1 /*
2  * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3  * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_tcq.h>
45 #include <target/configfs_macros.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric_configfs.h>
48 #include <target/target_core_fabric.h>
49 #include <target/target_core_configfs.h>
50 #include "ib_srpt.h"
51 
52 /* Name of this kernel module. */
53 #define DRV_NAME		"ib_srpt"
54 #define DRV_VERSION		"2.0.0"
55 #define DRV_RELDATE		"2011-02-14"
56 
57 #define SRPT_ID_STRING	"Linux SRP target"
58 
59 #undef pr_fmt
60 #define pr_fmt(fmt) DRV_NAME " " fmt
61 
62 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 		   "v" DRV_VERSION " (" DRV_RELDATE ")");
65 MODULE_LICENSE("Dual BSD/GPL");
66 
67 /*
68  * Global Variables
69  */
70 
71 static u64 srpt_service_guid;
72 static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
73 static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
74 
75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76 module_param(srp_max_req_size, int, 0444);
77 MODULE_PARM_DESC(srp_max_req_size,
78 		 "Maximum size of SRP request messages in bytes.");
79 
80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81 module_param(srpt_srq_size, int, 0444);
82 MODULE_PARM_DESC(srpt_srq_size,
83 		 "Shared receive queue (SRQ) size.");
84 
85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86 {
87 	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88 }
89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 		  0444);
91 MODULE_PARM_DESC(srpt_service_guid,
92 		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 		 " instead of using the node_guid of the first HCA.");
94 
95 static struct ib_client srpt_client;
96 static struct target_fabric_configfs *srpt_target;
97 static void srpt_release_channel(struct srpt_rdma_ch *ch);
98 static int srpt_queue_status(struct se_cmd *cmd);
99 
100 /**
101  * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102  */
103 static inline
104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105 {
106 	switch (dir) {
107 	case DMA_TO_DEVICE:	return DMA_FROM_DEVICE;
108 	case DMA_FROM_DEVICE:	return DMA_TO_DEVICE;
109 	default:		return dir;
110 	}
111 }
112 
113 /**
114  * srpt_sdev_name() - Return the name associated with the HCA.
115  *
116  * Examples are ib0, ib1, ...
117  */
118 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119 {
120 	return sdev->device->name;
121 }
122 
123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124 {
125 	unsigned long flags;
126 	enum rdma_ch_state state;
127 
128 	spin_lock_irqsave(&ch->spinlock, flags);
129 	state = ch->state;
130 	spin_unlock_irqrestore(&ch->spinlock, flags);
131 	return state;
132 }
133 
134 static enum rdma_ch_state
135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136 {
137 	unsigned long flags;
138 	enum rdma_ch_state prev;
139 
140 	spin_lock_irqsave(&ch->spinlock, flags);
141 	prev = ch->state;
142 	ch->state = new_state;
143 	spin_unlock_irqrestore(&ch->spinlock, flags);
144 	return prev;
145 }
146 
147 /**
148  * srpt_test_and_set_ch_state() - Test and set the channel state.
149  *
150  * Returns true if and only if the channel state has been set to the new state.
151  */
152 static bool
153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154 			   enum rdma_ch_state new)
155 {
156 	unsigned long flags;
157 	enum rdma_ch_state prev;
158 
159 	spin_lock_irqsave(&ch->spinlock, flags);
160 	prev = ch->state;
161 	if (prev == old)
162 		ch->state = new;
163 	spin_unlock_irqrestore(&ch->spinlock, flags);
164 	return prev == old;
165 }
166 
167 /**
168  * srpt_event_handler() - Asynchronous IB event callback function.
169  *
170  * Callback function called by the InfiniBand core when an asynchronous IB
171  * event occurs. This callback may occur in interrupt context. See also
172  * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173  * Architecture Specification.
174  */
175 static void srpt_event_handler(struct ib_event_handler *handler,
176 			       struct ib_event *event)
177 {
178 	struct srpt_device *sdev;
179 	struct srpt_port *sport;
180 
181 	sdev = ib_get_client_data(event->device, &srpt_client);
182 	if (!sdev || sdev->device != event->device)
183 		return;
184 
185 	pr_debug("ASYNC event= %d on device= %s\n", event->event,
186 		 srpt_sdev_name(sdev));
187 
188 	switch (event->event) {
189 	case IB_EVENT_PORT_ERR:
190 		if (event->element.port_num <= sdev->device->phys_port_cnt) {
191 			sport = &sdev->port[event->element.port_num - 1];
192 			sport->lid = 0;
193 			sport->sm_lid = 0;
194 		}
195 		break;
196 	case IB_EVENT_PORT_ACTIVE:
197 	case IB_EVENT_LID_CHANGE:
198 	case IB_EVENT_PKEY_CHANGE:
199 	case IB_EVENT_SM_CHANGE:
200 	case IB_EVENT_CLIENT_REREGISTER:
201 	case IB_EVENT_GID_CHANGE:
202 		/* Refresh port data asynchronously. */
203 		if (event->element.port_num <= sdev->device->phys_port_cnt) {
204 			sport = &sdev->port[event->element.port_num - 1];
205 			if (!sport->lid && !sport->sm_lid)
206 				schedule_work(&sport->work);
207 		}
208 		break;
209 	default:
210 		printk(KERN_ERR "received unrecognized IB event %d\n",
211 		       event->event);
212 		break;
213 	}
214 }
215 
216 /**
217  * srpt_srq_event() - SRQ event callback function.
218  */
219 static void srpt_srq_event(struct ib_event *event, void *ctx)
220 {
221 	printk(KERN_INFO "SRQ event %d\n", event->event);
222 }
223 
224 /**
225  * srpt_qp_event() - QP event callback function.
226  */
227 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
228 {
229 	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
230 		 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
231 
232 	switch (event->event) {
233 	case IB_EVENT_COMM_EST:
234 		ib_cm_notify(ch->cm_id, event->event);
235 		break;
236 	case IB_EVENT_QP_LAST_WQE_REACHED:
237 		if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
238 					       CH_RELEASING))
239 			srpt_release_channel(ch);
240 		else
241 			pr_debug("%s: state %d - ignored LAST_WQE.\n",
242 				 ch->sess_name, srpt_get_ch_state(ch));
243 		break;
244 	default:
245 		printk(KERN_ERR "received unrecognized IB QP event %d\n",
246 		       event->event);
247 		break;
248 	}
249 }
250 
251 /**
252  * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
253  *
254  * @slot: one-based slot number.
255  * @value: four-bit value.
256  *
257  * Copies the lowest four bits of value in element slot of the array of four
258  * bit elements called c_list (controller list). The index slot is one-based.
259  */
260 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
261 {
262 	u16 id;
263 	u8 tmp;
264 
265 	id = (slot - 1) / 2;
266 	if (slot & 0x1) {
267 		tmp = c_list[id] & 0xf;
268 		c_list[id] = (value << 4) | tmp;
269 	} else {
270 		tmp = c_list[id] & 0xf0;
271 		c_list[id] = (value & 0xf) | tmp;
272 	}
273 }
274 
275 /**
276  * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
277  *
278  * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
279  * Specification.
280  */
281 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
282 {
283 	struct ib_class_port_info *cif;
284 
285 	cif = (struct ib_class_port_info *)mad->data;
286 	memset(cif, 0, sizeof *cif);
287 	cif->base_version = 1;
288 	cif->class_version = 1;
289 	cif->resp_time_value = 20;
290 
291 	mad->mad_hdr.status = 0;
292 }
293 
294 /**
295  * srpt_get_iou() - Write IOUnitInfo to a management datagram.
296  *
297  * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
298  * Specification. See also section B.7, table B.6 in the SRP r16a document.
299  */
300 static void srpt_get_iou(struct ib_dm_mad *mad)
301 {
302 	struct ib_dm_iou_info *ioui;
303 	u8 slot;
304 	int i;
305 
306 	ioui = (struct ib_dm_iou_info *)mad->data;
307 	ioui->change_id = __constant_cpu_to_be16(1);
308 	ioui->max_controllers = 16;
309 
310 	/* set present for slot 1 and empty for the rest */
311 	srpt_set_ioc(ioui->controller_list, 1, 1);
312 	for (i = 1, slot = 2; i < 16; i++, slot++)
313 		srpt_set_ioc(ioui->controller_list, slot, 0);
314 
315 	mad->mad_hdr.status = 0;
316 }
317 
318 /**
319  * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
320  *
321  * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
322  * Architecture Specification. See also section B.7, table B.7 in the SRP
323  * r16a document.
324  */
325 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
326 			 struct ib_dm_mad *mad)
327 {
328 	struct srpt_device *sdev = sport->sdev;
329 	struct ib_dm_ioc_profile *iocp;
330 
331 	iocp = (struct ib_dm_ioc_profile *)mad->data;
332 
333 	if (!slot || slot > 16) {
334 		mad->mad_hdr.status
335 			= __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
336 		return;
337 	}
338 
339 	if (slot > 2) {
340 		mad->mad_hdr.status
341 			= __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
342 		return;
343 	}
344 
345 	memset(iocp, 0, sizeof *iocp);
346 	strcpy(iocp->id_string, SRPT_ID_STRING);
347 	iocp->guid = cpu_to_be64(srpt_service_guid);
348 	iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
349 	iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
350 	iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
351 	iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
352 	iocp->subsys_device_id = 0x0;
353 	iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
354 	iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
355 	iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
356 	iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
357 	iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
358 	iocp->rdma_read_depth = 4;
359 	iocp->send_size = cpu_to_be32(srp_max_req_size);
360 	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
361 					  1U << 24));
362 	iocp->num_svc_entries = 1;
363 	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
364 		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
365 
366 	mad->mad_hdr.status = 0;
367 }
368 
369 /**
370  * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
371  *
372  * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
373  * Specification. See also section B.7, table B.8 in the SRP r16a document.
374  */
375 static void srpt_get_svc_entries(u64 ioc_guid,
376 				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
377 {
378 	struct ib_dm_svc_entries *svc_entries;
379 
380 	WARN_ON(!ioc_guid);
381 
382 	if (!slot || slot > 16) {
383 		mad->mad_hdr.status
384 			= __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
385 		return;
386 	}
387 
388 	if (slot > 2 || lo > hi || hi > 1) {
389 		mad->mad_hdr.status
390 			= __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
391 		return;
392 	}
393 
394 	svc_entries = (struct ib_dm_svc_entries *)mad->data;
395 	memset(svc_entries, 0, sizeof *svc_entries);
396 	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
397 	snprintf(svc_entries->service_entries[0].name,
398 		 sizeof(svc_entries->service_entries[0].name),
399 		 "%s%016llx",
400 		 SRP_SERVICE_NAME_PREFIX,
401 		 ioc_guid);
402 
403 	mad->mad_hdr.status = 0;
404 }
405 
406 /**
407  * srpt_mgmt_method_get() - Process a received management datagram.
408  * @sp:      source port through which the MAD has been received.
409  * @rq_mad:  received MAD.
410  * @rsp_mad: response MAD.
411  */
412 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
413 				 struct ib_dm_mad *rsp_mad)
414 {
415 	u16 attr_id;
416 	u32 slot;
417 	u8 hi, lo;
418 
419 	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
420 	switch (attr_id) {
421 	case DM_ATTR_CLASS_PORT_INFO:
422 		srpt_get_class_port_info(rsp_mad);
423 		break;
424 	case DM_ATTR_IOU_INFO:
425 		srpt_get_iou(rsp_mad);
426 		break;
427 	case DM_ATTR_IOC_PROFILE:
428 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
429 		srpt_get_ioc(sp, slot, rsp_mad);
430 		break;
431 	case DM_ATTR_SVC_ENTRIES:
432 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
433 		hi = (u8) ((slot >> 8) & 0xff);
434 		lo = (u8) (slot & 0xff);
435 		slot = (u16) ((slot >> 16) & 0xffff);
436 		srpt_get_svc_entries(srpt_service_guid,
437 				     slot, hi, lo, rsp_mad);
438 		break;
439 	default:
440 		rsp_mad->mad_hdr.status =
441 		    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
442 		break;
443 	}
444 }
445 
446 /**
447  * srpt_mad_send_handler() - Post MAD-send callback function.
448  */
449 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
450 				  struct ib_mad_send_wc *mad_wc)
451 {
452 	ib_destroy_ah(mad_wc->send_buf->ah);
453 	ib_free_send_mad(mad_wc->send_buf);
454 }
455 
456 /**
457  * srpt_mad_recv_handler() - MAD reception callback function.
458  */
459 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
460 				  struct ib_mad_recv_wc *mad_wc)
461 {
462 	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
463 	struct ib_ah *ah;
464 	struct ib_mad_send_buf *rsp;
465 	struct ib_dm_mad *dm_mad;
466 
467 	if (!mad_wc || !mad_wc->recv_buf.mad)
468 		return;
469 
470 	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
471 				  mad_wc->recv_buf.grh, mad_agent->port_num);
472 	if (IS_ERR(ah))
473 		goto err;
474 
475 	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
476 
477 	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
478 				 mad_wc->wc->pkey_index, 0,
479 				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
480 				 GFP_KERNEL);
481 	if (IS_ERR(rsp))
482 		goto err_rsp;
483 
484 	rsp->ah = ah;
485 
486 	dm_mad = rsp->mad;
487 	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
488 	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
489 	dm_mad->mad_hdr.status = 0;
490 
491 	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
492 	case IB_MGMT_METHOD_GET:
493 		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
494 		break;
495 	case IB_MGMT_METHOD_SET:
496 		dm_mad->mad_hdr.status =
497 		    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
498 		break;
499 	default:
500 		dm_mad->mad_hdr.status =
501 		    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
502 		break;
503 	}
504 
505 	if (!ib_post_send_mad(rsp, NULL)) {
506 		ib_free_recv_mad(mad_wc);
507 		/* will destroy_ah & free_send_mad in send completion */
508 		return;
509 	}
510 
511 	ib_free_send_mad(rsp);
512 
513 err_rsp:
514 	ib_destroy_ah(ah);
515 err:
516 	ib_free_recv_mad(mad_wc);
517 }
518 
519 /**
520  * srpt_refresh_port() - Configure a HCA port.
521  *
522  * Enable InfiniBand management datagram processing, update the cached sm_lid,
523  * lid and gid values, and register a callback function for processing MADs
524  * on the specified port.
525  *
526  * Note: It is safe to call this function more than once for the same port.
527  */
528 static int srpt_refresh_port(struct srpt_port *sport)
529 {
530 	struct ib_mad_reg_req reg_req;
531 	struct ib_port_modify port_modify;
532 	struct ib_port_attr port_attr;
533 	int ret;
534 
535 	memset(&port_modify, 0, sizeof port_modify);
536 	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
537 	port_modify.clr_port_cap_mask = 0;
538 
539 	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
540 	if (ret)
541 		goto err_mod_port;
542 
543 	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
544 	if (ret)
545 		goto err_query_port;
546 
547 	sport->sm_lid = port_attr.sm_lid;
548 	sport->lid = port_attr.lid;
549 
550 	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
551 	if (ret)
552 		goto err_query_port;
553 
554 	if (!sport->mad_agent) {
555 		memset(&reg_req, 0, sizeof reg_req);
556 		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
557 		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
558 		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
559 		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
560 
561 		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
562 							 sport->port,
563 							 IB_QPT_GSI,
564 							 &reg_req, 0,
565 							 srpt_mad_send_handler,
566 							 srpt_mad_recv_handler,
567 							 sport, 0);
568 		if (IS_ERR(sport->mad_agent)) {
569 			ret = PTR_ERR(sport->mad_agent);
570 			sport->mad_agent = NULL;
571 			goto err_query_port;
572 		}
573 	}
574 
575 	return 0;
576 
577 err_query_port:
578 
579 	port_modify.set_port_cap_mask = 0;
580 	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
581 	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
582 
583 err_mod_port:
584 
585 	return ret;
586 }
587 
588 /**
589  * srpt_unregister_mad_agent() - Unregister MAD callback functions.
