1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_proto.h> 45 #include <scsi/scsi_tcq.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric.h> 48 #include "ib_srpt.h" 49 50 /* Name of this kernel module. */ 51 #define DRV_NAME "ib_srpt" 52 #define DRV_VERSION "2.0.0" 53 #define DRV_RELDATE "2011-02-14" 54 55 #define SRPT_ID_STRING "Linux SRP target" 56 57 #undef pr_fmt 58 #define pr_fmt(fmt) DRV_NAME " " fmt 59 60 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 62 "v" DRV_VERSION " (" DRV_RELDATE ")"); 63 MODULE_LICENSE("Dual BSD/GPL"); 64 65 /* 66 * Global Variables 67 */ 68 69 static u64 srpt_service_guid; 70 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 71 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 72 73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 74 module_param(srp_max_req_size, int, 0444); 75 MODULE_PARM_DESC(srp_max_req_size, 76 "Maximum size of SRP request messages in bytes."); 77 78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 79 module_param(srpt_srq_size, int, 0444); 80 MODULE_PARM_DESC(srpt_srq_size, 81 "Shared receive queue (SRQ) size."); 82 83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 84 { 85 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 86 } 87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 88 0444); 89 MODULE_PARM_DESC(srpt_service_guid, 90 "Using this value for ioc_guid, id_ext, and cm_listen_id" 91 " instead of using the node_guid of the first HCA."); 92 93 static struct ib_client srpt_client; 94 static void srpt_release_cmd(struct se_cmd *se_cmd); 95 static void srpt_free_ch(struct kref *kref); 96 static int srpt_queue_status(struct se_cmd *cmd); 97 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc); 98 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc); 99 static void srpt_process_wait_list(struct srpt_rdma_ch *ch); 100 101 /* 102 * The only allowed channel state changes are those that change the channel 103 * state into a state with a higher numerical value. Hence the new > prev test. 104 */ 105 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new) 106 { 107 unsigned long flags; 108 enum rdma_ch_state prev; 109 bool changed = false; 110 111 spin_lock_irqsave(&ch->spinlock, flags); 112 prev = ch->state; 113 if (new > prev) { 114 ch->state = new; 115 changed = true; 116 } 117 spin_unlock_irqrestore(&ch->spinlock, flags); 118 119 return changed; 120 } 121 122 /** 123 * srpt_event_handler() - Asynchronous IB event callback function. 124 * 125 * Callback function called by the InfiniBand core when an asynchronous IB 126 * event occurs. This callback may occur in interrupt context. See also 127 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 128 * Architecture Specification. 129 */ 130 static void srpt_event_handler(struct ib_event_handler *handler, 131 struct ib_event *event) 132 { 133 struct srpt_device *sdev; 134 struct srpt_port *sport; 135 136 sdev = ib_get_client_data(event->device, &srpt_client); 137 if (!sdev || sdev->device != event->device) 138 return; 139 140 pr_debug("ASYNC event= %d on device= %s\n", event->event, 141 sdev->device->name); 142 143 switch (event->event) { 144 case IB_EVENT_PORT_ERR: 145 if (event->element.port_num <= sdev->device->phys_port_cnt) { 146 sport = &sdev->port[event->element.port_num - 1]; 147 sport->lid = 0; 148 sport->sm_lid = 0; 149 } 150 break; 151 case IB_EVENT_PORT_ACTIVE: 152 case IB_EVENT_LID_CHANGE: 153 case IB_EVENT_PKEY_CHANGE: 154 case IB_EVENT_SM_CHANGE: 155 case IB_EVENT_CLIENT_REREGISTER: 156 case IB_EVENT_GID_CHANGE: 157 /* Refresh port data asynchronously. */ 158 if (event->element.port_num <= sdev->device->phys_port_cnt) { 159 sport = &sdev->port[event->element.port_num - 1]; 160 if (!sport->lid && !sport->sm_lid) 161 schedule_work(&sport->work); 162 } 163 break; 164 default: 165 pr_err("received unrecognized IB event %d\n", 166 event->event); 167 break; 168 } 169 } 170 171 /** 172 * srpt_srq_event() - SRQ event callback function. 173 */ 174 static void srpt_srq_event(struct ib_event *event, void *ctx) 175 { 176 pr_info("SRQ event %d\n", event->event); 177 } 178 179 static const char *get_ch_state_name(enum rdma_ch_state s) 180 { 181 switch (s) { 182 case CH_CONNECTING: 183 return "connecting"; 184 case CH_LIVE: 185 return "live"; 186 case CH_DISCONNECTING: 187 return "disconnecting"; 188 case CH_DRAINING: 189 return "draining"; 190 case CH_DISCONNECTED: 191 return "disconnected"; 192 } 193 return "???"; 194 } 195 196 /** 197 * srpt_qp_event() - QP event callback function. 