called by the TCM core. Must not block since it can be 3008 * invoked on the context of the IB completion handler. 3009 */ 3010 static void srpt_queue_response(struct se_cmd *cmd) 3011 { 3012 struct srpt_rdma_ch *ch; 3013 struct srpt_send_ioctx *ioctx; 3014 enum srpt_command_state state; 3015 unsigned long flags; 3016 int ret; 3017 enum dma_data_direction dir; 3018 int resp_len; 3019 u8 srp_tm_status; 3020 3021 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3022 ch = ioctx->ch; 3023 BUG_ON(!ch); 3024 3025 spin_lock_irqsave(&ioctx->spinlock, flags); 3026 state = ioctx->state; 3027 switch (state) { 3028 case SRPT_STATE_NEW: 3029 case SRPT_STATE_DATA_IN: 3030 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 3031 break; 3032 case SRPT_STATE_MGMT: 3033 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 3034 break; 3035 default: 3036 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 3037 ch, ioctx->ioctx.index, ioctx->state); 3038 break; 3039 } 3040 spin_unlock_irqrestore(&ioctx->spinlock, flags); 3041 3042 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 3043 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 3044 atomic_inc(&ch->req_lim_delta); 3045 srpt_abort_cmd(ioctx); 3046 return; 3047 } 3048 3049 dir = ioctx->cmd.data_direction; 3050 3051 /* For read commands, transfer the data to the initiator. */ 3052 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && 3053 !ioctx->queue_status_only) { 3054 ret = srpt_xfer_data(ch, ioctx); 3055 if (ret) { 3056 pr_err("xfer_data failed for tag %llu\n", 3057 ioctx->tag); 3058 return; 3059 } 3060 } 3061 3062 if (state != SRPT_STATE_MGMT) 3063 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag, 3064 cmd->scsi_status); 3065 else { 3066 srp_tm_status 3067 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 3068 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 3069 ioctx->tag); 3070 } 3071 ret = srpt_post_send(ch, ioctx, resp_len); 3072 if (ret) { 3073 pr_err("sending cmd response failed for tag %llu\n", 3074 ioctx->tag); 3075 srpt_unmap_sg_to_ib_sge(ch, ioctx); 3076 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 3077 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 3078 } 3079 } 3080 3081 static int srpt_queue_data_in(struct se_cmd *cmd) 3082 { 3083 srpt_queue_response(cmd); 3084 return 0; 3085 } 3086 3087 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 3088 { 3089 srpt_queue_response(cmd); 3090 } 3091 3092 static void srpt_aborted_task(struct se_cmd *cmd) 3093 { 3094 struct srpt_send_ioctx *ioctx = container_of(cmd, 3095 struct srpt_send_ioctx, cmd); 3096 3097 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 3098 } 3099 3100 static int srpt_queue_status(struct se_cmd *cmd) 3101 { 3102 struct srpt_send_ioctx *ioctx; 3103 3104 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3105 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 3106 if (cmd->se_cmd_flags & 3107 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 3108 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 3109 ioctx->queue_status_only = true; 3110 srpt_queue_response(cmd); 3111 return 0; 3112 } 3113 3114 static void srpt_refresh_port_work(struct work_struct *work) 3115 { 3116 struct srpt_port *sport = container_of(work, struct srpt_port, work); 3117 3118 srpt_refresh_port(sport); 3119 } 3120 3121 static int srpt_ch_list_empty(struct srpt_device *sdev) 3122 { 3123 int res; 3124 3125 spin_lock_irq(&sdev->spinlock); 3126 res = list_empty(&sdev->rch_list); 3127 spin_unlock_irq(&sdev->spinlock); 3128 3129 return res; 3130 } 3131 3132 /** 3133 * srpt_release_sdev() - Free the channel resources associated with a target. 