590  *
591  * Note: It is safe to call this function more than once for the same device.
592  */
593 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
594 {
595 	struct ib_port_modify port_modify = {
596 		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
597 	};
598 	struct srpt_port *sport;
599 	int i;
600 
601 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
602 		sport = &sdev->port[i - 1];
603 		WARN_ON(sport->port != i);
604 		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
605 			printk(KERN_ERR "disabling MAD processing failed.\n");
606 		if (sport->mad_agent) {
607 			ib_unregister_mad_agent(sport->mad_agent);
608 			sport->mad_agent = NULL;
609 		}
610 	}
611 }
612 
613 /**
614  * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
615  */
616 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
617 					   int ioctx_size, int dma_size,
618 					   enum dma_data_direction dir)
619 {
620 	struct srpt_ioctx *ioctx;
621 
622 	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
623 	if (!ioctx)
624 		goto err;
625 
626 	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
627 	if (!ioctx->buf)
628 		goto err_free_ioctx;
629 
630 	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
631 	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
632 		goto err_free_buf;
633 
634 	return ioctx;
635 
636 err_free_buf:
637 	kfree(ioctx->buf);
638 err_free_ioctx:
639 	kfree(ioctx);
640 err:
641 	return NULL;
642 }
643 
644 /**
645  * srpt_free_ioctx() - Free an SRPT I/O context structure.
646  */
647 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
648 			    int dma_size, enum dma_data_direction dir)
649 {
650 	if (!ioctx)
651 		return;
652 
653 	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
654 	kfree(ioctx->buf);
655 	kfree(ioctx);
656 }
657 
658 /**
659  * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
660  * @sdev:       Device to allocate the I/O context ring for.
661  * @ring_size:  Number of elements in the I/O context ring.
662  * @ioctx_size: I/O context size.
663  * @dma_size:   DMA buffer size.
664  * @dir:        DMA data direction.
665  */
666 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
667 				int ring_size, int ioctx_size,
668 				int dma_size, enum dma_data_direction dir)
669 {
670 	struct srpt_ioctx **ring;
671 	int i;
672 
673 	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
674 		&& ioctx_size != sizeof(struct srpt_send_ioctx));
675 
676 	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
677 	if (!ring)
678 		goto out;
679 	for (i = 0; i < ring_size; ++i) {
680 		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
681 		if (!ring[i])
682 			goto err;
683 		ring[i]->index = i;
684 	}
685 	goto out;
686 
687 err:
688 	while (--i >= 0)
689 		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
690 	kfree(ring);
691 	ring = NULL;
692 out:
693 	return ring;
694 }
695 
696 /**
697  * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
698  */
699 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
700 				 struct srpt_device *sdev, int ring_size,
701 				 int dma_size, enum dma_data_direction dir)
702 {
703 	int i;
704 
705 	for (i = 0; i < ring_size; ++i)
706 		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
707 	kfree(ioctx_ring);
708 }
709 
710 /**
711  * srpt_get_cmd_state() - Get the state of a SCSI command.
712  */
713 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
714 {
715 	enum srpt_command_state state;
716 	unsigned long flags;
717 
718 	BUG_ON(!ioctx);
719 
720 	spin_lock_irqsave(&ioctx->spinlock, flags);
721 	state = ioctx->state;
722 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
723 	return state;
724 }
725 
726 /**
727  * srpt_set_cmd_state() - Set the state of a SCSI command.
728  *
729  * Does not modify the state of aborted commands. Returns the previous command
730  * state.
731  */
732 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
733 						  enum srpt_command_state new)
734 {
735 	enum srpt_command_state previous;
736 	unsigned long flags;
737 
738 	BUG_ON(!ioctx);
739 
740 	spin_lock_irqsave(&ioctx->spinlock, flags);
741 	previous = ioctx->state;
742 	if (previous != SRPT_STATE_DONE)
743 		ioctx->state = new;
744 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
745 
746 	return previous;
747 }
748 
749 /**
750  * srpt_test_and_set_cmd_state() - Test and set the state of a command.
751  *
752  * Returns true if and only if the previous command state was equal to 'old'.
753  */
754 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
755 					enum srpt_command_state old,
756 					enum srpt_command_state new)
757 {
758 	enum srpt_command_state previous;
759 	unsigned long flags;
760 
761 	WARN_ON(!ioctx);
762 	WARN_ON(old == SRPT_STATE_DONE);
763 	WARN_ON(new == SRPT_STATE_NEW);
764 
765 	spin_lock_irqsave(&ioctx->spinlock, flags);
766 	previous = ioctx->state;
767 	if (previous == old)
768 		ioctx->state = new;
769 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
770 	return previous == old;
771 }
772 
773 /**
774  * srpt_post_recv() - Post an IB receive request.
775  */
776 static int srpt_post_recv(struct srpt_device *sdev,
777 			  struct srpt_recv_ioctx *ioctx)
778 {
779 	struct ib_sge list;
780 	struct ib_recv_wr wr, *bad_wr;
781 
782 	BUG_ON(!sdev);
783 	wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
784 
785 	list.addr = ioctx->ioctx.dma;
786 	list.length = srp_max_req_size;
787 	list.lkey = sdev->mr->lkey;
788 
789 	wr.next = NULL;
790 	wr.sg_list = &list;
791 	wr.num_sge = 1;
792 
793 	return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
794 }
795 
796 /**
797  * srpt_post_send() - Post an IB send request.
798  *
799  * Returns zero upon success and a non-zero value upon failure.
800  */
801 static int srpt_post_send(struct srpt_rdma_ch *ch,
802 			  struct srpt_send_ioctx *ioctx, int len)
803 {
804 	struct ib_sge list;
805 	struct ib_send_wr wr, *bad_wr;
806 	struct srpt_device *sdev = ch->sport->sdev;
807 	int ret;
808 
809 	atomic_inc(&ch->req_lim);
810 
811 	ret = -ENOMEM;
812 	if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
813 		printk(KERN_WARNING "IB send queue full (needed 1)\n");
814 		goto out;
815 	}
816 
817 	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
818 				      DMA_TO_DEVICE);
819 
820 	list.addr = ioctx->ioctx.dma;
821 	list.length = len;
822 	list.lkey = sdev->mr->lkey;
823 
824 	wr.next = NULL;
825 	wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
826 	wr.sg_list = &list;
827 	wr.num_sge = 1;
828 	wr.opcode = IB_WR_SEND;
829 	wr.send_flags = IB_SEND_SIGNALED;
830 
831 	ret = ib_post_send(ch->qp, &wr, &bad_wr);
832 
833 out:
834 	if (ret < 0) {
835 		atomic_inc(&ch->sq_wr_avail);
836 		atomic_dec(&ch->req_lim);
837 	}
838 	return ret;
839 }
840 
841 /**
842  * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
843  * @ioctx: Pointer to the I/O context associated with the request.
844  * @srp_cmd: Pointer to the SRP_CMD request data.
845  * @dir: Pointer to the variable to which the transfer direction will be
846  *   written.
847  * @data_len: Pointer to the variable to which the total data length of all
848  *   descriptors in the SRP_CMD request will be written.
849  *
850  * This function initializes ioctx->nrbuf and ioctx->r_bufs.
851  *
852  * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
853  * -ENOMEM when memory allocation fails and zero upon success.
854  */
855 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
856 			     struct srp_cmd *srp_cmd,
857 			     enum dma_data_direction *dir, u64 *data_len)
858 {
859 	struct srp_indirect_buf *idb;
860 	struct srp_direct_buf *db;
861 	unsigned add_cdb_offset;
862 	int ret;
863 
864 	/*
865 	 * The pointer computations below will only be compiled correctly
866 	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
867 	 * whether srp_cmd::add_data has been declared as a byte pointer.
868 	 */
869 	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
870 		     && !__same_type(srp_cmd->add_data[0], (u8)0));
871 
872 	BUG_ON(!dir);
873 	BUG_ON(!data_len);
874 
875 	ret = 0;
876 	*data_len = 0;
877 
878 	/*
879 	 * The lower four bits of the buffer format field contain the DATA-IN
880 	 * buffer descriptor format, and the highest four bits contain the
881 	 * DATA-OUT buffer descriptor format.
882 	 */
883 	*dir = DMA_NONE;
884 	if (srp_cmd->buf_fmt & 0xf)
885 		/* DATA-IN: transfer data from target to initiator (read). */
886 		*dir = DMA_FROM_DEVICE;
887 	else if (srp_cmd->buf_fmt >> 4)
888 		/* DATA-OUT: transfer data from initiator to target (write). */
889 		*dir = DMA_TO_DEVICE;
890 
891 	/*
892 	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
893 	 * CDB LENGTH' field are reserved and the size in bytes of this field
894 	 * is four times the value specified in bits 3..7. Hence the "& ~3".
895 	 */
896 	add_cdb_offset = srp_cmd->add_cdb_len & ~3;
897 	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
898 	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
899 		ioctx->n_rbuf = 1;
900 		ioctx->rbufs = &ioctx->single_rbuf;
901 
902 		db = (struct srp_direct_buf *)(srp_cmd->add_data
903 					       + add_cdb_offset);
904 		memcpy(ioctx->rbufs, db, sizeof *db);
905 		*data_len = be32_to_cpu(db->len);
906 	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
907 		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
908 		idb = (struct srp_indirect_buf *)(srp_cmd->add_data
909 						  + add_cdb_offset);
910 
911 		ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
912 
913 		if (ioctx->n_rbuf >
914 		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
915 			printk(KERN_ERR "received unsupported SRP_CMD request"
916 			       " type (%u out + %u in != %u / %zu)\n",
917 			       srp_cmd->data_out_desc_cnt,
918 			       srp_cmd->data_in_desc_cnt,
919 			       be32_to_cpu(idb->table_desc.len),
920 			       sizeof(*db));
921 			ioctx->n_rbuf = 0;
922 			ret = -EINVAL;
923 			goto out;
924 		}
925 
926 		if (ioctx->n_rbuf == 1)
927 			ioctx->rbufs = &ioctx->single_rbuf;
928 		else {
929 			ioctx->rbufs =
930 				kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
931 			if (!ioctx->rbufs) {
932 				ioctx->n_rbuf = 0;
933 				ret = -ENOMEM;
934 				goto out;
935 			}
936 		}
937 
938 		db = idb->desc_list;
939 		memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
940 		*data_len = be32_to_cpu(idb->len);
941 	}
942 out:
943 	return ret;
944 }
945 
946 /**
947  * srpt_init_ch_qp() - Initialize queue pair attributes.
948  *
949  * Initialized the attributes of queue pair 'qp' by allowing local write,
950  * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
951  */
952 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
953 {
954 	struct ib_qp_attr *attr;
955 	int ret;
956 
957 	attr = kzalloc(sizeof *attr, GFP_KERNEL);
958 	if (!attr)
959 		return -ENOMEM;
960 
961 	attr->qp_state = IB_QPS_INIT;
962 	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
963 	    IB_ACCESS_REMOTE_WRITE;
964 	attr->port_num = ch->sport->port;
965 	attr->pkey_index = 0;
966 
967 	ret = ib_modify_qp(qp, attr,
968 			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
969 			   IB_QP_PKEY_INDEX);
970 
971 	kfree(attr);
972 	return ret;
973 }
974 
975 /**
976  * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
977  * @ch: channel of the queue pair.
978  * @qp: queue pair to change the state of.
979  *
980  * Returns zero upon success and a negative value upon failure.
981  *
982  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
983  * If this structure ever becomes larger, it might be necessary to allocate
984  * it dynamically instead of on the stack.
985  */
986 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
987 {
988 	struct ib_qp_attr qp_attr;
989 	int attr_mask;
990 	int ret;
991 
992 	qp_attr.qp_state = IB_QPS_RTR;
993 	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
994 	if (ret)
995 		goto out;
996 
997 	qp_attr.max_dest_rd_atomic = 4;
998 
999 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1000 
1001 out:
1002 	return ret;
1003 }
1004 
1005 /**
1006  * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1007  * @ch: channel of the queue pair.
1008  * @qp: queue pair to change the state of.
1009  *
1010  * Returns zero upon success and a negative value upon failure.
1011  *
1012  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1013  * If this structure ever becomes larger, it might be necessary to allocate
1014  * it dynamically instead of on the stack.
1015  */
1016 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1017 {
1018 	struct ib_qp_attr qp_attr;
1019 	int attr_mask;
1020 	int ret;
1021 
1022 	qp_attr.qp_state = IB_QPS_RTS;
1023 	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1024 	if (ret)
1025 		goto out;
1026 
1027 	qp_attr.max_rd_atomic = 4;
1028 
1029 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1030 
1031 out:
1032 	return ret;
1033 }
1034 
1035 /**
1036  * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1037  */
1038 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1039 {
1040 	struct ib_qp_attr qp_attr;
1041 
1042 	qp_attr.qp_state = IB_QPS_ERR;
1043 	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1044 }
1045 
1046 /**
1047  * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1048  */
1049 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1050 				    struct srpt_send_ioctx *ioctx)
1051 {
1052 	struct scatterlist *sg;
1053 	enum dma_data_direction dir;
1054 
1055 	BUG_ON(!ch);
1056 	BUG_ON(!ioctx);
1057 	BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1058 
1059 	while (ioctx->n_rdma)
1060 		kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1061 
1062 	kfree(ioctx->rdma_ius);
1063 	ioctx->rdma_ius = NULL;
1064 
1065 	if (ioctx->mapped_sg_count) {
1066 		sg = ioctx->sg;
1067 		WARN_ON(!sg);
1068 		dir = ioctx->cmd.data_direction;
1069 		BUG_ON(dir == DMA_NONE);
1070 		ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1071 				opposite_dma_dir(dir));
1072 		ioctx->mapped_sg_count = 0;
1073 	}
1074 }
1075 
1076 /**
1077  * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1078  */
1079 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1080 				 struct srpt_send_ioctx *ioctx)
1081 {
1082 	struct ib_device *dev = ch->sport->sdev->device;
1083 	struct se_cmd *cmd;
1084 	struct scatterlist *sg, *sg_orig;
1085 	int sg_cnt;
1086 	enum dma_data_direction dir;
1087 	struct rdma_iu *riu;
1088 	struct srp_direct_buf *db;
1089 	dma_addr_t dma_addr;
1090 	struct ib_sge *sge;
1091 	u64 raddr;
1092 	u32 rsize;
1093 	u32 tsize;
1094 	u32 dma_len;
1095 	int count, nrdma;
1096 	int i, j, k;
1097 
1098 	BUG_ON(!ch);
1099 	BUG_ON(!ioctx);
1100 	cmd = &ioctx->cmd;
1101 	dir = cmd->data_direction;
1102 	BUG_ON(dir == DMA_NONE);
1103 
1104 	ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1105 	ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1106 
1107 	count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1108 			      opposite_dma_dir(dir));
1109 	if (unlikely(!count))
1110 		return -EAGAIN;
1111 
1112 	ioctx->mapped_sg_count = count;
1113 
1114 	if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1115 		nrdma = ioctx->n_rdma_ius;
1116 	else {
1117 		nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1118 			+ ioctx->n_rbuf;
1119 
1120 		ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1121 		if (!ioctx->rdma_ius)
1122 			goto free_mem;
1123 
1124 		ioctx->n_rdma_ius = nrdma;
1125 	}
1126 
1127 	db = ioctx->rbufs;
1128 	tsize = cmd->data_length;
1129 	dma_len = ib_sg_dma_len(dev, &sg[0]);
1130 	riu = ioctx->rdma_ius;
1131 
1132 	/*
1133 	 * For each remote desc - calculate the #ib_sge.
