1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_tcq.h> 45 #include <target/configfs_macros.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric_configfs.h> 48 #include <target/target_core_fabric.h> 49 #include <target/target_core_configfs.h> 50 #include "ib_srpt.h" 51 52 /* Name of this kernel module. */ 53 #define DRV_NAME "ib_srpt" 54 #define DRV_VERSION "2.0.0" 55 #define DRV_RELDATE "2011-02-14" 56 57 #define SRPT_ID_STRING "Linux SRP target" 58 59 #undef pr_fmt 60 #define pr_fmt(fmt) DRV_NAME " " fmt 61 62 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 64 "v" DRV_VERSION " (" DRV_RELDATE ")"); 65 MODULE_LICENSE("Dual BSD/GPL"); 66 67 /* 68 * Global Variables 69 */ 70 71 static u64 srpt_service_guid; 72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 74 75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 76 module_param(srp_max_req_size, int, 0444); 77 MODULE_PARM_DESC(srp_max_req_size, 78 "Maximum size of SRP request messages in bytes."); 79 80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 81 module_param(srpt_srq_size, int, 0444); 82 MODULE_PARM_DESC(srpt_srq_size, 83 "Shared receive queue (SRQ) size."); 84 85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 86 { 87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 88 } 89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 90 0444); 91 MODULE_PARM_DESC(srpt_service_guid, 92 "Using this value for ioc_guid, id_ext, and cm_listen_id" 93 " instead of using the node_guid of the first HCA."); 94 95 static struct ib_client srpt_client; 96 static struct target_fabric_configfs *srpt_target; 97 static void srpt_release_channel(struct srpt_rdma_ch *ch); 98 static int srpt_queue_status(struct se_cmd *cmd); 99 100 /** 101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE. 102 */ 103 static inline 104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir) 105 { 106 switch (dir) { 107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE; 108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE; 109 default: return dir; 110 } 111 } 112 113 /** 114 * srpt_sdev_name() - Return the name associated with the HCA. 115 * 116 * Examples are ib0, ib1, ... 117 */ 118 static inline const char *srpt_sdev_name(struct srpt_device *sdev) 119 { 120 return sdev->device->name; 121 } 122 123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch) 124 { 125 unsigned long flags; 126 enum rdma_ch_state state; 127 128 spin_lock_irqsave(&ch->spinlock, flags); 129 state = ch->state; 130 spin_unlock_irqrestore(&ch->spinlock, flags); 131 return state; 132 } 133 134 static enum rdma_ch_state 135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state) 136 { 137 unsigned long flags; 138 enum rdma_ch_state prev; 139 140 spin_lock_irqsave(&ch->spinlock, flags); 141 prev = ch->state; 142 ch->state = new_state; 143 spin_unlock_irqrestore(&ch->spinlock, flags); 144 return prev; 145 } 146 147 /** 148 * srpt_test_and_set_ch_state() - Test and set the channel state. 149 * 150 * Returns true if and only if the channel state has been set to the new state. 151 */ 152 static bool 153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old, 154 enum rdma_ch_state new) 155 { 156 unsigned long flags; 157 enum rdma_ch_state prev; 158 159 spin_lock_irqsave(&ch->spinlock, flags); 160 prev = ch->state; 161 if (prev == old) 162 ch->state = new; 163 spin_unlock_irqrestore(&ch->spinlock, flags); 164 return prev == old; 165 } 166 167 /** 168 * srpt_event_handler() - Asynchronous IB event callback function. 169 * 170 * Callback function called by the InfiniBand core when an asynchronous IB 171 * event occurs. This callback may occur in interrupt context. See also 172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 173 * Architecture Specification. 174 */ 175 static void srpt_event_handler(struct ib_event_handler *handler, 176 struct ib_event *event) 177 { 178 struct srpt_device *sdev; 179 struct srpt_port *sport; 180 181 sdev = ib_get_client_data(event->device, &srpt_client); 182 if (!sdev || sdev->device != event->device) 183 return; 184 185 pr_debug("ASYNC event= %d on device= %s\n", event->event, 186 srpt_sdev_name(sdev)); 187 188 switch (event->event) { 189 case IB_EVENT_PORT_ERR: 190 if (event->element.port_num <= sdev->device->phys_port_cnt) { 191 sport = &sdev->port[event->element.port_num - 1]; 192 sport->lid = 0; 193 sport->sm_lid = 0; 194 } 195 break; 196 case IB_EVENT_PORT_ACTIVE: 197 case IB_EVENT_LID_CHANGE: 198 case IB_EVENT_PKEY_CHANGE: 199 case IB_EVENT_SM_CHANGE: 200 case IB_EVENT_CLIENT_REREGISTER: 201 /* Refresh port data asynchronously. */ 202 if (event->element.port_num <= sdev->device->phys_port_cnt) { 203 sport = &sdev->port[event->element.port_num - 1]; 204 if (!sport->lid && !sport->sm_lid) 205 schedule_work(&sport->work); 206 } 207 break; 208 default: 209 printk(KERN_ERR "received unrecognized IB event %d\n", 210 event->event); 211 break; 212 } 213 } 214 215 /** 216 * srpt_srq_event() - SRQ event callback function. 217 */ 218 static void srpt_srq_event(struct ib_event *event, void *ctx) 219 { 220 printk(KERN_INFO "SRQ event %d\n", event->event); 221 } 222 223 /** 224 * srpt_qp_event() - QP event callback function. 225 */ 226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 227 { 228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch)); 230 231 switch (event->event) { 232 case IB_EVENT_COMM_EST: 233 ib_cm_notify(ch->cm_id, event->event); 234 break; 235 case IB_EVENT_QP_LAST_WQE_REACHED: 236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING, 237 CH_RELEASING)) 238 srpt_release_channel(ch); 239 else 240 pr_debug("%s: state %d - ignored LAST_WQE.\n", 241 ch->sess_name, srpt_get_ch_state(ch)); 242 break; 243 default: 244 printk(KERN_ERR "received unrecognized IB QP event %d\n", 245 event->event); 246 break; 247 } 248 } 249 250 /** 251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 252 * 253 * @slot: one-based slot number. 254 * @value: four-bit value. 255 * 256 * Copies the lowest four bits of value in element slot of the array of four 257 * bit elements called c_list (controller list). The index slot is one-based. 258 */ 259 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 260 { 261 u16 id; 262 u8 tmp; 263 264 id = (slot - 1) / 2; 265 if (slot & 0x1) { 266 tmp = c_list[id] & 0xf; 267 c_list[id] = (value << 4) | tmp; 268 } else { 269 tmp = c_list[id] & 0xf0; 270 c_list[id] = (value & 0xf) | tmp; 271 } 272 } 273 274 /** 275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 276 * 277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 278 * Specification. 279 */ 280 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 281 { 282 struct ib_class_port_info *cif; 283 284 cif = (struct ib_class_port_info *)mad->data; 285 memset(cif, 0, sizeof *cif); 286 cif->base_version = 1; 287 cif->class_version = 1; 288 cif->resp_time_value = 20; 289 290 mad->mad_hdr.status = 0; 291 } 292 293 /** 294 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 295 * 296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 297 * Specification. See also section B.7, table B.6 in the SRP r16a document. 298 */ 299 static void srpt_get_iou(struct ib_dm_mad *mad) 300 { 301 struct ib_dm_iou_info *ioui; 302 u8 slot; 303 int i; 304 305 ioui = (struct ib_dm_iou_info *)mad->data; 306 ioui->change_id = __constant_cpu_to_be16(1); 307 ioui->max_controllers = 16; 308 309 /* set present for slot 1 and empty for the rest */ 310 srpt_set_ioc(ioui->controller_list, 1, 1); 311 for (i = 1, slot = 2; i < 16; i++, slot++) 312 srpt_set_ioc(ioui->controller_list, slot, 0); 313 314 mad->mad_hdr.status = 0; 315 } 316 317 /** 318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 319 * 320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 321 * Architecture Specification. See also section B.7, table B.7 in the SRP 322 * r16a document. 323 */ 324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 325 struct ib_dm_mad *mad) 326 { 327 struct srpt_device *sdev = sport->sdev; 328 struct ib_dm_ioc_profile *iocp; 329 330 iocp = (struct ib_dm_ioc_profile *)mad->data; 331 332 if (!slot || slot > 16) { 333 mad->mad_hdr.status 334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 335 return; 336 } 337 338 if (slot > 2) { 339 mad->mad_hdr.status 340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 341 return; 342 } 343 344 memset(iocp, 0, sizeof *iocp); 345 strcpy(iocp->id_string, SRPT_ID_STRING); 346 iocp->guid = cpu_to_be64(srpt_service_guid); 347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id); 349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver); 350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 351 iocp->subsys_device_id = 0x0; 352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS); 354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL); 355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION); 356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 357 iocp->rdma_read_depth = 4; 358 iocp->send_size = cpu_to_be32(srp_max_req_size); 359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 360 1U << 24)); 361 iocp->num_svc_entries = 1; 362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 364 365 mad->mad_hdr.status = 0; 366 } 367 368 /** 369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 370 * 371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 372 * Specification. See also section B.7, table B.8 in the SRP r16a document. 373 */ 374 static void srpt_get_svc_entries(u64 ioc_guid, 375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 376 { 377 struct ib_dm_svc_entries *svc_entries; 378 379 WARN_ON(!ioc_guid); 380 381 if (!slot || slot > 16) { 382 mad->mad_hdr.status 383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 384 return; 385 } 386 387 if (slot > 2 || lo > hi || hi > 1) { 388 mad->mad_hdr.status 389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 390 return; 391 } 392 393 svc_entries = (struct ib_dm_svc_entries *)mad->data; 394 memset(svc_entries, 0, sizeof *svc_entries); 395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 396 snprintf(svc_entries->service_entries[0].name, 397 sizeof(svc_entries->service_entries[0].name), 398 "%s%016llx", 399 SRP_SERVICE_NAME_PREFIX, 400 ioc_guid); 401 402 mad->mad_hdr.status = 0; 403 } 404 405 /** 406 * srpt_mgmt_method_get() - Process a received management datagram. 407 * @sp: source port through which the MAD has been received. 408 * @rq_mad: received MAD. 409 * @rsp_mad: response MAD. 410 */ 411 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 412 struct ib_dm_mad *rsp_mad) 413 { 414 u16 attr_id; 415 u32 slot; 416 u8 hi, lo; 417 418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 419 switch (attr_id) { 420 case DM_ATTR_CLASS_PORT_INFO: 421 srpt_get_class_port_info(rsp_mad); 422 break; 423 case DM_ATTR_IOU_INFO: 424 srpt_get_iou(rsp_mad); 425 break; 426 case DM_ATTR_IOC_PROFILE: 427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 428 srpt_get_ioc(sp, slot, rsp_mad); 429 break; 430 case DM_ATTR_SVC_ENTRIES: 431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 432 hi = (u8) ((slot >> 8) & 0xff); 433 lo = (u8) (slot & 0xff); 434 slot = (u16) ((slot >> 16) & 0xffff); 435 srpt_get_svc_entries(srpt_service_guid, 436 slot, hi, lo, rsp_mad); 437 break; 438 default: 439 rsp_mad->mad_hdr.status = 440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 441 break; 442 } 443 } 444 445 /** 446 * srpt_mad_send_handler() - Post MAD-send callback function. 447 */ 448 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 449 struct ib_mad_send_wc *mad_wc) 450 { 451 ib_destroy_ah(mad_wc->send_buf->ah); 452 ib_free_send_mad(mad_wc->send_buf); 453 } 454 455 /** 456 * srpt_mad_recv_handler() - MAD reception callback function. 457 */ 458 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 459 struct ib_mad_recv_wc *mad_wc) 460 { 461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 462 struct ib_ah *ah; 463 struct ib_mad_send_buf *rsp; 464 struct ib_dm_mad *dm_mad; 465 466 if (!mad_wc || !mad_wc->recv_buf.mad) 467 return; 468 469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 470 mad_wc->recv_buf.grh, mad_agent->port_num); 471 if (IS_ERR(ah)) 472 goto err; 473 474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 475 476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 477 mad_wc->wc->pkey_index, 0, 478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 479 GFP_KERNEL); 480 if (IS_ERR(rsp)) 481 goto err_rsp; 482 483 rsp->ah = ah; 484 485 dm_mad = rsp->mad; 486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad); 487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 488 dm_mad->mad_hdr.status = 0; 489 490 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 491 case IB_MGMT_METHOD_GET: 492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 493 break; 494 case IB_MGMT_METHOD_SET: 495 dm_mad->mad_hdr.status = 496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 497 break; 498 default: 499 dm_mad->mad_hdr.status = 500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 501 break; 502 } 503 504 if (!ib_post_send_mad(rsp, NULL)) { 505 ib_free_recv_mad(mad_wc); 506 /* will destroy_ah & free_send_mad in send completion */ 507 return; 508 } 509 510 ib_free_send_mad(rsp); 511 512 err_rsp: 513 ib_destroy_ah(ah); 514 err: 515 ib_free_recv_mad(mad_wc); 516 } 517 518 /** 519 * srpt_refresh_port() - Configure a HCA port. 520 * 521 * Enable InfiniBand management datagram processing, update the cached sm_lid, 522 * lid and gid values, and register a callback function for processing MADs 523 * on the specified port. 524 * 525 * Note: It is safe to call this function more than once for the same port. 526 */ 527 static int srpt_refresh_port(struct srpt_port *sport) 528 { 529 struct ib_mad_reg_req reg_req; 530 struct ib_port_modify port_modify; 531 struct ib_port_attr port_attr; 532 int ret; 533 534 memset(&port_modify, 0, sizeof port_modify); 535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 536 port_modify.clr_port_cap_mask = 0; 537 538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 539 if (ret) 540 goto err_mod_port; 541 542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 543 if (ret) 544 goto err_query_port; 545 546 sport->sm_lid = port_attr.sm_lid; 547 sport->lid = port_attr.lid; 548 549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 550 if (ret) 551 goto err_query_port; 552 553 if (!sport->mad_agent) { 554 memset(®_req, 0, sizeof reg_req); 555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 559 560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 561 sport->port, 562 IB_QPT_GSI, 563 ®_req, 0, 564 srpt_mad_send_handler, 565 srpt_mad_recv_handler, 566 sport); 567 if (IS_ERR(sport->mad_agent)) { 568 ret = PTR_ERR(sport->mad_agent); 569 sport->mad_agent = NULL; 570 goto err_query_port; 571 } 572 } 573 574 return 0; 575 576 err_query_port: 577 578 port_modify.set_port_cap_mask = 0; 579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 581 582 err_mod_port: 583 584 return ret; 585 } 586 587 /** 588 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 589 * 590 * Note: It is safe to call this function more than once for the same device. 