1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_proto.h> 45 #include <scsi/scsi_tcq.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric.h> 48 #include "ib_srpt.h" 49 50 /* Name of this kernel module. */ 51 #define DRV_NAME "ib_srpt" 52 #define DRV_VERSION "2.0.0" 53 #define DRV_RELDATE "2011-02-14" 54 55 #define SRPT_ID_STRING "Linux SRP target" 56 57 #undef pr_fmt 58 #define pr_fmt(fmt) DRV_NAME " " fmt 59 60 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 62 "v" DRV_VERSION " (" DRV_RELDATE ")"); 63 MODULE_LICENSE("Dual BSD/GPL"); 64 65 /* 66 * Global Variables 67 */ 68 69 static u64 srpt_service_guid; 70 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 71 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 72 73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 74 module_param(srp_max_req_size, int, 0444); 75 MODULE_PARM_DESC(srp_max_req_size, 76 "Maximum size of SRP request messages in bytes."); 77 78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 79 module_param(srpt_srq_size, int, 0444); 80 MODULE_PARM_DESC(srpt_srq_size, 81 "Shared receive queue (SRQ) size."); 82 83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 84 { 85 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 86 } 87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 88 0444); 89 MODULE_PARM_DESC(srpt_service_guid, 90 "Using this value for ioc_guid, id_ext, and cm_listen_id" 91 " instead of using the node_guid of the first HCA."); 92 93 static struct ib_client srpt_client; 94 static void srpt_release_cmd(struct se_cmd *se_cmd); 95 static void srpt_free_ch(struct kref *kref); 96 static int srpt_queue_status(struct se_cmd *cmd); 97 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc); 98 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc); 99 static void srpt_process_wait_list(struct srpt_rdma_ch *ch); 100 101 /* 102 * The only allowed channel state changes are those that change the channel 103 * state into a state with a higher numerical value. Hence the new > prev test. 104 */ 105 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new) 106 { 107 unsigned long flags; 108 enum rdma_ch_state prev; 109 bool changed = false; 110 111 spin_lock_irqsave(&ch->spinlock, flags); 112 prev = ch->state; 113 if (new > prev) { 114 ch->state = new; 115 changed = true; 116 } 117 spin_unlock_irqrestore(&ch->spinlock, flags); 118 119 return changed; 120 } 121 122 /** 123 * srpt_event_handler() - Asynchronous IB event callback function. 124 * 125 * Callback function called by the InfiniBand core when an asynchronous IB 126 * event occurs. This callback may occur in interrupt context. See also 127 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 128 * Architecture Specification. 129 */ 130 static void srpt_event_handler(struct ib_event_handler *handler, 131 struct ib_event *event) 132 { 133 struct srpt_device *sdev; 134 struct srpt_port *sport; 135 136 sdev = ib_get_client_data(event->device, &srpt_client); 137 if (!sdev || sdev->device != event->device) 138 return; 139 140 pr_debug("ASYNC event= %d on device= %s\n", event->event, 141 sdev->device->name); 142 143 switch (event->event) { 144 case IB_EVENT_PORT_ERR: 145 if (event->element.port_num <= sdev->device->phys_port_cnt) { 146 sport = &sdev->port[event->element.port_num - 1]; 147 sport->lid = 0; 148 sport->sm_lid = 0; 149 } 150 break; 151 case IB_EVENT_PORT_ACTIVE: 152 case IB_EVENT_LID_CHANGE: 153 case IB_EVENT_PKEY_CHANGE: 154 case IB_EVENT_SM_CHANGE: 155 case IB_EVENT_CLIENT_REREGISTER: 156 case IB_EVENT_GID_CHANGE: 157 /* Refresh port data asynchronously. */ 158 if (event->element.port_num <= sdev->device->phys_port_cnt) { 159 sport = &sdev->port[event->element.port_num - 1]; 160 if (!sport->lid && !sport->sm_lid) 161 schedule_work(&sport->work); 162 } 163 break; 164 default: 165 pr_err("received unrecognized IB event %d\n", 166 event->event); 167 break; 168 } 169 } 170 171 /** 172 * srpt_srq_event() - SRQ event callback function. 173 */ 174 static void srpt_srq_event(struct ib_event *event, void *ctx) 175 { 176 pr_info("SRQ event %d\n", event->event); 177 } 178 179 static const char *get_ch_state_name(enum rdma_ch_state s) 180 { 181 switch (s) { 182 case CH_CONNECTING: 183 return "connecting"; 184 case CH_LIVE: 185 return "live"; 186 case CH_DISCONNECTING: 187 return "disconnecting"; 188 case CH_DRAINING: 189 return "draining"; 190 case CH_DISCONNECTED: 191 return "disconnected"; 192 } 193 return "???"; 194 } 195 196 /** 197 * srpt_qp_event() - QP event callback function. 198 */ 199 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 200 { 201 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 202 event->event, ch->cm_id, ch->sess_name, ch->state); 203 204 switch (event->event) { 205 case IB_EVENT_COMM_EST: 206 ib_cm_notify(ch->cm_id, event->event); 207 break; 208 case IB_EVENT_QP_LAST_WQE_REACHED: 209 pr_debug("%s-%d, state %s: received Last WQE event.\n", 210 ch->sess_name, ch->qp->qp_num, 211 get_ch_state_name(ch->state)); 212 break; 213 default: 214 pr_err("received unrecognized IB QP event %d\n", event->event); 215 break; 216 } 217 } 218 219 /** 220 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 221 * 222 * @slot: one-based slot number. 223 * @value: four-bit value. 224 * 225 * Copies the lowest four bits of value in element slot of the array of four 226 * bit elements called c_list (controller list). The index slot is one-based. 227 */ 228 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 229 { 230 u16 id; 231 u8 tmp; 232 233 id = (slot - 1) / 2; 234 if (slot & 0x1) { 235 tmp = c_list[id] & 0xf; 236 c_list[id] = (value << 4) | tmp; 237 } else { 238 tmp = c_list[id] & 0xf0; 239 c_list[id] = (value & 0xf) | tmp; 240 } 241 } 242 243 /** 244 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 245 * 246 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 247 * Specification. 248 */ 249 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 250 { 251 struct ib_class_port_info *cif; 252 253 cif = (struct ib_class_port_info *)mad->data; 254 memset(cif, 0, sizeof(*cif)); 255 cif->base_version = 1; 256 cif->class_version = 1; 257 258 ib_set_cpi_resp_time(cif, 20); 259 mad->mad_hdr.status = 0; 260 } 261 262 /** 263 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 264 * 265 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 266 * Specification. See also section B.7, table B.6 in the SRP r16a document. 267 */ 268 static void srpt_get_iou(struct ib_dm_mad *mad) 269 { 270 struct ib_dm_iou_info *ioui; 271 u8 slot; 272 int i; 273 274 ioui = (struct ib_dm_iou_info *)mad->data; 275 ioui->change_id = cpu_to_be16(1); 276 ioui->max_controllers = 16; 277 278 /* set present for slot 1 and empty for the rest */ 279 srpt_set_ioc(ioui->controller_list, 1, 1); 280 for (i = 1, slot = 2; i < 16; i++, slot++) 281 srpt_set_ioc(ioui->controller_list, slot, 0); 282 283 mad->mad_hdr.status = 0; 284 } 285 286 /** 287 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 288 * 289 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 290 * Architecture Specification. See also section B.7, table B.7 in the SRP 291 * r16a document. 292 */ 293 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 294 struct ib_dm_mad *mad) 295 { 296 struct srpt_device *sdev = sport->sdev; 297 struct ib_dm_ioc_profile *iocp; 298 299 iocp = (struct ib_dm_ioc_profile *)mad->data; 300 301 if (!slot || slot > 16) { 302 mad->mad_hdr.status 303 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 304 return; 305 } 306 307 if (slot > 2) { 308 mad->mad_hdr.status 309 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 310 return; 311 } 312 313 memset(iocp, 0, sizeof(*iocp)); 314 strcpy(iocp->id_string, SRPT_ID_STRING); 315 iocp->guid = cpu_to_be64(srpt_service_guid); 316 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 317 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id); 318 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver); 319 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 320 iocp->subsys_device_id = 0x0; 321 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 322 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); 323 iocp->protocol = cpu_to_be16(SRP_PROTOCOL); 324 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); 325 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 326 iocp->rdma_read_depth = 4; 327 iocp->send_size = cpu_to_be32(srp_max_req_size); 328 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 329 1U << 24)); 330 iocp->num_svc_entries = 1; 331 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 332 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 333 334 mad->mad_hdr.status = 0; 335 } 336 337 /** 338 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 339 * 340 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 341 * Specification. See also section B.7, table B.8 in the SRP r16a document. 342 */ 343 static void srpt_get_svc_entries(u64 ioc_guid, 344 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 345 { 346 struct ib_dm_svc_entries *svc_entries; 347 348 WARN_ON(!ioc_guid); 349 350 if (!slot || slot > 16) { 351 mad->mad_hdr.status 352 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 353 return; 354 } 355 356 if (slot > 2 || lo > hi || hi > 1) { 357 mad->mad_hdr.status 358 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 359 return; 360 } 361 362 svc_entries = (struct ib_dm_svc_entries *)mad->data; 363 memset(svc_entries, 0, sizeof(*svc_entries)); 364 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 365 snprintf(svc_entries->service_entries[0].name, 366 sizeof(svc_entries->service_entries[0].name), 367 "%s%016llx", 368 SRP_SERVICE_NAME_PREFIX, 369 ioc_guid); 370 371 mad->mad_hdr.status = 0; 372 } 373 374 /** 375 * srpt_mgmt_method_get() - Process a received management datagram. 376 * @sp: source port through which the MAD has been received. 377 * @rq_mad: received MAD. 378 * @rsp_mad: response MAD. 379 */ 380 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 381 struct ib_dm_mad *rsp_mad) 382 { 383 u16 attr_id; 384 u32 slot; 385 u8 hi, lo; 386 387 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 388 switch (attr_id) { 389 case DM_ATTR_CLASS_PORT_INFO: 390 srpt_get_class_port_info(rsp_mad); 391 break; 392 case DM_ATTR_IOU_INFO: 393 srpt_get_iou(rsp_mad); 394 break; 395 case DM_ATTR_IOC_PROFILE: 396 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 397 srpt_get_ioc(sp, slot, rsp_mad); 398 break; 399 case DM_ATTR_SVC_ENTRIES: 400 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 401 hi = (u8) ((slot >> 8) & 0xff); 402 lo = (u8) (slot & 0xff); 403 slot = (u16) ((slot >> 16) & 0xffff); 404 srpt_get_svc_entries(srpt_service_guid, 405 slot, hi, lo, rsp_mad); 406 break; 407 default: 408 rsp_mad->mad_hdr.status = 409 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 410 break; 411 } 412 } 413 414 /** 415 * srpt_mad_send_handler() - Post MAD-send callback function. 416 */ 417 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 418 struct ib_mad_send_wc *mad_wc) 419 { 420 ib_destroy_ah(mad_wc->send_buf->ah); 421 ib_free_send_mad(mad_wc->send_buf); 422 } 423 424 /** 425 * srpt_mad_recv_handler() - MAD reception callback function. 