1134 	 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1135 	 *      each remote desc rdma_iu is required a rdma wr;
1136 	 * else
1137 	 *      we need to allocate extra rdma_iu to carry extra #ib_sge in
1138 	 *      another rdma wr
1139 	 */
1140 	for (i = 0, j = 0;
1141 	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1142 		rsize = be32_to_cpu(db->len);
1143 		raddr = be64_to_cpu(db->va);
1144 		riu->raddr = raddr;
1145 		riu->rkey = be32_to_cpu(db->key);
1146 		riu->sge_cnt = 0;
1147 
1148 		/* calculate how many sge required for this remote_buf */
1149 		while (rsize > 0 && tsize > 0) {
1150 
1151 			if (rsize >= dma_len) {
1152 				tsize -= dma_len;
1153 				rsize -= dma_len;
1154 				raddr += dma_len;
1155 
1156 				if (tsize > 0) {
1157 					++j;
1158 					if (j < count) {
1159 						sg = sg_next(sg);
1160 						dma_len = ib_sg_dma_len(
1161 								dev, sg);
1162 					}
1163 				}
1164 			} else {
1165 				tsize -= rsize;
1166 				dma_len -= rsize;
1167 				rsize = 0;
1168 			}
1169 
1170 			++riu->sge_cnt;
1171 
1172 			if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1173 				++ioctx->n_rdma;
1174 				riu->sge =
1175 				    kmalloc(riu->sge_cnt * sizeof *riu->sge,
1176 					    GFP_KERNEL);
1177 				if (!riu->sge)
1178 					goto free_mem;
1179 
1180 				++riu;
1181 				riu->sge_cnt = 0;
1182 				riu->raddr = raddr;
1183 				riu->rkey = be32_to_cpu(db->key);
1184 			}
1185 		}
1186 
1187 		++ioctx->n_rdma;
1188 		riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1189 				   GFP_KERNEL);
1190 		if (!riu->sge)
1191 			goto free_mem;
1192 	}
1193 
1194 	db = ioctx->rbufs;
1195 	tsize = cmd->data_length;
1196 	riu = ioctx->rdma_ius;
1197 	sg = sg_orig;
1198 	dma_len = ib_sg_dma_len(dev, &sg[0]);
1199 	dma_addr = ib_sg_dma_address(dev, &sg[0]);
1200 
1201 	/* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1202 	for (i = 0, j = 0;
1203 	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1204 		rsize = be32_to_cpu(db->len);
1205 		sge = riu->sge;
1206 		k = 0;
1207 
1208 		while (rsize > 0 && tsize > 0) {
1209 			sge->addr = dma_addr;
1210 			sge->lkey = ch->sport->sdev->mr->lkey;
1211 
1212 			if (rsize >= dma_len) {
1213 				sge->length =
1214 					(tsize < dma_len) ? tsize : dma_len;
1215 				tsize -= dma_len;
1216 				rsize -= dma_len;
1217 
1218 				if (tsize > 0) {
1219 					++j;
1220 					if (j < count) {
1221 						sg = sg_next(sg);
1222 						dma_len = ib_sg_dma_len(
1223 								dev, sg);
1224 						dma_addr = ib_sg_dma_address(
1225 								dev, sg);
1226 					}
1227 				}
1228 			} else {
1229 				sge->length = (tsize < rsize) ? tsize : rsize;
1230 				tsize -= rsize;
1231 				dma_len -= rsize;
1232 				dma_addr += rsize;
1233 				rsize = 0;
1234 			}
1235 
1236 			++k;
1237 			if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1238 				++riu;
1239 				sge = riu->sge;
1240 				k = 0;
1241 			} else if (rsize > 0 && tsize > 0)
1242 				++sge;
1243 		}
1244 	}
1245 
1246 	return 0;
1247 
1248 free_mem:
1249 	srpt_unmap_sg_to_ib_sge(ch, ioctx);
1250 
1251 	return -ENOMEM;
1252 }
1253 
1254 /**
1255  * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1256  */
1257 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1258 {
1259 	struct srpt_send_ioctx *ioctx;
1260 	unsigned long flags;
1261 
1262 	BUG_ON(!ch);
1263 
1264 	ioctx = NULL;
1265 	spin_lock_irqsave(&ch->spinlock, flags);
1266 	if (!list_empty(&ch->free_list)) {
1267 		ioctx = list_first_entry(&ch->free_list,
1268 					 struct srpt_send_ioctx, free_list);
1269 		list_del(&ioctx->free_list);
1270 	}
1271 	spin_unlock_irqrestore(&ch->spinlock, flags);
1272 
1273 	if (!ioctx)
1274 		return ioctx;
1275 
1276 	BUG_ON(ioctx->ch != ch);
1277 	spin_lock_init(&ioctx->spinlock);
1278 	ioctx->state = SRPT_STATE_NEW;
1279 	ioctx->n_rbuf = 0;
1280 	ioctx->rbufs = NULL;
1281 	ioctx->n_rdma = 0;
1282 	ioctx->n_rdma_ius = 0;
1283 	ioctx->rdma_ius = NULL;
1284 	ioctx->mapped_sg_count = 0;
1285 	init_completion(&ioctx->tx_done);
1286 	ioctx->queue_status_only = false;
1287 	/*
1288 	 * transport_init_se_cmd() does not initialize all fields, so do it
1289 	 * here.
1290 	 */
1291 	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1292 	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1293 
1294 	return ioctx;
1295 }
1296 
1297 /**
1298  * srpt_abort_cmd() - Abort a SCSI command.
1299  * @ioctx:   I/O context associated with the SCSI command.
1300  * @context: Preferred execution context.
1301  */
1302 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1303 {
1304 	enum srpt_command_state state;
1305 	unsigned long flags;
1306 
1307 	BUG_ON(!ioctx);
1308 
1309 	/*
1310 	 * If the command is in a state where the target core is waiting for
1311 	 * the ib_srpt driver, change the state to the next state. Changing
1312 	 * the state of the command from SRPT_STATE_NEED_DATA to
1313 	 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1314 	 * function a second time.
1315 	 */
1316 
1317 	spin_lock_irqsave(&ioctx->spinlock, flags);
1318 	state = ioctx->state;
1319 	switch (state) {
1320 	case SRPT_STATE_NEED_DATA:
1321 		ioctx->state = SRPT_STATE_DATA_IN;
1322 		break;
1323 	case SRPT_STATE_DATA_IN:
1324 	case SRPT_STATE_CMD_RSP_SENT:
1325 	case SRPT_STATE_MGMT_RSP_SENT:
1326 		ioctx->state = SRPT_STATE_DONE;
1327 		break;
1328 	default:
1329 		break;
1330 	}
1331 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
1332 
1333 	if (state == SRPT_STATE_DONE) {
1334 		struct srpt_rdma_ch *ch = ioctx->ch;
1335 
1336 		BUG_ON(ch->sess == NULL);
1337 
1338 		target_put_sess_cmd(ch->sess, &ioctx->cmd);
1339 		goto out;
1340 	}
1341 
1342 	pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1343 		 ioctx->tag);
1344 
1345 	switch (state) {
1346 	case SRPT_STATE_NEW:
1347 	case SRPT_STATE_DATA_IN:
1348 	case SRPT_STATE_MGMT:
1349 		/*
1350 		 * Do nothing - defer abort processing until
1351 		 * srpt_queue_response() is invoked.
1352 		 */
1353 		WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1354 		break;
1355 	case SRPT_STATE_NEED_DATA:
1356 		/* DMA_TO_DEVICE (write) - RDMA read error. */
1357 
1358 		/* XXX(hch): this is a horrible layering violation.. */
1359 		spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1360 		ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1361 		spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1362 		break;
1363 	case SRPT_STATE_CMD_RSP_SENT:
1364 		/*
1365 		 * SRP_RSP sending failed or the SRP_RSP send completion has
1366 		 * not been received in time.
1367 		 */
1368 		srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1369 		target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1370 		break;
1371 	case SRPT_STATE_MGMT_RSP_SENT:
1372 		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1373 		target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1374 		break;
1375 	default:
1376 		WARN(1, "Unexpected command state (%d)", state);
1377 		break;
1378 	}
1379 
1380 out:
1381 	return state;
1382 }
1383 
1384 /**
1385  * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1386  */
1387 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1388 {
1389 	struct srpt_send_ioctx *ioctx;
1390 	enum srpt_command_state state;
1391 	struct se_cmd *cmd;
1392 	u32 index;
1393 
1394 	atomic_inc(&ch->sq_wr_avail);
1395 
1396 	index = idx_from_wr_id(wr_id);
1397 	ioctx = ch->ioctx_ring[index];
1398 	state = srpt_get_cmd_state(ioctx);
1399 	cmd = &ioctx->cmd;
1400 
1401 	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1402 		&& state != SRPT_STATE_MGMT_RSP_SENT
1403 		&& state != SRPT_STATE_NEED_DATA
1404 		&& state != SRPT_STATE_DONE);
1405 
1406 	/* If SRP_RSP sending failed, undo the ch->req_lim change. */
1407 	if (state == SRPT_STATE_CMD_RSP_SENT
1408 	    || state == SRPT_STATE_MGMT_RSP_SENT)
1409 		atomic_dec(&ch->req_lim);
1410 
1411 	srpt_abort_cmd(ioctx);
1412 }
1413 
1414 /**
1415  * srpt_handle_send_comp() - Process an IB send completion notification.
1416  */
1417 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1418 				  struct srpt_send_ioctx *ioctx)
1419 {
1420 	enum srpt_command_state state;
1421 
1422 	atomic_inc(&ch->sq_wr_avail);
1423 
1424 	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1425 
1426 	if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1427 		    && state != SRPT_STATE_MGMT_RSP_SENT
1428 		    && state != SRPT_STATE_DONE))
1429 		pr_debug("state = %d\n", state);
1430 
1431 	if (state != SRPT_STATE_DONE) {
1432 		srpt_unmap_sg_to_ib_sge(ch, ioctx);
1433 		transport_generic_free_cmd(&ioctx->cmd, 0);
1434 	} else {
1435 		printk(KERN_ERR "IB completion has been received too late for"
1436 		       " wr_id = %u.\n", ioctx->ioctx.index);
1437 	}
1438 }
1439 
1440 /**
1441  * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1442  *
1443  * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1444  * the data that has been transferred via IB RDMA had to be postponed until the
1445  * check_stop_free() callback.  None of this is necessary anymore and needs to
1446  * be cleaned up.
1447  */
1448 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1449 				  struct srpt_send_ioctx *ioctx,
1450 				  enum srpt_opcode opcode)
1451 {
1452 	WARN_ON(ioctx->n_rdma <= 0);
1453 	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1454 
1455 	if (opcode == SRPT_RDMA_READ_LAST) {
1456 		if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1457 						SRPT_STATE_DATA_IN))
1458 			target_execute_cmd(&ioctx->cmd);
1459 		else
1460 			printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1461 			       __LINE__, srpt_get_cmd_state(ioctx));
1462 	} else if (opcode == SRPT_RDMA_ABORT) {
1463 		ioctx->rdma_aborted = true;
1464 	} else {
1465 		WARN(true, "unexpected opcode %d\n", opcode);
1466 	}
1467 }
1468 
1469 /**
1470  * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1471  */
1472 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1473 				      struct srpt_send_ioctx *ioctx,
1474 				      enum srpt_opcode opcode)
1475 {
1476 	struct se_cmd *cmd;
1477 	enum srpt_command_state state;
1478 
1479 	cmd = &ioctx->cmd;
1480 	state = srpt_get_cmd_state(ioctx);
1481 	switch (opcode) {
1482 	case SRPT_RDMA_READ_LAST:
1483 		if (ioctx->n_rdma <= 0) {
1484 			printk(KERN_ERR "Received invalid RDMA read"
1485 			       " error completion with idx %d\n",
1486 			       ioctx->ioctx.index);
1487 			break;
1488 		}
1489 		atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1490 		if (state == SRPT_STATE_NEED_DATA)
1491 			srpt_abort_cmd(ioctx);
1492 		else
1493 			printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1494 			       __func__, __LINE__, state);
1495 		break;
1496 	case SRPT_RDMA_WRITE_LAST:
1497 		break;
1498 	default:
1499 		printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1500 		       __LINE__, opcode);
1501 		break;
1502 	}
1503 }
1504 
1505 /**
1506  * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1507  * @ch: RDMA channel through which the request has been received.
1508  * @ioctx: I/O context associated with the SRP_CMD request. The response will
1509  *   be built in the buffer ioctx->buf points at and hence this function will
1510  *   overwrite the request data.
1511  * @tag: tag of the request for which this response is being generated.
1512  * @status: value for the STATUS field of the SRP_RSP information unit.
1513  *
1514  * Returns the size in bytes of the SRP_RSP response.
1515  *
1516  * An SRP_RSP response contains a SCSI status or service response. See also
1517  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1518  * response. See also SPC-2 for more information about sense data.
1519  */
1520 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1521 			      struct srpt_send_ioctx *ioctx, u64 tag,
1522 			      int status)
1523 {
1524 	struct srp_rsp *srp_rsp;
1525 	const u8 *sense_data;
1526 	int sense_data_len, max_sense_len;
1527 
1528 	/*
1529 	 * The lowest bit of all SAM-3 status codes is zero (see also
1530 	 * paragraph 5.3 in SAM-3).
1531 	 */
1532 	WARN_ON(status & 1);
1533 
1534 	srp_rsp = ioctx->ioctx.buf;
1535 	BUG_ON(!srp_rsp);
1536 
1537 	sense_data = ioctx->sense_data;
1538 	sense_data_len = ioctx->cmd.scsi_sense_length;
1539 	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1540 
1541 	memset(srp_rsp, 0, sizeof *srp_rsp);
1542 	srp_rsp->opcode = SRP_RSP;
1543 	srp_rsp->req_lim_delta =
1544 		__constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1545 	srp_rsp->tag = tag;
1546 	srp_rsp->status = status;
1547 
1548 	if (sense_data_len) {
1549 		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1550 		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1551 		if (sense_data_len > max_sense_len) {
1552 			printk(KERN_WARNING "truncated sense data from %d to %d"
1553 			       " bytes\n", sense_data_len, max_sense_len);
1554 			sense_data_len = max_sense_len;
1555 		}
1556 
1557 		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1558 		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1559 		memcpy(srp_rsp + 1, sense_data, sense_data_len);
1560 	}
1561 
1562 	return sizeof(*srp_rsp) + sense_data_len;
1563 }
1564 
1565 /**
1566  * srpt_build_tskmgmt_rsp() - Build a task management response.
1567  * @ch:       RDMA channel through which the request has been received.
1568  * @ioctx:    I/O context in which the SRP_RSP response will be built.
1569  * @rsp_code: RSP_CODE that will be stored in the response.
1570  * @tag:      Tag of the request for which this response is being generated.
1571  *
1572  * Returns the size in bytes of the SRP_RSP response.
1573  *
1574  * An SRP_RSP response contains a SCSI status or service response. See also
1575  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1576  * response.