591 */ 592 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 593 { 594 struct ib_port_modify port_modify = { 595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 596 }; 597 struct srpt_port *sport; 598 int i; 599 600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 601 sport = &sdev->port[i - 1]; 602 WARN_ON(sport->port != i); 603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 604 printk(KERN_ERR "disabling MAD processing failed.\n"); 605 if (sport->mad_agent) { 606 ib_unregister_mad_agent(sport->mad_agent); 607 sport->mad_agent = NULL; 608 } 609 } 610 } 611 612 /** 613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 614 */ 615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 616 int ioctx_size, int dma_size, 617 enum dma_data_direction dir) 618 { 619 struct srpt_ioctx *ioctx; 620 621 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 622 if (!ioctx) 623 goto err; 624 625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 626 if (!ioctx->buf) 627 goto err_free_ioctx; 628 629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 630 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 631 goto err_free_buf; 632 633 return ioctx; 634 635 err_free_buf: 636 kfree(ioctx->buf); 637 err_free_ioctx: 638 kfree(ioctx); 639 err: 640 return NULL; 641 } 642 643 /** 644 * srpt_free_ioctx() - Free an SRPT I/O context structure. 645 */ 646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 647 int dma_size, enum dma_data_direction dir) 648 { 649 if (!ioctx) 650 return; 651 652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 653 kfree(ioctx->buf); 654 kfree(ioctx); 655 } 656 657 /** 658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 659 * @sdev: Device to allocate the I/O context ring for. 660 * @ring_size: Number of elements in the I/O context ring. 661 * @ioctx_size: I/O context size. 662 * @dma_size: DMA buffer size. 663 * @dir: DMA data direction. 664 */ 665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 666 int ring_size, int ioctx_size, 667 int dma_size, enum dma_data_direction dir) 668 { 669 struct srpt_ioctx **ring; 670 int i; 671 672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 673 && ioctx_size != sizeof(struct srpt_send_ioctx)); 674 675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 676 if (!ring) 677 goto out; 678 for (i = 0; i < ring_size; ++i) { 679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 680 if (!ring[i]) 681 goto err; 682 ring[i]->index = i; 683 } 684 goto out; 685 686 err: 687 while (--i >= 0) 688 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 689 kfree(ring); 690 ring = NULL; 691 out: 692 return ring; 693 } 694 695 /** 696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 697 */ 698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 699 struct srpt_device *sdev, int ring_size, 700 int dma_size, enum dma_data_direction dir) 701 { 702 int i; 703 704 for (i = 0; i < ring_size; ++i) 705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 706 kfree(ioctx_ring); 707 } 708 709 /** 710 * srpt_get_cmd_state() - Get the state of a SCSI command. 711 */ 712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 713 { 714 enum srpt_command_state state; 715 unsigned long flags; 716 717 BUG_ON(!ioctx); 718 719 spin_lock_irqsave(&ioctx->spinlock, flags); 720 state = ioctx->state; 721 spin_unlock_irqrestore(&ioctx->spinlock, flags); 722 return state; 723 } 724 725 /** 726 * srpt_set_cmd_state() - Set the state of a SCSI command. 727 * 728 * Does not modify the state of aborted commands. Returns the previous command 729 * state. 730 */ 731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 732 enum srpt_command_state new) 733 { 734 enum srpt_command_state previous; 735 unsigned long flags; 736 737 BUG_ON(!ioctx); 738 739 spin_lock_irqsave(&ioctx->spinlock, flags); 740 previous = ioctx->state; 741 if (previous != SRPT_STATE_DONE) 742 ioctx->state = new; 743 spin_unlock_irqrestore(&ioctx->spinlock, flags); 744 745 return previous; 746 } 747 748 /** 749 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 750 * 751 * Returns true if and only if the previous command state was equal to 'old'. 752 */ 753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 754 enum srpt_command_state old, 755 enum srpt_command_state new) 756 { 757 enum srpt_command_state previous; 758 unsigned long flags; 759 760 WARN_ON(!ioctx); 761 WARN_ON(old == SRPT_STATE_DONE); 762 WARN_ON(new == SRPT_STATE_NEW); 763 764 spin_lock_irqsave(&ioctx->spinlock, flags); 765 previous = ioctx->state; 766 if (previous == old) 767 ioctx->state = new; 768 spin_unlock_irqrestore(&ioctx->spinlock, flags); 769 return previous == old; 770 } 771 772 /** 773 * srpt_post_recv() - Post an IB receive request. 774 */ 775 static int srpt_post_recv(struct srpt_device *sdev, 776 struct srpt_recv_ioctx *ioctx) 777 { 778 struct ib_sge list; 779 struct ib_recv_wr wr, *bad_wr; 780 781 BUG_ON(!sdev); 782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index); 783 784 list.addr = ioctx->ioctx.dma; 785 list.length = srp_max_req_size; 786 list.lkey = sdev->mr->lkey; 787 788 wr.next = NULL; 789 wr.sg_list = &list; 790 wr.num_sge = 1; 791 792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 793 } 794 795 /** 796 * srpt_post_send() - Post an IB send request. 797 * 798 * Returns zero upon success and a non-zero value upon failure. 799 */ 800 static int srpt_post_send(struct srpt_rdma_ch *ch, 801 struct srpt_send_ioctx *ioctx, int len) 802 { 803 struct ib_sge list; 804 struct ib_send_wr wr, *bad_wr; 805 struct srpt_device *sdev = ch->sport->sdev; 806 int ret; 807 808 atomic_inc(&ch->req_lim); 809 810 ret = -ENOMEM; 811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { 812 printk(KERN_WARNING "IB send queue full (needed 1)\n"); 813 goto out; 814 } 815 816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, 817 DMA_TO_DEVICE); 818 819 list.addr = ioctx->ioctx.dma; 820 list.length = len; 821 list.lkey = sdev->mr->lkey; 822 823 wr.next = NULL; 824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index); 825 wr.sg_list = &list; 826 wr.num_sge = 1; 827 wr.opcode = IB_WR_SEND; 828 wr.send_flags = IB_SEND_SIGNALED; 829 830 ret = ib_post_send(ch->qp, &wr, &bad_wr); 831 832 out: 833 if (ret < 0) { 834 atomic_inc(&ch->sq_wr_avail); 835 atomic_dec(&ch->req_lim); 836 } 837 return ret; 838 } 839 840 /** 841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 842 * @ioctx: Pointer to the I/O context associated with the request. 843 * @srp_cmd: Pointer to the SRP_CMD request data. 844 * @dir: Pointer to the variable to which the transfer direction will be 845 * written. 846 * @data_len: Pointer to the variable to which the total data length of all 847 * descriptors in the SRP_CMD request will be written. 848 * 849 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 850 * 851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 852 * -ENOMEM when memory allocation fails and zero upon success. 853 */ 854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 855 struct srp_cmd *srp_cmd, 856 enum dma_data_direction *dir, u64 *data_len) 857 { 858 struct srp_indirect_buf *idb; 859 struct srp_direct_buf *db; 860 unsigned add_cdb_offset; 861 int ret; 862 863 /* 864 * The pointer computations below will only be compiled correctly 865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 866 * whether srp_cmd::add_data has been declared as a byte pointer. 867 */ 868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) 869 && !__same_type(srp_cmd->add_data[0], (u8)0)); 870 871 BUG_ON(!dir); 872 BUG_ON(!data_len); 873 874 ret = 0; 875 *data_len = 0; 876 877 /* 878 * The lower four bits of the buffer format field contain the DATA-IN 879 * buffer descriptor format, and the highest four bits contain the 880 * DATA-OUT buffer descriptor format. 881 */ 882 *dir = DMA_NONE; 883 if (srp_cmd->buf_fmt & 0xf) 884 /* DATA-IN: transfer data from target to initiator (read). */ 885 *dir = DMA_FROM_DEVICE; 886 else if (srp_cmd->buf_fmt >> 4) 887 /* DATA-OUT: transfer data from initiator to target (write). */ 888 *dir = DMA_TO_DEVICE; 889 890 /* 891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 892 * CDB LENGTH' field are reserved and the size in bytes of this field 893 * is four times the value specified in bits 3..7. Hence the "& ~3". 894 */ 895 add_cdb_offset = srp_cmd->add_cdb_len & ~3; 896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 898 ioctx->n_rbuf = 1; 899 ioctx->rbufs = &ioctx->single_rbuf; 900 901 db = (struct srp_direct_buf *)(srp_cmd->add_data 902 + add_cdb_offset); 903 memcpy(ioctx->rbufs, db, sizeof *db); 904 *data_len = be32_to_cpu(db->len); 905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data 908 + add_cdb_offset); 909 910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db; 911 912 if (ioctx->n_rbuf > 913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 914 printk(KERN_ERR "received unsupported SRP_CMD request" 915 " type (%u out + %u in != %u / %zu)\n", 916 srp_cmd->data_out_desc_cnt, 917 srp_cmd->data_in_desc_cnt, 918 be32_to_cpu(idb->table_desc.len), 919 sizeof(*db)); 920 ioctx->n_rbuf = 0; 921 ret = -EINVAL; 922 goto out; 923 } 924 925 if (ioctx->n_rbuf == 1) 926 ioctx->rbufs = &ioctx->single_rbuf; 927 else { 928 ioctx->rbufs = 929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC); 930 if (!ioctx->rbufs) { 931 ioctx->n_rbuf = 0; 932 ret = -ENOMEM; 933 goto out; 934 } 935 } 936 937 db = idb->desc_list; 938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db); 939 *data_len = be32_to_cpu(idb->len); 940 } 941 out: 942 return ret; 943 } 944 945 /** 946 * srpt_init_ch_qp() - Initialize queue pair attributes. 947 * 948 * Initialized the attributes of queue pair 'qp' by allowing local write, 949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 950 */ 951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 952 { 953 struct ib_qp_attr *attr; 954 int ret; 955 956 attr = kzalloc(sizeof *attr, GFP_KERNEL); 957 if (!attr) 958 return -ENOMEM; 959 960 attr->qp_state = IB_QPS_INIT; 961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 962 IB_ACCESS_REMOTE_WRITE; 963 attr->port_num = ch->sport->port; 964 attr->pkey_index = 0; 965 966 ret = ib_modify_qp(qp, attr, 967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 968 IB_QP_PKEY_INDEX); 969 970 kfree(attr); 971 return ret; 972 } 973 974 /** 975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 976 * @ch: channel of the queue pair. 977 * @qp: queue pair to change the state of. 978 * 979 * Returns zero upon success and a negative value upon failure. 980 * 981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 982 * If this structure ever becomes larger, it might be necessary to allocate 983 * it dynamically instead of on the stack. 984 */ 985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 986 { 987 struct ib_qp_attr qp_attr; 988 int attr_mask; 989 int ret; 990 991 qp_attr.qp_state = IB_QPS_RTR; 992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 993 if (ret) 994 goto out; 995 996 qp_attr.max_dest_rd_atomic = 4; 997 998 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 999 1000 out: 1001 return ret; 1002 } 1003 1004 /** 1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1006 * @ch: channel of the queue pair. 1007 * @qp: queue pair to change the state of. 1008 * 1009 * Returns zero upon success and a negative value upon failure. 1010 * 1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1012 * If this structure ever becomes larger, it might be necessary to allocate 1013 * it dynamically instead of on the stack. 1014 */ 1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1016 { 1017 struct ib_qp_attr qp_attr; 1018 int attr_mask; 1019 int ret; 1020 1021 qp_attr.qp_state = IB_QPS_RTS; 1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1023 if (ret) 1024 goto out; 1025 1026 qp_attr.max_rd_atomic = 4; 1027 1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1029 1030 out: 1031 return ret; 1032 } 1033 1034 /** 1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1036 */ 1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1038 { 1039 struct ib_qp_attr qp_attr; 1040 1041 qp_attr.qp_state = IB_QPS_ERR; 1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1043 } 1044 1045 /** 1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. 1047 */ 1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1049 struct srpt_send_ioctx *ioctx) 1050 { 1051 struct scatterlist *sg; 1052 enum dma_data_direction dir; 1053 1054 BUG_ON(!ch); 1055 BUG_ON(!ioctx); 1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius); 1057 1058 while (ioctx->n_rdma) 1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge); 1060 1061 kfree(ioctx->rdma_ius); 1062 ioctx->rdma_ius = NULL; 1063 1064 if (ioctx->mapped_sg_count) { 1065 sg = ioctx->sg; 1066 WARN_ON(!sg); 1067 dir = ioctx->cmd.data_direction; 1068 BUG_ON(dir == DMA_NONE); 1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, 1070 opposite_dma_dir(dir)); 1071 ioctx->mapped_sg_count = 0; 1072 } 1073 } 1074 1075 /** 1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. 