1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <linux/inet.h> 45 #include <rdma/ib_cache.h> 46 #include <scsi/scsi_proto.h> 47 #include <scsi/scsi_tcq.h> 48 #include <target/target_core_base.h> 49 #include <target/target_core_fabric.h> 50 #include "ib_srpt.h" 51 52 /* Name of this kernel module. */ 53 #define DRV_NAME "ib_srpt" 54 55 #define SRPT_ID_STRING "Linux SRP target" 56 57 #undef pr_fmt 58 #define pr_fmt(fmt) DRV_NAME " " fmt 59 60 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 61 MODULE_DESCRIPTION("SCSI RDMA Protocol target driver"); 62 MODULE_LICENSE("Dual BSD/GPL"); 63 64 /* 65 * Global Variables 66 */ 67 68 static u64 srpt_service_guid; 69 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 70 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 71 72 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 73 module_param(srp_max_req_size, int, 0444); 74 MODULE_PARM_DESC(srp_max_req_size, 75 "Maximum size of SRP request messages in bytes."); 76 77 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 78 module_param(srpt_srq_size, int, 0444); 79 MODULE_PARM_DESC(srpt_srq_size, 80 "Shared receive queue (SRQ) size."); 81 82 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp) 83 { 84 return sprintf(buffer, "0x%016llx\n", *(u64 *)kp->arg); 85 } 86 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 87 0444); 88 MODULE_PARM_DESC(srpt_service_guid, 89 "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA."); 90 91 static struct ib_client srpt_client; 92 /* Protects both rdma_cm_port and rdma_cm_id. */ 93 static DEFINE_MUTEX(rdma_cm_mutex); 94 /* Port number RDMA/CM will bind to. */ 95 static u16 rdma_cm_port; 96 static struct rdma_cm_id *rdma_cm_id; 97 static void srpt_release_cmd(struct se_cmd *se_cmd); 98 static void srpt_free_ch(struct kref *kref); 99 static int srpt_queue_status(struct se_cmd *cmd); 100 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc); 101 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc); 102 static void srpt_process_wait_list(struct srpt_rdma_ch *ch); 103 104 /* 105 * The only allowed channel state changes are those that change the channel 106 * state into a state with a higher numerical value. Hence the new > prev test. 107 */ 108 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new) 109 { 110 unsigned long flags; 111 enum rdma_ch_state prev; 112 bool changed = false; 113 114 spin_lock_irqsave(&ch->spinlock, flags); 115 prev = ch->state; 116 if (new > prev) { 117 ch->state = new; 118 changed = true; 119 } 120 spin_unlock_irqrestore(&ch->spinlock, flags); 121 122 return changed; 123 } 124 125 /** 126 * srpt_event_handler - asynchronous IB event callback function 127 * @handler: IB event handler registered by ib_register_event_handler(). 128 * @event: Description of the event that occurred. 129 * 130 * Callback function called by the InfiniBand core when an asynchronous IB 131 * event occurs. This callback may occur in interrupt context. See also 132 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 133 * Architecture Specification. 134 */ 135 static void srpt_event_handler(struct ib_event_handler *handler, 136 struct ib_event *event) 137 { 138 struct srpt_device *sdev = 139 container_of(handler, struct srpt_device, event_handler); 140 struct srpt_port *sport; 141 u8 port_num; 142 143 pr_debug("ASYNC event= %d on device= %s\n", event->event, 144 dev_name(&sdev->device->dev)); 145 146 switch (event->event) { 147 case IB_EVENT_PORT_ERR: 148 port_num = event->element.port_num - 1; 149 if (port_num < sdev->device->phys_port_cnt) { 150 sport = &sdev->port[port_num]; 151 sport->lid = 0; 152 sport->sm_lid = 0; 153 } else { 154 WARN(true, "event %d: port_num %d out of range 1..%d\n", 155 event->event, port_num + 1, 156 sdev->device->phys_port_cnt); 157 } 158 break; 159 case IB_EVENT_PORT_ACTIVE: 160 case IB_EVENT_LID_CHANGE: 161 case IB_EVENT_PKEY_CHANGE: 162 case IB_EVENT_SM_CHANGE: 163 case IB_EVENT_CLIENT_REREGISTER: 164 case IB_EVENT_GID_CHANGE: 165 /* Refresh port data asynchronously. */ 166 port_num = event->element.port_num - 1; 167 if (port_num < sdev->device->phys_port_cnt) { 168 sport = &sdev->port[port_num]; 169 if (!sport->lid && !sport->sm_lid) 170 schedule_work(&sport->work); 171 } else { 172 WARN(true, "event %d: port_num %d out of range 1..%d\n", 173 event->event, port_num + 1, 174 sdev->device->phys_port_cnt); 175 } 176 break; 177 default: 178 pr_err("received unrecognized IB event %d\n", event->event); 179 break; 180 } 181 } 182 183 /** 184 * srpt_srq_event - SRQ event callback function 185 * @event: Description of the event that occurred. 186 * @ctx: Context pointer specified at SRQ creation time. 187 */ 188 static void srpt_srq_event(struct ib_event *event, void *ctx) 189 { 190 pr_debug("SRQ event %d\n", event->event); 191 } 192 193 static const char *get_ch_state_name(enum rdma_ch_state s) 194 { 195 switch (s) { 196 case CH_CONNECTING: 197 return "connecting"; 198 case CH_LIVE: 199 return "live"; 200 case CH_DISCONNECTING: 201 return "disconnecting"; 202 case CH_DRAINING: 203 return "draining"; 204 case CH_DISCONNECTED: 205 return "disconnected"; 206 } 207 return "???"; 208 } 209 210 /** 211 * srpt_qp_event - QP event callback function 212 * @event: Description of the event that occurred. 213 * @ch: SRPT RDMA channel. 214 */ 215 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 216 { 217 pr_debug("QP event %d on ch=%p sess_name=%s-%d state=%s\n", 218 event->event, ch, ch->sess_name, ch->qp->qp_num, 219 get_ch_state_name(ch->state)); 220 221 switch (event->event) { 222 case IB_EVENT_COMM_EST: 223 if (ch->using_rdma_cm) 224 rdma_notify(ch->rdma_cm.cm_id, event->event); 225 else 226 ib_cm_notify(ch->ib_cm.cm_id, event->event); 227 break; 228 case IB_EVENT_QP_LAST_WQE_REACHED: 229 pr_debug("%s-%d, state %s: received Last WQE event.\n", 230 ch->sess_name, ch->qp->qp_num, 231 get_ch_state_name(ch->state)); 232 break; 233 default: 234 pr_err("received unrecognized IB QP event %d\n", event->event); 235 break; 236 } 237 } 238 239 /** 240 * srpt_set_ioc - initialize a IOUnitInfo structure 241 * @c_list: controller list. 242 * @slot: one-based slot number. 243 * @value: four-bit value. 244 * 245 * Copies the lowest four bits of value in element slot of the array of four 246 * bit elements called c_list (controller list). The index slot is one-based. 247 */ 248 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 249 { 250 u16 id; 251 u8 tmp; 252 253 id = (slot - 1) / 2; 254 if (slot & 0x1) { 255 tmp = c_list[id] & 0xf; 256 c_list[id] = (value << 4) | tmp; 257 } else { 258 tmp = c_list[id] & 0xf0; 259 c_list[id] = (value & 0xf) | tmp; 260 } 261 } 262 263 /** 264 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram 265 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO. 266 * 267 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 268 * Specification. 269 */ 270 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 271 { 272 struct ib_class_port_info *cif; 273 274 cif = (struct ib_class_port_info *)mad->data; 275 memset(cif, 0, sizeof(*cif)); 276 cif->base_version = 1; 277 cif->class_version = 1; 278 279 ib_set_cpi_resp_time(cif, 20); 280 mad->mad_hdr.status = 0; 281 } 282 283 /** 284 * srpt_get_iou - write IOUnitInfo to a management datagram 285 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO. 286 * 287 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 288 * Specification. See also section B.7, table B.6 in the SRP r16a document. 289 */ 290 static void srpt_get_iou(struct ib_dm_mad *mad) 291 { 292 struct ib_dm_iou_info *ioui; 293 u8 slot; 294 int i; 295 296 ioui = (struct ib_dm_iou_info *)mad->data; 297 ioui->change_id = cpu_to_be16(1); 298 ioui->max_controllers = 16; 299 300 /* set present for slot 1 and empty for the rest */ 301 srpt_set_ioc(ioui->controller_list, 1, 1); 302 for (i = 1, slot = 2; i < 16; i++, slot++) 303 srpt_set_ioc(ioui->controller_list, slot, 0); 304 305 mad->mad_hdr.status = 0; 306 } 307 308 /** 309 * srpt_get_ioc - write IOControllerprofile to a management datagram 310 * @sport: HCA port through which the MAD has been received. 311 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query. 312 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE. 313 * 314 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 315 * Architecture Specification. See also section B.7, table B.7 in the SRP 316 * r16a document. 317 */ 318 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 319 struct ib_dm_mad *mad) 320 { 321 struct srpt_device *sdev = sport->sdev; 322 struct ib_dm_ioc_profile *iocp; 323 int send_queue_depth; 324 325 iocp = (struct ib_dm_ioc_profile *)mad->data; 326 327 if (!slot || slot > 16) { 328 mad->mad_hdr.status 329 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 330 return; 331 } 332 333 if (slot > 2) { 334 mad->mad_hdr.status 335 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 336 return; 337 } 338 339 if (sdev->use_srq) 340 send_queue_depth = sdev->srq_size; 341 else 342 send_queue_depth = min(MAX_SRPT_RQ_SIZE, 343 sdev->device->attrs.max_qp_wr); 344 345 memset(iocp, 0, sizeof(*iocp)); 346 strcpy(iocp->id_string, SRPT_ID_STRING); 347 iocp->guid = cpu_to_be64(srpt_service_guid); 348 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 349 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id); 350 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver); 351 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 352 iocp->subsys_device_id = 0x0; 353 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 354 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); 355 iocp->protocol = cpu_to_be16(SRP_PROTOCOL); 356 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); 357 iocp->send_queue_depth = cpu_to_be16(send_queue_depth); 358 iocp->rdma_read_depth = 4; 359 iocp->send_size = cpu_to_be32(srp_max_req_size); 360 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 361 1U << 24)); 362 iocp->num_svc_entries = 1; 363 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 364 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 365 366 mad->mad_hdr.status = 0; 367 } 368 369 /** 370 * srpt_get_svc_entries - write ServiceEntries to a management datagram 371 * @ioc_guid: I/O controller GUID to use in reply. 372 * @slot: I/O controller number. 373 * @hi: End of the range of service entries to be specified in the reply. 374 * @lo: Start of the range of service entries to be specified in the reply.. 375 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES. 376 * 377 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 378 * Specification. See also section B.7, table B.8 in the SRP r16a document. 379 */ 380 static void srpt_get_svc_entries(u64 ioc_guid, 381 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 382 { 383 struct ib_dm_svc_entries *svc_entries; 384 385 WARN_ON(!ioc_guid); 386 387 if (!slot || slot > 16) { 388 mad->mad_hdr.status 389 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 390 return; 391 } 392 393 if (slot > 2 || lo > hi || hi > 1) { 394 mad->mad_hdr.status 395 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 396 return; 397 } 398 399 svc_entries = (struct ib_dm_svc_entries *)mad->data; 400 memset(svc_entries, 0, sizeof(*svc_entries)); 401 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 402 snprintf(svc_entries->service_entries[0].name, 403 sizeof(svc_entries->service_entries[0].name), 404 "%s%016llx", 405 SRP_SERVICE_NAME_PREFIX, 406 ioc_guid); 407 408 mad->mad_hdr.status = 0; 409 } 410 411 /** 412 * srpt_mgmt_method_get - process a received management datagram 413 * @sp: HCA port through which the MAD has been received. 414 * @rq_mad: received MAD. 415 * @rsp_mad: response MAD. 416 */ 417 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 418 struct ib_dm_mad *rsp_mad) 419 { 420 u16 attr_id; 421 u32 slot; 422 u8 hi, lo; 423 424 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 425 switch (attr_id) { 426 case DM_ATTR_CLASS_PORT_INFO: 427 srpt_get_class_port_info(rsp_mad); 428 break; 429 case DM_ATTR_IOU_INFO: 430 srpt_get_iou(rsp_mad); 431 break; 432 case DM_ATTR_IOC_PROFILE: 433 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 434 srpt_get_ioc(sp, slot, rsp_mad); 435 break; 436 case DM_ATTR_SVC_ENTRIES: 437 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 438 hi = (u8) ((slot >> 8) & 0xff); 439 lo = (u8) (slot & 0xff); 440 slot = (u16) ((slot >> 16) & 0xffff); 441 srpt_get_svc_entries(srpt_service_guid, 442 slot, hi, lo, rsp_mad); 443 break; 444 default: 445 rsp_mad->mad_hdr.status = 446 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 447 break; 448 } 449 } 450 451 /** 452 * srpt_mad_send_handler - MAD send completion callback 453 * @mad_agent: Return value of ib_register_mad_agent(). 454 * @mad_wc: Work completion reporting that the MAD has been sent. 455 */ 456 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 457 struct ib_mad_send_wc *mad_wc) 458 { 459 rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE); 460 ib_free_send_mad(mad_wc->send_buf); 461 } 462 463 /** 464 * srpt_mad_recv_handler - MAD reception callback function 465 * @mad_agent: Return value of ib_register_mad_agent(). 466 * @send_buf: Not used. 467 * @mad_wc: Work completion reporting that a MAD has been received. 