426 */ 427 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 428 struct ib_mad_send_buf *send_buf, 429 struct ib_mad_recv_wc *mad_wc) 430 { 431 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 432 struct ib_ah *ah; 433 struct ib_mad_send_buf *rsp; 434 struct ib_dm_mad *dm_mad; 435 436 if (!mad_wc || !mad_wc->recv_buf.mad) 437 return; 438 439 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 440 mad_wc->recv_buf.grh, mad_agent->port_num); 441 if (IS_ERR(ah)) 442 goto err; 443 444 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 445 446 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 447 mad_wc->wc->pkey_index, 0, 448 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 449 GFP_KERNEL, 450 IB_MGMT_BASE_VERSION); 451 if (IS_ERR(rsp)) 452 goto err_rsp; 453 454 rsp->ah = ah; 455 456 dm_mad = rsp->mad; 457 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad)); 458 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 459 dm_mad->mad_hdr.status = 0; 460 461 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 462 case IB_MGMT_METHOD_GET: 463 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 464 break; 465 case IB_MGMT_METHOD_SET: 466 dm_mad->mad_hdr.status = 467 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 468 break; 469 default: 470 dm_mad->mad_hdr.status = 471 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 472 break; 473 } 474 475 if (!ib_post_send_mad(rsp, NULL)) { 476 ib_free_recv_mad(mad_wc); 477 /* will destroy_ah & free_send_mad in send completion */ 478 return; 479 } 480 481 ib_free_send_mad(rsp); 482 483 err_rsp: 484 ib_destroy_ah(ah); 485 err: 486 ib_free_recv_mad(mad_wc); 487 } 488 489 /** 490 * srpt_refresh_port() - Configure a HCA port. 491 * 492 * Enable InfiniBand management datagram processing, update the cached sm_lid, 493 * lid and gid values, and register a callback function for processing MADs 494 * on the specified port. 495 * 496 * Note: It is safe to call this function more than once for the same port. 497 */ 498 static int srpt_refresh_port(struct srpt_port *sport) 499 { 500 struct ib_mad_reg_req reg_req; 501 struct ib_port_modify port_modify; 502 struct ib_port_attr port_attr; 503 int ret; 504 505 memset(&port_modify, 0, sizeof(port_modify)); 506 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 507 port_modify.clr_port_cap_mask = 0; 508 509 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 510 if (ret) 511 goto err_mod_port; 512 513 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 514 if (ret) 515 goto err_query_port; 516 517 sport->sm_lid = port_attr.sm_lid; 518 sport->lid = port_attr.lid; 519 520 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid, 521 NULL); 522 if (ret) 523 goto err_query_port; 524 525 snprintf(sport->port_guid, sizeof(sport->port_guid), 526 "0x%016llx%016llx", 527 be64_to_cpu(sport->gid.global.subnet_prefix), 528 be64_to_cpu(sport->gid.global.interface_id)); 529 530 if (!sport->mad_agent) { 531 memset(®_req, 0, sizeof(reg_req)); 532 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 533 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 534 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 535 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 536 537 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 538 sport->port, 539 IB_QPT_GSI, 540 ®_req, 0, 541 srpt_mad_send_handler, 542 srpt_mad_recv_handler, 543 sport, 0); 544 if (IS_ERR(sport->mad_agent)) { 545 ret = PTR_ERR(sport->mad_agent); 546 sport->mad_agent = NULL; 547 goto err_query_port; 548 } 549 } 550 551 return 0; 552 553 err_query_port: 554 555 port_modify.set_port_cap_mask = 0; 556 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 557 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 558 559 err_mod_port: 560 561 return ret; 562 } 563 564 /** 565 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 566 * 567 * Note: It is safe to call this function more than once for the same device. 568 */ 569 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 570 { 571 struct ib_port_modify port_modify = { 572 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 573 }; 574 struct srpt_port *sport; 575 int i; 576 577 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 578 sport = &sdev->port[i - 1]; 579 WARN_ON(sport->port != i); 580 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 581 pr_err("disabling MAD processing failed.\n"); 582 if (sport->mad_agent) { 583 ib_unregister_mad_agent(sport->mad_agent); 584 sport->mad_agent = NULL; 585 } 586 } 587 } 588 589 /** 590 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 591 */ 592 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 593 int ioctx_size, int dma_size, 594 enum dma_data_direction dir) 595 { 596 struct srpt_ioctx *ioctx; 597 598 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 599 if (!ioctx) 600 goto err; 601 602 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 603 if (!ioctx->buf) 604 goto err_free_ioctx; 605 606 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 607 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 608 goto err_free_buf; 609 610 return ioctx; 611 612 err_free_buf: 613 kfree(ioctx->buf); 614 err_free_ioctx: 615 kfree(ioctx); 616 err: 617 return NULL; 618 } 619 620 /** 621 * srpt_free_ioctx() - Free an SRPT I/O context structure. 622 */ 623 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 624 int dma_size, enum dma_data_direction dir) 625 { 626 if (!ioctx) 627 return; 628 629 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 630 kfree(ioctx->buf); 631 kfree(ioctx); 632 } 633 634 /** 635 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 636 * @sdev: Device to allocate the I/O context ring for. 637 * @ring_size: Number of elements in the I/O context ring. 638 * @ioctx_size: I/O context size. 639 * @dma_size: DMA buffer size. 640 * @dir: DMA data direction. 641 */ 642 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 643 int ring_size, int ioctx_size, 644 int dma_size, enum dma_data_direction dir) 645 { 646 struct srpt_ioctx **ring; 647 int i; 648 649 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 650 && ioctx_size != sizeof(struct srpt_send_ioctx)); 651 652 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 653 if (!ring) 654 goto out; 655 for (i = 0; i < ring_size; ++i) { 656 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 657 if (!ring[i]) 658 goto err; 659 ring[i]->index = i; 660 } 661 goto out; 662 663 err: 664 while (--i >= 0) 665 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 666 kfree(ring); 667 ring = NULL; 668 out: 669 return ring; 670 } 671 672 /** 673 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 674 */ 675 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 676 struct srpt_device *sdev, int ring_size, 677 int dma_size, enum dma_data_direction dir) 678 { 679 int i; 680 681 for (i = 0; i < ring_size; ++i) 682 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 683 kfree(ioctx_ring); 684 } 685 686 /** 687 * srpt_get_cmd_state() - Get the state of a SCSI command. 688 */ 689 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 690 { 691 enum srpt_command_state state; 692 unsigned long flags; 693 694 BUG_ON(!ioctx); 695 696 spin_lock_irqsave(&ioctx->spinlock, flags); 697 state = ioctx->state; 698 spin_unlock_irqrestore(&ioctx->spinlock, flags); 699 return state; 700 } 701 702 /** 703 * srpt_set_cmd_state() - Set the state of a SCSI command. 704 * 705 * Does not modify the state of aborted commands. Returns the previous command 706 * state. 707 */ 708 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 709 enum srpt_command_state new) 710 { 711 enum srpt_command_state previous; 712 unsigned long flags; 713 714 BUG_ON(!ioctx); 715 716 spin_lock_irqsave(&ioctx->spinlock, flags); 717 previous = ioctx->state; 718 if (previous != SRPT_STATE_DONE) 719 ioctx->state = new; 720 spin_unlock_irqrestore(&ioctx->spinlock, flags); 721 722 return previous; 723 } 724 725 /** 726 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 727 * 728 * Returns true if and only if the previous command state was equal to 'old'. 729 */ 730 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 731 enum srpt_command_state old, 732 enum srpt_command_state new) 733 { 734 enum srpt_command_state previous; 735 unsigned long flags; 736 737 WARN_ON(!ioctx); 738 WARN_ON(old == SRPT_STATE_DONE); 739 WARN_ON(new == SRPT_STATE_NEW); 740 741 spin_lock_irqsave(&ioctx->spinlock, flags); 742 previous = ioctx->state; 743 if (previous == old) 744 ioctx->state = new; 745 spin_unlock_irqrestore(&ioctx->spinlock, flags); 746 return previous == old; 747 } 748 749 /** 750 * srpt_post_recv() - Post an IB receive request. 751 */ 752 static int srpt_post_recv(struct srpt_device *sdev, 753 struct srpt_recv_ioctx *ioctx) 754 { 755 struct ib_sge list; 756 struct ib_recv_wr wr, *bad_wr; 757 758 BUG_ON(!sdev); 759 list.addr = ioctx->ioctx.dma; 760 list.length = srp_max_req_size; 761 list.lkey = sdev->pd->local_dma_lkey; 762 763 ioctx->ioctx.cqe.done = srpt_recv_done; 764 wr.wr_cqe = &ioctx->ioctx.cqe; 765 wr.next = NULL; 766 wr.sg_list = &list; 767 wr.num_sge = 1; 768 769 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 770 } 771 772 /** 773 * srpt_zerolength_write() - Perform a zero-length RDMA write. 774 * 775 * A quote from the InfiniBand specification: C9-88: For an HCA responder 776 * using Reliable Connection service, for each zero-length RDMA READ or WRITE 777 * request, the R_Key shall not be validated, even if the request includes 778 * Immediate data. 779 */ 780 static int srpt_zerolength_write(struct srpt_rdma_ch *ch) 781 { 782 struct ib_send_wr wr, *bad_wr; 783 784 memset(&wr, 0, sizeof(wr)); 785 wr.opcode = IB_WR_RDMA_WRITE; 786 wr.wr_cqe = &ch->zw_cqe; 787 wr.send_flags = IB_SEND_SIGNALED; 788 return ib_post_send(ch->qp, &wr, &bad_wr); 789 } 790 791 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc) 792 { 793 struct srpt_rdma_ch *ch = cq->cq_context; 794 795 if (wc->status == IB_WC_SUCCESS) { 796 srpt_process_wait_list(ch); 797 } else { 798 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 799 schedule_work(&ch->release_work); 800 else 801 WARN_ONCE(1, "%s-%d\n", ch->sess_name, ch->qp->qp_num); 802 } 803 } 804 805 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx, 806 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg, 807 unsigned *sg_cnt) 808 { 809 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 810 struct srpt_rdma_ch *ch = ioctx->ch; 811 struct scatterlist *prev = NULL; 812 unsigned prev_nents; 813 int ret, i; 814 815 if (nbufs == 1) { 816 ioctx->rw_ctxs = &ioctx->s_rw_ctx; 817 } else { 818 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs), 819 GFP_KERNEL); 820 if (!ioctx->rw_ctxs) 821 return -ENOMEM; 822 } 823 824 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) { 825 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 826 u64 remote_addr = be64_to_cpu(db->va); 827 u32 size = be32_to_cpu(db->len); 828 u32 rkey = be32_to_cpu(db->key); 829 830 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false, 831 i < nbufs - 1); 832 if (ret) 833 goto unwind; 834 835 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port, 836 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir); 837 if (ret < 0) { 838 target_free_sgl(ctx->sg, ctx->nents); 839 goto unwind; 840 } 841 842 ioctx->n_rdma += ret; 843 ioctx->n_rw_ctx++; 844 845 if (prev) { 846 sg_unmark_end(&prev[prev_nents - 1]); 847 sg_chain(prev, prev_nents + 1, ctx->sg); 848 } else { 849 *sg = ctx->sg; 850 } 851 852 prev = ctx->sg; 853 prev_nents = ctx->nents; 854 855 *sg_cnt += ctx->nents; 856 } 857 858 return 0; 859 860 unwind: 861 while (--i >= 0) { 862 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 863 864 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 865 ctx->sg, ctx->nents, dir); 866 target_free_sgl(ctx->sg, ctx->nents); 867 } 868 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 869 kfree(ioctx->rw_ctxs); 870 return ret; 871 } 872 873 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch, 874 struct srpt_send_ioctx *ioctx) 875 { 876 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 877 int i; 878 879 for (i = 0; i < ioctx->n_rw_ctx; i++) { 880 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 881 882 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 883 ctx->sg, ctx->nents, dir); 884 target_free_sgl(ctx->sg, ctx->nents); 885 } 886 887 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 888 kfree(ioctx->rw_ctxs); 889 } 890 891 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd) 892 { 893 /* 894 * The pointer computations below will only be compiled correctly 895 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 896 * whether srp_cmd::add_data has been declared as a byte pointer. 