198 */ 199 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 200 { 201 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 202 event->event, ch->cm_id, ch->sess_name, ch->state); 203 204 switch (event->event) { 205 case IB_EVENT_COMM_EST: 206 ib_cm_notify(ch->cm_id, event->event); 207 break; 208 case IB_EVENT_QP_LAST_WQE_REACHED: 209 pr_debug("%s-%d, state %s: received Last WQE event.\n", 210 ch->sess_name, ch->qp->qp_num, 211 get_ch_state_name(ch->state)); 212 break; 213 default: 214 pr_err("received unrecognized IB QP event %d\n", event->event); 215 break; 216 } 217 } 218 219 /** 220 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 221 * 222 * @slot: one-based slot number. 223 * @value: four-bit value. 224 * 225 * Copies the lowest four bits of value in element slot of the array of four 226 * bit elements called c_list (controller list). The index slot is one-based. 227 */ 228 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 229 { 230 u16 id; 231 u8 tmp; 232 233 id = (slot - 1) / 2; 234 if (slot & 0x1) { 235 tmp = c_list[id] & 0xf; 236 c_list[id] = (value << 4) | tmp; 237 } else { 238 tmp = c_list[id] & 0xf0; 239 c_list[id] = (value & 0xf) | tmp; 240 } 241 } 242 243 /** 244 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 245 * 246 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 247 * Specification. 248 */ 249 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 250 { 251 struct ib_class_port_info *cif; 252 253 cif = (struct ib_class_port_info *)mad->data; 254 memset(cif, 0, sizeof(*cif)); 255 cif->base_version = 1; 256 cif->class_version = 1; 257 258 ib_set_cpi_resp_time(cif, 20); 259 mad->mad_hdr.status = 0; 260 } 261 262 /** 263 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 264 * 265 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 266 * Specification. See also section B.7, table B.6 in the SRP r16a document. 267 */ 268 static void srpt_get_iou(struct ib_dm_mad *mad) 269 { 270 struct ib_dm_iou_info *ioui; 271 u8 slot; 272 int i; 273 274 ioui = (struct ib_dm_iou_info *)mad->data; 275 ioui->change_id = cpu_to_be16(1); 276 ioui->max_controllers = 16; 277 278 /* set present for slot 1 and empty for the rest */ 279 srpt_set_ioc(ioui->controller_list, 1, 1); 280 for (i = 1, slot = 2; i < 16; i++, slot++) 281 srpt_set_ioc(ioui->controller_list, slot, 0); 282 283 mad->mad_hdr.status = 0; 284 } 285 286 /** 287 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 288 * 289 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 290 * Architecture Specification. See also section B.7, table B.7 in the SRP 291 * r16a document. 292 */ 293 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 294 struct ib_dm_mad *mad) 295 { 296 struct srpt_device *sdev = sport->sdev; 297 struct ib_dm_ioc_profile *iocp; 298 299 iocp = (struct ib_dm_ioc_profile *)mad->data; 300 301 if (!slot || slot > 16) { 302 mad->mad_hdr.status 303 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 304 return; 305 } 306 307 if (slot > 2) { 308 mad->mad_hdr.status 309 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 310 return; 311 } 312 313 memset(iocp, 0, sizeof(*iocp)); 314 strcpy(iocp->id_string, SRPT_ID_STRING); 315 iocp->guid = cpu_to_be64(srpt_service_guid); 316 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 317 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id); 318 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver); 319 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 320 iocp->subsys_device_id = 0x0; 321 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 322 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); 323 iocp->protocol = cpu_to_be16(SRP_PROTOCOL); 324 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); 325 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 326 iocp->rdma_read_depth = 4; 327 iocp->send_size = cpu_to_be32(srp_max_req_size); 328 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 329 1U << 24)); 330 iocp->num_svc_entries = 1; 331 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 332 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 333 334 mad->mad_hdr.status = 0; 335 } 336 337 /** 338 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 339 * 340 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 341 * Specification. See also section B.7, table B.8 in the SRP r16a document. 