468 */ 469 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 470 struct ib_mad_send_buf *send_buf, 471 struct ib_mad_recv_wc *mad_wc) 472 { 473 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 474 struct ib_ah *ah; 475 struct ib_mad_send_buf *rsp; 476 struct ib_dm_mad *dm_mad; 477 478 if (!mad_wc || !mad_wc->recv_buf.mad) 479 return; 480 481 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 482 mad_wc->recv_buf.grh, mad_agent->port_num); 483 if (IS_ERR(ah)) 484 goto err; 485 486 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 487 488 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 489 mad_wc->wc->pkey_index, 0, 490 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 491 GFP_KERNEL, 492 IB_MGMT_BASE_VERSION); 493 if (IS_ERR(rsp)) 494 goto err_rsp; 495 496 rsp->ah = ah; 497 498 dm_mad = rsp->mad; 499 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad)); 500 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 501 dm_mad->mad_hdr.status = 0; 502 503 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 504 case IB_MGMT_METHOD_GET: 505 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 506 break; 507 case IB_MGMT_METHOD_SET: 508 dm_mad->mad_hdr.status = 509 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 510 break; 511 default: 512 dm_mad->mad_hdr.status = 513 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 514 break; 515 } 516 517 if (!ib_post_send_mad(rsp, NULL)) { 518 ib_free_recv_mad(mad_wc); 519 /* will destroy_ah & free_send_mad in send completion */ 520 return; 521 } 522 523 ib_free_send_mad(rsp); 524 525 err_rsp: 526 rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE); 527 err: 528 ib_free_recv_mad(mad_wc); 529 } 530 531 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid) 532 { 533 const __be16 *g = (const __be16 *)guid; 534 535 return snprintf(buf, size, "%04x:%04x:%04x:%04x", 536 be16_to_cpu(g[0]), be16_to_cpu(g[1]), 537 be16_to_cpu(g[2]), be16_to_cpu(g[3])); 538 } 539 540 /** 541 * srpt_refresh_port - configure a HCA port 542 * @sport: SRPT HCA port. 543 * 544 * Enable InfiniBand management datagram processing, update the cached sm_lid, 545 * lid and gid values, and register a callback function for processing MADs 546 * on the specified port. 547 * 548 * Note: It is safe to call this function more than once for the same port. 549 */ 550 static int srpt_refresh_port(struct srpt_port *sport) 551 { 552 struct ib_mad_reg_req reg_req; 553 struct ib_port_modify port_modify; 554 struct ib_port_attr port_attr; 555 int ret; 556 557 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 558 if (ret) 559 return ret; 560 561 sport->sm_lid = port_attr.sm_lid; 562 sport->lid = port_attr.lid; 563 564 ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 565 if (ret) 566 return ret; 567 568 sport->port_guid_id.wwn.priv = sport; 569 srpt_format_guid(sport->port_guid_id.name, 570 sizeof(sport->port_guid_id.name), 571 &sport->gid.global.interface_id); 572 sport->port_gid_id.wwn.priv = sport; 573 snprintf(sport->port_gid_id.name, sizeof(sport->port_gid_id.name), 574 "0x%016llx%016llx", 575 be64_to_cpu(sport->gid.global.subnet_prefix), 576 be64_to_cpu(sport->gid.global.interface_id)); 577 578 if (rdma_protocol_iwarp(sport->sdev->device, sport->port)) 579 return 0; 580 581 memset(&port_modify, 0, sizeof(port_modify)); 582 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 583 port_modify.clr_port_cap_mask = 0; 584 585 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 586 if (ret) { 587 pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n", 588 dev_name(&sport->sdev->device->dev), sport->port, ret); 589 return 0; 590 } 591 592 if (!sport->mad_agent) { 593 memset(®_req, 0, sizeof(reg_req)); 594 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 595 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 596 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 597 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 598 599 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 600 sport->port, 601 IB_QPT_GSI, 602 ®_req, 0, 603 srpt_mad_send_handler, 604 srpt_mad_recv_handler, 605 sport, 0); 606 if (IS_ERR(sport->mad_agent)) { 607 pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n", 608 dev_name(&sport->sdev->device->dev), sport->port, 609 PTR_ERR(sport->mad_agent)); 610 sport->mad_agent = NULL; 611 memset(&port_modify, 0, sizeof(port_modify)); 612 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 613 ib_modify_port(sport->sdev->device, sport->port, 0, 614 &port_modify); 615 616 } 617 } 618 619 return 0; 620 } 621 622 /** 623 * srpt_unregister_mad_agent - unregister MAD callback functions 624 * @sdev: SRPT HCA pointer. 625 * @port_cnt: number of ports with registered MAD 626 * 627 * Note: It is safe to call this function more than once for the same device. 628 */ 629 static void srpt_unregister_mad_agent(struct srpt_device *sdev, int port_cnt) 630 { 631 struct ib_port_modify port_modify = { 632 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 633 }; 634 struct srpt_port *sport; 635 int i; 636 637 for (i = 1; i <= port_cnt; i++) { 638 sport = &sdev->port[i - 1]; 639 WARN_ON(sport->port != i); 640 if (sport->mad_agent) { 641 ib_modify_port(sdev->device, i, 0, &port_modify); 642 ib_unregister_mad_agent(sport->mad_agent); 643 sport->mad_agent = NULL; 644 } 645 } 646 } 647 648 /** 649 * srpt_alloc_ioctx - allocate a SRPT I/O context structure 650 * @sdev: SRPT HCA pointer. 651 * @ioctx_size: I/O context size. 652 * @buf_cache: I/O buffer cache. 653 * @dir: DMA data direction. 654 */ 655 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 656 int ioctx_size, 657 struct kmem_cache *buf_cache, 658 enum dma_data_direction dir) 659 { 660 struct srpt_ioctx *ioctx; 661 662 ioctx = kzalloc(ioctx_size, GFP_KERNEL); 663 if (!ioctx) 664 goto err; 665 666 ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL); 667 if (!ioctx->buf) 668 goto err_free_ioctx; 669 670 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, 671 kmem_cache_size(buf_cache), dir); 672 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 673 goto err_free_buf; 674 675 return ioctx; 676 677 err_free_buf: 678 kmem_cache_free(buf_cache, ioctx->buf); 679 err_free_ioctx: 680 kfree(ioctx); 681 err: 682 return NULL; 683 } 684 685 /** 686 * srpt_free_ioctx - free a SRPT I/O context structure 687 * @sdev: SRPT HCA pointer. 688 * @ioctx: I/O context pointer. 689 * @buf_cache: I/O buffer cache. 690 * @dir: DMA data direction. 691 */ 692 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 693 struct kmem_cache *buf_cache, 694 enum dma_data_direction dir) 695 { 696 if (!ioctx) 697 return; 698 699 ib_dma_unmap_single(sdev->device, ioctx->dma, 700 kmem_cache_size(buf_cache), dir); 701 kmem_cache_free(buf_cache, ioctx->buf); 702 kfree(ioctx); 703 } 704 705 /** 706 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures 707 * @sdev: Device to allocate the I/O context ring for. 708 * @ring_size: Number of elements in the I/O context ring. 709 * @ioctx_size: I/O context size. 710 * @buf_cache: I/O buffer cache. 711 * @alignment_offset: Offset in each ring buffer at which the SRP information 712 * unit starts. 713 * @dir: DMA data direction. 714 */ 715 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 716 int ring_size, int ioctx_size, 717 struct kmem_cache *buf_cache, 718 int alignment_offset, 719 enum dma_data_direction dir) 720 { 721 struct srpt_ioctx **ring; 722 int i; 723 724 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) && 725 ioctx_size != sizeof(struct srpt_send_ioctx)); 726 727 ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL); 728 if (!ring) 729 goto out; 730 for (i = 0; i < ring_size; ++i) { 731 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir); 732 if (!ring[i]) 733 goto err; 734 ring[i]->index = i; 735 ring[i]->offset = alignment_offset; 736 } 737 goto out; 738 739 err: 740 while (--i >= 0) 741 srpt_free_ioctx(sdev, ring[i], buf_cache, dir); 742 kvfree(ring); 743 ring = NULL; 744 out: 745 return ring; 746 } 747 748 /** 749 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures 750 * @ioctx_ring: I/O context ring to be freed. 751 * @sdev: SRPT HCA pointer. 752 * @ring_size: Number of ring elements. 753 * @buf_cache: I/O buffer cache. 754 * @dir: DMA data direction. 755 */ 756 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 757 struct srpt_device *sdev, int ring_size, 758 struct kmem_cache *buf_cache, 759 enum dma_data_direction dir) 760 { 761 int i; 762 763 if (!ioctx_ring) 764 return; 765 766 for (i = 0; i < ring_size; ++i) 767 srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir); 768 kvfree(ioctx_ring); 769 } 770 771 /** 772 * srpt_set_cmd_state - set the state of a SCSI command 773 * @ioctx: Send I/O context. 774 * @new: New I/O context state. 775 * 776 * Does not modify the state of aborted commands. Returns the previous command 777 * state. 778 */ 779 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 780 enum srpt_command_state new) 781 { 782 enum srpt_command_state previous; 783 784 previous = ioctx->state; 785 if (previous != SRPT_STATE_DONE) 786 ioctx->state = new; 787 788 return previous; 789 } 790 791 /** 792 * srpt_test_and_set_cmd_state - test and set the state of a command 793 * @ioctx: Send I/O context. 794 * @old: Current I/O context state. 795 * @new: New I/O context state. 796 * 797 * Returns true if and only if the previous command state was equal to 'old'. 798 */ 799 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 800 enum srpt_command_state old, 801 enum srpt_command_state new) 802 { 803 enum srpt_command_state previous; 804 805 WARN_ON(!ioctx); 806 WARN_ON(old == SRPT_STATE_DONE); 807 WARN_ON(new == SRPT_STATE_NEW); 808 809 previous = ioctx->state; 810 if (previous == old) 811 ioctx->state = new; 812 813 return previous == old; 814 } 815 816 /** 817 * srpt_post_recv - post an IB receive request 818 * @sdev: SRPT HCA pointer. 819 * @ch: SRPT RDMA channel. 820 * @ioctx: Receive I/O context pointer. 821 */ 822 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch, 823 struct srpt_recv_ioctx *ioctx) 824 { 825 struct ib_sge list; 826 struct ib_recv_wr wr; 827 828 BUG_ON(!sdev); 829 list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset; 830 list.length = srp_max_req_size; 831 list.lkey = sdev->lkey; 832 833 ioctx->ioctx.cqe.done = srpt_recv_done; 834 wr.wr_cqe = &ioctx->ioctx.cqe; 835 wr.next = NULL; 836 wr.sg_list = &list; 837 wr.num_sge = 1; 838 839 if (sdev->use_srq) 840 return ib_post_srq_recv(sdev->srq, &wr, NULL); 841 else 842 return ib_post_recv(ch->qp, &wr, NULL); 843 } 844 845 /** 846 * srpt_zerolength_write - perform a zero-length RDMA write 847 * @ch: SRPT RDMA channel. 848 * 849 * A quote from the InfiniBand specification: C9-88: For an HCA responder 850 * using Reliable Connection service, for each zero-length RDMA READ or WRITE 851 * request, the R_Key shall not be validated, even if the request includes 852 * Immediate data. 853 */ 854 static int srpt_zerolength_write(struct srpt_rdma_ch *ch) 855 { 856 struct ib_rdma_wr wr = { 857 .wr = { 858 .next = NULL, 859 { .wr_cqe = &ch->zw_cqe, }, 860 .opcode = IB_WR_RDMA_WRITE, 861 .send_flags = IB_SEND_SIGNALED, 862 } 863 }; 864 865 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name, 866 ch->qp->qp_num); 867 868 return ib_post_send(ch->qp, &wr.wr, NULL); 869 } 870 871 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc) 872 { 873 struct srpt_rdma_ch *ch = wc->qp->qp_context; 874 875 pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num, 876 wc->status); 877 878 if (wc->status == IB_WC_SUCCESS) { 879 srpt_process_wait_list(ch); 880 } else { 881 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 882 schedule_work(&ch->release_work); 883 else 884 pr_debug("%s-%d: already disconnected.\n", 885 ch->sess_name, ch->qp->qp_num); 886 } 887 } 888 889 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx, 890 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg, 891 unsigned *sg_cnt) 892 { 893 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 894 struct srpt_rdma_ch *ch = ioctx->ch; 895 struct scatterlist *prev = NULL; 896 unsigned prev_nents; 897 int ret, i; 898 899 if (nbufs == 1) { 900 ioctx->rw_ctxs = &ioctx->s_rw_ctx; 901 } else { 902 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs), 903 GFP_KERNEL); 904 if (!ioctx->rw_ctxs) 905 return -ENOMEM; 906 } 907 908 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) { 909 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 910 u64 remote_addr = be64_to_cpu(db->va); 911 u32 size = be32_to_cpu(db->len); 912 u32 rkey = be32_to_cpu(db->key); 913 914 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false, 915 i < nbufs - 1); 916 if (ret) 917 goto unwind; 918 919 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port, 920 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir); 921 if (ret < 0) { 922 target_free_sgl(ctx->sg, ctx->nents); 923 goto unwind; 924 } 925 926 ioctx->n_rdma += ret; 927 ioctx->n_rw_ctx++; 928 929 if (prev) { 930 sg_unmark_end(&prev[prev_nents - 1]); 931 sg_chain(prev, prev_nents + 1, ctx->sg); 932 } else { 933 *sg = ctx->sg; 934 } 935 936 prev = ctx->sg; 937 prev_nents = ctx->nents; 938 939 *sg_cnt += ctx->nents; 940 } 941 942 return 0; 943 944 unwind: 945 while (--i >= 0) { 946 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 947 948 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 949 ctx->sg, ctx->nents, dir); 950 target_free_sgl(ctx->sg, ctx->nents); 951 } 952 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 953 kfree(ioctx->rw_ctxs); 954 return ret; 955 } 956 957 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch, 958 struct srpt_send_ioctx *ioctx) 959 { 960 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 961 int i; 962 963 for (i = 0; i < ioctx->n_rw_ctx; i++) { 964 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 965 966 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 967 ctx->sg, ctx->nents, dir); 968 target_free_sgl(ctx->sg, ctx->nents); 969 } 970 971 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 972 kfree(ioctx->rw_ctxs); 973 } 974 975 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd) 976 { 977 /* 978 * The pointer computations below will only be compiled correctly 979 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 980 * whether srp_cmd::add_data has been declared as a byte pointer. 981 */ 982 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) && 983 !__same_type(srp_cmd->add_data[0], (u8)0)); 984 985 /* 986 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 987 * CDB LENGTH' field are reserved and the size in bytes of this field 988 * is four times the value specified in bits 3..7. Hence the "& ~3". 989 */ 990 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3); 991 } 992 993 /** 994 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request 995 * @recv_ioctx: I/O context associated with the received command @srp_cmd. 996 * @ioctx: I/O context that will be used for responding to the initiator. 997 * @srp_cmd: Pointer to the SRP_CMD request data. 998 * @dir: Pointer to the variable to which the transfer direction will be 999 * written. 1000 * @sg: [out] scatterlist for the parsed SRP_CMD. 1001 * @sg_cnt: [out] length of @sg. 1002 * @data_len: Pointer to the variable to which the total data length of all 1003 * descriptors in the SRP_CMD request will be written. 1004 * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data 1005 * starts. 1006 * 1007 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 1008 * 1009 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 1010 * -ENOMEM when memory allocation fails and zero upon success. 