1577  */
1578 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1579 				  struct srpt_send_ioctx *ioctx,
1580 				  u8 rsp_code, u64 tag)
1581 {
1582 	struct srp_rsp *srp_rsp;
1583 	int resp_data_len;
1584 	int resp_len;
1585 
1586 	resp_data_len = 4;
1587 	resp_len = sizeof(*srp_rsp) + resp_data_len;
1588 
1589 	srp_rsp = ioctx->ioctx.buf;
1590 	BUG_ON(!srp_rsp);
1591 	memset(srp_rsp, 0, sizeof *srp_rsp);
1592 
1593 	srp_rsp->opcode = SRP_RSP;
1594 	srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1595 				    + atomic_xchg(&ch->req_lim_delta, 0));
1596 	srp_rsp->tag = tag;
1597 
1598 	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1599 	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1600 	srp_rsp->data[3] = rsp_code;
1601 
1602 	return resp_len;
1603 }
1604 
1605 #define NO_SUCH_LUN ((uint64_t)-1LL)
1606 
1607 /*
1608  * SCSI LUN addressing method. See also SAM-2 and the section about
1609  * eight byte LUNs.
1610  */
1611 enum scsi_lun_addr_method {
1612 	SCSI_LUN_ADDR_METHOD_PERIPHERAL   = 0,
1613 	SCSI_LUN_ADDR_METHOD_FLAT         = 1,
1614 	SCSI_LUN_ADDR_METHOD_LUN          = 2,
1615 	SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1616 };
1617 
1618 /*
1619  * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1620  *
1621  * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1622  * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1623  * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1624  */
1625 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1626 {
1627 	uint64_t res = NO_SUCH_LUN;
1628 	int addressing_method;
1629 
1630 	if (unlikely(len < 2)) {
1631 		printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1632 		       "more", len);
1633 		goto out;
1634 	}
1635 
1636 	switch (len) {
1637 	case 8:
1638 		if ((*((__be64 *)lun) &
1639 		     __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1640 			goto out_err;
1641 		break;
1642 	case 4:
1643 		if (*((__be16 *)&lun[2]) != 0)
1644 			goto out_err;
1645 		break;
1646 	case 6:
1647 		if (*((__be32 *)&lun[2]) != 0)
1648 			goto out_err;
1649 		break;
1650 	case 2:
1651 		break;
1652 	default:
1653 		goto out_err;
1654 	}
1655 
1656 	addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1657 	switch (addressing_method) {
1658 	case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1659 	case SCSI_LUN_ADDR_METHOD_FLAT:
1660 	case SCSI_LUN_ADDR_METHOD_LUN:
1661 		res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1662 		break;
1663 
1664 	case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1665 	default:
1666 		printk(KERN_ERR "Unimplemented LUN addressing method %u",
1667 		       addressing_method);
1668 		break;
1669 	}
1670 
1671 out:
1672 	return res;
1673 
1674 out_err:
1675 	printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1676 	       " implemented");
1677 	goto out;
1678 }
1679 
1680 static int srpt_check_stop_free(struct se_cmd *cmd)
1681 {
1682 	struct srpt_send_ioctx *ioctx = container_of(cmd,
1683 				struct srpt_send_ioctx, cmd);
1684 
1685 	return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1686 }
1687 
1688 /**
1689  * srpt_handle_cmd() - Process SRP_CMD.
1690  */
1691 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1692 			   struct srpt_recv_ioctx *recv_ioctx,
1693 			   struct srpt_send_ioctx *send_ioctx)
1694 {
1695 	struct se_cmd *cmd;
1696 	struct srp_cmd *srp_cmd;
1697 	uint64_t unpacked_lun;
1698 	u64 data_len;
1699 	enum dma_data_direction dir;
1700 	sense_reason_t ret;
1701 	int rc;
1702 
1703 	BUG_ON(!send_ioctx);
1704 
1705 	srp_cmd = recv_ioctx->ioctx.buf;
1706 	cmd = &send_ioctx->cmd;
1707 	send_ioctx->tag = srp_cmd->tag;
1708 
1709 	switch (srp_cmd->task_attr) {
1710 	case SRP_CMD_SIMPLE_Q:
1711 		cmd->sam_task_attr = MSG_SIMPLE_TAG;
1712 		break;
1713 	case SRP_CMD_ORDERED_Q:
1714 	default:
1715 		cmd->sam_task_attr = MSG_ORDERED_TAG;
1716 		break;
1717 	case SRP_CMD_HEAD_OF_Q:
1718 		cmd->sam_task_attr = MSG_HEAD_TAG;
1719 		break;
1720 	case SRP_CMD_ACA:
1721 		cmd->sam_task_attr = MSG_ACA_TAG;
1722 		break;
1723 	}
1724 
1725 	if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1726 		printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1727 		       srp_cmd->tag);
1728 		ret = TCM_INVALID_CDB_FIELD;
1729 		goto send_sense;
1730 	}
1731 
1732 	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1733 				       sizeof(srp_cmd->lun));
1734 	rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1735 			&send_ioctx->sense_data[0], unpacked_lun, data_len,
1736 			MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1737 	if (rc != 0) {
1738 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1739 		goto send_sense;
1740 	}
1741 	return 0;
1742 
1743 send_sense:
1744 	transport_send_check_condition_and_sense(cmd, ret, 0);
1745 	return -1;
1746 }
1747 
1748 /**
1749  * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1750  * @ch: RDMA channel of the task management request.
1751  * @fn: Task management function to perform.
1752  * @req_tag: Tag of the SRP task management request.
1753  * @mgmt_ioctx: I/O context of the task management request.
1754  *
1755  * Returns zero if the target core will process the task management
1756  * request asynchronously.
1757  *
1758  * Note: It is assumed that the initiator serializes tag-based task management
1759  * requests.
1760  */
1761 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1762 {
1763 	struct srpt_device *sdev;
1764 	struct srpt_rdma_ch *ch;
1765 	struct srpt_send_ioctx *target;
1766 	int ret, i;
1767 
1768 	ret = -EINVAL;
1769 	ch = ioctx->ch;
1770 	BUG_ON(!ch);
1771 	BUG_ON(!ch->sport);
1772 	sdev = ch->sport->sdev;
1773 	BUG_ON(!sdev);
1774 	spin_lock_irq(&sdev->spinlock);
1775 	for (i = 0; i < ch->rq_size; ++i) {
1776 		target = ch->ioctx_ring[i];
1777 		if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1778 		    target->tag == tag &&
1779 		    srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1780 			ret = 0;
1781 			/* now let the target core abort &target->cmd; */
1782 			break;
1783 		}
1784 	}
1785 	spin_unlock_irq(&sdev->spinlock);
1786 	return ret;
1787 }
1788 
1789 static int srp_tmr_to_tcm(int fn)
1790 {
1791 	switch (fn) {
1792 	case SRP_TSK_ABORT_TASK:
1793 		return TMR_ABORT_TASK;
1794 	case SRP_TSK_ABORT_TASK_SET:
1795 		return TMR_ABORT_TASK_SET;
1796 	case SRP_TSK_CLEAR_TASK_SET:
1797 		return TMR_CLEAR_TASK_SET;
1798 	case SRP_TSK_LUN_RESET:
1799 		return TMR_LUN_RESET;
1800 	case SRP_TSK_CLEAR_ACA:
1801 		return TMR_CLEAR_ACA;
1802 	default:
1803 		return -1;
1804 	}
1805 }
1806 
1807 /**
1808  * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1809  *
1810  * Returns 0 if and only if the request will be processed by the target core.
1811  *
1812  * For more information about SRP_TSK_MGMT information units, see also section
1813  * 6.7 in the SRP r16a document.
1814  */
1815 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1816 				 struct srpt_recv_ioctx *recv_ioctx,
1817 				 struct srpt_send_ioctx *send_ioctx)
1818 {
1819 	struct srp_tsk_mgmt *srp_tsk;
1820 	struct se_cmd *cmd;
1821 	struct se_session *sess = ch->sess;
1822 	uint64_t unpacked_lun;
1823 	uint32_t tag = 0;
1824 	int tcm_tmr;
1825 	int rc;
1826 
1827 	BUG_ON(!send_ioctx);
1828 
1829 	srp_tsk = recv_ioctx->ioctx.buf;
1830 	cmd = &send_ioctx->cmd;
1831 
1832 	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1833 		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1834 		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1835 
1836 	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1837 	send_ioctx->tag = srp_tsk->tag;
1838 	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1839 	if (tcm_tmr < 0) {
1840 		send_ioctx->cmd.se_tmr_req->response =
1841 			TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1842 		goto fail;
1843 	}
1844 	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1845 				       sizeof(srp_tsk->lun));
1846 
1847 	if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
1848 		rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1849 		if (rc < 0) {
1850 			send_ioctx->cmd.se_tmr_req->response =
1851 					TMR_TASK_DOES_NOT_EXIST;
1852 			goto fail;
1853 		}
1854 		tag = srp_tsk->task_tag;
1855 	}
1856 	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1857 				srp_tsk, tcm_tmr, GFP_KERNEL, tag,
1858 				TARGET_SCF_ACK_KREF);
1859 	if (rc != 0) {
1860 		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1861 		goto fail;
1862 	}
1863 	return;
1864 fail:
1865 	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1866 }
1867 
1868 /**
1869  * srpt_handle_new_iu() - Process a newly received information unit.
1870  * @ch:    RDMA channel through which the information unit has been received.
1871  * @ioctx: SRPT I/O context associated with the information unit.
1872  */
1873 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1874 			       struct srpt_recv_ioctx *recv_ioctx,
1875 			       struct srpt_send_ioctx *send_ioctx)
1876 {
1877 	struct srp_cmd *srp_cmd;
1878 	enum rdma_ch_state ch_state;
1879 
1880 	BUG_ON(!ch);
1881 	BUG_ON(!recv_ioctx);
1882 
1883 	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1884 				   recv_ioctx->ioctx.dma, srp_max_req_size,
1885 				   DMA_FROM_DEVICE);
1886 
1887 	ch_state = srpt_get_ch_state(ch);
1888 	if (unlikely(ch_state == CH_CONNECTING)) {
1889 		list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1890 		goto out;
1891 	}
1892 
1893 	if (unlikely(ch_state != CH_LIVE))
1894 		goto out;
1895 
1896 	srp_cmd = recv_ioctx->ioctx.buf;
1897 	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1898 		if (!send_ioctx)
1899 			send_ioctx = srpt_get_send_ioctx(ch);
1900 		if (unlikely(!send_ioctx)) {
1901 			list_add_tail(&recv_ioctx->wait_list,
1902 				      &ch->cmd_wait_list);
1903 			goto out;
1904 		}
1905 	}
1906 
1907 	switch (srp_cmd->opcode) {
1908 	case SRP_CMD:
1909 		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1910 		break;
1911 	case SRP_TSK_MGMT:
1912 		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1913 		break;
1914 	case SRP_I_LOGOUT:
1915 		printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1916 		break;
1917 	case SRP_CRED_RSP:
1918 		pr_debug("received SRP_CRED_RSP\n");
1919 		break;
1920 	case SRP_AER_RSP:
1921 		pr_debug("received SRP_AER_RSP\n");
1922 		break;
1923 	case SRP_RSP:
1924 		printk(KERN_ERR "Received SRP_RSP\n");
1925 		break;
1926 	default:
1927 		printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1928 		       srp_cmd->opcode);
1929 		break;
1930 	}
1931 
1932 	srpt_post_recv(ch->sport->sdev, recv_ioctx);
1933 out:
1934 	return;
1935 }
1936 
1937 static void srpt_process_rcv_completion(struct ib_cq *cq,
1938 					struct srpt_rdma_ch *ch,
1939 					struct ib_wc *wc)
1940 {
1941 	struct srpt_device *sdev = ch->sport->sdev;
1942 	struct srpt_recv_ioctx *ioctx;
1943 	u32 index;
1944 
1945 	index = idx_from_wr_id(wc->wr_id);
1946 	if (wc->status == IB_WC_SUCCESS) {
1947 		int req_lim;
1948 
1949 		req_lim = atomic_dec_return(&ch->req_lim);
1950 		if (unlikely(req_lim < 0))
1951 			printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
1952 		ioctx = sdev->ioctx_ring[index];
1953 		srpt_handle_new_iu(ch, ioctx, NULL);
1954 	} else {
1955 		printk(KERN_INFO "receiving failed for idx %u with status %d\n",
1956 		       index, wc->status);
1957 	}
1958 }
1959 
1960 /**
1961  * srpt_process_send_completion() - Process an IB send completion.
1962  *
1963  * Note: Although this has not yet been observed during tests, at least in
1964  * theory it is possible that the srpt_get_send_ioctx() call invoked by
1965  * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1966  * value in each response is set to one, and it is possible that this response
1967  * makes the initiator send a new request before the send completion for that
1968  * response has been processed. This could e.g. happen if the call to
1969  * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1970  * if IB retransmission causes generation of the send completion to be
1971  * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1972  * are queued on cmd_wait_list. The code below processes these delayed
1973  * requests one at a time.
1974  */
1975 static void srpt_process_send_completion(struct ib_cq *cq,
1976 					 struct srpt_rdma_ch *ch,
1977 					 struct ib_wc *wc)
1978 {
1979 	struct srpt_send_ioctx *send_ioctx;
1980 	uint32_t index;
1981 	enum srpt_opcode opcode;
1982 
1983 	index = idx_from_wr_id(wc->wr_id);
1984 	opcode = opcode_from_wr_id(wc->wr_id);
1985 	send_ioctx = ch->ioctx_ring[index];
1986 	if (wc->status == IB_WC_SUCCESS) {
1987 		if (opcode == SRPT_SEND)
1988 			srpt_handle_send_comp(ch, send_ioctx);
1989 		else {
1990 			WARN_ON(opcode != SRPT_RDMA_ABORT &&
1991 				wc->opcode != IB_WC_RDMA_READ);
1992 			srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1993 		}
1994 	} else {
1995 		if (opcode == SRPT_SEND) {
1996 			printk(KERN_INFO "sending response for idx %u failed"
1997 			       " with status %d\n", index, wc->status);
1998 			srpt_handle_send_err_comp(ch, wc->wr_id);
1999 		} else if (opcode != SRPT_RDMA_MID) {
2000 			printk(KERN_INFO "RDMA t %d for idx %u failed with"
2001 				" status %d", opcode, index, wc->status);
2002 			srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2003 		}
2004 	}
2005 
2006 	while (unlikely(opcode == SRPT_SEND
2007 			&& !list_empty(&ch->cmd_wait_list)
2008 			&& srpt_get_ch_state(ch) == CH_LIVE
2009 			&& (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2010 		struct srpt_recv_ioctx *recv_ioctx;
2011 
2012 		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2013 					      struct srpt_recv_ioctx,
2014 					      wait_list);
2015 		list_del(&recv_ioctx->wait_list);
2016 		srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2017 	}
2018 }
2019 
2020 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2021 {
2022 	struct ib_wc *const wc = ch->wc;
2023 	int i, n;
2024 
2025 	WARN_ON(cq != ch->cq);
2026 
2027 	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2028 	while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2029 		for (i = 0; i < n; i++) {
2030 			if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2031 				srpt_process_rcv_completion(cq, ch, &wc[i]);
2032 			else
2033 				srpt_process_send_completion(cq, ch, &wc[i]);
2034 		}
2035 	}
2036 }
2037 
2038 /**
2039  * srpt_completion() - IB completion queue callback function.
2040  *
2041  * Notes:
2042  * - It is guaranteed that a completion handler will never be invoked
2043  *   concurrently on two different CPUs for the same completion queue. See also
2044  *   Documentation/infiniband/core_locking.txt and the implementation of
2045  *   handle_edge_irq() in kernel/irq/chip.c.
2046  * - When threaded IRQs are enabled, completion handlers are invoked in thread
2047  *   context instead of interrupt context.