897 */ 898 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) && 899 !__same_type(srp_cmd->add_data[0], (u8)0)); 900 901 /* 902 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 903 * CDB LENGTH' field are reserved and the size in bytes of this field 904 * is four times the value specified in bits 3..7. Hence the "& ~3". 905 */ 906 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3); 907 } 908 909 /** 910 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 911 * @ioctx: Pointer to the I/O context associated with the request. 912 * @srp_cmd: Pointer to the SRP_CMD request data. 913 * @dir: Pointer to the variable to which the transfer direction will be 914 * written. 915 * @data_len: Pointer to the variable to which the total data length of all 916 * descriptors in the SRP_CMD request will be written. 917 * 918 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 919 * 920 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 921 * -ENOMEM when memory allocation fails and zero upon success. 922 */ 923 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 924 struct srp_cmd *srp_cmd, enum dma_data_direction *dir, 925 struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len) 926 { 927 BUG_ON(!dir); 928 BUG_ON(!data_len); 929 930 /* 931 * The lower four bits of the buffer format field contain the DATA-IN 932 * buffer descriptor format, and the highest four bits contain the 933 * DATA-OUT buffer descriptor format. 934 */ 935 if (srp_cmd->buf_fmt & 0xf) 936 /* DATA-IN: transfer data from target to initiator (read). */ 937 *dir = DMA_FROM_DEVICE; 938 else if (srp_cmd->buf_fmt >> 4) 939 /* DATA-OUT: transfer data from initiator to target (write). */ 940 *dir = DMA_TO_DEVICE; 941 else 942 *dir = DMA_NONE; 943 944 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */ 945 ioctx->cmd.data_direction = *dir; 946 947 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 948 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 949 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd); 950 951 *data_len = be32_to_cpu(db->len); 952 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt); 953 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 954 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 955 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd); 956 int nbufs = be32_to_cpu(idb->table_desc.len) / 957 sizeof(struct srp_direct_buf); 958 959 if (nbufs > 960 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 961 pr_err("received unsupported SRP_CMD request" 962 " type (%u out + %u in != %u / %zu)\n", 963 srp_cmd->data_out_desc_cnt, 964 srp_cmd->data_in_desc_cnt, 965 be32_to_cpu(idb->table_desc.len), 966 sizeof(struct srp_direct_buf)); 967 return -EINVAL; 968 } 969 970 *data_len = be32_to_cpu(idb->len); 971 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs, 972 sg, sg_cnt); 973 } else { 974 *data_len = 0; 975 return 0; 976 } 977 } 978 979 /** 980 * srpt_init_ch_qp() - Initialize queue pair attributes. 981 * 982 * Initialized the attributes of queue pair 'qp' by allowing local write, 983 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 984 */ 985 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 986 { 987 struct ib_qp_attr *attr; 988 int ret; 989 990 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 991 if (!attr) 992 return -ENOMEM; 993 994 attr->qp_state = IB_QPS_INIT; 995 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 996 IB_ACCESS_REMOTE_WRITE; 997 attr->port_num = ch->sport->port; 998 attr->pkey_index = 0; 999 1000 ret = ib_modify_qp(qp, attr, 1001 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 1002 IB_QP_PKEY_INDEX); 1003 1004 kfree(attr); 1005 return ret; 1006 } 1007 1008 /** 1009 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 1010 * @ch: channel of the queue pair. 1011 * @qp: queue pair to change the state of. 1012 * 1013 * Returns zero upon success and a negative value upon failure. 1014 * 1015 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1016 * If this structure ever becomes larger, it might be necessary to allocate 1017 * it dynamically instead of on the stack. 1018 */ 1019 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1020 { 1021 struct ib_qp_attr qp_attr; 1022 int attr_mask; 1023 int ret; 1024 1025 qp_attr.qp_state = IB_QPS_RTR; 1026 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1027 if (ret) 1028 goto out; 1029 1030 qp_attr.max_dest_rd_atomic = 4; 1031 1032 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1033 1034 out: 1035 return ret; 1036 } 1037 1038 /** 1039 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1040 * @ch: channel of the queue pair. 1041 * @qp: queue pair to change the state of. 1042 * 1043 * Returns zero upon success and a negative value upon failure. 1044 * 1045 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1046 * If this structure ever becomes larger, it might be necessary to allocate 1047 * it dynamically instead of on the stack. 1048 */ 1049 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1050 { 1051 struct ib_qp_attr qp_attr; 1052 int attr_mask; 1053 int ret; 1054 1055 qp_attr.qp_state = IB_QPS_RTS; 1056 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1057 if (ret) 1058 goto out; 1059 1060 qp_attr.max_rd_atomic = 4; 1061 1062 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1063 1064 out: 1065 return ret; 1066 } 1067 1068 /** 1069 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1070 */ 1071 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1072 { 1073 struct ib_qp_attr qp_attr; 1074 1075 qp_attr.qp_state = IB_QPS_ERR; 1076 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1077 } 1078 1079 /** 1080 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1081 */ 1082 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1083 { 1084 struct srpt_send_ioctx *ioctx; 1085 unsigned long flags; 1086 1087 BUG_ON(!ch); 1088 1089 ioctx = NULL; 1090 spin_lock_irqsave(&ch->spinlock, flags); 1091 if (!list_empty(&ch->free_list)) { 1092 ioctx = list_first_entry(&ch->free_list, 1093 struct srpt_send_ioctx, free_list); 1094 list_del(&ioctx->free_list); 1095 } 1096 spin_unlock_irqrestore(&ch->spinlock, flags); 1097 1098 if (!ioctx) 1099 return ioctx; 1100 1101 BUG_ON(ioctx->ch != ch); 1102 spin_lock_init(&ioctx->spinlock); 1103 ioctx->state = SRPT_STATE_NEW; 1104 ioctx->n_rdma = 0; 1105 ioctx->n_rw_ctx = 0; 1106 init_completion(&ioctx->tx_done); 1107 ioctx->queue_status_only = false; 1108 /* 1109 * transport_init_se_cmd() does not initialize all fields, so do it 1110 * here. 1111 */ 1112 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1113 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1114 1115 return ioctx; 1116 } 1117 1118 /** 1119 * srpt_abort_cmd() - Abort a SCSI command. 1120 * @ioctx: I/O context associated with the SCSI command. 1121 * @context: Preferred execution context. 1122 */ 1123 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1124 { 1125 enum srpt_command_state state; 1126 unsigned long flags; 1127 1128 BUG_ON(!ioctx); 1129 1130 /* 1131 * If the command is in a state where the target core is waiting for 1132 * the ib_srpt driver, change the state to the next state. 1133 */ 1134 1135 spin_lock_irqsave(&ioctx->spinlock, flags); 1136 state = ioctx->state; 1137 switch (state) { 1138 case SRPT_STATE_NEED_DATA: 1139 ioctx->state = SRPT_STATE_DATA_IN; 1140 break; 1141 case SRPT_STATE_CMD_RSP_SENT: 1142 case SRPT_STATE_MGMT_RSP_SENT: 1143 ioctx->state = SRPT_STATE_DONE; 1144 break; 1145 default: 1146 WARN_ONCE(true, "%s: unexpected I/O context state %d\n", 1147 __func__, state); 1148 break; 1149 } 1150 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1151 1152 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1153 ioctx->cmd.tag); 1154 1155 switch (state) { 1156 case SRPT_STATE_NEW: 1157 case SRPT_STATE_DATA_IN: 1158 case SRPT_STATE_MGMT: 1159 case SRPT_STATE_DONE: 1160 /* 1161 * Do nothing - defer abort processing until 1162 * srpt_queue_response() is invoked. 1163 */ 1164 break; 1165 case SRPT_STATE_NEED_DATA: 1166 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag); 1167 transport_generic_request_failure(&ioctx->cmd, 1168 TCM_CHECK_CONDITION_ABORT_CMD); 1169 break; 1170 case SRPT_STATE_CMD_RSP_SENT: 1171 /* 1172 * SRP_RSP sending failed or the SRP_RSP send completion has 1173 * not been received in time. 1174 */ 1175 transport_generic_free_cmd(&ioctx->cmd, 0); 1176 break; 1177 case SRPT_STATE_MGMT_RSP_SENT: 1178 transport_generic_free_cmd(&ioctx->cmd, 0); 1179 break; 1180 default: 1181 WARN(1, "Unexpected command state (%d)", state); 1182 break; 1183 } 1184 1185 return state; 1186 } 1187 1188 /** 1189 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1190 * the data that has been transferred via IB RDMA had to be postponed until the 1191 * check_stop_free() callback. None of this is necessary anymore and needs to 1192 * be cleaned up. 1193 */ 1194 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc) 1195 { 1196 struct srpt_rdma_ch *ch = cq->cq_context; 1197 struct srpt_send_ioctx *ioctx = 1198 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe); 1199 1200 WARN_ON(ioctx->n_rdma <= 0); 1201 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1202 ioctx->n_rdma = 0; 1203 1204 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1205 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n", 1206 ioctx, wc->status); 1207 srpt_abort_cmd(ioctx); 1208 return; 1209 } 1210 1211 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1212 SRPT_STATE_DATA_IN)) 1213 target_execute_cmd(&ioctx->cmd); 1214 else 1215 pr_err("%s[%d]: wrong state = %d\n", __func__, 1216 __LINE__, srpt_get_cmd_state(ioctx)); 1217 } 1218 1219 /** 1220 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1221 * @ch: RDMA channel through which the request has been received. 1222 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1223 * be built in the buffer ioctx->buf points at and hence this function will 1224 * overwrite the request data. 1225 * @tag: tag of the request for which this response is being generated. 1226 * @status: value for the STATUS field of the SRP_RSP information unit. 1227 * 1228 * Returns the size in bytes of the SRP_RSP response. 