1011 */ 1012 static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx, 1013 struct srpt_send_ioctx *ioctx, 1014 struct srp_cmd *srp_cmd, enum dma_data_direction *dir, 1015 struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len, 1016 u16 imm_data_offset) 1017 { 1018 BUG_ON(!dir); 1019 BUG_ON(!data_len); 1020 1021 /* 1022 * The lower four bits of the buffer format field contain the DATA-IN 1023 * buffer descriptor format, and the highest four bits contain the 1024 * DATA-OUT buffer descriptor format. 1025 */ 1026 if (srp_cmd->buf_fmt & 0xf) 1027 /* DATA-IN: transfer data from target to initiator (read). */ 1028 *dir = DMA_FROM_DEVICE; 1029 else if (srp_cmd->buf_fmt >> 4) 1030 /* DATA-OUT: transfer data from initiator to target (write). */ 1031 *dir = DMA_TO_DEVICE; 1032 else 1033 *dir = DMA_NONE; 1034 1035 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */ 1036 ioctx->cmd.data_direction = *dir; 1037 1038 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 1039 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 1040 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd); 1041 1042 *data_len = be32_to_cpu(db->len); 1043 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt); 1044 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 1045 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 1046 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd); 1047 int nbufs = be32_to_cpu(idb->table_desc.len) / 1048 sizeof(struct srp_direct_buf); 1049 1050 if (nbufs > 1051 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 1052 pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n", 1053 srp_cmd->data_out_desc_cnt, 1054 srp_cmd->data_in_desc_cnt, 1055 be32_to_cpu(idb->table_desc.len), 1056 sizeof(struct srp_direct_buf)); 1057 return -EINVAL; 1058 } 1059 1060 *data_len = be32_to_cpu(idb->len); 1061 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs, 1062 sg, sg_cnt); 1063 } else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) { 1064 struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd); 1065 void *data = (void *)srp_cmd + imm_data_offset; 1066 uint32_t len = be32_to_cpu(imm_buf->len); 1067 uint32_t req_size = imm_data_offset + len; 1068 1069 if (req_size > srp_max_req_size) { 1070 pr_err("Immediate data (length %d + %d) exceeds request size %d\n", 1071 imm_data_offset, len, srp_max_req_size); 1072 return -EINVAL; 1073 } 1074 if (recv_ioctx->byte_len < req_size) { 1075 pr_err("Received too few data - %d < %d\n", 1076 recv_ioctx->byte_len, req_size); 1077 return -EIO; 1078 } 1079 /* 1080 * The immediate data buffer descriptor must occur before the 1081 * immediate data itself. 1082 */ 1083 if ((void *)(imm_buf + 1) > (void *)data) { 1084 pr_err("Received invalid write request\n"); 1085 return -EINVAL; 1086 } 1087 *data_len = len; 1088 ioctx->recv_ioctx = recv_ioctx; 1089 if ((uintptr_t)data & 511) { 1090 pr_warn_once("Internal error - the receive buffers are not aligned properly.\n"); 1091 return -EINVAL; 1092 } 1093 sg_init_one(&ioctx->imm_sg, data, len); 1094 *sg = &ioctx->imm_sg; 1095 *sg_cnt = 1; 1096 return 0; 1097 } else { 1098 *data_len = 0; 1099 return 0; 1100 } 1101 } 1102 1103 /** 1104 * srpt_init_ch_qp - initialize queue pair attributes 1105 * @ch: SRPT RDMA channel. 1106 * @qp: Queue pair pointer. 1107 * 1108 * Initialized the attributes of queue pair 'qp' by allowing local write, 1109 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 1110 */ 1111 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1112 { 1113 struct ib_qp_attr *attr; 1114 int ret; 1115 1116 WARN_ON_ONCE(ch->using_rdma_cm); 1117 1118 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1119 if (!attr) 1120 return -ENOMEM; 1121 1122 attr->qp_state = IB_QPS_INIT; 1123 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE; 1124 attr->port_num = ch->sport->port; 1125 1126 ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port, 1127 ch->pkey, &attr->pkey_index); 1128 if (ret < 0) 1129 pr_err("Translating pkey %#x failed (%d) - using index 0\n", 1130 ch->pkey, ret); 1131 1132 ret = ib_modify_qp(qp, attr, 1133 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 1134 IB_QP_PKEY_INDEX); 1135 1136 kfree(attr); 1137 return ret; 1138 } 1139 1140 /** 1141 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR) 1142 * @ch: channel of the queue pair. 1143 * @qp: queue pair to change the state of. 1144 * 1145 * Returns zero upon success and a negative value upon failure. 1146 * 1147 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1148 * If this structure ever becomes larger, it might be necessary to allocate 1149 * it dynamically instead of on the stack. 1150 */ 1151 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1152 { 1153 struct ib_qp_attr qp_attr; 1154 int attr_mask; 1155 int ret; 1156 1157 WARN_ON_ONCE(ch->using_rdma_cm); 1158 1159 qp_attr.qp_state = IB_QPS_RTR; 1160 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask); 1161 if (ret) 1162 goto out; 1163 1164 qp_attr.max_dest_rd_atomic = 4; 1165 1166 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1167 1168 out: 1169 return ret; 1170 } 1171 1172 /** 1173 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS) 1174 * @ch: channel of the queue pair. 1175 * @qp: queue pair to change the state of. 1176 * 1177 * Returns zero upon success and a negative value upon failure. 1178 * 1179 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1180 * If this structure ever becomes larger, it might be necessary to allocate 1181 * it dynamically instead of on the stack. 1182 */ 1183 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1184 { 1185 struct ib_qp_attr qp_attr; 1186 int attr_mask; 1187 int ret; 1188 1189 qp_attr.qp_state = IB_QPS_RTS; 1190 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask); 1191 if (ret) 1192 goto out; 1193 1194 qp_attr.max_rd_atomic = 4; 1195 1196 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1197 1198 out: 1199 return ret; 1200 } 1201 1202 /** 1203 * srpt_ch_qp_err - set the channel queue pair state to 'error' 1204 * @ch: SRPT RDMA channel. 1205 */ 1206 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1207 { 1208 struct ib_qp_attr qp_attr; 1209 1210 qp_attr.qp_state = IB_QPS_ERR; 1211 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1212 } 1213 1214 /** 1215 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator 1216 * @ch: SRPT RDMA channel. 1217 */ 1218 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1219 { 1220 struct srpt_send_ioctx *ioctx; 1221 int tag, cpu; 1222 1223 BUG_ON(!ch); 1224 1225 tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu); 1226 if (tag < 0) 1227 return NULL; 1228 1229 ioctx = ch->ioctx_ring[tag]; 1230 BUG_ON(ioctx->ch != ch); 1231 ioctx->state = SRPT_STATE_NEW; 1232 WARN_ON_ONCE(ioctx->recv_ioctx); 1233 ioctx->n_rdma = 0; 1234 ioctx->n_rw_ctx = 0; 1235 ioctx->queue_status_only = false; 1236 /* 1237 * transport_init_se_cmd() does not initialize all fields, so do it 1238 * here. 1239 */ 1240 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1241 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1242 ioctx->cmd.map_tag = tag; 1243 ioctx->cmd.map_cpu = cpu; 1244 1245 return ioctx; 1246 } 1247 1248 /** 1249 * srpt_abort_cmd - abort a SCSI command 1250 * @ioctx: I/O context associated with the SCSI command. 1251 */ 1252 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1253 { 1254 enum srpt_command_state state; 1255 1256 BUG_ON(!ioctx); 1257 1258 /* 1259 * If the command is in a state where the target core is waiting for 1260 * the ib_srpt driver, change the state to the next state. 1261 */ 1262 1263 state = ioctx->state; 1264 switch (state) { 1265 case SRPT_STATE_NEED_DATA: 1266 ioctx->state = SRPT_STATE_DATA_IN; 1267 break; 1268 case SRPT_STATE_CMD_RSP_SENT: 1269 case SRPT_STATE_MGMT_RSP_SENT: 1270 ioctx->state = SRPT_STATE_DONE; 1271 break; 1272 default: 1273 WARN_ONCE(true, "%s: unexpected I/O context state %d\n", 1274 __func__, state); 1275 break; 1276 } 1277 1278 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state, 1279 ioctx->state, ioctx->cmd.tag); 1280 1281 switch (state) { 1282 case SRPT_STATE_NEW: 1283 case SRPT_STATE_DATA_IN: 1284 case SRPT_STATE_MGMT: 1285 case SRPT_STATE_DONE: 1286 /* 1287 * Do nothing - defer abort processing until 1288 * srpt_queue_response() is invoked. 1289 */ 1290 break; 1291 case SRPT_STATE_NEED_DATA: 1292 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag); 1293 transport_generic_request_failure(&ioctx->cmd, 1294 TCM_CHECK_CONDITION_ABORT_CMD); 1295 break; 1296 case SRPT_STATE_CMD_RSP_SENT: 1297 /* 1298 * SRP_RSP sending failed or the SRP_RSP send completion has 1299 * not been received in time. 1300 */ 1301 transport_generic_free_cmd(&ioctx->cmd, 0); 1302 break; 1303 case SRPT_STATE_MGMT_RSP_SENT: 1304 transport_generic_free_cmd(&ioctx->cmd, 0); 1305 break; 1306 default: 1307 WARN(1, "Unexpected command state (%d)", state); 1308 break; 1309 } 1310 1311 return state; 1312 } 1313 1314 /** 1315 * srpt_rdma_read_done - RDMA read completion callback 1316 * @cq: Completion queue. 1317 * @wc: Work completion. 1318 * 1319 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1320 * the data that has been transferred via IB RDMA had to be postponed until the 1321 * check_stop_free() callback. None of this is necessary anymore and needs to 1322 * be cleaned up. 1323 */ 1324 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc) 1325 { 1326 struct srpt_rdma_ch *ch = wc->qp->qp_context; 1327 struct srpt_send_ioctx *ioctx = 1328 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe); 1329 1330 WARN_ON(ioctx->n_rdma <= 0); 1331 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1332 ioctx->n_rdma = 0; 1333 1334 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1335 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n", 1336 ioctx, wc->status); 1337 srpt_abort_cmd(ioctx); 1338 return; 1339 } 1340 1341 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1342 SRPT_STATE_DATA_IN)) 1343 target_execute_cmd(&ioctx->cmd); 1344 else 1345 pr_err("%s[%d]: wrong state = %d\n", __func__, 1346 __LINE__, ioctx->state); 1347 } 1348 1349 /** 1350 * srpt_build_cmd_rsp - build a SRP_RSP response 1351 * @ch: RDMA channel through which the request has been received. 1352 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1353 * be built in the buffer ioctx->buf points at and hence this function will 1354 * overwrite the request data. 1355 * @tag: tag of the request for which this response is being generated. 1356 * @status: value for the STATUS field of the SRP_RSP information unit. 1357 * 1358 * Returns the size in bytes of the SRP_RSP response. 1359 * 1360 * An SRP_RSP response contains a SCSI status or service response. See also 1361 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1362 * response. See also SPC-2 for more information about sense data. 1363 */ 1364 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1365 struct srpt_send_ioctx *ioctx, u64 tag, 1366 int status) 1367 { 1368 struct se_cmd *cmd = &ioctx->cmd; 1369 struct srp_rsp *srp_rsp; 1370 const u8 *sense_data; 1371 int sense_data_len, max_sense_len; 1372 u32 resid = cmd->residual_count; 1373 1374 /* 1375 * The lowest bit of all SAM-3 status codes is zero (see also 1376 * paragraph 5.3 in SAM-3). 1377 */ 1378 WARN_ON(status & 1); 1379 1380 srp_rsp = ioctx->ioctx.buf; 1381 BUG_ON(!srp_rsp); 1382 1383 sense_data = ioctx->sense_data; 1384 sense_data_len = ioctx->cmd.scsi_sense_length; 1385 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1386 1387 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1388 srp_rsp->opcode = SRP_RSP; 1389 srp_rsp->req_lim_delta = 1390 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1391 srp_rsp->tag = tag; 1392 srp_rsp->status = status; 1393 1394 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1395 if (cmd->data_direction == DMA_TO_DEVICE) { 1396 /* residual data from an underflow write */ 1397 srp_rsp->flags = SRP_RSP_FLAG_DOUNDER; 1398 srp_rsp->data_out_res_cnt = cpu_to_be32(resid); 1399 } else if (cmd->data_direction == DMA_FROM_DEVICE) { 1400 /* residual data from an underflow read */ 1401 srp_rsp->flags = SRP_RSP_FLAG_DIUNDER; 1402 srp_rsp->data_in_res_cnt = cpu_to_be32(resid); 1403 } 1404 } else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1405 if (cmd->data_direction == DMA_TO_DEVICE) { 1406 /* residual data from an overflow write */ 1407 srp_rsp->flags = SRP_RSP_FLAG_DOOVER; 1408 srp_rsp->data_out_res_cnt = cpu_to_be32(resid); 1409 } else if (cmd->data_direction == DMA_FROM_DEVICE) { 1410 /* residual data from an overflow read */ 1411 srp_rsp->flags = SRP_RSP_FLAG_DIOVER; 1412 srp_rsp->data_in_res_cnt = cpu_to_be32(resid); 1413 } 1414 } 1415 1416 if (sense_data_len) { 1417 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1418 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1419 if (sense_data_len > max_sense_len) { 1420 pr_warn("truncated sense data from %d to %d bytes\n", 1421 sense_data_len, max_sense_len); 1422 sense_data_len = max_sense_len; 1423 } 1424 1425 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1426 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1427 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1428 } 1429 1430 return sizeof(*srp_rsp) + sense_data_len; 1431 } 1432 1433 /** 1434 * srpt_build_tskmgmt_rsp - build a task management response 1435 * @ch: RDMA channel through which the request has been received. 1436 * @ioctx: I/O context in which the SRP_RSP response will be built. 1437 * @rsp_code: RSP_CODE that will be stored in the response. 1438 * @tag: Tag of the request for which this response is being generated. 1439 * 1440 * Returns the size in bytes of the SRP_RSP response. 1441 * 1442 * An SRP_RSP response contains a SCSI status or service response. See also 1443 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1444 * response. 1445 */ 1446 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1447 struct srpt_send_ioctx *ioctx, 1448 u8 rsp_code, u64 tag) 1449 { 1450 struct srp_rsp *srp_rsp; 1451 int resp_data_len; 1452 int resp_len; 1453 1454 resp_data_len = 4; 1455 resp_len = sizeof(*srp_rsp) + resp_data_len; 1456 1457 srp_rsp = ioctx->ioctx.buf; 1458 BUG_ON(!srp_rsp); 1459 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1460 1461 srp_rsp->opcode = SRP_RSP; 1462 srp_rsp->req_lim_delta = 1463 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1464 srp_rsp->tag = tag; 1465 1466 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1467 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1468 srp_rsp->data[3] = rsp_code; 1469 1470 return resp_len; 1471 } 1472 1473 static int srpt_check_stop_free(struct se_cmd *cmd) 1474 { 1475 struct srpt_send_ioctx *ioctx = container_of(cmd, 1476 struct srpt_send_ioctx, cmd); 1477 1478 return target_put_sess_cmd(&ioctx->cmd); 1479 } 1480 1481 /** 1482 * srpt_handle_cmd - process a SRP_CMD information unit 1483 * @ch: SRPT RDMA channel. 