1077 */ 1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1079 struct srpt_send_ioctx *ioctx) 1080 { 1081 struct se_cmd *cmd; 1082 struct scatterlist *sg, *sg_orig; 1083 int sg_cnt; 1084 enum dma_data_direction dir; 1085 struct rdma_iu *riu; 1086 struct srp_direct_buf *db; 1087 dma_addr_t dma_addr; 1088 struct ib_sge *sge; 1089 u64 raddr; 1090 u32 rsize; 1091 u32 tsize; 1092 u32 dma_len; 1093 int count, nrdma; 1094 int i, j, k; 1095 1096 BUG_ON(!ch); 1097 BUG_ON(!ioctx); 1098 cmd = &ioctx->cmd; 1099 dir = cmd->data_direction; 1100 BUG_ON(dir == DMA_NONE); 1101 1102 ioctx->sg = sg = sg_orig = cmd->t_data_sg; 1103 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents; 1104 1105 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, 1106 opposite_dma_dir(dir)); 1107 if (unlikely(!count)) 1108 return -EAGAIN; 1109 1110 ioctx->mapped_sg_count = count; 1111 1112 if (ioctx->rdma_ius && ioctx->n_rdma_ius) 1113 nrdma = ioctx->n_rdma_ius; 1114 else { 1115 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE 1116 + ioctx->n_rbuf; 1117 1118 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL); 1119 if (!ioctx->rdma_ius) 1120 goto free_mem; 1121 1122 ioctx->n_rdma_ius = nrdma; 1123 } 1124 1125 db = ioctx->rbufs; 1126 tsize = cmd->data_length; 1127 dma_len = sg_dma_len(&sg[0]); 1128 riu = ioctx->rdma_ius; 1129 1130 /* 1131 * For each remote desc - calculate the #ib_sge. 1132 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then 1133 * each remote desc rdma_iu is required a rdma wr; 1134 * else 1135 * we need to allocate extra rdma_iu to carry extra #ib_sge in 1136 * another rdma wr 1137 */ 1138 for (i = 0, j = 0; 1139 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1140 rsize = be32_to_cpu(db->len); 1141 raddr = be64_to_cpu(db->va); 1142 riu->raddr = raddr; 1143 riu->rkey = be32_to_cpu(db->key); 1144 riu->sge_cnt = 0; 1145 1146 /* calculate how many sge required for this remote_buf */ 1147 while (rsize > 0 && tsize > 0) { 1148 1149 if (rsize >= dma_len) { 1150 tsize -= dma_len; 1151 rsize -= dma_len; 1152 raddr += dma_len; 1153 1154 if (tsize > 0) { 1155 ++j; 1156 if (j < count) { 1157 sg = sg_next(sg); 1158 dma_len = sg_dma_len(sg); 1159 } 1160 } 1161 } else { 1162 tsize -= rsize; 1163 dma_len -= rsize; 1164 rsize = 0; 1165 } 1166 1167 ++riu->sge_cnt; 1168 1169 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) { 1170 ++ioctx->n_rdma; 1171 riu->sge = 1172 kmalloc(riu->sge_cnt * sizeof *riu->sge, 1173 GFP_KERNEL); 1174 if (!riu->sge) 1175 goto free_mem; 1176 1177 ++riu; 1178 riu->sge_cnt = 0; 1179 riu->raddr = raddr; 1180 riu->rkey = be32_to_cpu(db->key); 1181 } 1182 } 1183 1184 ++ioctx->n_rdma; 1185 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge, 1186 GFP_KERNEL); 1187 if (!riu->sge) 1188 goto free_mem; 1189 } 1190 1191 db = ioctx->rbufs; 1192 tsize = cmd->data_length; 1193 riu = ioctx->rdma_ius; 1194 sg = sg_orig; 1195 dma_len = sg_dma_len(&sg[0]); 1196 dma_addr = sg_dma_address(&sg[0]); 1197 1198 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ 1199 for (i = 0, j = 0; 1200 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1201 rsize = be32_to_cpu(db->len); 1202 sge = riu->sge; 1203 k = 0; 1204 1205 while (rsize > 0 && tsize > 0) { 1206 sge->addr = dma_addr; 1207 sge->lkey = ch->sport->sdev->mr->lkey; 1208 1209 if (rsize >= dma_len) { 1210 sge->length = 1211 (tsize < dma_len) ? tsize : dma_len; 1212 tsize -= dma_len; 1213 rsize -= dma_len; 1214 1215 if (tsize > 0) { 1216 ++j; 1217 if (j < count) { 1218 sg = sg_next(sg); 1219 dma_len = sg_dma_len(sg); 1220 dma_addr = sg_dma_address(sg); 1221 } 1222 } 1223 } else { 1224 sge->length = (tsize < rsize) ? tsize : rsize; 1225 tsize -= rsize; 1226 dma_len -= rsize; 1227 dma_addr += rsize; 1228 rsize = 0; 1229 } 1230 1231 ++k; 1232 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) { 1233 ++riu; 1234 sge = riu->sge; 1235 k = 0; 1236 } else if (rsize > 0 && tsize > 0) 1237 ++sge; 1238 } 1239 } 1240 1241 return 0; 1242 1243 free_mem: 1244 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1245 1246 return -ENOMEM; 1247 } 1248 1249 /** 1250 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1251 */ 1252 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1253 { 1254 struct srpt_send_ioctx *ioctx; 1255 unsigned long flags; 1256 1257 BUG_ON(!ch); 1258 1259 ioctx = NULL; 1260 spin_lock_irqsave(&ch->spinlock, flags); 1261 if (!list_empty(&ch->free_list)) { 1262 ioctx = list_first_entry(&ch->free_list, 1263 struct srpt_send_ioctx, free_list); 1264 list_del(&ioctx->free_list); 1265 } 1266 spin_unlock_irqrestore(&ch->spinlock, flags); 1267 1268 if (!ioctx) 1269 return ioctx; 1270 1271 BUG_ON(ioctx->ch != ch); 1272 spin_lock_init(&ioctx->spinlock); 1273 ioctx->state = SRPT_STATE_NEW; 1274 ioctx->n_rbuf = 0; 1275 ioctx->rbufs = NULL; 1276 ioctx->n_rdma = 0; 1277 ioctx->n_rdma_ius = 0; 1278 ioctx->rdma_ius = NULL; 1279 ioctx->mapped_sg_count = 0; 1280 init_completion(&ioctx->tx_done); 1281 ioctx->queue_status_only = false; 1282 /* 1283 * transport_init_se_cmd() does not initialize all fields, so do it 1284 * here. 1285 */ 1286 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1287 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1288 1289 return ioctx; 1290 } 1291 1292 /** 1293 * srpt_abort_cmd() - Abort a SCSI command. 1294 * @ioctx: I/O context associated with the SCSI command. 1295 * @context: Preferred execution context. 1296 */ 1297 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1298 { 1299 enum srpt_command_state state; 1300 unsigned long flags; 1301 1302 BUG_ON(!ioctx); 1303 1304 /* 1305 * If the command is in a state where the target core is waiting for 1306 * the ib_srpt driver, change the state to the next state. Changing 1307 * the state of the command from SRPT_STATE_NEED_DATA to 1308 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this 1309 * function a second time. 1310 */ 1311 1312 spin_lock_irqsave(&ioctx->spinlock, flags); 1313 state = ioctx->state; 1314 switch (state) { 1315 case SRPT_STATE_NEED_DATA: 1316 ioctx->state = SRPT_STATE_DATA_IN; 1317 break; 1318 case SRPT_STATE_DATA_IN: 1319 case SRPT_STATE_CMD_RSP_SENT: 1320 case SRPT_STATE_MGMT_RSP_SENT: 1321 ioctx->state = SRPT_STATE_DONE; 1322 break; 1323 default: 1324 break; 1325 } 1326 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1327 1328 if (state == SRPT_STATE_DONE) { 1329 struct srpt_rdma_ch *ch = ioctx->ch; 1330 1331 BUG_ON(ch->sess == NULL); 1332 1333 target_put_sess_cmd(ch->sess, &ioctx->cmd); 1334 goto out; 1335 } 1336 1337 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1338 ioctx->tag); 1339 1340 switch (state) { 1341 case SRPT_STATE_NEW: 1342 case SRPT_STATE_DATA_IN: 1343 case SRPT_STATE_MGMT: 1344 /* 1345 * Do nothing - defer abort processing until 1346 * srpt_queue_response() is invoked. 1347 */ 1348 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false)); 1349 break; 1350 case SRPT_STATE_NEED_DATA: 1351 /* DMA_TO_DEVICE (write) - RDMA read error. */ 1352 1353 /* XXX(hch): this is a horrible layering violation.. */ 1354 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1355 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE; 1356 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1357 break; 1358 case SRPT_STATE_CMD_RSP_SENT: 1359 /* 1360 * SRP_RSP sending failed or the SRP_RSP send completion has 1361 * not been received in time. 1362 */ 1363 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1364 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1365 break; 1366 case SRPT_STATE_MGMT_RSP_SENT: 1367 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1368 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1369 break; 1370 default: 1371 WARN(1, "Unexpected command state (%d)", state); 1372 break; 1373 } 1374 1375 out: 1376 return state; 1377 } 1378 1379 /** 1380 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion. 1381 */ 1382 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id) 1383 { 1384 struct srpt_send_ioctx *ioctx; 1385 enum srpt_command_state state; 1386 struct se_cmd *cmd; 1387 u32 index; 1388 1389 atomic_inc(&ch->sq_wr_avail); 1390 1391 index = idx_from_wr_id(wr_id); 1392 ioctx = ch->ioctx_ring[index]; 1393 state = srpt_get_cmd_state(ioctx); 1394 cmd = &ioctx->cmd; 1395 1396 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1397 && state != SRPT_STATE_MGMT_RSP_SENT 1398 && state != SRPT_STATE_NEED_DATA 1399 && state != SRPT_STATE_DONE); 1400 1401 /* If SRP_RSP sending failed, undo the ch->req_lim change. */ 1402 if (state == SRPT_STATE_CMD_RSP_SENT 1403 || state == SRPT_STATE_MGMT_RSP_SENT) 1404 atomic_dec(&ch->req_lim); 1405 1406 srpt_abort_cmd(ioctx); 1407 } 1408 1409 /** 1410 * srpt_handle_send_comp() - Process an IB send completion notification. 1411 */ 1412 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch, 1413 struct srpt_send_ioctx *ioctx) 1414 { 1415 enum srpt_command_state state; 1416 1417 atomic_inc(&ch->sq_wr_avail); 1418 1419 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1420 1421 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1422 && state != SRPT_STATE_MGMT_RSP_SENT 1423 && state != SRPT_STATE_DONE)) 1424 pr_debug("state = %d\n", state); 1425 1426 if (state != SRPT_STATE_DONE) { 1427 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1428 transport_generic_free_cmd(&ioctx->cmd, 0); 1429 } else { 1430 printk(KERN_ERR "IB completion has been received too late for" 1431 " wr_id = %u.\n", ioctx->ioctx.index); 1432 } 1433 } 1434 1435 /** 1436 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification. 1437 * 1438 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1439 * the data that has been transferred via IB RDMA had to be postponed until the 1440 * check_stop_free() callback. None of this is necessary anymore and needs to 1441 * be cleaned up. 1442 */ 1443 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch, 1444 struct srpt_send_ioctx *ioctx, 1445 enum srpt_opcode opcode) 1446 { 1447 WARN_ON(ioctx->n_rdma <= 0); 1448 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1449 1450 if (opcode == SRPT_RDMA_READ_LAST) { 1451 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1452 SRPT_STATE_DATA_IN)) 1453 target_execute_cmd(&ioctx->cmd); 1454 else 1455 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__, 1456 __LINE__, srpt_get_cmd_state(ioctx)); 1457 } else if (opcode == SRPT_RDMA_ABORT) { 1458 ioctx->rdma_aborted = true; 1459 } else { 1460 WARN(true, "unexpected opcode %d\n", opcode); 1461 } 1462 } 1463 1464 /** 1465 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion. 1466 */ 1467 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch, 1468 struct srpt_send_ioctx *ioctx, 1469 enum srpt_opcode opcode) 1470 { 1471 struct se_cmd *cmd; 1472 enum srpt_command_state state; 1473 1474 cmd = &ioctx->cmd; 1475 state = srpt_get_cmd_state(ioctx); 1476 switch (opcode) { 1477 case SRPT_RDMA_READ_LAST: 1478 if (ioctx->n_rdma <= 0) { 1479 printk(KERN_ERR "Received invalid RDMA read" 1480 " error completion with idx %d\n", 1481 ioctx->ioctx.index); 1482 break; 1483 } 1484 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1485 if (state == SRPT_STATE_NEED_DATA) 1486 srpt_abort_cmd(ioctx); 1487 else 1488 printk(KERN_ERR "%s[%d]: wrong state = %d\n", 1489 __func__, __LINE__, state); 1490 break; 1491 case SRPT_RDMA_WRITE_LAST: 1492 break; 1493 default: 1494 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__, 1495 __LINE__, opcode); 1496 break; 1497 } 1498 } 1499 1500 /** 1501 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1502 * @ch: RDMA channel through which the request has been received. 1503 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1504 * be built in the buffer ioctx->buf points at and hence this function will 1505 * overwrite the request data. 1506 * @tag: tag of the request for which this response is being generated. 1507 * @status: value for the STATUS field of the SRP_RSP information unit. 1508 * 1509 * Returns the size in bytes of the SRP_RSP response. 1510 * 1511 * An SRP_RSP response contains a SCSI status or service response. See also 1512 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1513 * response. See also SPC-2 for more information about sense data. 1514 */ 1515 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1516 struct srpt_send_ioctx *ioctx, u64 tag, 1517 int status) 1518 { 1519 struct srp_rsp *srp_rsp; 1520 const u8 *sense_data; 1521 int sense_data_len, max_sense_len; 1522 1523 /* 1524 * The lowest bit of all SAM-3 status codes is zero (see also 1525 * paragraph 5.3 in SAM-3). 1526 */ 1527 WARN_ON(status & 1); 1528 1529 srp_rsp = ioctx->ioctx.buf; 1530 BUG_ON(!srp_rsp); 1531 1532 sense_data = ioctx->sense_data; 1533 sense_data_len = ioctx->cmd.scsi_sense_length; 1534 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1535 1536 memset(srp_rsp, 0, sizeof *srp_rsp); 1537 srp_rsp->opcode = SRP_RSP; 1538 srp_rsp->req_lim_delta = 1539 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1540 srp_rsp->tag = tag; 1541 srp_rsp->status = status; 1542 1543 if (sense_data_len) { 1544 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1545 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1546 if (sense_data_len > max_sense_len) { 1547 printk(KERN_WARNING "truncated sense data from %d to %d" 1548 " bytes\n", sense_data_len, max_sense_len); 1549 sense_data_len = max_sense_len; 1550 } 1551 1552 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1553 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1554 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1555 } 1556 1557 return sizeof(*srp_rsp) + sense_data_len; 1558 } 1559 1560 /** 1561 * srpt_build_tskmgmt_rsp() - Build a task management response. 1562 * @ch: RDMA channel through which the request has been received. 1563 * @ioctx: I/O context in which the SRP_RSP response will be built. 1564 * @rsp_code: RSP_CODE that will be stored in the response. 1565 * @tag: Tag of the request for which this response is being generated. 1566 * 1567 * Returns the size in bytes of the SRP_RSP response. 1568 * 1569 * An SRP_RSP response contains a SCSI status or service response. See also 1570 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1571 * response. 