3134 */ 3135 static int srpt_release_sdev(struct srpt_device *sdev) 3136 { 3137 struct srpt_rdma_ch *ch, *tmp_ch; 3138 int res; 3139 3140 WARN_ON_ONCE(irqs_disabled()); 3141 3142 BUG_ON(!sdev); 3143 3144 spin_lock_irq(&sdev->spinlock); 3145 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) 3146 __srpt_close_ch(ch); 3147 spin_unlock_irq(&sdev->spinlock); 3148 3149 res = wait_event_interruptible(sdev->ch_releaseQ, 3150 srpt_ch_list_empty(sdev)); 3151 if (res) 3152 pr_err("%s: interrupted.\n", __func__); 3153 3154 return 0; 3155 } 3156 3157 static struct srpt_port *__srpt_lookup_port(const char *name) 3158 { 3159 struct ib_device *dev; 3160 struct srpt_device *sdev; 3161 struct srpt_port *sport; 3162 int i; 3163 3164 list_for_each_entry(sdev, &srpt_dev_list, list) { 3165 dev = sdev->device; 3166 if (!dev) 3167 continue; 3168 3169 for (i = 0; i < dev->phys_port_cnt; i++) { 3170 sport = &sdev->port[i]; 3171 3172 if (!strcmp(sport->port_guid, name)) 3173 return sport; 3174 } 3175 } 3176 3177 return NULL; 3178 } 3179 3180 static struct srpt_port *srpt_lookup_port(const char *name) 3181 { 3182 struct srpt_port *sport; 3183 3184 spin_lock(&srpt_dev_lock); 3185 sport = __srpt_lookup_port(name); 3186 spin_unlock(&srpt_dev_lock); 3187 3188 return sport; 3189 } 3190 3191 /** 3192 * srpt_add_one() - Infiniband device addition callback function. 3193 */ 3194 static void srpt_add_one(struct ib_device *device) 3195 { 3196 struct srpt_device *sdev; 3197 struct srpt_port *sport; 3198 struct ib_srq_init_attr srq_attr; 3199 int i; 3200 3201 pr_debug("device = %p, device->dma_ops = %p\n", device, 3202 device->dma_ops); 3203 3204 sdev = kzalloc(sizeof *sdev, GFP_KERNEL); 3205 if (!sdev) 3206 goto err; 3207 3208 sdev->device = device; 3209 INIT_LIST_HEAD(&sdev->rch_list); 3210 init_waitqueue_head(&sdev->ch_releaseQ); 3211 spin_lock_init(&sdev->spinlock); 3212 3213 if (ib_query_device(device, &sdev->dev_attr)) 3214 goto free_dev; 3215 3216 sdev->pd = ib_alloc_pd(device); 3217 if (IS_ERR(sdev->pd)) 3218 goto free_dev; 3219 3220 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE); 3221 if (IS_ERR(sdev->mr)) 3222 goto err_pd; 3223 3224 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr); 3225 3226 srq_attr.event_handler = srpt_srq_event; 3227 srq_attr.srq_context = (void *)sdev; 3228 srq_attr.attr.max_wr = sdev->srq_size; 3229 srq_attr.attr.max_sge = 1; 3230 srq_attr.attr.srq_limit = 0; 3231 srq_attr.srq_type = IB_SRQT_BASIC; 3232 3233 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 3234 if (IS_ERR(sdev->srq)) 3235 goto err_mr; 3236 3237 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 3238 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr, 3239 device->name); 3240 3241 if (!srpt_service_guid) 3242 srpt_service_guid = be64_to_cpu(device->node_guid); 3243 3244 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3245 if (IS_ERR(sdev->cm_id)) 3246 goto err_srq; 3247 3248 /* print out target login information */ 3249 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3250 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3251 srpt_service_guid, srpt_service_guid); 3252 3253 /* 3254 * We do not have a consistent service_id (ie. also id_ext of target_id) 3255 * to identify this target. We currently use the guid of the first HCA 3256 * in the system as service_id; therefore, the target_id will change 3257 * if this HCA is gone bad and replaced by different HCA 3258 */ 3259 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL)) 3260 goto err_cm; 3261 3262 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3263 srpt_event_handler); 3264 if (ib_register_event_handler(&sdev->event_handler)) 