1229 * 1230 * An SRP_RSP response contains a SCSI status or service response. See also 1231 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1232 * response. See also SPC-2 for more information about sense data. 1233 */ 1234 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1235 struct srpt_send_ioctx *ioctx, u64 tag, 1236 int status) 1237 { 1238 struct srp_rsp *srp_rsp; 1239 const u8 *sense_data; 1240 int sense_data_len, max_sense_len; 1241 1242 /* 1243 * The lowest bit of all SAM-3 status codes is zero (see also 1244 * paragraph 5.3 in SAM-3). 1245 */ 1246 WARN_ON(status & 1); 1247 1248 srp_rsp = ioctx->ioctx.buf; 1249 BUG_ON(!srp_rsp); 1250 1251 sense_data = ioctx->sense_data; 1252 sense_data_len = ioctx->cmd.scsi_sense_length; 1253 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1254 1255 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1256 srp_rsp->opcode = SRP_RSP; 1257 srp_rsp->req_lim_delta = 1258 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1259 srp_rsp->tag = tag; 1260 srp_rsp->status = status; 1261 1262 if (sense_data_len) { 1263 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1264 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1265 if (sense_data_len > max_sense_len) { 1266 pr_warn("truncated sense data from %d to %d" 1267 " bytes\n", sense_data_len, max_sense_len); 1268 sense_data_len = max_sense_len; 1269 } 1270 1271 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1272 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1273 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1274 } 1275 1276 return sizeof(*srp_rsp) + sense_data_len; 1277 } 1278 1279 /** 1280 * srpt_build_tskmgmt_rsp() - Build a task management response. 1281 * @ch: RDMA channel through which the request has been received. 1282 * @ioctx: I/O context in which the SRP_RSP response will be built. 1283 * @rsp_code: RSP_CODE that will be stored in the response. 1284 * @tag: Tag of the request for which this response is being generated. 1285 * 1286 * Returns the size in bytes of the SRP_RSP response. 1287 * 1288 * An SRP_RSP response contains a SCSI status or service response. See also 1289 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1290 * response. 1291 */ 1292 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1293 struct srpt_send_ioctx *ioctx, 1294 u8 rsp_code, u64 tag) 1295 { 1296 struct srp_rsp *srp_rsp; 1297 int resp_data_len; 1298 int resp_len; 1299 1300 resp_data_len = 4; 1301 resp_len = sizeof(*srp_rsp) + resp_data_len; 1302 1303 srp_rsp = ioctx->ioctx.buf; 1304 BUG_ON(!srp_rsp); 1305 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1306 1307 srp_rsp->opcode = SRP_RSP; 1308 srp_rsp->req_lim_delta = 1309 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1310 srp_rsp->tag = tag; 1311 1312 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1313 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1314 srp_rsp->data[3] = rsp_code; 1315 1316 return resp_len; 1317 } 1318 1319 static int srpt_check_stop_free(struct se_cmd *cmd) 1320 { 1321 struct srpt_send_ioctx *ioctx = container_of(cmd, 1322 struct srpt_send_ioctx, cmd); 1323 1324 return target_put_sess_cmd(&ioctx->cmd); 1325 } 1326 1327 /** 1328 * srpt_handle_cmd() - Process SRP_CMD. 1329 */ 1330 static void srpt_handle_cmd(struct srpt_rdma_ch *ch, 1331 struct srpt_recv_ioctx *recv_ioctx, 1332 struct srpt_send_ioctx *send_ioctx) 1333 { 1334 struct se_cmd *cmd; 1335 struct srp_cmd *srp_cmd; 1336 struct scatterlist *sg = NULL; 1337 unsigned sg_cnt = 0; 1338 u64 data_len; 1339 enum dma_data_direction dir; 1340 int rc; 1341 1342 BUG_ON(!send_ioctx); 1343 1344 srp_cmd = recv_ioctx->ioctx.buf; 1345 cmd = &send_ioctx->cmd; 1346 cmd->tag = srp_cmd->tag; 1347 1348 switch (srp_cmd->task_attr) { 1349 case SRP_CMD_SIMPLE_Q: 1350 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1351 break; 1352 case SRP_CMD_ORDERED_Q: 1353 default: 1354 cmd->sam_task_attr = TCM_ORDERED_TAG; 1355 break; 1356 case SRP_CMD_HEAD_OF_Q: 1357 cmd->sam_task_attr = TCM_HEAD_TAG; 1358 break; 1359 case SRP_CMD_ACA: 1360 cmd->sam_task_attr = TCM_ACA_TAG; 1361 break; 1362 } 1363 1364 rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt, 1365 &data_len); 1366 if (rc) { 1367 if (rc != -EAGAIN) { 1368 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1369 srp_cmd->tag); 1370 } 1371 goto release_ioctx; 1372 } 1373 1374 rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb, 1375 &send_ioctx->sense_data[0], 1376 scsilun_to_int(&srp_cmd->lun), data_len, 1377 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF, 1378 sg, sg_cnt, NULL, 0, NULL, 0); 1379 if (rc != 0) { 1380 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc, 1381 srp_cmd->tag); 1382 goto release_ioctx; 1383 } 1384 return; 1385 1386 release_ioctx: 1387 send_ioctx->state = SRPT_STATE_DONE; 1388 srpt_release_cmd(cmd); 1389 } 1390 1391 static int srp_tmr_to_tcm(int fn) 1392 { 1393 switch (fn) { 1394 case SRP_TSK_ABORT_TASK: 1395 return TMR_ABORT_TASK; 1396 case SRP_TSK_ABORT_TASK_SET: 1397 return TMR_ABORT_TASK_SET; 1398 case SRP_TSK_CLEAR_TASK_SET: 1399 return TMR_CLEAR_TASK_SET; 1400 case SRP_TSK_LUN_RESET: 1401 return TMR_LUN_RESET; 1402 case SRP_TSK_CLEAR_ACA: 1403 return TMR_CLEAR_ACA; 1404 default: 1405 return -1; 1406 } 1407 } 1408 1409 /** 1410 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1411 * 1412 * Returns 0 if and only if the request will be processed by the target core. 1413 * 1414 * For more information about SRP_TSK_MGMT information units, see also section 1415 * 6.7 in the SRP r16a document. 1416 */ 1417 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1418 struct srpt_recv_ioctx *recv_ioctx, 1419 struct srpt_send_ioctx *send_ioctx) 1420 { 1421 struct srp_tsk_mgmt *srp_tsk; 1422 struct se_cmd *cmd; 1423 struct se_session *sess = ch->sess; 1424 int tcm_tmr; 1425 int rc; 1426 1427 BUG_ON(!send_ioctx); 1428 1429 srp_tsk = recv_ioctx->ioctx.buf; 1430 cmd = &send_ioctx->cmd; 1431 1432 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1433 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1434 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1435 1436 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1437 send_ioctx->cmd.tag = srp_tsk->tag; 1438 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1439 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, 1440 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr, 1441 GFP_KERNEL, srp_tsk->task_tag, 1442 TARGET_SCF_ACK_KREF); 1443 if (rc != 0) { 1444 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1445 goto fail; 1446 } 1447 return; 1448 fail: 1449 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1450 } 1451 1452 /** 1453 * srpt_handle_new_iu() - Process a newly received information unit. 1454 * @ch: RDMA channel through which the information unit has been received. 1455 * @ioctx: SRPT I/O context associated with the information unit. 1456 */ 1457 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1458 struct srpt_recv_ioctx *recv_ioctx, 1459 struct srpt_send_ioctx *send_ioctx) 1460 { 1461 struct srp_cmd *srp_cmd; 1462 1463 BUG_ON(!ch); 1464 BUG_ON(!recv_ioctx); 1465 1466 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1467 recv_ioctx->ioctx.dma, srp_max_req_size, 1468 DMA_FROM_DEVICE); 1469 1470 if (unlikely(ch->state == CH_CONNECTING)) 1471 goto out_wait; 1472 1473 if (unlikely(ch->state != CH_LIVE)) 1474 return; 1475 1476 srp_cmd = recv_ioctx->ioctx.buf; 1477 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1478 if (!send_ioctx) { 1479 if (!list_empty(&ch->cmd_wait_list)) 1480 goto out_wait; 1481 send_ioctx = srpt_get_send_ioctx(ch); 1482 } 1483 if (unlikely(!send_ioctx)) 1484 goto out_wait; 1485 } 1486 1487 switch (srp_cmd->opcode) { 1488 case SRP_CMD: 1489 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1490 break; 1491 case SRP_TSK_MGMT: 1492 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1493 break; 1494 case SRP_I_LOGOUT: 1495 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1496 break; 1497 case SRP_CRED_RSP: 1498 pr_debug("received SRP_CRED_RSP\n"); 1499 break; 1500 case SRP_AER_RSP: 1501 pr_debug("received SRP_AER_RSP\n"); 1502 break; 1503 case SRP_RSP: 1504 pr_err("Received SRP_RSP\n"); 1505 break; 1506 default: 1507 pr_err("received IU with unknown opcode 0x%x\n", 1508 srp_cmd->opcode); 1509 break; 1510 } 1511 1512 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1513 return; 1514 1515 out_wait: 1516 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1517 } 1518 1519 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1520 { 1521 struct srpt_rdma_ch *ch = cq->cq_context; 1522 struct srpt_recv_ioctx *ioctx = 1523 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe); 1524 1525 if (wc->status == IB_WC_SUCCESS) { 1526 int req_lim; 1527 1528 req_lim = atomic_dec_return(&ch->req_lim); 1529 if (unlikely(req_lim < 0)) 1530 pr_err("req_lim = %d < 0\n", req_lim); 1531 srpt_handle_new_iu(ch, ioctx, NULL); 1532 } else { 1533 pr_info("receiving failed for ioctx %p with status %d\n", 1534 ioctx, wc->status); 1535 } 1536 } 1537 1538 /* 1539 * This function must be called from the context in which RDMA completions are 1540 * processed because it accesses the wait list without protection against 1541 * access from other threads. 1542 */ 1543 static void srpt_process_wait_list(struct srpt_rdma_ch *ch) 1544 { 1545 struct srpt_send_ioctx *ioctx; 1546 1547 while (!list_empty(&ch->cmd_wait_list) && 1548 ch->state >= CH_LIVE && 1549 (ioctx = srpt_get_send_ioctx(ch)) != NULL) { 1550 struct srpt_recv_ioctx *recv_ioctx; 1551 1552 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 1553 struct srpt_recv_ioctx, 1554 wait_list); 1555 list_del(&recv_ioctx->wait_list); 1556 srpt_handle_new_iu(ch, recv_ioctx, ioctx); 1557 } 1558 } 1559 1560 /** 1561 * Note: Although this has not yet been observed during tests, at least in 1562 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1563 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1564 * value in each response is set to one, and it is possible that this response 1565 * makes the initiator send a new request before the send completion for that 1566 * response has been processed. This could e.g. happen if the call to 1567 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1568 * if IB retransmission causes generation of the send completion to be 1569 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1570 * are queued on cmd_wait_list. The code below processes these delayed 1571 * requests one at a time. 1572 */ 1573 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc) 1574 { 1575 struct srpt_rdma_ch *ch = cq->cq_context; 1576 struct srpt_send_ioctx *ioctx = 1577 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe); 1578 enum srpt_command_state state; 1579 1580 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1581 1582 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT && 1583 state != SRPT_STATE_MGMT_RSP_SENT); 1584 1585 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 1586 1587 if (wc->status != IB_WC_SUCCESS) 1588 pr_info("sending response for ioctx 0x%p failed" 1589 " with status %d\n", ioctx, wc->status); 1590 1591 if (state != SRPT_STATE_DONE) { 1592 transport_generic_free_cmd(&ioctx->cmd, 0); 1593 } else { 1594 pr_err("IB completion has been received too late for" 1595 " wr_id = %u.