1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_tcq.h> 45 #include <target/configfs_macros.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric_configfs.h> 48 #include <target/target_core_fabric.h> 49 #include <target/target_core_configfs.h> 50 #include "ib_srpt.h" 51 52 /* Name of this kernel module. */ 53 #define DRV_NAME "ib_srpt" 54 #define DRV_VERSION "2.0.0" 55 #define DRV_RELDATE "2011-02-14" 56 57 #define SRPT_ID_STRING "Linux SRP target" 58 59 #undef pr_fmt 60 #define pr_fmt(fmt) DRV_NAME " " fmt 61 62 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 64 "v" DRV_VERSION " (" DRV_RELDATE ")"); 65 MODULE_LICENSE("Dual BSD/GPL"); 66 67 /* 68 * Global Variables 69 */ 70 71 static u64 srpt_service_guid; 72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 74 75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 76 module_param(srp_max_req_size, int, 0444); 77 MODULE_PARM_DESC(srp_max_req_size, 78 "Maximum size of SRP request messages in bytes."); 79 80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 81 module_param(srpt_srq_size, int, 0444); 82 MODULE_PARM_DESC(srpt_srq_size, 83 "Shared receive queue (SRQ) size."); 84 85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 86 { 87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 88 } 89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 90 0444); 91 MODULE_PARM_DESC(srpt_service_guid, 92 "Using this value for ioc_guid, id_ext, and cm_listen_id" 93 " instead of using the node_guid of the first HCA."); 94 95 static struct ib_client srpt_client; 96 static struct target_fabric_configfs *srpt_target; 97 static void srpt_release_channel(struct srpt_rdma_ch *ch); 98 static int srpt_queue_status(struct se_cmd *cmd); 99 100 /** 101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE. 102 */ 103 static inline 104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir) 105 { 106 switch (dir) { 107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE; 108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE; 109 default: return dir; 110 } 111 } 112 113 /** 114 * srpt_sdev_name() - Return the name associated with the HCA. 115 * 116 * Examples are ib0, ib1, ... 117 */ 118 static inline const char *srpt_sdev_name(struct srpt_device *sdev) 119 { 120 return sdev->device->name; 121 } 122 123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch) 124 { 125 unsigned long flags; 126 enum rdma_ch_state state; 127 128 spin_lock_irqsave(&ch->spinlock, flags); 129 state = ch->state; 130 spin_unlock_irqrestore(&ch->spinlock, flags); 131 return state; 132 } 133 134 static enum rdma_ch_state 135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state) 136 { 137 unsigned long flags; 138 enum rdma_ch_state prev; 139 140 spin_lock_irqsave(&ch->spinlock, flags); 141 prev = ch->state; 142 ch->state = new_state; 143 spin_unlock_irqrestore(&ch->spinlock, flags); 144 return prev; 145 } 146 147 /** 148 * srpt_test_and_set_ch_state() - Test and set the channel state. 149 * 150 * Returns true if and only if the channel state has been set to the new state. 151 */ 152 static bool 153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old, 154 enum rdma_ch_state new) 155 { 156 unsigned long flags; 157 enum rdma_ch_state prev; 158 159 spin_lock_irqsave(&ch->spinlock, flags); 160 prev = ch->state; 161 if (prev == old) 162 ch->state = new; 163 spin_unlock_irqrestore(&ch->spinlock, flags); 164 return prev == old; 165 } 166 167 /** 168 * srpt_event_handler() - Asynchronous IB event callback function. 169 * 170 * Callback function called by the InfiniBand core when an asynchronous IB 171 * event occurs. This callback may occur in interrupt context. See also 172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 173 * Architecture Specification. 174 */ 175 static void srpt_event_handler(struct ib_event_handler *handler, 176 struct ib_event *event) 177 { 178 struct srpt_device *sdev; 179 struct srpt_port *sport; 180 181 sdev = ib_get_client_data(event->device, &srpt_client); 182 if (!sdev || sdev->device != event->device) 183 return; 184 185 pr_debug("ASYNC event= %d on device= %s\n", event->event, 186 srpt_sdev_name(sdev)); 187 188 switch (event->event) { 189 case IB_EVENT_PORT_ERR: 190 if (event->element.port_num <= sdev->device->phys_port_cnt) { 191 sport = &sdev->port[event->element.port_num - 1]; 192 sport->lid = 0; 193 sport->sm_lid = 0; 194 } 195 break; 196 case IB_EVENT_PORT_ACTIVE: 197 case IB_EVENT_LID_CHANGE: 198 case IB_EVENT_PKEY_CHANGE: 199 case IB_EVENT_SM_CHANGE: 200 case IB_EVENT_CLIENT_REREGISTER: 201 /* Refresh port data asynchronously. */ 202 if (event->element.port_num <= sdev->device->phys_port_cnt) { 203 sport = &sdev->port[event->element.port_num - 1]; 204 if (!sport->lid && !sport->sm_lid) 205 schedule_work(&sport->work); 206 } 207 break; 208 default: 209 printk(KERN_ERR "received unrecognized IB event %d\n", 210 event->event); 211 break; 212 } 213 } 214 215 /** 216 * srpt_srq_event() - SRQ event callback function. 217 */ 218 static void srpt_srq_event(struct ib_event *event, void *ctx) 219 { 220 printk(KERN_INFO "SRQ event %d\n", event->event); 221 } 222 223 /** 224 * srpt_qp_event() - QP event callback function. 225 */ 226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 227 { 228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch)); 230 231 switch (event->event) { 232 case IB_EVENT_COMM_EST: 233 ib_cm_notify(ch->cm_id, event->event); 234 break; 235 case IB_EVENT_QP_LAST_WQE_REACHED: 236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING, 237 CH_RELEASING)) 238 srpt_release_channel(ch); 239 else 240 pr_debug("%s: state %d - ignored LAST_WQE.\n", 241 ch->sess_name, srpt_get_ch_state(ch)); 242 break; 243 default: 244 printk(KERN_ERR "received unrecognized IB QP event %d\n", 245 event->event); 246 break; 247 } 248 } 249 250 /** 251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 252 * 253 * @slot: one-based slot number. 254 * @value: four-bit value. 255 * 256 * Copies the lowest four bits of value in element slot of the array of four 257 * bit elements called c_list (controller list). The index slot is one-based. 258 */ 259 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 260 { 261 u16 id; 262 u8 tmp; 263 264 id = (slot - 1) / 2; 265 if (slot & 0x1) { 266 tmp = c_list[id] & 0xf; 267 c_list[id] = (value << 4) | tmp; 268 } else { 269 tmp = c_list[id] & 0xf0; 270 c_list[id] = (value & 0xf) | tmp; 271 } 272 } 273 274 /** 275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 276 * 277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 278 * Specification. 279 */ 280 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 281 { 282 struct ib_class_port_info *cif; 283 284 cif = (struct ib_class_port_info *)mad->data; 285 memset(cif, 0, sizeof *cif); 286 cif->base_version = 1; 287 cif->class_version = 1; 288 cif->resp_time_value = 20; 289 290 mad->mad_hdr.status = 0; 291 } 292 293 /** 294 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 295 * 296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 297 * Specification. See also section B.7, table B.6 in the SRP r16a document. 298 */ 299 static void srpt_get_iou(struct ib_dm_mad *mad) 300 { 301 struct ib_dm_iou_info *ioui; 302 u8 slot; 303 int i; 304 305 ioui = (struct ib_dm_iou_info *)mad->data; 306 ioui->change_id = __constant_cpu_to_be16(1); 307 ioui->max_controllers = 16; 308 309 /* set present for slot 1 and empty for the rest */ 310 srpt_set_ioc(ioui->controller_list, 1, 1); 311 for (i = 1, slot = 2; i < 16; i++, slot++) 312 srpt_set_ioc(ioui->controller_list, slot, 0); 313 314 mad->mad_hdr.status = 0; 315 } 316 317 /** 318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 319 * 320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 321 * Architecture Specification. See also section B.7, table B.7 in the SRP 322 * r16a document. 323 */ 324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 325 struct ib_dm_mad *mad) 326 { 327 struct srpt_device *sdev = sport->sdev; 328 struct ib_dm_ioc_profile *iocp; 329 330 iocp = (struct ib_dm_ioc_profile *)mad->data; 331 332 if (!slot || slot > 16) { 333 mad->mad_hdr.status 334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 335 return; 336 } 337 338 if (slot > 2) { 339 mad->mad_hdr.status 340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 341 return; 342 } 343 344 memset(iocp, 0, sizeof *iocp); 345 strcpy(iocp->id_string, SRPT_ID_STRING); 346 iocp->guid = cpu_to_be64(srpt_service_guid); 347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id); 349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver); 350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 351 iocp->subsys_device_id = 0x0; 352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS); 354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL); 355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION); 356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 357 iocp->rdma_read_depth = 4; 358 iocp->send_size = cpu_to_be32(srp_max_req_size); 359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 360 1U << 24)); 361 iocp->num_svc_entries = 1; 362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 364 365 mad->mad_hdr.status = 0; 366 } 367 368 /** 369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 370 * 371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 372 * Specification. See also section B.7, table B.8 in the SRP r16a document. 373 */ 374 static void srpt_get_svc_entries(u64 ioc_guid, 375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 376 { 377 struct ib_dm_svc_entries *svc_entries; 378 379 WARN_ON(!ioc_guid); 380 381 if (!slot || slot > 16) { 382 mad->mad_hdr.status 383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 384 return; 385 } 386 387 if (slot > 2 || lo > hi || hi > 1) { 388 mad->mad_hdr.status 389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 390 return; 391 } 392 393 svc_entries = (struct ib_dm_svc_entries *)mad->data; 394 memset(svc_entries, 0, sizeof *svc_entries); 395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 396 snprintf(svc_entries->service_entries[0].name, 397 sizeof(svc_entries->service_entries[0].name), 398 "%s%016llx", 399 SRP_SERVICE_NAME_PREFIX, 400 ioc_guid); 401 402 mad->mad_hdr.status = 0; 403 } 404 405 /** 406 * srpt_mgmt_method_get() - Process a received management datagram. 407 * @sp: source port through which the MAD has been received. 408 * @rq_mad: received MAD. 409 * @rsp_mad: response MAD. 410 */ 411 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 412 struct ib_dm_mad *rsp_mad) 413 { 414 u16 attr_id; 415 u32 slot; 416 u8 hi, lo; 417 418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 419 switch (attr_id) { 420 case DM_ATTR_CLASS_PORT_INFO: 421 srpt_get_class_port_info(rsp_mad); 422 break; 423 case DM_ATTR_IOU_INFO: 424 srpt_get_iou(rsp_mad); 425 break; 426 case DM_ATTR_IOC_PROFILE: 427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 428 srpt_get_ioc(sp, slot, rsp_mad); 429 break; 430 case DM_ATTR_SVC_ENTRIES: 431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 432 hi = (u8) ((slot >> 8) & 0xff); 433 lo = (u8) (slot & 0xff); 434 slot = (u16) ((slot >> 16) & 0xffff); 435 srpt_get_svc_entries(srpt_service_guid, 436 slot, hi, lo, rsp_mad); 437 break; 438 default: 439 rsp_mad->mad_hdr.status = 440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 441 break; 442 } 443 } 444 445 /** 446 * srpt_mad_send_handler() - Post MAD-send callback function. 447 */ 448 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 449 struct ib_mad_send_wc *mad_wc) 450 { 451 ib_destroy_ah(mad_wc->send_buf->ah); 452 ib_free_send_mad(mad_wc->send_buf); 453 } 454 455 /** 456 * srpt_mad_recv_handler() - MAD reception callback function. 457 */ 458 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 459 struct ib_mad_recv_wc *mad_wc) 460 { 461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 462 struct ib_ah *ah; 463 struct ib_mad_send_buf *rsp; 464 struct ib_dm_mad *dm_mad; 465 466 if (!mad_wc || !mad_wc->recv_buf.mad) 467 return; 468 469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 470 mad_wc->recv_buf.grh, mad_agent->port_num); 471 if (IS_ERR(ah)) 472 goto err; 473 474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 475 476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 477 mad_wc->wc->pkey_index, 0, 478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 479 GFP_KERNEL); 480 if (IS_ERR(rsp)) 481 goto err_rsp; 482 483 rsp->ah = ah; 484 485 dm_mad = rsp->mad; 486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad); 487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 488 dm_mad->mad_hdr.status = 0; 489 490 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 491 case IB_MGMT_METHOD_GET: 492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 493 break; 494 case IB_MGMT_METHOD_SET: 495 dm_mad->mad_hdr.status = 496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 497 break; 498 default: 499 dm_mad->mad_hdr.status = 500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 501 break; 502 } 503 504 if (!ib_post_send_mad(rsp, NULL)) { 505 ib_free_recv_mad(mad_wc); 506 /* will destroy_ah & free_send_mad in send completion */ 507 return; 508 } 509 510 ib_free_send_mad(rsp); 511 512 err_rsp: 513 ib_destroy_ah(ah); 514 err: 515 ib_free_recv_mad(mad_wc); 516 } 517 518 /** 519 * srpt_refresh_port() - Configure a HCA port. 520 * 521 * Enable InfiniBand management datagram processing, update the cached sm_lid, 522 * lid and gid values, and register a callback function for processing MADs 523 * on the specified port. 524 * 525 * Note: It is safe to call this function more than once for the same port. 526 */ 527 static int srpt_refresh_port(struct srpt_port *sport) 528 { 529 struct ib_mad_reg_req reg_req; 530 struct ib_port_modify port_modify; 531 struct ib_port_attr port_attr; 532 int ret; 533 534 memset(&port_modify, 0, sizeof port_modify); 535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 536 port_modify.clr_port_cap_mask = 0; 537 538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 539 if (ret) 540 goto err_mod_port; 541 542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 543 if (ret) 544 goto err_query_port; 545 546 sport->sm_lid = port_attr.sm_lid; 547 sport->lid = port_attr.lid; 548 549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 550 if (ret) 551 goto err_query_port; 552 553 if (!sport->mad_agent) { 554 memset(®_req, 0, sizeof reg_req); 555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 559 560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 561 sport->port, 562 IB_QPT_GSI, 563 ®_req, 0, 564 srpt_mad_send_handler, 565 srpt_mad_recv_handler, 566 sport); 567 if (IS_ERR(sport->mad_agent)) { 568 ret = PTR_ERR(sport->mad_agent); 569 sport->mad_agent = NULL; 570 goto err_query_port; 571 } 572 } 573 574 return 0; 575 576 err_query_port: 577 578 port_modify.set_port_cap_mask = 0; 579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 581 582 err_mod_port: 583 584 return ret; 585 } 586 587 /** 588 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 589 * 590 * Note: It is safe to call this function more than once for the same device. 