1572 */ 1573 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1574 struct srpt_send_ioctx *ioctx, 1575 u8 rsp_code, u64 tag) 1576 { 1577 struct srp_rsp *srp_rsp; 1578 int resp_data_len; 1579 int resp_len; 1580 1581 resp_data_len = 4; 1582 resp_len = sizeof(*srp_rsp) + resp_data_len; 1583 1584 srp_rsp = ioctx->ioctx.buf; 1585 BUG_ON(!srp_rsp); 1586 memset(srp_rsp, 0, sizeof *srp_rsp); 1587 1588 srp_rsp->opcode = SRP_RSP; 1589 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1 1590 + atomic_xchg(&ch->req_lim_delta, 0)); 1591 srp_rsp->tag = tag; 1592 1593 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1594 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1595 srp_rsp->data[3] = rsp_code; 1596 1597 return resp_len; 1598 } 1599 1600 #define NO_SUCH_LUN ((uint64_t)-1LL) 1601 1602 /* 1603 * SCSI LUN addressing method. See also SAM-2 and the section about 1604 * eight byte LUNs. 1605 */ 1606 enum scsi_lun_addr_method { 1607 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0, 1608 SCSI_LUN_ADDR_METHOD_FLAT = 1, 1609 SCSI_LUN_ADDR_METHOD_LUN = 2, 1610 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3, 1611 }; 1612 1613 /* 1614 * srpt_unpack_lun() - Convert from network LUN to linear LUN. 1615 * 1616 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte 1617 * order (big endian) to a linear LUN. Supports three LUN addressing methods: 1618 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40). 1619 */ 1620 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len) 1621 { 1622 uint64_t res = NO_SUCH_LUN; 1623 int addressing_method; 1624 1625 if (unlikely(len < 2)) { 1626 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or " 1627 "more", len); 1628 goto out; 1629 } 1630 1631 switch (len) { 1632 case 8: 1633 if ((*((__be64 *)lun) & 1634 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0) 1635 goto out_err; 1636 break; 1637 case 4: 1638 if (*((__be16 *)&lun[2]) != 0) 1639 goto out_err; 1640 break; 1641 case 6: 1642 if (*((__be32 *)&lun[2]) != 0) 1643 goto out_err; 1644 break; 1645 case 2: 1646 break; 1647 default: 1648 goto out_err; 1649 } 1650 1651 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */ 1652 switch (addressing_method) { 1653 case SCSI_LUN_ADDR_METHOD_PERIPHERAL: 1654 case SCSI_LUN_ADDR_METHOD_FLAT: 1655 case SCSI_LUN_ADDR_METHOD_LUN: 1656 res = *(lun + 1) | (((*lun) & 0x3f) << 8); 1657 break; 1658 1659 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN: 1660 default: 1661 printk(KERN_ERR "Unimplemented LUN addressing method %u", 1662 addressing_method); 1663 break; 1664 } 1665 1666 out: 1667 return res; 1668 1669 out_err: 1670 printk(KERN_ERR "Support for multi-level LUNs has not yet been" 1671 " implemented"); 1672 goto out; 1673 } 1674 1675 static int srpt_check_stop_free(struct se_cmd *cmd) 1676 { 1677 struct srpt_send_ioctx *ioctx = container_of(cmd, 1678 struct srpt_send_ioctx, cmd); 1679 1680 return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1681 } 1682 1683 /** 1684 * srpt_handle_cmd() - Process SRP_CMD. 1685 */ 1686 static int srpt_handle_cmd(struct srpt_rdma_ch *ch, 1687 struct srpt_recv_ioctx *recv_ioctx, 1688 struct srpt_send_ioctx *send_ioctx) 1689 { 1690 struct se_cmd *cmd; 1691 struct srp_cmd *srp_cmd; 1692 uint64_t unpacked_lun; 1693 u64 data_len; 1694 enum dma_data_direction dir; 1695 sense_reason_t ret; 1696 int rc; 1697 1698 BUG_ON(!send_ioctx); 1699 1700 srp_cmd = recv_ioctx->ioctx.buf; 1701 cmd = &send_ioctx->cmd; 1702 send_ioctx->tag = srp_cmd->tag; 1703 1704 switch (srp_cmd->task_attr) { 1705 case SRP_CMD_SIMPLE_Q: 1706 cmd->sam_task_attr = MSG_SIMPLE_TAG; 1707 break; 1708 case SRP_CMD_ORDERED_Q: 1709 default: 1710 cmd->sam_task_attr = MSG_ORDERED_TAG; 1711 break; 1712 case SRP_CMD_HEAD_OF_Q: 1713 cmd->sam_task_attr = MSG_HEAD_TAG; 1714 break; 1715 case SRP_CMD_ACA: 1716 cmd->sam_task_attr = MSG_ACA_TAG; 1717 break; 1718 } 1719 1720 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) { 1721 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n", 1722 srp_cmd->tag); 1723 ret = TCM_INVALID_CDB_FIELD; 1724 goto send_sense; 1725 } 1726 1727 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun, 1728 sizeof(srp_cmd->lun)); 1729 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb, 1730 &send_ioctx->sense_data[0], unpacked_lun, data_len, 1731 MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF); 1732 if (rc != 0) { 1733 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1734 goto send_sense; 1735 } 1736 return 0; 1737 1738 send_sense: 1739 transport_send_check_condition_and_sense(cmd, ret, 0); 1740 return -1; 1741 } 1742 1743 /** 1744 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag. 1745 * @ch: RDMA channel of the task management request. 1746 * @fn: Task management function to perform. 1747 * @req_tag: Tag of the SRP task management request. 1748 * @mgmt_ioctx: I/O context of the task management request. 1749 * 1750 * Returns zero if the target core will process the task management 1751 * request asynchronously. 1752 * 1753 * Note: It is assumed that the initiator serializes tag-based task management 1754 * requests. 1755 */ 1756 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag) 1757 { 1758 struct srpt_device *sdev; 1759 struct srpt_rdma_ch *ch; 1760 struct srpt_send_ioctx *target; 1761 int ret, i; 1762 1763 ret = -EINVAL; 1764 ch = ioctx->ch; 1765 BUG_ON(!ch); 1766 BUG_ON(!ch->sport); 1767 sdev = ch->sport->sdev; 1768 BUG_ON(!sdev); 1769 spin_lock_irq(&sdev->spinlock); 1770 for (i = 0; i < ch->rq_size; ++i) { 1771 target = ch->ioctx_ring[i]; 1772 if (target->cmd.se_lun == ioctx->cmd.se_lun && 1773 target->tag == tag && 1774 srpt_get_cmd_state(target) != SRPT_STATE_DONE) { 1775 ret = 0; 1776 /* now let the target core abort &target->cmd; */ 1777 break; 1778 } 1779 } 1780 spin_unlock_irq(&sdev->spinlock); 1781 return ret; 1782 } 1783 1784 static int srp_tmr_to_tcm(int fn) 1785 { 1786 switch (fn) { 1787 case SRP_TSK_ABORT_TASK: 1788 return TMR_ABORT_TASK; 1789 case SRP_TSK_ABORT_TASK_SET: 1790 return TMR_ABORT_TASK_SET; 1791 case SRP_TSK_CLEAR_TASK_SET: 1792 return TMR_CLEAR_TASK_SET; 1793 case SRP_TSK_LUN_RESET: 1794 return TMR_LUN_RESET; 1795 case SRP_TSK_CLEAR_ACA: 1796 return TMR_CLEAR_ACA; 1797 default: 1798 return -1; 1799 } 1800 } 1801 1802 /** 1803 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1804 * 1805 * Returns 0 if and only if the request will be processed by the target core. 1806 * 1807 * For more information about SRP_TSK_MGMT information units, see also section 1808 * 6.7 in the SRP r16a document. 1809 */ 1810 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1811 struct srpt_recv_ioctx *recv_ioctx, 1812 struct srpt_send_ioctx *send_ioctx) 1813 { 1814 struct srp_tsk_mgmt *srp_tsk; 1815 struct se_cmd *cmd; 1816 struct se_session *sess = ch->sess; 1817 uint64_t unpacked_lun; 1818 uint32_t tag = 0; 1819 int tcm_tmr; 1820 int rc; 1821 1822 BUG_ON(!send_ioctx); 1823 1824 srp_tsk = recv_ioctx->ioctx.buf; 1825 cmd = &send_ioctx->cmd; 1826 1827 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1828 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1829 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1830 1831 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1832 send_ioctx->tag = srp_tsk->tag; 1833 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1834 if (tcm_tmr < 0) { 1835 send_ioctx->cmd.se_tmr_req->response = 1836 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 1837 goto fail; 1838 } 1839 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun, 1840 sizeof(srp_tsk->lun)); 1841 1842 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) { 1843 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag); 1844 if (rc < 0) { 1845 send_ioctx->cmd.se_tmr_req->response = 1846 TMR_TASK_DOES_NOT_EXIST; 1847 goto fail; 1848 } 1849 tag = srp_tsk->task_tag; 1850 } 1851 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun, 1852 srp_tsk, tcm_tmr, GFP_KERNEL, tag, 1853 TARGET_SCF_ACK_KREF); 1854 if (rc != 0) { 1855 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1856 goto fail; 1857 } 1858 return; 1859 fail: 1860 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1861 } 1862 1863 /** 1864 * srpt_handle_new_iu() - Process a newly received information unit. 1865 * @ch: RDMA channel through which the information unit has been received. 1866 * @ioctx: SRPT I/O context associated with the information unit. 1867 */ 1868 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1869 struct srpt_recv_ioctx *recv_ioctx, 1870 struct srpt_send_ioctx *send_ioctx) 1871 { 1872 struct srp_cmd *srp_cmd; 1873 enum rdma_ch_state ch_state; 1874 1875 BUG_ON(!ch); 1876 BUG_ON(!recv_ioctx); 1877 1878 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1879 recv_ioctx->ioctx.dma, srp_max_req_size, 1880 DMA_FROM_DEVICE); 1881 1882 ch_state = srpt_get_ch_state(ch); 1883 if (unlikely(ch_state == CH_CONNECTING)) { 1884 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1885 goto out; 1886 } 1887 1888 if (unlikely(ch_state != CH_LIVE)) 1889 goto out; 1890 1891 srp_cmd = recv_ioctx->ioctx.buf; 1892 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1893 if (!send_ioctx) 1894 send_ioctx = srpt_get_send_ioctx(ch); 1895 if (unlikely(!send_ioctx)) { 1896 list_add_tail(&recv_ioctx->wait_list, 1897 &ch->cmd_wait_list); 1898 goto out; 1899 } 1900 } 1901 1902 switch (srp_cmd->opcode) { 1903 case SRP_CMD: 1904 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1905 break; 1906 case SRP_TSK_MGMT: 1907 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1908 break; 1909 case SRP_I_LOGOUT: 1910 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n"); 1911 break; 1912 case SRP_CRED_RSP: 1913 pr_debug("received SRP_CRED_RSP\n"); 1914 break; 1915 case SRP_AER_RSP: 1916 pr_debug("received SRP_AER_RSP\n"); 1917 break; 1918 case SRP_RSP: 1919 printk(KERN_ERR "Received SRP_RSP\n"); 1920 break; 1921 default: 1922 printk(KERN_ERR "received IU with unknown opcode 0x%x\n", 1923 srp_cmd->opcode); 1924 break; 1925 } 1926 1927 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1928 out: 1929 return; 1930 } 1931 1932 static void srpt_process_rcv_completion(struct ib_cq *cq, 1933 struct srpt_rdma_ch *ch, 1934 struct ib_wc *wc) 1935 { 1936 struct srpt_device *sdev = ch->sport->sdev; 1937 struct srpt_recv_ioctx *ioctx; 1938 u32 index; 1939 1940 index = idx_from_wr_id(wc->wr_id); 1941 if (wc->status == IB_WC_SUCCESS) { 1942 int req_lim; 1943 1944 req_lim = atomic_dec_return(&ch->req_lim); 1945 if (unlikely(req_lim < 0)) 1946 printk(KERN_ERR "req_lim = %d < 0\n", req_lim); 1947 ioctx = sdev->ioctx_ring[index]; 1948 srpt_handle_new_iu(ch, ioctx, NULL); 1949 } else { 1950 printk(KERN_INFO "receiving failed for idx %u with status %d\n", 1951 index, wc->status); 1952 } 1953 } 1954 1955 /** 1956 * srpt_process_send_completion() - Process an IB send completion. 1957 * 1958 * Note: Although this has not yet been observed during tests, at least in 1959 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1960 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1961 * value in each response is set to one, and it is possible that this response 1962 * makes the initiator send a new request before the send completion for that 1963 * response has been processed. This could e.g. happen if the call to 1964 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1965 * if IB retransmission causes generation of the send completion to be 1966 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1967 * are queued on cmd_wait_list. The code below processes these delayed 1968 * requests one at a time. 1969 */ 1970 static void srpt_process_send_completion(struct ib_cq *cq, 1971 struct srpt_rdma_ch *ch, 1972 struct ib_wc *wc) 1973 { 1974 struct srpt_send_ioctx *send_ioctx; 1975 uint32_t index; 1976 enum srpt_opcode opcode; 1977 1978 index = idx_from_wr_id(wc->wr_id); 1979 opcode = opcode_from_wr_id(wc->wr_id); 1980 send_ioctx = ch->ioctx_ring[index]; 1981 if (wc->status == IB_WC_SUCCESS) { 1982 if (opcode == SRPT_SEND) 1983 srpt_handle_send_comp(ch, send_ioctx); 1984 else { 1985 WARN_ON(opcode != SRPT_RDMA_ABORT && 1986 wc->opcode != IB_WC_RDMA_READ); 1987 srpt_handle_rdma_comp(ch, send_ioctx, opcode); 1988 } 1989 } else { 1990 if (opcode == SRPT_SEND) { 1991 printk(KERN_INFO "sending response for idx %u failed" 1992 " with status %d\n", index, wc->status); 1993 srpt_handle_send_err_comp(ch, wc->wr_id); 1994 } else if (opcode != SRPT_RDMA_MID) { 1995 printk(KERN_INFO "RDMA t %d for idx %u failed with" 1996 " status %d", opcode, index, wc->status); 1997 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode); 1998 } 1999 } 2000 2001 while (unlikely(opcode == SRPT_SEND 2002 && !list_empty(&ch->cmd_wait_list) 2003 && srpt_get_ch_state(ch) == CH_LIVE 2004 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) { 2005 struct srpt_recv_ioctx *recv_ioctx; 2006 2007 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 2008 struct srpt_recv_ioctx, 2009 wait_list); 2010 list_del(&recv_ioctx->wait_list); 2011 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx); 2012 } 2013 } 2014 2015 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch) 2016 { 2017 struct ib_wc *const wc = ch->wc; 2018 int i, n; 2019 2020 WARN_ON(cq != ch->cq); 2021 2022 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 2023 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) { 2024 for (i = 0; i < n; i++) { 2025 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV) 2026 srpt_process_rcv_completion(cq, ch, &wc[i]); 2027 else 2028 srpt_process_send_completion(cq, ch, &wc[i]); 2029 } 2030 } 2031 } 2032 2033 /** 2034 * srpt_completion() - IB completion queue callback function. 2035 * 2036 * Notes: 2037 * - It is guaranteed that a completion handler will never be invoked 2038 * concurrently on two different CPUs for the same completion queue. See also 2039 * Documentation/infiniband/core_locking.txt and the implementation of 2040 * handle_edge_irq() in kernel/irq/chip.c. 2041 * - When threaded IRQs are enabled, completion handlers are invoked in thread 2042 * context instead of interrupt context. 2043 */ 2044 static void srpt_completion(struct ib_cq *cq, void *ctx) 2045 { 2046 struct srpt_rdma_ch *ch = ctx; 2047 2048 wake_up_interruptible(&ch->wait_queue); 2049 } 2050 2051 static int srpt_compl_thread(void *arg) 2052 { 2053 struct srpt_rdma_ch *ch; 2054 2055 /* Hibernation / freezing of the SRPT kernel thread is not supported. */ 2056 current->flags |= PF_NOFREEZE; 2057 2058 ch = arg; 2059 BUG_ON(!ch); 2060 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n", 2061 ch->sess_name, ch->thread->comm, current->pid); 2062 while (!kthread_should_stop()) { 2063 wait_event_interruptible(ch->wait_queue, 2064 (srpt_process_completion(ch->cq, ch), 2065 kthread_should_stop())); 2066 } 2067 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n", 2068 ch->sess_name, ch->thread->comm, current->pid); 2069 return 0; 2070 } 2071 2072 /** 2073 * srpt_create_ch_ib() - Create receive and send completion queues. 