3265 goto err_cm; 3266 3267 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3268 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3269 sizeof(*sdev->ioctx_ring[0]), 3270 srp_max_req_size, DMA_FROM_DEVICE); 3271 if (!sdev->ioctx_ring) 3272 goto err_event; 3273 3274 for (i = 0; i < sdev->srq_size; ++i) 3275 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 3276 3277 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 3278 3279 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3280 sport = &sdev->port[i - 1]; 3281 sport->sdev = sdev; 3282 sport->port = i; 3283 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3284 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3285 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3286 INIT_WORK(&sport->work, srpt_refresh_port_work); 3287 INIT_LIST_HEAD(&sport->port_acl_list); 3288 spin_lock_init(&sport->port_acl_lock); 3289 3290 if (srpt_refresh_port(sport)) { 3291 pr_err("MAD registration failed for %s-%d.\n", 3292 srpt_sdev_name(sdev), i); 3293 goto err_ring; 3294 } 3295 snprintf(sport->port_guid, sizeof(sport->port_guid), 3296 "0x%016llx%016llx", 3297 be64_to_cpu(sport->gid.global.subnet_prefix), 3298 be64_to_cpu(sport->gid.global.interface_id)); 3299 } 3300 3301 spin_lock(&srpt_dev_lock); 3302 list_add_tail(&sdev->list, &srpt_dev_list); 3303 spin_unlock(&srpt_dev_lock); 3304 3305 out: 3306 ib_set_client_data(device, &srpt_client, sdev); 3307 pr_debug("added %s.\n", device->name); 3308 return; 3309 3310 err_ring: 3311 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3312 sdev->srq_size, srp_max_req_size, 3313 DMA_FROM_DEVICE); 3314 err_event: 3315 ib_unregister_event_handler(&sdev->event_handler); 3316 err_cm: 3317 ib_destroy_cm_id(sdev->cm_id); 3318 err_srq: 3319 ib_destroy_srq(sdev->srq); 3320 err_mr: 3321 ib_dereg_mr(sdev->mr); 3322 err_pd: 3323 ib_dealloc_pd(sdev->pd); 3324 free_dev: 3325 kfree(sdev); 3326 err: 3327 sdev = NULL; 3328 pr_info("%s(%s) failed.\n", __func__, device->name); 3329 goto out; 3330 } 3331 3332 /** 3333 * srpt_remove_one() - InfiniBand device removal callback function. 3334 */ 3335 static void srpt_remove_one(struct ib_device *device) 3336 { 3337 struct srpt_device *sdev; 3338 int i; 3339 3340 sdev = ib_get_client_data(device, &srpt_client); 3341 if (!sdev) { 3342 pr_info("%s(%s): nothing to do.\n", __func__, device->name); 3343 return; 3344 } 3345 3346 srpt_unregister_mad_agent(sdev); 3347 3348 ib_unregister_event_handler(&sdev->event_handler); 3349 3350 /* Cancel any work queued by the just unregistered IB event handler. */ 3351 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3352 cancel_work_sync(&sdev->port[i].work); 3353 3354 ib_destroy_cm_id(sdev->cm_id); 3355 3356 /* 3357 * Unregistering a target must happen after destroying sdev->cm_id 3358 * such that no new SRP_LOGIN_REQ information units can arrive while 3359 * destroying the target. 3360 */ 3361 spin_lock(&srpt_dev_lock); 3362 list_del(&sdev->list); 3363 spin_unlock(&srpt_dev_lock); 3364 srpt_release_sdev(sdev); 3365 3366 ib_destroy_srq(sdev->srq); 3367 ib_dereg_mr(sdev->mr); 3368 ib_dealloc_pd(sdev->pd); 3369 3370 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3371 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 3372 sdev->ioctx_ring = NULL; 3373 kfree(sdev); 3374 } 3375 3376 static struct ib_client srpt_client = { 3377 .name = DRV_NAME, 3378 .add = srpt_add_one, 3379 .remove = srpt_remove_one 3380 }; 3381 3382 static int srpt_check_true(struct se_portal_group *se_tpg) 3383 { 3384 return 1; 3385 } 3386 3387 static int srpt_check_false(struct se_portal_group *se_tpg) 3388 { 3389 