591 */ 592 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 593 { 594 struct ib_port_modify port_modify = { 595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 596 }; 597 struct srpt_port *sport; 598 int i; 599 600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 601 sport = &sdev->port[i - 1]; 602 WARN_ON(sport->port != i); 603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 604 printk(KERN_ERR "disabling MAD processing failed.\n"); 605 if (sport->mad_agent) { 606 ib_unregister_mad_agent(sport->mad_agent); 607 sport->mad_agent = NULL; 608 } 609 } 610 } 611 612 /** 613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 614 */ 615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 616 int ioctx_size, int dma_size, 617 enum dma_data_direction dir) 618 { 619 struct srpt_ioctx *ioctx; 620 621 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 622 if (!ioctx) 623 goto err; 624 625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 626 if (!ioctx->buf) 627 goto err_free_ioctx; 628 629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 630 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 631 goto err_free_buf; 632 633 return ioctx; 634 635 err_free_buf: 636 kfree(ioctx->buf); 637 err_free_ioctx: 638 kfree(ioctx); 639 err: 640 return NULL; 641 } 642 643 /** 644 * srpt_free_ioctx() - Free an SRPT I/O context structure. 645 */ 646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 647 int dma_size, enum dma_data_direction dir) 648 { 649 if (!ioctx) 650 return; 651 652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 653 kfree(ioctx->buf); 654 kfree(ioctx); 655 } 656 657 /** 658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 659 * @sdev: Device to allocate the I/O context ring for. 660 * @ring_size: Number of elements in the I/O context ring. 661 * @ioctx_size: I/O context size. 662 * @dma_size: DMA buffer size. 663 * @dir: DMA data direction. 664 */ 665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 666 int ring_size, int ioctx_size, 667 int dma_size, enum dma_data_direction dir) 668 { 669 struct srpt_ioctx **ring; 670 int i; 671 672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 673 && ioctx_size != sizeof(struct srpt_send_ioctx)); 674 675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 676 if (!ring) 677 goto out; 678 for (i = 0; i < ring_size; ++i) { 679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 680 if (!ring[i]) 681 goto err; 682 ring[i]->index = i; 683 } 684 goto out; 685 686 err: 687 while (--i >= 0) 688 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 689 kfree(ring); 690 ring = NULL; 691 out: 692 return ring; 693 } 694 695 /** 696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 697 */ 698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 699 struct srpt_device *sdev, int ring_size, 700 int dma_size, enum dma_data_direction dir) 701 { 702 int i; 703 704 for (i = 0; i < ring_size; ++i) 705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 706 kfree(ioctx_ring); 707 } 708 709 /** 710 * srpt_get_cmd_state() - Get the state of a SCSI command. 711 */ 712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 713 { 714 enum srpt_command_state state; 715 unsigned long flags; 716 717 BUG_ON(!ioctx); 718 719 spin_lock_irqsave(&ioctx->spinlock, flags); 720 state = ioctx->state; 721 spin_unlock_irqrestore(&ioctx->spinlock, flags); 722 return state; 723 } 724 725 /** 726 * srpt_set_cmd_state() - Set the state of a SCSI command. 727 * 728 * Does not modify the state of aborted commands. Returns the previous command 729 * state. 730 */ 731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 732 enum srpt_command_state new) 733 { 734 enum srpt_command_state previous; 735 unsigned long flags; 736 737 BUG_ON(!ioctx); 738 739 spin_lock_irqsave(&ioctx->spinlock, flags); 740 previous = ioctx->state; 741 if (previous != SRPT_STATE_DONE) 742 ioctx->state = new; 743 spin_unlock_irqrestore(&ioctx->spinlock, flags); 744 745 return previous; 746 } 747 748 /** 749 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 750 * 751 * Returns true if and only if the previous command state was equal to 'old'. 752 */ 753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 754 enum srpt_command_state old, 755 enum srpt_command_state new) 756 { 757 enum srpt_command_state previous; 758 unsigned long flags; 759 760 WARN_ON(!ioctx); 761 WARN_ON(old == SRPT_STATE_DONE); 762 WARN_ON(new == SRPT_STATE_NEW); 763 764 spin_lock_irqsave(&ioctx->spinlock, flags); 765 previous = ioctx->state; 766 if (previous == old) 767 ioctx->state = new; 768 spin_unlock_irqrestore(&ioctx->spinlock, flags); 769 return previous == old; 770 } 771 772 /** 773 * srpt_post_recv() - Post an IB receive request. 774 */ 775 static int srpt_post_recv(struct srpt_device *sdev, 776 struct srpt_recv_ioctx *ioctx) 777 { 778 struct ib_sge list; 779 struct ib_recv_wr wr, *bad_wr; 780 781 BUG_ON(!sdev); 782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index); 783 784 list.addr = ioctx->ioctx.dma; 785 list.length = srp_max_req_size; 786 list.lkey = sdev->mr->lkey; 787 788 wr.next = NULL; 789 wr.sg_list = &list; 790 wr.num_sge = 1; 791 792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 793 } 794 795 /** 796 * srpt_post_send() - Post an IB send request. 797 * 798 * Returns zero upon success and a non-zero value upon failure. 799 */ 800 static int srpt_post_send(struct srpt_rdma_ch *ch, 801 struct srpt_send_ioctx *ioctx, int len) 802 { 803 struct ib_sge list; 804 struct ib_send_wr wr, *bad_wr; 805 struct srpt_device *sdev = ch->sport->sdev; 806 int ret; 807 808 atomic_inc(&ch->req_lim); 809 810 ret = -ENOMEM; 811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { 812 printk(KERN_WARNING "IB send queue full (needed 1)\n"); 813 goto out; 814 } 815 816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, 817 DMA_TO_DEVICE); 818 819 list.addr = ioctx->ioctx.dma; 820 list.length = len; 821 list.lkey = sdev->mr->lkey; 822 823 wr.next = NULL; 824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index); 825 wr.sg_list = &list; 826 wr.num_sge = 1; 827 wr.opcode = IB_WR_SEND; 828 wr.send_flags = IB_SEND_SIGNALED; 829 830 ret = ib_post_send(ch->qp, &wr, &bad_wr); 831 832 out: 833 if (ret < 0) { 834 atomic_inc(&ch->sq_wr_avail); 835 atomic_dec(&ch->req_lim); 836 } 837 return ret; 838 } 839 840 /** 841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 842 * @ioctx: Pointer to the I/O context associated with the request. 843 * @srp_cmd: Pointer to the SRP_CMD request data. 844 * @dir: Pointer to the variable to which the transfer direction will be 845 * written. 846 * @data_len: Pointer to the variable to which the total data length of all 847 * descriptors in the SRP_CMD request will be written. 848 * 849 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 850 * 851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 852 * -ENOMEM when memory allocation fails and zero upon success. 853 */ 854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 855 struct srp_cmd *srp_cmd, 856 enum dma_data_direction *dir, u64 *data_len) 857 { 858 struct srp_indirect_buf *idb; 859 struct srp_direct_buf *db; 860 unsigned add_cdb_offset; 861 int ret; 862 863 /* 864 * The pointer computations below will only be compiled correctly 865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 866 * whether srp_cmd::add_data has been declared as a byte pointer. 867 */ 868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) 869 && !__same_type(srp_cmd->add_data[0], (u8)0)); 870 871 BUG_ON(!dir); 872 BUG_ON(!data_len); 873 874 ret = 0; 875 *data_len = 0; 876 877 /* 878 * The lower four bits of the buffer format field contain the DATA-IN 879 * buffer descriptor format, and the highest four bits contain the 880 * DATA-OUT buffer descriptor format. 881 */ 882 *dir = DMA_NONE; 883 if (srp_cmd->buf_fmt & 0xf) 884 /* DATA-IN: transfer data from target to initiator (read). */ 885 *dir = DMA_FROM_DEVICE; 886 else if (srp_cmd->buf_fmt >> 4) 887 /* DATA-OUT: transfer data from initiator to target (write). */ 888 *dir = DMA_TO_DEVICE; 889 890 /* 891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 892 * CDB LENGTH' field are reserved and the size in bytes of this field 893 * is four times the value specified in bits 3..7. Hence the "& ~3". 894 */ 895 add_cdb_offset = srp_cmd->add_cdb_len & ~3; 896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 898 ioctx->n_rbuf = 1; 899 ioctx->rbufs = &ioctx->single_rbuf; 900 901 db = (struct srp_direct_buf *)(srp_cmd->add_data 902 + add_cdb_offset); 903 memcpy(ioctx->rbufs, db, sizeof *db); 904 *data_len = be32_to_cpu(db->len); 905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data 908 + add_cdb_offset); 909 910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db; 911 912 if (ioctx->n_rbuf > 913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 914 printk(KERN_ERR "received unsupported SRP_CMD request" 915 " type (%u out + %u in != %u / %zu)\n", 916 srp_cmd->data_out_desc_cnt, 917 srp_cmd->data_in_desc_cnt, 918 be32_to_cpu(idb->table_desc.len), 919 sizeof(*db)); 920 ioctx->n_rbuf = 0; 921 ret = -EINVAL; 922 goto out; 923 } 924 925 if (ioctx->n_rbuf == 1) 926 ioctx->rbufs = &ioctx->single_rbuf; 927 else { 928 ioctx->rbufs = 929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC); 930 if (!ioctx->rbufs) { 931 ioctx->n_rbuf = 0; 932 ret = -ENOMEM; 933 goto out; 934 } 935 } 936 937 db = idb->desc_list; 938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db); 939 *data_len = be32_to_cpu(idb->len); 940 } 941 out: 942 return ret; 943 } 944 945 /** 946 * srpt_init_ch_qp() - Initialize queue pair attributes. 947 * 948 * Initialized the attributes of queue pair 'qp' by allowing local write, 949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 950 */ 951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 952 { 953 struct ib_qp_attr *attr; 954 int ret; 955 956 attr = kzalloc(sizeof *attr, GFP_KERNEL); 957 if (!attr) 958 return -ENOMEM; 959 960 attr->qp_state = IB_QPS_INIT; 961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 962 IB_ACCESS_REMOTE_WRITE; 963 attr->port_num = ch->sport->port; 964 attr->pkey_index = 0; 965 966 ret = ib_modify_qp(qp, attr, 967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 968 IB_QP_PKEY_INDEX); 969 970 kfree(attr); 971 return ret; 972 } 973 974 /** 975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 976 * @ch: channel of the queue pair. 977 * @qp: queue pair to change the state of. 978 * 979 * Returns zero upon success and a negative value upon failure. 980 * 981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 982 * If this structure ever becomes larger, it might be necessary to allocate 983 * it dynamically instead of on the stack. 984 */ 985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 986 { 987 struct ib_qp_attr qp_attr; 988 int attr_mask; 989 int ret; 990 991 qp_attr.qp_state = IB_QPS_RTR; 992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 993 if (ret) 994 goto out; 995 996 qp_attr.max_dest_rd_atomic = 4; 997 998 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 999 1000 out: 1001 return ret; 1002 } 1003 1004 /** 1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1006 * @ch: channel of the queue pair. 1007 * @qp: queue pair to change the state of. 1008 * 1009 * Returns zero upon success and a negative value upon failure. 1010 * 1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1012 * If this structure ever becomes larger, it might be necessary to allocate 1013 * it dynamically instead of on the stack. 1014 */ 1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1016 { 1017 struct ib_qp_attr qp_attr; 1018 int attr_mask; 1019 int ret; 1020 1021 qp_attr.qp_state = IB_QPS_RTS; 1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1023 if (ret) 1024 goto out; 1025 1026 qp_attr.max_rd_atomic = 4; 1027 1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1029 1030 out: 1031 return ret; 1032 } 1033 1034 /** 1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1036 */ 1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1038 { 1039 struct ib_qp_attr qp_attr; 1040 1041 qp_attr.qp_state = IB_QPS_ERR; 1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1043 } 1044 1045 /** 1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. 1047 */ 1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1049 struct srpt_send_ioctx *ioctx) 1050 { 1051 struct scatterlist *sg; 1052 enum dma_data_direction dir; 1053 1054 BUG_ON(!ch); 1055 BUG_ON(!ioctx); 1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius); 1057 1058 while (ioctx->n_rdma) 1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge); 1060 1061 kfree(ioctx->rdma_ius); 1062 ioctx->rdma_ius = NULL; 1063 1064 if (ioctx->mapped_sg_count) { 1065 sg = ioctx->sg; 1066 WARN_ON(!sg); 1067 dir = ioctx->cmd.data_direction; 1068 BUG_ON(dir == DMA_NONE); 1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, 1070 opposite_dma_dir(dir)); 1071 ioctx->mapped_sg_count = 0; 1072 } 1073 } 1074 1075 /** 1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. 