\n", ioctx->ioctx.index); 1596 } 1597 1598 srpt_process_wait_list(ch); 1599 } 1600 1601 /** 1602 * srpt_create_ch_ib() - Create receive and send completion queues. 1603 */ 1604 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 1605 { 1606 struct ib_qp_init_attr *qp_init; 1607 struct srpt_port *sport = ch->sport; 1608 struct srpt_device *sdev = sport->sdev; 1609 const struct ib_device_attr *attrs = &sdev->device->attrs; 1610 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 1611 int ret; 1612 1613 WARN_ON(ch->rq_size < 1); 1614 1615 ret = -ENOMEM; 1616 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL); 1617 if (!qp_init) 1618 goto out; 1619 1620 retry: 1621 ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + srp_sq_size, 1622 0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE); 1623 if (IS_ERR(ch->cq)) { 1624 ret = PTR_ERR(ch->cq); 1625 pr_err("failed to create CQ cqe= %d ret= %d\n", 1626 ch->rq_size + srp_sq_size, ret); 1627 goto out; 1628 } 1629 1630 qp_init->qp_context = (void *)ch; 1631 qp_init->event_handler 1632 = (void(*)(struct ib_event *, void*))srpt_qp_event; 1633 qp_init->send_cq = ch->cq; 1634 qp_init->recv_cq = ch->cq; 1635 qp_init->srq = sdev->srq; 1636 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 1637 qp_init->qp_type = IB_QPT_RC; 1638 /* 1639 * We divide up our send queue size into half SEND WRs to send the 1640 * completions, and half R/W contexts to actually do the RDMA 1641 * READ/WRITE transfers. Note that we need to allocate CQ slots for 1642 * both both, as RDMA contexts will also post completions for the 1643 * RDMA READ case. 1644 */ 1645 qp_init->cap.max_send_wr = srp_sq_size / 2; 1646 qp_init->cap.max_rdma_ctxs = srp_sq_size / 2; 1647 qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE); 1648 qp_init->port_num = ch->sport->port; 1649 1650 ch->qp = ib_create_qp(sdev->pd, qp_init); 1651 if (IS_ERR(ch->qp)) { 1652 ret = PTR_ERR(ch->qp); 1653 if (ret == -ENOMEM) { 1654 srp_sq_size /= 2; 1655 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) { 1656 ib_destroy_cq(ch->cq); 1657 goto retry; 1658 } 1659 } 1660 pr_err("failed to create_qp ret= %d\n", ret); 1661 goto err_destroy_cq; 1662 } 1663 1664 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 1665 1666 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1667 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 1668 qp_init->cap.max_send_wr, ch->cm_id); 1669 1670 ret = srpt_init_ch_qp(ch, ch->qp); 1671 if (ret) 1672 goto err_destroy_qp; 1673 1674 out: 1675 kfree(qp_init); 1676 return ret; 1677 1678 err_destroy_qp: 1679 ib_destroy_qp(ch->qp); 1680 err_destroy_cq: 1681 ib_free_cq(ch->cq); 1682 goto out; 1683 } 1684 1685 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 1686 { 1687 ib_destroy_qp(ch->qp); 1688 ib_free_cq(ch->cq); 1689 } 1690 1691 /** 1692 * srpt_close_ch() - Close an RDMA channel. 1693 * 1694 * Make sure all resources associated with the channel will be deallocated at 1695 * an appropriate time. 1696 * 1697 * Returns true if and only if the channel state has been modified into 1698 * CH_DRAINING. 1699 */ 1700 static bool srpt_close_ch(struct srpt_rdma_ch *ch) 1701 { 1702 int ret; 1703 1704 if (!srpt_set_ch_state(ch, CH_DRAINING)) { 1705 pr_debug("%s-%d: already closed\n", ch->sess_name, 1706 ch->qp->qp_num); 1707 return false; 1708 } 1709 1710 kref_get(&ch->kref); 1711 1712 ret = srpt_ch_qp_err(ch); 1713 if (ret < 0) 1714 pr_err("%s-%d: changing queue pair into error state failed: %d\n", 1715 ch->sess_name, ch->qp->qp_num, ret); 1716 1717 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name, 1718 ch->qp->qp_num); 1719 ret = srpt_zerolength_write(ch); 1720 if (ret < 0) { 1721 pr_err("%s-%d: queuing zero-length write failed: %d\n", 1722 ch->sess_name, ch->qp->qp_num, ret); 1723 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 1724 schedule_work(&ch->release_work); 1725 else 1726 WARN_ON_ONCE(true); 1727 } 1728 1729 kref_put(&ch->kref, srpt_free_ch); 1730 1731 return true; 1732 } 1733 1734 /* 1735 * Change the channel state into CH_DISCONNECTING. If a channel has not yet 1736 * reached the connected state, close it. If a channel is in the connected 1737 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is 1738 * the responsibility of the caller to ensure that this function is not 1739 * invoked concurrently with the code that accepts a connection. This means 1740 * that this function must either be invoked from inside a CM callback 1741 * function or that it must be invoked with the srpt_port.mutex held. 1742 */ 1743 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch) 1744 { 1745 int ret; 1746 1747 if (!srpt_set_ch_state(ch, CH_DISCONNECTING)) 1748 return -ENOTCONN; 1749 1750 ret = ib_send_cm_dreq(ch->cm_id, NULL, 0); 1751 if (ret < 0) 1752 ret = ib_send_cm_drep(ch->cm_id, NULL, 0); 1753 1754 if (ret < 0 && srpt_close_ch(ch)) 1755 ret = 0; 1756 1757 return ret; 1758 } 1759 1760 static void __srpt_close_all_ch(struct srpt_device *sdev) 1761 { 1762 struct srpt_rdma_ch *ch; 1763 1764 lockdep_assert_held(&sdev->mutex); 1765 1766 list_for_each_entry(ch, &sdev->rch_list, list) { 1767 if (srpt_disconnect_ch(ch) >= 0) 1768 pr_info("Closing channel %s-%d because target %s has been disabled\n", 1769 ch->sess_name, ch->qp->qp_num, 1770 sdev->device->name); 1771 srpt_close_ch(ch); 1772 } 1773 } 1774 1775 static void srpt_free_ch(struct kref *kref) 1776 { 1777 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref); 1778 1779 kfree(ch); 1780 } 1781 1782 static void srpt_release_channel_work(struct work_struct *w) 1783 { 1784 struct srpt_rdma_ch *ch; 1785 struct srpt_device *sdev; 1786 struct se_session *se_sess; 1787 1788 ch = container_of(w, struct srpt_rdma_ch, release_work); 1789 pr_debug("%s: %s-%d; release_done = %p\n", __func__, ch->sess_name, 1790 ch->qp->qp_num, ch->release_done); 1791 1792 sdev = ch->sport->sdev; 1793 BUG_ON(!sdev); 1794 1795 se_sess = ch->sess; 1796 BUG_ON(!se_sess); 1797 1798 target_sess_cmd_list_set_waiting(se_sess); 1799 target_wait_for_sess_cmds(se_sess); 1800 1801 transport_deregister_session_configfs(se_sess); 1802 transport_deregister_session(se_sess); 1803 ch->sess = NULL; 1804 1805 ib_destroy_cm_id(ch->cm_id); 1806 1807 srpt_destroy_ch_ib(ch); 1808 1809 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 1810 ch->sport->sdev, ch->rq_size, 1811 ch->rsp_size, DMA_TO_DEVICE); 1812 1813 mutex_lock(&sdev->mutex); 1814 list_del_init(&ch->list); 1815 if (ch->release_done) 1816 complete(ch->release_done); 1817 mutex_unlock(&sdev->mutex); 1818 1819 wake_up(&sdev->ch_releaseQ); 1820 1821 kref_put(&ch->kref, srpt_free_ch); 1822 } 1823 1824 /** 1825 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 1826 * 1827 * Ownership of the cm_id is transferred to the target session if this 1828 * functions returns zero. Otherwise the caller remains the owner of cm_id. 1829 */ 1830 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 1831 struct ib_cm_req_event_param *param, 1832 void *private_data) 1833 { 1834 struct srpt_device *sdev = cm_id->context; 1835 struct srpt_port *sport = &sdev->port[param->port - 1]; 1836 struct srp_login_req *req; 1837 struct srp_login_rsp *rsp; 1838 struct srp_login_rej *rej; 1839 struct ib_cm_rep_param *rep_param; 1840 struct srpt_rdma_ch *ch, *tmp_ch; 1841 u32 it_iu_len; 1842 int i, ret = 0; 1843 unsigned char *p; 1844 1845 WARN_ON_ONCE(irqs_disabled()); 1846 1847 if (WARN_ON(!sdev || !private_data)) 1848 return -EINVAL; 1849 1850 req = (struct srp_login_req *)private_data; 1851 1852 it_iu_len = be32_to_cpu(req->req_it_iu_len); 1853 1854 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 1855 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 1856 " (guid=0x%llx:0x%llx)\n", 1857 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 1858 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 1859 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 1860 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 1861 it_iu_len, 1862 param->port, 1863 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 1864 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 1865 1866 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 1867 rej = kzalloc(sizeof(*rej), GFP_KERNEL); 1868 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL); 1869 1870 if (!rsp || !rej || !rep_param) { 1871 ret = -ENOMEM; 1872 goto out; 1873 } 1874 1875 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 1876 rej->reason = cpu_to_be32( 1877 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 1878 ret = -EINVAL; 1879 pr_err("rejected SRP_LOGIN_REQ because its" 1880 " length (%d bytes) is out of range (%d .. %d)\n", 1881 it_iu_len, 64, srp_max_req_size); 1882 goto reject; 1883 } 1884 1885 if (!sport->enabled) { 1886 rej->reason = cpu_to_be32( 1887 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1888 ret = -EINVAL; 1889 pr_err("rejected SRP_LOGIN_REQ because the target port" 1890 " has not yet been enabled\n"); 1891 goto reject; 1892 } 1893 1894 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 1895 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 1896 1897 mutex_lock(&sdev->mutex); 1898 1899 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 1900 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 1901 && !memcmp(ch->t_port_id, req->target_port_id, 16) 1902 && param->port == ch->sport->port 1903 && param->listen_id == ch->sport->sdev->cm_id 1904 && ch->cm_id) { 1905 if (srpt_disconnect_ch(ch) < 0) 1906 continue; 1907 pr_info("Relogin - closed existing channel %s\n", 1908 ch->sess_name); 1909 rsp->rsp_flags = 1910 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 1911 } 1912 } 1913 1914 mutex_unlock(&sdev->mutex); 1915 1916 } else 1917 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 1918 1919 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 1920 || *(__be64 *)(req->target_port_id + 8) != 1921 cpu_to_be64(srpt_service_guid)) { 1922 rej->reason = cpu_to_be32( 1923 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 1924 ret = -ENOMEM; 1925 pr_err("rejected SRP_LOGIN_REQ because it" 1926 " has an invalid target port identifier.\n"); 1927 goto reject; 1928 } 1929 1930 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 1931 if (!ch) { 1932 rej->reason = cpu_to_be32( 1933 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1934 pr_err("rejected SRP_LOGIN_REQ because no memory.\n"); 1935 ret = -ENOMEM; 1936 goto reject; 1937 } 1938 1939 kref_init(&ch->kref); 1940 ch->zw_cqe.done = srpt_zerolength_write_done; 1941 INIT_WORK(&ch->release_work, srpt_release_channel_work); 1942 memcpy(ch->i_port_id, req->initiator_port_id, 16); 1943 memcpy(ch->t_port_id, req->target_port_id, 16); 1944 ch->sport = &sdev->port[param->port - 1]; 1945 ch->cm_id = cm_id; 1946 cm_id->context = ch; 1947 /* 1948 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 1949 * for the SRP protocol to the command queue size. 1950 */ 1951 ch->rq_size = SRPT_RQ_SIZE; 1952 spin_lock_init(&ch->spinlock); 1953 ch->state = CH_CONNECTING; 1954 INIT_LIST_HEAD(&ch->cmd_wait_list); 1955 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 1956 1957 ch->ioctx_ring = (struct srpt_send_ioctx **) 1958 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 1959 sizeof(*ch->ioctx_ring[0]), 1960 ch->rsp_size, DMA_TO_DEVICE); 1961 if (!ch->ioctx_ring) 1962 goto free_ch; 1963 1964 INIT_LIST_HEAD(&ch->free_list); 1965 for (i = 0; i < ch->rq_size; i++) { 1966 ch->ioctx_ring[i]->ch = ch; 1967 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 1968 } 1969 1970 ret = srpt_create_ch_ib(ch); 1971 if (ret) { 1972 rej->reason = cpu_to_be32( 1973 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1974 pr_err("rejected SRP_LOGIN_REQ because creating" 1975 " a new RDMA channel failed.