1484 * @recv_ioctx: Receive I/O context. 1485 * @send_ioctx: Send I/O context. 1486 */ 1487 static void srpt_handle_cmd(struct srpt_rdma_ch *ch, 1488 struct srpt_recv_ioctx *recv_ioctx, 1489 struct srpt_send_ioctx *send_ioctx) 1490 { 1491 struct se_cmd *cmd; 1492 struct srp_cmd *srp_cmd; 1493 struct scatterlist *sg = NULL; 1494 unsigned sg_cnt = 0; 1495 u64 data_len; 1496 enum dma_data_direction dir; 1497 int rc; 1498 1499 BUG_ON(!send_ioctx); 1500 1501 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset; 1502 cmd = &send_ioctx->cmd; 1503 cmd->tag = srp_cmd->tag; 1504 1505 switch (srp_cmd->task_attr) { 1506 case SRP_CMD_SIMPLE_Q: 1507 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1508 break; 1509 case SRP_CMD_ORDERED_Q: 1510 default: 1511 cmd->sam_task_attr = TCM_ORDERED_TAG; 1512 break; 1513 case SRP_CMD_HEAD_OF_Q: 1514 cmd->sam_task_attr = TCM_HEAD_TAG; 1515 break; 1516 case SRP_CMD_ACA: 1517 cmd->sam_task_attr = TCM_ACA_TAG; 1518 break; 1519 } 1520 1521 rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir, 1522 &sg, &sg_cnt, &data_len, ch->imm_data_offset); 1523 if (rc) { 1524 if (rc != -EAGAIN) { 1525 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1526 srp_cmd->tag); 1527 } 1528 goto busy; 1529 } 1530 1531 rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb, 1532 &send_ioctx->sense_data[0], 1533 scsilun_to_int(&srp_cmd->lun), data_len, 1534 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF, 1535 sg, sg_cnt, NULL, 0, NULL, 0); 1536 if (rc != 0) { 1537 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc, 1538 srp_cmd->tag); 1539 goto busy; 1540 } 1541 return; 1542 1543 busy: 1544 target_send_busy(cmd); 1545 } 1546 1547 static int srp_tmr_to_tcm(int fn) 1548 { 1549 switch (fn) { 1550 case SRP_TSK_ABORT_TASK: 1551 return TMR_ABORT_TASK; 1552 case SRP_TSK_ABORT_TASK_SET: 1553 return TMR_ABORT_TASK_SET; 1554 case SRP_TSK_CLEAR_TASK_SET: 1555 return TMR_CLEAR_TASK_SET; 1556 case SRP_TSK_LUN_RESET: 1557 return TMR_LUN_RESET; 1558 case SRP_TSK_CLEAR_ACA: 1559 return TMR_CLEAR_ACA; 1560 default: 1561 return -1; 1562 } 1563 } 1564 1565 /** 1566 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit 1567 * @ch: SRPT RDMA channel. 1568 * @recv_ioctx: Receive I/O context. 1569 * @send_ioctx: Send I/O context. 1570 * 1571 * Returns 0 if and only if the request will be processed by the target core. 1572 * 1573 * For more information about SRP_TSK_MGMT information units, see also section 1574 * 6.7 in the SRP r16a document. 1575 */ 1576 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1577 struct srpt_recv_ioctx *recv_ioctx, 1578 struct srpt_send_ioctx *send_ioctx) 1579 { 1580 struct srp_tsk_mgmt *srp_tsk; 1581 struct se_cmd *cmd; 1582 struct se_session *sess = ch->sess; 1583 int tcm_tmr; 1584 int rc; 1585 1586 BUG_ON(!send_ioctx); 1587 1588 srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset; 1589 cmd = &send_ioctx->cmd; 1590 1591 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n", 1592 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch, 1593 ch->sess); 1594 1595 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1596 send_ioctx->cmd.tag = srp_tsk->tag; 1597 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1598 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, 1599 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr, 1600 GFP_KERNEL, srp_tsk->task_tag, 1601 TARGET_SCF_ACK_KREF); 1602 if (rc != 0) { 1603 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1604 cmd->se_tfo->queue_tm_rsp(cmd); 1605 } 1606 return; 1607 } 1608 1609 /** 1610 * srpt_handle_new_iu - process a newly received information unit 1611 * @ch: RDMA channel through which the information unit has been received. 1612 * @recv_ioctx: Receive I/O context associated with the information unit. 1613 */ 1614 static bool 1615 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx) 1616 { 1617 struct srpt_send_ioctx *send_ioctx = NULL; 1618 struct srp_cmd *srp_cmd; 1619 bool res = false; 1620 u8 opcode; 1621 1622 BUG_ON(!ch); 1623 BUG_ON(!recv_ioctx); 1624 1625 if (unlikely(ch->state == CH_CONNECTING)) 1626 goto push; 1627 1628 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1629 recv_ioctx->ioctx.dma, 1630 recv_ioctx->ioctx.offset + srp_max_req_size, 1631 DMA_FROM_DEVICE); 1632 1633 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset; 1634 opcode = srp_cmd->opcode; 1635 if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) { 1636 send_ioctx = srpt_get_send_ioctx(ch); 1637 if (unlikely(!send_ioctx)) 1638 goto push; 1639 } 1640 1641 if (!list_empty(&recv_ioctx->wait_list)) { 1642 WARN_ON_ONCE(!ch->processing_wait_list); 1643 list_del_init(&recv_ioctx->wait_list); 1644 } 1645 1646 switch (opcode) { 1647 case SRP_CMD: 1648 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1649 break; 1650 case SRP_TSK_MGMT: 1651 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1652 break; 1653 case SRP_I_LOGOUT: 1654 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1655 break; 1656 case SRP_CRED_RSP: 1657 pr_debug("received SRP_CRED_RSP\n"); 1658 break; 1659 case SRP_AER_RSP: 1660 pr_debug("received SRP_AER_RSP\n"); 1661 break; 1662 case SRP_RSP: 1663 pr_err("Received SRP_RSP\n"); 1664 break; 1665 default: 1666 pr_err("received IU with unknown opcode 0x%x\n", opcode); 1667 break; 1668 } 1669 1670 if (!send_ioctx || !send_ioctx->recv_ioctx) 1671 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx); 1672 res = true; 1673 1674 out: 1675 return res; 1676 1677 push: 1678 if (list_empty(&recv_ioctx->wait_list)) { 1679 WARN_ON_ONCE(ch->processing_wait_list); 1680 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1681 } 1682 goto out; 1683 } 1684 1685 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1686 { 1687 struct srpt_rdma_ch *ch = wc->qp->qp_context; 1688 struct srpt_recv_ioctx *ioctx = 1689 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe); 1690 1691 if (wc->status == IB_WC_SUCCESS) { 1692 int req_lim; 1693 1694 req_lim = atomic_dec_return(&ch->req_lim); 1695 if (unlikely(req_lim < 0)) 1696 pr_err("req_lim = %d < 0\n", req_lim); 1697 ioctx->byte_len = wc->byte_len; 1698 srpt_handle_new_iu(ch, ioctx); 1699 } else { 1700 pr_info_ratelimited("receiving failed for ioctx %p with status %d\n", 1701 ioctx, wc->status); 1702 } 1703 } 1704 1705 /* 1706 * This function must be called from the context in which RDMA completions are 1707 * processed because it accesses the wait list without protection against 1708 * access from other threads. 1709 */ 1710 static void srpt_process_wait_list(struct srpt_rdma_ch *ch) 1711 { 1712 struct srpt_recv_ioctx *recv_ioctx, *tmp; 1713 1714 WARN_ON_ONCE(ch->state == CH_CONNECTING); 1715 1716 if (list_empty(&ch->cmd_wait_list)) 1717 return; 1718 1719 WARN_ON_ONCE(ch->processing_wait_list); 1720 ch->processing_wait_list = true; 1721 list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list, 1722 wait_list) { 1723 if (!srpt_handle_new_iu(ch, recv_ioctx)) 1724 break; 1725 } 1726 ch->processing_wait_list = false; 1727 } 1728 1729 /** 1730 * srpt_send_done - send completion callback 1731 * @cq: Completion queue. 1732 * @wc: Work completion. 1733 * 1734 * Note: Although this has not yet been observed during tests, at least in 1735 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1736 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1737 * value in each response is set to one, and it is possible that this response 1738 * makes the initiator send a new request before the send completion for that 1739 * response has been processed. This could e.g. happen if the call to 1740 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1741 * if IB retransmission causes generation of the send completion to be 1742 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1743 * are queued on cmd_wait_list. The code below processes these delayed 1744 * requests one at a time. 1745 */ 1746 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc) 1747 { 1748 struct srpt_rdma_ch *ch = wc->qp->qp_context; 1749 struct srpt_send_ioctx *ioctx = 1750 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe); 1751 enum srpt_command_state state; 1752 1753 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1754 1755 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT && 1756 state != SRPT_STATE_MGMT_RSP_SENT); 1757 1758 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 1759 1760 if (wc->status != IB_WC_SUCCESS) 1761 pr_info("sending response for ioctx 0x%p failed with status %d\n", 1762 ioctx, wc->status); 1763 1764 if (state != SRPT_STATE_DONE) { 1765 transport_generic_free_cmd(&ioctx->cmd, 0); 1766 } else { 1767 pr_err("IB completion has been received too late for wr_id = %u.\n", 1768 ioctx->ioctx.index); 1769 } 1770 1771 srpt_process_wait_list(ch); 1772 } 1773 1774 /** 1775 * srpt_create_ch_ib - create receive and send completion queues 1776 * @ch: SRPT RDMA channel. 1777 */ 1778 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 1779 { 1780 struct ib_qp_init_attr *qp_init; 1781 struct srpt_port *sport = ch->sport; 1782 struct srpt_device *sdev = sport->sdev; 1783 const struct ib_device_attr *attrs = &sdev->device->attrs; 1784 int sq_size = sport->port_attrib.srp_sq_size; 1785 int i, ret; 1786 1787 WARN_ON(ch->rq_size < 1); 1788 1789 ret = -ENOMEM; 1790 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL); 1791 if (!qp_init) 1792 goto out; 1793 1794 retry: 1795 ch->cq = ib_cq_pool_get(sdev->device, ch->rq_size + sq_size, -1, 1796 IB_POLL_WORKQUEUE); 1797 if (IS_ERR(ch->cq)) { 1798 ret = PTR_ERR(ch->cq); 1799 pr_err("failed to create CQ cqe= %d ret= %d\n", 1800 ch->rq_size + sq_size, ret); 1801 goto out; 1802 } 1803 ch->cq_size = ch->rq_size + sq_size; 1804 1805 qp_init->qp_context = (void *)ch; 1806 qp_init->event_handler 1807 = (void(*)(struct ib_event *, void*))srpt_qp_event; 1808 qp_init->send_cq = ch->cq; 1809 qp_init->recv_cq = ch->cq; 1810 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 1811 qp_init->qp_type = IB_QPT_RC; 1812 /* 1813 * We divide up our send queue size into half SEND WRs to send the 1814 * completions, and half R/W contexts to actually do the RDMA 1815 * READ/WRITE transfers. Note that we need to allocate CQ slots for 1816 * both both, as RDMA contexts will also post completions for the 1817 * RDMA READ case. 1818 */ 1819 qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr); 1820 qp_init->cap.max_rdma_ctxs = sq_size / 2; 1821 qp_init->cap.max_send_sge = attrs->max_send_sge; 1822 qp_init->cap.max_recv_sge = 1; 1823 qp_init->port_num = ch->sport->port; 1824 if (sdev->use_srq) 1825 qp_init->srq = sdev->srq; 1826 else 1827 qp_init->cap.max_recv_wr = ch->rq_size; 1828 1829 if (ch->using_rdma_cm) { 1830 ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init); 1831 ch->qp = ch->rdma_cm.cm_id->qp; 1832 } else { 1833 ch->qp = ib_create_qp(sdev->pd, qp_init); 1834 if (!IS_ERR(ch->qp)) { 1835 ret = srpt_init_ch_qp(ch, ch->qp); 1836 if (ret) 1837 ib_destroy_qp(ch->qp); 1838 } else { 1839 ret = PTR_ERR(ch->qp); 1840 } 1841 } 1842 if (ret) { 1843 bool retry = sq_size > MIN_SRPT_SQ_SIZE; 1844 1845 if (retry) { 1846 pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n", 1847 sq_size, ret); 1848 ib_cq_pool_put(ch->cq, ch->cq_size); 1849 sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE); 1850 goto retry; 1851 } else { 1852 pr_err("failed to create queue pair with sq_size = %d (%d)\n", 1853 sq_size, ret); 1854 goto err_destroy_cq; 1855 } 1856 } 1857 1858 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 1859 1860 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n", 1861 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 1862 qp_init->cap.max_send_wr, ch); 1863 1864 if (!sdev->use_srq) 1865 for (i = 0; i < ch->rq_size; i++) 1866 srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]); 1867 1868 out: 1869 kfree(qp_init); 1870 return ret; 1871 1872 err_destroy_cq: 1873 ch->qp = NULL; 1874 ib_cq_pool_put(ch->cq, ch->cq_size); 1875 goto out; 1876 } 1877 1878 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 1879 { 1880 ib_destroy_qp(ch->qp); 1881 ib_cq_pool_put(ch->cq, ch->cq_size); 1882 } 1883 1884 /** 1885 * srpt_close_ch - close a RDMA channel 1886 * @ch: SRPT RDMA channel. 1887 * 1888 * Make sure all resources associated with the channel will be deallocated at 1889 * an appropriate time. 1890 * 1891 * Returns true if and only if the channel state has been modified into 1892 * CH_DRAINING. 1893 */ 1894 static bool srpt_close_ch(struct srpt_rdma_ch *ch) 1895 { 1896 int ret; 1897 1898 if (!srpt_set_ch_state(ch, CH_DRAINING)) { 1899 pr_debug("%s: already closed\n", ch->sess_name); 1900 return false; 1901 } 1902 1903 kref_get(&ch->kref); 1904 1905 ret = srpt_ch_qp_err(ch); 1906 if (ret < 0) 1907 pr_err("%s-%d: changing queue pair into error state failed: %d\n", 1908 ch->sess_name, ch->qp->qp_num, ret); 1909 1910 ret = srpt_zerolength_write(ch); 1911 if (ret < 0) { 1912 pr_err("%s-%d: queuing zero-length write failed: %d\n", 1913 ch->sess_name, ch->qp->qp_num, ret); 1914 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 1915 schedule_work(&ch->release_work); 1916 else 1917 WARN_ON_ONCE(true); 1918 } 1919 1920 kref_put(&ch->kref, srpt_free_ch); 1921 1922 return true; 1923 } 1924 1925 /* 1926 * Change the channel state into CH_DISCONNECTING. If a channel has not yet 1927 * reached the connected state, close it. If a channel is in the connected 1928 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is 1929 * the responsibility of the caller to ensure that this function is not 1930 * invoked concurrently with the code that accepts a connection. This means 1931 * that this function must either be invoked from inside a CM callback 1932 * function or that it must be invoked with the srpt_port.mutex held. 1933 */ 1934 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch) 1935 { 1936 int ret; 1937 1938 if (!srpt_set_ch_state(ch, CH_DISCONNECTING)) 1939 return -ENOTCONN; 1940 1941 if (ch->using_rdma_cm) { 1942 ret = rdma_disconnect(ch->rdma_cm.cm_id); 1943 } else { 1944 ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0); 1945 if (ret < 0) 1946 ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0); 1947 } 1948 1949 if (ret < 0 && srpt_close_ch(ch)) 1950 ret = 0; 1951 1952 return ret; 1953 } 1954 1955 /* Send DREQ and wait for DREP. */ 1956 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch) 1957 { 1958 DECLARE_COMPLETION_ONSTACK(closed); 1959 struct srpt_port *sport = ch->sport; 1960 1961 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num, 1962 ch->state); 1963 1964 ch->closed = &closed; 1965 1966 mutex_lock(&sport->mutex); 1967 srpt_disconnect_ch(ch); 1968 mutex_unlock(&sport->mutex); 1969 1970 while (wait_for_completion_timeout(&closed, 5 * HZ) == 0) 1971 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__, 1972 ch->sess_name, ch->qp->qp_num, ch->state); 1973 1974 } 1975 1976 static void __srpt_close_all_ch(struct srpt_port *sport) 1977 { 1978 struct srpt_nexus *nexus; 1979 struct srpt_rdma_ch *ch; 1980 1981 lockdep_assert_held(&sport->mutex); 1982 1983 list_for_each_entry(nexus, &sport->nexus_list, entry) { 1984 list_for_each_entry(ch, &nexus->ch_list, list) { 1985 if (srpt_disconnect_ch(ch) >= 0) 1986 pr_info("Closing channel %s-%d because target %s_%d has been disabled\n", 1987 ch->sess_name, ch->qp->qp_num, 1988 dev_name(&sport->sdev->device->dev), 1989 sport->port); 1990 srpt_close_ch(ch); 1991 } 1992 } 1993 } 1994 1995 /* 1996 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if 1997 * it does not yet exist. 