1077 */ 1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1079 struct srpt_send_ioctx *ioctx) 1080 { 1081 struct se_cmd *cmd; 1082 struct scatterlist *sg, *sg_orig; 1083 int sg_cnt; 1084 enum dma_data_direction dir; 1085 struct rdma_iu *riu; 1086 struct srp_direct_buf *db; 1087 dma_addr_t dma_addr; 1088 struct ib_sge *sge; 1089 u64 raddr; 1090 u32 rsize; 1091 u32 tsize; 1092 u32 dma_len; 1093 int count, nrdma; 1094 int i, j, k; 1095 1096 BUG_ON(!ch); 1097 BUG_ON(!ioctx); 1098 cmd = &ioctx->cmd; 1099 dir = cmd->data_direction; 1100 BUG_ON(dir == DMA_NONE); 1101 1102 transport_do_task_sg_chain(cmd); 1103 ioctx->sg = sg = sg_orig = cmd->t_tasks_sg_chained; 1104 ioctx->sg_cnt = sg_cnt = cmd->t_tasks_sg_chained_no; 1105 1106 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, 1107 opposite_dma_dir(dir)); 1108 if (unlikely(!count)) 1109 return -EAGAIN; 1110 1111 ioctx->mapped_sg_count = count; 1112 1113 if (ioctx->rdma_ius && ioctx->n_rdma_ius) 1114 nrdma = ioctx->n_rdma_ius; 1115 else { 1116 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE 1117 + ioctx->n_rbuf; 1118 1119 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL); 1120 if (!ioctx->rdma_ius) 1121 goto free_mem; 1122 1123 ioctx->n_rdma_ius = nrdma; 1124 } 1125 1126 db = ioctx->rbufs; 1127 tsize = cmd->data_length; 1128 dma_len = sg_dma_len(&sg[0]); 1129 riu = ioctx->rdma_ius; 1130 1131 /* 1132 * For each remote desc - calculate the #ib_sge. 1133 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then 1134 * each remote desc rdma_iu is required a rdma wr; 1135 * else 1136 * we need to allocate extra rdma_iu to carry extra #ib_sge in 1137 * another rdma wr 1138 */ 1139 for (i = 0, j = 0; 1140 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1141 rsize = be32_to_cpu(db->len); 1142 raddr = be64_to_cpu(db->va); 1143 riu->raddr = raddr; 1144 riu->rkey = be32_to_cpu(db->key); 1145 riu->sge_cnt = 0; 1146 1147 /* calculate how many sge required for this remote_buf */ 1148 while (rsize > 0 && tsize > 0) { 1149 1150 if (rsize >= dma_len) { 1151 tsize -= dma_len; 1152 rsize -= dma_len; 1153 raddr += dma_len; 1154 1155 if (tsize > 0) { 1156 ++j; 1157 if (j < count) { 1158 sg = sg_next(sg); 1159 dma_len = sg_dma_len(sg); 1160 } 1161 } 1162 } else { 1163 tsize -= rsize; 1164 dma_len -= rsize; 1165 rsize = 0; 1166 } 1167 1168 ++riu->sge_cnt; 1169 1170 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) { 1171 ++ioctx->n_rdma; 1172 riu->sge = 1173 kmalloc(riu->sge_cnt * sizeof *riu->sge, 1174 GFP_KERNEL); 1175 if (!riu->sge) 1176 goto free_mem; 1177 1178 ++riu; 1179 riu->sge_cnt = 0; 1180 riu->raddr = raddr; 1181 riu->rkey = be32_to_cpu(db->key); 1182 } 1183 } 1184 1185 ++ioctx->n_rdma; 1186 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge, 1187 GFP_KERNEL); 1188 if (!riu->sge) 1189 goto free_mem; 1190 } 1191 1192 db = ioctx->rbufs; 1193 tsize = cmd->data_length; 1194 riu = ioctx->rdma_ius; 1195 sg = sg_orig; 1196 dma_len = sg_dma_len(&sg[0]); 1197 dma_addr = sg_dma_address(&sg[0]); 1198 1199 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ 1200 for (i = 0, j = 0; 1201 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1202 rsize = be32_to_cpu(db->len); 1203 sge = riu->sge; 1204 k = 0; 1205 1206 while (rsize > 0 && tsize > 0) { 1207 sge->addr = dma_addr; 1208 sge->lkey = ch->sport->sdev->mr->lkey; 1209 1210 if (rsize >= dma_len) { 1211 sge->length = 1212 (tsize < dma_len) ? tsize : dma_len; 1213 tsize -= dma_len; 1214 rsize -= dma_len; 1215 1216 if (tsize > 0) { 1217 ++j; 1218 if (j < count) { 1219 sg = sg_next(sg); 1220 dma_len = sg_dma_len(sg); 1221 dma_addr = sg_dma_address(sg); 1222 } 1223 } 1224 } else { 1225 sge->length = (tsize < rsize) ? tsize : rsize; 1226 tsize -= rsize; 1227 dma_len -= rsize; 1228 dma_addr += rsize; 1229 rsize = 0; 1230 } 1231 1232 ++k; 1233 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) { 1234 ++riu; 1235 sge = riu->sge; 1236 k = 0; 1237 } else if (rsize > 0 && tsize > 0) 1238 ++sge; 1239 } 1240 } 1241 1242 return 0; 1243 1244 free_mem: 1245 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1246 1247 return -ENOMEM; 1248 } 1249 1250 /** 1251 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1252 */ 1253 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1254 { 1255 struct srpt_send_ioctx *ioctx; 1256 unsigned long flags; 1257 1258 BUG_ON(!ch); 1259 1260 ioctx = NULL; 1261 spin_lock_irqsave(&ch->spinlock, flags); 1262 if (!list_empty(&ch->free_list)) { 1263 ioctx = list_first_entry(&ch->free_list, 1264 struct srpt_send_ioctx, free_list); 1265 list_del(&ioctx->free_list); 1266 } 1267 spin_unlock_irqrestore(&ch->spinlock, flags); 1268 1269 if (!ioctx) 1270 return ioctx; 1271 1272 BUG_ON(ioctx->ch != ch); 1273 kref_init(&ioctx->kref); 1274 spin_lock_init(&ioctx->spinlock); 1275 ioctx->state = SRPT_STATE_NEW; 1276 ioctx->n_rbuf = 0; 1277 ioctx->rbufs = NULL; 1278 ioctx->n_rdma = 0; 1279 ioctx->n_rdma_ius = 0; 1280 ioctx->rdma_ius = NULL; 1281 ioctx->mapped_sg_count = 0; 1282 init_completion(&ioctx->tx_done); 1283 ioctx->queue_status_only = false; 1284 /* 1285 * transport_init_se_cmd() does not initialize all fields, so do it 1286 * here. 1287 */ 1288 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1289 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1290 1291 return ioctx; 1292 } 1293 1294 /** 1295 * srpt_put_send_ioctx() - Free up resources. 1296 */ 1297 static void srpt_put_send_ioctx(struct srpt_send_ioctx *ioctx) 1298 { 1299 struct srpt_rdma_ch *ch; 1300 unsigned long flags; 1301 1302 BUG_ON(!ioctx); 1303 ch = ioctx->ch; 1304 BUG_ON(!ch); 1305 1306 WARN_ON(srpt_get_cmd_state(ioctx) != SRPT_STATE_DONE); 1307 1308 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1309 transport_generic_free_cmd(&ioctx->cmd, 0); 1310 1311 if (ioctx->n_rbuf > 1) { 1312 kfree(ioctx->rbufs); 1313 ioctx->rbufs = NULL; 1314 ioctx->n_rbuf = 0; 1315 } 1316 1317 spin_lock_irqsave(&ch->spinlock, flags); 1318 list_add(&ioctx->free_list, &ch->free_list); 1319 spin_unlock_irqrestore(&ch->spinlock, flags); 1320 } 1321 1322 static void srpt_put_send_ioctx_kref(struct kref *kref) 1323 { 1324 srpt_put_send_ioctx(container_of(kref, struct srpt_send_ioctx, kref)); 1325 } 1326 1327 /** 1328 * srpt_abort_cmd() - Abort a SCSI command. 1329 * @ioctx: I/O context associated with the SCSI command. 1330 * @context: Preferred execution context. 1331 */ 1332 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1333 { 1334 enum srpt_command_state state; 1335 unsigned long flags; 1336 1337 BUG_ON(!ioctx); 1338 1339 /* 1340 * If the command is in a state where the target core is waiting for 1341 * the ib_srpt driver, change the state to the next state. Changing 1342 * the state of the command from SRPT_STATE_NEED_DATA to 1343 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this 1344 * function a second time. 1345 */ 1346 1347 spin_lock_irqsave(&ioctx->spinlock, flags); 1348 state = ioctx->state; 1349 switch (state) { 1350 case SRPT_STATE_NEED_DATA: 1351 ioctx->state = SRPT_STATE_DATA_IN; 1352 break; 1353 case SRPT_STATE_DATA_IN: 1354 case SRPT_STATE_CMD_RSP_SENT: 1355 case SRPT_STATE_MGMT_RSP_SENT: 1356 ioctx->state = SRPT_STATE_DONE; 1357 break; 1358 default: 1359 break; 1360 } 1361 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1362 1363 if (state == SRPT_STATE_DONE) 1364 goto out; 1365 1366 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1367 ioctx->tag); 1368 1369 switch (state) { 1370 case SRPT_STATE_NEW: 1371 case SRPT_STATE_DATA_IN: 1372 case SRPT_STATE_MGMT: 1373 /* 1374 * Do nothing - defer abort processing until 1375 * srpt_queue_response() is invoked. 1376 */ 1377 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false)); 1378 break; 1379 case SRPT_STATE_NEED_DATA: 1380 /* DMA_TO_DEVICE (write) - RDMA read error. */ 1381 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1382 ioctx->cmd.transport_state |= CMD_T_LUN_STOP; 1383 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1384 transport_generic_handle_data(&ioctx->cmd); 1385 break; 1386 case SRPT_STATE_CMD_RSP_SENT: 1387 /* 1388 * SRP_RSP sending failed or the SRP_RSP send completion has 1389 * not been received in time. 1390 */ 1391 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1392 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1393 ioctx->cmd.transport_state |= CMD_T_LUN_STOP; 1394 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1395 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); 1396 break; 1397 case SRPT_STATE_MGMT_RSP_SENT: 1398 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1399 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); 1400 break; 1401 default: 1402 WARN_ON("ERROR: unexpected command state"); 1403 break; 1404 } 1405 1406 out: 1407 return state; 1408 } 1409 1410 /** 1411 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion. 1412 */ 1413 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id) 1414 { 1415 struct srpt_send_ioctx *ioctx; 1416 enum srpt_command_state state; 1417 struct se_cmd *cmd; 1418 u32 index; 1419 1420 atomic_inc(&ch->sq_wr_avail); 1421 1422 index = idx_from_wr_id(wr_id); 1423 ioctx = ch->ioctx_ring[index]; 1424 state = srpt_get_cmd_state(ioctx); 1425 cmd = &ioctx->cmd; 1426 1427 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1428 && state != SRPT_STATE_MGMT_RSP_SENT 1429 && state != SRPT_STATE_NEED_DATA 1430 && state != SRPT_STATE_DONE); 1431 1432 /* If SRP_RSP sending failed, undo the ch->req_lim change. */ 1433 if (state == SRPT_STATE_CMD_RSP_SENT 1434 || state == SRPT_STATE_MGMT_RSP_SENT) 1435 atomic_dec(&ch->req_lim); 1436 1437 srpt_abort_cmd(ioctx); 1438 } 1439 1440 /** 1441 * srpt_handle_send_comp() - Process an IB send completion notification. 1442 */ 1443 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch, 1444 struct srpt_send_ioctx *ioctx) 1445 { 1446 enum srpt_command_state state; 1447 1448 atomic_inc(&ch->sq_wr_avail); 1449 1450 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1451 1452 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1453 && state != SRPT_STATE_MGMT_RSP_SENT 1454 && state != SRPT_STATE_DONE)) 1455 pr_debug("state = %d\n", state); 1456 1457 if (state != SRPT_STATE_DONE) 1458 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); 1459 else 1460 printk(KERN_ERR "IB completion has been received too late for" 1461 " wr_id = %u.\n", ioctx->ioctx.index); 1462 } 1463 1464 /** 1465 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification. 1466 * 1467 * Note: transport_generic_handle_data() is asynchronous so unmapping the 1468 * data that has been transferred via IB RDMA must be postponed until the 1469 * check_stop_free() callback. 1470 */ 1471 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch, 1472 struct srpt_send_ioctx *ioctx, 1473 enum srpt_opcode opcode) 1474 { 1475 WARN_ON(ioctx->n_rdma <= 0); 1476 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1477 1478 if (opcode == SRPT_RDMA_READ_LAST) { 1479 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1480 SRPT_STATE_DATA_IN)) 1481 transport_generic_handle_data(&ioctx->cmd); 1482 else 1483 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__, 1484 __LINE__, srpt_get_cmd_state(ioctx)); 1485 } else if (opcode == SRPT_RDMA_ABORT) { 1486 ioctx->rdma_aborted = true; 1487 } else { 1488 WARN(true, "unexpected opcode %d\n", opcode); 1489 } 1490 } 1491 1492 /** 1493 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion. 1494 */ 1495 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch, 1496 struct srpt_send_ioctx *ioctx, 1497 enum srpt_opcode opcode) 1498 { 1499 struct se_cmd *cmd; 1500 enum srpt_command_state state; 1501 unsigned long flags; 1502 1503 cmd = &ioctx->cmd; 1504 state = srpt_get_cmd_state(ioctx); 1505 switch (opcode) { 1506 case SRPT_RDMA_READ_LAST: 1507 if (ioctx->n_rdma <= 0) { 1508 printk(KERN_ERR "Received invalid RDMA read" 1509 " error completion with idx %d\n", 1510 ioctx->ioctx.index); 1511 break; 1512 } 1513 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1514 if (state == SRPT_STATE_NEED_DATA) 1515 srpt_abort_cmd(ioctx); 1516 else 1517 printk(KERN_ERR "%s[%d]: wrong state = %d\n", 1518 __func__, __LINE__, state); 1519 break; 1520 case SRPT_RDMA_WRITE_LAST: 1521 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1522 ioctx->cmd.transport_state |= CMD_T_LUN_STOP; 1523 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1524 break; 1525 default: 1526 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__, 1527 __LINE__, opcode); 1528 break; 1529 } 1530 } 1531 1532 /** 1533 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1534 * @ch: RDMA channel through which the request has been received. 1535 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1536 * be built in the buffer ioctx->buf points at and hence this function will 1537 * overwrite the request data. 1538 * @tag: tag of the request for which this response is being generated. 1539 * @status: value for the STATUS field of the SRP_RSP information unit. 1540 * 1541 * Returns the size in bytes of the SRP_RSP response. 1542 * 1543 * An SRP_RSP response contains a SCSI status or service response. See also 1544 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1545 * response. See also SPC-2 for more information about sense data. 1546 */ 1547 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1548 struct srpt_send_ioctx *ioctx, u64 tag, 1549 int status) 1550 { 1551 struct srp_rsp *srp_rsp; 1552 const u8 *sense_data; 1553 int sense_data_len, max_sense_len; 1554 1555 /* 1556 * The lowest bit of all SAM-3 status codes is zero (see also 1557 * paragraph 5.3 in SAM-3). 1558 */ 1559 WARN_ON(status & 1); 1560 1561 srp_rsp = ioctx->ioctx.buf; 1562 BUG_ON(!srp_rsp); 1563 1564 sense_data = ioctx->sense_data; 1565 sense_data_len = ioctx->cmd.scsi_sense_length; 1566 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1567 1568 memset(srp_rsp, 0, sizeof *srp_rsp); 1569 srp_rsp->opcode = SRP_RSP; 1570 srp_rsp->req_lim_delta = 1571 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1572 srp_rsp->tag = tag; 1573 srp_rsp->status = status; 1574 1575 if (sense_data_len) { 1576 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1577 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1578 if (sense_data_len > max_sense_len) { 1579 printk(KERN_WARNING "truncated sense data from %d to %d" 1580 " bytes\n", sense_data_len, max_sense_len); 1581 sense_data_len = max_sense_len; 1582 } 1583 1584 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1585 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1586 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1587 } 1588 1589 return sizeof(*srp_rsp) + sense_data_len; 1590 } 1591 1592 /** 1593 * srpt_build_tskmgmt_rsp() - Build a task management response. 1594 * @ch: RDMA channel through which the request has been received. 1595 * @ioctx: I/O context in which the SRP_RSP response will be built. 1596 * @rsp_code: RSP_CODE that will be stored in the response. 1597 * @tag: Tag of the request for which this response is being generated. 