return 0; 3390 } 3391 3392 static char *srpt_get_fabric_name(void) 3393 { 3394 return "srpt"; 3395 } 3396 3397 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg) 3398 { 3399 return SCSI_TRANSPORTID_PROTOCOLID_SRP; 3400 } 3401 3402 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3403 { 3404 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3405 3406 return sport->port_guid; 3407 } 3408 3409 static u16 srpt_get_tag(struct se_portal_group *tpg) 3410 { 3411 return 1; 3412 } 3413 3414 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg) 3415 { 3416 return 1; 3417 } 3418 3419 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg, 3420 struct se_node_acl *se_nacl, 3421 struct t10_pr_registration *pr_reg, 3422 int *format_code, unsigned char *buf) 3423 { 3424 struct srpt_node_acl *nacl; 3425 struct spc_rdma_transport_id *tr_id; 3426 3427 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3428 tr_id = (void *)buf; 3429 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP; 3430 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id)); 3431 return sizeof(*tr_id); 3432 } 3433 3434 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg, 3435 struct se_node_acl *se_nacl, 3436 struct t10_pr_registration *pr_reg, 3437 int *format_code) 3438 { 3439 *format_code = 0; 3440 return sizeof(struct spc_rdma_transport_id); 3441 } 3442 3443 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg, 3444 const char *buf, u32 *out_tid_len, 3445 char **port_nexus_ptr) 3446 { 3447 struct spc_rdma_transport_id *tr_id; 3448 3449 *port_nexus_ptr = NULL; 3450 *out_tid_len = sizeof(struct spc_rdma_transport_id); 3451 tr_id = (void *)buf; 3452 return (char *)tr_id->i_port_id; 3453 } 3454 3455 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg) 3456 { 3457 struct srpt_node_acl *nacl; 3458 3459 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL); 3460 if (!nacl) { 3461 pr_err("Unable to allocate struct srpt_node_acl\n"); 3462 return NULL; 3463 } 3464 3465 return &nacl->nacl; 3466 } 3467 3468 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg, 3469 struct se_node_acl *se_nacl) 3470 { 3471 struct srpt_node_acl *nacl; 3472 3473 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3474 kfree(nacl); 3475 } 3476 3477 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3478 { 3479 return 1; 3480 } 3481 3482 static void srpt_release_cmd(struct se_cmd *se_cmd) 3483 { 3484 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3485 struct srpt_send_ioctx, cmd); 3486 struct srpt_rdma_ch *ch = ioctx->ch; 3487 unsigned long flags; 3488 3489 WARN_ON(ioctx->state != SRPT_STATE_DONE); 3490 WARN_ON(ioctx->mapped_sg_count != 0); 3491 3492 if (ioctx->n_rbuf > 1) { 3493 kfree(ioctx->rbufs); 3494 ioctx->rbufs = NULL; 3495 ioctx->n_rbuf = 0; 3496 } 3497 3498 spin_lock_irqsave(&ch->spinlock, flags); 3499 list_add(&ioctx->free_list, &ch->free_list); 3500 spin_unlock_irqrestore(&ch->spinlock, flags); 3501 } 3502 3503 /** 3504 * srpt_close_session() - Forcibly close a session. 3505 * 3506 * Callback function invoked by the TCM core to clean up sessions associated 3507 * with a node ACL when the user invokes 3508 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3509 */ 3510 static void srpt_close_session(struct se_session *se_sess) 3511 { 3512 DECLARE_COMPLETION_ONSTACK(release_done); 3513 struct srpt_rdma_ch *ch; 3514 struct srpt_device *sdev; 3515 unsigned long res; 3516 3517 ch = se_sess->fabric_sess_ptr; 3518 WARN_ON(ch->sess != se_sess); 3519 3520 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch)); 3521 3522 sdev = ch->sport->sdev; 3523 spin_lock_irq(&sdev->spinlock); 3524 BUG_ON(ch->release_done); 