2074 */ 2075 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 2076 { 2077 struct ib_qp_init_attr *qp_init; 2078 struct srpt_port *sport = ch->sport; 2079 struct srpt_device *sdev = sport->sdev; 2080 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 2081 int ret; 2082 2083 WARN_ON(ch->rq_size < 1); 2084 2085 ret = -ENOMEM; 2086 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL); 2087 if (!qp_init) 2088 goto out; 2089 2090 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch, 2091 ch->rq_size + srp_sq_size, 0); 2092 if (IS_ERR(ch->cq)) { 2093 ret = PTR_ERR(ch->cq); 2094 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n", 2095 ch->rq_size + srp_sq_size, ret); 2096 goto out; 2097 } 2098 2099 qp_init->qp_context = (void *)ch; 2100 qp_init->event_handler 2101 = (void(*)(struct ib_event *, void*))srpt_qp_event; 2102 qp_init->send_cq = ch->cq; 2103 qp_init->recv_cq = ch->cq; 2104 qp_init->srq = sdev->srq; 2105 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 2106 qp_init->qp_type = IB_QPT_RC; 2107 qp_init->cap.max_send_wr = srp_sq_size; 2108 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 2109 2110 ch->qp = ib_create_qp(sdev->pd, qp_init); 2111 if (IS_ERR(ch->qp)) { 2112 ret = PTR_ERR(ch->qp); 2113 printk(KERN_ERR "failed to create_qp ret= %d\n", ret); 2114 goto err_destroy_cq; 2115 } 2116 2117 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 2118 2119 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 2120 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 2121 qp_init->cap.max_send_wr, ch->cm_id); 2122 2123 ret = srpt_init_ch_qp(ch, ch->qp); 2124 if (ret) 2125 goto err_destroy_qp; 2126 2127 init_waitqueue_head(&ch->wait_queue); 2128 2129 pr_debug("creating thread for session %s\n", ch->sess_name); 2130 2131 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl"); 2132 if (IS_ERR(ch->thread)) { 2133 printk(KERN_ERR "failed to create kernel thread %ld\n", 2134 PTR_ERR(ch->thread)); 2135 ch->thread = NULL; 2136 goto err_destroy_qp; 2137 } 2138 2139 out: 2140 kfree(qp_init); 2141 return ret; 2142 2143 err_destroy_qp: 2144 ib_destroy_qp(ch->qp); 2145 err_destroy_cq: 2146 ib_destroy_cq(ch->cq); 2147 goto out; 2148 } 2149 2150 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 2151 { 2152 if (ch->thread) 2153 kthread_stop(ch->thread); 2154 2155 ib_destroy_qp(ch->qp); 2156 ib_destroy_cq(ch->cq); 2157 } 2158 2159 /** 2160 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state. 2161 * 2162 * Reset the QP and make sure all resources associated with the channel will 2163 * be deallocated at an appropriate time. 2164 * 2165 * Note: The caller must hold ch->sport->sdev->spinlock. 2166 */ 2167 static void __srpt_close_ch(struct srpt_rdma_ch *ch) 2168 { 2169 struct srpt_device *sdev; 2170 enum rdma_ch_state prev_state; 2171 unsigned long flags; 2172 2173 sdev = ch->sport->sdev; 2174 2175 spin_lock_irqsave(&ch->spinlock, flags); 2176 prev_state = ch->state; 2177 switch (prev_state) { 2178 case CH_CONNECTING: 2179 case CH_LIVE: 2180 ch->state = CH_DISCONNECTING; 2181 break; 2182 default: 2183 break; 2184 } 2185 spin_unlock_irqrestore(&ch->spinlock, flags); 2186 2187 switch (prev_state) { 2188 case CH_CONNECTING: 2189 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0, 2190 NULL, 0); 2191 /* fall through */ 2192 case CH_LIVE: 2193 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0) 2194 printk(KERN_ERR "sending CM DREQ failed.\n"); 2195 break; 2196 case CH_DISCONNECTING: 2197 break; 2198 case CH_DRAINING: 2199 case CH_RELEASING: 2200 break; 2201 } 2202 } 2203 2204 /** 2205 * srpt_close_ch() - Close an RDMA channel. 2206 */ 2207 static void srpt_close_ch(struct srpt_rdma_ch *ch) 2208 { 2209 struct srpt_device *sdev; 2210 2211 sdev = ch->sport->sdev; 2212 spin_lock_irq(&sdev->spinlock); 2213 __srpt_close_ch(ch); 2214 spin_unlock_irq(&sdev->spinlock); 2215 } 2216 2217 /** 2218 * srpt_shutdown_session() - Whether or not a session may be shut down. 2219 */ 2220 static int srpt_shutdown_session(struct se_session *se_sess) 2221 { 2222 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2223 unsigned long flags; 2224 2225 spin_lock_irqsave(&ch->spinlock, flags); 2226 if (ch->in_shutdown) { 2227 spin_unlock_irqrestore(&ch->spinlock, flags); 2228 return true; 2229 } 2230 2231 ch->in_shutdown = true; 2232 target_sess_cmd_list_set_waiting(se_sess); 2233 spin_unlock_irqrestore(&ch->spinlock, flags); 2234 2235 return true; 2236 } 2237 2238 /** 2239 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair. 2240 * @cm_id: Pointer to the CM ID of the channel to be drained. 2241 * 2242 * Note: Must be called from inside srpt_cm_handler to avoid a race between 2243 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one() 2244 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one() 2245 * waits until all target sessions for the associated IB device have been 2246 * unregistered and target session registration involves a call to 2247 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until 2248 * this function has finished). 2249 */ 2250 static void srpt_drain_channel(struct ib_cm_id *cm_id) 2251 { 2252 struct srpt_device *sdev; 2253 struct srpt_rdma_ch *ch; 2254 int ret; 2255 bool do_reset = false; 2256 2257 WARN_ON_ONCE(irqs_disabled()); 2258 2259 sdev = cm_id->context; 2260 BUG_ON(!sdev); 2261 spin_lock_irq(&sdev->spinlock); 2262 list_for_each_entry(ch, &sdev->rch_list, list) { 2263 if (ch->cm_id == cm_id) { 2264 do_reset = srpt_test_and_set_ch_state(ch, 2265 CH_CONNECTING, CH_DRAINING) || 2266 srpt_test_and_set_ch_state(ch, 2267 CH_LIVE, CH_DRAINING) || 2268 srpt_test_and_set_ch_state(ch, 2269 CH_DISCONNECTING, CH_DRAINING); 2270 break; 2271 } 2272 } 2273 spin_unlock_irq(&sdev->spinlock); 2274 2275 if (do_reset) { 2276 if (ch->sess) 2277 srpt_shutdown_session(ch->sess); 2278 2279 ret = srpt_ch_qp_err(ch); 2280 if (ret < 0) 2281 printk(KERN_ERR "Setting queue pair in error state" 2282 " failed: %d\n", ret); 2283 } 2284 } 2285 2286 /** 2287 * srpt_find_channel() - Look up an RDMA channel. 2288 * @cm_id: Pointer to the CM ID of the channel to be looked up. 2289 * 2290 * Return NULL if no matching RDMA channel has been found. 2291 */ 2292 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev, 2293 struct ib_cm_id *cm_id) 2294 { 2295 struct srpt_rdma_ch *ch; 2296 bool found; 2297 2298 WARN_ON_ONCE(irqs_disabled()); 2299 BUG_ON(!sdev); 2300 2301 found = false; 2302 spin_lock_irq(&sdev->spinlock); 2303 list_for_each_entry(ch, &sdev->rch_list, list) { 2304 if (ch->cm_id == cm_id) { 2305 found = true; 2306 break; 2307 } 2308 } 2309 spin_unlock_irq(&sdev->spinlock); 2310 2311 return found ? ch : NULL; 2312 } 2313 2314 /** 2315 * srpt_release_channel() - Release channel resources. 2316 * 2317 * Schedules the actual release because: 2318 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would 2319 * trigger a deadlock. 2320 * - It is not safe to call TCM transport_* functions from interrupt context. 2321 */ 2322 static void srpt_release_channel(struct srpt_rdma_ch *ch) 2323 { 2324 schedule_work(&ch->release_work); 2325 } 2326 2327 static void srpt_release_channel_work(struct work_struct *w) 2328 { 2329 struct srpt_rdma_ch *ch; 2330 struct srpt_device *sdev; 2331 struct se_session *se_sess; 2332 2333 ch = container_of(w, struct srpt_rdma_ch, release_work); 2334 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess, 2335 ch->release_done); 2336 2337 sdev = ch->sport->sdev; 2338 BUG_ON(!sdev); 2339 2340 se_sess = ch->sess; 2341 BUG_ON(!se_sess); 2342 2343 target_wait_for_sess_cmds(se_sess); 2344 2345 transport_deregister_session_configfs(se_sess); 2346 transport_deregister_session(se_sess); 2347 ch->sess = NULL; 2348 2349 ib_destroy_cm_id(ch->cm_id); 2350 2351 srpt_destroy_ch_ib(ch); 2352 2353 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2354 ch->sport->sdev, ch->rq_size, 2355 ch->rsp_size, DMA_TO_DEVICE); 2356 2357 spin_lock_irq(&sdev->spinlock); 2358 list_del(&ch->list); 2359 spin_unlock_irq(&sdev->spinlock); 2360 2361 if (ch->release_done) 2362 complete(ch->release_done); 2363 2364 wake_up(&sdev->ch_releaseQ); 2365 2366 kfree(ch); 2367 } 2368 2369 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport, 2370 u8 i_port_id[16]) 2371 { 2372 struct srpt_node_acl *nacl; 2373 2374 list_for_each_entry(nacl, &sport->port_acl_list, list) 2375 if (memcmp(nacl->i_port_id, i_port_id, 2376 sizeof(nacl->i_port_id)) == 0) 2377 return nacl; 2378 2379 return NULL; 2380 } 2381 2382 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport, 2383 u8 i_port_id[16]) 2384 { 2385 struct srpt_node_acl *nacl; 2386 2387 spin_lock_irq(&sport->port_acl_lock); 2388 nacl = __srpt_lookup_acl(sport, i_port_id); 2389 spin_unlock_irq(&sport->port_acl_lock); 2390 2391 return nacl; 2392 } 2393 2394 /** 2395 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 2396 * 2397 * Ownership of the cm_id is transferred to the target session if this 2398 * functions returns zero. Otherwise the caller remains the owner of cm_id. 2399 */ 2400 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 2401 struct ib_cm_req_event_param *param, 2402 void *private_data) 2403 { 2404 struct srpt_device *sdev = cm_id->context; 2405 struct srpt_port *sport = &sdev->port[param->port - 1]; 2406 struct srp_login_req *req; 2407 struct srp_login_rsp *rsp; 2408 struct srp_login_rej *rej; 2409 struct ib_cm_rep_param *rep_param; 2410 struct srpt_rdma_ch *ch, *tmp_ch; 2411 struct srpt_node_acl *nacl; 2412 u32 it_iu_len; 2413 int i; 2414 int ret = 0; 2415 2416 WARN_ON_ONCE(irqs_disabled()); 2417 2418 if (WARN_ON(!sdev || !private_data)) 2419 return -EINVAL; 2420 2421 req = (struct srp_login_req *)private_data; 2422 2423 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2424 2425 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 2426 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 2427 " (guid=0x%llx:0x%llx)\n", 2428 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 2429 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 2430 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 2431 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 2432 it_iu_len, 2433 param->port, 2434 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 2435 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 2436 2437 rsp = kzalloc(sizeof *rsp, GFP_KERNEL); 2438 rej = kzalloc(sizeof *rej, GFP_KERNEL); 2439 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL); 2440 2441 if (!rsp || !rej || !rep_param) { 2442 ret = -ENOMEM; 2443 goto out; 2444 } 2445 2446 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2447 rej->reason = __constant_cpu_to_be32( 2448 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2449 ret = -EINVAL; 2450 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its" 2451 " length (%d bytes) is out of range (%d .. %d)\n", 2452 it_iu_len, 64, srp_max_req_size); 2453 goto reject; 2454 } 2455 2456 if (!sport->enabled) { 2457 rej->reason = __constant_cpu_to_be32( 2458 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2459 ret = -EINVAL; 2460 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port" 2461 " has not yet been enabled\n"); 2462 goto reject; 2463 } 2464 2465 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2466 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2467 2468 spin_lock_irq(&sdev->spinlock); 2469 2470 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 2471 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 2472 && !memcmp(ch->t_port_id, req->target_port_id, 16) 2473 && param->port == ch->sport->port 2474 && param->listen_id == ch->sport->sdev->cm_id 2475 && ch->cm_id) { 2476 enum rdma_ch_state ch_state; 2477 2478 ch_state = srpt_get_ch_state(ch); 2479 if (ch_state != CH_CONNECTING 2480 && ch_state != CH_LIVE) 2481 continue; 2482 2483 /* found an existing channel */ 2484 pr_debug("Found existing channel %s" 2485 " cm_id= %p state= %d\n", 2486 ch->sess_name, ch->cm_id, ch_state); 2487 2488 __srpt_close_ch(ch); 2489 2490 rsp->rsp_flags = 2491 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2492 } 2493 } 2494 2495 spin_unlock_irq(&sdev->spinlock); 2496 2497 } else 2498 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2499 2500 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2501 || *(__be64 *)(req->target_port_id + 8) != 2502 cpu_to_be64(srpt_service_guid)) { 2503 rej->reason = __constant_cpu_to_be32( 2504 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2505 ret = -ENOMEM; 2506 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it" 2507 " has an invalid target port identifier.\n"); 2508 goto reject; 2509 } 2510 2511 ch = kzalloc(sizeof *ch, GFP_KERNEL); 2512 if (!ch) { 2513 rej->reason = __constant_cpu_to_be32( 2514 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2515 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n"); 2516 ret = -ENOMEM; 2517 goto reject; 2518 } 2519 2520 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2521 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2522 memcpy(ch->t_port_id, req->target_port_id, 16); 2523 ch->sport = &sdev->port[param->port - 1]; 2524 ch->cm_id = cm_id; 2525 /* 2526 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 2527 * for the SRP protocol to the command queue size. 2528 */ 2529 ch->rq_size = SRPT_RQ_SIZE; 2530 spin_lock_init(&ch->spinlock); 2531 ch->state = CH_CONNECTING; 2532 INIT_LIST_HEAD(&ch->cmd_wait_list); 2533 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2534 2535 ch->ioctx_ring = (struct srpt_send_ioctx **) 2536 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2537 sizeof(*ch->ioctx_ring[0]), 2538 ch->rsp_size, DMA_TO_DEVICE); 2539 if (!ch->ioctx_ring) 2540 goto free_ch; 2541 2542 INIT_LIST_HEAD(&ch->free_list); 2543 for (i = 0; i < ch->rq_size; i++) { 2544 ch->ioctx_ring[i]->ch = ch; 2545 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2546 } 2547 2548 ret = srpt_create_ch_ib(ch); 2549 if (ret) { 2550 rej->reason = __constant_cpu_to_be32( 2551 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2552 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating" 2553 " a new RDMA channel failed.