1598 * 1599 * Returns the size in bytes of the SRP_RSP response. 1600 * 1601 * An SRP_RSP response contains a SCSI status or service response. See also 1602 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1603 * response. 1604 */ 1605 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1606 struct srpt_send_ioctx *ioctx, 1607 u8 rsp_code, u64 tag) 1608 { 1609 struct srp_rsp *srp_rsp; 1610 int resp_data_len; 1611 int resp_len; 1612 1613 resp_data_len = (rsp_code == SRP_TSK_MGMT_SUCCESS) ? 0 : 4; 1614 resp_len = sizeof(*srp_rsp) + resp_data_len; 1615 1616 srp_rsp = ioctx->ioctx.buf; 1617 BUG_ON(!srp_rsp); 1618 memset(srp_rsp, 0, sizeof *srp_rsp); 1619 1620 srp_rsp->opcode = SRP_RSP; 1621 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1 1622 + atomic_xchg(&ch->req_lim_delta, 0)); 1623 srp_rsp->tag = tag; 1624 1625 if (rsp_code != SRP_TSK_MGMT_SUCCESS) { 1626 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1627 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1628 srp_rsp->data[3] = rsp_code; 1629 } 1630 1631 return resp_len; 1632 } 1633 1634 #define NO_SUCH_LUN ((uint64_t)-1LL) 1635 1636 /* 1637 * SCSI LUN addressing method. See also SAM-2 and the section about 1638 * eight byte LUNs. 1639 */ 1640 enum scsi_lun_addr_method { 1641 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0, 1642 SCSI_LUN_ADDR_METHOD_FLAT = 1, 1643 SCSI_LUN_ADDR_METHOD_LUN = 2, 1644 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3, 1645 }; 1646 1647 /* 1648 * srpt_unpack_lun() - Convert from network LUN to linear LUN. 1649 * 1650 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte 1651 * order (big endian) to a linear LUN. Supports three LUN addressing methods: 1652 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40). 1653 */ 1654 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len) 1655 { 1656 uint64_t res = NO_SUCH_LUN; 1657 int addressing_method; 1658 1659 if (unlikely(len < 2)) { 1660 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or " 1661 "more", len); 1662 goto out; 1663 } 1664 1665 switch (len) { 1666 case 8: 1667 if ((*((__be64 *)lun) & 1668 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0) 1669 goto out_err; 1670 break; 1671 case 4: 1672 if (*((__be16 *)&lun[2]) != 0) 1673 goto out_err; 1674 break; 1675 case 6: 1676 if (*((__be32 *)&lun[2]) != 0) 1677 goto out_err; 1678 break; 1679 case 2: 1680 break; 1681 default: 1682 goto out_err; 1683 } 1684 1685 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */ 1686 switch (addressing_method) { 1687 case SCSI_LUN_ADDR_METHOD_PERIPHERAL: 1688 case SCSI_LUN_ADDR_METHOD_FLAT: 1689 case SCSI_LUN_ADDR_METHOD_LUN: 1690 res = *(lun + 1) | (((*lun) & 0x3f) << 8); 1691 break; 1692 1693 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN: 1694 default: 1695 printk(KERN_ERR "Unimplemented LUN addressing method %u", 1696 addressing_method); 1697 break; 1698 } 1699 1700 out: 1701 return res; 1702 1703 out_err: 1704 printk(KERN_ERR "Support for multi-level LUNs has not yet been" 1705 " implemented"); 1706 goto out; 1707 } 1708 1709 static int srpt_check_stop_free(struct se_cmd *cmd) 1710 { 1711 struct srpt_send_ioctx *ioctx; 1712 1713 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 1714 return kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); 1715 } 1716 1717 /** 1718 * srpt_handle_cmd() - Process SRP_CMD. 1719 */ 1720 static int srpt_handle_cmd(struct srpt_rdma_ch *ch, 1721 struct srpt_recv_ioctx *recv_ioctx, 1722 struct srpt_send_ioctx *send_ioctx) 1723 { 1724 struct se_cmd *cmd; 1725 struct srp_cmd *srp_cmd; 1726 uint64_t unpacked_lun; 1727 u64 data_len; 1728 enum dma_data_direction dir; 1729 int ret; 1730 1731 BUG_ON(!send_ioctx); 1732 1733 srp_cmd = recv_ioctx->ioctx.buf; 1734 kref_get(&send_ioctx->kref); 1735 cmd = &send_ioctx->cmd; 1736 send_ioctx->tag = srp_cmd->tag; 1737 1738 switch (srp_cmd->task_attr) { 1739 case SRP_CMD_SIMPLE_Q: 1740 cmd->sam_task_attr = MSG_SIMPLE_TAG; 1741 break; 1742 case SRP_CMD_ORDERED_Q: 1743 default: 1744 cmd->sam_task_attr = MSG_ORDERED_TAG; 1745 break; 1746 case SRP_CMD_HEAD_OF_Q: 1747 cmd->sam_task_attr = MSG_HEAD_TAG; 1748 break; 1749 case SRP_CMD_ACA: 1750 cmd->sam_task_attr = MSG_ACA_TAG; 1751 break; 1752 } 1753 1754 ret = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len); 1755 if (ret) { 1756 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n", 1757 srp_cmd->tag); 1758 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1759 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; 1760 kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref); 1761 goto send_sense; 1762 } 1763 1764 cmd->data_length = data_len; 1765 cmd->data_direction = dir; 1766 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun, 1767 sizeof(srp_cmd->lun)); 1768 if (transport_lookup_cmd_lun(cmd, unpacked_lun) < 0) { 1769 kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref); 1770 goto send_sense; 1771 } 1772 ret = transport_generic_allocate_tasks(cmd, srp_cmd->cdb); 1773 if (ret < 0) { 1774 kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref); 1775 if (cmd->se_cmd_flags & SCF_SCSI_RESERVATION_CONFLICT) { 1776 srpt_queue_status(cmd); 1777 return 0; 1778 } else 1779 goto send_sense; 1780 } 1781 1782 transport_handle_cdb_direct(cmd); 1783 return 0; 1784 1785 send_sense: 1786 transport_send_check_condition_and_sense(cmd, cmd->scsi_sense_reason, 1787 0); 1788 return -1; 1789 } 1790 1791 /** 1792 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag. 1793 * @ch: RDMA channel of the task management request. 1794 * @fn: Task management function to perform. 1795 * @req_tag: Tag of the SRP task management request. 1796 * @mgmt_ioctx: I/O context of the task management request. 1797 * 1798 * Returns zero if the target core will process the task management 1799 * request asynchronously. 1800 * 1801 * Note: It is assumed that the initiator serializes tag-based task management 1802 * requests. 1803 */ 1804 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag) 1805 { 1806 struct srpt_device *sdev; 1807 struct srpt_rdma_ch *ch; 1808 struct srpt_send_ioctx *target; 1809 int ret, i; 1810 1811 ret = -EINVAL; 1812 ch = ioctx->ch; 1813 BUG_ON(!ch); 1814 BUG_ON(!ch->sport); 1815 sdev = ch->sport->sdev; 1816 BUG_ON(!sdev); 1817 spin_lock_irq(&sdev->spinlock); 1818 for (i = 0; i < ch->rq_size; ++i) { 1819 target = ch->ioctx_ring[i]; 1820 if (target->cmd.se_lun == ioctx->cmd.se_lun && 1821 target->tag == tag && 1822 srpt_get_cmd_state(target) != SRPT_STATE_DONE) { 1823 ret = 0; 1824 /* now let the target core abort &target->cmd; */ 1825 break; 1826 } 1827 } 1828 spin_unlock_irq(&sdev->spinlock); 1829 return ret; 1830 } 1831 1832 static int srp_tmr_to_tcm(int fn) 1833 { 1834 switch (fn) { 1835 case SRP_TSK_ABORT_TASK: 1836 return TMR_ABORT_TASK; 1837 case SRP_TSK_ABORT_TASK_SET: 1838 return TMR_ABORT_TASK_SET; 1839 case SRP_TSK_CLEAR_TASK_SET: 1840 return TMR_CLEAR_TASK_SET; 1841 case SRP_TSK_LUN_RESET: 1842 return TMR_LUN_RESET; 1843 case SRP_TSK_CLEAR_ACA: 1844 return TMR_CLEAR_ACA; 1845 default: 1846 return -1; 1847 } 1848 } 1849 1850 /** 1851 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1852 * 1853 * Returns 0 if and only if the request will be processed by the target core. 1854 * 1855 * For more information about SRP_TSK_MGMT information units, see also section 1856 * 6.7 in the SRP r16a document. 1857 */ 1858 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1859 struct srpt_recv_ioctx *recv_ioctx, 1860 struct srpt_send_ioctx *send_ioctx) 1861 { 1862 struct srp_tsk_mgmt *srp_tsk; 1863 struct se_cmd *cmd; 1864 uint64_t unpacked_lun; 1865 int tcm_tmr; 1866 int res; 1867 1868 BUG_ON(!send_ioctx); 1869 1870 srp_tsk = recv_ioctx->ioctx.buf; 1871 cmd = &send_ioctx->cmd; 1872 1873 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1874 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1875 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1876 1877 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1878 send_ioctx->tag = srp_tsk->tag; 1879 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1880 if (tcm_tmr < 0) { 1881 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1882 send_ioctx->cmd.se_tmr_req->response = 1883 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 1884 goto process_tmr; 1885 } 1886 res = core_tmr_alloc_req(cmd, NULL, tcm_tmr, GFP_KERNEL); 1887 if (res < 0) { 1888 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1889 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1890 goto process_tmr; 1891 } 1892 1893 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun, 1894 sizeof(srp_tsk->lun)); 1895 res = transport_lookup_tmr_lun(&send_ioctx->cmd, unpacked_lun); 1896 if (res) { 1897 pr_debug("rejecting TMR for LUN %lld\n", unpacked_lun); 1898 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1899 send_ioctx->cmd.se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1900 goto process_tmr; 1901 } 1902 1903 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) 1904 srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag); 1905 1906 process_tmr: 1907 kref_get(&send_ioctx->kref); 1908 if (!(send_ioctx->cmd.se_cmd_flags & SCF_SCSI_CDB_EXCEPTION)) 1909 transport_generic_handle_tmr(&send_ioctx->cmd); 1910 else 1911 transport_send_check_condition_and_sense(cmd, 1912 cmd->scsi_sense_reason, 0); 1913 1914 } 1915 1916 /** 1917 * srpt_handle_new_iu() - Process a newly received information unit. 1918 * @ch: RDMA channel through which the information unit has been received. 1919 * @ioctx: SRPT I/O context associated with the information unit. 1920 */ 1921 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1922 struct srpt_recv_ioctx *recv_ioctx, 1923 struct srpt_send_ioctx *send_ioctx) 1924 { 1925 struct srp_cmd *srp_cmd; 1926 enum rdma_ch_state ch_state; 1927 1928 BUG_ON(!ch); 1929 BUG_ON(!recv_ioctx); 1930 1931 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1932 recv_ioctx->ioctx.dma, srp_max_req_size, 1933 DMA_FROM_DEVICE); 1934 1935 ch_state = srpt_get_ch_state(ch); 1936 if (unlikely(ch_state == CH_CONNECTING)) { 1937 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1938 goto out; 1939 } 1940 1941 if (unlikely(ch_state != CH_LIVE)) 1942 goto out; 1943 1944 srp_cmd = recv_ioctx->ioctx.buf; 1945 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1946 if (!send_ioctx) 1947 send_ioctx = srpt_get_send_ioctx(ch); 1948 if (unlikely(!send_ioctx)) { 1949 list_add_tail(&recv_ioctx->wait_list, 1950 &ch->cmd_wait_list); 1951 goto out; 1952 } 1953 } 1954 1955 transport_init_se_cmd(&send_ioctx->cmd, &srpt_target->tf_ops, ch->sess, 1956 0, DMA_NONE, MSG_SIMPLE_TAG, 1957 send_ioctx->sense_data); 1958 1959 switch (srp_cmd->opcode) { 1960 case SRP_CMD: 1961 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1962 break; 1963 case SRP_TSK_MGMT: 1964 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1965 break; 1966 case SRP_I_LOGOUT: 1967 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n"); 1968 break; 1969 case SRP_CRED_RSP: 1970 pr_debug("received SRP_CRED_RSP\n"); 1971 break; 1972 case SRP_AER_RSP: 1973 pr_debug("received SRP_AER_RSP\n"); 1974 break; 1975 case SRP_RSP: 1976 printk(KERN_ERR "Received SRP_RSP\n"); 1977 break; 1978 default: 1979 printk(KERN_ERR "received IU with unknown opcode 0x%x\n", 1980 srp_cmd->opcode); 1981 break; 1982 } 1983 1984 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1985 out: 1986 return; 1987 } 1988 1989 static void srpt_process_rcv_completion(struct ib_cq *cq, 1990 struct srpt_rdma_ch *ch, 1991 struct ib_wc *wc) 1992 { 1993 struct srpt_device *sdev = ch->sport->sdev; 1994 struct srpt_recv_ioctx *ioctx; 1995 u32 index; 1996 1997 index = idx_from_wr_id(wc->wr_id); 1998 if (wc->status == IB_WC_SUCCESS) { 1999 int req_lim; 2000 2001 req_lim = atomic_dec_return(&ch->req_lim); 2002 if (unlikely(req_lim < 0)) 2003 printk(KERN_ERR "req_lim = %d < 0\n", req_lim); 2004 ioctx = sdev->ioctx_ring[index]; 2005 srpt_handle_new_iu(ch, ioctx, NULL); 2006 } else { 2007 printk(KERN_INFO "receiving failed for idx %u with status %d\n", 2008 index, wc->status); 2009 } 2010 } 2011 2012 /** 2013 * srpt_process_send_completion() - Process an IB send completion. 2014 * 2015 * Note: Although this has not yet been observed during tests, at least in 2016 * theory it is possible that the srpt_get_send_ioctx() call invoked by 2017 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 2018 * value in each response is set to one, and it is possible that this response 2019 * makes the initiator send a new request before the send completion for that 2020 * response has been processed. This could e.g. happen if the call to 2021 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 2022 * if IB retransmission causes generation of the send completion to be 2023 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 2024 * are queued on cmd_wait_list. The code below processes these delayed 2025 * requests one at a time. 2026 */ 2027 static void srpt_process_send_completion(struct ib_cq *cq, 2028 struct srpt_rdma_ch *ch, 2029 struct ib_wc *wc) 2030 { 2031 struct srpt_send_ioctx *send_ioctx; 2032 uint32_t index; 2033 enum srpt_opcode opcode; 2034 2035 index = idx_from_wr_id(wc->wr_id); 2036 opcode = opcode_from_wr_id(wc->wr_id); 2037 send_ioctx = ch->ioctx_ring[index]; 2038 if (wc->status == IB_WC_SUCCESS) { 2039 if (opcode == SRPT_SEND) 2040 srpt_handle_send_comp(ch, send_ioctx); 2041 else { 2042 WARN_ON(opcode != SRPT_RDMA_ABORT && 2043 wc->opcode != IB_WC_RDMA_READ); 2044 srpt_handle_rdma_comp(ch, send_ioctx, opcode); 2045 } 2046 } else { 2047 if (opcode == SRPT_SEND) { 2048 printk(KERN_INFO "sending response for idx %u failed" 2049 " with status %d\n", index, wc->status); 2050 srpt_handle_send_err_comp(ch, wc->wr_id); 2051 } else if (opcode != SRPT_RDMA_MID) { 2052 printk(KERN_INFO "RDMA t %d for idx %u failed with" 2053 " status %d", opcode, index, wc->status); 2054 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode); 2055 } 2056 } 2057 2058 while (unlikely(opcode == SRPT_SEND 2059 && !list_empty(&ch->cmd_wait_list) 2060 && srpt_get_ch_state(ch) == CH_LIVE 2061 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) { 2062 struct srpt_recv_ioctx *recv_ioctx; 2063 2064 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 2065 struct srpt_recv_ioctx, 2066 wait_list); 2067 list_del(&recv_ioctx->wait_list); 2068 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx); 2069 } 2070 } 2071 2072 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch) 2073 { 2074 struct ib_wc *const wc = ch->wc; 2075 int i, n; 2076 2077 WARN_ON(cq != ch->cq); 2078 2079 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 2080 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) { 2081 for (i = 0; i < n; i++) { 2082 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV) 2083 srpt_process_rcv_completion(cq, ch, &wc[i]); 2084 else 2085 srpt_process_send_completion(cq, ch, &wc[i]); 2086 } 2087 } 2088 } 2089 2090 /** 2091 * srpt_completion() - IB completion queue callback function. 