3525 ch->release_done = &release_done; 3526 __srpt_close_ch(ch); 3527 spin_unlock_irq(&sdev->spinlock); 3528 3529 res = wait_for_completion_timeout(&release_done, 60 * HZ); 3530 WARN_ON(res == 0); 3531 } 3532 3533 /** 3534 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 3535 * 3536 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3537 * This object represents an arbitrary integer used to uniquely identify a 3538 * particular attached remote initiator port to a particular SCSI target port 3539 * within a particular SCSI target device within a particular SCSI instance. 3540 */ 3541 static u32 srpt_sess_get_index(struct se_session *se_sess) 3542 { 3543 return 0; 3544 } 3545 3546 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3547 { 3548 } 3549 3550 static u32 srpt_get_task_tag(struct se_cmd *se_cmd) 3551 { 3552 struct srpt_send_ioctx *ioctx; 3553 3554 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3555 return ioctx->tag; 3556 } 3557 3558 /* Note: only used from inside debug printk's by the TCM core. */ 3559 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3560 { 3561 struct srpt_send_ioctx *ioctx; 3562 3563 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3564 return srpt_get_cmd_state(ioctx); 3565 } 3566 3567 /** 3568 * srpt_parse_i_port_id() - Parse an initiator port ID. 3569 * @name: ASCII representation of a 128-bit initiator port ID. 3570 * @i_port_id: Binary 128-bit port ID. 3571 */ 3572 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3573 { 3574 const char *p; 3575 unsigned len, count, leading_zero_bytes; 3576 int ret, rc; 3577 3578 p = name; 3579 if (strncasecmp(p, "0x", 2) == 0) 3580 p += 2; 3581 ret = -EINVAL; 3582 len = strlen(p); 3583 if (len % 2) 3584 goto out; 3585 count = min(len / 2, 16U); 3586 leading_zero_bytes = 16 - count; 3587 memset(i_port_id, 0, leading_zero_bytes); 3588 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 3589 if (rc < 0) 3590 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 3591 ret = 0; 3592 out: 3593 return ret; 3594 } 3595 3596 /* 3597 * configfs callback function invoked for 3598 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3599 */ 3600 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg, 3601 struct config_group *group, 3602 const char *name) 3603 { 3604 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3605 struct se_node_acl *se_nacl, *se_nacl_new; 3606 struct srpt_node_acl *nacl; 3607 int ret = 0; 3608 u32 nexus_depth = 1; 3609 u8 i_port_id[16]; 3610 3611 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 3612 pr_err("invalid initiator port ID %s\n", name); 3613 ret = -EINVAL; 3614 goto err; 3615 } 3616 3617 se_nacl_new = srpt_alloc_fabric_acl(tpg); 3618 if (!se_nacl_new) { 3619 ret = -ENOMEM; 3620 goto err; 3621 } 3622 /* 3623 * nacl_new may be released by core_tpg_add_initiator_node_acl() 3624 * when converting a node ACL from demo mode to explict 3625 */ 3626 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name, 3627 nexus_depth); 3628 if (IS_ERR(se_nacl)) { 3629 ret = PTR_ERR(se_nacl); 3630 goto err; 3631 } 3632 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */ 3633 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3634 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16); 3635 nacl->sport = sport; 3636 3637 spin_lock_irq(&sport->port_acl_lock); 3638 list_add_tail(&nacl->list, &sport->port_acl_list); 3639 spin_unlock_irq(&sport->port_acl_lock); 3640 3641 return se_nacl; 3642 err: 3643 return ERR_PTR(ret); 3644 } 3645 3646 /* 3647 * configfs callback function invoked for 3648 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3649 */ 3650 