2048  */
2049 static void srpt_completion(struct ib_cq *cq, void *ctx)
2050 {
2051 	struct srpt_rdma_ch *ch = ctx;
2052 
2053 	wake_up_interruptible(&ch->wait_queue);
2054 }
2055 
2056 static int srpt_compl_thread(void *arg)
2057 {
2058 	struct srpt_rdma_ch *ch;
2059 
2060 	/* Hibernation / freezing of the SRPT kernel thread is not supported. */
2061 	current->flags |= PF_NOFREEZE;
2062 
2063 	ch = arg;
2064 	BUG_ON(!ch);
2065 	printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2066 	       ch->sess_name, ch->thread->comm, current->pid);
2067 	while (!kthread_should_stop()) {
2068 		wait_event_interruptible(ch->wait_queue,
2069 			(srpt_process_completion(ch->cq, ch),
2070 			 kthread_should_stop()));
2071 	}
2072 	printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2073 	       ch->sess_name, ch->thread->comm, current->pid);
2074 	return 0;
2075 }
2076 
2077 /**
2078  * srpt_create_ch_ib() - Create receive and send completion queues.
2079  */
2080 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2081 {
2082 	struct ib_qp_init_attr *qp_init;
2083 	struct srpt_port *sport = ch->sport;
2084 	struct srpt_device *sdev = sport->sdev;
2085 	u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2086 	int ret;
2087 
2088 	WARN_ON(ch->rq_size < 1);
2089 
2090 	ret = -ENOMEM;
2091 	qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2092 	if (!qp_init)
2093 		goto out;
2094 
2095 	ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2096 			      ch->rq_size + srp_sq_size, 0);
2097 	if (IS_ERR(ch->cq)) {
2098 		ret = PTR_ERR(ch->cq);
2099 		printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2100 		       ch->rq_size + srp_sq_size, ret);
2101 		goto out;
2102 	}
2103 
2104 	qp_init->qp_context = (void *)ch;
2105 	qp_init->event_handler
2106 		= (void(*)(struct ib_event *, void*))srpt_qp_event;
2107 	qp_init->send_cq = ch->cq;
2108 	qp_init->recv_cq = ch->cq;
2109 	qp_init->srq = sdev->srq;
2110 	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2111 	qp_init->qp_type = IB_QPT_RC;
2112 	qp_init->cap.max_send_wr = srp_sq_size;
2113 	qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2114 
2115 	ch->qp = ib_create_qp(sdev->pd, qp_init);
2116 	if (IS_ERR(ch->qp)) {
2117 		ret = PTR_ERR(ch->qp);
2118 		printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2119 		goto err_destroy_cq;
2120 	}
2121 
2122 	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2123 
2124 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2125 		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2126 		 qp_init->cap.max_send_wr, ch->cm_id);
2127 
2128 	ret = srpt_init_ch_qp(ch, ch->qp);
2129 	if (ret)
2130 		goto err_destroy_qp;
2131 
2132 	init_waitqueue_head(&ch->wait_queue);
2133 
2134 	pr_debug("creating thread for session %s\n", ch->sess_name);
2135 
2136 	ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2137 	if (IS_ERR(ch->thread)) {
2138 		printk(KERN_ERR "failed to create kernel thread %ld\n",
2139 		       PTR_ERR(ch->thread));
2140 		ch->thread = NULL;
2141 		goto err_destroy_qp;
2142 	}
2143 
2144 out:
2145 	kfree(qp_init);
2146 	return ret;
2147 
2148 err_destroy_qp:
2149 	ib_destroy_qp(ch->qp);
2150 err_destroy_cq:
2151 	ib_destroy_cq(ch->cq);
2152 	goto out;
2153 }
2154 
2155 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2156 {
2157 	if (ch->thread)
2158 		kthread_stop(ch->thread);
2159 
2160 	ib_destroy_qp(ch->qp);
2161 	ib_destroy_cq(ch->cq);
2162 }
2163 
2164 /**
2165  * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2166  *
2167  * Reset the QP and make sure all resources associated with the channel will
2168  * be deallocated at an appropriate time.
2169  *
2170  * Note: The caller must hold ch->sport->sdev->spinlock.
2171  */
2172 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2173 {
2174 	struct srpt_device *sdev;
2175 	enum rdma_ch_state prev_state;
2176 	unsigned long flags;
2177 
2178 	sdev = ch->sport->sdev;
2179 
2180 	spin_lock_irqsave(&ch->spinlock, flags);
2181 	prev_state = ch->state;
2182 	switch (prev_state) {
2183 	case CH_CONNECTING:
2184 	case CH_LIVE:
2185 		ch->state = CH_DISCONNECTING;
2186 		break;
2187 	default:
2188 		break;
2189 	}
2190 	spin_unlock_irqrestore(&ch->spinlock, flags);
2191 
2192 	switch (prev_state) {
2193 	case CH_CONNECTING:
2194 		ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2195 			       NULL, 0);
2196 		/* fall through */
2197 	case CH_LIVE:
2198 		if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2199 			printk(KERN_ERR "sending CM DREQ failed.\n");
2200 		break;
2201 	case CH_DISCONNECTING:
2202 		break;
2203 	case CH_DRAINING:
2204 	case CH_RELEASING:
2205 		break;
2206 	}
2207 }
2208 
2209 /**
2210  * srpt_close_ch() - Close an RDMA channel.
2211  */
2212 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2213 {
2214 	struct srpt_device *sdev;
2215 
2216 	sdev = ch->sport->sdev;
2217 	spin_lock_irq(&sdev->spinlock);
2218 	__srpt_close_ch(ch);
2219 	spin_unlock_irq(&sdev->spinlock);
2220 }
2221 
2222 /**
2223  * srpt_shutdown_session() - Whether or not a session may be shut down.
2224  */
2225 static int srpt_shutdown_session(struct se_session *se_sess)
2226 {
2227 	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2228 	unsigned long flags;
2229 
2230 	spin_lock_irqsave(&ch->spinlock, flags);
2231 	if (ch->in_shutdown) {
2232 		spin_unlock_irqrestore(&ch->spinlock, flags);
2233 		return true;
2234 	}
2235 
2236 	ch->in_shutdown = true;
2237 	target_sess_cmd_list_set_waiting(se_sess);
2238 	spin_unlock_irqrestore(&ch->spinlock, flags);
2239 
2240 	return true;
2241 }
2242 
2243 /**
2244  * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2245  * @cm_id: Pointer to the CM ID of the channel to be drained.
2246  *
2247  * Note: Must be called from inside srpt_cm_handler to avoid a race between
2248  * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2249  * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2250  * waits until all target sessions for the associated IB device have been
2251  * unregistered and target session registration involves a call to
2252  * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2253  * this function has finished).
2254  */
2255 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2256 {
2257 	struct srpt_device *sdev;
2258 	struct srpt_rdma_ch *ch;
2259 	int ret;
2260 	bool do_reset = false;
2261 
2262 	WARN_ON_ONCE(irqs_disabled());
2263 
2264 	sdev = cm_id->context;
2265 	BUG_ON(!sdev);
2266 	spin_lock_irq(&sdev->spinlock);
2267 	list_for_each_entry(ch, &sdev->rch_list, list) {
2268 		if (ch->cm_id == cm_id) {
2269 			do_reset = srpt_test_and_set_ch_state(ch,
2270 					CH_CONNECTING, CH_DRAINING) ||
2271 				   srpt_test_and_set_ch_state(ch,
2272 					CH_LIVE, CH_DRAINING) ||
2273 				   srpt_test_and_set_ch_state(ch,
2274 					CH_DISCONNECTING, CH_DRAINING);
2275 			break;
2276 		}
2277 	}
2278 	spin_unlock_irq(&sdev->spinlock);
2279 
2280 	if (do_reset) {
2281 		if (ch->sess)
2282 			srpt_shutdown_session(ch->sess);
2283 
2284 		ret = srpt_ch_qp_err(ch);
2285 		if (ret < 0)
2286 			printk(KERN_ERR "Setting queue pair in error state"
2287 			       " failed: %d\n", ret);
2288 	}
2289 }
2290 
2291 /**
2292  * srpt_find_channel() - Look up an RDMA channel.
2293  * @cm_id: Pointer to the CM ID of the channel to be looked up.
2294  *
2295  * Return NULL if no matching RDMA channel has been found.
2296  */
2297 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2298 					      struct ib_cm_id *cm_id)
2299 {
2300 	struct srpt_rdma_ch *ch;
2301 	bool found;
2302 
2303 	WARN_ON_ONCE(irqs_disabled());
2304 	BUG_ON(!sdev);
2305 
2306 	found = false;
2307 	spin_lock_irq(&sdev->spinlock);
2308 	list_for_each_entry(ch, &sdev->rch_list, list) {
2309 		if (ch->cm_id == cm_id) {
2310 			found = true;
2311 			break;
2312 		}
2313 	}
2314 	spin_unlock_irq(&sdev->spinlock);
2315 
2316 	return found ? ch : NULL;
2317 }
2318 
2319 /**
2320  * srpt_release_channel() - Release channel resources.
2321  *
2322  * Schedules the actual release because:
2323  * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2324  *   trigger a deadlock.
2325  * - It is not safe to call TCM transport_* functions from interrupt context.
2326  */
2327 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2328 {
2329 	schedule_work(&ch->release_work);
2330 }
2331 
2332 static void srpt_release_channel_work(struct work_struct *w)
2333 {
2334 	struct srpt_rdma_ch *ch;
2335 	struct srpt_device *sdev;
2336 	struct se_session *se_sess;
2337 
2338 	ch = container_of(w, struct srpt_rdma_ch, release_work);
2339 	pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2340 		 ch->release_done);
2341 
2342 	sdev = ch->sport->sdev;
2343 	BUG_ON(!sdev);
2344 
2345 	se_sess = ch->sess;
2346 	BUG_ON(!se_sess);
2347 
2348 	target_wait_for_sess_cmds(se_sess);
2349 
2350 	transport_deregister_session_configfs(se_sess);
2351 	transport_deregister_session(se_sess);
2352 	ch->sess = NULL;
2353 
2354 	ib_destroy_cm_id(ch->cm_id);
2355 
2356 	srpt_destroy_ch_ib(ch);
2357 
2358 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2359 			     ch->sport->sdev, ch->rq_size,
2360 			     ch->rsp_size, DMA_TO_DEVICE);
2361 
2362 	spin_lock_irq(&sdev->spinlock);
2363 	list_del(&ch->list);
2364 	spin_unlock_irq(&sdev->spinlock);
2365 
2366 	if (ch->release_done)
2367 		complete(ch->release_done);
2368 
2369 	wake_up(&sdev->ch_releaseQ);
2370 
2371 	kfree(ch);
2372 }
2373 
2374 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2375 					       u8 i_port_id[16])
2376 {
2377 	struct srpt_node_acl *nacl;
2378 
2379 	list_for_each_entry(nacl, &sport->port_acl_list, list)
2380 		if (memcmp(nacl->i_port_id, i_port_id,
2381 			   sizeof(nacl->i_port_id)) == 0)
2382 			return nacl;
2383 
2384 	return NULL;
2385 }
2386 
2387 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2388 					     u8 i_port_id[16])
2389 {
2390 	struct srpt_node_acl *nacl;
2391 
2392 	spin_lock_irq(&sport->port_acl_lock);
2393 	nacl = __srpt_lookup_acl(sport, i_port_id);
2394 	spin_unlock_irq(&sport->port_acl_lock);
2395 
2396 	return nacl;
2397 }
2398 
2399 /**
2400  * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2401  *
2402  * Ownership of the cm_id is transferred to the target session if this
2403  * functions returns zero. Otherwise the caller remains the owner of cm_id.
2404  */
2405 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2406 			    struct ib_cm_req_event_param *param,
2407 			    void *private_data)
2408 {
2409 	struct srpt_device *sdev = cm_id->context;
2410 	struct srpt_port *sport = &sdev->port[param->port - 1];
2411 	struct srp_login_req *req;
2412 	struct srp_login_rsp *rsp;
2413 	struct srp_login_rej *rej;
2414 	struct ib_cm_rep_param *rep_param;
2415 	struct srpt_rdma_ch *ch, *tmp_ch;
2416 	struct srpt_node_acl *nacl;
2417 	u32 it_iu_len;
2418 	int i;
2419 	int ret = 0;
2420 
2421 	WARN_ON_ONCE(irqs_disabled());
2422 
2423 	if (WARN_ON(!sdev || !private_data))
2424 		return -EINVAL;
2425 
2426 	req = (struct srp_login_req *)private_data;
2427 
2428 	it_iu_len = be32_to_cpu(req->req_it_iu_len);
2429 
2430 	printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2431 	       " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2432 	       " (guid=0x%llx:0x%llx)\n",
2433 	       be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2434 	       be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2435 	       be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2436 	       be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2437 	       it_iu_len,
2438 	       param->port,
2439 	       be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2440 	       be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2441 
2442 	rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2443 	rej = kzalloc(sizeof *rej, GFP_KERNEL);
2444 	rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2445 
2446 	if (!rsp || !rej || !rep_param) {
2447 		ret = -ENOMEM;
2448 		goto out;
2449 	}
2450 
2451 	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2452 		rej->reason = __constant_cpu_to_be32(
2453 				SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2454 		ret = -EINVAL;
2455 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2456 		       " length (%d bytes) is out of range (%d .. %d)\n",
2457 		       it_iu_len, 64, srp_max_req_size);
2458 		goto reject;
2459 	}
2460 
2461 	if (!sport->enabled) {
2462 		rej->reason = __constant_cpu_to_be32(
2463 			     SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2464 		ret = -EINVAL;
2465 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2466 		       " has not yet been enabled\n");
2467 		goto reject;
2468 	}
2469 
2470 	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2471 		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2472 
2473 		spin_lock_irq(&sdev->spinlock);
2474 
2475 		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2476 			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2477 			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
2478 			    && param->port == ch->sport->port
2479 			    && param->listen_id == ch->sport->sdev->cm_id
2480 			    && ch->cm_id) {
2481 				enum rdma_ch_state ch_state;
2482 
2483 				ch_state = srpt_get_ch_state(ch);
2484 				if (ch_state != CH_CONNECTING
2485 				    && ch_state != CH_LIVE)
2486 					continue;
2487 
2488 				/* found an existing channel */
2489 				pr_debug("Found existing channel %s"
2490 					 " cm_id= %p state= %d\n",
2491 					 ch->sess_name, ch->cm_id, ch_state);
2492 
2493 				__srpt_close_ch(ch);
2494 
2495 				rsp->rsp_flags =
2496 					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2497 			}
2498 		}
2499 
2500 		spin_unlock_irq(&sdev->spinlock);
2501 
2502 	} else
2503 		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2504 
2505 	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2506 	    || *(__be64 *)(req->target_port_id + 8) !=
2507 	       cpu_to_be64(srpt_service_guid)) {
2508 		rej->reason = __constant_cpu_to_be32(
2509 				SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2510 		ret = -ENOMEM;
2511 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2512 		       " has an invalid target port identifier.\n");
2513 		goto reject;
2514 	}
2515 
2516 	ch = kzalloc(sizeof *ch, GFP_KERNEL);
2517 	if (!ch) {
2518 		rej->reason = __constant_cpu_to_be32(
2519 					SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2520 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2521 		ret = -ENOMEM;
2522 		goto reject;
2523 	}
2524 
2525 	INIT_WORK(&ch->release_work, srpt_release_channel_work);
2526 	memcpy(ch->i_port_id, req->initiator_port_id, 16);
2527 	memcpy(ch->t_port_id, req->target_port_id, 16);
2528 	ch->sport = &sdev->port[param->port - 1];
2529 	ch->cm_id = cm_id;
2530 	/*
2531 	 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2532 	 * for the SRP protocol to the command queue size.