2092 * 2093 * Notes: 2094 * - It is guaranteed that a completion handler will never be invoked 2095 * concurrently on two different CPUs for the same completion queue. See also 2096 * Documentation/infiniband/core_locking.txt and the implementation of 2097 * handle_edge_irq() in kernel/irq/chip.c. 2098 * - When threaded IRQs are enabled, completion handlers are invoked in thread 2099 * context instead of interrupt context. 2100 */ 2101 static void srpt_completion(struct ib_cq *cq, void *ctx) 2102 { 2103 struct srpt_rdma_ch *ch = ctx; 2104 2105 wake_up_interruptible(&ch->wait_queue); 2106 } 2107 2108 static int srpt_compl_thread(void *arg) 2109 { 2110 struct srpt_rdma_ch *ch; 2111 2112 /* Hibernation / freezing of the SRPT kernel thread is not supported. */ 2113 current->flags |= PF_NOFREEZE; 2114 2115 ch = arg; 2116 BUG_ON(!ch); 2117 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n", 2118 ch->sess_name, ch->thread->comm, current->pid); 2119 while (!kthread_should_stop()) { 2120 wait_event_interruptible(ch->wait_queue, 2121 (srpt_process_completion(ch->cq, ch), 2122 kthread_should_stop())); 2123 } 2124 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n", 2125 ch->sess_name, ch->thread->comm, current->pid); 2126 return 0; 2127 } 2128 2129 /** 2130 * srpt_create_ch_ib() - Create receive and send completion queues. 2131 */ 2132 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 2133 { 2134 struct ib_qp_init_attr *qp_init; 2135 struct srpt_port *sport = ch->sport; 2136 struct srpt_device *sdev = sport->sdev; 2137 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 2138 int ret; 2139 2140 WARN_ON(ch->rq_size < 1); 2141 2142 ret = -ENOMEM; 2143 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL); 2144 if (!qp_init) 2145 goto out; 2146 2147 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch, 2148 ch->rq_size + srp_sq_size, 0); 2149 if (IS_ERR(ch->cq)) { 2150 ret = PTR_ERR(ch->cq); 2151 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n", 2152 ch->rq_size + srp_sq_size, ret); 2153 goto out; 2154 } 2155 2156 qp_init->qp_context = (void *)ch; 2157 qp_init->event_handler 2158 = (void(*)(struct ib_event *, void*))srpt_qp_event; 2159 qp_init->send_cq = ch->cq; 2160 qp_init->recv_cq = ch->cq; 2161 qp_init->srq = sdev->srq; 2162 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 2163 qp_init->qp_type = IB_QPT_RC; 2164 qp_init->cap.max_send_wr = srp_sq_size; 2165 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 2166 2167 ch->qp = ib_create_qp(sdev->pd, qp_init); 2168 if (IS_ERR(ch->qp)) { 2169 ret = PTR_ERR(ch->qp); 2170 printk(KERN_ERR "failed to create_qp ret= %d\n", ret); 2171 goto err_destroy_cq; 2172 } 2173 2174 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 2175 2176 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 2177 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 2178 qp_init->cap.max_send_wr, ch->cm_id); 2179 2180 ret = srpt_init_ch_qp(ch, ch->qp); 2181 if (ret) 2182 goto err_destroy_qp; 2183 2184 init_waitqueue_head(&ch->wait_queue); 2185 2186 pr_debug("creating thread for session %s\n", ch->sess_name); 2187 2188 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl"); 2189 if (IS_ERR(ch->thread)) { 2190 printk(KERN_ERR "failed to create kernel thread %ld\n", 2191 PTR_ERR(ch->thread)); 2192 ch->thread = NULL; 2193 goto err_destroy_qp; 2194 } 2195 2196 out: 2197 kfree(qp_init); 2198 return ret; 2199 2200 err_destroy_qp: 2201 ib_destroy_qp(ch->qp); 2202 err_destroy_cq: 2203 ib_destroy_cq(ch->cq); 2204 goto out; 2205 } 2206 2207 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 2208 { 2209 if (ch->thread) 2210 kthread_stop(ch->thread); 2211 2212 ib_destroy_qp(ch->qp); 2213 ib_destroy_cq(ch->cq); 2214 } 2215 2216 /** 2217 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state. 2218 * 2219 * Reset the QP and make sure all resources associated with the channel will 2220 * be deallocated at an appropriate time. 2221 * 2222 * Note: The caller must hold ch->sport->sdev->spinlock. 2223 */ 2224 static void __srpt_close_ch(struct srpt_rdma_ch *ch) 2225 { 2226 struct srpt_device *sdev; 2227 enum rdma_ch_state prev_state; 2228 unsigned long flags; 2229 2230 sdev = ch->sport->sdev; 2231 2232 spin_lock_irqsave(&ch->spinlock, flags); 2233 prev_state = ch->state; 2234 switch (prev_state) { 2235 case CH_CONNECTING: 2236 case CH_LIVE: 2237 ch->state = CH_DISCONNECTING; 2238 break; 2239 default: 2240 break; 2241 } 2242 spin_unlock_irqrestore(&ch->spinlock, flags); 2243 2244 switch (prev_state) { 2245 case CH_CONNECTING: 2246 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0, 2247 NULL, 0); 2248 /* fall through */ 2249 case CH_LIVE: 2250 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0) 2251 printk(KERN_ERR "sending CM DREQ failed.\n"); 2252 break; 2253 case CH_DISCONNECTING: 2254 break; 2255 case CH_DRAINING: 2256 case CH_RELEASING: 2257 break; 2258 } 2259 } 2260 2261 /** 2262 * srpt_close_ch() - Close an RDMA channel. 2263 */ 2264 static void srpt_close_ch(struct srpt_rdma_ch *ch) 2265 { 2266 struct srpt_device *sdev; 2267 2268 sdev = ch->sport->sdev; 2269 spin_lock_irq(&sdev->spinlock); 2270 __srpt_close_ch(ch); 2271 spin_unlock_irq(&sdev->spinlock); 2272 } 2273 2274 /** 2275 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair. 2276 * @cm_id: Pointer to the CM ID of the channel to be drained. 2277 * 2278 * Note: Must be called from inside srpt_cm_handler to avoid a race between 2279 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one() 2280 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one() 2281 * waits until all target sessions for the associated IB device have been 2282 * unregistered and target session registration involves a call to 2283 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until 2284 * this function has finished). 2285 */ 2286 static void srpt_drain_channel(struct ib_cm_id *cm_id) 2287 { 2288 struct srpt_device *sdev; 2289 struct srpt_rdma_ch *ch; 2290 int ret; 2291 bool do_reset = false; 2292 2293 WARN_ON_ONCE(irqs_disabled()); 2294 2295 sdev = cm_id->context; 2296 BUG_ON(!sdev); 2297 spin_lock_irq(&sdev->spinlock); 2298 list_for_each_entry(ch, &sdev->rch_list, list) { 2299 if (ch->cm_id == cm_id) { 2300 do_reset = srpt_test_and_set_ch_state(ch, 2301 CH_CONNECTING, CH_DRAINING) || 2302 srpt_test_and_set_ch_state(ch, 2303 CH_LIVE, CH_DRAINING) || 2304 srpt_test_and_set_ch_state(ch, 2305 CH_DISCONNECTING, CH_DRAINING); 2306 break; 2307 } 2308 } 2309 spin_unlock_irq(&sdev->spinlock); 2310 2311 if (do_reset) { 2312 ret = srpt_ch_qp_err(ch); 2313 if (ret < 0) 2314 printk(KERN_ERR "Setting queue pair in error state" 2315 " failed: %d\n", ret); 2316 } 2317 } 2318 2319 /** 2320 * srpt_find_channel() - Look up an RDMA channel. 2321 * @cm_id: Pointer to the CM ID of the channel to be looked up. 2322 * 2323 * Return NULL if no matching RDMA channel has been found. 2324 */ 2325 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev, 2326 struct ib_cm_id *cm_id) 2327 { 2328 struct srpt_rdma_ch *ch; 2329 bool found; 2330 2331 WARN_ON_ONCE(irqs_disabled()); 2332 BUG_ON(!sdev); 2333 2334 found = false; 2335 spin_lock_irq(&sdev->spinlock); 2336 list_for_each_entry(ch, &sdev->rch_list, list) { 2337 if (ch->cm_id == cm_id) { 2338 found = true; 2339 break; 2340 } 2341 } 2342 spin_unlock_irq(&sdev->spinlock); 2343 2344 return found ? ch : NULL; 2345 } 2346 2347 /** 2348 * srpt_release_channel() - Release channel resources. 2349 * 2350 * Schedules the actual release because: 2351 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would 2352 * trigger a deadlock. 2353 * - It is not safe to call TCM transport_* functions from interrupt context. 2354 */ 2355 static void srpt_release_channel(struct srpt_rdma_ch *ch) 2356 { 2357 schedule_work(&ch->release_work); 2358 } 2359 2360 static void srpt_release_channel_work(struct work_struct *w) 2361 { 2362 struct srpt_rdma_ch *ch; 2363 struct srpt_device *sdev; 2364 2365 ch = container_of(w, struct srpt_rdma_ch, release_work); 2366 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess, 2367 ch->release_done); 2368 2369 sdev = ch->sport->sdev; 2370 BUG_ON(!sdev); 2371 2372 transport_deregister_session_configfs(ch->sess); 2373 transport_deregister_session(ch->sess); 2374 ch->sess = NULL; 2375 2376 srpt_destroy_ch_ib(ch); 2377 2378 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2379 ch->sport->sdev, ch->rq_size, 2380 ch->rsp_size, DMA_TO_DEVICE); 2381 2382 spin_lock_irq(&sdev->spinlock); 2383 list_del(&ch->list); 2384 spin_unlock_irq(&sdev->spinlock); 2385 2386 ib_destroy_cm_id(ch->cm_id); 2387 2388 if (ch->release_done) 2389 complete(ch->release_done); 2390 2391 wake_up(&sdev->ch_releaseQ); 2392 2393 kfree(ch); 2394 } 2395 2396 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport, 2397 u8 i_port_id[16]) 2398 { 2399 struct srpt_node_acl *nacl; 2400 2401 list_for_each_entry(nacl, &sport->port_acl_list, list) 2402 if (memcmp(nacl->i_port_id, i_port_id, 2403 sizeof(nacl->i_port_id)) == 0) 2404 return nacl; 2405 2406 return NULL; 2407 } 2408 2409 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport, 2410 u8 i_port_id[16]) 2411 { 2412 struct srpt_node_acl *nacl; 2413 2414 spin_lock_irq(&sport->port_acl_lock); 2415 nacl = __srpt_lookup_acl(sport, i_port_id); 2416 spin_unlock_irq(&sport->port_acl_lock); 2417 2418 return nacl; 2419 } 2420 2421 /** 2422 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 2423 * 2424 * Ownership of the cm_id is transferred to the target session if this 2425 * functions returns zero. Otherwise the caller remains the owner of cm_id. 2426 */ 2427 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 2428 struct ib_cm_req_event_param *param, 2429 void *private_data) 2430 { 2431 struct srpt_device *sdev = cm_id->context; 2432 struct srpt_port *sport = &sdev->port[param->port - 1]; 2433 struct srp_login_req *req; 2434 struct srp_login_rsp *rsp; 2435 struct srp_login_rej *rej; 2436 struct ib_cm_rep_param *rep_param; 2437 struct srpt_rdma_ch *ch, *tmp_ch; 2438 struct srpt_node_acl *nacl; 2439 u32 it_iu_len; 2440 int i; 2441 int ret = 0; 2442 2443 WARN_ON_ONCE(irqs_disabled()); 2444 2445 if (WARN_ON(!sdev || !private_data)) 2446 return -EINVAL; 2447 2448 req = (struct srp_login_req *)private_data; 2449 2450 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2451 2452 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 2453 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 2454 " (guid=0x%llx:0x%llx)\n", 2455 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 2456 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 2457 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 2458 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 2459 it_iu_len, 2460 param->port, 2461 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 2462 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 2463 2464 rsp = kzalloc(sizeof *rsp, GFP_KERNEL); 2465 rej = kzalloc(sizeof *rej, GFP_KERNEL); 2466 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL); 2467 2468 if (!rsp || !rej || !rep_param) { 2469 ret = -ENOMEM; 2470 goto out; 2471 } 2472 2473 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2474 rej->reason = __constant_cpu_to_be32( 2475 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2476 ret = -EINVAL; 2477 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its" 2478 " length (%d bytes) is out of range (%d .. %d)\n", 2479 it_iu_len, 64, srp_max_req_size); 2480 goto reject; 2481 } 2482 2483 if (!sport->enabled) { 2484 rej->reason = __constant_cpu_to_be32( 2485 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2486 ret = -EINVAL; 2487 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port" 2488 " has not yet been enabled\n"); 2489 goto reject; 2490 } 2491 2492 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2493 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2494 2495 spin_lock_irq(&sdev->spinlock); 2496 2497 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 2498 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 2499 && !memcmp(ch->t_port_id, req->target_port_id, 16) 2500 && param->port == ch->sport->port 2501 && param->listen_id == ch->sport->sdev->cm_id 2502 && ch->cm_id) { 2503 enum rdma_ch_state ch_state; 2504 2505 ch_state = srpt_get_ch_state(ch); 2506 if (ch_state != CH_CONNECTING 2507 && ch_state != CH_LIVE) 2508 continue; 2509 2510 /* found an existing channel */ 2511 pr_debug("Found existing channel %s" 2512 " cm_id= %p state= %d\n", 2513 ch->sess_name, ch->cm_id, ch_state); 2514 2515 __srpt_close_ch(ch); 2516 2517 rsp->rsp_flags = 2518 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2519 } 2520 } 2521 2522 spin_unlock_irq(&sdev->spinlock); 2523 2524 } else 2525 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2526 2527 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2528 || *(__be64 *)(req->target_port_id + 8) != 2529 cpu_to_be64(srpt_service_guid)) { 2530 rej->reason = __constant_cpu_to_be32( 2531 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2532 ret = -ENOMEM; 2533 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it" 2534 " has an invalid target port identifier.