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl) 3651 { 3652 struct srpt_node_acl *nacl; 3653 struct srpt_device *sdev; 3654 struct srpt_port *sport; 3655 3656 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3657 sport = nacl->sport; 3658 sdev = sport->sdev; 3659 spin_lock_irq(&sport->port_acl_lock); 3660 list_del(&nacl->list); 3661 spin_unlock_irq(&sport->port_acl_lock); 3662 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1); 3663 srpt_release_fabric_acl(NULL, se_nacl); 3664 } 3665 3666 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size( 3667 struct se_portal_group *se_tpg, 3668 char *page) 3669 { 3670 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3671 3672 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3673 } 3674 3675 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size( 3676 struct se_portal_group *se_tpg, 3677 const char *page, 3678 size_t count) 3679 { 3680 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3681 unsigned long val; 3682 int ret; 3683 3684 ret = kstrtoul(page, 0, &val); 3685 if (ret < 0) { 3686 pr_err("kstrtoul() failed with ret: %d\n", ret); 3687 return -EINVAL; 3688 } 3689 if (val > MAX_SRPT_RDMA_SIZE) { 3690 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3691 MAX_SRPT_RDMA_SIZE); 3692 return -EINVAL; 3693 } 3694 if (val < DEFAULT_MAX_RDMA_SIZE) { 3695 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3696 val, DEFAULT_MAX_RDMA_SIZE); 3697 return -EINVAL; 3698 } 3699 sport->port_attrib.srp_max_rdma_size = val; 3700 3701 return count; 3702 } 3703 3704 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR); 3705 3706 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size( 3707 struct se_portal_group *se_tpg, 3708 char *page) 3709 { 3710 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3711 3712 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3713 } 3714 3715 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size( 3716 struct se_portal_group *se_tpg, 3717 const char *page, 3718 size_t count) 3719 { 3720 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3721 unsigned long val; 3722 int ret; 3723 3724 ret = kstrtoul(page, 0, &val); 3725 if (ret < 0) { 3726 pr_err("kstrtoul() failed with ret: %d\n", ret); 3727 return -EINVAL; 3728 } 3729 if (val > MAX_SRPT_RSP_SIZE) { 3730 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3731 MAX_SRPT_RSP_SIZE); 3732 return -EINVAL; 3733 } 3734 if (val < MIN_MAX_RSP_SIZE) { 3735 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3736 MIN_MAX_RSP_SIZE); 3737 return -EINVAL; 3738 } 3739 sport->port_attrib.srp_max_rsp_size = val; 3740 3741 return count; 3742 } 3743 3744 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR); 3745 3746 static ssize_t srpt_tpg_attrib_show_srp_sq_size( 3747 struct se_portal_group *se_tpg, 3748 char *page) 3749 { 3750 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3751 3752 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3753 } 3754 3755 static ssize_t srpt_tpg_attrib_store_srp_sq_size( 3756 struct se_portal_group *se_tpg, 3757 const char *page, 3758 size_t count) 3759 { 3760 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3761 unsigned long val; 3762 int ret; 3763 3764 ret = kstrtoul(page, 0, &val); 3765 if (ret < 0) { 3766 pr_err("kstrtoul() failed with ret: %d\n", ret); 3767 return -EINVAL; 3768 } 3769 if (val > MAX_SRPT_SRQ_SIZE) { 3770 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3771 MAX_SRPT_SRQ_SIZE); 3772 return -EINVAL; 3773 } 3774 if (val < MIN_SRPT_SRQ_SIZE) { 3775 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3776 MIN_SRPT_SRQ_SIZE); 3777 return -EINVAL; 3778 } 3779 