2533 	 */
2534 	ch->rq_size = SRPT_RQ_SIZE;
2535 	spin_lock_init(&ch->spinlock);
2536 	ch->state = CH_CONNECTING;
2537 	INIT_LIST_HEAD(&ch->cmd_wait_list);
2538 	ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2539 
2540 	ch->ioctx_ring = (struct srpt_send_ioctx **)
2541 		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2542 				      sizeof(*ch->ioctx_ring[0]),
2543 				      ch->rsp_size, DMA_TO_DEVICE);
2544 	if (!ch->ioctx_ring)
2545 		goto free_ch;
2546 
2547 	INIT_LIST_HEAD(&ch->free_list);
2548 	for (i = 0; i < ch->rq_size; i++) {
2549 		ch->ioctx_ring[i]->ch = ch;
2550 		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2551 	}
2552 
2553 	ret = srpt_create_ch_ib(ch);
2554 	if (ret) {
2555 		rej->reason = __constant_cpu_to_be32(
2556 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2557 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2558 		       " a new RDMA channel failed.\n");
2559 		goto free_ring;
2560 	}
2561 
2562 	ret = srpt_ch_qp_rtr(ch, ch->qp);
2563 	if (ret) {
2564 		rej->reason = __constant_cpu_to_be32(
2565 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2566 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2567 		       " RTR failed (error code = %d)\n", ret);
2568 		goto destroy_ib;
2569 	}
2570 	/*
2571 	 * Use the initator port identifier as the session name.
2572 	 */
2573 	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2574 			be64_to_cpu(*(__be64 *)ch->i_port_id),
2575 			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2576 
2577 	pr_debug("registering session %s\n", ch->sess_name);
2578 
2579 	nacl = srpt_lookup_acl(sport, ch->i_port_id);
2580 	if (!nacl) {
2581 		printk(KERN_INFO "Rejected login because no ACL has been"
2582 		       " configured yet for initiator %s.\n", ch->sess_name);
2583 		rej->reason = __constant_cpu_to_be32(
2584 				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2585 		goto destroy_ib;
2586 	}
2587 
2588 	ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2589 	if (IS_ERR(ch->sess)) {
2590 		rej->reason = __constant_cpu_to_be32(
2591 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2592 		pr_debug("Failed to create session\n");
2593 		goto deregister_session;
2594 	}
2595 	ch->sess->se_node_acl = &nacl->nacl;
2596 	transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2597 
2598 	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2599 		 ch->sess_name, ch->cm_id);
2600 
2601 	/* create srp_login_response */
2602 	rsp->opcode = SRP_LOGIN_RSP;
2603 	rsp->tag = req->tag;
2604 	rsp->max_it_iu_len = req->req_it_iu_len;
2605 	rsp->max_ti_iu_len = req->req_it_iu_len;
2606 	ch->max_ti_iu_len = it_iu_len;
2607 	rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2608 					      | SRP_BUF_FORMAT_INDIRECT);
2609 	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2610 	atomic_set(&ch->req_lim, ch->rq_size);
2611 	atomic_set(&ch->req_lim_delta, 0);
2612 
2613 	/* create cm reply */
2614 	rep_param->qp_num = ch->qp->qp_num;
2615 	rep_param->private_data = (void *)rsp;
2616 	rep_param->private_data_len = sizeof *rsp;
2617 	rep_param->rnr_retry_count = 7;
2618 	rep_param->flow_control = 1;
2619 	rep_param->failover_accepted = 0;
2620 	rep_param->srq = 1;
2621 	rep_param->responder_resources = 4;
2622 	rep_param->initiator_depth = 4;
2623 
2624 	ret = ib_send_cm_rep(cm_id, rep_param);
2625 	if (ret) {
2626 		printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2627 		       " (error code = %d)\n", ret);
2628 		goto release_channel;
2629 	}
2630 
2631 	spin_lock_irq(&sdev->spinlock);
2632 	list_add_tail(&ch->list, &sdev->rch_list);
2633 	spin_unlock_irq(&sdev->spinlock);
2634 
2635 	goto out;
2636 
2637 release_channel:
2638 	srpt_set_ch_state(ch, CH_RELEASING);
2639 	transport_deregister_session_configfs(ch->sess);
2640 
2641 deregister_session:
2642 	transport_deregister_session(ch->sess);
2643 	ch->sess = NULL;
2644 
2645 destroy_ib:
2646 	srpt_destroy_ch_ib(ch);
2647 
2648 free_ring:
2649 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2650 			     ch->sport->sdev, ch->rq_size,
2651 			     ch->rsp_size, DMA_TO_DEVICE);
2652 free_ch:
2653 	kfree(ch);
2654 
2655 reject:
2656 	rej->opcode = SRP_LOGIN_REJ;
2657 	rej->tag = req->tag;
2658 	rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2659 					      | SRP_BUF_FORMAT_INDIRECT);
2660 
2661 	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2662 			     (void *)rej, sizeof *rej);
2663 
2664 out:
2665 	kfree(rep_param);
2666 	kfree(rsp);
2667 	kfree(rej);
2668 
2669 	return ret;
2670 }
2671 
2672 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2673 {
2674 	printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2675 	srpt_drain_channel(cm_id);
2676 }
2677 
2678 /**
2679  * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2680  *
2681  * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2682  * and that the recipient may begin transmitting (RTU = ready to use).
2683  */
2684 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2685 {
2686 	struct srpt_rdma_ch *ch;
2687 	int ret;
2688 
2689 	ch = srpt_find_channel(cm_id->context, cm_id);
2690 	BUG_ON(!ch);
2691 
2692 	if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2693 		struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2694 
2695 		ret = srpt_ch_qp_rts(ch, ch->qp);
2696 
2697 		list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2698 					 wait_list) {
2699 			list_del(&ioctx->wait_list);
2700 			srpt_handle_new_iu(ch, ioctx, NULL);
2701 		}
2702 		if (ret)
2703 			srpt_close_ch(ch);
2704 	}
2705 }
2706 
2707 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2708 {
2709 	printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2710 	srpt_drain_channel(cm_id);
2711 }
2712 
2713 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2714 {
2715 	printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2716 	srpt_drain_channel(cm_id);
2717 }
2718 
2719 /**
2720  * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2721  */
2722 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2723 {
2724 	struct srpt_rdma_ch *ch;
2725 	unsigned long flags;
2726 	bool send_drep = false;
2727 
2728 	ch = srpt_find_channel(cm_id->context, cm_id);
2729 	BUG_ON(!ch);
2730 
2731 	pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2732 
2733 	spin_lock_irqsave(&ch->spinlock, flags);
2734 	switch (ch->state) {
2735 	case CH_CONNECTING:
2736 	case CH_LIVE:
2737 		send_drep = true;
2738 		ch->state = CH_DISCONNECTING;
2739 		break;
2740 	case CH_DISCONNECTING:
2741 	case CH_DRAINING:
2742 	case CH_RELEASING:
2743 		WARN(true, "unexpected channel state %d\n", ch->state);
2744 		break;
2745 	}
2746 	spin_unlock_irqrestore(&ch->spinlock, flags);
2747 
2748 	if (send_drep) {
2749 		if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2750 			printk(KERN_ERR "Sending IB DREP failed.\n");
2751 		printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2752 		       ch->sess_name);
2753 	}
2754 }
2755 
2756 /**
2757  * srpt_cm_drep_recv() - Process reception of a DREP message.
2758  */
2759 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2760 {
2761 	printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2762 	       cm_id);
2763 	srpt_drain_channel(cm_id);
2764 }
2765 
2766 /**
2767  * srpt_cm_handler() - IB connection manager callback function.
2768  *
2769  * A non-zero return value will cause the caller destroy the CM ID.
2770  *
2771  * Note: srpt_cm_handler() must only return a non-zero value when transferring
2772  * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2773  * a non-zero value in any other case will trigger a race with the
2774  * ib_destroy_cm_id() call in srpt_release_channel().
2775  */
2776 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2777 {
2778 	int ret;
2779 
2780 	ret = 0;
2781 	switch (event->event) {
2782 	case IB_CM_REQ_RECEIVED:
2783 		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2784 				       event->private_data);
2785 		break;
2786 	case IB_CM_REJ_RECEIVED:
2787 		srpt_cm_rej_recv(cm_id);
2788 		break;
2789 	case IB_CM_RTU_RECEIVED:
2790 	case IB_CM_USER_ESTABLISHED:
2791 		srpt_cm_rtu_recv(cm_id);
2792 		break;
2793 	case IB_CM_DREQ_RECEIVED:
2794 		srpt_cm_dreq_recv(cm_id);
2795 		break;
2796 	case IB_CM_DREP_RECEIVED:
2797 		srpt_cm_drep_recv(cm_id);
2798 		break;
2799 	case IB_CM_TIMEWAIT_EXIT:
2800 		srpt_cm_timewait_exit(cm_id);
2801 		break;
2802 	case IB_CM_REP_ERROR:
2803 		srpt_cm_rep_error(cm_id);
2804 		break;
2805 	case IB_CM_DREQ_ERROR:
2806 		printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2807 		break;
2808 	case IB_CM_MRA_RECEIVED:
2809 		printk(KERN_INFO "Received IB MRA event\n");
2810 		break;
2811 	default:
2812 		printk(KERN_ERR "received unrecognized IB CM event %d\n",
2813 		       event->event);
2814 		break;
2815 	}
2816 
2817 	return ret;
2818 }
2819 
2820 /**
2821  * srpt_perform_rdmas() - Perform IB RDMA.
2822  *
2823  * Returns zero upon success or a negative number upon failure.
2824  */
2825 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2826 			      struct srpt_send_ioctx *ioctx)
2827 {
2828 	struct ib_send_wr wr;
2829 	struct ib_send_wr *bad_wr;
2830 	struct rdma_iu *riu;
2831 	int i;
2832 	int ret;
2833 	int sq_wr_avail;
2834 	enum dma_data_direction dir;
2835 	const int n_rdma = ioctx->n_rdma;
2836 
2837 	dir = ioctx->cmd.data_direction;
2838 	if (dir == DMA_TO_DEVICE) {
2839 		/* write */
2840 		ret = -ENOMEM;
2841 		sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2842 		if (sq_wr_avail < 0) {
2843 			printk(KERN_WARNING "IB send queue full (needed %d)\n",
2844 			       n_rdma);
2845 			goto out;
2846 		}
2847 	}
2848 
2849 	ioctx->rdma_aborted = false;
2850 	ret = 0;
2851 	riu = ioctx->rdma_ius;
2852 	memset(&wr, 0, sizeof wr);
2853 
2854 	for (i = 0; i < n_rdma; ++i, ++riu) {
2855 		if (dir == DMA_FROM_DEVICE) {
2856 			wr.opcode = IB_WR_RDMA_WRITE;
2857 			wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2858 						SRPT_RDMA_WRITE_LAST :
2859 						SRPT_RDMA_MID,
2860 						ioctx->ioctx.index);
2861 		} else {
2862 			wr.opcode = IB_WR_RDMA_READ;
2863 			wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2864 						SRPT_RDMA_READ_LAST :
2865 						SRPT_RDMA_MID,
2866 						ioctx->ioctx.index);
2867 		}
2868 		wr.next = NULL;
2869 		wr.wr.rdma.remote_addr = riu->raddr;
2870 		wr.wr.rdma.rkey = riu->rkey;
2871 		wr.num_sge = riu->sge_cnt;
2872 		wr.sg_list = riu->sge;
2873 
2874 		/* only get completion event for the last rdma write */
2875 		if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2876 			wr.send_flags = IB_SEND_SIGNALED;
2877 
2878 		ret = ib_post_send(ch->qp, &wr, &bad_wr);
2879 		if (ret)
2880 			break;
2881 	}
2882 
2883 	if (ret)
2884 		printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2885 				 __func__, __LINE__, ret, i, n_rdma);
2886 	if (ret && i > 0) {
2887 		wr.num_sge = 0;
2888 		wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2889 		wr.send_flags = IB_SEND_SIGNALED;
2890 		while (ch->state == CH_LIVE &&
2891 			ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2892 			printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2893 				ioctx->ioctx.index);
2894 			msleep(1000);
2895 		}
2896 		while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2897 			printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2898 				ioctx->ioctx.index);
2899 			msleep(1000);
2900 		}
2901 	}
2902 out:
2903 	if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2904 		atomic_add(n_rdma, &ch->sq_wr_avail);
2905 	return ret;
2906 }
2907 
2908 /**
2909  * srpt_xfer_data() - Start data transfer from initiator to target.
2910  */
2911 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2912 			  struct srpt_send_ioctx *ioctx)
2913 {
2914 	int ret;
2915 
2916 	ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2917 	if (ret) {
2918 		printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2919 		goto out;
2920 	}
2921 
2922 	ret = srpt_perform_rdmas(ch, ioctx);
2923 	if (ret) {
2924 		if (ret == -EAGAIN || ret == -ENOMEM)
2925 			printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2926 				   __func__, __LINE__, ret);
2927 		else
2928 			printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2929 			       __func__, __LINE__, ret);
2930 		goto out_unmap;
2931 	}
2932 
2933 out:
2934 	return ret;
2935 out_unmap:
2936 	srpt_unmap_sg_to_ib_sge(ch, ioctx);
2937 	goto out;
2938 }
2939 
2940 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2941 {
2942 	struct srpt_send_ioctx *ioctx;
2943 
2944 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2945 	return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2946 }
2947 
2948 /*
2949  * srpt_write_pending() - Start data transfer from initiator to target (write).
2950  */
2951 static int srpt_write_pending(struct se_cmd *se_cmd)
2952 {
2953 	struct srpt_rdma_ch *ch;
2954 	struct srpt_send_ioctx *ioctx;
2955 	enum srpt_command_state new_state;
2956 	enum rdma_ch_state ch_state;
2957 	int ret;
2958 
2959 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2960 
2961 	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2962 	WARN_ON(new_state == SRPT_STATE_DONE);
2963 
2964 	ch = ioctx->ch;
2965 	BUG_ON(!ch);
2966 
2967 	ch_state = srpt_get_ch_state(ch);
2968 	switch (ch_state) {
2969 	case CH_CONNECTING:
2970 		WARN(true, "unexpected channel state %d\n", ch_state);
2971 		ret = -EINVAL;
2972 		goto out;
2973 	case CH_LIVE:
2974 		break;
2975 	case CH_DISCONNECTING:
2976 	case CH_DRAINING:
2977 	case CH_RELEASING:
2978 		pr_debug("cmd with tag %lld: channel disconnecting\n",
2979 			 ioctx->tag);
2980 		srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2981 		ret = -EINVAL;
2982 		goto out;
2983 	}
2984 	ret = srpt_xfer_data(ch, ioctx);
2985 
2986 out:
2987 	return ret;
2988 }
2989 
2990 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2991 {
2992 	switch (tcm_mgmt_status) {
2993 	case TMR_FUNCTION_COMPLETE:
2994 		return SRP_TSK_MGMT_SUCCESS;
2995 	case TMR_FUNCTION_REJECTED:
2996 		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2997 	}
2998 	return SRP_TSK_MGMT_FAILED;
2999 }
3000 
3001 /**
3002  * srpt_queue_response() - Transmits the response to a SCSI command.
3003  *
3004  * Callback function called by the TCM core. Must not block since it can be
3005  * invoked on the context of the IB completion handler.