1998 */ 1999 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport, 2000 const u8 i_port_id[16], 2001 const u8 t_port_id[16]) 2002 { 2003 struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n; 2004 2005 for (;;) { 2006 mutex_lock(&sport->mutex); 2007 list_for_each_entry(n, &sport->nexus_list, entry) { 2008 if (memcmp(n->i_port_id, i_port_id, 16) == 0 && 2009 memcmp(n->t_port_id, t_port_id, 16) == 0) { 2010 nexus = n; 2011 break; 2012 } 2013 } 2014 if (!nexus && tmp_nexus) { 2015 list_add_tail_rcu(&tmp_nexus->entry, 2016 &sport->nexus_list); 2017 swap(nexus, tmp_nexus); 2018 } 2019 mutex_unlock(&sport->mutex); 2020 2021 if (nexus) 2022 break; 2023 tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL); 2024 if (!tmp_nexus) { 2025 nexus = ERR_PTR(-ENOMEM); 2026 break; 2027 } 2028 INIT_LIST_HEAD(&tmp_nexus->ch_list); 2029 memcpy(tmp_nexus->i_port_id, i_port_id, 16); 2030 memcpy(tmp_nexus->t_port_id, t_port_id, 16); 2031 } 2032 2033 kfree(tmp_nexus); 2034 2035 return nexus; 2036 } 2037 2038 static void srpt_set_enabled(struct srpt_port *sport, bool enabled) 2039 __must_hold(&sport->mutex) 2040 { 2041 lockdep_assert_held(&sport->mutex); 2042 2043 if (sport->enabled == enabled) 2044 return; 2045 sport->enabled = enabled; 2046 if (!enabled) 2047 __srpt_close_all_ch(sport); 2048 } 2049 2050 static void srpt_drop_sport_ref(struct srpt_port *sport) 2051 { 2052 if (atomic_dec_return(&sport->refcount) == 0 && sport->freed_channels) 2053 complete(sport->freed_channels); 2054 } 2055 2056 static void srpt_free_ch(struct kref *kref) 2057 { 2058 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref); 2059 2060 srpt_drop_sport_ref(ch->sport); 2061 kfree_rcu(ch, rcu); 2062 } 2063 2064 /* 2065 * Shut down the SCSI target session, tell the connection manager to 2066 * disconnect the associated RDMA channel, transition the QP to the error 2067 * state and remove the channel from the channel list. This function is 2068 * typically called from inside srpt_zerolength_write_done(). Concurrent 2069 * srpt_zerolength_write() calls from inside srpt_close_ch() are possible 2070 * as long as the channel is on sport->nexus_list. 2071 */ 2072 static void srpt_release_channel_work(struct work_struct *w) 2073 { 2074 struct srpt_rdma_ch *ch; 2075 struct srpt_device *sdev; 2076 struct srpt_port *sport; 2077 struct se_session *se_sess; 2078 2079 ch = container_of(w, struct srpt_rdma_ch, release_work); 2080 pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num); 2081 2082 sdev = ch->sport->sdev; 2083 BUG_ON(!sdev); 2084 2085 se_sess = ch->sess; 2086 BUG_ON(!se_sess); 2087 2088 target_stop_session(se_sess); 2089 target_wait_for_sess_cmds(se_sess); 2090 2091 target_remove_session(se_sess); 2092 ch->sess = NULL; 2093 2094 if (ch->using_rdma_cm) 2095 rdma_destroy_id(ch->rdma_cm.cm_id); 2096 else 2097 ib_destroy_cm_id(ch->ib_cm.cm_id); 2098 2099 sport = ch->sport; 2100 mutex_lock(&sport->mutex); 2101 list_del_rcu(&ch->list); 2102 mutex_unlock(&sport->mutex); 2103 2104 if (ch->closed) 2105 complete(ch->closed); 2106 2107 srpt_destroy_ch_ib(ch); 2108 2109 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2110 ch->sport->sdev, ch->rq_size, 2111 ch->rsp_buf_cache, DMA_TO_DEVICE); 2112 2113 kmem_cache_destroy(ch->rsp_buf_cache); 2114 2115 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring, 2116 sdev, ch->rq_size, 2117 ch->req_buf_cache, DMA_FROM_DEVICE); 2118 2119 kmem_cache_destroy(ch->req_buf_cache); 2120 2121 kref_put(&ch->kref, srpt_free_ch); 2122 } 2123 2124 /** 2125 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED 2126 * @sdev: HCA through which the login request was received. 2127 * @ib_cm_id: IB/CM connection identifier in case of IB/CM. 2128 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM. 2129 * @port_num: Port through which the REQ message was received. 2130 * @pkey: P_Key of the incoming connection. 2131 * @req: SRP login request. 2132 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted 2133 * the login request. 2134 * 2135 * Ownership of the cm_id is transferred to the target session if this 2136 * function returns zero. Otherwise the caller remains the owner of cm_id. 2137 */ 2138 static int srpt_cm_req_recv(struct srpt_device *const sdev, 2139 struct ib_cm_id *ib_cm_id, 2140 struct rdma_cm_id *rdma_cm_id, 2141 u8 port_num, __be16 pkey, 2142 const struct srp_login_req *req, 2143 const char *src_addr) 2144 { 2145 struct srpt_port *sport = &sdev->port[port_num - 1]; 2146 struct srpt_nexus *nexus; 2147 struct srp_login_rsp *rsp = NULL; 2148 struct srp_login_rej *rej = NULL; 2149 union { 2150 struct rdma_conn_param rdma_cm; 2151 struct ib_cm_rep_param ib_cm; 2152 } *rep_param = NULL; 2153 struct srpt_rdma_ch *ch = NULL; 2154 char i_port_id[36]; 2155 u32 it_iu_len; 2156 int i, tag_num, tag_size, ret; 2157 struct srpt_tpg *stpg; 2158 2159 WARN_ON_ONCE(irqs_disabled()); 2160 2161 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2162 2163 pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n", 2164 req->initiator_port_id, req->target_port_id, it_iu_len, 2165 port_num, &sport->gid, be16_to_cpu(pkey)); 2166 2167 nexus = srpt_get_nexus(sport, req->initiator_port_id, 2168 req->target_port_id); 2169 if (IS_ERR(nexus)) { 2170 ret = PTR_ERR(nexus); 2171 goto out; 2172 } 2173 2174 ret = -ENOMEM; 2175 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 2176 rej = kzalloc(sizeof(*rej), GFP_KERNEL); 2177 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL); 2178 if (!rsp || !rej || !rep_param) 2179 goto out; 2180 2181 ret = -EINVAL; 2182 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2183 rej->reason = cpu_to_be32( 2184 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2185 pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n", 2186 it_iu_len, 64, srp_max_req_size); 2187 goto reject; 2188 } 2189 2190 if (!sport->enabled) { 2191 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2192 pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n", 2193 dev_name(&sport->sdev->device->dev), port_num); 2194 goto reject; 2195 } 2196 2197 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2198 || *(__be64 *)(req->target_port_id + 8) != 2199 cpu_to_be64(srpt_service_guid)) { 2200 rej->reason = cpu_to_be32( 2201 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2202 pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n"); 2203 goto reject; 2204 } 2205 2206 ret = -ENOMEM; 2207 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 2208 if (!ch) { 2209 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2210 pr_err("rejected SRP_LOGIN_REQ because out of memory.\n"); 2211 goto reject; 2212 } 2213 2214 kref_init(&ch->kref); 2215 ch->pkey = be16_to_cpu(pkey); 2216 ch->nexus = nexus; 2217 ch->zw_cqe.done = srpt_zerolength_write_done; 2218 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2219 ch->sport = sport; 2220 if (ib_cm_id) { 2221 ch->ib_cm.cm_id = ib_cm_id; 2222 ib_cm_id->context = ch; 2223 } else { 2224 ch->using_rdma_cm = true; 2225 ch->rdma_cm.cm_id = rdma_cm_id; 2226 rdma_cm_id->context = ch; 2227 } 2228 /* 2229 * ch->rq_size should be at least as large as the initiator queue 2230 * depth to avoid that the initiator driver has to report QUEUE_FULL 2231 * to the SCSI mid-layer. 2232 */ 2233 ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr); 2234 spin_lock_init(&ch->spinlock); 2235 ch->state = CH_CONNECTING; 2236 INIT_LIST_HEAD(&ch->cmd_wait_list); 2237 ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2238 2239 ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size, 2240 512, 0, NULL); 2241 if (!ch->rsp_buf_cache) 2242 goto free_ch; 2243 2244 ch->ioctx_ring = (struct srpt_send_ioctx **) 2245 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2246 sizeof(*ch->ioctx_ring[0]), 2247 ch->rsp_buf_cache, 0, DMA_TO_DEVICE); 2248 if (!ch->ioctx_ring) { 2249 pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n"); 2250 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2251 goto free_rsp_cache; 2252 } 2253 2254 for (i = 0; i < ch->rq_size; i++) 2255 ch->ioctx_ring[i]->ch = ch; 2256 if (!sdev->use_srq) { 2257 u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ? 2258 be16_to_cpu(req->imm_data_offset) : 0; 2259 u16 alignment_offset; 2260 u32 req_sz; 2261 2262 if (req->req_flags & SRP_IMMED_REQUESTED) 2263 pr_debug("imm_data_offset = %d\n", 2264 be16_to_cpu(req->imm_data_offset)); 2265 if (imm_data_offset >= sizeof(struct srp_cmd)) { 2266 ch->imm_data_offset = imm_data_offset; 2267 rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP; 2268 } else { 2269 ch->imm_data_offset = 0; 2270 } 2271 alignment_offset = round_up(imm_data_offset, 512) - 2272 imm_data_offset; 2273 req_sz = alignment_offset + imm_data_offset + srp_max_req_size; 2274 ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz, 2275 512, 0, NULL); 2276 if (!ch->req_buf_cache) 2277 goto free_rsp_ring; 2278 2279 ch->ioctx_recv_ring = (struct srpt_recv_ioctx **) 2280 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2281 sizeof(*ch->ioctx_recv_ring[0]), 2282 ch->req_buf_cache, 2283 alignment_offset, 2284 DMA_FROM_DEVICE); 2285 if (!ch->ioctx_recv_ring) { 2286 pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n"); 2287 rej->reason = 2288 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2289 goto free_recv_cache; 2290 } 2291 for (i = 0; i < ch->rq_size; i++) 2292 INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list); 2293 } 2294 2295 ret = srpt_create_ch_ib(ch); 2296 if (ret) { 2297 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2298 pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n"); 2299 goto free_recv_ring; 2300 } 2301 2302 strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name)); 2303 snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx", 2304 be64_to_cpu(*(__be64 *)nexus->i_port_id), 2305 be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8))); 2306 2307 pr_debug("registering src addr %s or i_port_id %s\n", ch->sess_name, 2308 i_port_id); 2309 2310 tag_num = ch->rq_size; 2311 tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */ 2312 2313 mutex_lock(&sport->port_guid_id.mutex); 2314 list_for_each_entry(stpg, &sport->port_guid_id.tpg_list, entry) { 2315 if (!IS_ERR_OR_NULL(ch->sess)) 2316 break; 2317 ch->sess = target_setup_session(&stpg->tpg, tag_num, 2318 tag_size, TARGET_PROT_NORMAL, 2319 ch->sess_name, ch, NULL); 2320 } 2321 mutex_unlock(&sport->port_guid_id.mutex); 2322 2323 mutex_lock(&sport->port_gid_id.mutex); 2324 list_for_each_entry(stpg, &sport->port_gid_id.tpg_list, entry) { 2325 if (!IS_ERR_OR_NULL(ch->sess)) 2326 break; 2327 ch->sess = target_setup_session(&stpg->tpg, tag_num, 2328 tag_size, TARGET_PROT_NORMAL, i_port_id, 2329 ch, NULL); 2330 if (!IS_ERR_OR_NULL(ch->sess)) 2331 break; 2332 /* Retry without leading "0x" */ 2333 ch->sess = target_setup_session(&stpg->tpg, tag_num, 2334 tag_size, TARGET_PROT_NORMAL, 2335 i_port_id + 2, ch, NULL); 2336 } 2337 mutex_unlock(&sport->port_gid_id.mutex); 2338 2339 if (IS_ERR_OR_NULL(ch->sess)) { 2340 WARN_ON_ONCE(ch->sess == NULL); 2341 ret = PTR_ERR(ch->sess); 2342 ch->sess = NULL; 2343 pr_info("Rejected login for initiator %s: ret = %d.\n", 2344 ch->sess_name, ret); 2345 rej->reason = cpu_to_be32(ret == -ENOMEM ? 