sport->port_attrib.srp_sq_size = val; 3780 3781 return count; 3782 } 3783 3784 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR); 3785 3786 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3787 &srpt_tpg_attrib_srp_max_rdma_size.attr, 3788 &srpt_tpg_attrib_srp_max_rsp_size.attr, 3789 &srpt_tpg_attrib_srp_sq_size.attr, 3790 NULL, 3791 }; 3792 3793 static ssize_t srpt_tpg_show_enable( 3794 struct se_portal_group *se_tpg, 3795 char *page) 3796 { 3797 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3798 3799 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3800 } 3801 3802 static ssize_t srpt_tpg_store_enable( 3803 struct se_portal_group *se_tpg, 3804 const char *page, 3805 size_t count) 3806 { 3807 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3808 unsigned long tmp; 3809 int ret; 3810 3811 ret = kstrtoul(page, 0, &tmp); 3812 if (ret < 0) { 3813 pr_err("Unable to extract srpt_tpg_store_enable\n"); 3814 return -EINVAL; 3815 } 3816 3817 if ((tmp != 0) && (tmp != 1)) { 3818 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3819 return -EINVAL; 3820 } 3821 if (tmp == 1) 3822 sport->enabled = true; 3823 else 3824 sport->enabled = false; 3825 3826 return count; 3827 } 3828 3829 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR); 3830 3831 static struct configfs_attribute *srpt_tpg_attrs[] = { 3832 &srpt_tpg_enable.attr, 3833 NULL, 3834 }; 3835 3836 /** 3837 * configfs callback invoked for 3838 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3839 */ 3840 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3841 struct config_group *group, 3842 const char *name) 3843 { 3844 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3845 int res; 3846 3847 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 3848 res = core_tpg_register(&srpt_template, &sport->port_wwn, 3849 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL); 3850 if (res) 3851 return ERR_PTR(res); 3852 3853 return &sport->port_tpg_1; 3854 } 3855 3856 /** 3857 * configfs callback invoked for 3858 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3859 */ 3860 static void srpt_drop_tpg(struct se_portal_group *tpg) 3861 { 3862 struct srpt_port *sport = container_of(tpg, 3863 struct srpt_port, port_tpg_1); 3864 3865 sport->enabled = false; 3866 core_tpg_deregister(&sport->port_tpg_1); 3867 } 3868 3869 /** 3870 * configfs callback invoked for 3871 * mkdir /sys/kernel/config/target/$driver/$port 3872 */ 3873 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3874 struct config_group *group, 3875 const char *name) 3876 { 3877 struct srpt_port *sport; 3878 int ret; 3879 3880 sport = srpt_lookup_port(name); 3881 pr_debug("make_tport(%s)\n", name); 3882 ret = -EINVAL; 3883 if (!sport) 3884 goto err; 3885 3886 return &sport->port_wwn; 3887 3888 err: 3889 return ERR_PTR(ret); 3890 } 3891 3892 /** 3893 * configfs callback invoked for 3894 * rmdir /sys/kernel/config/target/$driver/$port 3895 */ 3896 static void srpt_drop_tport(struct se_wwn *wwn) 3897 { 3898 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3899 3900 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3901 } 3902 3903 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf, 3904 char *buf) 3905 { 3906 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3907 } 3908 3909 TF_WWN_ATTR_RO(srpt, version); 3910 3911 static struct configfs_attribute *srpt_wwn_attrs[] = { 3912 &srpt_wwn_version.attr, 3913 NULL, 3914 }; 3915 3916 static const struct target_core_fabric_ops srpt_template = { 3917 .module = THIS_MODULE, 3918 .name = "srpt", 3919 .get_fabric_name = srpt_get_fabric_name, 3920 .get_fabric_proto_ident = srpt_get_fabric_proto_ident, 