1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <linux/inet.h> 45 #include <rdma/ib_cache.h> 46 #include <scsi/scsi_proto.h> 47 #include <scsi/scsi_tcq.h> 48 #include <target/target_core_base.h> 49 #include <target/target_core_fabric.h> 50 #include "ib_srpt.h" 51 52 /* Name of this kernel module. */ 53 #define DRV_NAME "ib_srpt" 54 55 #define SRPT_ID_STRING "Linux SRP target" 56 57 #undef pr_fmt 58 #define pr_fmt(fmt) DRV_NAME " " fmt 59 60 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 61 MODULE_DESCRIPTION("SCSI RDMA Protocol target driver"); 62 MODULE_LICENSE("Dual BSD/GPL"); 63 64 /* 65 * Global Variables 66 */ 67 68 static u64 srpt_service_guid; 69 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 70 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 71 72 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 73 module_param(srp_max_req_size, int, 0444); 74 MODULE_PARM_DESC(srp_max_req_size, 75 "Maximum size of SRP request messages in bytes."); 76 77 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 78 module_param(srpt_srq_size, int, 0444); 79 MODULE_PARM_DESC(srpt_srq_size, 80 "Shared receive queue (SRQ) size."); 81 82 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp) 83 { 84 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 85 } 86 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 87 0444); 88 MODULE_PARM_DESC(srpt_service_guid, 89 "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA."); 90 91 static struct ib_client srpt_client; 92 /* Protects both rdma_cm_port and rdma_cm_id. */ 93 static DEFINE_MUTEX(rdma_cm_mutex); 94 /* Port number RDMA/CM will bind to. */ 95 static u16 rdma_cm_port; 96 static struct rdma_cm_id *rdma_cm_id; 97 static void srpt_release_cmd(struct se_cmd *se_cmd); 98 static void srpt_free_ch(struct kref *kref); 99 static int srpt_queue_status(struct se_cmd *cmd); 100 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc); 101 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc); 102 static void srpt_process_wait_list(struct srpt_rdma_ch *ch); 103 104 /* 105 * The only allowed channel state changes are those that change the channel 106 * state into a state with a higher numerical value. Hence the new > prev test. 107 */ 108 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new) 109 { 110 unsigned long flags; 111 enum rdma_ch_state prev; 112 bool changed = false; 113 114 spin_lock_irqsave(&ch->spinlock, flags); 115 prev = ch->state; 116 if (new > prev) { 117 ch->state = new; 118 changed = true; 119 } 120 spin_unlock_irqrestore(&ch->spinlock, flags); 121 122 return changed; 123 } 124 125 /** 126 * srpt_event_handler - asynchronous IB event callback function 127 * @handler: IB event handler registered by ib_register_event_handler(). 128 * @event: Description of the event that occurred. 129 * 130 * Callback function called by the InfiniBand core when an asynchronous IB 131 * event occurs. This callback may occur in interrupt context. See also 132 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 133 * Architecture Specification. 134 */ 135 static void srpt_event_handler(struct ib_event_handler *handler, 136 struct ib_event *event) 137 { 138 struct srpt_device *sdev; 139 struct srpt_port *sport; 140 u8 port_num; 141 142 sdev = ib_get_client_data(event->device, &srpt_client); 143 if (!sdev || sdev->device != event->device) 144 return; 145 146 pr_debug("ASYNC event= %d on device= %s\n", event->event, 147 dev_name(&sdev->device->dev)); 148 149 switch (event->event) { 150 case IB_EVENT_PORT_ERR: 151 port_num = event->element.port_num - 1; 152 if (port_num < sdev->device->phys_port_cnt) { 153 sport = &sdev->port[port_num]; 154 sport->lid = 0; 155 sport->sm_lid = 0; 156 } else { 157 WARN(true, "event %d: port_num %d out of range 1..%d\n", 158 event->event, port_num + 1, 159 sdev->device->phys_port_cnt); 160 } 161 break; 162 case IB_EVENT_PORT_ACTIVE: 163 case IB_EVENT_LID_CHANGE: 164 case IB_EVENT_PKEY_CHANGE: 165 case IB_EVENT_SM_CHANGE: 166 case IB_EVENT_CLIENT_REREGISTER: 167 case IB_EVENT_GID_CHANGE: 168 /* Refresh port data asynchronously. */ 169 port_num = event->element.port_num - 1; 170 if (port_num < sdev->device->phys_port_cnt) { 171 sport = &sdev->port[port_num]; 172 if (!sport->lid && !sport->sm_lid) 173 schedule_work(&sport->work); 174 } else { 175 WARN(true, "event %d: port_num %d out of range 1..%d\n", 176 event->event, port_num + 1, 177 sdev->device->phys_port_cnt); 178 } 179 break; 180 default: 181 pr_err("received unrecognized IB event %d\n", event->event); 182 break; 183 } 184 } 185 186 /** 187 * srpt_srq_event - SRQ event callback function 188 * @event: Description of the event that occurred. 189 * @ctx: Context pointer specified at SRQ creation time. 190 */ 191 static void srpt_srq_event(struct ib_event *event, void *ctx) 192 { 193 pr_debug("SRQ event %d\n", event->event); 194 } 195 196 static const char *get_ch_state_name(enum rdma_ch_state s) 197 { 198 switch (s) { 199 case CH_CONNECTING: 200 return "connecting"; 201 case CH_LIVE: 202 return "live"; 203 case CH_DISCONNECTING: 204 return "disconnecting"; 205 case CH_DRAINING: 206 return "draining"; 207 case CH_DISCONNECTED: 208 return "disconnected"; 209 } 210 return "???"; 211 } 212 213 /** 214 * srpt_qp_event - QP event callback function 215 * @event: Description of the event that occurred. 216 * @ch: SRPT RDMA channel. 217 */ 218 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 219 { 220 pr_debug("QP event %d on ch=%p sess_name=%s state=%d\n", 221 event->event, ch, ch->sess_name, ch->state); 222 223 switch (event->event) { 224 case IB_EVENT_COMM_EST: 225 if (ch->using_rdma_cm) 226 rdma_notify(ch->rdma_cm.cm_id, event->event); 227 else 228 ib_cm_notify(ch->ib_cm.cm_id, event->event); 229 break; 230 case IB_EVENT_QP_LAST_WQE_REACHED: 231 pr_debug("%s-%d, state %s: received Last WQE event.\n", 232 ch->sess_name, ch->qp->qp_num, 233 get_ch_state_name(ch->state)); 234 break; 235 default: 236 pr_err("received unrecognized IB QP event %d\n", event->event); 237 break; 238 } 239 } 240 241 /** 242 * srpt_set_ioc - initialize a IOUnitInfo structure 243 * @c_list: controller list. 244 * @slot: one-based slot number. 245 * @value: four-bit value. 246 * 247 * Copies the lowest four bits of value in element slot of the array of four 248 * bit elements called c_list (controller list). The index slot is one-based. 249 */ 250 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 251 { 252 u16 id; 253 u8 tmp; 254 255 id = (slot - 1) / 2; 256 if (slot & 0x1) { 257 tmp = c_list[id] & 0xf; 258 c_list[id] = (value << 4) | tmp; 259 } else { 260 tmp = c_list[id] & 0xf0; 261 c_list[id] = (value & 0xf) | tmp; 262 } 263 } 264 265 /** 266 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram 267 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO. 268 * 269 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 270 * Specification. 271 */ 272 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 273 { 274 struct ib_class_port_info *cif; 275 276 cif = (struct ib_class_port_info *)mad->data; 277 memset(cif, 0, sizeof(*cif)); 278 cif->base_version = 1; 279 cif->class_version = 1; 280 281 ib_set_cpi_resp_time(cif, 20); 282 mad->mad_hdr.status = 0; 283 } 284 285 /** 286 * srpt_get_iou - write IOUnitInfo to a management datagram 287 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO. 288 * 289 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 290 * Specification. See also section B.7, table B.6 in the SRP r16a document. 291 */ 292 static void srpt_get_iou(struct ib_dm_mad *mad) 293 { 294 struct ib_dm_iou_info *ioui; 295 u8 slot; 296 int i; 297 298 ioui = (struct ib_dm_iou_info *)mad->data; 299 ioui->change_id = cpu_to_be16(1); 300 ioui->max_controllers = 16; 301 302 /* set present for slot 1 and empty for the rest */ 303 srpt_set_ioc(ioui->controller_list, 1, 1); 304 for (i = 1, slot = 2; i < 16; i++, slot++) 305 srpt_set_ioc(ioui->controller_list, slot, 0); 306 307 mad->mad_hdr.status = 0; 308 } 309 310 /** 311 * srpt_get_ioc - write IOControllerprofile to a management datagram 312 * @sport: HCA port through which the MAD has been received. 313 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query. 314 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE. 315 * 316 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 317 * Architecture Specification. See also section B.7, table B.7 in the SRP 318 * r16a document. 319 */ 320 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 321 struct ib_dm_mad *mad) 322 { 323 struct srpt_device *sdev = sport->sdev; 324 struct ib_dm_ioc_profile *iocp; 325 int send_queue_depth; 326 327 iocp = (struct ib_dm_ioc_profile *)mad->data; 328 329 if (!slot || slot > 16) { 330 mad->mad_hdr.status 331 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 332 return; 333 } 334 335 if (slot > 2) { 336 mad->mad_hdr.status 337 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 338 return; 339 } 340 341 if (sdev->use_srq) 342 send_queue_depth = sdev->srq_size; 343 else 344 send_queue_depth = min(MAX_SRPT_RQ_SIZE, 345 sdev->device->attrs.max_qp_wr); 346 347 memset(iocp, 0, sizeof(*iocp)); 348 strcpy(iocp->id_string, SRPT_ID_STRING); 349 iocp->guid = cpu_to_be64(srpt_service_guid); 350 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 351 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id); 352 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver); 353 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 354 iocp->subsys_device_id = 0x0; 355 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 356 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); 357 iocp->protocol = cpu_to_be16(SRP_PROTOCOL); 358 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); 359 iocp->send_queue_depth = cpu_to_be16(send_queue_depth); 360 iocp->rdma_read_depth = 4; 361 iocp->send_size = cpu_to_be32(srp_max_req_size); 362 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 363 1U << 24)); 364 iocp->num_svc_entries = 1; 365 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 366 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 367 368 mad->mad_hdr.status = 0; 369 } 370 371 /** 372 * srpt_get_svc_entries - write ServiceEntries to a management datagram 373 * @ioc_guid: I/O controller GUID to use in reply. 374 * @slot: I/O controller number. 375 * @hi: End of the range of service entries to be specified in the reply. 376 * @lo: Start of the range of service entries to be specified in the reply.. 377 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES. 378 * 379 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 380 * Specification. See also section B.7, table B.8 in the SRP r16a document. 381 */ 382 static void srpt_get_svc_entries(u64 ioc_guid, 383 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 384 { 385 struct ib_dm_svc_entries *svc_entries; 386 387 WARN_ON(!ioc_guid); 388 389 if (!slot || slot > 16) { 390 mad->mad_hdr.status 391 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 392 return; 393 } 394 395 if (slot > 2 || lo > hi || hi > 1) { 396 mad->mad_hdr.status 397 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 398 return; 399 } 400 401 svc_entries = (struct ib_dm_svc_entries *)mad->data; 402 memset(svc_entries, 0, sizeof(*svc_entries)); 403 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 404 snprintf(svc_entries->service_entries[0].name, 405 sizeof(svc_entries->service_entries[0].name), 406 "%s%016llx", 407 SRP_SERVICE_NAME_PREFIX, 408 ioc_guid); 409 410 mad->mad_hdr.status = 0; 411 } 412 413 /** 414 * srpt_mgmt_method_get - process a received management datagram 415 * @sp: HCA port through which the MAD has been received. 416 * @rq_mad: received MAD. 417 * @rsp_mad: response MAD. 418 */ 419 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 420 struct ib_dm_mad *rsp_mad) 421 { 422 u16 attr_id; 423 u32 slot; 424 u8 hi, lo; 425 426 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 427 switch (attr_id) { 428 case DM_ATTR_CLASS_PORT_INFO: 429 srpt_get_class_port_info(rsp_mad); 430 break; 431 case DM_ATTR_IOU_INFO: 432 srpt_get_iou(rsp_mad); 433 break; 434 case DM_ATTR_IOC_PROFILE: 435 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 436 srpt_get_ioc(sp, slot, rsp_mad); 437 break; 438 case DM_ATTR_SVC_ENTRIES: 439 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 440 hi = (u8) ((slot >> 8) & 0xff); 441 lo = (u8) (slot & 0xff); 442 slot = (u16) ((slot >> 16) & 0xffff); 443 srpt_get_svc_entries(srpt_service_guid, 444 slot, hi, lo, rsp_mad); 445 break; 446 default: 447 rsp_mad->mad_hdr.status = 448 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 449 break; 450 } 451 } 452 453 /** 454 * srpt_mad_send_handler - MAD send completion callback 455 * @mad_agent: Return value of ib_register_mad_agent(). 456 * @mad_wc: Work completion reporting that the MAD has been sent. 457 */ 458 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 459 struct ib_mad_send_wc *mad_wc) 460 { 461 rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE); 462 ib_free_send_mad(mad_wc->send_buf); 463 } 464 465 /** 466 * srpt_mad_recv_handler - MAD reception callback function 467 * @mad_agent: Return value of ib_register_mad_agent(). 468 * @send_buf: Not used. 469 * @mad_wc: Work completion reporting that a MAD has been received. 