\n"); 2554 goto free_ring; 2555 } 2556 2557 ret = srpt_ch_qp_rtr(ch, ch->qp); 2558 if (ret) { 2559 rej->reason = __constant_cpu_to_be32( 2560 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2561 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling" 2562 " RTR failed (error code = %d)\n", ret); 2563 goto destroy_ib; 2564 } 2565 /* 2566 * Use the initator port identifier as the session name. 2567 */ 2568 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2569 be64_to_cpu(*(__be64 *)ch->i_port_id), 2570 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2571 2572 pr_debug("registering session %s\n", ch->sess_name); 2573 2574 nacl = srpt_lookup_acl(sport, ch->i_port_id); 2575 if (!nacl) { 2576 printk(KERN_INFO "Rejected login because no ACL has been" 2577 " configured yet for initiator %s.\n", ch->sess_name); 2578 rej->reason = __constant_cpu_to_be32( 2579 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2580 goto destroy_ib; 2581 } 2582 2583 ch->sess = transport_init_session(); 2584 if (IS_ERR(ch->sess)) { 2585 rej->reason = __constant_cpu_to_be32( 2586 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2587 pr_debug("Failed to create session\n"); 2588 goto deregister_session; 2589 } 2590 ch->sess->se_node_acl = &nacl->nacl; 2591 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch); 2592 2593 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2594 ch->sess_name, ch->cm_id); 2595 2596 /* create srp_login_response */ 2597 rsp->opcode = SRP_LOGIN_RSP; 2598 rsp->tag = req->tag; 2599 rsp->max_it_iu_len = req->req_it_iu_len; 2600 rsp->max_ti_iu_len = req->req_it_iu_len; 2601 ch->max_ti_iu_len = it_iu_len; 2602 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2603 | SRP_BUF_FORMAT_INDIRECT); 2604 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2605 atomic_set(&ch->req_lim, ch->rq_size); 2606 atomic_set(&ch->req_lim_delta, 0); 2607 2608 /* create cm reply */ 2609 rep_param->qp_num = ch->qp->qp_num; 2610 rep_param->private_data = (void *)rsp; 2611 rep_param->private_data_len = sizeof *rsp; 2612 rep_param->rnr_retry_count = 7; 2613 rep_param->flow_control = 1; 2614 rep_param->failover_accepted = 0; 2615 rep_param->srq = 1; 2616 rep_param->responder_resources = 4; 2617 rep_param->initiator_depth = 4; 2618 2619 ret = ib_send_cm_rep(cm_id, rep_param); 2620 if (ret) { 2621 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed" 2622 " (error code = %d)\n", ret); 2623 goto release_channel; 2624 } 2625 2626 spin_lock_irq(&sdev->spinlock); 2627 list_add_tail(&ch->list, &sdev->rch_list); 2628 spin_unlock_irq(&sdev->spinlock); 2629 2630 goto out; 2631 2632 release_channel: 2633 srpt_set_ch_state(ch, CH_RELEASING); 2634 transport_deregister_session_configfs(ch->sess); 2635 2636 deregister_session: 2637 transport_deregister_session(ch->sess); 2638 ch->sess = NULL; 2639 2640 destroy_ib: 2641 srpt_destroy_ch_ib(ch); 2642 2643 free_ring: 2644 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2645 ch->sport->sdev, ch->rq_size, 2646 ch->rsp_size, DMA_TO_DEVICE); 2647 free_ch: 2648 kfree(ch); 2649 2650 reject: 2651 rej->opcode = SRP_LOGIN_REJ; 2652 rej->tag = req->tag; 2653 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2654 | SRP_BUF_FORMAT_INDIRECT); 2655 2656 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2657 (void *)rej, sizeof *rej); 2658 2659 out: 2660 kfree(rep_param); 2661 kfree(rsp); 2662 kfree(rej); 2663 2664 return ret; 2665 } 2666 2667 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id) 2668 { 2669 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id); 2670 srpt_drain_channel(cm_id); 2671 } 2672 2673 /** 2674 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2675 * 2676 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2677 * and that the recipient may begin transmitting (RTU = ready to use). 2678 */ 2679 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id) 2680 { 2681 struct srpt_rdma_ch *ch; 2682 int ret; 2683 2684 ch = srpt_find_channel(cm_id->context, cm_id); 2685 BUG_ON(!ch); 2686 2687 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) { 2688 struct srpt_recv_ioctx *ioctx, *ioctx_tmp; 2689 2690 ret = srpt_ch_qp_rts(ch, ch->qp); 2691 2692 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list, 2693 wait_list) { 2694 list_del(&ioctx->wait_list); 2695 srpt_handle_new_iu(ch, ioctx, NULL); 2696 } 2697 if (ret) 2698 srpt_close_ch(ch); 2699 } 2700 } 2701 2702 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id) 2703 { 2704 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id); 2705 srpt_drain_channel(cm_id); 2706 } 2707 2708 static void srpt_cm_rep_error(struct ib_cm_id *cm_id) 2709 { 2710 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id); 2711 srpt_drain_channel(cm_id); 2712 } 2713 2714 /** 2715 * srpt_cm_dreq_recv() - Process reception of a DREQ message. 2716 */ 2717 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id) 2718 { 2719 struct srpt_rdma_ch *ch; 2720 unsigned long flags; 2721 bool send_drep = false; 2722 2723 ch = srpt_find_channel(cm_id->context, cm_id); 2724 BUG_ON(!ch); 2725 2726 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch)); 2727 2728 spin_lock_irqsave(&ch->spinlock, flags); 2729 switch (ch->state) { 2730 case CH_CONNECTING: 2731 case CH_LIVE: 2732 send_drep = true; 2733 ch->state = CH_DISCONNECTING; 2734 break; 2735 case CH_DISCONNECTING: 2736 case CH_DRAINING: 2737 case CH_RELEASING: 2738 WARN(true, "unexpected channel state %d\n", ch->state); 2739 break; 2740 } 2741 spin_unlock_irqrestore(&ch->spinlock, flags); 2742 2743 if (send_drep) { 2744 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0) 2745 printk(KERN_ERR "Sending IB DREP failed.\n"); 2746 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n", 2747 ch->sess_name); 2748 } 2749 } 2750 2751 /** 2752 * srpt_cm_drep_recv() - Process reception of a DREP message. 2753 */ 2754 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id) 2755 { 2756 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n", 2757 cm_id); 2758 srpt_drain_channel(cm_id); 2759 } 2760 2761 /** 2762 * srpt_cm_handler() - IB connection manager callback function. 2763 * 2764 * A non-zero return value will cause the caller destroy the CM ID. 2765 * 2766 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2767 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2768 * a non-zero value in any other case will trigger a race with the 2769 * ib_destroy_cm_id() call in srpt_release_channel(). 2770 */ 2771 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2772 { 2773 int ret; 2774 2775 ret = 0; 2776 switch (event->event) { 2777 case IB_CM_REQ_RECEIVED: 2778 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2779 event->private_data); 2780 break; 2781 case IB_CM_REJ_RECEIVED: 2782 srpt_cm_rej_recv(cm_id); 2783 break; 2784 case IB_CM_RTU_RECEIVED: 2785 case IB_CM_USER_ESTABLISHED: 2786 srpt_cm_rtu_recv(cm_id); 2787 break; 2788 case IB_CM_DREQ_RECEIVED: 2789 srpt_cm_dreq_recv(cm_id); 2790 break; 2791 case IB_CM_DREP_RECEIVED: 2792 srpt_cm_drep_recv(cm_id); 2793 break; 2794 case IB_CM_TIMEWAIT_EXIT: 2795 srpt_cm_timewait_exit(cm_id); 2796 break; 2797 case IB_CM_REP_ERROR: 2798 srpt_cm_rep_error(cm_id); 2799 break; 2800 case IB_CM_DREQ_ERROR: 2801 printk(KERN_INFO "Received IB DREQ ERROR event.\n"); 2802 break; 2803 case IB_CM_MRA_RECEIVED: 2804 printk(KERN_INFO "Received IB MRA event\n"); 2805 break; 2806 default: 2807 printk(KERN_ERR "received unrecognized IB CM event %d\n", 2808 event->event); 2809 break; 2810 } 2811 2812 return ret; 2813 } 2814 2815 /** 2816 * srpt_perform_rdmas() - Perform IB RDMA. 2817 * 2818 * Returns zero upon success or a negative number upon failure. 2819 */ 2820 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, 2821 struct srpt_send_ioctx *ioctx) 2822 { 2823 struct ib_send_wr wr; 2824 struct ib_send_wr *bad_wr; 2825 struct rdma_iu *riu; 2826 int i; 2827 int ret; 2828 int sq_wr_avail; 2829 enum dma_data_direction dir; 2830 const int n_rdma = ioctx->n_rdma; 2831 2832 dir = ioctx->cmd.data_direction; 2833 if (dir == DMA_TO_DEVICE) { 2834 /* write */ 2835 ret = -ENOMEM; 2836 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); 2837 if (sq_wr_avail < 0) { 2838 printk(KERN_WARNING "IB send queue full (needed %d)\n", 2839 n_rdma); 2840 goto out; 2841 } 2842 } 2843 2844 ioctx->rdma_aborted = false; 2845 ret = 0; 2846 riu = ioctx->rdma_ius; 2847 memset(&wr, 0, sizeof wr); 2848 2849 for (i = 0; i < n_rdma; ++i, ++riu) { 2850 if (dir == DMA_FROM_DEVICE) { 2851 wr.opcode = IB_WR_RDMA_WRITE; 2852 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2853 SRPT_RDMA_WRITE_LAST : 2854 SRPT_RDMA_MID, 2855 ioctx->ioctx.index); 2856 } else { 2857 wr.opcode = IB_WR_RDMA_READ; 2858 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2859 SRPT_RDMA_READ_LAST : 2860 SRPT_RDMA_MID, 2861 ioctx->ioctx.index); 2862 } 2863 wr.next = NULL; 2864 wr.wr.rdma.remote_addr = riu->raddr; 2865 wr.wr.rdma.rkey = riu->rkey; 2866 wr.num_sge = riu->sge_cnt; 2867 wr.sg_list = riu->sge; 2868 2869 /* only get completion event for the last rdma write */ 2870 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE) 2871 wr.send_flags = IB_SEND_SIGNALED; 2872 2873 ret = ib_post_send(ch->qp, &wr, &bad_wr); 2874 if (ret) 2875 break; 2876 } 2877 2878 if (ret) 2879 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d", 2880 __func__, __LINE__, ret, i, n_rdma); 2881 if (ret && i > 0) { 2882 wr.num_sge = 0; 2883 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index); 2884 wr.send_flags = IB_SEND_SIGNALED; 2885 while (ch->state == CH_LIVE && 2886 ib_post_send(ch->qp, &wr, &bad_wr) != 0) { 2887 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]", 2888 ioctx->ioctx.index); 2889 msleep(1000); 2890 } 2891 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) { 2892 printk(KERN_INFO "Waiting until RDMA abort finished [%d]", 2893 ioctx->ioctx.index); 2894 msleep(1000); 2895 } 2896 } 2897 out: 2898 if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) 2899 atomic_add(n_rdma, &ch->sq_wr_avail); 2900 return ret; 2901 } 2902 2903 /** 2904 * srpt_xfer_data() - Start data transfer from initiator to target. 2905 */ 2906 static int srpt_xfer_data(struct srpt_rdma_ch *ch, 2907 struct srpt_send_ioctx *ioctx) 2908 { 2909 int ret; 2910 2911 ret = srpt_map_sg_to_ib_sge(ch, ioctx); 2912 if (ret) { 2913 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret); 2914 goto out; 2915 } 2916 2917 ret = srpt_perform_rdmas(ch, ioctx); 2918 if (ret) { 2919 if (ret == -EAGAIN || ret == -ENOMEM) 2920 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n", 2921 __func__, __LINE__, ret); 2922 else 2923 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n", 2924 __func__, __LINE__, ret); 2925 goto out_unmap; 2926 } 2927 2928 out: 2929 return ret; 2930 out_unmap: 2931 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2932 goto out; 2933 } 2934 2935 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2936 { 2937 struct srpt_send_ioctx *ioctx; 2938 2939 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2940 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2941 } 2942 2943 /* 2944 * srpt_write_pending() - Start data transfer from initiator to target (write). 2945 */ 2946 static int srpt_write_pending(struct se_cmd *se_cmd) 2947 { 2948 struct srpt_rdma_ch *ch; 2949 struct srpt_send_ioctx *ioctx; 2950 enum srpt_command_state new_state; 2951 enum rdma_ch_state ch_state; 2952 int ret; 2953 2954 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2955 2956 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2957 WARN_ON(new_state == SRPT_STATE_DONE); 2958 2959 ch = ioctx->ch; 2960 BUG_ON(!ch); 2961 2962 ch_state = srpt_get_ch_state(ch); 2963 switch (ch_state) { 2964 case CH_CONNECTING: 2965 WARN(true, "unexpected channel state %d\n", ch_state); 2966 ret = -EINVAL; 2967 goto out; 2968 case CH_LIVE: 2969 break; 2970 case CH_DISCONNECTING: 2971 case CH_DRAINING: 2972 case CH_RELEASING: 2973 pr_debug("cmd with tag %lld: channel disconnecting\n", 2974 ioctx->tag); 2975 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2976 ret = -EINVAL; 2977 goto out; 2978 } 2979 ret = srpt_xfer_data(ch, ioctx); 2980 2981 out: 2982 return ret; 2983 } 2984 2985 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2986 { 2987 switch (tcm_mgmt_status) { 2988 case TMR_FUNCTION_COMPLETE: 2989 return SRP_TSK_MGMT_SUCCESS; 2990 case TMR_FUNCTION_REJECTED: 2991 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2992 } 2993 return SRP_TSK_MGMT_FAILED; 2994 } 2995 2996 /** 2997 * srpt_queue_response() - Transmits the response to a SCSI command. 2998 * 2999 * Callback function called by the TCM core. Must not block since it can be 3000 * invoked on the context of the IB completion handler. 