\n"); 2535 goto reject; 2536 } 2537 2538 ch = kzalloc(sizeof *ch, GFP_KERNEL); 2539 if (!ch) { 2540 rej->reason = __constant_cpu_to_be32( 2541 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2542 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n"); 2543 ret = -ENOMEM; 2544 goto reject; 2545 } 2546 2547 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2548 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2549 memcpy(ch->t_port_id, req->target_port_id, 16); 2550 ch->sport = &sdev->port[param->port - 1]; 2551 ch->cm_id = cm_id; 2552 /* 2553 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 2554 * for the SRP protocol to the command queue size. 2555 */ 2556 ch->rq_size = SRPT_RQ_SIZE; 2557 spin_lock_init(&ch->spinlock); 2558 ch->state = CH_CONNECTING; 2559 INIT_LIST_HEAD(&ch->cmd_wait_list); 2560 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2561 2562 ch->ioctx_ring = (struct srpt_send_ioctx **) 2563 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2564 sizeof(*ch->ioctx_ring[0]), 2565 ch->rsp_size, DMA_TO_DEVICE); 2566 if (!ch->ioctx_ring) 2567 goto free_ch; 2568 2569 INIT_LIST_HEAD(&ch->free_list); 2570 for (i = 0; i < ch->rq_size; i++) { 2571 ch->ioctx_ring[i]->ch = ch; 2572 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2573 } 2574 2575 ret = srpt_create_ch_ib(ch); 2576 if (ret) { 2577 rej->reason = __constant_cpu_to_be32( 2578 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2579 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating" 2580 " a new RDMA channel failed.\n"); 2581 goto free_ring; 2582 } 2583 2584 ret = srpt_ch_qp_rtr(ch, ch->qp); 2585 if (ret) { 2586 rej->reason = __constant_cpu_to_be32( 2587 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2588 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling" 2589 " RTR failed (error code = %d)\n", ret); 2590 goto destroy_ib; 2591 } 2592 /* 2593 * Use the initator port identifier as the session name. 2594 */ 2595 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2596 be64_to_cpu(*(__be64 *)ch->i_port_id), 2597 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2598 2599 pr_debug("registering session %s\n", ch->sess_name); 2600 2601 nacl = srpt_lookup_acl(sport, ch->i_port_id); 2602 if (!nacl) { 2603 printk(KERN_INFO "Rejected login because no ACL has been" 2604 " configured yet for initiator %s.\n", ch->sess_name); 2605 rej->reason = __constant_cpu_to_be32( 2606 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2607 goto destroy_ib; 2608 } 2609 2610 ch->sess = transport_init_session(); 2611 if (IS_ERR(ch->sess)) { 2612 rej->reason = __constant_cpu_to_be32( 2613 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2614 pr_debug("Failed to create session\n"); 2615 goto deregister_session; 2616 } 2617 ch->sess->se_node_acl = &nacl->nacl; 2618 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch); 2619 2620 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2621 ch->sess_name, ch->cm_id); 2622 2623 /* create srp_login_response */ 2624 rsp->opcode = SRP_LOGIN_RSP; 2625 rsp->tag = req->tag; 2626 rsp->max_it_iu_len = req->req_it_iu_len; 2627 rsp->max_ti_iu_len = req->req_it_iu_len; 2628 ch->max_ti_iu_len = it_iu_len; 2629 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2630 | SRP_BUF_FORMAT_INDIRECT); 2631 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2632 atomic_set(&ch->req_lim, ch->rq_size); 2633 atomic_set(&ch->req_lim_delta, 0); 2634 2635 /* create cm reply */ 2636 rep_param->qp_num = ch->qp->qp_num; 2637 rep_param->private_data = (void *)rsp; 2638 rep_param->private_data_len = sizeof *rsp; 2639 rep_param->rnr_retry_count = 7; 2640 rep_param->flow_control = 1; 2641 rep_param->failover_accepted = 0; 2642 rep_param->srq = 1; 2643 rep_param->responder_resources = 4; 2644 rep_param->initiator_depth = 4; 2645 2646 ret = ib_send_cm_rep(cm_id, rep_param); 2647 if (ret) { 2648 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed" 2649 " (error code = %d)\n", ret); 2650 goto release_channel; 2651 } 2652 2653 spin_lock_irq(&sdev->spinlock); 2654 list_add_tail(&ch->list, &sdev->rch_list); 2655 spin_unlock_irq(&sdev->spinlock); 2656 2657 goto out; 2658 2659 release_channel: 2660 srpt_set_ch_state(ch, CH_RELEASING); 2661 transport_deregister_session_configfs(ch->sess); 2662 2663 deregister_session: 2664 transport_deregister_session(ch->sess); 2665 ch->sess = NULL; 2666 2667 destroy_ib: 2668 srpt_destroy_ch_ib(ch); 2669 2670 free_ring: 2671 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2672 ch->sport->sdev, ch->rq_size, 2673 ch->rsp_size, DMA_TO_DEVICE); 2674 free_ch: 2675 kfree(ch); 2676 2677 reject: 2678 rej->opcode = SRP_LOGIN_REJ; 2679 rej->tag = req->tag; 2680 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2681 | SRP_BUF_FORMAT_INDIRECT); 2682 2683 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2684 (void *)rej, sizeof *rej); 2685 2686 out: 2687 kfree(rep_param); 2688 kfree(rsp); 2689 kfree(rej); 2690 2691 return ret; 2692 } 2693 2694 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id) 2695 { 2696 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id); 2697 srpt_drain_channel(cm_id); 2698 } 2699 2700 /** 2701 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2702 * 2703 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2704 * and that the recipient may begin transmitting (RTU = ready to use). 2705 */ 2706 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id) 2707 { 2708 struct srpt_rdma_ch *ch; 2709 int ret; 2710 2711 ch = srpt_find_channel(cm_id->context, cm_id); 2712 BUG_ON(!ch); 2713 2714 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) { 2715 struct srpt_recv_ioctx *ioctx, *ioctx_tmp; 2716 2717 ret = srpt_ch_qp_rts(ch, ch->qp); 2718 2719 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list, 2720 wait_list) { 2721 list_del(&ioctx->wait_list); 2722 srpt_handle_new_iu(ch, ioctx, NULL); 2723 } 2724 if (ret) 2725 srpt_close_ch(ch); 2726 } 2727 } 2728 2729 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id) 2730 { 2731 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id); 2732 srpt_drain_channel(cm_id); 2733 } 2734 2735 static void srpt_cm_rep_error(struct ib_cm_id *cm_id) 2736 { 2737 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id); 2738 srpt_drain_channel(cm_id); 2739 } 2740 2741 /** 2742 * srpt_cm_dreq_recv() - Process reception of a DREQ message. 2743 */ 2744 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id) 2745 { 2746 struct srpt_rdma_ch *ch; 2747 unsigned long flags; 2748 bool send_drep = false; 2749 2750 ch = srpt_find_channel(cm_id->context, cm_id); 2751 BUG_ON(!ch); 2752 2753 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch)); 2754 2755 spin_lock_irqsave(&ch->spinlock, flags); 2756 switch (ch->state) { 2757 case CH_CONNECTING: 2758 case CH_LIVE: 2759 send_drep = true; 2760 ch->state = CH_DISCONNECTING; 2761 break; 2762 case CH_DISCONNECTING: 2763 case CH_DRAINING: 2764 case CH_RELEASING: 2765 WARN(true, "unexpected channel state %d\n", ch->state); 2766 break; 2767 } 2768 spin_unlock_irqrestore(&ch->spinlock, flags); 2769 2770 if (send_drep) { 2771 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0) 2772 printk(KERN_ERR "Sending IB DREP failed.\n"); 2773 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n", 2774 ch->sess_name); 2775 } 2776 } 2777 2778 /** 2779 * srpt_cm_drep_recv() - Process reception of a DREP message. 2780 */ 2781 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id) 2782 { 2783 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n", 2784 cm_id); 2785 srpt_drain_channel(cm_id); 2786 } 2787 2788 /** 2789 * srpt_cm_handler() - IB connection manager callback function. 2790 * 2791 * A non-zero return value will cause the caller destroy the CM ID. 2792 * 2793 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2794 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2795 * a non-zero value in any other case will trigger a race with the 2796 * ib_destroy_cm_id() call in srpt_release_channel(). 2797 */ 2798 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2799 { 2800 int ret; 2801 2802 ret = 0; 2803 switch (event->event) { 2804 case IB_CM_REQ_RECEIVED: 2805 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2806 event->private_data); 2807 break; 2808 case IB_CM_REJ_RECEIVED: 2809 srpt_cm_rej_recv(cm_id); 2810 break; 2811 case IB_CM_RTU_RECEIVED: 2812 case IB_CM_USER_ESTABLISHED: 2813 srpt_cm_rtu_recv(cm_id); 2814 break; 2815 case IB_CM_DREQ_RECEIVED: 2816 srpt_cm_dreq_recv(cm_id); 2817 break; 2818 case IB_CM_DREP_RECEIVED: 2819 srpt_cm_drep_recv(cm_id); 2820 break; 2821 case IB_CM_TIMEWAIT_EXIT: 2822 srpt_cm_timewait_exit(cm_id); 2823 break; 2824 case IB_CM_REP_ERROR: 2825 srpt_cm_rep_error(cm_id); 2826 break; 2827 case IB_CM_DREQ_ERROR: 2828 printk(KERN_INFO "Received IB DREQ ERROR event.\n"); 2829 break; 2830 case IB_CM_MRA_RECEIVED: 2831 printk(KERN_INFO "Received IB MRA event\n"); 2832 break; 2833 default: 2834 printk(KERN_ERR "received unrecognized IB CM event %d\n", 2835 event->event); 2836 break; 2837 } 2838 2839 return ret; 2840 } 2841 2842 /** 2843 * srpt_perform_rdmas() - Perform IB RDMA. 2844 * 2845 * Returns zero upon success or a negative number upon failure. 2846 */ 2847 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, 2848 struct srpt_send_ioctx *ioctx) 2849 { 2850 struct ib_send_wr wr; 2851 struct ib_send_wr *bad_wr; 2852 struct rdma_iu *riu; 2853 int i; 2854 int ret; 2855 int sq_wr_avail; 2856 enum dma_data_direction dir; 2857 const int n_rdma = ioctx->n_rdma; 2858 2859 dir = ioctx->cmd.data_direction; 2860 if (dir == DMA_TO_DEVICE) { 2861 /* write */ 2862 ret = -ENOMEM; 2863 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); 2864 if (sq_wr_avail < 0) { 2865 printk(KERN_WARNING "IB send queue full (needed %d)\n", 2866 n_rdma); 2867 goto out; 2868 } 2869 } 2870 2871 ioctx->rdma_aborted = false; 2872 ret = 0; 2873 riu = ioctx->rdma_ius; 2874 memset(&wr, 0, sizeof wr); 2875 2876 for (i = 0; i < n_rdma; ++i, ++riu) { 2877 if (dir == DMA_FROM_DEVICE) { 2878 wr.opcode = IB_WR_RDMA_WRITE; 2879 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2880 SRPT_RDMA_WRITE_LAST : 2881 SRPT_RDMA_MID, 2882 ioctx->ioctx.index); 2883 } else { 2884 wr.opcode = IB_WR_RDMA_READ; 2885 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2886 SRPT_RDMA_READ_LAST : 2887 SRPT_RDMA_MID, 2888 ioctx->ioctx.index); 2889 } 2890 wr.next = NULL; 2891 wr.wr.rdma.remote_addr = riu->raddr; 2892 wr.wr.rdma.rkey = riu->rkey; 2893 wr.num_sge = riu->sge_cnt; 2894 wr.sg_list = riu->sge; 2895 2896 /* only get completion event for the last rdma write */ 2897 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE) 2898 wr.send_flags = IB_SEND_SIGNALED; 2899 2900 ret = ib_post_send(ch->qp, &wr, &bad_wr); 2901 if (ret) 2902 break; 2903 } 2904 2905 if (ret) 2906 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d", 2907 __func__, __LINE__, ret, i, n_rdma); 2908 if (ret && i > 0) { 2909 wr.num_sge = 0; 2910 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index); 2911 wr.send_flags = IB_SEND_SIGNALED; 2912 while (ch->state == CH_LIVE && 2913 ib_post_send(ch->qp, &wr, &bad_wr) != 0) { 2914 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]", 2915 ioctx->ioctx.index); 2916 msleep(1000); 2917 } 2918 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) { 2919 printk(KERN_INFO "Waiting until RDMA abort finished [%d]", 2920 ioctx->ioctx.index); 2921 msleep(1000); 2922 } 2923 } 2924 out: 2925 if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) 2926 atomic_add(n_rdma, &ch->sq_wr_avail); 2927 return ret; 2928 } 2929 2930 /** 2931 * srpt_xfer_data() - Start data transfer from initiator to target. 2932 */ 2933 static int srpt_xfer_data(struct srpt_rdma_ch *ch, 2934 struct srpt_send_ioctx *ioctx) 2935 { 2936 int ret; 2937 2938 ret = srpt_map_sg_to_ib_sge(ch, ioctx); 2939 if (ret) { 2940 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret); 2941 goto out; 2942 } 2943 2944 ret = srpt_perform_rdmas(ch, ioctx); 2945 if (ret) { 2946 if (ret == -EAGAIN || ret == -ENOMEM) 2947 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n", 2948 __func__, __LINE__, ret); 2949 else 2950 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n", 2951 __func__, __LINE__, ret); 2952 goto out_unmap; 2953 } 2954 2955 out: 2956 return ret; 2957 out_unmap: 2958 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2959 goto out; 2960 } 2961 2962 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2963 { 2964 struct srpt_send_ioctx *ioctx; 2965 2966 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2967 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2968 } 2969 2970 /* 2971 * srpt_write_pending() - Start data transfer from initiator to target (write). 2972 */ 2973 static int srpt_write_pending(struct se_cmd *se_cmd) 2974 { 2975 struct srpt_rdma_ch *ch; 2976 struct srpt_send_ioctx *ioctx; 2977 enum srpt_command_state new_state; 2978 enum rdma_ch_state ch_state; 2979 int ret; 2980 2981 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2982 2983 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2984 WARN_ON(new_state == SRPT_STATE_DONE); 2985 2986 ch = ioctx->ch; 2987 BUG_ON(!ch); 2988 2989 ch_state = srpt_get_ch_state(ch); 2990 switch (ch_state) { 2991 case CH_CONNECTING: 2992 WARN(true, "unexpected channel state %d\n", ch_state); 2993 ret = -EINVAL; 2994 goto out; 2995 case CH_LIVE: 2996 break; 2997 case CH_DISCONNECTING: 2998 case CH_DRAINING: 2999 case CH_RELEASING: 3000 pr_debug("cmd with tag %lld: channel disconnecting\n", 3001 ioctx->tag); 3002 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 3003 ret = -EINVAL; 3004 goto out; 3005 } 3006 ret = srpt_xfer_data(ch, ioctx); 3007 3008 out: 3009 return ret; 3010 } 3011 3012 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 3013 { 3014 switch (tcm_mgmt_status) { 3015 case TMR_FUNCTION_COMPLETE: 3016 return SRP_TSK_MGMT_SUCCESS; 3017 case TMR_FUNCTION_REJECTED: 3018 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 3019 } 3020 return SRP_TSK_MGMT_FAILED; 3021 } 3022 3023 /** 3024 * srpt_queue_response() - Transmits the response to a SCSI command. 3025 * 3026 * Callback function called by the TCM core. Must not block since it can be 3027 * invoked on the context of the IB completion handler. 