470 */ 471 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 472 struct ib_mad_send_buf *send_buf, 473 struct ib_mad_recv_wc *mad_wc) 474 { 475 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 476 struct ib_ah *ah; 477 struct ib_mad_send_buf *rsp; 478 struct ib_dm_mad *dm_mad; 479 480 if (!mad_wc || !mad_wc->recv_buf.mad) 481 return; 482 483 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 484 mad_wc->recv_buf.grh, mad_agent->port_num); 485 if (IS_ERR(ah)) 486 goto err; 487 488 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 489 490 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 491 mad_wc->wc->pkey_index, 0, 492 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 493 GFP_KERNEL, 494 IB_MGMT_BASE_VERSION); 495 if (IS_ERR(rsp)) 496 goto err_rsp; 497 498 rsp->ah = ah; 499 500 dm_mad = rsp->mad; 501 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad)); 502 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 503 dm_mad->mad_hdr.status = 0; 504 505 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 506 case IB_MGMT_METHOD_GET: 507 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 508 break; 509 case IB_MGMT_METHOD_SET: 510 dm_mad->mad_hdr.status = 511 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 512 break; 513 default: 514 dm_mad->mad_hdr.status = 515 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 516 break; 517 } 518 519 if (!ib_post_send_mad(rsp, NULL)) { 520 ib_free_recv_mad(mad_wc); 521 /* will destroy_ah & free_send_mad in send completion */ 522 return; 523 } 524 525 ib_free_send_mad(rsp); 526 527 err_rsp: 528 rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE); 529 err: 530 ib_free_recv_mad(mad_wc); 531 } 532 533 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid) 534 { 535 const __be16 *g = (const __be16 *)guid; 536 537 return snprintf(buf, size, "%04x:%04x:%04x:%04x", 538 be16_to_cpu(g[0]), be16_to_cpu(g[1]), 539 be16_to_cpu(g[2]), be16_to_cpu(g[3])); 540 } 541 542 /** 543 * srpt_refresh_port - configure a HCA port 544 * @sport: SRPT HCA port. 545 * 546 * Enable InfiniBand management datagram processing, update the cached sm_lid, 547 * lid and gid values, and register a callback function for processing MADs 548 * on the specified port. 549 * 550 * Note: It is safe to call this function more than once for the same port. 551 */ 552 static int srpt_refresh_port(struct srpt_port *sport) 553 { 554 struct ib_mad_reg_req reg_req; 555 struct ib_port_modify port_modify; 556 struct ib_port_attr port_attr; 557 int ret; 558 559 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 560 if (ret) 561 return ret; 562 563 sport->sm_lid = port_attr.sm_lid; 564 sport->lid = port_attr.lid; 565 566 ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 567 if (ret) 568 return ret; 569 570 sport->port_guid_id.wwn.priv = sport; 571 srpt_format_guid(sport->port_guid_id.name, 572 sizeof(sport->port_guid_id.name), 573 &sport->gid.global.interface_id); 574 sport->port_gid_id.wwn.priv = sport; 575 snprintf(sport->port_gid_id.name, sizeof(sport->port_gid_id.name), 576 "0x%016llx%016llx", 577 be64_to_cpu(sport->gid.global.subnet_prefix), 578 be64_to_cpu(sport->gid.global.interface_id)); 579 580 if (rdma_protocol_iwarp(sport->sdev->device, sport->port)) 581 return 0; 582 583 memset(&port_modify, 0, sizeof(port_modify)); 584 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 585 port_modify.clr_port_cap_mask = 0; 586 587 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 588 if (ret) { 589 pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n", 590 dev_name(&sport->sdev->device->dev), sport->port, ret); 591 return 0; 592 } 593 594 if (!sport->mad_agent) { 595 memset(®_req, 0, sizeof(reg_req)); 596 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 597 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 598 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 599 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 600 601 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 602 sport->port, 603 IB_QPT_GSI, 604 ®_req, 0, 605 srpt_mad_send_handler, 606 srpt_mad_recv_handler, 607 sport, 0); 608 if (IS_ERR(sport->mad_agent)) { 609 pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n", 610 dev_name(&sport->sdev->device->dev), sport->port, 611 PTR_ERR(sport->mad_agent)); 612 sport->mad_agent = NULL; 613 } 614 } 615 616 return 0; 617 } 618 619 /** 620 * srpt_unregister_mad_agent - unregister MAD callback functions 621 * @sdev: SRPT HCA pointer. 622 * 623 * Note: It is safe to call this function more than once for the same device. 624 */ 625 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 626 { 627 struct ib_port_modify port_modify = { 628 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 629 }; 630 struct srpt_port *sport; 631 int i; 632 633 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 634 sport = &sdev->port[i - 1]; 635 WARN_ON(sport->port != i); 636 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 637 pr_err("disabling MAD processing failed.\n"); 638 if (sport->mad_agent) { 639 ib_unregister_mad_agent(sport->mad_agent); 640 sport->mad_agent = NULL; 641 } 642 } 643 } 644 645 /** 646 * srpt_alloc_ioctx - allocate a SRPT I/O context structure 647 * @sdev: SRPT HCA pointer. 648 * @ioctx_size: I/O context size. 649 * @buf_cache: I/O buffer cache. 650 * @dir: DMA data direction. 651 */ 652 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 653 int ioctx_size, 654 struct kmem_cache *buf_cache, 655 enum dma_data_direction dir) 656 { 657 struct srpt_ioctx *ioctx; 658 659 ioctx = kzalloc(ioctx_size, GFP_KERNEL); 660 if (!ioctx) 661 goto err; 662 663 ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL); 664 if (!ioctx->buf) 665 goto err_free_ioctx; 666 667 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, 668 kmem_cache_size(buf_cache), dir); 669 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 670 goto err_free_buf; 671 672 return ioctx; 673 674 err_free_buf: 675 kmem_cache_free(buf_cache, ioctx->buf); 676 err_free_ioctx: 677 kfree(ioctx); 678 err: 679 return NULL; 680 } 681 682 /** 683 * srpt_free_ioctx - free a SRPT I/O context structure 684 * @sdev: SRPT HCA pointer. 685 * @ioctx: I/O context pointer. 686 * @buf_cache: I/O buffer cache. 687 * @dir: DMA data direction. 688 */ 689 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 690 struct kmem_cache *buf_cache, 691 enum dma_data_direction dir) 692 { 693 if (!ioctx) 694 return; 695 696 ib_dma_unmap_single(sdev->device, ioctx->dma, 697 kmem_cache_size(buf_cache), dir); 698 kmem_cache_free(buf_cache, ioctx->buf); 699 kfree(ioctx); 700 } 701 702 /** 703 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures 704 * @sdev: Device to allocate the I/O context ring for. 705 * @ring_size: Number of elements in the I/O context ring. 706 * @ioctx_size: I/O context size. 707 * @buf_cache: I/O buffer cache. 708 * @alignment_offset: Offset in each ring buffer at which the SRP information 709 * unit starts. 710 * @dir: DMA data direction. 711 */ 712 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 713 int ring_size, int ioctx_size, 714 struct kmem_cache *buf_cache, 715 int alignment_offset, 716 enum dma_data_direction dir) 717 { 718 struct srpt_ioctx **ring; 719 int i; 720 721 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) && 722 ioctx_size != sizeof(struct srpt_send_ioctx)); 723 724 ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL); 725 if (!ring) 726 goto out; 727 for (i = 0; i < ring_size; ++i) { 728 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir); 729 if (!ring[i]) 730 goto err; 731 ring[i]->index = i; 732 ring[i]->offset = alignment_offset; 733 } 734 goto out; 735 736 err: 737 while (--i >= 0) 738 srpt_free_ioctx(sdev, ring[i], buf_cache, dir); 739 kvfree(ring); 740 ring = NULL; 741 out: 742 return ring; 743 } 744 745 /** 746 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures 747 * @ioctx_ring: I/O context ring to be freed. 748 * @sdev: SRPT HCA pointer. 749 * @ring_size: Number of ring elements. 750 * @buf_cache: I/O buffer cache. 751 * @dir: DMA data direction. 752 */ 753 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 754 struct srpt_device *sdev, int ring_size, 755 struct kmem_cache *buf_cache, 756 enum dma_data_direction dir) 757 { 758 int i; 759 760 if (!ioctx_ring) 761 return; 762 763 for (i = 0; i < ring_size; ++i) 764 srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir); 765 kvfree(ioctx_ring); 766 } 767 768 /** 769 * srpt_set_cmd_state - set the state of a SCSI command 770 * @ioctx: Send I/O context. 771 * @new: New I/O context state. 772 * 773 * Does not modify the state of aborted commands. Returns the previous command 774 * state. 775 */ 776 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 777 enum srpt_command_state new) 778 { 779 enum srpt_command_state previous; 780 781 previous = ioctx->state; 782 if (previous != SRPT_STATE_DONE) 783 ioctx->state = new; 784 785 return previous; 786 } 787 788 /** 789 * srpt_test_and_set_cmd_state - test and set the state of a command 790 * @ioctx: Send I/O context. 791 * @old: Current I/O context state. 792 * @new: New I/O context state. 793 * 794 * Returns true if and only if the previous command state was equal to 'old'. 795 */ 796 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 797 enum srpt_command_state old, 798 enum srpt_command_state new) 799 { 800 enum srpt_command_state previous; 801 802 WARN_ON(!ioctx); 803 WARN_ON(old == SRPT_STATE_DONE); 804 WARN_ON(new == SRPT_STATE_NEW); 805 806 previous = ioctx->state; 807 if (previous == old) 808 ioctx->state = new; 809 810 return previous == old; 811 } 812 813 /** 814 * srpt_post_recv - post an IB receive request 815 * @sdev: SRPT HCA pointer. 816 * @ch: SRPT RDMA channel. 817 * @ioctx: Receive I/O context pointer. 818 */ 819 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch, 820 struct srpt_recv_ioctx *ioctx) 821 { 822 struct ib_sge list; 823 struct ib_recv_wr wr; 824 825 BUG_ON(!sdev); 826 list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset; 827 list.length = srp_max_req_size; 828 list.lkey = sdev->lkey; 829 830 ioctx->ioctx.cqe.done = srpt_recv_done; 831 wr.wr_cqe = &ioctx->ioctx.cqe; 832 wr.next = NULL; 833 wr.sg_list = &list; 834 wr.num_sge = 1; 835 836 if (sdev->use_srq) 837 return ib_post_srq_recv(sdev->srq, &wr, NULL); 838 else 839 return ib_post_recv(ch->qp, &wr, NULL); 840 } 841 842 /** 843 * srpt_zerolength_write - perform a zero-length RDMA write 844 * @ch: SRPT RDMA channel. 845 * 846 * A quote from the InfiniBand specification: C9-88: For an HCA responder 847 * using Reliable Connection service, for each zero-length RDMA READ or WRITE 848 * request, the R_Key shall not be validated, even if the request includes 849 * Immediate data. 850 */ 851 static int srpt_zerolength_write(struct srpt_rdma_ch *ch) 852 { 853 struct ib_rdma_wr wr = { 854 .wr = { 855 .next = NULL, 856 { .wr_cqe = &ch->zw_cqe, }, 857 .opcode = IB_WR_RDMA_WRITE, 858 .send_flags = IB_SEND_SIGNALED, 859 } 860 }; 861 862 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name, 863 ch->qp->qp_num); 864 865 return ib_post_send(ch->qp, &wr.wr, NULL); 866 } 867 868 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc) 869 { 870 struct srpt_rdma_ch *ch = cq->cq_context; 871 872 pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num, 873 wc->status); 874 875 if (wc->status == IB_WC_SUCCESS) { 876 srpt_process_wait_list(ch); 877 } else { 878 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 879 schedule_work(&ch->release_work); 880 else 881 pr_debug("%s-%d: already disconnected.\n", 882 ch->sess_name, ch->qp->qp_num); 883 } 884 } 885 886 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx, 887 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg, 888 unsigned *sg_cnt) 889 { 890 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 891 struct srpt_rdma_ch *ch = ioctx->ch; 892 struct scatterlist *prev = NULL; 893 unsigned prev_nents; 894 int ret, i; 895 896 if (nbufs == 1) { 897 ioctx->rw_ctxs = &ioctx->s_rw_ctx; 898 } else { 899 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs), 900 GFP_KERNEL); 901 if (!ioctx->rw_ctxs) 902 return -ENOMEM; 903 } 904 905 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) { 906 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 907 u64 remote_addr = be64_to_cpu(db->va); 908 u32 size = be32_to_cpu(db->len); 909 u32 rkey = be32_to_cpu(db->key); 910 911 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false, 912 i < nbufs - 1); 913 if (ret) 914 goto unwind; 915 916 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port, 917 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir); 918 if (ret < 0) { 919 target_free_sgl(ctx->sg, ctx->nents); 920 goto unwind; 921 } 922 923 ioctx->n_rdma += ret; 924 ioctx->n_rw_ctx++; 925 926 if (prev) { 927 sg_unmark_end(&prev[prev_nents - 1]); 928 sg_chain(prev, prev_nents + 1, ctx->sg); 929 } else { 930 *sg = ctx->sg; 931 } 932 933 prev = ctx->sg; 934 prev_nents = ctx->nents; 935 936 *sg_cnt += ctx->nents; 937 } 938 939 return 0; 940 941 unwind: 942 while (--i >= 0) { 943 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 944 945 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 946 ctx->sg, ctx->nents, dir); 947 target_free_sgl(ctx->sg, ctx->nents); 948 } 949 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 950 kfree(ioctx->rw_ctxs); 951 return ret; 952 } 953 954 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch, 955 struct srpt_send_ioctx *ioctx) 956 { 957 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 958 int i; 959 960 for (i = 0; i < ioctx->n_rw_ctx; i++) { 961 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 962 963 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 964 ctx->sg, ctx->nents, dir); 965 target_free_sgl(ctx->sg, ctx->nents); 966 } 967 968 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 969 kfree(ioctx->rw_ctxs); 970 } 971 972 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd) 973 { 974 /* 975 * The pointer computations below will only be compiled correctly 976 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 977 * whether srp_cmd::add_data has been declared as a byte pointer. 978 */ 979 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) && 980 !__same_type(srp_cmd->add_data[0], (u8)0)); 981 982 /* 983 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 984 * CDB LENGTH' field are reserved and the size in bytes of this field 985 * is four times the value specified in bits 3..7. Hence the "& ~3". 986 */ 987 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3); 988 } 989 990 /** 991 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request 992 * @recv_ioctx: I/O context associated with the received command @srp_cmd. 993 * @ioctx: I/O context that will be used for responding to the initiator. 994 * @srp_cmd: Pointer to the SRP_CMD request data. 995 * @dir: Pointer to the variable to which the transfer direction will be 996 * written. 997 * @sg: [out] scatterlist for the parsed SRP_CMD. 998 * @sg_cnt: [out] length of @sg. 999 * @data_len: Pointer to the variable to which the total data length of all 1000 * descriptors in the SRP_CMD request will be written. 1001 * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data 1002 * starts. 1003 * 1004 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 1005 * 1006 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 1007 * -ENOMEM when memory allocation fails and zero upon success. 1008 */ 1009 static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx, 1010 struct srpt_send_ioctx *ioctx, 1011 struct srp_cmd *srp_cmd, enum dma_data_direction *dir, 1012 struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len, 1013 u16 imm_data_offset) 1014 { 1015 BUG_ON(!dir); 1016 BUG_ON(!data_len); 1017 1018 /* 1019 * The lower four bits of the buffer format field contain the DATA-IN 1020 * buffer descriptor format, and the highest four bits contain the 1021 * DATA-OUT buffer descriptor format. 