2346 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES : 2347 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2348 goto destroy_ib; 2349 } 2350 2351 /* 2352 * Once a session has been created destruction of srpt_rdma_ch objects 2353 * will decrement sport->refcount. Hence increment sport->refcount now. 2354 */ 2355 atomic_inc(&sport->refcount); 2356 2357 mutex_lock(&sport->mutex); 2358 2359 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2360 struct srpt_rdma_ch *ch2; 2361 2362 list_for_each_entry(ch2, &nexus->ch_list, list) { 2363 if (srpt_disconnect_ch(ch2) < 0) 2364 continue; 2365 pr_info("Relogin - closed existing channel %s\n", 2366 ch2->sess_name); 2367 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2368 } 2369 } else { 2370 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2371 } 2372 2373 list_add_tail_rcu(&ch->list, &nexus->ch_list); 2374 2375 if (!sport->enabled) { 2376 rej->reason = cpu_to_be32( 2377 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2378 pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n", 2379 dev_name(&sdev->device->dev), port_num); 2380 mutex_unlock(&sport->mutex); 2381 goto reject; 2382 } 2383 2384 mutex_unlock(&sport->mutex); 2385 2386 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp); 2387 if (ret) { 2388 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2389 pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n", 2390 ret); 2391 goto reject; 2392 } 2393 2394 pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess, 2395 ch->sess_name, ch); 2396 2397 /* create srp_login_response */ 2398 rsp->opcode = SRP_LOGIN_RSP; 2399 rsp->tag = req->tag; 2400 rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size); 2401 rsp->max_ti_iu_len = req->req_it_iu_len; 2402 ch->max_ti_iu_len = it_iu_len; 2403 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 2404 SRP_BUF_FORMAT_INDIRECT); 2405 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2406 atomic_set(&ch->req_lim, ch->rq_size); 2407 atomic_set(&ch->req_lim_delta, 0); 2408 2409 /* create cm reply */ 2410 if (ch->using_rdma_cm) { 2411 rep_param->rdma_cm.private_data = (void *)rsp; 2412 rep_param->rdma_cm.private_data_len = sizeof(*rsp); 2413 rep_param->rdma_cm.rnr_retry_count = 7; 2414 rep_param->rdma_cm.flow_control = 1; 2415 rep_param->rdma_cm.responder_resources = 4; 2416 rep_param->rdma_cm.initiator_depth = 4; 2417 } else { 2418 rep_param->ib_cm.qp_num = ch->qp->qp_num; 2419 rep_param->ib_cm.private_data = (void *)rsp; 2420 rep_param->ib_cm.private_data_len = sizeof(*rsp); 2421 rep_param->ib_cm.rnr_retry_count = 7; 2422 rep_param->ib_cm.flow_control = 1; 2423 rep_param->ib_cm.failover_accepted = 0; 2424 rep_param->ib_cm.srq = 1; 2425 rep_param->ib_cm.responder_resources = 4; 2426 rep_param->ib_cm.initiator_depth = 4; 2427 } 2428 2429 /* 2430 * Hold the sport mutex while accepting a connection to avoid that 2431 * srpt_disconnect_ch() is invoked concurrently with this code. 2432 */ 2433 mutex_lock(&sport->mutex); 2434 if (sport->enabled && ch->state == CH_CONNECTING) { 2435 if (ch->using_rdma_cm) 2436 ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm); 2437 else 2438 ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm); 2439 } else { 2440 ret = -EINVAL; 2441 } 2442 mutex_unlock(&sport->mutex); 2443 2444 switch (ret) { 2445 case 0: 2446 break; 2447 case -EINVAL: 2448 goto reject; 2449 default: 2450 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2451 pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n", 2452 ret); 2453 goto reject; 2454 } 2455 2456 goto out; 2457 2458 destroy_ib: 2459 srpt_destroy_ch_ib(ch); 2460 2461 free_recv_ring: 2462 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring, 2463 ch->sport->sdev, ch->rq_size, 2464 ch->req_buf_cache, DMA_FROM_DEVICE); 2465 2466 free_recv_cache: 2467 kmem_cache_destroy(ch->req_buf_cache); 2468 2469 free_rsp_ring: 2470 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2471 ch->sport->sdev, ch->rq_size, 2472 ch->rsp_buf_cache, DMA_TO_DEVICE); 2473 2474 free_rsp_cache: 2475 kmem_cache_destroy(ch->rsp_buf_cache); 2476 2477 free_ch: 2478 if (rdma_cm_id) 2479 rdma_cm_id->context = NULL; 2480 else 2481 ib_cm_id->context = NULL; 2482 kfree(ch); 2483 ch = NULL; 2484 2485 WARN_ON_ONCE(ret == 0); 2486 2487 reject: 2488 pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason)); 2489 rej->opcode = SRP_LOGIN_REJ; 2490 rej->tag = req->tag; 2491 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 2492 SRP_BUF_FORMAT_INDIRECT); 2493 2494 if (rdma_cm_id) 2495 rdma_reject(rdma_cm_id, rej, sizeof(*rej), 2496 IB_CM_REJ_CONSUMER_DEFINED); 2497 else 2498 ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2499 rej, sizeof(*rej)); 2500 2501 if (ch && ch->sess) { 2502 srpt_close_ch(ch); 2503 /* 2504 * Tell the caller not to free cm_id since 2505 * srpt_release_channel_work() will do that. 2506 */ 2507 ret = 0; 2508 } 2509 2510 out: 2511 kfree(rep_param); 2512 kfree(rsp); 2513 kfree(rej); 2514 2515 return ret; 2516 } 2517 2518 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id, 2519 const struct ib_cm_req_event_param *param, 2520 void *private_data) 2521 { 2522 char sguid[40]; 2523 2524 srpt_format_guid(sguid, sizeof(sguid), 2525 ¶m->primary_path->dgid.global.interface_id); 2526 2527 return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port, 2528 param->primary_path->pkey, 2529 private_data, sguid); 2530 } 2531 2532 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id, 2533 struct rdma_cm_event *event) 2534 { 2535 struct srpt_device *sdev; 2536 struct srp_login_req req; 2537 const struct srp_login_req_rdma *req_rdma; 2538 struct sa_path_rec *path_rec = cm_id->route.path_rec; 2539 char src_addr[40]; 2540 2541 sdev = ib_get_client_data(cm_id->device, &srpt_client); 2542 if (!sdev) 2543 return -ECONNREFUSED; 2544 2545 if (event->param.conn.private_data_len < sizeof(*req_rdma)) 2546 return -EINVAL; 2547 2548 /* Transform srp_login_req_rdma into srp_login_req. */ 2549 req_rdma = event->param.conn.private_data; 2550 memset(&req, 0, sizeof(req)); 2551 req.opcode = req_rdma->opcode; 2552 req.tag = req_rdma->tag; 2553 req.req_it_iu_len = req_rdma->req_it_iu_len; 2554 req.req_buf_fmt = req_rdma->req_buf_fmt; 2555 req.req_flags = req_rdma->req_flags; 2556 memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16); 2557 memcpy(req.target_port_id, req_rdma->target_port_id, 16); 2558 req.imm_data_offset = req_rdma->imm_data_offset; 2559 2560 snprintf(src_addr, sizeof(src_addr), "%pIS", 2561 &cm_id->route.addr.src_addr); 2562 2563 return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num, 2564 path_rec ? path_rec->pkey : 0, &req, src_addr); 2565 } 2566 2567 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch, 2568 enum ib_cm_rej_reason reason, 2569 const u8 *private_data, 2570 u8 private_data_len) 2571 { 2572 char *priv = NULL; 2573 int i; 2574 2575 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1, 2576 GFP_KERNEL))) { 2577 for (i = 0; i < private_data_len; i++) 2578 sprintf(priv + 3 * i, " %02x", private_data[i]); 2579 } 2580 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n", 2581 ch->sess_name, ch->qp->qp_num, reason, private_data_len ? 2582 "; private data" : "", priv ? priv : " (?)"); 2583 kfree(priv); 2584 } 2585 2586 /** 2587 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event 2588 * @ch: SRPT RDMA channel. 2589 * 2590 * An RTU (ready to use) message indicates that the connection has been 2591 * established and that the recipient may begin transmitting. 2592 */ 2593 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch) 2594 { 2595 int ret; 2596 2597 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp); 2598 if (ret < 0) { 2599 pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name, 2600 ch->qp->qp_num); 2601 srpt_close_ch(ch); 2602 return; 2603 } 2604 2605 /* 2606 * Note: calling srpt_close_ch() if the transition to the LIVE state 2607 * fails is not necessary since that means that that function has 2608 * already been invoked from another thread. 2609 */ 2610 if (!srpt_set_ch_state(ch, CH_LIVE)) { 2611 pr_err("%s-%d: channel transition to LIVE state failed\n", 2612 ch->sess_name, ch->qp->qp_num); 2613 return; 2614 } 2615 2616 /* Trigger wait list processing. */ 2617 ret = srpt_zerolength_write(ch); 2618 WARN_ONCE(ret < 0, "%d\n", ret); 2619 } 2620 2621 /** 2622 * srpt_cm_handler - IB connection manager callback function 2623 * @cm_id: IB/CM connection identifier. 2624 * @event: IB/CM event. 2625 * 2626 * A non-zero return value will cause the caller destroy the CM ID. 2627 * 2628 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2629 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2630 * a non-zero value in any other case will trigger a race with the 2631 * ib_destroy_cm_id() call in srpt_release_channel(). 2632 */ 2633 static int srpt_cm_handler(struct ib_cm_id *cm_id, 2634 const struct ib_cm_event *event) 2635 { 2636 struct srpt_rdma_ch *ch = cm_id->context; 2637 int ret; 2638 2639 ret = 0; 2640 switch (event->event) { 2641 case IB_CM_REQ_RECEIVED: 2642 ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd, 2643 event->private_data); 2644 break; 2645 case IB_CM_REJ_RECEIVED: 2646 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason, 2647 event->private_data, 2648 IB_CM_REJ_PRIVATE_DATA_SIZE); 2649 break; 2650 case IB_CM_RTU_RECEIVED: 2651 case IB_CM_USER_ESTABLISHED: 2652 srpt_cm_rtu_recv(ch); 2653 break; 2654 case IB_CM_DREQ_RECEIVED: 2655 srpt_disconnect_ch(ch); 2656 break; 2657 case IB_CM_DREP_RECEIVED: 2658 pr_info("Received CM DREP message for ch %s-%d.\n", 2659 ch->sess_name, ch->qp->qp_num); 2660 srpt_close_ch(ch); 2661 break; 2662 case IB_CM_TIMEWAIT_EXIT: 2663 pr_info("Received CM TimeWait exit for ch %s-%d.\n", 2664 ch->sess_name, ch->qp->qp_num); 2665 srpt_close_ch(ch); 2666 break; 2667 case IB_CM_REP_ERROR: 2668 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2669 ch->qp->qp_num); 2670 break; 2671 case IB_CM_DREQ_ERROR: 2672 pr_info("Received CM DREQ ERROR event.\n"); 2673 break; 2674 case IB_CM_MRA_RECEIVED: 2675 pr_info("Received CM MRA event\n"); 2676 break; 2677 default: 2678 pr_err("received unrecognized CM event %d\n", event->event); 2679 break; 2680 } 2681 2682 return ret; 2683 } 2684 2685 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id, 2686 struct rdma_cm_event *event) 2687 { 2688 struct srpt_rdma_ch *ch = cm_id->context; 2689 int ret = 0; 2690 2691 switch (event->event) { 2692 case RDMA_CM_EVENT_CONNECT_REQUEST: 2693 ret = srpt_rdma_cm_req_recv(cm_id, event); 2694 break; 2695 case RDMA_CM_EVENT_REJECTED: 2696 srpt_cm_rej_recv(ch, event->status, 2697 event->param.conn.private_data, 2698 event->param.conn.private_data_len); 2699 break; 2700 case RDMA_CM_EVENT_ESTABLISHED: 2701 srpt_cm_rtu_recv(ch); 2702 break; 2703 case RDMA_CM_EVENT_DISCONNECTED: 2704 if (ch->state < CH_DISCONNECTING) 2705 srpt_disconnect_ch(ch); 2706 else 2707 srpt_close_ch(ch); 2708 break; 2709 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 2710 srpt_close_ch(ch); 2711 break; 2712 case RDMA_CM_EVENT_UNREACHABLE: 2713 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2714 ch->qp->qp_num); 2715 break; 2716 case RDMA_CM_EVENT_DEVICE_REMOVAL: 2717 case RDMA_CM_EVENT_ADDR_CHANGE: 2718 break; 2719 default: 2720 pr_err("received unrecognized RDMA CM event %d\n", 2721 event->event); 2722 break; 2723 } 2724 2725 return ret; 2726 } 2727 2728 /* 2729 * srpt_write_pending - Start data transfer from initiator to target (write). 2730 */ 2731 static int srpt_write_pending(struct se_cmd *se_cmd) 2732 { 2733 struct srpt_send_ioctx *ioctx = 2734 container_of(se_cmd, struct srpt_send_ioctx, cmd); 2735 struct srpt_rdma_ch *ch = ioctx->ch; 2736 struct ib_send_wr *first_wr = NULL; 2737 struct ib_cqe *cqe = &ioctx->rdma_cqe; 2738 enum srpt_command_state new_state; 2739 int ret, i; 2740 2741 if (ioctx->recv_ioctx) { 2742 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2743 target_execute_cmd(&ioctx->cmd); 2744 return 0; 2745 } 2746 2747 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2748 WARN_ON(new_state == SRPT_STATE_DONE); 2749 2750 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) { 2751 pr_warn("%s: IB send queue full (needed %d)\n", 2752 __func__, ioctx->n_rdma); 2753 ret = -ENOMEM; 2754 goto out_undo; 2755 } 2756 2757 cqe->done = srpt_rdma_read_done; 2758 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2759 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2760 2761 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port, 2762 cqe, first_wr); 2763 cqe = NULL; 2764 } 2765 2766 ret = ib_post_send(ch->qp, first_wr, NULL); 2767 if (ret) { 2768 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n", 2769 __func__, ret, ioctx->n_rdma, 2770 atomic_read(&ch->sq_wr_avail)); 2771 goto out_undo; 2772 } 2773 2774 return 0; 2775 out_undo: 2776 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 2777 return ret; 2778 } 2779 2780 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2781 { 2782 switch (tcm_mgmt_status) { 2783 case TMR_FUNCTION_COMPLETE: 2784 return SRP_TSK_MGMT_SUCCESS; 2785 case TMR_FUNCTION_REJECTED: 2786 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2787 } 2788 return SRP_TSK_MGMT_FAILED; 2789 } 2790 2791 /** 2792 * srpt_queue_response - transmit the response to a SCSI command 2793 * @cmd: SCSI target command. 2794 * 2795 * Callback function called by the TCM core. Must not block since it can be 2796 * invoked on the context of the IB completion handler. 2797 */ 2798 static void srpt_queue_response(struct se_cmd *cmd) 2799 { 2800 struct srpt_send_ioctx *ioctx = 2801 container_of(cmd, struct srpt_send_ioctx, cmd); 2802 struct srpt_rdma_ch *ch = ioctx->ch; 2803 struct srpt_device *sdev = ch->sport->sdev; 2804 struct ib_send_wr send_wr, *first_wr = &send_wr; 2805 struct ib_sge sge; 2806 enum srpt_command_state state; 2807 int resp_len, ret, i; 2808 u8 srp_tm_status; 2809 2810 state = ioctx->state; 2811 switch (state) { 2812 case SRPT_STATE_NEW: 2813 case SRPT_STATE_DATA_IN: 2814 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 2815 break; 2816 case SRPT_STATE_MGMT: 2817 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 2818 break; 2819 default: 2820 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 2821 ch, ioctx->ioctx.index, ioctx->state); 2822 break; 2823 } 2824 2825 if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)) 2826 return; 2827 2828 /* For read commands, transfer the data to the initiator. */ 2829 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE && 2830 ioctx->cmd.data_length && 2831 !ioctx->queue_status_only) { 2832 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2833 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2834 2835 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, 2836 ch->sport->port, NULL, first_wr); 2837 } 2838 } 2839 2840 if (state != SRPT_STATE_MGMT) 2841 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, 2842 cmd->scsi_status); 2843 else { 2844 srp_tm_status 2845 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 2846 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 2847 ioctx->cmd.tag); 2848 } 2849 2850 atomic_inc(&ch->req_lim); 2851 2852 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma, 2853 &ch->sq_wr_avail) < 0)) { 2854 pr_warn("%s: IB send queue full (needed %d)\n", 2855 __func__, ioctx->n_rdma); 2856 ret = -ENOMEM; 2857 goto out; 2858 } 2859 2860 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len, 2861 DMA_TO_DEVICE); 2862 2863 sge.addr = ioctx->ioctx.dma; 2864 sge.length = resp_len; 2865 sge.lkey = sdev->lkey; 2866 2867 ioctx->ioctx.cqe.done = srpt_send_done; 2868 send_wr.next = NULL; 2869 send_wr.wr_cqe = &ioctx->ioctx.cqe; 2870 send_wr.sg_list = &sge; 2871 send_wr.num_sge = 1; 2872 send_wr.opcode = IB_WR_SEND; 2873 send_wr.send_flags = IB_SEND_SIGNALED; 2874 2875 ret = ib_post_send(ch->qp, first_wr, NULL); 2876 if (ret < 0) { 2877 pr_err("%s: sending cmd response failed for tag %llu (%d)\n", 2878 __func__, ioctx->cmd.tag, ret); 2879 goto out; 2880 } 2881 2882 return; 2883 2884 out: 2885 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 2886 atomic_dec(&ch->req_lim); 2887 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 2888 target_put_sess_cmd(&ioctx->cmd); 2889 } 2890 2891 static int srpt_queue_data_in(struct se_cmd *cmd) 2892 { 2893 srpt_queue_response(cmd); 2894 return 0; 2895 } 2896 2897 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 2898 { 2899 srpt_queue_response(cmd); 2900 } 2901 2902 /* 2903 * This function is called for aborted commands if no response is sent to the 2904 * initiator. Make sure that the credits freed by aborting a command are 2905 * returned to the initiator the next time a response is sent by incrementing 2906 * ch->req_lim_delta. 