3006  */
3007 static void srpt_queue_response(struct se_cmd *cmd)
3008 {
3009 	struct srpt_rdma_ch *ch;
3010 	struct srpt_send_ioctx *ioctx;
3011 	enum srpt_command_state state;
3012 	unsigned long flags;
3013 	int ret;
3014 	enum dma_data_direction dir;
3015 	int resp_len;
3016 	u8 srp_tm_status;
3017 
3018 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3019 	ch = ioctx->ch;
3020 	BUG_ON(!ch);
3021 
3022 	spin_lock_irqsave(&ioctx->spinlock, flags);
3023 	state = ioctx->state;
3024 	switch (state) {
3025 	case SRPT_STATE_NEW:
3026 	case SRPT_STATE_DATA_IN:
3027 		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3028 		break;
3029 	case SRPT_STATE_MGMT:
3030 		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3031 		break;
3032 	default:
3033 		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3034 			ch, ioctx->ioctx.index, ioctx->state);
3035 		break;
3036 	}
3037 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
3038 
3039 	if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3040 		     || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3041 		atomic_inc(&ch->req_lim_delta);
3042 		srpt_abort_cmd(ioctx);
3043 		return;
3044 	}
3045 
3046 	dir = ioctx->cmd.data_direction;
3047 
3048 	/* For read commands, transfer the data to the initiator. */
3049 	if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3050 	    !ioctx->queue_status_only) {
3051 		ret = srpt_xfer_data(ch, ioctx);
3052 		if (ret) {
3053 			printk(KERN_ERR "xfer_data failed for tag %llu\n",
3054 			       ioctx->tag);
3055 			return;
3056 		}
3057 	}
3058 
3059 	if (state != SRPT_STATE_MGMT)
3060 		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3061 					      cmd->scsi_status);
3062 	else {
3063 		srp_tm_status
3064 			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3065 		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3066 						 ioctx->tag);
3067 	}
3068 	ret = srpt_post_send(ch, ioctx, resp_len);
3069 	if (ret) {
3070 		printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3071 		       ioctx->tag);
3072 		srpt_unmap_sg_to_ib_sge(ch, ioctx);
3073 		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3074 		target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
3075 	}
3076 }
3077 
3078 static int srpt_queue_data_in(struct se_cmd *cmd)
3079 {
3080 	srpt_queue_response(cmd);
3081 	return 0;
3082 }
3083 
3084 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3085 {
3086 	srpt_queue_response(cmd);
3087 }
3088 
3089 static void srpt_aborted_task(struct se_cmd *cmd)
3090 {
3091 	struct srpt_send_ioctx *ioctx = container_of(cmd,
3092 				struct srpt_send_ioctx, cmd);
3093 
3094 	srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3095 }
3096 
3097 static int srpt_queue_status(struct se_cmd *cmd)
3098 {
3099 	struct srpt_send_ioctx *ioctx;
3100 
3101 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3102 	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3103 	if (cmd->se_cmd_flags &
3104 	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3105 		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3106 	ioctx->queue_status_only = true;
3107 	srpt_queue_response(cmd);
3108 	return 0;
3109 }
3110 
3111 static void srpt_refresh_port_work(struct work_struct *work)
3112 {
3113 	struct srpt_port *sport = container_of(work, struct srpt_port, work);
3114 
3115 	srpt_refresh_port(sport);
3116 }
3117 
3118 static int srpt_ch_list_empty(struct srpt_device *sdev)
3119 {
3120 	int res;
3121 
3122 	spin_lock_irq(&sdev->spinlock);
3123 	res = list_empty(&sdev->rch_list);
3124 	spin_unlock_irq(&sdev->spinlock);
3125 
3126 	return res;
3127 }
3128 
3129 /**
3130  * srpt_release_sdev() - Free the channel resources associated with a target.
3131  */
3132 static int srpt_release_sdev(struct srpt_device *sdev)
3133 {
3134 	struct srpt_rdma_ch *ch, *tmp_ch;
3135 	int res;
3136 
3137 	WARN_ON_ONCE(irqs_disabled());
3138 
3139 	BUG_ON(!sdev);
3140 
3141 	spin_lock_irq(&sdev->spinlock);
3142 	list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3143 		__srpt_close_ch(ch);
3144 	spin_unlock_irq(&sdev->spinlock);
3145 
3146 	res = wait_event_interruptible(sdev->ch_releaseQ,
3147 				       srpt_ch_list_empty(sdev));
3148 	if (res)
3149 		printk(KERN_ERR "%s: interrupted.\n", __func__);
3150 
3151 	return 0;
3152 }
3153 
3154 static struct srpt_port *__srpt_lookup_port(const char *name)
3155 {
3156 	struct ib_device *dev;
3157 	struct srpt_device *sdev;
3158 	struct srpt_port *sport;
3159 	int i;
3160 
3161 	list_for_each_entry(sdev, &srpt_dev_list, list) {
3162 		dev = sdev->device;
3163 		if (!dev)
3164 			continue;
3165 
3166 		for (i = 0; i < dev->phys_port_cnt; i++) {
3167 			sport = &sdev->port[i];
3168 
3169 			if (!strcmp(sport->port_guid, name))
3170 				return sport;
3171 		}
3172 	}
3173 
3174 	return NULL;
3175 }
3176 
3177 static struct srpt_port *srpt_lookup_port(const char *name)
3178 {
3179 	struct srpt_port *sport;
3180 
3181 	spin_lock(&srpt_dev_lock);
3182 	sport = __srpt_lookup_port(name);
3183 	spin_unlock(&srpt_dev_lock);
3184 
3185 	return sport;
3186 }
3187 
3188 /**
3189  * srpt_add_one() - Infiniband device addition callback function.
3190  */
3191 static void srpt_add_one(struct ib_device *device)
3192 {
3193 	struct srpt_device *sdev;
3194 	struct srpt_port *sport;
3195 	struct ib_srq_init_attr srq_attr;
3196 	int i;
3197 
3198 	pr_debug("device = %p, device->dma_ops = %p\n", device,
3199 		 device->dma_ops);
3200 
3201 	sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3202 	if (!sdev)
3203 		goto err;
3204 
3205 	sdev->device = device;
3206 	INIT_LIST_HEAD(&sdev->rch_list);
3207 	init_waitqueue_head(&sdev->ch_releaseQ);
3208 	spin_lock_init(&sdev->spinlock);
3209 
3210 	if (ib_query_device(device, &sdev->dev_attr))
3211 		goto free_dev;
3212 
3213 	sdev->pd = ib_alloc_pd(device);
3214 	if (IS_ERR(sdev->pd))
3215 		goto free_dev;
3216 
3217 	sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3218 	if (IS_ERR(sdev->mr))
3219 		goto err_pd;
3220 
3221 	sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3222 
3223 	srq_attr.event_handler = srpt_srq_event;
3224 	srq_attr.srq_context = (void *)sdev;
3225 	srq_attr.attr.max_wr = sdev->srq_size;
3226 	srq_attr.attr.max_sge = 1;
3227 	srq_attr.attr.srq_limit = 0;
3228 	srq_attr.srq_type = IB_SRQT_BASIC;
3229 
3230 	sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3231 	if (IS_ERR(sdev->srq))
3232 		goto err_mr;
3233 
3234 	pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3235 		 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3236 		 device->name);
3237 
3238 	if (!srpt_service_guid)
3239 		srpt_service_guid = be64_to_cpu(device->node_guid);
3240 
3241 	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3242 	if (IS_ERR(sdev->cm_id))
3243 		goto err_srq;
3244 
3245 	/* print out target login information */
3246 	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3247 		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3248 		 srpt_service_guid, srpt_service_guid);
3249 
3250 	/*
3251 	 * We do not have a consistent service_id (ie. also id_ext of target_id)
3252 	 * to identify this target. We currently use the guid of the first HCA
3253 	 * in the system as service_id; therefore, the target_id will change
3254 	 * if this HCA is gone bad and replaced by different HCA
3255 	 */
3256 	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3257 		goto err_cm;
3258 
3259 	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3260 			      srpt_event_handler);
3261 	if (ib_register_event_handler(&sdev->event_handler))
3262 		goto err_cm;
3263 
3264 	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3265 		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3266 				      sizeof(*sdev->ioctx_ring[0]),
3267 				      srp_max_req_size, DMA_FROM_DEVICE);
3268 	if (!sdev->ioctx_ring)
3269 		goto err_event;
3270 
3271 	for (i = 0; i < sdev->srq_size; ++i)
3272 		srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3273 
3274 	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3275 
3276 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3277 		sport = &sdev->port[i - 1];
3278 		sport->sdev = sdev;
3279 		sport->port = i;
3280 		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3281 		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3282 		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3283 		INIT_WORK(&sport->work, srpt_refresh_port_work);
3284 		INIT_LIST_HEAD(&sport->port_acl_list);
3285 		spin_lock_init(&sport->port_acl_lock);
3286 
3287 		if (srpt_refresh_port(sport)) {
3288 			printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3289 			       srpt_sdev_name(sdev), i);
3290 			goto err_ring;
3291 		}
3292 		snprintf(sport->port_guid, sizeof(sport->port_guid),
3293 			"0x%016llx%016llx",
3294 			be64_to_cpu(sport->gid.global.subnet_prefix),
3295 			be64_to_cpu(sport->gid.global.interface_id));
3296 	}
3297 
3298 	spin_lock(&srpt_dev_lock);
3299 	list_add_tail(&sdev->list, &srpt_dev_list);
3300 	spin_unlock(&srpt_dev_lock);
3301 
3302 out:
3303 	ib_set_client_data(device, &srpt_client, sdev);
3304 	pr_debug("added %s.\n", device->name);
3305 	return;
3306 
3307 err_ring:
3308 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3309 			     sdev->srq_size, srp_max_req_size,
3310 			     DMA_FROM_DEVICE);
3311 err_event:
3312 	ib_unregister_event_handler(&sdev->event_handler);
3313 err_cm:
3314 	ib_destroy_cm_id(sdev->cm_id);
3315 err_srq:
3316 	ib_destroy_srq(sdev->srq);
3317 err_mr:
3318 	ib_dereg_mr(sdev->mr);
3319 err_pd:
3320 	ib_dealloc_pd(sdev->pd);
3321 free_dev:
3322 	kfree(sdev);
3323 err:
3324 	sdev = NULL;
3325 	printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3326 	goto out;
3327 }
3328 
3329 /**
3330  * srpt_remove_one() - InfiniBand device removal callback function.
3331  */
3332 static void srpt_remove_one(struct ib_device *device)
3333 {
3334 	struct srpt_device *sdev;
3335 	int i;
3336 
3337 	sdev = ib_get_client_data(device, &srpt_client);
3338 	if (!sdev) {
3339 		printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3340 		       device->name);
3341 		return;
3342 	}
3343 
3344 	srpt_unregister_mad_agent(sdev);
3345 
3346 	ib_unregister_event_handler(&sdev->event_handler);
3347 
3348 	/* Cancel any work queued by the just unregistered IB event handler. */
3349 	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3350 		cancel_work_sync(&sdev->port[i].work);
3351 
3352 	ib_destroy_cm_id(sdev->cm_id);
3353 
3354 	/*
3355 	 * Unregistering a target must happen after destroying sdev->cm_id
3356 	 * such that no new SRP_LOGIN_REQ information units can arrive while
3357 	 * destroying the target.
3358 	 */
3359 	spin_lock(&srpt_dev_lock);
3360 	list_del(&sdev->list);
3361 	spin_unlock(&srpt_dev_lock);
3362 	srpt_release_sdev(sdev);
3363 
3364 	ib_destroy_srq(sdev->srq);
3365 	ib_dereg_mr(sdev->mr);
3366 	ib_dealloc_pd(sdev->pd);
3367 
3368 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3369 			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3370 	sdev->ioctx_ring = NULL;
3371 	kfree(sdev);
3372 }
3373 
3374 static struct ib_client srpt_client = {
3375 	.name = DRV_NAME,
3376 	.add = srpt_add_one,
3377 	.remove = srpt_remove_one
3378 };
3379 
3380 static int srpt_check_true(struct se_portal_group *se_tpg)
3381 {
3382 	return 1;
3383 }
3384 
3385 static int srpt_check_false(struct se_portal_group *se_tpg)
3386 {
3387 	return 0;
3388 }
3389 
3390 static char *srpt_get_fabric_name(void)
3391 {
3392 	return "srpt";
3393 }
3394 
3395 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3396 {
3397 	return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3398 }
3399 
3400 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3401 {
3402 	struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3403 
3404 	return sport->port_guid;
3405 }
3406 
3407 static u16 srpt_get_tag(struct se_portal_group *tpg)
3408 {
3409 	return 1;
3410 }
3411 
3412 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3413 {
3414 	return 1;
3415 }
3416 
3417 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3418 				    struct se_node_acl *se_nacl,
3419 				    struct t10_pr_registration *pr_reg,
3420 				    int *format_code, unsigned char *buf)
3421 {
3422 	struct srpt_node_acl *nacl;
3423 	struct spc_rdma_transport_id *tr_id;
3424 
3425 	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3426 	tr_id = (void *)buf;
3427 	tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3428 	memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3429 	return sizeof(*tr_id);
3430 }
3431 
3432 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3433 					struct se_node_acl *se_nacl,
3434 					struct t10_pr_registration *pr_reg,
3435 					int *format_code)
3436 {
3437 	*format_code = 0;
3438 	return sizeof(struct spc_rdma_transport_id);
3439 }
3440 
3441 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3442 					    const char *buf, u32 *out_tid_len,
3443 					    char **port_nexus_ptr)
3444 {
3445 	struct spc_rdma_transport_id *tr_id;
3446 
3447 	*port_nexus_ptr = NULL;
3448 	*out_tid_len = sizeof(struct spc_rdma_transport_id);
3449 	tr_id = (void *)buf;
3450 	return (char *)tr_id->i_port_id;
3451 }
3452 
3453 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3454 {
3455 	struct srpt_node_acl *nacl;
3456 
3457 	nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3458 	if (!nacl) {
3459 		printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
3460 		return NULL;
3461 	}
3462 
3463 	return &nacl->nacl;
3464 }
3465 
3466 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3467 				    struct se_node_acl *se_nacl)
3468 {
3469 	struct srpt_node_acl *nacl;
3470 
3471 	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3472 	kfree(nacl);
3473 }
3474 
3475 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3476 {
3477 	return 1;
3478 }
3479 
3480 static void srpt_release_cmd(struct se_cmd *se_cmd)
3481 {
3482 	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3483 				struct srpt_send_ioctx, cmd);
3484 	struct srpt_rdma_ch *ch = ioctx->ch;
3485 	unsigned long flags;
3486 
3487 	WARN_ON(ioctx->state != SRPT_STATE_DONE);
3488 	WARN_ON(ioctx->mapped_sg_count != 0);
3489 
3490 	if (ioctx->n_rbuf > 1) {
3491 		kfree(ioctx->rbufs);
3492 		ioctx->rbufs = NULL;
3493 		ioctx->n_rbuf = 0;
3494 	}
3495 
3496 	spin_lock_irqsave(&ch->spinlock, flags);
3497 	list_add(&ioctx->free_list, &ch->free_list);
3498 	spin_unlock_irqrestore(&ch->spinlock, flags);
3499 }
3500 
3501 /**
3502  * srpt_close_session() - Forcibly close a session.
3503  *
3504  * Callback function invoked by the TCM core to clean up sessions associated
3505  * with a node ACL when the user invokes
3506  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3507  */
3508 static void srpt_close_session(struct se_session *se_sess)
3509 {
3510 	DECLARE_COMPLETION_ONSTACK(release_done);
3511 	struct srpt_rdma_ch *ch;
3512 	struct srpt_device *sdev;
3513 	int res;
3514 
3515 	ch = se_sess->fabric_sess_ptr;
3516 	WARN_ON(ch->sess != se_sess);
3517 
3518 	pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3519 
3520 	sdev = ch->sport->sdev;
3521 	spin_lock_irq(&sdev->spinlock);
3522 	BUG_ON(ch->release_done);
3523 	ch->release_done = &release_done;
3524 	__srpt_close_ch(ch);
3525 	spin_unlock_irq(&sdev->spinlock);
3526 
3527 	res = wait_for_completion_timeout(&release_done, 60 * HZ);
3528 	WARN_ON(res <= 0);
3529 }
3530 
3531 /**
3532  * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3533  *
3534  * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3535  * This object represents an arbitrary integer used to uniquely identify a
3536  * particular attached remote initiator port to a particular SCSI target port
3537  * within a particular SCSI target device within a particular SCSI instance.