1022 */ 1023 if (srp_cmd->buf_fmt & 0xf) 1024 /* DATA-IN: transfer data from target to initiator (read). */ 1025 *dir = DMA_FROM_DEVICE; 1026 else if (srp_cmd->buf_fmt >> 4) 1027 /* DATA-OUT: transfer data from initiator to target (write). */ 1028 *dir = DMA_TO_DEVICE; 1029 else 1030 *dir = DMA_NONE; 1031 1032 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */ 1033 ioctx->cmd.data_direction = *dir; 1034 1035 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 1036 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 1037 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd); 1038 1039 *data_len = be32_to_cpu(db->len); 1040 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt); 1041 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 1042 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 1043 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd); 1044 int nbufs = be32_to_cpu(idb->table_desc.len) / 1045 sizeof(struct srp_direct_buf); 1046 1047 if (nbufs > 1048 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 1049 pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n", 1050 srp_cmd->data_out_desc_cnt, 1051 srp_cmd->data_in_desc_cnt, 1052 be32_to_cpu(idb->table_desc.len), 1053 sizeof(struct srp_direct_buf)); 1054 return -EINVAL; 1055 } 1056 1057 *data_len = be32_to_cpu(idb->len); 1058 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs, 1059 sg, sg_cnt); 1060 } else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) { 1061 struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd); 1062 void *data = (void *)srp_cmd + imm_data_offset; 1063 uint32_t len = be32_to_cpu(imm_buf->len); 1064 uint32_t req_size = imm_data_offset + len; 1065 1066 if (req_size > srp_max_req_size) { 1067 pr_err("Immediate data (length %d + %d) exceeds request size %d\n", 1068 imm_data_offset, len, srp_max_req_size); 1069 return -EINVAL; 1070 } 1071 if (recv_ioctx->byte_len < req_size) { 1072 pr_err("Received too few data - %d < %d\n", 1073 recv_ioctx->byte_len, req_size); 1074 return -EIO; 1075 } 1076 /* 1077 * The immediate data buffer descriptor must occur before the 1078 * immediate data itself. 1079 */ 1080 if ((void *)(imm_buf + 1) > (void *)data) { 1081 pr_err("Received invalid write request\n"); 1082 return -EINVAL; 1083 } 1084 *data_len = len; 1085 ioctx->recv_ioctx = recv_ioctx; 1086 if ((uintptr_t)data & 511) { 1087 pr_warn_once("Internal error - the receive buffers are not aligned properly.\n"); 1088 return -EINVAL; 1089 } 1090 sg_init_one(&ioctx->imm_sg, data, len); 1091 *sg = &ioctx->imm_sg; 1092 *sg_cnt = 1; 1093 return 0; 1094 } else { 1095 *data_len = 0; 1096 return 0; 1097 } 1098 } 1099 1100 /** 1101 * srpt_init_ch_qp - initialize queue pair attributes 1102 * @ch: SRPT RDMA channel. 1103 * @qp: Queue pair pointer. 1104 * 1105 * Initialized the attributes of queue pair 'qp' by allowing local write, 1106 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 1107 */ 1108 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1109 { 1110 struct ib_qp_attr *attr; 1111 int ret; 1112 1113 WARN_ON_ONCE(ch->using_rdma_cm); 1114 1115 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1116 if (!attr) 1117 return -ENOMEM; 1118 1119 attr->qp_state = IB_QPS_INIT; 1120 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE; 1121 attr->port_num = ch->sport->port; 1122 1123 ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port, 1124 ch->pkey, &attr->pkey_index); 1125 if (ret < 0) 1126 pr_err("Translating pkey %#x failed (%d) - using index 0\n", 1127 ch->pkey, ret); 1128 1129 ret = ib_modify_qp(qp, attr, 1130 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 1131 IB_QP_PKEY_INDEX); 1132 1133 kfree(attr); 1134 return ret; 1135 } 1136 1137 /** 1138 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR) 1139 * @ch: channel of the queue pair. 1140 * @qp: queue pair to change the state of. 1141 * 1142 * Returns zero upon success and a negative value upon failure. 1143 * 1144 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1145 * If this structure ever becomes larger, it might be necessary to allocate 1146 * it dynamically instead of on the stack. 1147 */ 1148 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1149 { 1150 struct ib_qp_attr qp_attr; 1151 int attr_mask; 1152 int ret; 1153 1154 WARN_ON_ONCE(ch->using_rdma_cm); 1155 1156 qp_attr.qp_state = IB_QPS_RTR; 1157 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask); 1158 if (ret) 1159 goto out; 1160 1161 qp_attr.max_dest_rd_atomic = 4; 1162 1163 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1164 1165 out: 1166 return ret; 1167 } 1168 1169 /** 1170 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS) 1171 * @ch: channel of the queue pair. 1172 * @qp: queue pair to change the state of. 1173 * 1174 * Returns zero upon success and a negative value upon failure. 1175 * 1176 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1177 * If this structure ever becomes larger, it might be necessary to allocate 1178 * it dynamically instead of on the stack. 1179 */ 1180 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1181 { 1182 struct ib_qp_attr qp_attr; 1183 int attr_mask; 1184 int ret; 1185 1186 qp_attr.qp_state = IB_QPS_RTS; 1187 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask); 1188 if (ret) 1189 goto out; 1190 1191 qp_attr.max_rd_atomic = 4; 1192 1193 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1194 1195 out: 1196 return ret; 1197 } 1198 1199 /** 1200 * srpt_ch_qp_err - set the channel queue pair state to 'error' 1201 * @ch: SRPT RDMA channel. 1202 */ 1203 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1204 { 1205 struct ib_qp_attr qp_attr; 1206 1207 qp_attr.qp_state = IB_QPS_ERR; 1208 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1209 } 1210 1211 /** 1212 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator 1213 * @ch: SRPT RDMA channel. 1214 */ 1215 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1216 { 1217 struct srpt_send_ioctx *ioctx; 1218 int tag, cpu; 1219 1220 BUG_ON(!ch); 1221 1222 tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu); 1223 if (tag < 0) 1224 return NULL; 1225 1226 ioctx = ch->ioctx_ring[tag]; 1227 BUG_ON(ioctx->ch != ch); 1228 ioctx->state = SRPT_STATE_NEW; 1229 WARN_ON_ONCE(ioctx->recv_ioctx); 1230 ioctx->n_rdma = 0; 1231 ioctx->n_rw_ctx = 0; 1232 ioctx->queue_status_only = false; 1233 /* 1234 * transport_init_se_cmd() does not initialize all fields, so do it 1235 * here. 1236 */ 1237 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1238 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1239 ioctx->cmd.map_tag = tag; 1240 ioctx->cmd.map_cpu = cpu; 1241 1242 return ioctx; 1243 } 1244 1245 /** 1246 * srpt_abort_cmd - abort a SCSI command 1247 * @ioctx: I/O context associated with the SCSI command. 1248 */ 1249 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1250 { 1251 enum srpt_command_state state; 1252 1253 BUG_ON(!ioctx); 1254 1255 /* 1256 * If the command is in a state where the target core is waiting for 1257 * the ib_srpt driver, change the state to the next state. 1258 */ 1259 1260 state = ioctx->state; 1261 switch (state) { 1262 case SRPT_STATE_NEED_DATA: 1263 ioctx->state = SRPT_STATE_DATA_IN; 1264 break; 1265 case SRPT_STATE_CMD_RSP_SENT: 1266 case SRPT_STATE_MGMT_RSP_SENT: 1267 ioctx->state = SRPT_STATE_DONE; 1268 break; 1269 default: 1270 WARN_ONCE(true, "%s: unexpected I/O context state %d\n", 1271 __func__, state); 1272 break; 1273 } 1274 1275 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state, 1276 ioctx->state, ioctx->cmd.tag); 1277 1278 switch (state) { 1279 case SRPT_STATE_NEW: 1280 case SRPT_STATE_DATA_IN: 1281 case SRPT_STATE_MGMT: 1282 case SRPT_STATE_DONE: 1283 /* 1284 * Do nothing - defer abort processing until 1285 * srpt_queue_response() is invoked. 1286 */ 1287 break; 1288 case SRPT_STATE_NEED_DATA: 1289 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag); 1290 transport_generic_request_failure(&ioctx->cmd, 1291 TCM_CHECK_CONDITION_ABORT_CMD); 1292 break; 1293 case SRPT_STATE_CMD_RSP_SENT: 1294 /* 1295 * SRP_RSP sending failed or the SRP_RSP send completion has 1296 * not been received in time. 1297 */ 1298 transport_generic_free_cmd(&ioctx->cmd, 0); 1299 break; 1300 case SRPT_STATE_MGMT_RSP_SENT: 1301 transport_generic_free_cmd(&ioctx->cmd, 0); 1302 break; 1303 default: 1304 WARN(1, "Unexpected command state (%d)", state); 1305 break; 1306 } 1307 1308 return state; 1309 } 1310 1311 /** 1312 * srpt_rdma_read_done - RDMA read completion callback 1313 * @cq: Completion queue. 1314 * @wc: Work completion. 1315 * 1316 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1317 * the data that has been transferred via IB RDMA had to be postponed until the 1318 * check_stop_free() callback. None of this is necessary anymore and needs to 1319 * be cleaned up. 1320 */ 1321 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc) 1322 { 1323 struct srpt_rdma_ch *ch = cq->cq_context; 1324 struct srpt_send_ioctx *ioctx = 1325 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe); 1326 1327 WARN_ON(ioctx->n_rdma <= 0); 1328 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1329 ioctx->n_rdma = 0; 1330 1331 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1332 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n", 1333 ioctx, wc->status); 1334 srpt_abort_cmd(ioctx); 1335 return; 1336 } 1337 1338 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1339 SRPT_STATE_DATA_IN)) 1340 target_execute_cmd(&ioctx->cmd); 1341 else 1342 pr_err("%s[%d]: wrong state = %d\n", __func__, 1343 __LINE__, ioctx->state); 1344 } 1345 1346 /** 1347 * srpt_build_cmd_rsp - build a SRP_RSP response 1348 * @ch: RDMA channel through which the request has been received. 1349 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1350 * be built in the buffer ioctx->buf points at and hence this function will 1351 * overwrite the request data. 1352 * @tag: tag of the request for which this response is being generated. 1353 * @status: value for the STATUS field of the SRP_RSP information unit. 1354 * 1355 * Returns the size in bytes of the SRP_RSP response. 1356 * 1357 * An SRP_RSP response contains a SCSI status or service response. See also 1358 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1359 * response. See also SPC-2 for more information about sense data. 1360 */ 1361 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1362 struct srpt_send_ioctx *ioctx, u64 tag, 1363 int status) 1364 { 1365 struct se_cmd *cmd = &ioctx->cmd; 1366 struct srp_rsp *srp_rsp; 1367 const u8 *sense_data; 1368 int sense_data_len, max_sense_len; 1369 u32 resid = cmd->residual_count; 1370 1371 /* 1372 * The lowest bit of all SAM-3 status codes is zero (see also 1373 * paragraph 5.3 in SAM-3). 1374 */ 1375 WARN_ON(status & 1); 1376 1377 srp_rsp = ioctx->ioctx.buf; 1378 BUG_ON(!srp_rsp); 1379 1380 sense_data = ioctx->sense_data; 1381 sense_data_len = ioctx->cmd.scsi_sense_length; 1382 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1383 1384 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1385 srp_rsp->opcode = SRP_RSP; 1386 srp_rsp->req_lim_delta = 1387 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1388 srp_rsp->tag = tag; 1389 srp_rsp->status = status; 1390 1391 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1392 if (cmd->data_direction == DMA_TO_DEVICE) { 1393 /* residual data from an underflow write */ 1394 srp_rsp->flags = SRP_RSP_FLAG_DOUNDER; 1395 srp_rsp->data_out_res_cnt = cpu_to_be32(resid); 1396 } else if (cmd->data_direction == DMA_FROM_DEVICE) { 1397 /* residual data from an underflow read */ 1398 srp_rsp->flags = SRP_RSP_FLAG_DIUNDER; 1399 srp_rsp->data_in_res_cnt = cpu_to_be32(resid); 1400 } 1401 } else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1402 if (cmd->data_direction == DMA_TO_DEVICE) { 1403 /* residual data from an overflow write */ 1404 srp_rsp->flags = SRP_RSP_FLAG_DOOVER; 1405 srp_rsp->data_out_res_cnt = cpu_to_be32(resid); 1406 } else if (cmd->data_direction == DMA_FROM_DEVICE) { 1407 /* residual data from an overflow read */ 1408 srp_rsp->flags = SRP_RSP_FLAG_DIOVER; 1409 srp_rsp->data_in_res_cnt = cpu_to_be32(resid); 1410 } 1411 } 1412 1413 if (sense_data_len) { 1414 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1415 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1416 if (sense_data_len > max_sense_len) { 1417 pr_warn("truncated sense data from %d to %d bytes\n", 1418 sense_data_len, max_sense_len); 1419 sense_data_len = max_sense_len; 1420 } 1421 1422 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1423 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1424 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1425 } 1426 1427 return sizeof(*srp_rsp) + sense_data_len; 1428 } 1429 1430 /** 1431 * srpt_build_tskmgmt_rsp - build a task management response 1432 * @ch: RDMA channel through which the request has been received. 1433 * @ioctx: I/O context in which the SRP_RSP response will be built. 1434 * @rsp_code: RSP_CODE that will be stored in the response. 1435 * @tag: Tag of the request for which this response is being generated. 1436 * 1437 * Returns the size in bytes of the SRP_RSP response. 1438 * 1439 * An SRP_RSP response contains a SCSI status or service response. See also 1440 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1441 * response. 1442 */ 1443 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1444 struct srpt_send_ioctx *ioctx, 1445 u8 rsp_code, u64 tag) 1446 { 1447 struct srp_rsp *srp_rsp; 1448 int resp_data_len; 1449 int resp_len; 1450 1451 resp_data_len = 4; 1452 resp_len = sizeof(*srp_rsp) + resp_data_len; 1453 1454 srp_rsp = ioctx->ioctx.buf; 1455 BUG_ON(!srp_rsp); 1456 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1457 1458 srp_rsp->opcode = SRP_RSP; 1459 srp_rsp->req_lim_delta = 1460 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1461 srp_rsp->tag = tag; 1462 1463 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1464 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1465 srp_rsp->data[3] = rsp_code; 1466 1467 return resp_len; 1468 } 1469 1470 static int srpt_check_stop_free(struct se_cmd *cmd) 1471 { 1472 struct srpt_send_ioctx *ioctx = container_of(cmd, 1473 struct srpt_send_ioctx, cmd); 1474 1475 return target_put_sess_cmd(&ioctx->cmd); 1476 } 1477 1478 /** 1479 * srpt_handle_cmd - process a SRP_CMD information unit 1480 * @ch: SRPT RDMA channel. 