3001 */ 3002 static void srpt_queue_response(struct se_cmd *cmd) 3003 { 3004 struct srpt_rdma_ch *ch; 3005 struct srpt_send_ioctx *ioctx; 3006 enum srpt_command_state state; 3007 unsigned long flags; 3008 int ret; 3009 enum dma_data_direction dir; 3010 int resp_len; 3011 u8 srp_tm_status; 3012 3013 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3014 ch = ioctx->ch; 3015 BUG_ON(!ch); 3016 3017 spin_lock_irqsave(&ioctx->spinlock, flags); 3018 state = ioctx->state; 3019 switch (state) { 3020 case SRPT_STATE_NEW: 3021 case SRPT_STATE_DATA_IN: 3022 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 3023 break; 3024 case SRPT_STATE_MGMT: 3025 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 3026 break; 3027 default: 3028 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 3029 ch, ioctx->ioctx.index, ioctx->state); 3030 break; 3031 } 3032 spin_unlock_irqrestore(&ioctx->spinlock, flags); 3033 3034 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 3035 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 3036 atomic_inc(&ch->req_lim_delta); 3037 srpt_abort_cmd(ioctx); 3038 return; 3039 } 3040 3041 dir = ioctx->cmd.data_direction; 3042 3043 /* For read commands, transfer the data to the initiator. */ 3044 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && 3045 !ioctx->queue_status_only) { 3046 ret = srpt_xfer_data(ch, ioctx); 3047 if (ret) { 3048 printk(KERN_ERR "xfer_data failed for tag %llu\n", 3049 ioctx->tag); 3050 return; 3051 } 3052 } 3053 3054 if (state != SRPT_STATE_MGMT) 3055 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag, 3056 cmd->scsi_status); 3057 else { 3058 srp_tm_status 3059 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 3060 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 3061 ioctx->tag); 3062 } 3063 ret = srpt_post_send(ch, ioctx, resp_len); 3064 if (ret) { 3065 printk(KERN_ERR "sending cmd response failed for tag %llu\n", 3066 ioctx->tag); 3067 srpt_unmap_sg_to_ib_sge(ch, ioctx); 3068 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 3069 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 3070 } 3071 } 3072 3073 static int srpt_queue_data_in(struct se_cmd *cmd) 3074 { 3075 srpt_queue_response(cmd); 3076 return 0; 3077 } 3078 3079 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 3080 { 3081 srpt_queue_response(cmd); 3082 } 3083 3084 static int srpt_queue_status(struct se_cmd *cmd) 3085 { 3086 struct srpt_send_ioctx *ioctx; 3087 3088 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3089 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 3090 if (cmd->se_cmd_flags & 3091 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 3092 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 3093 ioctx->queue_status_only = true; 3094 srpt_queue_response(cmd); 3095 return 0; 3096 } 3097 3098 static void srpt_refresh_port_work(struct work_struct *work) 3099 { 3100 struct srpt_port *sport = container_of(work, struct srpt_port, work); 3101 3102 srpt_refresh_port(sport); 3103 } 3104 3105 static int srpt_ch_list_empty(struct srpt_device *sdev) 3106 { 3107 int res; 3108 3109 spin_lock_irq(&sdev->spinlock); 3110 res = list_empty(&sdev->rch_list); 3111 spin_unlock_irq(&sdev->spinlock); 3112 3113 return res; 3114 } 3115 3116 /** 3117 * srpt_release_sdev() - Free the channel resources associated with a target. 3118 */ 3119 static int srpt_release_sdev(struct srpt_device *sdev) 3120 { 3121 struct srpt_rdma_ch *ch, *tmp_ch; 3122 int res; 3123 3124 WARN_ON_ONCE(irqs_disabled()); 3125 3126 BUG_ON(!sdev); 3127 3128 spin_lock_irq(&sdev->spinlock); 3129 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) 3130 __srpt_close_ch(ch); 3131 spin_unlock_irq(&sdev->spinlock); 3132 3133 res = wait_event_interruptible(sdev->ch_releaseQ, 3134 srpt_ch_list_empty(sdev)); 3135 if (res) 3136 printk(KERN_ERR "%s: interrupted.\n", __func__); 3137 3138 return 0; 3139 } 3140 3141 static struct srpt_port *__srpt_lookup_port(const char *name) 3142 { 3143 struct ib_device *dev; 3144 struct srpt_device *sdev; 3145 struct srpt_port *sport; 3146 int i; 3147 3148 list_for_each_entry(sdev, &srpt_dev_list, list) { 3149 dev = sdev->device; 3150 if (!dev) 3151 continue; 3152 3153 for (i = 0; i < dev->phys_port_cnt; i++) { 3154 sport = &sdev->port[i]; 3155 3156 if (!strcmp(sport->port_guid, name)) 3157 return sport; 3158 } 3159 } 3160 3161 return NULL; 3162 } 3163 3164 static struct srpt_port *srpt_lookup_port(const char *name) 3165 { 3166 struct srpt_port *sport; 3167 3168 spin_lock(&srpt_dev_lock); 3169 sport = __srpt_lookup_port(name); 3170 spin_unlock(&srpt_dev_lock); 3171 3172 return sport; 3173 } 3174 3175 /** 3176 * srpt_add_one() - Infiniband device addition callback function. 3177 */ 3178 static void srpt_add_one(struct ib_device *device) 3179 { 3180 struct srpt_device *sdev; 3181 struct srpt_port *sport; 3182 struct ib_srq_init_attr srq_attr; 3183 int i; 3184 3185 pr_debug("device = %p, device->dma_ops = %p\n", device, 3186 device->dma_ops); 3187 3188 sdev = kzalloc(sizeof *sdev, GFP_KERNEL); 3189 if (!sdev) 3190 goto err; 3191 3192 sdev->device = device; 3193 INIT_LIST_HEAD(&sdev->rch_list); 3194 init_waitqueue_head(&sdev->ch_releaseQ); 3195 spin_lock_init(&sdev->spinlock); 3196 3197 if (ib_query_device(device, &sdev->dev_attr)) 3198 goto free_dev; 3199 3200 sdev->pd = ib_alloc_pd(device); 3201 if (IS_ERR(sdev->pd)) 3202 goto free_dev; 3203 3204 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE); 3205 if (IS_ERR(sdev->mr)) 3206 goto err_pd; 3207 3208 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr); 3209 3210 srq_attr.event_handler = srpt_srq_event; 3211 srq_attr.srq_context = (void *)sdev; 3212 srq_attr.attr.max_wr = sdev->srq_size; 3213 srq_attr.attr.max_sge = 1; 3214 srq_attr.attr.srq_limit = 0; 3215 srq_attr.srq_type = IB_SRQT_BASIC; 3216 3217 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 3218 if (IS_ERR(sdev->srq)) 3219 goto err_mr; 3220 3221 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 3222 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr, 3223 device->name); 3224 3225 if (!srpt_service_guid) 3226 srpt_service_guid = be64_to_cpu(device->node_guid); 3227 3228 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3229 if (IS_ERR(sdev->cm_id)) 3230 goto err_srq; 3231 3232 /* print out target login information */ 3233 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3234 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3235 srpt_service_guid, srpt_service_guid); 3236 3237 /* 3238 * We do not have a consistent service_id (ie. also id_ext of target_id) 3239 * to identify this target. We currently use the guid of the first HCA 3240 * in the system as service_id; therefore, the target_id will change 3241 * if this HCA is gone bad and replaced by different HCA 3242 */ 3243 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL)) 3244 goto err_cm; 3245 3246 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3247 srpt_event_handler); 3248 if (ib_register_event_handler(&sdev->event_handler)) 3249 goto err_cm; 3250 3251 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3252 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3253 sizeof(*sdev->ioctx_ring[0]), 3254 srp_max_req_size, DMA_FROM_DEVICE); 3255 if (!sdev->ioctx_ring) 3256 goto err_event; 3257 3258 for (i = 0; i < sdev->srq_size; ++i) 3259 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 3260 3261 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 3262 3263 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3264 sport = &sdev->port[i - 1]; 3265 sport->sdev = sdev; 3266 sport->port = i; 3267 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3268 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3269 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3270 INIT_WORK(&sport->work, srpt_refresh_port_work); 3271 INIT_LIST_HEAD(&sport->port_acl_list); 3272 spin_lock_init(&sport->port_acl_lock); 3273 3274 if (srpt_refresh_port(sport)) { 3275 printk(KERN_ERR "MAD registration failed for %s-%d.\n", 3276 srpt_sdev_name(sdev), i); 3277 goto err_ring; 3278 } 3279 snprintf(sport->port_guid, sizeof(sport->port_guid), 3280 "0x%016llx%016llx", 3281 be64_to_cpu(sport->gid.global.subnet_prefix), 3282 be64_to_cpu(sport->gid.global.interface_id)); 3283 } 3284 3285 spin_lock(&srpt_dev_lock); 3286 list_add_tail(&sdev->list, &srpt_dev_list); 3287 spin_unlock(&srpt_dev_lock); 3288 3289 out: 3290 ib_set_client_data(device, &srpt_client, sdev); 3291 pr_debug("added %s.\n", device->name); 3292 return; 3293 3294 err_ring: 3295 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3296 sdev->srq_size, srp_max_req_size, 3297 DMA_FROM_DEVICE); 3298 err_event: 3299 ib_unregister_event_handler(&sdev->event_handler); 3300 err_cm: 3301 ib_destroy_cm_id(sdev->cm_id); 3302 err_srq: 3303 ib_destroy_srq(sdev->srq); 3304 err_mr: 3305 ib_dereg_mr(sdev->mr); 3306 err_pd: 3307 ib_dealloc_pd(sdev->pd); 3308 free_dev: 3309 kfree(sdev); 3310 err: 3311 sdev = NULL; 3312 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name); 3313 goto out; 3314 } 3315 3316 /** 3317 * srpt_remove_one() - InfiniBand device removal callback function. 3318 */ 3319 static void srpt_remove_one(struct ib_device *device) 3320 { 3321 struct srpt_device *sdev; 3322 int i; 3323 3324 sdev = ib_get_client_data(device, &srpt_client); 3325 if (!sdev) { 3326 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__, 3327 device->name); 3328 return; 3329 } 3330 3331 srpt_unregister_mad_agent(sdev); 3332 3333 ib_unregister_event_handler(&sdev->event_handler); 3334 3335 /* Cancel any work queued by the just unregistered IB event handler. */ 3336 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3337 cancel_work_sync(&sdev->port[i].work); 3338 3339 ib_destroy_cm_id(sdev->cm_id); 3340 3341 /* 3342 * Unregistering a target must happen after destroying sdev->cm_id 3343 * such that no new SRP_LOGIN_REQ information units can arrive while 3344 * destroying the target. 3345 */ 3346 spin_lock(&srpt_dev_lock); 3347 list_del(&sdev->list); 3348 spin_unlock(&srpt_dev_lock); 3349 srpt_release_sdev(sdev); 3350 3351 ib_destroy_srq(sdev->srq); 3352 ib_dereg_mr(sdev->mr); 3353 ib_dealloc_pd(sdev->pd); 3354 3355 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3356 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 3357 sdev->ioctx_ring = NULL; 3358 kfree(sdev); 3359 } 3360 3361 static struct ib_client srpt_client = { 3362 .name = DRV_NAME, 3363 .add = srpt_add_one, 3364 .remove = srpt_remove_one 3365 }; 3366 3367 static int srpt_check_true(struct se_portal_group *se_tpg) 3368 { 3369 return 1; 3370 } 3371 3372 static int srpt_check_false(struct se_portal_group *se_tpg) 3373 { 3374 return 0; 3375 } 3376 3377 static char *srpt_get_fabric_name(void) 3378 { 3379 return "srpt"; 3380 } 3381 3382 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg) 3383 { 3384 return SCSI_TRANSPORTID_PROTOCOLID_SRP; 3385 } 3386 3387 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3388 { 3389 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3390 3391 return sport->port_guid; 3392 } 3393 3394 static u16 srpt_get_tag(struct se_portal_group *tpg) 3395 { 3396 return 1; 3397 } 3398 3399 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg) 3400 { 3401 return 1; 3402 } 3403 3404 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg, 3405 struct se_node_acl *se_nacl, 3406 struct t10_pr_registration *pr_reg, 3407 int *format_code, unsigned char *buf) 3408 { 3409 struct srpt_node_acl *nacl; 3410 struct spc_rdma_transport_id *tr_id; 3411 3412 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3413 tr_id = (void *)buf; 3414 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP; 3415 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id)); 3416 return sizeof(*tr_id); 3417 } 3418 3419 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg, 3420 struct se_node_acl *se_nacl, 3421 struct t10_pr_registration *pr_reg, 3422 int *format_code) 3423 { 3424 *format_code = 0; 3425 return sizeof(struct spc_rdma_transport_id); 3426 } 3427 3428 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg, 3429 const char *buf, u32 *out_tid_len, 3430 char **port_nexus_ptr) 3431 { 3432 struct spc_rdma_transport_id *tr_id; 3433 3434 *port_nexus_ptr = NULL; 3435 *out_tid_len = sizeof(struct spc_rdma_transport_id); 3436 tr_id = (void *)buf; 3437 return (char *)tr_id->i_port_id; 3438 } 3439 3440 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg) 3441 { 3442 struct srpt_node_acl *nacl; 3443 3444 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL); 3445 if (!nacl) { 3446 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n"); 3447 return NULL; 3448 } 3449 3450 return &nacl->nacl; 3451 } 3452 3453 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg, 3454 struct se_node_acl *se_nacl) 3455 { 3456 struct srpt_node_acl *nacl; 3457 3458 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3459 kfree(nacl); 3460 } 3461 3462 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3463 { 3464 return 1; 3465 } 3466 3467 static void srpt_release_cmd(struct se_cmd *se_cmd) 3468 { 3469 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3470 struct srpt_send_ioctx, cmd); 3471 struct srpt_rdma_ch *ch = ioctx->ch; 3472 unsigned long flags; 3473 3474 WARN_ON(ioctx->state != SRPT_STATE_DONE); 3475 WARN_ON(ioctx->mapped_sg_count != 0); 3476 3477 if (ioctx->n_rbuf > 1) { 3478 kfree(ioctx->rbufs); 3479 ioctx->rbufs = NULL; 3480 ioctx->n_rbuf = 0; 3481 } 3482 3483 spin_lock_irqsave(&ch->spinlock, flags); 3484 list_add(&ioctx->free_list, &ch->free_list); 3485 spin_unlock_irqrestore(&ch->spinlock, flags); 3486 } 3487 3488 /** 3489 * srpt_close_session() - Forcibly close a session. 3490 * 3491 * Callback function invoked by the TCM core to clean up sessions associated 3492 * with a node ACL when the user invokes 3493 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3494 */ 3495 static void srpt_close_session(struct se_session *se_sess) 3496 { 3497 DECLARE_COMPLETION_ONSTACK(release_done); 3498 struct srpt_rdma_ch *ch; 3499 struct srpt_device *sdev; 3500 int res; 3501 3502 ch = se_sess->fabric_sess_ptr; 3503 WARN_ON(ch->sess != se_sess); 3504 3505 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch)); 3506 3507 sdev = ch->sport->sdev; 3508 spin_lock_irq(&sdev->spinlock); 3509 BUG_ON(ch->release_done); 3510 ch->release_done = &release_done; 3511 __srpt_close_ch(ch); 3512 spin_unlock_irq(&sdev->spinlock); 3513 3514 res = wait_for_completion_timeout(&release_done, 60 * HZ); 3515 WARN_ON(res <= 0); 3516 } 3517 3518 /** 3519 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 3520 * 3521 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3522 * This object represents an arbitrary integer used to uniquely identify a 3523 * particular attached remote initiator port to a particular SCSI target port 3524 * within a particular SCSI target device within a particular SCSI instance. 