\n"); 1976 goto free_ring; 1977 } 1978 1979 ret = srpt_ch_qp_rtr(ch, ch->qp); 1980 if (ret) { 1981 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1982 pr_err("rejected SRP_LOGIN_REQ because enabling" 1983 " RTR failed (error code = %d)\n", ret); 1984 goto destroy_ib; 1985 } 1986 1987 /* 1988 * Use the initator port identifier as the session name, when 1989 * checking against se_node_acl->initiatorname[] this can be 1990 * with or without preceeding '0x'. 1991 */ 1992 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 1993 be64_to_cpu(*(__be64 *)ch->i_port_id), 1994 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 1995 1996 pr_debug("registering session %s\n", ch->sess_name); 1997 p = &ch->sess_name[0]; 1998 1999 try_again: 2000 ch->sess = target_alloc_session(&sport->port_tpg_1, 0, 0, 2001 TARGET_PROT_NORMAL, p, ch, NULL); 2002 if (IS_ERR(ch->sess)) { 2003 pr_info("Rejected login because no ACL has been" 2004 " configured yet for initiator %s.\n", p); 2005 /* 2006 * XXX: Hack to retry of ch->i_port_id without leading '0x' 2007 */ 2008 if (p == &ch->sess_name[0]) { 2009 p += 2; 2010 goto try_again; 2011 } 2012 rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ? 2013 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES : 2014 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2015 goto destroy_ib; 2016 } 2017 2018 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2019 ch->sess_name, ch->cm_id); 2020 2021 /* create srp_login_response */ 2022 rsp->opcode = SRP_LOGIN_RSP; 2023 rsp->tag = req->tag; 2024 rsp->max_it_iu_len = req->req_it_iu_len; 2025 rsp->max_ti_iu_len = req->req_it_iu_len; 2026 ch->max_ti_iu_len = it_iu_len; 2027 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2028 | SRP_BUF_FORMAT_INDIRECT); 2029 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2030 atomic_set(&ch->req_lim, ch->rq_size); 2031 atomic_set(&ch->req_lim_delta, 0); 2032 2033 /* create cm reply */ 2034 rep_param->qp_num = ch->qp->qp_num; 2035 rep_param->private_data = (void *)rsp; 2036 rep_param->private_data_len = sizeof(*rsp); 2037 rep_param->rnr_retry_count = 7; 2038 rep_param->flow_control = 1; 2039 rep_param->failover_accepted = 0; 2040 rep_param->srq = 1; 2041 rep_param->responder_resources = 4; 2042 rep_param->initiator_depth = 4; 2043 2044 ret = ib_send_cm_rep(cm_id, rep_param); 2045 if (ret) { 2046 pr_err("sending SRP_LOGIN_REQ response failed" 2047 " (error code = %d)\n", ret); 2048 goto release_channel; 2049 } 2050 2051 mutex_lock(&sdev->mutex); 2052 list_add_tail(&ch->list, &sdev->rch_list); 2053 mutex_unlock(&sdev->mutex); 2054 2055 goto out; 2056 2057 release_channel: 2058 srpt_disconnect_ch(ch); 2059 transport_deregister_session_configfs(ch->sess); 2060 transport_deregister_session(ch->sess); 2061 ch->sess = NULL; 2062 2063 destroy_ib: 2064 srpt_destroy_ch_ib(ch); 2065 2066 free_ring: 2067 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2068 ch->sport->sdev, ch->rq_size, 2069 ch->rsp_size, DMA_TO_DEVICE); 2070 free_ch: 2071 kfree(ch); 2072 2073 reject: 2074 rej->opcode = SRP_LOGIN_REJ; 2075 rej->tag = req->tag; 2076 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2077 | SRP_BUF_FORMAT_INDIRECT); 2078 2079 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2080 (void *)rej, sizeof(*rej)); 2081 2082 out: 2083 kfree(rep_param); 2084 kfree(rsp); 2085 kfree(rej); 2086 2087 return ret; 2088 } 2089 2090 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch, 2091 enum ib_cm_rej_reason reason, 2092 const u8 *private_data, 2093 u8 private_data_len) 2094 { 2095 char *priv = NULL; 2096 int i; 2097 2098 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1, 2099 GFP_KERNEL))) { 2100 for (i = 0; i < private_data_len; i++) 2101 sprintf(priv + 3 * i, " %02x", private_data[i]); 2102 } 2103 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n", 2104 ch->sess_name, ch->qp->qp_num, reason, private_data_len ? 2105 "; private data" : "", priv ? priv : " (?)"); 2106 kfree(priv); 2107 } 2108 2109 /** 2110 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2111 * 2112 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2113 * and that the recipient may begin transmitting (RTU = ready to use). 2114 */ 2115 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch) 2116 { 2117 int ret; 2118 2119 if (srpt_set_ch_state(ch, CH_LIVE)) { 2120 ret = srpt_ch_qp_rts(ch, ch->qp); 2121 2122 if (ret == 0) { 2123 /* Trigger wait list processing. */ 2124 ret = srpt_zerolength_write(ch); 2125 WARN_ONCE(ret < 0, "%d\n", ret); 2126 } else { 2127 srpt_close_ch(ch); 2128 } 2129 } 2130 } 2131 2132 /** 2133 * srpt_cm_handler() - IB connection manager callback function. 2134 * 2135 * A non-zero return value will cause the caller destroy the CM ID. 2136 * 2137 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2138 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2139 * a non-zero value in any other case will trigger a race with the 2140 * ib_destroy_cm_id() call in srpt_release_channel(). 2141 */ 2142 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2143 { 2144 struct srpt_rdma_ch *ch = cm_id->context; 2145 int ret; 2146 2147 ret = 0; 2148 switch (event->event) { 2149 case IB_CM_REQ_RECEIVED: 2150 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2151 event->private_data); 2152 break; 2153 case IB_CM_REJ_RECEIVED: 2154 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason, 2155 event->private_data, 2156 IB_CM_REJ_PRIVATE_DATA_SIZE); 2157 break; 2158 case IB_CM_RTU_RECEIVED: 2159 case IB_CM_USER_ESTABLISHED: 2160 srpt_cm_rtu_recv(ch); 2161 break; 2162 case IB_CM_DREQ_RECEIVED: 2163 srpt_disconnect_ch(ch); 2164 break; 2165 case IB_CM_DREP_RECEIVED: 2166 pr_info("Received CM DREP message for ch %s-%d.\n", 2167 ch->sess_name, ch->qp->qp_num); 2168 srpt_close_ch(ch); 2169 break; 2170 case IB_CM_TIMEWAIT_EXIT: 2171 pr_info("Received CM TimeWait exit for ch %s-%d.\n", 2172 ch->sess_name, ch->qp->qp_num); 2173 srpt_close_ch(ch); 2174 break; 2175 case IB_CM_REP_ERROR: 2176 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2177 ch->qp->qp_num); 2178 break; 2179 case IB_CM_DREQ_ERROR: 2180 pr_info("Received CM DREQ ERROR event.\n"); 2181 break; 2182 case IB_CM_MRA_RECEIVED: 2183 pr_info("Received CM MRA event\n"); 2184 break; 2185 default: 2186 pr_err("received unrecognized CM event %d\n", event->event); 2187 break; 2188 } 2189 2190 return ret; 2191 } 2192 2193 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2194 { 2195 struct srpt_send_ioctx *ioctx; 2196 2197 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2198 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2199 } 2200 2201 /* 2202 * srpt_write_pending() - Start data transfer from initiator to target (write). 2203 */ 2204 static int srpt_write_pending(struct se_cmd *se_cmd) 2205 { 2206 struct srpt_send_ioctx *ioctx = 2207 container_of(se_cmd, struct srpt_send_ioctx, cmd); 2208 struct srpt_rdma_ch *ch = ioctx->ch; 2209 struct ib_send_wr *first_wr = NULL, *bad_wr; 2210 struct ib_cqe *cqe = &ioctx->rdma_cqe; 2211 enum srpt_command_state new_state; 2212 int ret, i; 2213 2214 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2215 WARN_ON(new_state == SRPT_STATE_DONE); 2216 2217 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) { 2218 pr_warn("%s: IB send queue full (needed %d)\n", 2219 __func__, ioctx->n_rdma); 2220 ret = -ENOMEM; 2221 goto out_undo; 2222 } 2223 2224 cqe->done = srpt_rdma_read_done; 2225 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2226 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2227 2228 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port, 2229 cqe, first_wr); 2230 cqe = NULL; 2231 } 2232 2233 ret = ib_post_send(ch->qp, first_wr, &bad_wr); 2234 if (ret) { 2235 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n", 2236 __func__, ret, ioctx->n_rdma, 2237 atomic_read(&ch->sq_wr_avail)); 2238 goto out_undo; 2239 } 2240 2241 return 0; 2242 out_undo: 2243 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 2244 return ret; 2245 } 2246 2247 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2248 { 2249 switch (tcm_mgmt_status) { 2250 case TMR_FUNCTION_COMPLETE: 2251 return SRP_TSK_MGMT_SUCCESS; 2252 case TMR_FUNCTION_REJECTED: 2253 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2254 } 2255 return SRP_TSK_MGMT_FAILED; 2256 } 2257 2258 /** 2259 * srpt_queue_response() - Transmits the response to a SCSI command. 2260 * 2261 * Callback function called by the TCM core. Must not block since it can be 2262 * invoked on the context of the IB completion handler. 2263 */ 2264 static void srpt_queue_response(struct se_cmd *cmd) 2265 { 2266 struct srpt_send_ioctx *ioctx = 2267 container_of(cmd, struct srpt_send_ioctx, cmd); 2268 struct srpt_rdma_ch *ch = ioctx->ch; 2269 struct srpt_device *sdev = ch->sport->sdev; 2270 struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr; 2271 struct ib_sge sge; 2272 enum srpt_command_state state; 2273 unsigned long flags; 2274 int resp_len, ret, i; 2275 u8 srp_tm_status; 2276 2277 BUG_ON(!ch); 2278 2279 spin_lock_irqsave(&ioctx->spinlock, flags); 2280 state = ioctx->state; 2281 switch (state) { 2282 case SRPT_STATE_NEW: 2283 case SRPT_STATE_DATA_IN: 2284 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 2285 break; 2286 case SRPT_STATE_MGMT: 2287 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 2288 break; 2289 default: 2290 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 2291 ch, ioctx->ioctx.index, ioctx->state); 2292 break; 2293 } 2294 spin_unlock_irqrestore(&ioctx->spinlock, flags); 2295 2296 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 2297 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 2298 atomic_inc(&ch->req_lim_delta); 2299 srpt_abort_cmd(ioctx); 2300 return; 2301 } 2302 2303 /* For read commands, transfer the data to the initiator. */ 2304 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE && 2305 ioctx->cmd.data_length && 2306 !ioctx->queue_status_only) { 2307 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2308 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2309 2310 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, 2311 ch->sport->port, NULL, first_wr); 2312 } 2313 } 2314 2315 if (state != SRPT_STATE_MGMT) 2316 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, 2317 cmd->scsi_status); 2318 else { 2319 srp_tm_status 2320 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 2321 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 2322 ioctx->cmd.tag); 2323 } 2324 2325 atomic_inc(&ch->req_lim); 2326 2327 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma, 2328 &ch->sq_wr_avail) < 0)) { 2329 pr_warn("%s: IB send queue full (needed %d)\n", 2330 __func__, ioctx->n_rdma); 2331 ret = -ENOMEM; 2332 goto out; 2333 } 2334 2335 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len, 2336 DMA_TO_DEVICE); 2337 2338 sge.addr = ioctx->ioctx.dma; 2339 sge.length = resp_len; 2340 sge.lkey = sdev->pd->local_dma_lkey; 2341 2342 ioctx->ioctx.cqe.done = srpt_send_done; 2343 send_wr.next = NULL; 2344 send_wr.wr_cqe = &ioctx->ioctx.cqe; 2345 send_wr.sg_list = &sge; 2346 send_wr.num_sge = 1; 2347 send_wr.opcode = IB_WR_SEND; 2348 send_wr.send_flags = IB_SEND_SIGNALED; 2349 2350 ret = ib_post_send(ch->qp, first_wr, &bad_wr); 2351 if (ret < 0) { 2352 pr_err("%s: sending cmd response failed for tag %llu (%d)\n", 2353 __func__, ioctx->cmd.tag, ret); 2354 goto out; 2355 } 2356 2357 return; 2358 2359 out: 2360 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 2361 atomic_dec(&ch->req_lim); 2362 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 2363 target_put_sess_cmd(&ioctx->cmd); 2364 } 2365 2366 static int srpt_queue_data_in(struct se_cmd *cmd) 2367 { 2368 srpt_queue_response(cmd); 2369 return 0; 2370 } 2371 2372 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 2373 { 2374 srpt_queue_response(cmd); 2375 } 2376 2377 static void srpt_aborted_task(struct se_cmd *cmd) 2378 { 2379 } 2380 2381 static int srpt_queue_status(struct se_cmd *cmd) 2382 { 2383 struct srpt_send_ioctx *ioctx; 2384 2385 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 2386 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 2387 if (cmd->se_cmd_flags & 2388 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 2389 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 2390 ioctx->queue_status_only = true; 2391 srpt_queue_response(cmd); 2392 return 0; 2393 } 2394 2395 static void srpt_refresh_port_work(struct work_struct *work) 2396 { 2397 struct srpt_port *sport = container_of(work, struct srpt_port, work); 2398 2399 srpt_refresh_port(sport); 2400 } 2401 2402 /** 2403 * srpt_release_sdev() - Free the channel resources associated with a target. 