1481 * @recv_ioctx: Receive I/O context. 1482 * @send_ioctx: Send I/O context. 1483 */ 1484 static void srpt_handle_cmd(struct srpt_rdma_ch *ch, 1485 struct srpt_recv_ioctx *recv_ioctx, 1486 struct srpt_send_ioctx *send_ioctx) 1487 { 1488 struct se_cmd *cmd; 1489 struct srp_cmd *srp_cmd; 1490 struct scatterlist *sg = NULL; 1491 unsigned sg_cnt = 0; 1492 u64 data_len; 1493 enum dma_data_direction dir; 1494 int rc; 1495 1496 BUG_ON(!send_ioctx); 1497 1498 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset; 1499 cmd = &send_ioctx->cmd; 1500 cmd->tag = srp_cmd->tag; 1501 1502 switch (srp_cmd->task_attr) { 1503 case SRP_CMD_SIMPLE_Q: 1504 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1505 break; 1506 case SRP_CMD_ORDERED_Q: 1507 default: 1508 cmd->sam_task_attr = TCM_ORDERED_TAG; 1509 break; 1510 case SRP_CMD_HEAD_OF_Q: 1511 cmd->sam_task_attr = TCM_HEAD_TAG; 1512 break; 1513 case SRP_CMD_ACA: 1514 cmd->sam_task_attr = TCM_ACA_TAG; 1515 break; 1516 } 1517 1518 rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir, 1519 &sg, &sg_cnt, &data_len, ch->imm_data_offset); 1520 if (rc) { 1521 if (rc != -EAGAIN) { 1522 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1523 srp_cmd->tag); 1524 } 1525 goto busy; 1526 } 1527 1528 rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb, 1529 &send_ioctx->sense_data[0], 1530 scsilun_to_int(&srp_cmd->lun), data_len, 1531 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF, 1532 sg, sg_cnt, NULL, 0, NULL, 0); 1533 if (rc != 0) { 1534 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc, 1535 srp_cmd->tag); 1536 goto busy; 1537 } 1538 return; 1539 1540 busy: 1541 target_send_busy(cmd); 1542 } 1543 1544 static int srp_tmr_to_tcm(int fn) 1545 { 1546 switch (fn) { 1547 case SRP_TSK_ABORT_TASK: 1548 return TMR_ABORT_TASK; 1549 case SRP_TSK_ABORT_TASK_SET: 1550 return TMR_ABORT_TASK_SET; 1551 case SRP_TSK_CLEAR_TASK_SET: 1552 return TMR_CLEAR_TASK_SET; 1553 case SRP_TSK_LUN_RESET: 1554 return TMR_LUN_RESET; 1555 case SRP_TSK_CLEAR_ACA: 1556 return TMR_CLEAR_ACA; 1557 default: 1558 return -1; 1559 } 1560 } 1561 1562 /** 1563 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit 1564 * @ch: SRPT RDMA channel. 1565 * @recv_ioctx: Receive I/O context. 1566 * @send_ioctx: Send I/O context. 1567 * 1568 * Returns 0 if and only if the request will be processed by the target core. 1569 * 1570 * For more information about SRP_TSK_MGMT information units, see also section 1571 * 6.7 in the SRP r16a document. 1572 */ 1573 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1574 struct srpt_recv_ioctx *recv_ioctx, 1575 struct srpt_send_ioctx *send_ioctx) 1576 { 1577 struct srp_tsk_mgmt *srp_tsk; 1578 struct se_cmd *cmd; 1579 struct se_session *sess = ch->sess; 1580 int tcm_tmr; 1581 int rc; 1582 1583 BUG_ON(!send_ioctx); 1584 1585 srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset; 1586 cmd = &send_ioctx->cmd; 1587 1588 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n", 1589 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch, 1590 ch->sess); 1591 1592 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1593 send_ioctx->cmd.tag = srp_tsk->tag; 1594 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1595 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, 1596 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr, 1597 GFP_KERNEL, srp_tsk->task_tag, 1598 TARGET_SCF_ACK_KREF); 1599 if (rc != 0) { 1600 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1601 cmd->se_tfo->queue_tm_rsp(cmd); 1602 } 1603 return; 1604 } 1605 1606 /** 1607 * srpt_handle_new_iu - process a newly received information unit 1608 * @ch: RDMA channel through which the information unit has been received. 1609 * @recv_ioctx: Receive I/O context associated with the information unit. 1610 */ 1611 static bool 1612 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx) 1613 { 1614 struct srpt_send_ioctx *send_ioctx = NULL; 1615 struct srp_cmd *srp_cmd; 1616 bool res = false; 1617 u8 opcode; 1618 1619 BUG_ON(!ch); 1620 BUG_ON(!recv_ioctx); 1621 1622 if (unlikely(ch->state == CH_CONNECTING)) 1623 goto push; 1624 1625 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1626 recv_ioctx->ioctx.dma, 1627 recv_ioctx->ioctx.offset + srp_max_req_size, 1628 DMA_FROM_DEVICE); 1629 1630 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset; 1631 opcode = srp_cmd->opcode; 1632 if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) { 1633 send_ioctx = srpt_get_send_ioctx(ch); 1634 if (unlikely(!send_ioctx)) 1635 goto push; 1636 } 1637 1638 if (!list_empty(&recv_ioctx->wait_list)) { 1639 WARN_ON_ONCE(!ch->processing_wait_list); 1640 list_del_init(&recv_ioctx->wait_list); 1641 } 1642 1643 switch (opcode) { 1644 case SRP_CMD: 1645 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1646 break; 1647 case SRP_TSK_MGMT: 1648 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1649 break; 1650 case SRP_I_LOGOUT: 1651 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1652 break; 1653 case SRP_CRED_RSP: 1654 pr_debug("received SRP_CRED_RSP\n"); 1655 break; 1656 case SRP_AER_RSP: 1657 pr_debug("received SRP_AER_RSP\n"); 1658 break; 1659 case SRP_RSP: 1660 pr_err("Received SRP_RSP\n"); 1661 break; 1662 default: 1663 pr_err("received IU with unknown opcode 0x%x\n", opcode); 1664 break; 1665 } 1666 1667 if (!send_ioctx || !send_ioctx->recv_ioctx) 1668 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx); 1669 res = true; 1670 1671 out: 1672 return res; 1673 1674 push: 1675 if (list_empty(&recv_ioctx->wait_list)) { 1676 WARN_ON_ONCE(ch->processing_wait_list); 1677 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1678 } 1679 goto out; 1680 } 1681 1682 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1683 { 1684 struct srpt_rdma_ch *ch = cq->cq_context; 1685 struct srpt_recv_ioctx *ioctx = 1686 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe); 1687 1688 if (wc->status == IB_WC_SUCCESS) { 1689 int req_lim; 1690 1691 req_lim = atomic_dec_return(&ch->req_lim); 1692 if (unlikely(req_lim < 0)) 1693 pr_err("req_lim = %d < 0\n", req_lim); 1694 ioctx->byte_len = wc->byte_len; 1695 srpt_handle_new_iu(ch, ioctx); 1696 } else { 1697 pr_info_ratelimited("receiving failed for ioctx %p with status %d\n", 1698 ioctx, wc->status); 1699 } 1700 } 1701 1702 /* 1703 * This function must be called from the context in which RDMA completions are 1704 * processed because it accesses the wait list without protection against 1705 * access from other threads. 1706 */ 1707 static void srpt_process_wait_list(struct srpt_rdma_ch *ch) 1708 { 1709 struct srpt_recv_ioctx *recv_ioctx, *tmp; 1710 1711 WARN_ON_ONCE(ch->state == CH_CONNECTING); 1712 1713 if (list_empty(&ch->cmd_wait_list)) 1714 return; 1715 1716 WARN_ON_ONCE(ch->processing_wait_list); 1717 ch->processing_wait_list = true; 1718 list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list, 1719 wait_list) { 1720 if (!srpt_handle_new_iu(ch, recv_ioctx)) 1721 break; 1722 } 1723 ch->processing_wait_list = false; 1724 } 1725 1726 /** 1727 * srpt_send_done - send completion callback 1728 * @cq: Completion queue. 1729 * @wc: Work completion. 1730 * 1731 * Note: Although this has not yet been observed during tests, at least in 1732 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1733 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1734 * value in each response is set to one, and it is possible that this response 1735 * makes the initiator send a new request before the send completion for that 1736 * response has been processed. This could e.g. happen if the call to 1737 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1738 * if IB retransmission causes generation of the send completion to be 1739 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1740 * are queued on cmd_wait_list. The code below processes these delayed 1741 * requests one at a time. 1742 */ 1743 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc) 1744 { 1745 struct srpt_rdma_ch *ch = cq->cq_context; 1746 struct srpt_send_ioctx *ioctx = 1747 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe); 1748 enum srpt_command_state state; 1749 1750 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1751 1752 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT && 1753 state != SRPT_STATE_MGMT_RSP_SENT); 1754 1755 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 1756 1757 if (wc->status != IB_WC_SUCCESS) 1758 pr_info("sending response for ioctx 0x%p failed with status %d\n", 1759 ioctx, wc->status); 1760 1761 if (state != SRPT_STATE_DONE) { 1762 transport_generic_free_cmd(&ioctx->cmd, 0); 1763 } else { 1764 pr_err("IB completion has been received too late for wr_id = %u.\n", 1765 ioctx->ioctx.index); 1766 } 1767 1768 srpt_process_wait_list(ch); 1769 } 1770 1771 /** 1772 * srpt_create_ch_ib - create receive and send completion queues 1773 * @ch: SRPT RDMA channel. 1774 */ 1775 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 1776 { 1777 struct ib_qp_init_attr *qp_init; 1778 struct srpt_port *sport = ch->sport; 1779 struct srpt_device *sdev = sport->sdev; 1780 const struct ib_device_attr *attrs = &sdev->device->attrs; 1781 int sq_size = sport->port_attrib.srp_sq_size; 1782 int i, ret; 1783 1784 WARN_ON(ch->rq_size < 1); 1785 1786 ret = -ENOMEM; 1787 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL); 1788 if (!qp_init) 1789 goto out; 1790 1791 retry: 1792 ch->cq = ib_alloc_cq_any(sdev->device, ch, ch->rq_size + sq_size, 1793 IB_POLL_WORKQUEUE); 1794 if (IS_ERR(ch->cq)) { 1795 ret = PTR_ERR(ch->cq); 1796 pr_err("failed to create CQ cqe= %d ret= %d\n", 1797 ch->rq_size + sq_size, ret); 1798 goto out; 1799 } 1800 1801 qp_init->qp_context = (void *)ch; 1802 qp_init->event_handler 1803 = (void(*)(struct ib_event *, void*))srpt_qp_event; 1804 qp_init->send_cq = ch->cq; 1805 qp_init->recv_cq = ch->cq; 1806 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 1807 qp_init->qp_type = IB_QPT_RC; 1808 /* 1809 * We divide up our send queue size into half SEND WRs to send the 1810 * completions, and half R/W contexts to actually do the RDMA 1811 * READ/WRITE transfers. Note that we need to allocate CQ slots for 1812 * both both, as RDMA contexts will also post completions for the 1813 * RDMA READ case. 1814 */ 1815 qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr); 1816 qp_init->cap.max_rdma_ctxs = sq_size / 2; 1817 qp_init->cap.max_send_sge = min(attrs->max_send_sge, 1818 SRPT_MAX_SG_PER_WQE); 1819 qp_init->cap.max_recv_sge = min(attrs->max_recv_sge, 1820 SRPT_MAX_SG_PER_WQE); 1821 qp_init->port_num = ch->sport->port; 1822 if (sdev->use_srq) { 1823 qp_init->srq = sdev->srq; 1824 } else { 1825 qp_init->cap.max_recv_wr = ch->rq_size; 1826 qp_init->cap.max_recv_sge = min(attrs->max_recv_sge, 1827 SRPT_MAX_SG_PER_WQE); 1828 } 1829 1830 if (ch->using_rdma_cm) { 1831 ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init); 1832 ch->qp = ch->rdma_cm.cm_id->qp; 1833 } else { 1834 ch->qp = ib_create_qp(sdev->pd, qp_init); 1835 if (!IS_ERR(ch->qp)) { 1836 ret = srpt_init_ch_qp(ch, ch->qp); 1837 if (ret) 1838 ib_destroy_qp(ch->qp); 1839 } else { 1840 ret = PTR_ERR(ch->qp); 1841 } 1842 } 1843 if (ret) { 1844 bool retry = sq_size > MIN_SRPT_SQ_SIZE; 1845 1846 if (retry) { 1847 pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n", 1848 sq_size, ret); 1849 ib_free_cq(ch->cq); 1850 sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE); 1851 goto retry; 1852 } else { 1853 pr_err("failed to create queue pair with sq_size = %d (%d)\n", 1854 sq_size, ret); 1855 goto err_destroy_cq; 1856 } 1857 } 1858 1859 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 1860 1861 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n", 1862 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 1863 qp_init->cap.max_send_wr, ch); 1864 1865 if (!sdev->use_srq) 1866 for (i = 0; i < ch->rq_size; i++) 1867 srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]); 1868 1869 out: 1870 kfree(qp_init); 1871 return ret; 1872 1873 err_destroy_cq: 1874 ch->qp = NULL; 1875 ib_free_cq(ch->cq); 1876 goto out; 1877 } 1878 1879 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 1880 { 1881 ib_destroy_qp(ch->qp); 1882 ib_free_cq(ch->cq); 1883 } 1884 1885 /** 1886 * srpt_close_ch - close a RDMA channel 1887 * @ch: SRPT RDMA channel. 1888 * 1889 * Make sure all resources associated with the channel will be deallocated at 1890 * an appropriate time. 1891 * 1892 * Returns true if and only if the channel state has been modified into 1893 * CH_DRAINING. 1894 */ 1895 static bool srpt_close_ch(struct srpt_rdma_ch *ch) 1896 { 1897 int ret; 1898 1899 if (!srpt_set_ch_state(ch, CH_DRAINING)) { 1900 pr_debug("%s: already closed\n", ch->sess_name); 1901 return false; 1902 } 1903 1904 kref_get(&ch->kref); 1905 1906 ret = srpt_ch_qp_err(ch); 1907 if (ret < 0) 1908 pr_err("%s-%d: changing queue pair into error state failed: %d\n", 1909 ch->sess_name, ch->qp->qp_num, ret); 1910 1911 ret = srpt_zerolength_write(ch); 1912 if (ret < 0) { 1913 pr_err("%s-%d: queuing zero-length write failed: %d\n", 1914 ch->sess_name, ch->qp->qp_num, ret); 1915 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 1916 schedule_work(&ch->release_work); 1917 else 1918 WARN_ON_ONCE(true); 1919 } 1920 1921 kref_put(&ch->kref, srpt_free_ch); 1922 1923 return true; 1924 } 1925 1926 /* 1927 * Change the channel state into CH_DISCONNECTING. If a channel has not yet 1928 * reached the connected state, close it. If a channel is in the connected 1929 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is 1930 * the responsibility of the caller to ensure that this function is not 1931 * invoked concurrently with the code that accepts a connection. This means 1932 * that this function must either be invoked from inside a CM callback 1933 * function or that it must be invoked with the srpt_port.mutex held. 1934 */ 1935 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch) 1936 { 1937 int ret; 1938 1939 if (!srpt_set_ch_state(ch, CH_DISCONNECTING)) 1940 return -ENOTCONN; 1941 1942 if (ch->using_rdma_cm) { 1943 ret = rdma_disconnect(ch->rdma_cm.cm_id); 1944 } else { 1945 ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0); 1946 if (ret < 0) 1947 ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0); 1948 } 1949 1950 if (ret < 0 && srpt_close_ch(ch)) 1951 ret = 0; 1952 1953 return ret; 1954 } 1955 1956 /* Send DREQ and wait for DREP. */ 1957 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch) 1958 { 1959 DECLARE_COMPLETION_ONSTACK(closed); 1960 struct srpt_port *sport = ch->sport; 1961 1962 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num, 1963 ch->state); 1964 1965 ch->closed = &closed; 1966 1967 mutex_lock(&sport->mutex); 1968 srpt_disconnect_ch(ch); 1969 mutex_unlock(&sport->mutex); 1970 1971 while (wait_for_completion_timeout(&closed, 5 * HZ) == 0) 1972 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__, 1973 ch->sess_name, ch->qp->qp_num, ch->state); 1974 1975 } 1976 1977 static void __srpt_close_all_ch(struct srpt_port *sport) 1978 { 1979 struct srpt_nexus *nexus; 1980 struct srpt_rdma_ch *ch; 1981 1982 lockdep_assert_held(&sport->mutex); 1983 1984 list_for_each_entry(nexus, &sport->nexus_list, entry) { 1985 list_for_each_entry(ch, &nexus->ch_list, list) { 1986 if (srpt_disconnect_ch(ch) >= 0) 1987 pr_info("Closing channel %s because target %s_%d has been disabled\n", 1988 ch->sess_name, 1989 dev_name(&sport->sdev->device->dev), 1990 sport->port); 1991 srpt_close_ch(ch); 1992 } 1993 } 1994 } 1995 1996 /* 1997 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if 1998 * it does not yet exist. 