3525 */ 3526 static u32 srpt_sess_get_index(struct se_session *se_sess) 3527 { 3528 return 0; 3529 } 3530 3531 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3532 { 3533 } 3534 3535 static u32 srpt_get_task_tag(struct se_cmd *se_cmd) 3536 { 3537 struct srpt_send_ioctx *ioctx; 3538 3539 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3540 return ioctx->tag; 3541 } 3542 3543 /* Note: only used from inside debug printk's by the TCM core. */ 3544 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3545 { 3546 struct srpt_send_ioctx *ioctx; 3547 3548 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3549 return srpt_get_cmd_state(ioctx); 3550 } 3551 3552 /** 3553 * srpt_parse_i_port_id() - Parse an initiator port ID. 3554 * @name: ASCII representation of a 128-bit initiator port ID. 3555 * @i_port_id: Binary 128-bit port ID. 3556 */ 3557 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3558 { 3559 const char *p; 3560 unsigned len, count, leading_zero_bytes; 3561 int ret, rc; 3562 3563 p = name; 3564 if (strnicmp(p, "0x", 2) == 0) 3565 p += 2; 3566 ret = -EINVAL; 3567 len = strlen(p); 3568 if (len % 2) 3569 goto out; 3570 count = min(len / 2, 16U); 3571 leading_zero_bytes = 16 - count; 3572 memset(i_port_id, 0, leading_zero_bytes); 3573 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 3574 if (rc < 0) 3575 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 3576 ret = 0; 3577 out: 3578 return ret; 3579 } 3580 3581 /* 3582 * configfs callback function invoked for 3583 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3584 */ 3585 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg, 3586 struct config_group *group, 3587 const char *name) 3588 { 3589 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3590 struct se_node_acl *se_nacl, *se_nacl_new; 3591 struct srpt_node_acl *nacl; 3592 int ret = 0; 3593 u32 nexus_depth = 1; 3594 u8 i_port_id[16]; 3595 3596 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 3597 printk(KERN_ERR "invalid initiator port ID %s\n", name); 3598 ret = -EINVAL; 3599 goto err; 3600 } 3601 3602 se_nacl_new = srpt_alloc_fabric_acl(tpg); 3603 if (!se_nacl_new) { 3604 ret = -ENOMEM; 3605 goto err; 3606 } 3607 /* 3608 * nacl_new may be released by core_tpg_add_initiator_node_acl() 3609 * when converting a node ACL from demo mode to explict 3610 */ 3611 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name, 3612 nexus_depth); 3613 if (IS_ERR(se_nacl)) { 3614 ret = PTR_ERR(se_nacl); 3615 goto err; 3616 } 3617 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */ 3618 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3619 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16); 3620 nacl->sport = sport; 3621 3622 spin_lock_irq(&sport->port_acl_lock); 3623 list_add_tail(&nacl->list, &sport->port_acl_list); 3624 spin_unlock_irq(&sport->port_acl_lock); 3625 3626 return se_nacl; 3627 err: 3628 return ERR_PTR(ret); 3629 } 3630 3631 /* 3632 * configfs callback function invoked for 3633 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3634 */ 3635 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl) 3636 { 3637 struct srpt_node_acl *nacl; 3638 struct srpt_device *sdev; 3639 struct srpt_port *sport; 3640 3641 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3642 sport = nacl->sport; 3643 sdev = sport->sdev; 3644 spin_lock_irq(&sport->port_acl_lock); 3645 list_del(&nacl->list); 3646 spin_unlock_irq(&sport->port_acl_lock); 3647 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1); 3648 srpt_release_fabric_acl(NULL, se_nacl); 3649 } 3650 3651 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size( 3652 struct se_portal_group *se_tpg, 3653 char *page) 3654 { 3655 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3656 3657 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3658 } 3659 3660 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size( 3661 struct se_portal_group *se_tpg, 3662 const char *page, 3663 size_t count) 3664 { 3665 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3666 unsigned long val; 3667 int ret; 3668 3669 ret = strict_strtoul(page, 0, &val); 3670 if (ret < 0) { 3671 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3672 return -EINVAL; 3673 } 3674 if (val > MAX_SRPT_RDMA_SIZE) { 3675 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3676 MAX_SRPT_RDMA_SIZE); 3677 return -EINVAL; 3678 } 3679 if (val < DEFAULT_MAX_RDMA_SIZE) { 3680 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3681 val, DEFAULT_MAX_RDMA_SIZE); 3682 return -EINVAL; 3683 } 3684 sport->port_attrib.srp_max_rdma_size = val; 3685 3686 return count; 3687 } 3688 3689 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR); 3690 3691 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size( 3692 struct se_portal_group *se_tpg, 3693 char *page) 3694 { 3695 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3696 3697 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3698 } 3699 3700 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size( 3701 struct se_portal_group *se_tpg, 3702 const char *page, 3703 size_t count) 3704 { 3705 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3706 unsigned long val; 3707 int ret; 3708 3709 ret = strict_strtoul(page, 0, &val); 3710 if (ret < 0) { 3711 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3712 return -EINVAL; 3713 } 3714 if (val > MAX_SRPT_RSP_SIZE) { 3715 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3716 MAX_SRPT_RSP_SIZE); 3717 return -EINVAL; 3718 } 3719 if (val < MIN_MAX_RSP_SIZE) { 3720 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3721 MIN_MAX_RSP_SIZE); 3722 return -EINVAL; 3723 } 3724 sport->port_attrib.srp_max_rsp_size = val; 3725 3726 return count; 3727 } 3728 3729 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR); 3730 3731 static ssize_t srpt_tpg_attrib_show_srp_sq_size( 3732 struct se_portal_group *se_tpg, 3733 char *page) 3734 { 3735 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3736 3737 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3738 } 3739 3740 static ssize_t srpt_tpg_attrib_store_srp_sq_size( 3741 struct se_portal_group *se_tpg, 3742 const char *page, 3743 size_t count) 3744 { 3745 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3746 unsigned long val; 3747 int ret; 3748 3749 ret = strict_strtoul(page, 0, &val); 3750 if (ret < 0) { 3751 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3752 return -EINVAL; 3753 } 3754 if (val > MAX_SRPT_SRQ_SIZE) { 3755 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3756 MAX_SRPT_SRQ_SIZE); 3757 return -EINVAL; 3758 } 3759 if (val < MIN_SRPT_SRQ_SIZE) { 3760 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3761 MIN_SRPT_SRQ_SIZE); 3762 return -EINVAL; 3763 } 3764 sport->port_attrib.srp_sq_size = val; 3765 3766 return count; 3767 } 3768 3769 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR); 3770 3771 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3772 &srpt_tpg_attrib_srp_max_rdma_size.attr, 3773 &srpt_tpg_attrib_srp_max_rsp_size.attr, 3774 &srpt_tpg_attrib_srp_sq_size.attr, 3775 NULL, 3776 }; 3777 3778 static ssize_t srpt_tpg_show_enable( 3779 struct se_portal_group *se_tpg, 3780 char *page) 3781 { 3782 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3783 3784 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3785 } 3786 3787 static ssize_t srpt_tpg_store_enable( 3788 struct se_portal_group *se_tpg, 3789 const char *page, 3790 size_t count) 3791 { 3792 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3793 unsigned long tmp; 3794 int ret; 3795 3796 ret = strict_strtoul(page, 0, &tmp); 3797 if (ret < 0) { 3798 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n"); 3799 return -EINVAL; 3800 } 3801 3802 if ((tmp != 0) && (tmp != 1)) { 3803 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3804 return -EINVAL; 3805 } 3806 if (tmp == 1) 3807 sport->enabled = true; 3808 else 3809 sport->enabled = false; 3810 3811 return count; 3812 } 3813 3814 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR); 3815 3816 static struct configfs_attribute *srpt_tpg_attrs[] = { 3817 &srpt_tpg_enable.attr, 3818 NULL, 3819 }; 3820 3821 /** 3822 * configfs callback invoked for 3823 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3824 */ 3825 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3826 struct config_group *group, 3827 const char *name) 3828 { 3829 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3830 int res; 3831 3832 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 3833 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn, 3834 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL); 3835 if (res) 3836 return ERR_PTR(res); 3837 3838 return &sport->port_tpg_1; 3839 } 3840 3841 /** 3842 * configfs callback invoked for 3843 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3844 */ 3845 static void srpt_drop_tpg(struct se_portal_group *tpg) 3846 { 3847 struct srpt_port *sport = container_of(tpg, 3848 struct srpt_port, port_tpg_1); 3849 3850 sport->enabled = false; 3851 core_tpg_deregister(&sport->port_tpg_1); 3852 } 3853 3854 /** 3855 * configfs callback invoked for 3856 * mkdir /sys/kernel/config/target/$driver/$port 3857 */ 3858 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3859 struct config_group *group, 3860 const char *name) 3861 { 3862 struct srpt_port *sport; 3863 int ret; 3864 3865 sport = srpt_lookup_port(name); 3866 pr_debug("make_tport(%s)\n", name); 3867 ret = -EINVAL; 3868 if (!sport) 3869 goto err; 3870 3871 return &sport->port_wwn; 3872 3873 err: 3874 return ERR_PTR(ret); 3875 } 3876 3877 /** 3878 * configfs callback invoked for 3879 * rmdir /sys/kernel/config/target/$driver/$port 3880 */ 3881 static void srpt_drop_tport(struct se_wwn *wwn) 3882 { 3883 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3884 3885 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3886 } 3887 3888 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf, 3889 char *buf) 3890 { 3891 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3892 } 3893 3894 TF_WWN_ATTR_RO(srpt, version); 3895 3896 static struct configfs_attribute *srpt_wwn_attrs[] = { 3897 &srpt_wwn_version.attr, 3898 NULL, 3899 }; 3900 3901 static struct target_core_fabric_ops srpt_template = { 3902 .get_fabric_name = srpt_get_fabric_name, 3903 .get_fabric_proto_ident = srpt_get_fabric_proto_ident, 3904 .tpg_get_wwn = srpt_get_fabric_wwn, 3905 .tpg_get_tag = srpt_get_tag, 3906 .tpg_get_default_depth = srpt_get_default_depth, 3907 .tpg_get_pr_transport_id = srpt_get_pr_transport_id, 3908 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len, 3909 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id, 3910 .tpg_check_demo_mode = srpt_check_false, 3911 .tpg_check_demo_mode_cache = srpt_check_true, 3912 .tpg_check_demo_mode_write_protect = srpt_check_true, 3913 .tpg_check_prod_mode_write_protect = srpt_check_false, 3914 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl, 3915 .tpg_release_fabric_acl = srpt_release_fabric_acl, 3916 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3917 .release_cmd = srpt_release_cmd, 3918 .check_stop_free = srpt_check_stop_free, 3919 .shutdown_session = srpt_shutdown_session, 3920 .close_session = srpt_close_session, 3921 .sess_get_index = srpt_sess_get_index, 3922 .sess_get_initiator_sid = NULL, 3923 .write_pending = srpt_write_pending, 3924 .write_pending_status = srpt_write_pending_status, 3925 .set_default_node_attributes = srpt_set_default_node_attrs, 3926 .get_task_tag = srpt_get_task_tag, 3927 .get_cmd_state = srpt_get_tcm_cmd_state, 3928 .queue_data_in = srpt_queue_data_in, 3929 .queue_status = srpt_queue_status, 3930 .queue_tm_rsp = srpt_queue_tm_rsp, 3931 /* 3932 * Setup function pointers for generic logic in 3933 * target_core_fabric_configfs.c 3934 */ 3935 .fabric_make_wwn = srpt_make_tport, 3936 .fabric_drop_wwn = srpt_drop_tport, 3937 .fabric_make_tpg = srpt_make_tpg, 3938 .fabric_drop_tpg = srpt_drop_tpg, 3939 .fabric_post_link = NULL, 3940 .fabric_pre_unlink = NULL, 3941 .fabric_make_np = NULL, 3942 .fabric_drop_np = NULL, 3943 .fabric_make_nodeacl = srpt_make_nodeacl, 3944 .fabric_drop_nodeacl = srpt_drop_nodeacl, 3945 }; 3946 3947 /** 3948 * srpt_init_module() - Kernel module initialization. 3949 * 3950 * Note: Since ib_register_client() registers callback functions, and since at 3951 * least one of these callback functions (srpt_add_one()) calls target core 3952 * functions, this driver must be registered with the target core before 3953 * ib_register_client() is called. 3954 */ 3955 static int __init srpt_init_module(void) 3956 { 3957 int ret; 3958 3959 ret = -EINVAL; 3960 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3961 printk(KERN_ERR "invalid value %d for kernel module parameter" 3962 " srp_max_req_size -- must be at least %d.\n", 3963 srp_max_req_size, MIN_MAX_REQ_SIZE); 3964 goto out; 3965 } 3966 3967 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3968 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3969 printk(KERN_ERR "invalid value %d for kernel module parameter" 3970 " srpt_srq_size -- must be in the range [%d..%d].\n", 3971 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3972 goto out; 3973 } 3974 3975 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt"); 3976 if (IS_ERR(srpt_target)) { 3977 printk(KERN_ERR "couldn't register\n"); 3978 ret = PTR_ERR(srpt_target); 3979 goto out; 3980 } 3981 3982 srpt_target->tf_ops = srpt_template; 3983 3984 /* 3985 * Set up default attribute lists. 3986 */ 3987 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs; 3988 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs; 3989 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs; 3990 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL; 3991 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL; 3992 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL; 3993 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL; 3994 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL; 3995 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL; 3996 3997 ret = target_fabric_configfs_register(srpt_target); 3998 if (ret < 0) { 3999 printk(KERN_ERR "couldn't register\n"); 4000 goto out_free_target; 4001 } 4002 4003 ret = ib_register_client(&srpt_client); 4004 if (ret) { 4005 printk(KERN_ERR "couldn't register IB client\n"); 4006 goto out_unregister_target; 4007 } 4008 4009 return 0; 4010 4011 out_unregister_target: 4012 target_fabric_configfs_deregister(srpt_target); 4013 srpt_target = NULL; 4014 out_free_target: 4015 if (srpt_target) 4016 target_fabric_configfs_free(srpt_target); 4017 out: 4018 return ret; 4019 } 4020 4021 static void __exit srpt_cleanup_module(void) 4022 { 4023 ib_unregister_client(&srpt_client); 4024 target_fabric_configfs_deregister(srpt_target); 4025 srpt_target = NULL; 4026 } 4027 4028 module_init(srpt_init_module); 4029 module_exit(srpt_cleanup_module); 4030