3028 */ 3029 static int srpt_queue_response(struct se_cmd *cmd) 3030 { 3031 struct srpt_rdma_ch *ch; 3032 struct srpt_send_ioctx *ioctx; 3033 enum srpt_command_state state; 3034 unsigned long flags; 3035 int ret; 3036 enum dma_data_direction dir; 3037 int resp_len; 3038 u8 srp_tm_status; 3039 3040 ret = 0; 3041 3042 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3043 ch = ioctx->ch; 3044 BUG_ON(!ch); 3045 3046 spin_lock_irqsave(&ioctx->spinlock, flags); 3047 state = ioctx->state; 3048 switch (state) { 3049 case SRPT_STATE_NEW: 3050 case SRPT_STATE_DATA_IN: 3051 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 3052 break; 3053 case SRPT_STATE_MGMT: 3054 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 3055 break; 3056 default: 3057 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 3058 ch, ioctx->ioctx.index, ioctx->state); 3059 break; 3060 } 3061 spin_unlock_irqrestore(&ioctx->spinlock, flags); 3062 3063 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 3064 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 3065 atomic_inc(&ch->req_lim_delta); 3066 srpt_abort_cmd(ioctx); 3067 goto out; 3068 } 3069 3070 dir = ioctx->cmd.data_direction; 3071 3072 /* For read commands, transfer the data to the initiator. */ 3073 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && 3074 !ioctx->queue_status_only) { 3075 ret = srpt_xfer_data(ch, ioctx); 3076 if (ret) { 3077 printk(KERN_ERR "xfer_data failed for tag %llu\n", 3078 ioctx->tag); 3079 goto out; 3080 } 3081 } 3082 3083 if (state != SRPT_STATE_MGMT) 3084 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag, 3085 cmd->scsi_status); 3086 else { 3087 srp_tm_status 3088 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 3089 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 3090 ioctx->tag); 3091 } 3092 ret = srpt_post_send(ch, ioctx, resp_len); 3093 if (ret) { 3094 printk(KERN_ERR "sending cmd response failed for tag %llu\n", 3095 ioctx->tag); 3096 srpt_unmap_sg_to_ib_sge(ch, ioctx); 3097 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 3098 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); 3099 } 3100 3101 out: 3102 return ret; 3103 } 3104 3105 static int srpt_queue_status(struct se_cmd *cmd) 3106 { 3107 struct srpt_send_ioctx *ioctx; 3108 3109 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3110 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 3111 if (cmd->se_cmd_flags & 3112 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 3113 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 3114 ioctx->queue_status_only = true; 3115 return srpt_queue_response(cmd); 3116 } 3117 3118 static void srpt_refresh_port_work(struct work_struct *work) 3119 { 3120 struct srpt_port *sport = container_of(work, struct srpt_port, work); 3121 3122 srpt_refresh_port(sport); 3123 } 3124 3125 static int srpt_ch_list_empty(struct srpt_device *sdev) 3126 { 3127 int res; 3128 3129 spin_lock_irq(&sdev->spinlock); 3130 res = list_empty(&sdev->rch_list); 3131 spin_unlock_irq(&sdev->spinlock); 3132 3133 return res; 3134 } 3135 3136 /** 3137 * srpt_release_sdev() - Free the channel resources associated with a target. 3138 */ 3139 static int srpt_release_sdev(struct srpt_device *sdev) 3140 { 3141 struct srpt_rdma_ch *ch, *tmp_ch; 3142 int res; 3143 3144 WARN_ON_ONCE(irqs_disabled()); 3145 3146 BUG_ON(!sdev); 3147 3148 spin_lock_irq(&sdev->spinlock); 3149 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) 3150 __srpt_close_ch(ch); 3151 spin_unlock_irq(&sdev->spinlock); 3152 3153 res = wait_event_interruptible(sdev->ch_releaseQ, 3154 srpt_ch_list_empty(sdev)); 3155 if (res) 3156 printk(KERN_ERR "%s: interrupted.\n", __func__); 3157 3158 return 0; 3159 } 3160 3161 static struct srpt_port *__srpt_lookup_port(const char *name) 3162 { 3163 struct ib_device *dev; 3164 struct srpt_device *sdev; 3165 struct srpt_port *sport; 3166 int i; 3167 3168 list_for_each_entry(sdev, &srpt_dev_list, list) { 3169 dev = sdev->device; 3170 if (!dev) 3171 continue; 3172 3173 for (i = 0; i < dev->phys_port_cnt; i++) { 3174 sport = &sdev->port[i]; 3175 3176 if (!strcmp(sport->port_guid, name)) 3177 return sport; 3178 } 3179 } 3180 3181 return NULL; 3182 } 3183 3184 static struct srpt_port *srpt_lookup_port(const char *name) 3185 { 3186 struct srpt_port *sport; 3187 3188 spin_lock(&srpt_dev_lock); 3189 sport = __srpt_lookup_port(name); 3190 spin_unlock(&srpt_dev_lock); 3191 3192 return sport; 3193 } 3194 3195 /** 3196 * srpt_add_one() - Infiniband device addition callback function. 3197 */ 3198 static void srpt_add_one(struct ib_device *device) 3199 { 3200 struct srpt_device *sdev; 3201 struct srpt_port *sport; 3202 struct ib_srq_init_attr srq_attr; 3203 int i; 3204 3205 pr_debug("device = %p, device->dma_ops = %p\n", device, 3206 device->dma_ops); 3207 3208 sdev = kzalloc(sizeof *sdev, GFP_KERNEL); 3209 if (!sdev) 3210 goto err; 3211 3212 sdev->device = device; 3213 INIT_LIST_HEAD(&sdev->rch_list); 3214 init_waitqueue_head(&sdev->ch_releaseQ); 3215 spin_lock_init(&sdev->spinlock); 3216 3217 if (ib_query_device(device, &sdev->dev_attr)) 3218 goto free_dev; 3219 3220 sdev->pd = ib_alloc_pd(device); 3221 if (IS_ERR(sdev->pd)) 3222 goto free_dev; 3223 3224 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE); 3225 if (IS_ERR(sdev->mr)) 3226 goto err_pd; 3227 3228 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr); 3229 3230 srq_attr.event_handler = srpt_srq_event; 3231 srq_attr.srq_context = (void *)sdev; 3232 srq_attr.attr.max_wr = sdev->srq_size; 3233 srq_attr.attr.max_sge = 1; 3234 srq_attr.attr.srq_limit = 0; 3235 srq_attr.srq_type = IB_SRQT_BASIC; 3236 3237 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 3238 if (IS_ERR(sdev->srq)) 3239 goto err_mr; 3240 3241 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 3242 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr, 3243 device->name); 3244 3245 if (!srpt_service_guid) 3246 srpt_service_guid = be64_to_cpu(device->node_guid); 3247 3248 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3249 if (IS_ERR(sdev->cm_id)) 3250 goto err_srq; 3251 3252 /* print out target login information */ 3253 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3254 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3255 srpt_service_guid, srpt_service_guid); 3256 3257 /* 3258 * We do not have a consistent service_id (ie. also id_ext of target_id) 3259 * to identify this target. We currently use the guid of the first HCA 3260 * in the system as service_id; therefore, the target_id will change 3261 * if this HCA is gone bad and replaced by different HCA 3262 */ 3263 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL)) 3264 goto err_cm; 3265 3266 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3267 srpt_event_handler); 3268 if (ib_register_event_handler(&sdev->event_handler)) 3269 goto err_cm; 3270 3271 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3272 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3273 sizeof(*sdev->ioctx_ring[0]), 3274 srp_max_req_size, DMA_FROM_DEVICE); 3275 if (!sdev->ioctx_ring) 3276 goto err_event; 3277 3278 for (i = 0; i < sdev->srq_size; ++i) 3279 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 3280 3281 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 3282 3283 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3284 sport = &sdev->port[i - 1]; 3285 sport->sdev = sdev; 3286 sport->port = i; 3287 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3288 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3289 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3290 INIT_WORK(&sport->work, srpt_refresh_port_work); 3291 INIT_LIST_HEAD(&sport->port_acl_list); 3292 spin_lock_init(&sport->port_acl_lock); 3293 3294 if (srpt_refresh_port(sport)) { 3295 printk(KERN_ERR "MAD registration failed for %s-%d.\n", 3296 srpt_sdev_name(sdev), i); 3297 goto err_ring; 3298 } 3299 snprintf(sport->port_guid, sizeof(sport->port_guid), 3300 "0x%016llx%016llx", 3301 be64_to_cpu(sport->gid.global.subnet_prefix), 3302 be64_to_cpu(sport->gid.global.interface_id)); 3303 } 3304 3305 spin_lock(&srpt_dev_lock); 3306 list_add_tail(&sdev->list, &srpt_dev_list); 3307 spin_unlock(&srpt_dev_lock); 3308 3309 out: 3310 ib_set_client_data(device, &srpt_client, sdev); 3311 pr_debug("added %s.\n", device->name); 3312 return; 3313 3314 err_ring: 3315 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3316 sdev->srq_size, srp_max_req_size, 3317 DMA_FROM_DEVICE); 3318 err_event: 3319 ib_unregister_event_handler(&sdev->event_handler); 3320 err_cm: 3321 ib_destroy_cm_id(sdev->cm_id); 3322 err_srq: 3323 ib_destroy_srq(sdev->srq); 3324 err_mr: 3325 ib_dereg_mr(sdev->mr); 3326 err_pd: 3327 ib_dealloc_pd(sdev->pd); 3328 free_dev: 3329 kfree(sdev); 3330 err: 3331 sdev = NULL; 3332 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name); 3333 goto out; 3334 } 3335 3336 /** 3337 * srpt_remove_one() - InfiniBand device removal callback function. 3338 */ 3339 static void srpt_remove_one(struct ib_device *device) 3340 { 3341 struct srpt_device *sdev; 3342 int i; 3343 3344 sdev = ib_get_client_data(device, &srpt_client); 3345 if (!sdev) { 3346 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__, 3347 device->name); 3348 return; 3349 } 3350 3351 srpt_unregister_mad_agent(sdev); 3352 3353 ib_unregister_event_handler(&sdev->event_handler); 3354 3355 /* Cancel any work queued by the just unregistered IB event handler. */ 3356 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3357 cancel_work_sync(&sdev->port[i].work); 3358 3359 ib_destroy_cm_id(sdev->cm_id); 3360 3361 /* 3362 * Unregistering a target must happen after destroying sdev->cm_id 3363 * such that no new SRP_LOGIN_REQ information units can arrive while 3364 * destroying the target. 3365 */ 3366 spin_lock(&srpt_dev_lock); 3367 list_del(&sdev->list); 3368 spin_unlock(&srpt_dev_lock); 3369 srpt_release_sdev(sdev); 3370 3371 ib_destroy_srq(sdev->srq); 3372 ib_dereg_mr(sdev->mr); 3373 ib_dealloc_pd(sdev->pd); 3374 3375 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3376 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 3377 sdev->ioctx_ring = NULL; 3378 kfree(sdev); 3379 } 3380 3381 static struct ib_client srpt_client = { 3382 .name = DRV_NAME, 3383 .add = srpt_add_one, 3384 .remove = srpt_remove_one 3385 }; 3386 3387 static int srpt_check_true(struct se_portal_group *se_tpg) 3388 { 3389 return 1; 3390 } 3391 3392 static int srpt_check_false(struct se_portal_group *se_tpg) 3393 { 3394 return 0; 3395 } 3396 3397 static char *srpt_get_fabric_name(void) 3398 { 3399 return "srpt"; 3400 } 3401 3402 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg) 3403 { 3404 return SCSI_TRANSPORTID_PROTOCOLID_SRP; 3405 } 3406 3407 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3408 { 3409 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3410 3411 return sport->port_guid; 3412 } 3413 3414 static u16 srpt_get_tag(struct se_portal_group *tpg) 3415 { 3416 return 1; 3417 } 3418 3419 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg) 3420 { 3421 return 1; 3422 } 3423 3424 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg, 3425 struct se_node_acl *se_nacl, 3426 struct t10_pr_registration *pr_reg, 3427 int *format_code, unsigned char *buf) 3428 { 3429 struct srpt_node_acl *nacl; 3430 struct spc_rdma_transport_id *tr_id; 3431 3432 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3433 tr_id = (void *)buf; 3434 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP; 3435 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id)); 3436 return sizeof(*tr_id); 3437 } 3438 3439 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg, 3440 struct se_node_acl *se_nacl, 3441 struct t10_pr_registration *pr_reg, 3442 int *format_code) 3443 { 3444 *format_code = 0; 3445 return sizeof(struct spc_rdma_transport_id); 3446 } 3447 3448 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg, 3449 const char *buf, u32 *out_tid_len, 3450 char **port_nexus_ptr) 3451 { 3452 struct spc_rdma_transport_id *tr_id; 3453 3454 *port_nexus_ptr = NULL; 3455 *out_tid_len = sizeof(struct spc_rdma_transport_id); 3456 tr_id = (void *)buf; 3457 return (char *)tr_id->i_port_id; 3458 } 3459 3460 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg) 3461 { 3462 struct srpt_node_acl *nacl; 3463 3464 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL); 3465 if (!nacl) { 3466 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n"); 3467 return NULL; 3468 } 3469 3470 return &nacl->nacl; 3471 } 3472 3473 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg, 3474 struct se_node_acl *se_nacl) 3475 { 3476 struct srpt_node_acl *nacl; 3477 3478 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3479 kfree(nacl); 3480 } 3481 3482 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3483 { 3484 return 1; 3485 } 3486 3487 static void srpt_release_cmd(struct se_cmd *se_cmd) 3488 { 3489 } 3490 3491 /** 3492 * srpt_shutdown_session() - Whether or not a session may be shut down. 3493 */ 3494 static int srpt_shutdown_session(struct se_session *se_sess) 3495 { 3496 return true; 3497 } 3498 3499 /** 3500 * srpt_close_session() - Forcibly close a session. 3501 * 3502 * Callback function invoked by the TCM core to clean up sessions associated 3503 * with a node ACL when the user invokes 3504 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3505 */ 3506 static void srpt_close_session(struct se_session *se_sess) 3507 { 3508 DECLARE_COMPLETION_ONSTACK(release_done); 3509 struct srpt_rdma_ch *ch; 3510 struct srpt_device *sdev; 3511 int res; 3512 3513 ch = se_sess->fabric_sess_ptr; 3514 WARN_ON(ch->sess != se_sess); 3515 3516 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch)); 3517 3518 sdev = ch->sport->sdev; 3519 spin_lock_irq(&sdev->spinlock); 3520 BUG_ON(ch->release_done); 3521 ch->release_done = &release_done; 3522 __srpt_close_ch(ch); 3523 spin_unlock_irq(&sdev->spinlock); 3524 3525 res = wait_for_completion_timeout(&release_done, 60 * HZ); 3526 WARN_ON(res <= 0); 3527 } 3528 3529 /** 3530 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 3531 * 3532 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3533 * This object represents an arbitrary integer used to uniquely identify a 3534 * particular attached remote initiator port to a particular SCSI target port 3535 * within a particular SCSI target device within a particular SCSI instance. 