1999 */ 2000 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport, 2001 const u8 i_port_id[16], 2002 const u8 t_port_id[16]) 2003 { 2004 struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n; 2005 2006 for (;;) { 2007 mutex_lock(&sport->mutex); 2008 list_for_each_entry(n, &sport->nexus_list, entry) { 2009 if (memcmp(n->i_port_id, i_port_id, 16) == 0 && 2010 memcmp(n->t_port_id, t_port_id, 16) == 0) { 2011 nexus = n; 2012 break; 2013 } 2014 } 2015 if (!nexus && tmp_nexus) { 2016 list_add_tail_rcu(&tmp_nexus->entry, 2017 &sport->nexus_list); 2018 swap(nexus, tmp_nexus); 2019 } 2020 mutex_unlock(&sport->mutex); 2021 2022 if (nexus) 2023 break; 2024 tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL); 2025 if (!tmp_nexus) { 2026 nexus = ERR_PTR(-ENOMEM); 2027 break; 2028 } 2029 INIT_LIST_HEAD(&tmp_nexus->ch_list); 2030 memcpy(tmp_nexus->i_port_id, i_port_id, 16); 2031 memcpy(tmp_nexus->t_port_id, t_port_id, 16); 2032 } 2033 2034 kfree(tmp_nexus); 2035 2036 return nexus; 2037 } 2038 2039 static void srpt_set_enabled(struct srpt_port *sport, bool enabled) 2040 __must_hold(&sport->mutex) 2041 { 2042 lockdep_assert_held(&sport->mutex); 2043 2044 if (sport->enabled == enabled) 2045 return; 2046 sport->enabled = enabled; 2047 if (!enabled) 2048 __srpt_close_all_ch(sport); 2049 } 2050 2051 static void srpt_drop_sport_ref(struct srpt_port *sport) 2052 { 2053 if (atomic_dec_return(&sport->refcount) == 0 && sport->freed_channels) 2054 complete(sport->freed_channels); 2055 } 2056 2057 static void srpt_free_ch(struct kref *kref) 2058 { 2059 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref); 2060 2061 srpt_drop_sport_ref(ch->sport); 2062 kfree_rcu(ch, rcu); 2063 } 2064 2065 /* 2066 * Shut down the SCSI target session, tell the connection manager to 2067 * disconnect the associated RDMA channel, transition the QP to the error 2068 * state and remove the channel from the channel list. This function is 2069 * typically called from inside srpt_zerolength_write_done(). Concurrent 2070 * srpt_zerolength_write() calls from inside srpt_close_ch() are possible 2071 * as long as the channel is on sport->nexus_list. 2072 */ 2073 static void srpt_release_channel_work(struct work_struct *w) 2074 { 2075 struct srpt_rdma_ch *ch; 2076 struct srpt_device *sdev; 2077 struct srpt_port *sport; 2078 struct se_session *se_sess; 2079 2080 ch = container_of(w, struct srpt_rdma_ch, release_work); 2081 pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num); 2082 2083 sdev = ch->sport->sdev; 2084 BUG_ON(!sdev); 2085 2086 se_sess = ch->sess; 2087 BUG_ON(!se_sess); 2088 2089 target_sess_cmd_list_set_waiting(se_sess); 2090 target_wait_for_sess_cmds(se_sess); 2091 2092 target_remove_session(se_sess); 2093 ch->sess = NULL; 2094 2095 if (ch->using_rdma_cm) 2096 rdma_destroy_id(ch->rdma_cm.cm_id); 2097 else 2098 ib_destroy_cm_id(ch->ib_cm.cm_id); 2099 2100 sport = ch->sport; 2101 mutex_lock(&sport->mutex); 2102 list_del_rcu(&ch->list); 2103 mutex_unlock(&sport->mutex); 2104 2105 if (ch->closed) 2106 complete(ch->closed); 2107 2108 srpt_destroy_ch_ib(ch); 2109 2110 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2111 ch->sport->sdev, ch->rq_size, 2112 ch->rsp_buf_cache, DMA_TO_DEVICE); 2113 2114 kmem_cache_destroy(ch->rsp_buf_cache); 2115 2116 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring, 2117 sdev, ch->rq_size, 2118 ch->req_buf_cache, DMA_FROM_DEVICE); 2119 2120 kmem_cache_destroy(ch->req_buf_cache); 2121 2122 kref_put(&ch->kref, srpt_free_ch); 2123 } 2124 2125 /** 2126 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED 2127 * @sdev: HCA through which the login request was received. 2128 * @ib_cm_id: IB/CM connection identifier in case of IB/CM. 2129 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM. 2130 * @port_num: Port through which the REQ message was received. 2131 * @pkey: P_Key of the incoming connection. 2132 * @req: SRP login request. 2133 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted 2134 * the login request. 2135 * 2136 * Ownership of the cm_id is transferred to the target session if this 2137 * function returns zero. Otherwise the caller remains the owner of cm_id. 2138 */ 2139 static int srpt_cm_req_recv(struct srpt_device *const sdev, 2140 struct ib_cm_id *ib_cm_id, 2141 struct rdma_cm_id *rdma_cm_id, 2142 u8 port_num, __be16 pkey, 2143 const struct srp_login_req *req, 2144 const char *src_addr) 2145 { 2146 struct srpt_port *sport = &sdev->port[port_num - 1]; 2147 struct srpt_nexus *nexus; 2148 struct srp_login_rsp *rsp = NULL; 2149 struct srp_login_rej *rej = NULL; 2150 union { 2151 struct rdma_conn_param rdma_cm; 2152 struct ib_cm_rep_param ib_cm; 2153 } *rep_param = NULL; 2154 struct srpt_rdma_ch *ch = NULL; 2155 char i_port_id[36]; 2156 u32 it_iu_len; 2157 int i, tag_num, tag_size, ret; 2158 struct srpt_tpg *stpg; 2159 2160 WARN_ON_ONCE(irqs_disabled()); 2161 2162 if (WARN_ON(!sdev || !req)) 2163 return -EINVAL; 2164 2165 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2166 2167 pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n", 2168 req->initiator_port_id, req->target_port_id, it_iu_len, 2169 port_num, &sport->gid, be16_to_cpu(pkey)); 2170 2171 nexus = srpt_get_nexus(sport, req->initiator_port_id, 2172 req->target_port_id); 2173 if (IS_ERR(nexus)) { 2174 ret = PTR_ERR(nexus); 2175 goto out; 2176 } 2177 2178 ret = -ENOMEM; 2179 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 2180 rej = kzalloc(sizeof(*rej), GFP_KERNEL); 2181 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL); 2182 if (!rsp || !rej || !rep_param) 2183 goto out; 2184 2185 ret = -EINVAL; 2186 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2187 rej->reason = cpu_to_be32( 2188 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2189 pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n", 2190 it_iu_len, 64, srp_max_req_size); 2191 goto reject; 2192 } 2193 2194 if (!sport->enabled) { 2195 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2196 pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n", 2197 dev_name(&sport->sdev->device->dev), port_num); 2198 goto reject; 2199 } 2200 2201 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2202 || *(__be64 *)(req->target_port_id + 8) != 2203 cpu_to_be64(srpt_service_guid)) { 2204 rej->reason = cpu_to_be32( 2205 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2206 pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n"); 2207 goto reject; 2208 } 2209 2210 ret = -ENOMEM; 2211 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 2212 if (!ch) { 2213 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2214 pr_err("rejected SRP_LOGIN_REQ because out of memory.\n"); 2215 goto reject; 2216 } 2217 2218 kref_init(&ch->kref); 2219 ch->pkey = be16_to_cpu(pkey); 2220 ch->nexus = nexus; 2221 ch->zw_cqe.done = srpt_zerolength_write_done; 2222 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2223 ch->sport = sport; 2224 if (ib_cm_id) { 2225 ch->ib_cm.cm_id = ib_cm_id; 2226 ib_cm_id->context = ch; 2227 } else { 2228 ch->using_rdma_cm = true; 2229 ch->rdma_cm.cm_id = rdma_cm_id; 2230 rdma_cm_id->context = ch; 2231 } 2232 /* 2233 * ch->rq_size should be at least as large as the initiator queue 2234 * depth to avoid that the initiator driver has to report QUEUE_FULL 2235 * to the SCSI mid-layer. 2236 */ 2237 ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr); 2238 spin_lock_init(&ch->spinlock); 2239 ch->state = CH_CONNECTING; 2240 INIT_LIST_HEAD(&ch->cmd_wait_list); 2241 ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2242 2243 ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size, 2244 512, 0, NULL); 2245 if (!ch->rsp_buf_cache) 2246 goto free_ch; 2247 2248 ch->ioctx_ring = (struct srpt_send_ioctx **) 2249 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2250 sizeof(*ch->ioctx_ring[0]), 2251 ch->rsp_buf_cache, 0, DMA_TO_DEVICE); 2252 if (!ch->ioctx_ring) { 2253 pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n"); 2254 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2255 goto free_rsp_cache; 2256 } 2257 2258 for (i = 0; i < ch->rq_size; i++) 2259 ch->ioctx_ring[i]->ch = ch; 2260 if (!sdev->use_srq) { 2261 u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ? 2262 be16_to_cpu(req->imm_data_offset) : 0; 2263 u16 alignment_offset; 2264 u32 req_sz; 2265 2266 if (req->req_flags & SRP_IMMED_REQUESTED) 2267 pr_debug("imm_data_offset = %d\n", 2268 be16_to_cpu(req->imm_data_offset)); 2269 if (imm_data_offset >= sizeof(struct srp_cmd)) { 2270 ch->imm_data_offset = imm_data_offset; 2271 rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP; 2272 } else { 2273 ch->imm_data_offset = 0; 2274 } 2275 alignment_offset = round_up(imm_data_offset, 512) - 2276 imm_data_offset; 2277 req_sz = alignment_offset + imm_data_offset + srp_max_req_size; 2278 ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz, 2279 512, 0, NULL); 2280 if (!ch->req_buf_cache) 2281 goto free_rsp_ring; 2282 2283 ch->ioctx_recv_ring = (struct srpt_recv_ioctx **) 2284 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2285 sizeof(*ch->ioctx_recv_ring[0]), 2286 ch->req_buf_cache, 2287 alignment_offset, 2288 DMA_FROM_DEVICE); 2289 if (!ch->ioctx_recv_ring) { 2290 pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n"); 2291 rej->reason = 2292 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2293 goto free_recv_cache; 2294 } 2295 for (i = 0; i < ch->rq_size; i++) 2296 INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list); 2297 } 2298 2299 ret = srpt_create_ch_ib(ch); 2300 if (ret) { 2301 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2302 pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n"); 2303 goto free_recv_ring; 2304 } 2305 2306 strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name)); 2307 snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx", 2308 be64_to_cpu(*(__be64 *)nexus->i_port_id), 2309 be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8))); 2310 2311 pr_debug("registering src addr %s or i_port_id %s\n", ch->sess_name, 2312 i_port_id); 2313 2314 tag_num = ch->rq_size; 2315 tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */ 2316 2317 mutex_lock(&sport->port_guid_id.mutex); 2318 list_for_each_entry(stpg, &sport->port_guid_id.tpg_list, entry) { 2319 if (!IS_ERR_OR_NULL(ch->sess)) 2320 break; 2321 ch->sess = target_setup_session(&stpg->tpg, tag_num, 2322 tag_size, TARGET_PROT_NORMAL, 2323 ch->sess_name, ch, NULL); 2324 } 2325 mutex_unlock(&sport->port_guid_id.mutex); 2326 2327 mutex_lock(&sport->port_gid_id.mutex); 2328 list_for_each_entry(stpg, &sport->port_gid_id.tpg_list, entry) { 2329 if (!IS_ERR_OR_NULL(ch->sess)) 2330 break; 2331 ch->sess = target_setup_session(&stpg->tpg, tag_num, 2332 tag_size, TARGET_PROT_NORMAL, i_port_id, 2333 ch, NULL); 2334 if (!IS_ERR_OR_NULL(ch->sess)) 2335 break; 2336 /* Retry without leading "0x" */ 2337 ch->sess = target_setup_session(&stpg->tpg, tag_num, 2338 tag_size, TARGET_PROT_NORMAL, 2339 i_port_id + 2, ch, NULL); 2340 } 2341 mutex_unlock(&sport->port_gid_id.mutex); 2342 2343 if (IS_ERR_OR_NULL(ch->sess)) { 2344 WARN_ON_ONCE(ch->sess == NULL); 2345 ret = PTR_ERR(ch->sess); 2346 ch->sess = NULL; 2347 pr_info("Rejected login for initiator %s: ret = %d.\n", 2348 ch->sess_name, ret); 2349 rej->reason = cpu_to_be32(ret == -ENOMEM ? 