3921 .tpg_get_wwn = srpt_get_fabric_wwn, 3922 .tpg_get_tag = srpt_get_tag, 3923 .tpg_get_default_depth = srpt_get_default_depth, 3924 .tpg_get_pr_transport_id = srpt_get_pr_transport_id, 3925 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len, 3926 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id, 3927 .tpg_check_demo_mode = srpt_check_false, 3928 .tpg_check_demo_mode_cache = srpt_check_true, 3929 .tpg_check_demo_mode_write_protect = srpt_check_true, 3930 .tpg_check_prod_mode_write_protect = srpt_check_false, 3931 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl, 3932 .tpg_release_fabric_acl = srpt_release_fabric_acl, 3933 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3934 .release_cmd = srpt_release_cmd, 3935 .check_stop_free = srpt_check_stop_free, 3936 .shutdown_session = srpt_shutdown_session, 3937 .close_session = srpt_close_session, 3938 .sess_get_index = srpt_sess_get_index, 3939 .sess_get_initiator_sid = NULL, 3940 .write_pending = srpt_write_pending, 3941 .write_pending_status = srpt_write_pending_status, 3942 .set_default_node_attributes = srpt_set_default_node_attrs, 3943 .get_task_tag = srpt_get_task_tag, 3944 .get_cmd_state = srpt_get_tcm_cmd_state, 3945 .queue_data_in = srpt_queue_data_in, 3946 .queue_status = srpt_queue_status, 3947 .queue_tm_rsp = srpt_queue_tm_rsp, 3948 .aborted_task = srpt_aborted_task, 3949 /* 3950 * Setup function pointers for generic logic in 3951 * target_core_fabric_configfs.c 3952 */ 3953 .fabric_make_wwn = srpt_make_tport, 3954 .fabric_drop_wwn = srpt_drop_tport, 3955 .fabric_make_tpg = srpt_make_tpg, 3956 .fabric_drop_tpg = srpt_drop_tpg, 3957 .fabric_post_link = NULL, 3958 .fabric_pre_unlink = NULL, 3959 .fabric_make_np = NULL, 3960 .fabric_drop_np = NULL, 3961 .fabric_make_nodeacl = srpt_make_nodeacl, 3962 .fabric_drop_nodeacl = srpt_drop_nodeacl, 3963 3964 .tfc_wwn_attrs = srpt_wwn_attrs, 3965 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3966 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3967 }; 3968 3969 /** 3970 * srpt_init_module() - Kernel module initialization. 3971 * 3972 * Note: Since ib_register_client() registers callback functions, and since at 3973 * least one of these callback functions (srpt_add_one()) calls target core 3974 * functions, this driver must be registered with the target core before 3975 * ib_register_client() is called. 3976 */ 3977 static int __init srpt_init_module(void) 3978 { 3979 int ret; 3980 3981 ret = -EINVAL; 3982 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3983 pr_err("invalid value %d for kernel module parameter" 3984 " srp_max_req_size -- must be at least %d.\n", 3985 srp_max_req_size, MIN_MAX_REQ_SIZE); 3986 goto out; 3987 } 3988 3989 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3990 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3991 pr_err("invalid value %d for kernel module parameter" 3992 " srpt_srq_size -- must be in the range [%d..%d].\n", 3993 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3994 goto out; 3995 } 3996 3997 ret = target_register_template(&srpt_template); 3998 if (ret) 3999 goto out; 4000 4001 ret = ib_register_client(&srpt_client); 4002 if (ret) { 4003 pr_err("couldn't register IB client\n"); 4004 goto out_unregister_target; 4005 } 4006 4007 return 0; 4008 4009 out_unregister_target: 4010 target_unregister_template(&srpt_template); 4011 out: 4012 return ret; 4013 } 4014 4015 static void __exit srpt_cleanup_module(void) 4016 { 4017 ib_unregister_client(&srpt_client); 4018 target_unregister_template(&srpt_template); 4019 } 4020 4021 module_init(srpt_init_module); 4022 module_exit(srpt_cleanup_module); 4023