2404 */ 2405 static int srpt_release_sdev(struct srpt_device *sdev) 2406 { 2407 int i, res; 2408 2409 WARN_ON_ONCE(irqs_disabled()); 2410 2411 BUG_ON(!sdev); 2412 2413 mutex_lock(&sdev->mutex); 2414 for (i = 0; i < ARRAY_SIZE(sdev->port); i++) 2415 sdev->port[i].enabled = false; 2416 __srpt_close_all_ch(sdev); 2417 mutex_unlock(&sdev->mutex); 2418 2419 res = wait_event_interruptible(sdev->ch_releaseQ, 2420 list_empty_careful(&sdev->rch_list)); 2421 if (res) 2422 pr_err("%s: interrupted.\n", __func__); 2423 2424 return 0; 2425 } 2426 2427 static struct srpt_port *__srpt_lookup_port(const char *name) 2428 { 2429 struct ib_device *dev; 2430 struct srpt_device *sdev; 2431 struct srpt_port *sport; 2432 int i; 2433 2434 list_for_each_entry(sdev, &srpt_dev_list, list) { 2435 dev = sdev->device; 2436 if (!dev) 2437 continue; 2438 2439 for (i = 0; i < dev->phys_port_cnt; i++) { 2440 sport = &sdev->port[i]; 2441 2442 if (!strcmp(sport->port_guid, name)) 2443 return sport; 2444 } 2445 } 2446 2447 return NULL; 2448 } 2449 2450 static struct srpt_port *srpt_lookup_port(const char *name) 2451 { 2452 struct srpt_port *sport; 2453 2454 spin_lock(&srpt_dev_lock); 2455 sport = __srpt_lookup_port(name); 2456 spin_unlock(&srpt_dev_lock); 2457 2458 return sport; 2459 } 2460 2461 /** 2462 * srpt_add_one() - Infiniband device addition callback function. 2463 */ 2464 static void srpt_add_one(struct ib_device *device) 2465 { 2466 struct srpt_device *sdev; 2467 struct srpt_port *sport; 2468 struct ib_srq_init_attr srq_attr; 2469 int i; 2470 2471 pr_debug("device = %p, device->dma_ops = %p\n", device, 2472 device->dma_ops); 2473 2474 sdev = kzalloc(sizeof(*sdev), GFP_KERNEL); 2475 if (!sdev) 2476 goto err; 2477 2478 sdev->device = device; 2479 INIT_LIST_HEAD(&sdev->rch_list); 2480 init_waitqueue_head(&sdev->ch_releaseQ); 2481 mutex_init(&sdev->mutex); 2482 2483 sdev->pd = ib_alloc_pd(device, 0); 2484 if (IS_ERR(sdev->pd)) 2485 goto free_dev; 2486 2487 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr); 2488 2489 srq_attr.event_handler = srpt_srq_event; 2490 srq_attr.srq_context = (void *)sdev; 2491 srq_attr.attr.max_wr = sdev->srq_size; 2492 srq_attr.attr.max_sge = 1; 2493 srq_attr.attr.srq_limit = 0; 2494 srq_attr.srq_type = IB_SRQT_BASIC; 2495 2496 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 2497 if (IS_ERR(sdev->srq)) 2498 goto err_pd; 2499 2500 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 2501 __func__, sdev->srq_size, sdev->device->attrs.max_srq_wr, 2502 device->name); 2503 2504 if (!srpt_service_guid) 2505 srpt_service_guid = be64_to_cpu(device->node_guid); 2506 2507 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 2508 if (IS_ERR(sdev->cm_id)) 2509 goto err_srq; 2510 2511 /* print out target login information */ 2512 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 2513 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 2514 srpt_service_guid, srpt_service_guid); 2515 2516 /* 2517 * We do not have a consistent service_id (ie. also id_ext of target_id) 2518 * to identify this target. We currently use the guid of the first HCA 2519 * in the system as service_id; therefore, the target_id will change 2520 * if this HCA is gone bad and replaced by different HCA 2521 */ 2522 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0)) 2523 goto err_cm; 2524 2525 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 2526 srpt_event_handler); 2527 if (ib_register_event_handler(&sdev->event_handler)) 2528 goto err_cm; 2529 2530 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 2531 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 2532 sizeof(*sdev->ioctx_ring[0]), 2533 srp_max_req_size, DMA_FROM_DEVICE); 2534 if (!sdev->ioctx_ring) 2535 goto err_event; 2536 2537 for (i = 0; i < sdev->srq_size; ++i) 2538 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 2539 2540 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 2541 2542 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 2543 sport = &sdev->port[i - 1]; 2544 sport->sdev = sdev; 2545 sport->port = i; 2546 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 2547 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 2548 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 2549 INIT_WORK(&sport->work, srpt_refresh_port_work); 2550 2551 if (srpt_refresh_port(sport)) { 2552 pr_err("MAD registration failed for %s-%d.\n", 2553 sdev->device->name, i); 2554 goto err_ring; 2555 } 2556 } 2557 2558 spin_lock(&srpt_dev_lock); 2559 list_add_tail(&sdev->list, &srpt_dev_list); 2560 spin_unlock(&srpt_dev_lock); 2561 2562 out: 2563 ib_set_client_data(device, &srpt_client, sdev); 2564 pr_debug("added %s.\n", device->name); 2565 return; 2566 2567 err_ring: 2568 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 2569 sdev->srq_size, srp_max_req_size, 2570 DMA_FROM_DEVICE); 2571 err_event: 2572 ib_unregister_event_handler(&sdev->event_handler); 2573 err_cm: 2574 ib_destroy_cm_id(sdev->cm_id); 2575 err_srq: 2576 ib_destroy_srq(sdev->srq); 2577 err_pd: 2578 ib_dealloc_pd(sdev->pd); 2579 free_dev: 2580 kfree(sdev); 2581 err: 2582 sdev = NULL; 2583 pr_info("%s(%s) failed.\n", __func__, device->name); 2584 goto out; 2585 } 2586 2587 /** 2588 * srpt_remove_one() - InfiniBand device removal callback function. 2589 */ 2590 static void srpt_remove_one(struct ib_device *device, void *client_data) 2591 { 2592 struct srpt_device *sdev = client_data; 2593 int i; 2594 2595 if (!sdev) { 2596 pr_info("%s(%s): nothing to do.\n", __func__, device->name); 2597 return; 2598 } 2599 2600 srpt_unregister_mad_agent(sdev); 2601 2602 ib_unregister_event_handler(&sdev->event_handler); 2603 2604 /* Cancel any work queued by the just unregistered IB event handler. */ 2605 for (i = 0; i < sdev->device->phys_port_cnt; i++) 2606 cancel_work_sync(&sdev->port[i].work); 2607 2608 ib_destroy_cm_id(sdev->cm_id); 2609 2610 /* 2611 * Unregistering a target must happen after destroying sdev->cm_id 2612 * such that no new SRP_LOGIN_REQ information units can arrive while 2613 * destroying the target. 2614 */ 2615 spin_lock(&srpt_dev_lock); 2616 list_del(&sdev->list); 2617 spin_unlock(&srpt_dev_lock); 2618 srpt_release_sdev(sdev); 2619 2620 ib_destroy_srq(sdev->srq); 2621 ib_dealloc_pd(sdev->pd); 2622 2623 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 2624 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 2625 sdev->ioctx_ring = NULL; 2626 kfree(sdev); 2627 } 2628 2629 static struct ib_client srpt_client = { 2630 .name = DRV_NAME, 2631 .add = srpt_add_one, 2632 .remove = srpt_remove_one 2633 }; 2634 2635 static int srpt_check_true(struct se_portal_group *se_tpg) 2636 { 2637 return 1; 2638 } 2639 2640 static int srpt_check_false(struct se_portal_group *se_tpg) 2641 { 2642 return 0; 2643 } 2644 2645 static char *srpt_get_fabric_name(void) 2646 { 2647 return "srpt"; 2648 } 2649 2650 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 2651 { 2652 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 2653 2654 return sport->port_guid; 2655 } 2656 2657 static u16 srpt_get_tag(struct se_portal_group *tpg) 2658 { 2659 return 1; 2660 } 2661 2662 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 2663 { 2664 return 1; 2665 } 2666 2667 static void srpt_release_cmd(struct se_cmd *se_cmd) 2668 { 2669 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 2670 struct srpt_send_ioctx, cmd); 2671 struct srpt_rdma_ch *ch = ioctx->ch; 2672 unsigned long flags; 2673 2674 WARN_ON(ioctx->state != SRPT_STATE_DONE); 2675 2676 if (ioctx->n_rw_ctx) { 2677 srpt_free_rw_ctxs(ch, ioctx); 2678 ioctx->n_rw_ctx = 0; 2679 } 2680 2681 spin_lock_irqsave(&ch->spinlock, flags); 2682 list_add(&ioctx->free_list, &ch->free_list); 2683 spin_unlock_irqrestore(&ch->spinlock, flags); 2684 } 2685 2686 /** 2687 * srpt_close_session() - Forcibly close a session. 2688 * 2689 * Callback function invoked by the TCM core to clean up sessions associated 2690 * with a node ACL when the user invokes 2691 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 2692 */ 2693 static void srpt_close_session(struct se_session *se_sess) 2694 { 2695 DECLARE_COMPLETION_ONSTACK(release_done); 2696 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2697 struct srpt_device *sdev = ch->sport->sdev; 2698 bool wait; 2699 2700 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num, 2701 ch->state); 2702 2703 mutex_lock(&sdev->mutex); 2704 BUG_ON(ch->release_done); 2705 ch->release_done = &release_done; 2706 wait = !list_empty(&ch->list); 2707 srpt_disconnect_ch(ch); 2708 mutex_unlock(&sdev->mutex); 2709 2710 if (!wait) 2711 return; 2712 2713 while (wait_for_completion_timeout(&release_done, 180 * HZ) == 0) 2714 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__, 2715 ch->sess_name, ch->qp->qp_num, ch->state); 2716 } 2717 2718 /** 2719 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 2720 * 2721 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 2722 * This object represents an arbitrary integer used to uniquely identify a 2723 * particular attached remote initiator port to a particular SCSI target port 2724 * within a particular SCSI target device within a particular SCSI instance. 