3536 */ 3537 static u32 srpt_sess_get_index(struct se_session *se_sess) 3538 { 3539 return 0; 3540 } 3541 3542 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3543 { 3544 } 3545 3546 static u32 srpt_get_task_tag(struct se_cmd *se_cmd) 3547 { 3548 struct srpt_send_ioctx *ioctx; 3549 3550 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3551 return ioctx->tag; 3552 } 3553 3554 /* Note: only used from inside debug printk's by the TCM core. */ 3555 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3556 { 3557 struct srpt_send_ioctx *ioctx; 3558 3559 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3560 return srpt_get_cmd_state(ioctx); 3561 } 3562 3563 static u16 srpt_set_fabric_sense_len(struct se_cmd *cmd, u32 sense_length) 3564 { 3565 return 0; 3566 } 3567 3568 static u16 srpt_get_fabric_sense_len(void) 3569 { 3570 return 0; 3571 } 3572 3573 /** 3574 * srpt_parse_i_port_id() - Parse an initiator port ID. 3575 * @name: ASCII representation of a 128-bit initiator port ID. 3576 * @i_port_id: Binary 128-bit port ID. 3577 */ 3578 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3579 { 3580 const char *p; 3581 unsigned len, count, leading_zero_bytes; 3582 int ret, rc; 3583 3584 p = name; 3585 if (strnicmp(p, "0x", 2) == 0) 3586 p += 2; 3587 ret = -EINVAL; 3588 len = strlen(p); 3589 if (len % 2) 3590 goto out; 3591 count = min(len / 2, 16U); 3592 leading_zero_bytes = 16 - count; 3593 memset(i_port_id, 0, leading_zero_bytes); 3594 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 3595 if (rc < 0) 3596 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 3597 ret = 0; 3598 out: 3599 return ret; 3600 } 3601 3602 /* 3603 * configfs callback function invoked for 3604 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3605 */ 3606 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg, 3607 struct config_group *group, 3608 const char *name) 3609 { 3610 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3611 struct se_node_acl *se_nacl, *se_nacl_new; 3612 struct srpt_node_acl *nacl; 3613 int ret = 0; 3614 u32 nexus_depth = 1; 3615 u8 i_port_id[16]; 3616 3617 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 3618 printk(KERN_ERR "invalid initiator port ID %s\n", name); 3619 ret = -EINVAL; 3620 goto err; 3621 } 3622 3623 se_nacl_new = srpt_alloc_fabric_acl(tpg); 3624 if (!se_nacl_new) { 3625 ret = -ENOMEM; 3626 goto err; 3627 } 3628 /* 3629 * nacl_new may be released by core_tpg_add_initiator_node_acl() 3630 * when converting a node ACL from demo mode to explict 3631 */ 3632 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name, 3633 nexus_depth); 3634 if (IS_ERR(se_nacl)) { 3635 ret = PTR_ERR(se_nacl); 3636 goto err; 3637 } 3638 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */ 3639 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3640 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16); 3641 nacl->sport = sport; 3642 3643 spin_lock_irq(&sport->port_acl_lock); 3644 list_add_tail(&nacl->list, &sport->port_acl_list); 3645 spin_unlock_irq(&sport->port_acl_lock); 3646 3647 return se_nacl; 3648 err: 3649 return ERR_PTR(ret); 3650 } 3651 3652 /* 3653 * configfs callback function invoked for 3654 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3655 */ 3656 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl) 3657 { 3658 struct srpt_node_acl *nacl; 3659 struct srpt_device *sdev; 3660 struct srpt_port *sport; 3661 3662 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3663 sport = nacl->sport; 3664 sdev = sport->sdev; 3665 spin_lock_irq(&sport->port_acl_lock); 3666 list_del(&nacl->list); 3667 spin_unlock_irq(&sport->port_acl_lock); 3668 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1); 3669 srpt_release_fabric_acl(NULL, se_nacl); 3670 } 3671 3672 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size( 3673 struct se_portal_group *se_tpg, 3674 char *page) 3675 { 3676 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3677 3678 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3679 } 3680 3681 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size( 3682 struct se_portal_group *se_tpg, 3683 const char *page, 3684 size_t count) 3685 { 3686 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3687 unsigned long val; 3688 int ret; 3689 3690 ret = strict_strtoul(page, 0, &val); 3691 if (ret < 0) { 3692 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3693 return -EINVAL; 3694 } 3695 if (val > MAX_SRPT_RDMA_SIZE) { 3696 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3697 MAX_SRPT_RDMA_SIZE); 3698 return -EINVAL; 3699 } 3700 if (val < DEFAULT_MAX_RDMA_SIZE) { 3701 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3702 val, DEFAULT_MAX_RDMA_SIZE); 3703 return -EINVAL; 3704 } 3705 sport->port_attrib.srp_max_rdma_size = val; 3706 3707 return count; 3708 } 3709 3710 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR); 3711 3712 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size( 3713 struct se_portal_group *se_tpg, 3714 char *page) 3715 { 3716 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3717 3718 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3719 } 3720 3721 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size( 3722 struct se_portal_group *se_tpg, 3723 const char *page, 3724 size_t count) 3725 { 3726 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3727 unsigned long val; 3728 int ret; 3729 3730 ret = strict_strtoul(page, 0, &val); 3731 if (ret < 0) { 3732 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3733 return -EINVAL; 3734 } 3735 if (val > MAX_SRPT_RSP_SIZE) { 3736 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3737 MAX_SRPT_RSP_SIZE); 3738 return -EINVAL; 3739 } 3740 if (val < MIN_MAX_RSP_SIZE) { 3741 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3742 MIN_MAX_RSP_SIZE); 3743 return -EINVAL; 3744 } 3745 sport->port_attrib.srp_max_rsp_size = val; 3746 3747 return count; 3748 } 3749 3750 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR); 3751 3752 static ssize_t srpt_tpg_attrib_show_srp_sq_size( 3753 struct se_portal_group *se_tpg, 3754 char *page) 3755 { 3756 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3757 3758 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3759 } 3760 3761 static ssize_t srpt_tpg_attrib_store_srp_sq_size( 3762 struct se_portal_group *se_tpg, 3763 const char *page, 3764 size_t count) 3765 { 3766 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3767 unsigned long val; 3768 int ret; 3769 3770 ret = strict_strtoul(page, 0, &val); 3771 if (ret < 0) { 3772 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3773 return -EINVAL; 3774 } 3775 if (val > MAX_SRPT_SRQ_SIZE) { 3776 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3777 MAX_SRPT_SRQ_SIZE); 3778 return -EINVAL; 3779 } 3780 if (val < MIN_SRPT_SRQ_SIZE) { 3781 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3782 MIN_SRPT_SRQ_SIZE); 3783 return -EINVAL; 3784 } 3785 sport->port_attrib.srp_sq_size = val; 3786 3787 return count; 3788 } 3789 3790 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR); 3791 3792 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3793 &srpt_tpg_attrib_srp_max_rdma_size.attr, 3794 &srpt_tpg_attrib_srp_max_rsp_size.attr, 3795 &srpt_tpg_attrib_srp_sq_size.attr, 3796 NULL, 3797 }; 3798 3799 static ssize_t srpt_tpg_show_enable( 3800 struct se_portal_group *se_tpg, 3801 char *page) 3802 { 3803 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3804 3805 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3806 } 3807 3808 static ssize_t srpt_tpg_store_enable( 3809 struct se_portal_group *se_tpg, 3810 const char *page, 3811 size_t count) 3812 { 3813 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3814 unsigned long tmp; 3815 int ret; 3816 3817 ret = strict_strtoul(page, 0, &tmp); 3818 if (ret < 0) { 3819 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n"); 3820 return -EINVAL; 3821 } 3822 3823 if ((tmp != 0) && (tmp != 1)) { 3824 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3825 return -EINVAL; 3826 } 3827 if (tmp == 1) 3828 sport->enabled = true; 3829 else 3830 sport->enabled = false; 3831 3832 return count; 3833 } 3834 3835 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR); 3836 3837 static struct configfs_attribute *srpt_tpg_attrs[] = { 3838 &srpt_tpg_enable.attr, 3839 NULL, 3840 }; 3841 3842 /** 3843 * configfs callback invoked for 3844 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3845 */ 3846 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3847 struct config_group *group, 3848 const char *name) 3849 { 3850 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3851 int res; 3852 3853 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 3854 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn, 3855 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL); 3856 if (res) 3857 return ERR_PTR(res); 3858 3859 return &sport->port_tpg_1; 3860 } 3861 3862 /** 3863 * configfs callback invoked for 3864 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3865 */ 3866 static void srpt_drop_tpg(struct se_portal_group *tpg) 3867 { 3868 struct srpt_port *sport = container_of(tpg, 3869 struct srpt_port, port_tpg_1); 3870 3871 sport->enabled = false; 3872 core_tpg_deregister(&sport->port_tpg_1); 3873 } 3874 3875 /** 3876 * configfs callback invoked for 3877 * mkdir /sys/kernel/config/target/$driver/$port 3878 */ 3879 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3880 struct config_group *group, 3881 const char *name) 3882 { 3883 struct srpt_port *sport; 3884 int ret; 3885 3886 sport = srpt_lookup_port(name); 3887 pr_debug("make_tport(%s)\n", name); 3888 ret = -EINVAL; 3889 if (!sport) 3890 goto err; 3891 3892 return &sport->port_wwn; 3893 3894 err: 3895 return ERR_PTR(ret); 3896 } 3897 3898 /** 3899 * configfs callback invoked for 3900 * rmdir /sys/kernel/config/target/$driver/$port 3901 */ 3902 static void srpt_drop_tport(struct se_wwn *wwn) 3903 { 3904 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3905 3906 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3907 } 3908 3909 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf, 3910 char *buf) 3911 { 3912 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3913 } 3914 3915 TF_WWN_ATTR_RO(srpt, version); 3916 3917 static struct configfs_attribute *srpt_wwn_attrs[] = { 3918 &srpt_wwn_version.attr, 3919 NULL, 3920 }; 3921 3922 static struct target_core_fabric_ops srpt_template = { 3923 .get_fabric_name = srpt_get_fabric_name, 3924 .get_fabric_proto_ident = srpt_get_fabric_proto_ident, 3925 .tpg_get_wwn = srpt_get_fabric_wwn, 3926 .tpg_get_tag = srpt_get_tag, 3927 .tpg_get_default_depth = srpt_get_default_depth, 3928 .tpg_get_pr_transport_id = srpt_get_pr_transport_id, 3929 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len, 3930 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id, 3931 .tpg_check_demo_mode = srpt_check_false, 3932 .tpg_check_demo_mode_cache = srpt_check_true, 3933 .tpg_check_demo_mode_write_protect = srpt_check_true, 3934 .tpg_check_prod_mode_write_protect = srpt_check_false, 3935 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl, 3936 .tpg_release_fabric_acl = srpt_release_fabric_acl, 3937 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3938 .release_cmd = srpt_release_cmd, 3939 .check_stop_free = srpt_check_stop_free, 3940 .shutdown_session = srpt_shutdown_session, 3941 .close_session = srpt_close_session, 3942 .sess_get_index = srpt_sess_get_index, 3943 .sess_get_initiator_sid = NULL, 3944 .write_pending = srpt_write_pending, 3945 .write_pending_status = srpt_write_pending_status, 3946 .set_default_node_attributes = srpt_set_default_node_attrs, 3947 .get_task_tag = srpt_get_task_tag, 3948 .get_cmd_state = srpt_get_tcm_cmd_state, 3949 .queue_data_in = srpt_queue_response, 3950 .queue_status = srpt_queue_status, 3951 .queue_tm_rsp = srpt_queue_response, 3952 .get_fabric_sense_len = srpt_get_fabric_sense_len, 3953 .set_fabric_sense_len = srpt_set_fabric_sense_len, 3954 /* 3955 * Setup function pointers for generic logic in 3956 * target_core_fabric_configfs.c 3957 */ 3958 .fabric_make_wwn = srpt_make_tport, 3959 .fabric_drop_wwn = srpt_drop_tport, 3960 .fabric_make_tpg = srpt_make_tpg, 3961 .fabric_drop_tpg = srpt_drop_tpg, 3962 .fabric_post_link = NULL, 3963 .fabric_pre_unlink = NULL, 3964 .fabric_make_np = NULL, 3965 .fabric_drop_np = NULL, 3966 .fabric_make_nodeacl = srpt_make_nodeacl, 3967 .fabric_drop_nodeacl = srpt_drop_nodeacl, 3968 }; 3969 3970 /** 3971 * srpt_init_module() - Kernel module initialization. 3972 * 3973 * Note: Since ib_register_client() registers callback functions, and since at 3974 * least one of these callback functions (srpt_add_one()) calls target core 3975 * functions, this driver must be registered with the target core before 3976 * ib_register_client() is called. 3977 */ 3978 static int __init srpt_init_module(void) 3979 { 3980 int ret; 3981 3982 ret = -EINVAL; 3983 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3984 printk(KERN_ERR "invalid value %d for kernel module parameter" 3985 " srp_max_req_size -- must be at least %d.\n", 3986 srp_max_req_size, MIN_MAX_REQ_SIZE); 3987 goto out; 3988 } 3989 3990 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3991 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3992 printk(KERN_ERR "invalid value %d for kernel module parameter" 3993 " srpt_srq_size -- must be in the range [%d..%d].\n", 3994 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3995 goto out; 3996 } 3997 3998 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt"); 3999 if (IS_ERR(srpt_target)) { 4000 printk(KERN_ERR "couldn't register\n"); 4001 ret = PTR_ERR(srpt_target); 4002 goto out; 4003 } 4004 4005 srpt_target->tf_ops = srpt_template; 4006 4007 /* Enable SG chaining */ 4008 srpt_target->tf_ops.task_sg_chaining = true; 4009 4010 /* 4011 * Set up default attribute lists. 4012 */ 4013 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs; 4014 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs; 4015 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs; 4016 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL; 4017 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL; 4018 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL; 4019 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL; 4020 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL; 4021 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL; 4022 4023 ret = target_fabric_configfs_register(srpt_target); 4024 if (ret < 0) { 4025 printk(KERN_ERR "couldn't register\n"); 4026 goto out_free_target; 4027 } 4028 4029 ret = ib_register_client(&srpt_client); 4030 if (ret) { 4031 printk(KERN_ERR "couldn't register IB client\n"); 4032 goto out_unregister_target; 4033 } 4034 4035 return 0; 4036 4037 out_unregister_target: 4038 target_fabric_configfs_deregister(srpt_target); 4039 srpt_target = NULL; 4040 out_free_target: 4041 if (srpt_target) 4042 target_fabric_configfs_free(srpt_target); 4043 out: 4044 return ret; 4045 } 4046 4047 static void __exit srpt_cleanup_module(void) 4048 { 4049 ib_unregister_client(&srpt_client); 4050 target_fabric_configfs_deregister(srpt_target); 4051 srpt_target = NULL; 4052 } 4053 4054 module_init(srpt_init_module); 4055 module_exit(srpt_cleanup_module); 4056