2350 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES : 2351 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2352 goto destroy_ib; 2353 } 2354 2355 /* 2356 * Once a session has been created destruction of srpt_rdma_ch objects 2357 * will decrement sport->refcount. Hence increment sport->refcount now. 2358 */ 2359 atomic_inc(&sport->refcount); 2360 2361 mutex_lock(&sport->mutex); 2362 2363 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2364 struct srpt_rdma_ch *ch2; 2365 2366 list_for_each_entry(ch2, &nexus->ch_list, list) { 2367 if (srpt_disconnect_ch(ch2) < 0) 2368 continue; 2369 pr_info("Relogin - closed existing channel %s\n", 2370 ch2->sess_name); 2371 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2372 } 2373 } else { 2374 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2375 } 2376 2377 list_add_tail_rcu(&ch->list, &nexus->ch_list); 2378 2379 if (!sport->enabled) { 2380 rej->reason = cpu_to_be32( 2381 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2382 pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n", 2383 dev_name(&sdev->device->dev), port_num); 2384 mutex_unlock(&sport->mutex); 2385 goto reject; 2386 } 2387 2388 mutex_unlock(&sport->mutex); 2389 2390 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp); 2391 if (ret) { 2392 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2393 pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n", 2394 ret); 2395 goto reject; 2396 } 2397 2398 pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess, 2399 ch->sess_name, ch); 2400 2401 /* create srp_login_response */ 2402 rsp->opcode = SRP_LOGIN_RSP; 2403 rsp->tag = req->tag; 2404 rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size); 2405 rsp->max_ti_iu_len = req->req_it_iu_len; 2406 ch->max_ti_iu_len = it_iu_len; 2407 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 2408 SRP_BUF_FORMAT_INDIRECT); 2409 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2410 atomic_set(&ch->req_lim, ch->rq_size); 2411 atomic_set(&ch->req_lim_delta, 0); 2412 2413 /* create cm reply */ 2414 if (ch->using_rdma_cm) { 2415 rep_param->rdma_cm.private_data = (void *)rsp; 2416 rep_param->rdma_cm.private_data_len = sizeof(*rsp); 2417 rep_param->rdma_cm.rnr_retry_count = 7; 2418 rep_param->rdma_cm.flow_control = 1; 2419 rep_param->rdma_cm.responder_resources = 4; 2420 rep_param->rdma_cm.initiator_depth = 4; 2421 } else { 2422 rep_param->ib_cm.qp_num = ch->qp->qp_num; 2423 rep_param->ib_cm.private_data = (void *)rsp; 2424 rep_param->ib_cm.private_data_len = sizeof(*rsp); 2425 rep_param->ib_cm.rnr_retry_count = 7; 2426 rep_param->ib_cm.flow_control = 1; 2427 rep_param->ib_cm.failover_accepted = 0; 2428 rep_param->ib_cm.srq = 1; 2429 rep_param->ib_cm.responder_resources = 4; 2430 rep_param->ib_cm.initiator_depth = 4; 2431 } 2432 2433 /* 2434 * Hold the sport mutex while accepting a connection to avoid that 2435 * srpt_disconnect_ch() is invoked concurrently with this code. 2436 */ 2437 mutex_lock(&sport->mutex); 2438 if (sport->enabled && ch->state == CH_CONNECTING) { 2439 if (ch->using_rdma_cm) 2440 ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm); 2441 else 2442 ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm); 2443 } else { 2444 ret = -EINVAL; 2445 } 2446 mutex_unlock(&sport->mutex); 2447 2448 switch (ret) { 2449 case 0: 2450 break; 2451 case -EINVAL: 2452 goto reject; 2453 default: 2454 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2455 pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n", 2456 ret); 2457 goto reject; 2458 } 2459 2460 goto out; 2461 2462 destroy_ib: 2463 srpt_destroy_ch_ib(ch); 2464 2465 free_recv_ring: 2466 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring, 2467 ch->sport->sdev, ch->rq_size, 2468 ch->req_buf_cache, DMA_FROM_DEVICE); 2469 2470 free_recv_cache: 2471 kmem_cache_destroy(ch->req_buf_cache); 2472 2473 free_rsp_ring: 2474 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2475 ch->sport->sdev, ch->rq_size, 2476 ch->rsp_buf_cache, DMA_TO_DEVICE); 2477 2478 free_rsp_cache: 2479 kmem_cache_destroy(ch->rsp_buf_cache); 2480 2481 free_ch: 2482 if (rdma_cm_id) 2483 rdma_cm_id->context = NULL; 2484 else 2485 ib_cm_id->context = NULL; 2486 kfree(ch); 2487 ch = NULL; 2488 2489 WARN_ON_ONCE(ret == 0); 2490 2491 reject: 2492 pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason)); 2493 rej->opcode = SRP_LOGIN_REJ; 2494 rej->tag = req->tag; 2495 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 2496 SRP_BUF_FORMAT_INDIRECT); 2497 2498 if (rdma_cm_id) 2499 rdma_reject(rdma_cm_id, rej, sizeof(*rej)); 2500 else 2501 ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2502 rej, sizeof(*rej)); 2503 2504 if (ch && ch->sess) { 2505 srpt_close_ch(ch); 2506 /* 2507 * Tell the caller not to free cm_id since 2508 * srpt_release_channel_work() will do that. 2509 */ 2510 ret = 0; 2511 } 2512 2513 out: 2514 kfree(rep_param); 2515 kfree(rsp); 2516 kfree(rej); 2517 2518 return ret; 2519 } 2520 2521 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id, 2522 const struct ib_cm_req_event_param *param, 2523 void *private_data) 2524 { 2525 char sguid[40]; 2526 2527 srpt_format_guid(sguid, sizeof(sguid), 2528 ¶m->primary_path->dgid.global.interface_id); 2529 2530 return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port, 2531 param->primary_path->pkey, 2532 private_data, sguid); 2533 } 2534 2535 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id, 2536 struct rdma_cm_event *event) 2537 { 2538 struct srpt_device *sdev; 2539 struct srp_login_req req; 2540 const struct srp_login_req_rdma *req_rdma; 2541 struct sa_path_rec *path_rec = cm_id->route.path_rec; 2542 char src_addr[40]; 2543 2544 sdev = ib_get_client_data(cm_id->device, &srpt_client); 2545 if (!sdev) 2546 return -ECONNREFUSED; 2547 2548 if (event->param.conn.private_data_len < sizeof(*req_rdma)) 2549 return -EINVAL; 2550 2551 /* Transform srp_login_req_rdma into srp_login_req. */ 2552 req_rdma = event->param.conn.private_data; 2553 memset(&req, 0, sizeof(req)); 2554 req.opcode = req_rdma->opcode; 2555 req.tag = req_rdma->tag; 2556 req.req_it_iu_len = req_rdma->req_it_iu_len; 2557 req.req_buf_fmt = req_rdma->req_buf_fmt; 2558 req.req_flags = req_rdma->req_flags; 2559 memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16); 2560 memcpy(req.target_port_id, req_rdma->target_port_id, 16); 2561 req.imm_data_offset = req_rdma->imm_data_offset; 2562 2563 snprintf(src_addr, sizeof(src_addr), "%pIS", 2564 &cm_id->route.addr.src_addr); 2565 2566 return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num, 2567 path_rec ? path_rec->pkey : 0, &req, src_addr); 2568 } 2569 2570 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch, 2571 enum ib_cm_rej_reason reason, 2572 const u8 *private_data, 2573 u8 private_data_len) 2574 { 2575 char *priv = NULL; 2576 int i; 2577 2578 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1, 2579 GFP_KERNEL))) { 2580 for (i = 0; i < private_data_len; i++) 2581 sprintf(priv + 3 * i, " %02x", private_data[i]); 2582 } 2583 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n", 2584 ch->sess_name, ch->qp->qp_num, reason, private_data_len ? 2585 "; private data" : "", priv ? priv : " (?)"); 2586 kfree(priv); 2587 } 2588 2589 /** 2590 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event 2591 * @ch: SRPT RDMA channel. 2592 * 2593 * An RTU (ready to use) message indicates that the connection has been 2594 * established and that the recipient may begin transmitting. 2595 */ 2596 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch) 2597 { 2598 int ret; 2599 2600 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp); 2601 if (ret < 0) { 2602 pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name, 2603 ch->qp->qp_num); 2604 srpt_close_ch(ch); 2605 return; 2606 } 2607 2608 /* 2609 * Note: calling srpt_close_ch() if the transition to the LIVE state 2610 * fails is not necessary since that means that that function has 2611 * already been invoked from another thread. 2612 */ 2613 if (!srpt_set_ch_state(ch, CH_LIVE)) { 2614 pr_err("%s-%d: channel transition to LIVE state failed\n", 2615 ch->sess_name, ch->qp->qp_num); 2616 return; 2617 } 2618 2619 /* Trigger wait list processing. */ 2620 ret = srpt_zerolength_write(ch); 2621 WARN_ONCE(ret < 0, "%d\n", ret); 2622 } 2623 2624 /** 2625 * srpt_cm_handler - IB connection manager callback function 2626 * @cm_id: IB/CM connection identifier. 2627 * @event: IB/CM event. 2628 * 2629 * A non-zero return value will cause the caller destroy the CM ID. 2630 * 2631 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2632 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2633 * a non-zero value in any other case will trigger a race with the 2634 * ib_destroy_cm_id() call in srpt_release_channel(). 2635 */ 2636 static int srpt_cm_handler(struct ib_cm_id *cm_id, 2637 const struct ib_cm_event *event) 2638 { 2639 struct srpt_rdma_ch *ch = cm_id->context; 2640 int ret; 2641 2642 ret = 0; 2643 switch (event->event) { 2644 case IB_CM_REQ_RECEIVED: 2645 ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd, 2646 event->private_data); 2647 break; 2648 case IB_CM_REJ_RECEIVED: 2649 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason, 2650 event->private_data, 2651 IB_CM_REJ_PRIVATE_DATA_SIZE); 2652 break; 2653 case IB_CM_RTU_RECEIVED: 2654 case IB_CM_USER_ESTABLISHED: 2655 srpt_cm_rtu_recv(ch); 2656 break; 2657 case IB_CM_DREQ_RECEIVED: 2658 srpt_disconnect_ch(ch); 2659 break; 2660 case IB_CM_DREP_RECEIVED: 2661 pr_info("Received CM DREP message for ch %s-%d.\n", 2662 ch->sess_name, ch->qp->qp_num); 2663 srpt_close_ch(ch); 2664 break; 2665 case IB_CM_TIMEWAIT_EXIT: 2666 pr_info("Received CM TimeWait exit for ch %s-%d.\n", 2667 ch->sess_name, ch->qp->qp_num); 2668 srpt_close_ch(ch); 2669 break; 2670 case IB_CM_REP_ERROR: 2671 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2672 ch->qp->qp_num); 2673 break; 2674 case IB_CM_DREQ_ERROR: 2675 pr_info("Received CM DREQ ERROR event.\n"); 2676 break; 2677 case IB_CM_MRA_RECEIVED: 2678 pr_info("Received CM MRA event\n"); 2679 break; 2680 default: 2681 pr_err("received unrecognized CM event %d\n", event->event); 2682 break; 2683 } 2684 2685 return ret; 2686 } 2687 2688 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id, 2689 struct rdma_cm_event *event) 2690 { 2691 struct srpt_rdma_ch *ch = cm_id->context; 2692 int ret = 0; 2693 2694 switch (event->event) { 2695 case RDMA_CM_EVENT_CONNECT_REQUEST: 2696 ret = srpt_rdma_cm_req_recv(cm_id, event); 2697 break; 2698 case RDMA_CM_EVENT_REJECTED: 2699 srpt_cm_rej_recv(ch, event->status, 2700 event->param.conn.private_data, 2701 event->param.conn.private_data_len); 2702 break; 2703 case RDMA_CM_EVENT_ESTABLISHED: 2704 srpt_cm_rtu_recv(ch); 2705 break; 2706 case RDMA_CM_EVENT_DISCONNECTED: 2707 if (ch->state < CH_DISCONNECTING) 2708 srpt_disconnect_ch(ch); 2709 else 2710 srpt_close_ch(ch); 2711 break; 2712 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 2713 srpt_close_ch(ch); 2714 break; 2715 case RDMA_CM_EVENT_UNREACHABLE: 2716 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2717 ch->qp->qp_num); 2718 break; 2719 case RDMA_CM_EVENT_DEVICE_REMOVAL: 2720 case RDMA_CM_EVENT_ADDR_CHANGE: 2721 break; 2722 default: 2723 pr_err("received unrecognized RDMA CM event %d\n", 2724 event->event); 2725 break; 2726 } 2727 2728 return ret; 2729 } 2730 2731 /* 2732 * srpt_write_pending - Start data transfer from initiator to target (write). 2733 */ 2734 static int srpt_write_pending(struct se_cmd *se_cmd) 2735 { 2736 struct srpt_send_ioctx *ioctx = 2737 container_of(se_cmd, struct srpt_send_ioctx, cmd); 2738 struct srpt_rdma_ch *ch = ioctx->ch; 2739 struct ib_send_wr *first_wr = NULL; 2740 struct ib_cqe *cqe = &ioctx->rdma_cqe; 2741 enum srpt_command_state new_state; 2742 int ret, i; 2743 2744 if (ioctx->recv_ioctx) { 2745 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2746 target_execute_cmd(&ioctx->cmd); 2747 return 0; 2748 } 2749 2750 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2751 WARN_ON(new_state == SRPT_STATE_DONE); 2752 2753 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) { 2754 pr_warn("%s: IB send queue full (needed %d)\n", 2755 __func__, ioctx->n_rdma); 2756 ret = -ENOMEM; 2757 goto out_undo; 2758 } 2759 2760 cqe->done = srpt_rdma_read_done; 2761 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2762 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2763 2764 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port, 2765 cqe, first_wr); 2766 cqe = NULL; 2767 } 2768 2769 ret = ib_post_send(ch->qp, first_wr, NULL); 2770 if (ret) { 2771 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n", 2772 __func__, ret, ioctx->n_rdma, 2773 atomic_read(&ch->sq_wr_avail)); 2774 goto out_undo; 2775 } 2776 2777 return 0; 2778 out_undo: 2779 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 2780 return ret; 2781 } 2782 2783 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2784 { 2785 switch (tcm_mgmt_status) { 2786 case TMR_FUNCTION_COMPLETE: 2787 return SRP_TSK_MGMT_SUCCESS; 2788 case TMR_FUNCTION_REJECTED: 2789 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2790 } 2791 return SRP_TSK_MGMT_FAILED; 2792 } 2793 2794 /** 2795 * srpt_queue_response - transmit the response to a SCSI command 2796 * @cmd: SCSI target command. 2797 * 2798 * Callback function called by the TCM core. Must not block since it can be 2799 * invoked on the context of the IB completion handler. 2800 */ 2801 static void srpt_queue_response(struct se_cmd *cmd) 2802 { 2803 struct srpt_send_ioctx *ioctx = 2804 container_of(cmd, struct srpt_send_ioctx, cmd); 2805 struct srpt_rdma_ch *ch = ioctx->ch; 2806 struct srpt_device *sdev = ch->sport->sdev; 2807 struct ib_send_wr send_wr, *first_wr = &send_wr; 2808 struct ib_sge sge; 2809 enum srpt_command_state state; 2810 int resp_len, ret, i; 2811 u8 srp_tm_status; 2812 2813 state = ioctx->state; 2814 switch (state) { 2815 case SRPT_STATE_NEW: 2816 case SRPT_STATE_DATA_IN: 2817 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 2818 break; 2819 case SRPT_STATE_MGMT: 2820 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 2821 break; 2822 default: 2823 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 2824 ch, ioctx->ioctx.index, ioctx->state); 2825 break; 2826 } 2827 2828 if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)) 2829 return; 2830 2831 /* For read commands, transfer the data to the initiator. */ 2832 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE && 2833 ioctx->cmd.data_length && 2834 !ioctx->queue_status_only) { 2835 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2836 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2837 2838 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, 2839 ch->sport->port, NULL, first_wr); 2840 } 2841 } 2842 2843 if (state != SRPT_STATE_MGMT) 2844 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, 2845 cmd->scsi_status); 2846 else { 2847 srp_tm_status 2848 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 2849 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 2850 ioctx->cmd.tag); 2851 } 2852 2853 atomic_inc(&ch->req_lim); 2854 2855 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma, 2856 &ch->sq_wr_avail) < 0)) { 2857 pr_warn("%s: IB send queue full (needed %d)\n", 2858 __func__, ioctx->n_rdma); 2859 ret = -ENOMEM; 2860 goto out; 2861 } 2862 2863 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len, 2864 DMA_TO_DEVICE); 2865 2866 sge.addr = ioctx->ioctx.dma; 2867 sge.length = resp_len; 2868 sge.lkey = sdev->lkey; 2869 2870 ioctx->ioctx.cqe.done = srpt_send_done; 2871 send_wr.next = NULL; 2872 send_wr.wr_cqe = &ioctx->ioctx.cqe; 2873 send_wr.sg_list = &sge; 2874 send_wr.num_sge = 1; 2875 send_wr.opcode = IB_WR_SEND; 2876 send_wr.send_flags = IB_SEND_SIGNALED; 2877 2878 ret = ib_post_send(ch->qp, first_wr, NULL); 2879 if (ret < 0) { 2880 pr_err("%s: sending cmd response failed for tag %llu (%d)\n", 2881 __func__, ioctx->cmd.tag, ret); 2882 goto out; 2883 } 2884 2885 return; 2886 2887 out: 2888 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 2889 atomic_dec(&ch->req_lim); 2890 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 2891 target_put_sess_cmd(&ioctx->cmd); 2892 } 2893 2894 static int srpt_queue_data_in(struct se_cmd *cmd) 2895 { 2896 srpt_queue_response(cmd); 2897 return 0; 2898 } 2899 2900 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 2901 { 2902 srpt_queue_response(cmd); 2903 } 2904 2905 /* 2906 * This function is called for aborted commands if no response is sent to the 2907 * initiator. Make sure that the credits freed by aborting a command are 2908 * returned to the initiator the next time a response is sent by incrementing 2909 * ch->req_lim_delta. 