2725 */ 2726 static u32 srpt_sess_get_index(struct se_session *se_sess) 2727 { 2728 return 0; 2729 } 2730 2731 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 2732 { 2733 } 2734 2735 /* Note: only used from inside debug printk's by the TCM core. */ 2736 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 2737 { 2738 struct srpt_send_ioctx *ioctx; 2739 2740 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2741 return srpt_get_cmd_state(ioctx); 2742 } 2743 2744 /** 2745 * srpt_parse_i_port_id() - Parse an initiator port ID. 2746 * @name: ASCII representation of a 128-bit initiator port ID. 2747 * @i_port_id: Binary 128-bit port ID. 2748 */ 2749 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 2750 { 2751 const char *p; 2752 unsigned len, count, leading_zero_bytes; 2753 int ret, rc; 2754 2755 p = name; 2756 if (strncasecmp(p, "0x", 2) == 0) 2757 p += 2; 2758 ret = -EINVAL; 2759 len = strlen(p); 2760 if (len % 2) 2761 goto out; 2762 count = min(len / 2, 16U); 2763 leading_zero_bytes = 16 - count; 2764 memset(i_port_id, 0, leading_zero_bytes); 2765 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 2766 if (rc < 0) 2767 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 2768 ret = 0; 2769 out: 2770 return ret; 2771 } 2772 2773 /* 2774 * configfs callback function invoked for 2775 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 2776 */ 2777 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) 2778 { 2779 u8 i_port_id[16]; 2780 2781 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 2782 pr_err("invalid initiator port ID %s\n", name); 2783 return -EINVAL; 2784 } 2785 return 0; 2786 } 2787 2788 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, 2789 char *page) 2790 { 2791 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2792 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2793 2794 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 2795 } 2796 2797 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, 2798 const char *page, size_t count) 2799 { 2800 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2801 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2802 unsigned long val; 2803 int ret; 2804 2805 ret = kstrtoul(page, 0, &val); 2806 if (ret < 0) { 2807 pr_err("kstrtoul() failed with ret: %d\n", ret); 2808 return -EINVAL; 2809 } 2810 if (val > MAX_SRPT_RDMA_SIZE) { 2811 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 2812 MAX_SRPT_RDMA_SIZE); 2813 return -EINVAL; 2814 } 2815 if (val < DEFAULT_MAX_RDMA_SIZE) { 2816 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 2817 val, DEFAULT_MAX_RDMA_SIZE); 2818 return -EINVAL; 2819 } 2820 sport->port_attrib.srp_max_rdma_size = val; 2821 2822 return count; 2823 } 2824 2825 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, 2826 char *page) 2827 { 2828 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2829 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2830 2831 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 2832 } 2833 2834 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, 2835 const char *page, size_t count) 2836 { 2837 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2838 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2839 unsigned long val; 2840 int ret; 2841 2842 ret = kstrtoul(page, 0, &val); 2843 if (ret < 0) { 2844 pr_err("kstrtoul() failed with ret: %d\n", ret); 2845 return -EINVAL; 2846 } 2847 if (val > MAX_SRPT_RSP_SIZE) { 2848 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 2849 MAX_SRPT_RSP_SIZE); 2850 return -EINVAL; 2851 } 2852 if (val < MIN_MAX_RSP_SIZE) { 2853 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 2854 MIN_MAX_RSP_SIZE); 2855 return -EINVAL; 2856 } 2857 sport->port_attrib.srp_max_rsp_size = val; 2858 2859 return count; 2860 } 2861 2862 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, 2863 char *page) 2864 { 2865 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2866 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2867 2868 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 2869 } 2870 2871 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, 2872 const char *page, size_t count) 2873 { 2874 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2875 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2876 unsigned long val; 2877 int ret; 2878 2879 ret = kstrtoul(page, 0, &val); 2880 if (ret < 0) { 2881 pr_err("kstrtoul() failed with ret: %d\n", ret); 2882 return -EINVAL; 2883 } 2884 if (val > MAX_SRPT_SRQ_SIZE) { 2885 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 2886 MAX_SRPT_SRQ_SIZE); 2887 return -EINVAL; 2888 } 2889 if (val < MIN_SRPT_SRQ_SIZE) { 2890 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 2891 MIN_SRPT_SRQ_SIZE); 2892 return -EINVAL; 2893 } 2894 sport->port_attrib.srp_sq_size = val; 2895 2896 return count; 2897 } 2898 2899 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size); 2900 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size); 2901 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size); 2902 2903 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 2904 &srpt_tpg_attrib_attr_srp_max_rdma_size, 2905 &srpt_tpg_attrib_attr_srp_max_rsp_size, 2906 &srpt_tpg_attrib_attr_srp_sq_size, 2907 NULL, 2908 }; 2909 2910 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page) 2911 { 2912 struct se_portal_group *se_tpg = to_tpg(item); 2913 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2914 2915 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 2916 } 2917 2918 static ssize_t srpt_tpg_enable_store(struct config_item *item, 2919 const char *page, size_t count) 2920 { 2921 struct se_portal_group *se_tpg = to_tpg(item); 2922 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2923 struct srpt_device *sdev = sport->sdev; 2924 struct srpt_rdma_ch *ch; 2925 unsigned long tmp; 2926 int ret; 2927 2928 ret = kstrtoul(page, 0, &tmp); 2929 if (ret < 0) { 2930 pr_err("Unable to extract srpt_tpg_store_enable\n"); 2931 return -EINVAL; 2932 } 2933 2934 if ((tmp != 0) && (tmp != 1)) { 2935 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 2936 return -EINVAL; 2937 } 2938 if (sport->enabled == tmp) 2939 goto out; 2940 sport->enabled = tmp; 2941 if (sport->enabled) 2942 goto out; 2943 2944 mutex_lock(&sdev->mutex); 2945 list_for_each_entry(ch, &sdev->rch_list, list) { 2946 if (ch->sport == sport) { 2947 pr_debug("%s: ch %p %s-%d\n", __func__, ch, 2948 ch->sess_name, ch->qp->qp_num); 2949 srpt_disconnect_ch(ch); 2950 srpt_close_ch(ch); 2951 } 2952 } 2953 mutex_unlock(&sdev->mutex); 2954 2955 out: 2956 return count; 2957 } 2958 2959 CONFIGFS_ATTR(srpt_tpg_, enable); 2960 2961 static struct configfs_attribute *srpt_tpg_attrs[] = { 2962 &srpt_tpg_attr_enable, 2963 NULL, 2964 }; 2965 2966 /** 2967 * configfs callback invoked for 2968 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 2969 */ 2970 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 2971 struct config_group *group, 2972 const char *name) 2973 { 2974 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 2975 int res; 2976 2977 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 2978 res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP); 2979 if (res) 2980 return ERR_PTR(res); 2981 2982 return &sport->port_tpg_1; 2983 } 2984 2985 /** 2986 * configfs callback invoked for 2987 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 2988 */ 2989 static void srpt_drop_tpg(struct se_portal_group *tpg) 2990 { 2991 struct srpt_port *sport = container_of(tpg, 2992 struct srpt_port, port_tpg_1); 2993 2994 sport->enabled = false; 2995 core_tpg_deregister(&sport->port_tpg_1); 2996 } 2997 2998 /** 2999 * configfs callback invoked for 3000 * mkdir /sys/kernel/config/target/$driver/$port 3001 */ 3002 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3003 struct config_group *group, 3004 const char *name) 3005 { 3006 struct srpt_port *sport; 3007 int ret; 3008 3009 sport = srpt_lookup_port(name); 3010 pr_debug("make_tport(%s)\n", name); 3011 ret = -EINVAL; 3012 if (!sport) 3013 goto err; 3014 3015 return &sport->port_wwn; 3016 3017 err: 3018 return ERR_PTR(ret); 3019 } 3020 3021 /** 3022 * configfs callback invoked for 3023 * rmdir /sys/kernel/config/target/$driver/$port 3024 */ 3025 static void srpt_drop_tport(struct se_wwn *wwn) 3026 { 3027 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3028 3029 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3030 } 3031 3032 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf) 3033 { 3034 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3035 } 3036 3037 CONFIGFS_ATTR_RO(srpt_wwn_, version); 3038 3039 static struct configfs_attribute *srpt_wwn_attrs[] = { 3040 &srpt_wwn_attr_version, 3041 NULL, 3042 }; 3043 3044 static const struct target_core_fabric_ops srpt_template = { 3045 .module = THIS_MODULE, 3046 .name = "srpt", 3047 .get_fabric_name = srpt_get_fabric_name, 3048 .tpg_get_wwn = srpt_get_fabric_wwn, 3049 .tpg_get_tag = srpt_get_tag, 3050 .tpg_check_demo_mode = srpt_check_false, 3051 .tpg_check_demo_mode_cache = srpt_check_true, 3052 .tpg_check_demo_mode_write_protect = srpt_check_true, 3053 .tpg_check_prod_mode_write_protect = srpt_check_false, 3054 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3055 .release_cmd = srpt_release_cmd, 3056 .check_stop_free = srpt_check_stop_free, 3057 .close_session = srpt_close_session, 3058 .sess_get_index = srpt_sess_get_index, 3059 .sess_get_initiator_sid = NULL, 3060 .write_pending = srpt_write_pending, 3061 .write_pending_status = srpt_write_pending_status, 3062 .set_default_node_attributes = srpt_set_default_node_attrs, 3063 .get_cmd_state = srpt_get_tcm_cmd_state, 3064 .queue_data_in = srpt_queue_data_in, 3065 .queue_status = srpt_queue_status, 3066 .queue_tm_rsp = srpt_queue_tm_rsp, 3067 .aborted_task = srpt_aborted_task, 3068 /* 3069 * Setup function pointers for generic logic in 3070 * target_core_fabric_configfs.c 3071 */ 3072 .fabric_make_wwn = srpt_make_tport, 3073 .fabric_drop_wwn = srpt_drop_tport, 3074 .fabric_make_tpg = srpt_make_tpg, 3075 .fabric_drop_tpg = srpt_drop_tpg, 3076 .fabric_init_nodeacl = srpt_init_nodeacl, 3077 3078 .tfc_wwn_attrs = srpt_wwn_attrs, 3079 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3080 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3081 }; 3082 3083 /** 3084 * srpt_init_module() - Kernel module initialization. 3085 * 3086 * Note: Since ib_register_client() registers callback functions, and since at 3087 * least one of these callback functions (srpt_add_one()) calls target core 3088 * functions, this driver must be registered with the target core before 3089 * ib_register_client() is called. 3090 */ 3091 static int __init srpt_init_module(void) 3092 { 3093 int ret; 3094 3095 ret = -EINVAL; 3096 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3097 pr_err("invalid value %d for kernel module parameter" 3098 " srp_max_req_size -- must be at least %d.\n", 3099 srp_max_req_size, MIN_MAX_REQ_SIZE); 3100 goto out; 3101 } 3102 3103 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3104 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3105 pr_err("invalid value %d for kernel module parameter" 3106 " srpt_srq_size -- must be in the range [%d..%d].\n", 3107 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3108 goto out; 3109 } 3110 3111 ret = target_register_template(&srpt_template); 3112 if (ret) 3113 goto out; 3114 3115 ret = ib_register_client(&srpt_client); 3116 if (ret) { 3117 pr_err("couldn't register IB client\n"); 3118 goto out_unregister_target; 3119 } 3120 3121 return 0; 3122 3123 out_unregister_target: 3124 target_unregister_template(&srpt_template); 3125 out: 3126 return ret; 3127 } 3128 3129 static void __exit srpt_cleanup_module(void) 3130 { 3131 ib_unregister_client(&srpt_client); 3132 target_unregister_template(&srpt_template); 3133 } 3134 3135 module_init(srpt_init_module); 3136 module_exit(srpt_cleanup_module); 3137