3538  */
3539 static u32 srpt_sess_get_index(struct se_session *se_sess)
3540 {
3541 	return 0;
3542 }
3543 
3544 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3545 {
3546 }
3547 
3548 static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3549 {
3550 	struct srpt_send_ioctx *ioctx;
3551 
3552 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3553 	return ioctx->tag;
3554 }
3555 
3556 /* Note: only used from inside debug printk's by the TCM core. */
3557 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3558 {
3559 	struct srpt_send_ioctx *ioctx;
3560 
3561 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3562 	return srpt_get_cmd_state(ioctx);
3563 }
3564 
3565 /**
3566  * srpt_parse_i_port_id() - Parse an initiator port ID.
3567  * @name: ASCII representation of a 128-bit initiator port ID.
3568  * @i_port_id: Binary 128-bit port ID.
3569  */
3570 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3571 {
3572 	const char *p;
3573 	unsigned len, count, leading_zero_bytes;
3574 	int ret, rc;
3575 
3576 	p = name;
3577 	if (strnicmp(p, "0x", 2) == 0)
3578 		p += 2;
3579 	ret = -EINVAL;
3580 	len = strlen(p);
3581 	if (len % 2)
3582 		goto out;
3583 	count = min(len / 2, 16U);
3584 	leading_zero_bytes = 16 - count;
3585 	memset(i_port_id, 0, leading_zero_bytes);
3586 	rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3587 	if (rc < 0)
3588 		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3589 	ret = 0;
3590 out:
3591 	return ret;
3592 }
3593 
3594 /*
3595  * configfs callback function invoked for
3596  * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3597  */
3598 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3599 					     struct config_group *group,
3600 					     const char *name)
3601 {
3602 	struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3603 	struct se_node_acl *se_nacl, *se_nacl_new;
3604 	struct srpt_node_acl *nacl;
3605 	int ret = 0;
3606 	u32 nexus_depth = 1;
3607 	u8 i_port_id[16];
3608 
3609 	if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3610 		printk(KERN_ERR "invalid initiator port ID %s\n", name);
3611 		ret = -EINVAL;
3612 		goto err;
3613 	}
3614 
3615 	se_nacl_new = srpt_alloc_fabric_acl(tpg);
3616 	if (!se_nacl_new) {
3617 		ret = -ENOMEM;
3618 		goto err;
3619 	}
3620 	/*
3621 	 * nacl_new may be released by core_tpg_add_initiator_node_acl()
3622 	 * when converting a node ACL from demo mode to explict
3623 	 */
3624 	se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3625 						  nexus_depth);
3626 	if (IS_ERR(se_nacl)) {
3627 		ret = PTR_ERR(se_nacl);
3628 		goto err;
3629 	}
3630 	/* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3631 	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3632 	memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3633 	nacl->sport = sport;
3634 
3635 	spin_lock_irq(&sport->port_acl_lock);
3636 	list_add_tail(&nacl->list, &sport->port_acl_list);
3637 	spin_unlock_irq(&sport->port_acl_lock);
3638 
3639 	return se_nacl;
3640 err:
3641 	return ERR_PTR(ret);
3642 }
3643 
3644 /*
3645  * configfs callback function invoked for
3646  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3647  */
3648 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3649 {
3650 	struct srpt_node_acl *nacl;
3651 	struct srpt_device *sdev;
3652 	struct srpt_port *sport;
3653 
3654 	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3655 	sport = nacl->sport;
3656 	sdev = sport->sdev;
3657 	spin_lock_irq(&sport->port_acl_lock);
3658 	list_del(&nacl->list);
3659 	spin_unlock_irq(&sport->port_acl_lock);
3660 	core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3661 	srpt_release_fabric_acl(NULL, se_nacl);
3662 }
3663 
3664 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3665 	struct se_portal_group *se_tpg,
3666 	char *page)
3667 {
3668 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3669 
3670 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3671 }
3672 
3673 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3674 	struct se_portal_group *se_tpg,
3675 	const char *page,
3676 	size_t count)
3677 {
3678 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3679 	unsigned long val;
3680 	int ret;
3681 
3682 	ret = kstrtoul(page, 0, &val);
3683 	if (ret < 0) {
3684 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3685 		return -EINVAL;
3686 	}
3687 	if (val > MAX_SRPT_RDMA_SIZE) {
3688 		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3689 			MAX_SRPT_RDMA_SIZE);
3690 		return -EINVAL;
3691 	}
3692 	if (val < DEFAULT_MAX_RDMA_SIZE) {
3693 		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3694 			val, DEFAULT_MAX_RDMA_SIZE);
3695 		return -EINVAL;
3696 	}
3697 	sport->port_attrib.srp_max_rdma_size = val;
3698 
3699 	return count;
3700 }
3701 
3702 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3703 
3704 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3705 	struct se_portal_group *se_tpg,
3706 	char *page)
3707 {
3708 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3709 
3710 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3711 }
3712 
3713 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3714 	struct se_portal_group *se_tpg,
3715 	const char *page,
3716 	size_t count)
3717 {
3718 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3719 	unsigned long val;
3720 	int ret;
3721 
3722 	ret = kstrtoul(page, 0, &val);
3723 	if (ret < 0) {
3724 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3725 		return -EINVAL;
3726 	}
3727 	if (val > MAX_SRPT_RSP_SIZE) {
3728 		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3729 			MAX_SRPT_RSP_SIZE);
3730 		return -EINVAL;
3731 	}
3732 	if (val < MIN_MAX_RSP_SIZE) {
3733 		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3734 			MIN_MAX_RSP_SIZE);
3735 		return -EINVAL;
3736 	}
3737 	sport->port_attrib.srp_max_rsp_size = val;
3738 
3739 	return count;
3740 }
3741 
3742 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3743 
3744 static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3745 	struct se_portal_group *se_tpg,
3746 	char *page)
3747 {
3748 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3749 
3750 	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3751 }
3752 
3753 static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3754 	struct se_portal_group *se_tpg,
3755 	const char *page,
3756 	size_t count)
3757 {
3758 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3759 	unsigned long val;
3760 	int ret;
3761 
3762 	ret = kstrtoul(page, 0, &val);
3763 	if (ret < 0) {
3764 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3765 		return -EINVAL;
3766 	}
3767 	if (val > MAX_SRPT_SRQ_SIZE) {
3768 		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3769 			MAX_SRPT_SRQ_SIZE);
3770 		return -EINVAL;
3771 	}
3772 	if (val < MIN_SRPT_SRQ_SIZE) {
3773 		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3774 			MIN_SRPT_SRQ_SIZE);
3775 		return -EINVAL;
3776 	}
3777 	sport->port_attrib.srp_sq_size = val;
3778 
3779 	return count;
3780 }
3781 
3782 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3783 
3784 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3785 	&srpt_tpg_attrib_srp_max_rdma_size.attr,
3786 	&srpt_tpg_attrib_srp_max_rsp_size.attr,
3787 	&srpt_tpg_attrib_srp_sq_size.attr,
3788 	NULL,
3789 };
3790 
3791 static ssize_t srpt_tpg_show_enable(
3792 	struct se_portal_group *se_tpg,
3793 	char *page)
3794 {
3795 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3796 
3797 	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3798 }
3799 
3800 static ssize_t srpt_tpg_store_enable(
3801 	struct se_portal_group *se_tpg,
3802 	const char *page,
3803 	size_t count)
3804 {
3805 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3806 	unsigned long tmp;
3807         int ret;
3808 
3809 	ret = kstrtoul(page, 0, &tmp);
3810 	if (ret < 0) {
3811 		printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3812 		return -EINVAL;
3813 	}
3814 
3815 	if ((tmp != 0) && (tmp != 1)) {
3816 		printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3817 		return -EINVAL;
3818 	}
3819 	if (tmp == 1)
3820 		sport->enabled = true;
3821 	else
3822 		sport->enabled = false;
3823 
3824 	return count;
3825 }
3826 
3827 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3828 
3829 static struct configfs_attribute *srpt_tpg_attrs[] = {
3830 	&srpt_tpg_enable.attr,
3831 	NULL,
3832 };
3833 
3834 /**
3835  * configfs callback invoked for
3836  * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3837  */
3838 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3839 					     struct config_group *group,
3840 					     const char *name)
3841 {
3842 	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3843 	int res;
3844 
3845 	/* Initialize sport->port_wwn and sport->port_tpg_1 */
3846 	res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3847 			&sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3848 	if (res)
3849 		return ERR_PTR(res);
3850 
3851 	return &sport->port_tpg_1;
3852 }
3853 
3854 /**
3855  * configfs callback invoked for
3856  * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3857  */
3858 static void srpt_drop_tpg(struct se_portal_group *tpg)
3859 {
3860 	struct srpt_port *sport = container_of(tpg,
3861 				struct srpt_port, port_tpg_1);
3862 
3863 	sport->enabled = false;
3864 	core_tpg_deregister(&sport->port_tpg_1);
3865 }
3866 
3867 /**
3868  * configfs callback invoked for
3869  * mkdir /sys/kernel/config/target/$driver/$port
3870  */
3871 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3872 				      struct config_group *group,
3873 				      const char *name)
3874 {
3875 	struct srpt_port *sport;
3876 	int ret;
3877 
3878 	sport = srpt_lookup_port(name);
3879 	pr_debug("make_tport(%s)\n", name);
3880 	ret = -EINVAL;
3881 	if (!sport)
3882 		goto err;
3883 
3884 	return &sport->port_wwn;
3885 
3886 err:
3887 	return ERR_PTR(ret);
3888 }
3889 
3890 /**
3891  * configfs callback invoked for
3892  * rmdir /sys/kernel/config/target/$driver/$port
3893  */
3894 static void srpt_drop_tport(struct se_wwn *wwn)
3895 {
3896 	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3897 
3898 	pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3899 }
3900 
3901 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3902 					      char *buf)
3903 {
3904 	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3905 }
3906 
3907 TF_WWN_ATTR_RO(srpt, version);
3908 
3909 static struct configfs_attribute *srpt_wwn_attrs[] = {
3910 	&srpt_wwn_version.attr,
3911 	NULL,
3912 };
3913 
3914 static struct target_core_fabric_ops srpt_template = {
3915 	.get_fabric_name		= srpt_get_fabric_name,
3916 	.get_fabric_proto_ident		= srpt_get_fabric_proto_ident,
3917 	.tpg_get_wwn			= srpt_get_fabric_wwn,
3918 	.tpg_get_tag			= srpt_get_tag,
3919 	.tpg_get_default_depth		= srpt_get_default_depth,
3920 	.tpg_get_pr_transport_id	= srpt_get_pr_transport_id,
3921 	.tpg_get_pr_transport_id_len	= srpt_get_pr_transport_id_len,
3922 	.tpg_parse_pr_out_transport_id	= srpt_parse_pr_out_transport_id,
3923 	.tpg_check_demo_mode		= srpt_check_false,
3924 	.tpg_check_demo_mode_cache	= srpt_check_true,
3925 	.tpg_check_demo_mode_write_protect = srpt_check_true,
3926 	.tpg_check_prod_mode_write_protect = srpt_check_false,
3927 	.tpg_alloc_fabric_acl		= srpt_alloc_fabric_acl,
3928 	.tpg_release_fabric_acl		= srpt_release_fabric_acl,
3929 	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
3930 	.release_cmd			= srpt_release_cmd,
3931 	.check_stop_free		= srpt_check_stop_free,
3932 	.shutdown_session		= srpt_shutdown_session,
3933 	.close_session			= srpt_close_session,
3934 	.sess_get_index			= srpt_sess_get_index,
3935 	.sess_get_initiator_sid		= NULL,
3936 	.write_pending			= srpt_write_pending,
3937 	.write_pending_status		= srpt_write_pending_status,
3938 	.set_default_node_attributes	= srpt_set_default_node_attrs,
3939 	.get_task_tag			= srpt_get_task_tag,
3940 	.get_cmd_state			= srpt_get_tcm_cmd_state,
3941 	.queue_data_in			= srpt_queue_data_in,
3942 	.queue_status			= srpt_queue_status,
3943 	.queue_tm_rsp			= srpt_queue_tm_rsp,
3944 	.aborted_task			= srpt_aborted_task,
3945 	/*
3946 	 * Setup function pointers for generic logic in
3947 	 * target_core_fabric_configfs.c
3948 	 */
3949 	.fabric_make_wwn		= srpt_make_tport,
3950 	.fabric_drop_wwn		= srpt_drop_tport,
3951 	.fabric_make_tpg		= srpt_make_tpg,
3952 	.fabric_drop_tpg		= srpt_drop_tpg,
3953 	.fabric_post_link		= NULL,
3954 	.fabric_pre_unlink		= NULL,
3955 	.fabric_make_np			= NULL,
3956 	.fabric_drop_np			= NULL,
3957 	.fabric_make_nodeacl		= srpt_make_nodeacl,
3958 	.fabric_drop_nodeacl		= srpt_drop_nodeacl,
3959 };
3960 
3961 /**
3962  * srpt_init_module() - Kernel module initialization.
3963  *
3964  * Note: Since ib_register_client() registers callback functions, and since at
3965  * least one of these callback functions (srpt_add_one()) calls target core
3966  * functions, this driver must be registered with the target core before
3967  * ib_register_client() is called.
3968  */
3969 static int __init srpt_init_module(void)
3970 {
3971 	int ret;
3972 
3973 	ret = -EINVAL;
3974 	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3975 		printk(KERN_ERR "invalid value %d for kernel module parameter"
3976 		       " srp_max_req_size -- must be at least %d.\n",
3977 		       srp_max_req_size, MIN_MAX_REQ_SIZE);
3978 		goto out;
3979 	}
3980 
3981 	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3982 	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3983 		printk(KERN_ERR "invalid value %d for kernel module parameter"
3984 		       " srpt_srq_size -- must be in the range [%d..%d].\n",
3985 		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3986 		goto out;
3987 	}
3988 
3989 	srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
3990 	if (IS_ERR(srpt_target)) {
3991 		printk(KERN_ERR "couldn't register\n");
3992 		ret = PTR_ERR(srpt_target);
3993 		goto out;
3994 	}
3995 
3996 	srpt_target->tf_ops = srpt_template;
3997 
3998 	/*
3999 	 * Set up default attribute lists.
4000 	 */
4001 	srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
4002 	srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
4003 	srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
4004 	srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
4005 	srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
4006 	srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
4007 	srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
4008 	srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
4009 	srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
4010 
4011 	ret = target_fabric_configfs_register(srpt_target);
4012 	if (ret < 0) {
4013 		printk(KERN_ERR "couldn't register\n");
4014 		goto out_free_target;
4015 	}
4016 
4017 	ret = ib_register_client(&srpt_client);
4018 	if (ret) {
4019 		printk(KERN_ERR "couldn't register IB client\n");
4020 		goto out_unregister_target;
4021 	}
4022 
4023 	return 0;
4024 
4025 out_unregister_target:
4026 	target_fabric_configfs_deregister(srpt_target);
4027 	srpt_target = NULL;
4028 out_free_target:
4029 	if (srpt_target)
4030 		target_fabric_configfs_free(srpt_target);
4031 out:
4032 	return ret;
4033 }
4034 
4035 static void __exit srpt_cleanup_module(void)
4036 {
4037 	ib_unregister_client(&srpt_client);
4038 	target_fabric_configfs_deregister(srpt_target);
4039 	srpt_target = NULL;
4040 }
4041 
4042 module_init(srpt_init_module);
4043 module_exit(srpt_cleanup_module);
4044