2907 */ 2908 static void srpt_aborted_task(struct se_cmd *cmd) 2909 { 2910 struct srpt_send_ioctx *ioctx = container_of(cmd, 2911 struct srpt_send_ioctx, cmd); 2912 struct srpt_rdma_ch *ch = ioctx->ch; 2913 2914 atomic_inc(&ch->req_lim_delta); 2915 } 2916 2917 static int srpt_queue_status(struct se_cmd *cmd) 2918 { 2919 struct srpt_send_ioctx *ioctx; 2920 2921 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 2922 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 2923 if (cmd->se_cmd_flags & 2924 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 2925 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 2926 ioctx->queue_status_only = true; 2927 srpt_queue_response(cmd); 2928 return 0; 2929 } 2930 2931 static void srpt_refresh_port_work(struct work_struct *work) 2932 { 2933 struct srpt_port *sport = container_of(work, struct srpt_port, work); 2934 2935 srpt_refresh_port(sport); 2936 } 2937 2938 /** 2939 * srpt_release_sport - disable login and wait for associated channels 2940 * @sport: SRPT HCA port. 2941 */ 2942 static int srpt_release_sport(struct srpt_port *sport) 2943 { 2944 DECLARE_COMPLETION_ONSTACK(c); 2945 struct srpt_nexus *nexus, *next_n; 2946 struct srpt_rdma_ch *ch; 2947 2948 WARN_ON_ONCE(irqs_disabled()); 2949 2950 sport->freed_channels = &c; 2951 2952 mutex_lock(&sport->mutex); 2953 srpt_set_enabled(sport, false); 2954 mutex_unlock(&sport->mutex); 2955 2956 while (atomic_read(&sport->refcount) > 0 && 2957 wait_for_completion_timeout(&c, 5 * HZ) <= 0) { 2958 pr_info("%s_%d: waiting for unregistration of %d sessions ...\n", 2959 dev_name(&sport->sdev->device->dev), sport->port, 2960 atomic_read(&sport->refcount)); 2961 rcu_read_lock(); 2962 list_for_each_entry(nexus, &sport->nexus_list, entry) { 2963 list_for_each_entry(ch, &nexus->ch_list, list) { 2964 pr_info("%s-%d: state %s\n", 2965 ch->sess_name, ch->qp->qp_num, 2966 get_ch_state_name(ch->state)); 2967 } 2968 } 2969 rcu_read_unlock(); 2970 } 2971 2972 mutex_lock(&sport->mutex); 2973 list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) { 2974 list_del(&nexus->entry); 2975 kfree_rcu(nexus, rcu); 2976 } 2977 mutex_unlock(&sport->mutex); 2978 2979 return 0; 2980 } 2981 2982 static struct se_wwn *__srpt_lookup_wwn(const char *name) 2983 { 2984 struct ib_device *dev; 2985 struct srpt_device *sdev; 2986 struct srpt_port *sport; 2987 int i; 2988 2989 list_for_each_entry(sdev, &srpt_dev_list, list) { 2990 dev = sdev->device; 2991 if (!dev) 2992 continue; 2993 2994 for (i = 0; i < dev->phys_port_cnt; i++) { 2995 sport = &sdev->port[i]; 2996 2997 if (strcmp(sport->port_guid_id.name, name) == 0) 2998 return &sport->port_guid_id.wwn; 2999 if (strcmp(sport->port_gid_id.name, name) == 0) 3000 return &sport->port_gid_id.wwn; 3001 } 3002 } 3003 3004 return NULL; 3005 } 3006 3007 static struct se_wwn *srpt_lookup_wwn(const char *name) 3008 { 3009 struct se_wwn *wwn; 3010 3011 spin_lock(&srpt_dev_lock); 3012 wwn = __srpt_lookup_wwn(name); 3013 spin_unlock(&srpt_dev_lock); 3014 3015 return wwn; 3016 } 3017 3018 static void srpt_free_srq(struct srpt_device *sdev) 3019 { 3020 if (!sdev->srq) 3021 return; 3022 3023 ib_destroy_srq(sdev->srq); 3024 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3025 sdev->srq_size, sdev->req_buf_cache, 3026 DMA_FROM_DEVICE); 3027 kmem_cache_destroy(sdev->req_buf_cache); 3028 sdev->srq = NULL; 3029 } 3030 3031 static int srpt_alloc_srq(struct srpt_device *sdev) 3032 { 3033 struct ib_srq_init_attr srq_attr = { 3034 .event_handler = srpt_srq_event, 3035 .srq_context = (void *)sdev, 3036 .attr.max_wr = sdev->srq_size, 3037 .attr.max_sge = 1, 3038 .srq_type = IB_SRQT_BASIC, 3039 }; 3040 struct ib_device *device = sdev->device; 3041 struct ib_srq *srq; 3042 int i; 3043 3044 WARN_ON_ONCE(sdev->srq); 3045 srq = ib_create_srq(sdev->pd, &srq_attr); 3046 if (IS_ERR(srq)) { 3047 pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq)); 3048 return PTR_ERR(srq); 3049 } 3050 3051 pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size, 3052 sdev->device->attrs.max_srq_wr, dev_name(&device->dev)); 3053 3054 sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf", 3055 srp_max_req_size, 0, 0, NULL); 3056 if (!sdev->req_buf_cache) 3057 goto free_srq; 3058 3059 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3060 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3061 sizeof(*sdev->ioctx_ring[0]), 3062 sdev->req_buf_cache, 0, DMA_FROM_DEVICE); 3063 if (!sdev->ioctx_ring) 3064 goto free_cache; 3065 3066 sdev->use_srq = true; 3067 sdev->srq = srq; 3068 3069 for (i = 0; i < sdev->srq_size; ++i) { 3070 INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list); 3071 srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]); 3072 } 3073 3074 return 0; 3075 3076 free_cache: 3077 kmem_cache_destroy(sdev->req_buf_cache); 3078 3079 free_srq: 3080 ib_destroy_srq(srq); 3081 return -ENOMEM; 3082 } 3083 3084 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq) 3085 { 3086 struct ib_device *device = sdev->device; 3087 int ret = 0; 3088 3089 if (!use_srq) { 3090 srpt_free_srq(sdev); 3091 sdev->use_srq = false; 3092 } else if (use_srq && !sdev->srq) { 3093 ret = srpt_alloc_srq(sdev); 3094 } 3095 pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, 3096 dev_name(&device->dev), sdev->use_srq, ret); 3097 return ret; 3098 } 3099 3100 /** 3101 * srpt_add_one - InfiniBand device addition callback function 3102 * @device: Describes a HCA. 3103 */ 3104 static int srpt_add_one(struct ib_device *device) 3105 { 3106 struct srpt_device *sdev; 3107 struct srpt_port *sport; 3108 int i, ret; 3109 3110 pr_debug("device = %p\n", device); 3111 3112 sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt), 3113 GFP_KERNEL); 3114 if (!sdev) 3115 return -ENOMEM; 3116 3117 sdev->device = device; 3118 mutex_init(&sdev->sdev_mutex); 3119 3120 sdev->pd = ib_alloc_pd(device, 0); 3121 if (IS_ERR(sdev->pd)) { 3122 ret = PTR_ERR(sdev->pd); 3123 goto free_dev; 3124 } 3125 3126 sdev->lkey = sdev->pd->local_dma_lkey; 3127 3128 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr); 3129 3130 srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq); 3131 3132 if (!srpt_service_guid) 3133 srpt_service_guid = be64_to_cpu(device->node_guid); 3134 3135 if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND) 3136 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3137 if (IS_ERR(sdev->cm_id)) { 3138 pr_info("ib_create_cm_id() failed: %ld\n", 3139 PTR_ERR(sdev->cm_id)); 3140 ret = PTR_ERR(sdev->cm_id); 3141 sdev->cm_id = NULL; 3142 if (!rdma_cm_id) 3143 goto err_ring; 3144 } 3145 3146 /* print out target login information */ 3147 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n", 3148 srpt_service_guid, srpt_service_guid, srpt_service_guid); 3149 3150 /* 3151 * We do not have a consistent service_id (ie. also id_ext of target_id) 3152 * to identify this target. We currently use the guid of the first HCA 3153 * in the system as service_id; therefore, the target_id will change 3154 * if this HCA is gone bad and replaced by different HCA 3155 */ 3156 ret = sdev->cm_id ? 3157 ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) : 3158 0; 3159 if (ret < 0) { 3160 pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret, 3161 sdev->cm_id->state); 3162 goto err_cm; 3163 } 3164 3165 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3166 srpt_event_handler); 3167 ib_register_event_handler(&sdev->event_handler); 3168 3169 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3170 sport = &sdev->port[i - 1]; 3171 INIT_LIST_HEAD(&sport->nexus_list); 3172 mutex_init(&sport->mutex); 3173 sport->sdev = sdev; 3174 sport->port = i; 3175 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3176 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3177 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3178 sport->port_attrib.use_srq = false; 3179 INIT_WORK(&sport->work, srpt_refresh_port_work); 3180 mutex_init(&sport->port_guid_id.mutex); 3181 INIT_LIST_HEAD(&sport->port_guid_id.tpg_list); 3182 mutex_init(&sport->port_gid_id.mutex); 3183 INIT_LIST_HEAD(&sport->port_gid_id.tpg_list); 3184 3185 ret = srpt_refresh_port(sport); 3186 if (ret) { 3187 pr_err("MAD registration failed for %s-%d.\n", 3188 dev_name(&sdev->device->dev), i); 3189 i--; 3190 goto err_port; 3191 } 3192 } 3193 3194 spin_lock(&srpt_dev_lock); 3195 list_add_tail(&sdev->list, &srpt_dev_list); 3196 spin_unlock(&srpt_dev_lock); 3197 3198 ib_set_client_data(device, &srpt_client, sdev); 3199 pr_debug("added %s.\n", dev_name(&device->dev)); 3200 return 0; 3201 3202 err_port: 3203 srpt_unregister_mad_agent(sdev, i); 3204 ib_unregister_event_handler(&sdev->event_handler); 3205 err_cm: 3206 if (sdev->cm_id) 3207 ib_destroy_cm_id(sdev->cm_id); 3208 err_ring: 3209 srpt_free_srq(sdev); 3210 ib_dealloc_pd(sdev->pd); 3211 free_dev: 3212 kfree(sdev); 3213 pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev)); 3214 return ret; 3215 } 3216 3217 /** 3218 * srpt_remove_one - InfiniBand device removal callback function 3219 * @device: Describes a HCA. 3220 * @client_data: The value passed as the third argument to ib_set_client_data(). 3221 */ 3222 static void srpt_remove_one(struct ib_device *device, void *client_data) 3223 { 3224 struct srpt_device *sdev = client_data; 3225 int i; 3226 3227 srpt_unregister_mad_agent(sdev, sdev->device->phys_port_cnt); 3228 3229 ib_unregister_event_handler(&sdev->event_handler); 3230 3231 /* Cancel any work queued by the just unregistered IB event handler. */ 3232 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3233 cancel_work_sync(&sdev->port[i].work); 3234 3235 if (sdev->cm_id) 3236 ib_destroy_cm_id(sdev->cm_id); 3237 3238 ib_set_client_data(device, &srpt_client, NULL); 3239 3240 /* 3241 * Unregistering a target must happen after destroying sdev->cm_id 3242 * such that no new SRP_LOGIN_REQ information units can arrive while 3243 * destroying the target. 3244 */ 3245 spin_lock(&srpt_dev_lock); 3246 list_del(&sdev->list); 3247 spin_unlock(&srpt_dev_lock); 3248 3249 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3250 srpt_release_sport(&sdev->port[i]); 3251 3252 srpt_free_srq(sdev); 3253 3254 ib_dealloc_pd(sdev->pd); 3255 3256 kfree(sdev); 3257 } 3258 3259 static struct ib_client srpt_client = { 3260 .name = DRV_NAME, 3261 .add = srpt_add_one, 3262 .remove = srpt_remove_one 3263 }; 3264 3265 static int srpt_check_true(struct se_portal_group *se_tpg) 3266 { 3267 return 1; 3268 } 3269 3270 static int srpt_check_false(struct se_portal_group *se_tpg) 3271 { 3272 return 0; 3273 } 3274 3275 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg) 3276 { 3277 return tpg->se_tpg_wwn->priv; 3278 } 3279 3280 static struct srpt_port_id *srpt_wwn_to_sport_id(struct se_wwn *wwn) 3281 { 3282 struct srpt_port *sport = wwn->priv; 3283 3284 if (wwn == &sport->port_guid_id.wwn) 3285 return &sport->port_guid_id; 3286 if (wwn == &sport->port_gid_id.wwn) 3287 return &sport->port_gid_id; 3288 WARN_ON_ONCE(true); 3289 return NULL; 3290 } 3291 3292 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3293 { 3294 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg); 3295 3296 return stpg->sport_id->name; 3297 } 3298 3299 static u16 srpt_get_tag(struct se_portal_group *tpg) 3300 { 3301 return 1; 3302 } 3303 3304 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3305 { 3306 return 1; 3307 } 3308 3309 static void srpt_release_cmd(struct se_cmd *se_cmd) 3310 { 3311 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3312 struct srpt_send_ioctx, cmd); 3313 struct srpt_rdma_ch *ch = ioctx->ch; 3314 struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx; 3315 3316 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE && 3317 !(ioctx->cmd.transport_state & CMD_T_ABORTED)); 3318 3319 if (recv_ioctx) { 3320 WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list)); 3321 ioctx->recv_ioctx = NULL; 3322 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx); 3323 } 3324 3325 if (ioctx->n_rw_ctx) { 3326 srpt_free_rw_ctxs(ch, ioctx); 3327 ioctx->n_rw_ctx = 0; 3328 } 3329 3330 target_free_tag(se_cmd->se_sess, se_cmd); 3331 } 3332 3333 /** 3334 * srpt_close_session - forcibly close a session 3335 * @se_sess: SCSI target session. 3336 * 3337 * Callback function invoked by the TCM core to clean up sessions associated 3338 * with a node ACL when the user invokes 3339 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3340 */ 3341 static void srpt_close_session(struct se_session *se_sess) 3342 { 3343 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 3344 3345 srpt_disconnect_ch_sync(ch); 3346 } 3347 3348 /** 3349 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB) 3350 * @se_sess: SCSI target session. 3351 * 3352 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3353 * This object represents an arbitrary integer used to uniquely identify a 3354 * particular attached remote initiator port to a particular SCSI target port 3355 * within a particular SCSI target device within a particular SCSI instance. 