2910 */ 2911 static void srpt_aborted_task(struct se_cmd *cmd) 2912 { 2913 struct srpt_send_ioctx *ioctx = container_of(cmd, 2914 struct srpt_send_ioctx, cmd); 2915 struct srpt_rdma_ch *ch = ioctx->ch; 2916 2917 atomic_inc(&ch->req_lim_delta); 2918 } 2919 2920 static int srpt_queue_status(struct se_cmd *cmd) 2921 { 2922 struct srpt_send_ioctx *ioctx; 2923 2924 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 2925 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 2926 if (cmd->se_cmd_flags & 2927 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 2928 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 2929 ioctx->queue_status_only = true; 2930 srpt_queue_response(cmd); 2931 return 0; 2932 } 2933 2934 static void srpt_refresh_port_work(struct work_struct *work) 2935 { 2936 struct srpt_port *sport = container_of(work, struct srpt_port, work); 2937 2938 srpt_refresh_port(sport); 2939 } 2940 2941 /** 2942 * srpt_release_sport - disable login and wait for associated channels 2943 * @sport: SRPT HCA port. 2944 */ 2945 static int srpt_release_sport(struct srpt_port *sport) 2946 { 2947 DECLARE_COMPLETION_ONSTACK(c); 2948 struct srpt_nexus *nexus, *next_n; 2949 struct srpt_rdma_ch *ch; 2950 2951 WARN_ON_ONCE(irqs_disabled()); 2952 2953 sport->freed_channels = &c; 2954 2955 mutex_lock(&sport->mutex); 2956 srpt_set_enabled(sport, false); 2957 mutex_unlock(&sport->mutex); 2958 2959 while (atomic_read(&sport->refcount) > 0 && 2960 wait_for_completion_timeout(&c, 5 * HZ) <= 0) { 2961 pr_info("%s_%d: waiting for unregistration of %d sessions ...\n", 2962 dev_name(&sport->sdev->device->dev), sport->port, 2963 atomic_read(&sport->refcount)); 2964 rcu_read_lock(); 2965 list_for_each_entry(nexus, &sport->nexus_list, entry) { 2966 list_for_each_entry(ch, &nexus->ch_list, list) { 2967 pr_info("%s-%d: state %s\n", 2968 ch->sess_name, ch->qp->qp_num, 2969 get_ch_state_name(ch->state)); 2970 } 2971 } 2972 rcu_read_unlock(); 2973 } 2974 2975 mutex_lock(&sport->mutex); 2976 list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) { 2977 list_del(&nexus->entry); 2978 kfree_rcu(nexus, rcu); 2979 } 2980 mutex_unlock(&sport->mutex); 2981 2982 return 0; 2983 } 2984 2985 static struct se_wwn *__srpt_lookup_wwn(const char *name) 2986 { 2987 struct ib_device *dev; 2988 struct srpt_device *sdev; 2989 struct srpt_port *sport; 2990 int i; 2991 2992 list_for_each_entry(sdev, &srpt_dev_list, list) { 2993 dev = sdev->device; 2994 if (!dev) 2995 continue; 2996 2997 for (i = 0; i < dev->phys_port_cnt; i++) { 2998 sport = &sdev->port[i]; 2999 3000 if (strcmp(sport->port_guid_id.name, name) == 0) 3001 return &sport->port_guid_id.wwn; 3002 if (strcmp(sport->port_gid_id.name, name) == 0) 3003 return &sport->port_gid_id.wwn; 3004 } 3005 } 3006 3007 return NULL; 3008 } 3009 3010 static struct se_wwn *srpt_lookup_wwn(const char *name) 3011 { 3012 struct se_wwn *wwn; 3013 3014 spin_lock(&srpt_dev_lock); 3015 wwn = __srpt_lookup_wwn(name); 3016 spin_unlock(&srpt_dev_lock); 3017 3018 return wwn; 3019 } 3020 3021 static void srpt_free_srq(struct srpt_device *sdev) 3022 { 3023 if (!sdev->srq) 3024 return; 3025 3026 ib_destroy_srq(sdev->srq); 3027 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3028 sdev->srq_size, sdev->req_buf_cache, 3029 DMA_FROM_DEVICE); 3030 kmem_cache_destroy(sdev->req_buf_cache); 3031 sdev->srq = NULL; 3032 } 3033 3034 static int srpt_alloc_srq(struct srpt_device *sdev) 3035 { 3036 struct ib_srq_init_attr srq_attr = { 3037 .event_handler = srpt_srq_event, 3038 .srq_context = (void *)sdev, 3039 .attr.max_wr = sdev->srq_size, 3040 .attr.max_sge = 1, 3041 .srq_type = IB_SRQT_BASIC, 3042 }; 3043 struct ib_device *device = sdev->device; 3044 struct ib_srq *srq; 3045 int i; 3046 3047 WARN_ON_ONCE(sdev->srq); 3048 srq = ib_create_srq(sdev->pd, &srq_attr); 3049 if (IS_ERR(srq)) { 3050 pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq)); 3051 return PTR_ERR(srq); 3052 } 3053 3054 pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size, 3055 sdev->device->attrs.max_srq_wr, dev_name(&device->dev)); 3056 3057 sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf", 3058 srp_max_req_size, 0, 0, NULL); 3059 if (!sdev->req_buf_cache) 3060 goto free_srq; 3061 3062 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3063 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3064 sizeof(*sdev->ioctx_ring[0]), 3065 sdev->req_buf_cache, 0, DMA_FROM_DEVICE); 3066 if (!sdev->ioctx_ring) 3067 goto free_cache; 3068 3069 sdev->use_srq = true; 3070 sdev->srq = srq; 3071 3072 for (i = 0; i < sdev->srq_size; ++i) { 3073 INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list); 3074 srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]); 3075 } 3076 3077 return 0; 3078 3079 free_cache: 3080 kmem_cache_destroy(sdev->req_buf_cache); 3081 3082 free_srq: 3083 ib_destroy_srq(srq); 3084 return -ENOMEM; 3085 } 3086 3087 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq) 3088 { 3089 struct ib_device *device = sdev->device; 3090 int ret = 0; 3091 3092 if (!use_srq) { 3093 srpt_free_srq(sdev); 3094 sdev->use_srq = false; 3095 } else if (use_srq && !sdev->srq) { 3096 ret = srpt_alloc_srq(sdev); 3097 } 3098 pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, 3099 dev_name(&device->dev), sdev->use_srq, ret); 3100 return ret; 3101 } 3102 3103 /** 3104 * srpt_add_one - InfiniBand device addition callback function 3105 * @device: Describes a HCA. 3106 */ 3107 static void srpt_add_one(struct ib_device *device) 3108 { 3109 struct srpt_device *sdev; 3110 struct srpt_port *sport; 3111 int i, ret; 3112 3113 pr_debug("device = %p\n", device); 3114 3115 sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt), 3116 GFP_KERNEL); 3117 if (!sdev) 3118 goto err; 3119 3120 sdev->device = device; 3121 mutex_init(&sdev->sdev_mutex); 3122 3123 sdev->pd = ib_alloc_pd(device, 0); 3124 if (IS_ERR(sdev->pd)) 3125 goto free_dev; 3126 3127 sdev->lkey = sdev->pd->local_dma_lkey; 3128 3129 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr); 3130 3131 srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq); 3132 3133 if (!srpt_service_guid) 3134 srpt_service_guid = be64_to_cpu(device->node_guid); 3135 3136 if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND) 3137 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3138 if (IS_ERR(sdev->cm_id)) { 3139 pr_info("ib_create_cm_id() failed: %ld\n", 3140 PTR_ERR(sdev->cm_id)); 3141 sdev->cm_id = NULL; 3142 if (!rdma_cm_id) 3143 goto err_ring; 3144 } 3145 3146 /* print out target login information */ 3147 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n", 3148 srpt_service_guid, srpt_service_guid, srpt_service_guid); 3149 3150 /* 3151 * We do not have a consistent service_id (ie. also id_ext of target_id) 3152 * to identify this target. We currently use the guid of the first HCA 3153 * in the system as service_id; therefore, the target_id will change 3154 * if this HCA is gone bad and replaced by different HCA 3155 */ 3156 ret = sdev->cm_id ? 3157 ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) : 3158 0; 3159 if (ret < 0) { 3160 pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret, 3161 sdev->cm_id->state); 3162 goto err_cm; 3163 } 3164 3165 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3166 srpt_event_handler); 3167 ib_register_event_handler(&sdev->event_handler); 3168 3169 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3170 sport = &sdev->port[i - 1]; 3171 INIT_LIST_HEAD(&sport->nexus_list); 3172 mutex_init(&sport->mutex); 3173 sport->sdev = sdev; 3174 sport->port = i; 3175 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3176 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3177 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3178 sport->port_attrib.use_srq = false; 3179 INIT_WORK(&sport->work, srpt_refresh_port_work); 3180 mutex_init(&sport->port_guid_id.mutex); 3181 INIT_LIST_HEAD(&sport->port_guid_id.tpg_list); 3182 mutex_init(&sport->port_gid_id.mutex); 3183 INIT_LIST_HEAD(&sport->port_gid_id.tpg_list); 3184 3185 if (srpt_refresh_port(sport)) { 3186 pr_err("MAD registration failed for %s-%d.\n", 3187 dev_name(&sdev->device->dev), i); 3188 goto err_event; 3189 } 3190 } 3191 3192 spin_lock(&srpt_dev_lock); 3193 list_add_tail(&sdev->list, &srpt_dev_list); 3194 spin_unlock(&srpt_dev_lock); 3195 3196 out: 3197 ib_set_client_data(device, &srpt_client, sdev); 3198 pr_debug("added %s.\n", dev_name(&device->dev)); 3199 return; 3200 3201 err_event: 3202 ib_unregister_event_handler(&sdev->event_handler); 3203 err_cm: 3204 if (sdev->cm_id) 3205 ib_destroy_cm_id(sdev->cm_id); 3206 err_ring: 3207 srpt_free_srq(sdev); 3208 ib_dealloc_pd(sdev->pd); 3209 free_dev: 3210 kfree(sdev); 3211 err: 3212 sdev = NULL; 3213 pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev)); 3214 goto out; 3215 } 3216 3217 /** 3218 * srpt_remove_one - InfiniBand device removal callback function 3219 * @device: Describes a HCA. 3220 * @client_data: The value passed as the third argument to ib_set_client_data(). 3221 */ 3222 static void srpt_remove_one(struct ib_device *device, void *client_data) 3223 { 3224 struct srpt_device *sdev = client_data; 3225 int i; 3226 3227 if (!sdev) { 3228 pr_info("%s(%s): nothing to do.\n", __func__, 3229 dev_name(&device->dev)); 3230 return; 3231 } 3232 3233 srpt_unregister_mad_agent(sdev); 3234 3235 ib_unregister_event_handler(&sdev->event_handler); 3236 3237 /* Cancel any work queued by the just unregistered IB event handler. */ 3238 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3239 cancel_work_sync(&sdev->port[i].work); 3240 3241 if (sdev->cm_id) 3242 ib_destroy_cm_id(sdev->cm_id); 3243 3244 ib_set_client_data(device, &srpt_client, NULL); 3245 3246 /* 3247 * Unregistering a target must happen after destroying sdev->cm_id 3248 * such that no new SRP_LOGIN_REQ information units can arrive while 3249 * destroying the target. 3250 */ 3251 spin_lock(&srpt_dev_lock); 3252 list_del(&sdev->list); 3253 spin_unlock(&srpt_dev_lock); 3254 3255 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3256 srpt_release_sport(&sdev->port[i]); 3257 3258 srpt_free_srq(sdev); 3259 3260 ib_dealloc_pd(sdev->pd); 3261 3262 kfree(sdev); 3263 } 3264 3265 static struct ib_client srpt_client = { 3266 .name = DRV_NAME, 3267 .add = srpt_add_one, 3268 .remove = srpt_remove_one 3269 }; 3270 3271 static int srpt_check_true(struct se_portal_group *se_tpg) 3272 { 3273 return 1; 3274 } 3275 3276 static int srpt_check_false(struct se_portal_group *se_tpg) 3277 { 3278 return 0; 3279 } 3280 3281 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg) 3282 { 3283 return tpg->se_tpg_wwn->priv; 3284 } 3285 3286 static struct srpt_port_id *srpt_wwn_to_sport_id(struct se_wwn *wwn) 3287 { 3288 struct srpt_port *sport = wwn->priv; 3289 3290 if (wwn == &sport->port_guid_id.wwn) 3291 return &sport->port_guid_id; 3292 if (wwn == &sport->port_gid_id.wwn) 3293 return &sport->port_gid_id; 3294 WARN_ON_ONCE(true); 3295 return NULL; 3296 } 3297 3298 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3299 { 3300 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg); 3301 3302 return stpg->sport_id->name; 3303 } 3304 3305 static u16 srpt_get_tag(struct se_portal_group *tpg) 3306 { 3307 return 1; 3308 } 3309 3310 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3311 { 3312 return 1; 3313 } 3314 3315 static void srpt_release_cmd(struct se_cmd *se_cmd) 3316 { 3317 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3318 struct srpt_send_ioctx, cmd); 3319 struct srpt_rdma_ch *ch = ioctx->ch; 3320 struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx; 3321 3322 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE && 3323 !(ioctx->cmd.transport_state & CMD_T_ABORTED)); 3324 3325 if (recv_ioctx) { 3326 WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list)); 3327 ioctx->recv_ioctx = NULL; 3328 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx); 3329 } 3330 3331 if (ioctx->n_rw_ctx) { 3332 srpt_free_rw_ctxs(ch, ioctx); 3333 ioctx->n_rw_ctx = 0; 3334 } 3335 3336 target_free_tag(se_cmd->se_sess, se_cmd); 3337 } 3338 3339 /** 3340 * srpt_close_session - forcibly close a session 3341 * @se_sess: SCSI target session. 3342 * 3343 * Callback function invoked by the TCM core to clean up sessions associated 3344 * with a node ACL when the user invokes 3345 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3346 */ 3347 static void srpt_close_session(struct se_session *se_sess) 3348 { 3349 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 3350 3351 srpt_disconnect_ch_sync(ch); 3352 } 3353 3354 /** 3355 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB) 3356 * @se_sess: SCSI target session. 3357 * 3358 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3359 * This object represents an arbitrary integer used to uniquely identify a 3360 * particular attached remote initiator port to a particular SCSI target port 3361 * within a particular SCSI target device within a particular SCSI instance. 