3356 */ 3357 static u32 srpt_sess_get_index(struct se_session *se_sess) 3358 { 3359 return 0; 3360 } 3361 3362 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3363 { 3364 } 3365 3366 /* Note: only used from inside debug printk's by the TCM core. */ 3367 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3368 { 3369 struct srpt_send_ioctx *ioctx; 3370 3371 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3372 return ioctx->state; 3373 } 3374 3375 static int srpt_parse_guid(u64 *guid, const char *name) 3376 { 3377 u16 w[4]; 3378 int ret = -EINVAL; 3379 3380 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4) 3381 goto out; 3382 *guid = get_unaligned_be64(w); 3383 ret = 0; 3384 out: 3385 return ret; 3386 } 3387 3388 /** 3389 * srpt_parse_i_port_id - parse an initiator port ID 3390 * @name: ASCII representation of a 128-bit initiator port ID. 3391 * @i_port_id: Binary 128-bit port ID. 3392 */ 3393 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3394 { 3395 const char *p; 3396 unsigned len, count, leading_zero_bytes; 3397 int ret; 3398 3399 p = name; 3400 if (strncasecmp(p, "0x", 2) == 0) 3401 p += 2; 3402 ret = -EINVAL; 3403 len = strlen(p); 3404 if (len % 2) 3405 goto out; 3406 count = min(len / 2, 16U); 3407 leading_zero_bytes = 16 - count; 3408 memset(i_port_id, 0, leading_zero_bytes); 3409 ret = hex2bin(i_port_id + leading_zero_bytes, p, count); 3410 3411 out: 3412 return ret; 3413 } 3414 3415 /* 3416 * configfs callback function invoked for mkdir 3417 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3418 * 3419 * i_port_id must be an initiator port GUID, GID or IP address. See also the 3420 * target_alloc_session() calls in this driver. Examples of valid initiator 3421 * port IDs: 3422 * 0x0000000000000000505400fffe4a0b7b 3423 * 0000000000000000505400fffe4a0b7b 3424 * 5054:00ff:fe4a:0b7b 3425 * 192.168.122.76 3426 */ 3427 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) 3428 { 3429 struct sockaddr_storage sa; 3430 u64 guid; 3431 u8 i_port_id[16]; 3432 int ret; 3433 3434 ret = srpt_parse_guid(&guid, name); 3435 if (ret < 0) 3436 ret = srpt_parse_i_port_id(i_port_id, name); 3437 if (ret < 0) 3438 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL, 3439 &sa); 3440 if (ret < 0) 3441 pr_err("invalid initiator port ID %s\n", name); 3442 return ret; 3443 } 3444 3445 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, 3446 char *page) 3447 { 3448 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3449 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3450 3451 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3452 } 3453 3454 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, 3455 const char *page, size_t count) 3456 { 3457 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3458 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3459 unsigned long val; 3460 int ret; 3461 3462 ret = kstrtoul(page, 0, &val); 3463 if (ret < 0) { 3464 pr_err("kstrtoul() failed with ret: %d\n", ret); 3465 return -EINVAL; 3466 } 3467 if (val > MAX_SRPT_RDMA_SIZE) { 3468 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3469 MAX_SRPT_RDMA_SIZE); 3470 return -EINVAL; 3471 } 3472 if (val < DEFAULT_MAX_RDMA_SIZE) { 3473 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3474 val, DEFAULT_MAX_RDMA_SIZE); 3475 return -EINVAL; 3476 } 3477 sport->port_attrib.srp_max_rdma_size = val; 3478 3479 return count; 3480 } 3481 3482 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, 3483 char *page) 3484 { 3485 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3486 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3487 3488 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3489 } 3490 3491 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, 3492 const char *page, size_t count) 3493 { 3494 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3495 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3496 unsigned long val; 3497 int ret; 3498 3499 ret = kstrtoul(page, 0, &val); 3500 if (ret < 0) { 3501 pr_err("kstrtoul() failed with ret: %d\n", ret); 3502 return -EINVAL; 3503 } 3504 if (val > MAX_SRPT_RSP_SIZE) { 3505 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3506 MAX_SRPT_RSP_SIZE); 3507 return -EINVAL; 3508 } 3509 if (val < MIN_MAX_RSP_SIZE) { 3510 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3511 MIN_MAX_RSP_SIZE); 3512 return -EINVAL; 3513 } 3514 sport->port_attrib.srp_max_rsp_size = val; 3515 3516 return count; 3517 } 3518 3519 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, 3520 char *page) 3521 { 3522 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3523 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3524 3525 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_sq_size); 3526 } 3527 3528 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, 3529 const char *page, size_t count) 3530 { 3531 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3532 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3533 unsigned long val; 3534 int ret; 3535 3536 ret = kstrtoul(page, 0, &val); 3537 if (ret < 0) { 3538 pr_err("kstrtoul() failed with ret: %d\n", ret); 3539 return -EINVAL; 3540 } 3541 if (val > MAX_SRPT_SRQ_SIZE) { 3542 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3543 MAX_SRPT_SRQ_SIZE); 3544 return -EINVAL; 3545 } 3546 if (val < MIN_SRPT_SRQ_SIZE) { 3547 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3548 MIN_SRPT_SRQ_SIZE); 3549 return -EINVAL; 3550 } 3551 sport->port_attrib.srp_sq_size = val; 3552 3553 return count; 3554 } 3555 3556 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item, 3557 char *page) 3558 { 3559 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3560 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3561 3562 return sysfs_emit(page, "%d\n", sport->port_attrib.use_srq); 3563 } 3564 3565 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item, 3566 const char *page, size_t count) 3567 { 3568 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3569 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3570 struct srpt_device *sdev = sport->sdev; 3571 unsigned long val; 3572 bool enabled; 3573 int ret; 3574 3575 ret = kstrtoul(page, 0, &val); 3576 if (ret < 0) 3577 return ret; 3578 if (val != !!val) 3579 return -EINVAL; 3580 3581 ret = mutex_lock_interruptible(&sdev->sdev_mutex); 3582 if (ret < 0) 3583 return ret; 3584 ret = mutex_lock_interruptible(&sport->mutex); 3585 if (ret < 0) 3586 goto unlock_sdev; 3587 enabled = sport->enabled; 3588 /* Log out all initiator systems before changing 'use_srq'. */ 3589 srpt_set_enabled(sport, false); 3590 sport->port_attrib.use_srq = val; 3591 srpt_use_srq(sdev, sport->port_attrib.use_srq); 3592 srpt_set_enabled(sport, enabled); 3593 ret = count; 3594 mutex_unlock(&sport->mutex); 3595 unlock_sdev: 3596 mutex_unlock(&sdev->sdev_mutex); 3597 3598 return ret; 3599 } 3600 3601 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size); 3602 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size); 3603 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size); 3604 CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq); 3605 3606 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3607 &srpt_tpg_attrib_attr_srp_max_rdma_size, 3608 &srpt_tpg_attrib_attr_srp_max_rsp_size, 3609 &srpt_tpg_attrib_attr_srp_sq_size, 3610 &srpt_tpg_attrib_attr_use_srq, 3611 NULL, 3612 }; 3613 3614 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr) 3615 { 3616 struct rdma_cm_id *rdma_cm_id; 3617 int ret; 3618 3619 rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler, 3620 NULL, RDMA_PS_TCP, IB_QPT_RC); 3621 if (IS_ERR(rdma_cm_id)) { 3622 pr_err("RDMA/CM ID creation failed: %ld\n", 3623 PTR_ERR(rdma_cm_id)); 3624 goto out; 3625 } 3626 3627 ret = rdma_bind_addr(rdma_cm_id, listen_addr); 3628 if (ret) { 3629 char addr_str[64]; 3630 3631 snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr); 3632 pr_err("Binding RDMA/CM ID to address %s failed: %d\n", 3633 addr_str, ret); 3634 rdma_destroy_id(rdma_cm_id); 3635 rdma_cm_id = ERR_PTR(ret); 3636 goto out; 3637 } 3638 3639 ret = rdma_listen(rdma_cm_id, 128); 3640 if (ret) { 3641 pr_err("rdma_listen() failed: %d\n", ret); 3642 rdma_destroy_id(rdma_cm_id); 3643 rdma_cm_id = ERR_PTR(ret); 3644 } 3645 3646 out: 3647 return rdma_cm_id; 3648 } 3649 3650 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page) 3651 { 3652 return sysfs_emit(page, "%d\n", rdma_cm_port); 3653 } 3654 3655 static ssize_t srpt_rdma_cm_port_store(struct config_item *item, 3656 const char *page, size_t count) 3657 { 3658 struct sockaddr_in addr4 = { .sin_family = AF_INET }; 3659 struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 }; 3660 struct rdma_cm_id *new_id = NULL; 3661 u16 val; 3662 int ret; 3663 3664 ret = kstrtou16(page, 0, &val); 3665 if (ret < 0) 3666 return ret; 3667 ret = count; 3668 if (rdma_cm_port == val) 3669 goto out; 3670 3671 if (val) { 3672 addr6.sin6_port = cpu_to_be16(val); 3673 new_id = srpt_create_rdma_id((struct sockaddr *)&addr6); 3674 if (IS_ERR(new_id)) { 3675 addr4.sin_port = cpu_to_be16(val); 3676 new_id = srpt_create_rdma_id((struct sockaddr *)&addr4); 3677 if (IS_ERR(new_id)) { 3678 ret = PTR_ERR(new_id); 3679 goto out; 3680 } 3681 } 3682 } 3683 3684 mutex_lock(&rdma_cm_mutex); 3685 rdma_cm_port = val; 3686 swap(rdma_cm_id, new_id); 3687 mutex_unlock(&rdma_cm_mutex); 3688 3689 if (new_id) 3690 rdma_destroy_id(new_id); 3691 ret = count; 3692 out: 3693 return ret; 3694 } 3695 3696 CONFIGFS_ATTR(srpt_, rdma_cm_port); 3697 3698 static struct configfs_attribute *srpt_da_attrs[] = { 3699 &srpt_attr_rdma_cm_port, 3700 NULL, 3701 }; 3702 3703 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page) 3704 { 3705 struct se_portal_group *se_tpg = to_tpg(item); 3706 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3707 3708 return sysfs_emit(page, "%d\n", sport->enabled); 3709 } 3710 3711 static ssize_t srpt_tpg_enable_store(struct config_item *item, 3712 const char *page, size_t count) 3713 { 3714 struct se_portal_group *se_tpg = to_tpg(item); 3715 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3716 unsigned long tmp; 3717 int ret; 3718 3719 ret = kstrtoul(page, 0, &tmp); 3720 if (ret < 0) { 3721 pr_err("Unable to extract srpt_tpg_store_enable\n"); 3722 return -EINVAL; 3723 } 3724 3725 if ((tmp != 0) && (tmp != 1)) { 3726 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3727 return -EINVAL; 3728 } 3729 3730 mutex_lock(&sport->mutex); 3731 srpt_set_enabled(sport, tmp); 3732 mutex_unlock(&sport->mutex); 3733 3734 return count; 3735 } 3736 3737 CONFIGFS_ATTR(srpt_tpg_, enable); 3738 3739 static struct configfs_attribute *srpt_tpg_attrs[] = { 3740 &srpt_tpg_attr_enable, 3741 NULL, 3742 }; 3743 3744 /** 3745 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg 3746 * @wwn: Corresponds to $driver/$port. 3747 * @name: $tpg. 3748 */ 3749 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3750 const char *name) 3751 { 3752 struct srpt_port_id *sport_id = srpt_wwn_to_sport_id(wwn); 3753 struct srpt_tpg *stpg; 3754 int res = -ENOMEM; 3755 3756 stpg = kzalloc(sizeof(*stpg), GFP_KERNEL); 3757 if (!stpg) 3758 return ERR_PTR(res); 3759 stpg->sport_id = sport_id; 3760 res = core_tpg_register(wwn, &stpg->tpg, SCSI_PROTOCOL_SRP); 3761 if (res) { 3762 kfree(stpg); 3763 return ERR_PTR(res); 3764 } 3765 3766 mutex_lock(&sport_id->mutex); 3767 list_add_tail(&stpg->entry, &sport_id->tpg_list); 3768 mutex_unlock(&sport_id->mutex); 3769 3770 return &stpg->tpg; 3771 } 3772 3773 /** 3774 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg 3775 * @tpg: Target portal group to deregister. 3776 */ 3777 static void srpt_drop_tpg(struct se_portal_group *tpg) 3778 { 3779 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg); 3780 struct srpt_port_id *sport_id = stpg->sport_id; 3781 struct srpt_port *sport = srpt_tpg_to_sport(tpg); 3782 3783 mutex_lock(&sport_id->mutex); 3784 list_del(&stpg->entry); 3785 mutex_unlock(&sport_id->mutex); 3786 3787 sport->enabled = false; 3788 core_tpg_deregister(tpg); 3789 kfree(stpg); 3790 } 3791 3792 /** 3793 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port 3794 * @tf: Not used. 3795 * @group: Not used. 3796 * @name: $port. 3797 */ 3798 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3799 struct config_group *group, 3800 const char *name) 3801 { 3802 return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL); 3803 } 3804 3805 /** 3806 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port 3807 * @wwn: $port. 3808 */ 3809 static void srpt_drop_tport(struct se_wwn *wwn) 3810 { 3811 } 3812 3813 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf) 3814 { 3815 return sysfs_emit(buf, "\n"); 3816 } 3817 3818 CONFIGFS_ATTR_RO(srpt_wwn_, version); 3819 3820 static struct configfs_attribute *srpt_wwn_attrs[] = { 3821 &srpt_wwn_attr_version, 3822 NULL, 3823 }; 3824 3825 static const struct target_core_fabric_ops srpt_template = { 3826 .module = THIS_MODULE, 3827 .fabric_name = "srpt", 3828 .tpg_get_wwn = srpt_get_fabric_wwn, 3829 .tpg_get_tag = srpt_get_tag, 3830 .tpg_check_demo_mode = srpt_check_false, 3831 .tpg_check_demo_mode_cache = srpt_check_true, 3832 .tpg_check_demo_mode_write_protect = srpt_check_true, 3833 .tpg_check_prod_mode_write_protect = srpt_check_false, 3834 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3835 .release_cmd = srpt_release_cmd, 3836 .check_stop_free = srpt_check_stop_free, 3837 .close_session = srpt_close_session, 3838 .sess_get_index = srpt_sess_get_index, 3839 .sess_get_initiator_sid = NULL, 3840 .write_pending = srpt_write_pending, 3841 .set_default_node_attributes = srpt_set_default_node_attrs, 3842 .get_cmd_state = srpt_get_tcm_cmd_state, 3843 .queue_data_in = srpt_queue_data_in, 3844 .queue_status = srpt_queue_status, 3845 .queue_tm_rsp = srpt_queue_tm_rsp, 3846 .aborted_task = srpt_aborted_task, 3847 /* 3848 * Setup function pointers for generic logic in 3849 * target_core_fabric_configfs.c 3850 */ 3851 .fabric_make_wwn = srpt_make_tport, 3852 .fabric_drop_wwn = srpt_drop_tport, 3853 .fabric_make_tpg = srpt_make_tpg, 3854 .fabric_drop_tpg = srpt_drop_tpg, 3855 .fabric_init_nodeacl = srpt_init_nodeacl, 3856 3857 .tfc_discovery_attrs = srpt_da_attrs, 3858 .tfc_wwn_attrs = srpt_wwn_attrs, 3859 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3860 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3861 }; 3862 3863 /** 3864 * srpt_init_module - kernel module initialization 3865 * 3866 * Note: Since ib_register_client() registers callback functions, and since at 3867 * least one of these callback functions (srpt_add_one()) calls target core 3868 * functions, this driver must be registered with the target core before 3869 * ib_register_client() is called. 3870 */ 3871 static int __init srpt_init_module(void) 3872 { 3873 int ret; 3874 3875 ret = -EINVAL; 3876 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3877 pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n", 3878 srp_max_req_size, MIN_MAX_REQ_SIZE); 3879 goto out; 3880 } 3881 3882 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3883 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3884 pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n", 3885 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3886 goto out; 3887 } 3888 3889 ret = target_register_template(&srpt_template); 3890 if (ret) 3891 goto out; 3892 3893 ret = ib_register_client(&srpt_client); 3894 if (ret) { 3895 pr_err("couldn't register IB client\n"); 3896 goto out_unregister_target; 3897 } 3898 3899 return 0; 3900 3901 out_unregister_target: 3902 target_unregister_template(&srpt_template); 3903 out: 3904 return ret; 3905 } 3906 3907 static void __exit srpt_cleanup_module(void) 3908 { 3909 if (rdma_cm_id) 3910 rdma_destroy_id(rdma_cm_id); 3911 ib_unregister_client(&srpt_client); 3912 target_unregister_template(&srpt_template); 3913 } 3914 3915 module_init(srpt_init_module); 3916 module_exit(srpt_cleanup_module); 3917