3362 */ 3363 static u32 srpt_sess_get_index(struct se_session *se_sess) 3364 { 3365 return 0; 3366 } 3367 3368 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3369 { 3370 } 3371 3372 /* Note: only used from inside debug printk's by the TCM core. */ 3373 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3374 { 3375 struct srpt_send_ioctx *ioctx; 3376 3377 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3378 return ioctx->state; 3379 } 3380 3381 static int srpt_parse_guid(u64 *guid, const char *name) 3382 { 3383 u16 w[4]; 3384 int ret = -EINVAL; 3385 3386 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4) 3387 goto out; 3388 *guid = get_unaligned_be64(w); 3389 ret = 0; 3390 out: 3391 return ret; 3392 } 3393 3394 /** 3395 * srpt_parse_i_port_id - parse an initiator port ID 3396 * @name: ASCII representation of a 128-bit initiator port ID. 3397 * @i_port_id: Binary 128-bit port ID. 3398 */ 3399 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3400 { 3401 const char *p; 3402 unsigned len, count, leading_zero_bytes; 3403 int ret; 3404 3405 p = name; 3406 if (strncasecmp(p, "0x", 2) == 0) 3407 p += 2; 3408 ret = -EINVAL; 3409 len = strlen(p); 3410 if (len % 2) 3411 goto out; 3412 count = min(len / 2, 16U); 3413 leading_zero_bytes = 16 - count; 3414 memset(i_port_id, 0, leading_zero_bytes); 3415 ret = hex2bin(i_port_id + leading_zero_bytes, p, count); 3416 3417 out: 3418 return ret; 3419 } 3420 3421 /* 3422 * configfs callback function invoked for mkdir 3423 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3424 * 3425 * i_port_id must be an initiator port GUID, GID or IP address. See also the 3426 * target_alloc_session() calls in this driver. Examples of valid initiator 3427 * port IDs: 3428 * 0x0000000000000000505400fffe4a0b7b 3429 * 0000000000000000505400fffe4a0b7b 3430 * 5054:00ff:fe4a:0b7b 3431 * 192.168.122.76 3432 */ 3433 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) 3434 { 3435 struct sockaddr_storage sa; 3436 u64 guid; 3437 u8 i_port_id[16]; 3438 int ret; 3439 3440 ret = srpt_parse_guid(&guid, name); 3441 if (ret < 0) 3442 ret = srpt_parse_i_port_id(i_port_id, name); 3443 if (ret < 0) 3444 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL, 3445 &sa); 3446 if (ret < 0) 3447 pr_err("invalid initiator port ID %s\n", name); 3448 return ret; 3449 } 3450 3451 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, 3452 char *page) 3453 { 3454 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3455 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3456 3457 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3458 } 3459 3460 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, 3461 const char *page, size_t count) 3462 { 3463 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3464 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3465 unsigned long val; 3466 int ret; 3467 3468 ret = kstrtoul(page, 0, &val); 3469 if (ret < 0) { 3470 pr_err("kstrtoul() failed with ret: %d\n", ret); 3471 return -EINVAL; 3472 } 3473 if (val > MAX_SRPT_RDMA_SIZE) { 3474 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3475 MAX_SRPT_RDMA_SIZE); 3476 return -EINVAL; 3477 } 3478 if (val < DEFAULT_MAX_RDMA_SIZE) { 3479 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3480 val, DEFAULT_MAX_RDMA_SIZE); 3481 return -EINVAL; 3482 } 3483 sport->port_attrib.srp_max_rdma_size = val; 3484 3485 return count; 3486 } 3487 3488 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, 3489 char *page) 3490 { 3491 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3492 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3493 3494 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3495 } 3496 3497 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, 3498 const char *page, size_t count) 3499 { 3500 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3501 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3502 unsigned long val; 3503 int ret; 3504 3505 ret = kstrtoul(page, 0, &val); 3506 if (ret < 0) { 3507 pr_err("kstrtoul() failed with ret: %d\n", ret); 3508 return -EINVAL; 3509 } 3510 if (val > MAX_SRPT_RSP_SIZE) { 3511 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3512 MAX_SRPT_RSP_SIZE); 3513 return -EINVAL; 3514 } 3515 if (val < MIN_MAX_RSP_SIZE) { 3516 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3517 MIN_MAX_RSP_SIZE); 3518 return -EINVAL; 3519 } 3520 sport->port_attrib.srp_max_rsp_size = val; 3521 3522 return count; 3523 } 3524 3525 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, 3526 char *page) 3527 { 3528 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3529 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3530 3531 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3532 } 3533 3534 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, 3535 const char *page, size_t count) 3536 { 3537 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3538 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3539 unsigned long val; 3540 int ret; 3541 3542 ret = kstrtoul(page, 0, &val); 3543 if (ret < 0) { 3544 pr_err("kstrtoul() failed with ret: %d\n", ret); 3545 return -EINVAL; 3546 } 3547 if (val > MAX_SRPT_SRQ_SIZE) { 3548 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3549 MAX_SRPT_SRQ_SIZE); 3550 return -EINVAL; 3551 } 3552 if (val < MIN_SRPT_SRQ_SIZE) { 3553 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3554 MIN_SRPT_SRQ_SIZE); 3555 return -EINVAL; 3556 } 3557 sport->port_attrib.srp_sq_size = val; 3558 3559 return count; 3560 } 3561 3562 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item, 3563 char *page) 3564 { 3565 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3566 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3567 3568 return sprintf(page, "%d\n", sport->port_attrib.use_srq); 3569 } 3570 3571 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item, 3572 const char *page, size_t count) 3573 { 3574 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3575 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3576 struct srpt_device *sdev = sport->sdev; 3577 unsigned long val; 3578 bool enabled; 3579 int ret; 3580 3581 ret = kstrtoul(page, 0, &val); 3582 if (ret < 0) 3583 return ret; 3584 if (val != !!val) 3585 return -EINVAL; 3586 3587 ret = mutex_lock_interruptible(&sdev->sdev_mutex); 3588 if (ret < 0) 3589 return ret; 3590 ret = mutex_lock_interruptible(&sport->mutex); 3591 if (ret < 0) 3592 goto unlock_sdev; 3593 enabled = sport->enabled; 3594 /* Log out all initiator systems before changing 'use_srq'. */ 3595 srpt_set_enabled(sport, false); 3596 sport->port_attrib.use_srq = val; 3597 srpt_use_srq(sdev, sport->port_attrib.use_srq); 3598 srpt_set_enabled(sport, enabled); 3599 ret = count; 3600 mutex_unlock(&sport->mutex); 3601 unlock_sdev: 3602 mutex_unlock(&sdev->sdev_mutex); 3603 3604 return ret; 3605 } 3606 3607 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size); 3608 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size); 3609 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size); 3610 CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq); 3611 3612 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3613 &srpt_tpg_attrib_attr_srp_max_rdma_size, 3614 &srpt_tpg_attrib_attr_srp_max_rsp_size, 3615 &srpt_tpg_attrib_attr_srp_sq_size, 3616 &srpt_tpg_attrib_attr_use_srq, 3617 NULL, 3618 }; 3619 3620 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr) 3621 { 3622 struct rdma_cm_id *rdma_cm_id; 3623 int ret; 3624 3625 rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler, 3626 NULL, RDMA_PS_TCP, IB_QPT_RC); 3627 if (IS_ERR(rdma_cm_id)) { 3628 pr_err("RDMA/CM ID creation failed: %ld\n", 3629 PTR_ERR(rdma_cm_id)); 3630 goto out; 3631 } 3632 3633 ret = rdma_bind_addr(rdma_cm_id, listen_addr); 3634 if (ret) { 3635 char addr_str[64]; 3636 3637 snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr); 3638 pr_err("Binding RDMA/CM ID to address %s failed: %d\n", 3639 addr_str, ret); 3640 rdma_destroy_id(rdma_cm_id); 3641 rdma_cm_id = ERR_PTR(ret); 3642 goto out; 3643 } 3644 3645 ret = rdma_listen(rdma_cm_id, 128); 3646 if (ret) { 3647 pr_err("rdma_listen() failed: %d\n", ret); 3648 rdma_destroy_id(rdma_cm_id); 3649 rdma_cm_id = ERR_PTR(ret); 3650 } 3651 3652 out: 3653 return rdma_cm_id; 3654 } 3655 3656 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page) 3657 { 3658 return sprintf(page, "%d\n", rdma_cm_port); 3659 } 3660 3661 static ssize_t srpt_rdma_cm_port_store(struct config_item *item, 3662 const char *page, size_t count) 3663 { 3664 struct sockaddr_in addr4 = { .sin_family = AF_INET }; 3665 struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 }; 3666 struct rdma_cm_id *new_id = NULL; 3667 u16 val; 3668 int ret; 3669 3670 ret = kstrtou16(page, 0, &val); 3671 if (ret < 0) 3672 return ret; 3673 ret = count; 3674 if (rdma_cm_port == val) 3675 goto out; 3676 3677 if (val) { 3678 addr6.sin6_port = cpu_to_be16(val); 3679 new_id = srpt_create_rdma_id((struct sockaddr *)&addr6); 3680 if (IS_ERR(new_id)) { 3681 addr4.sin_port = cpu_to_be16(val); 3682 new_id = srpt_create_rdma_id((struct sockaddr *)&addr4); 3683 if (IS_ERR(new_id)) { 3684 ret = PTR_ERR(new_id); 3685 goto out; 3686 } 3687 } 3688 } 3689 3690 mutex_lock(&rdma_cm_mutex); 3691 rdma_cm_port = val; 3692 swap(rdma_cm_id, new_id); 3693 mutex_unlock(&rdma_cm_mutex); 3694 3695 if (new_id) 3696 rdma_destroy_id(new_id); 3697 ret = count; 3698 out: 3699 return ret; 3700 } 3701 3702 CONFIGFS_ATTR(srpt_, rdma_cm_port); 3703 3704 static struct configfs_attribute *srpt_da_attrs[] = { 3705 &srpt_attr_rdma_cm_port, 3706 NULL, 3707 }; 3708 3709 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page) 3710 { 3711 struct se_portal_group *se_tpg = to_tpg(item); 3712 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3713 3714 return snprintf(page, PAGE_SIZE, "%d\n", sport->enabled); 3715 } 3716 3717 static ssize_t srpt_tpg_enable_store(struct config_item *item, 3718 const char *page, size_t count) 3719 { 3720 struct se_portal_group *se_tpg = to_tpg(item); 3721 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3722 unsigned long tmp; 3723 int ret; 3724 3725 ret = kstrtoul(page, 0, &tmp); 3726 if (ret < 0) { 3727 pr_err("Unable to extract srpt_tpg_store_enable\n"); 3728 return -EINVAL; 3729 } 3730 3731 if ((tmp != 0) && (tmp != 1)) { 3732 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3733 return -EINVAL; 3734 } 3735 3736 mutex_lock(&sport->mutex); 3737 srpt_set_enabled(sport, tmp); 3738 mutex_unlock(&sport->mutex); 3739 3740 return count; 3741 } 3742 3743 CONFIGFS_ATTR(srpt_tpg_, enable); 3744 3745 static struct configfs_attribute *srpt_tpg_attrs[] = { 3746 &srpt_tpg_attr_enable, 3747 NULL, 3748 }; 3749 3750 /** 3751 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg 3752 * @wwn: Corresponds to $driver/$port. 3753 * @name: $tpg. 3754 */ 3755 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3756 const char *name) 3757 { 3758 struct srpt_port_id *sport_id = srpt_wwn_to_sport_id(wwn); 3759 struct srpt_tpg *stpg; 3760 int res = -ENOMEM; 3761 3762 stpg = kzalloc(sizeof(*stpg), GFP_KERNEL); 3763 if (!stpg) 3764 return ERR_PTR(res); 3765 stpg->sport_id = sport_id; 3766 res = core_tpg_register(wwn, &stpg->tpg, SCSI_PROTOCOL_SRP); 3767 if (res) { 3768 kfree(stpg); 3769 return ERR_PTR(res); 3770 } 3771 3772 mutex_lock(&sport_id->mutex); 3773 list_add_tail(&stpg->entry, &sport_id->tpg_list); 3774 mutex_unlock(&sport_id->mutex); 3775 3776 return &stpg->tpg; 3777 } 3778 3779 /** 3780 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg 3781 * @tpg: Target portal group to deregister. 3782 */ 3783 static void srpt_drop_tpg(struct se_portal_group *tpg) 3784 { 3785 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg); 3786 struct srpt_port_id *sport_id = stpg->sport_id; 3787 struct srpt_port *sport = srpt_tpg_to_sport(tpg); 3788 3789 mutex_lock(&sport_id->mutex); 3790 list_del(&stpg->entry); 3791 mutex_unlock(&sport_id->mutex); 3792 3793 sport->enabled = false; 3794 core_tpg_deregister(tpg); 3795 kfree(stpg); 3796 } 3797 3798 /** 3799 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port 3800 * @tf: Not used. 3801 * @group: Not used. 3802 * @name: $port. 3803 */ 3804 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3805 struct config_group *group, 3806 const char *name) 3807 { 3808 return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL); 3809 } 3810 3811 /** 3812 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port 3813 * @wwn: $port. 3814 */ 3815 static void srpt_drop_tport(struct se_wwn *wwn) 3816 { 3817 } 3818 3819 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf) 3820 { 3821 return scnprintf(buf, PAGE_SIZE, "\n"); 3822 } 3823 3824 CONFIGFS_ATTR_RO(srpt_wwn_, version); 3825 3826 static struct configfs_attribute *srpt_wwn_attrs[] = { 3827 &srpt_wwn_attr_version, 3828 NULL, 3829 }; 3830 3831 static const struct target_core_fabric_ops srpt_template = { 3832 .module = THIS_MODULE, 3833 .fabric_name = "srpt", 3834 .tpg_get_wwn = srpt_get_fabric_wwn, 3835 .tpg_get_tag = srpt_get_tag, 3836 .tpg_check_demo_mode = srpt_check_false, 3837 .tpg_check_demo_mode_cache = srpt_check_true, 3838 .tpg_check_demo_mode_write_protect = srpt_check_true, 3839 .tpg_check_prod_mode_write_protect = srpt_check_false, 3840 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3841 .release_cmd = srpt_release_cmd, 3842 .check_stop_free = srpt_check_stop_free, 3843 .close_session = srpt_close_session, 3844 .sess_get_index = srpt_sess_get_index, 3845 .sess_get_initiator_sid = NULL, 3846 .write_pending = srpt_write_pending, 3847 .set_default_node_attributes = srpt_set_default_node_attrs, 3848 .get_cmd_state = srpt_get_tcm_cmd_state, 3849 .queue_data_in = srpt_queue_data_in, 3850 .queue_status = srpt_queue_status, 3851 .queue_tm_rsp = srpt_queue_tm_rsp, 3852 .aborted_task = srpt_aborted_task, 3853 /* 3854 * Setup function pointers for generic logic in 3855 * target_core_fabric_configfs.c 3856 */ 3857 .fabric_make_wwn = srpt_make_tport, 3858 .fabric_drop_wwn = srpt_drop_tport, 3859 .fabric_make_tpg = srpt_make_tpg, 3860 .fabric_drop_tpg = srpt_drop_tpg, 3861 .fabric_init_nodeacl = srpt_init_nodeacl, 3862 3863 .tfc_discovery_attrs = srpt_da_attrs, 3864 .tfc_wwn_attrs = srpt_wwn_attrs, 3865 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3866 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3867 }; 3868 3869 /** 3870 * srpt_init_module - kernel module initialization 3871 * 3872 * Note: Since ib_register_client() registers callback functions, and since at 3873 * least one of these callback functions (srpt_add_one()) calls target core 3874 * functions, this driver must be registered with the target core before 3875 * ib_register_client() is called. 3876 */ 3877 static int __init srpt_init_module(void) 3878 { 3879 int ret; 3880 3881 ret = -EINVAL; 3882 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3883 pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n", 3884 srp_max_req_size, MIN_MAX_REQ_SIZE); 3885 goto out; 3886 } 3887 3888 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3889 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3890 pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n", 3891 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3892 goto out; 3893 } 3894 3895 ret = target_register_template(&srpt_template); 3896 if (ret) 3897 goto out; 3898 3899 ret = ib_register_client(&srpt_client); 3900 if (ret) { 3901 pr_err("couldn't register IB client\n"); 3902 goto out_unregister_target; 3903 } 3904 3905 return 0; 3906 3907 out_unregister_target: 3908 target_unregister_template(&srpt_template); 3909 out: 3910 return ret; 3911 } 3912 3913 static void __exit srpt_cleanup_module(void) 3914 { 3915 if (rdma_cm_id) 3916 rdma_destroy_id(rdma_cm_id); 3917 ib_unregister_client(&srpt_client); 3918 target_unregister_template(&srpt_template); 3919 } 3920 3921 module_init(srpt_init_module); 3922 module_exit(srpt_cleanup_module); 3923