342 */ 343 static void srpt_get_svc_entries(u64 ioc_guid, 344 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 345 { 346 struct ib_dm_svc_entries *svc_entries; 347 348 WARN_ON(!ioc_guid); 349 350 if (!slot || slot > 16) { 351 mad->mad_hdr.status 352 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 353 return; 354 } 355 356 if (slot > 2 || lo > hi || hi > 1) { 357 mad->mad_hdr.status 358 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 359 return; 360 } 361 362 svc_entries = (struct ib_dm_svc_entries *)mad->data; 363 memset(svc_entries, 0, sizeof(*svc_entries)); 364 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 365 snprintf(svc_entries->service_entries[0].name, 366 sizeof(svc_entries->service_entries[0].name), 367 "%s%016llx", 368 SRP_SERVICE_NAME_PREFIX, 369 ioc_guid); 370 371 mad->mad_hdr.status = 0; 372 } 373 374 /** 375 * srpt_mgmt_method_get() - Process a received management datagram. 376 * @sp: source port through which the MAD has been received. 377 * @rq_mad: received MAD. 378 * @rsp_mad: response MAD. 379 */ 380 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 381 struct ib_dm_mad *rsp_mad) 382 { 383 u16 attr_id; 384 u32 slot; 385 u8 hi, lo; 386 387 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 388 switch (attr_id) { 389 case DM_ATTR_CLASS_PORT_INFO: 390 srpt_get_class_port_info(rsp_mad); 391 break; 392 case DM_ATTR_IOU_INFO: 393 srpt_get_iou(rsp_mad); 394 break; 395 case DM_ATTR_IOC_PROFILE: 396 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 397 srpt_get_ioc(sp, slot, rsp_mad); 398 break; 399 case DM_ATTR_SVC_ENTRIES: 400 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 401 hi = (u8) ((slot >> 8) & 0xff); 402 lo = (u8) (slot & 0xff); 403 slot = (u16) ((slot >> 16) & 0xffff); 404 srpt_get_svc_entries(srpt_service_guid, 405 slot, hi, lo, rsp_mad); 406 break; 407 default: 408 rsp_mad->mad_hdr.status = 409 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 410 break; 411 } 412 } 413 414 /** 415 * srpt_mad_send_handler() - Post MAD-send callback function. 416 */ 417 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 418 struct ib_mad_send_wc *mad_wc) 419 { 420 ib_destroy_ah(mad_wc->send_buf->ah); 421 ib_free_send_mad(mad_wc->send_buf); 422 } 423 424 /** 425 * srpt_mad_recv_handler() - MAD reception callback function. 426 */ 427 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 428 struct ib_mad_send_buf *send_buf, 429 struct ib_mad_recv_wc *mad_wc) 430 { 431 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 432 struct ib_ah *ah; 433 struct ib_mad_send_buf *rsp; 434 struct ib_dm_mad *dm_mad; 435 436 if (!mad_wc || !mad_wc->recv_buf.mad) 437 return; 438 439 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 440 mad_wc->recv_buf.grh, mad_agent->port_num); 441 if (IS_ERR(ah)) 442 goto err; 443 444 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 445 446 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 447 mad_wc->wc->pkey_index, 0, 448 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 449 GFP_KERNEL, 450 IB_MGMT_BASE_VERSION); 451 if (IS_ERR(rsp)) 452 goto err_rsp; 453 454 rsp->ah = ah; 455 456 dm_mad = rsp->mad; 457 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad)); 458 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 459 dm_mad->mad_hdr.status = 0; 460 461 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 462 case IB_MGMT_METHOD_GET: 463 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 464 break; 465 case IB_MGMT_METHOD_SET: 466 dm_mad->mad_hdr.status = 467 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 468 break; 469 default: 470 dm_mad->mad_hdr.status = 471 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 472 break; 473 } 474 475 if (!ib_post_send_mad(rsp, NULL)) { 476 ib_free_recv_mad(mad_wc); 477 /* will destroy_ah & free_send_mad in send completion */ 478 return; 479 } 480 481 ib_free_send_mad(rsp); 482 483 err_rsp: 484 ib_destroy_ah(ah); 485 err: 486 ib_free_recv_mad(mad_wc); 487 } 488 489 /** 490 * srpt_refresh_port() - Configure a HCA port. 491 * 492 * Enable InfiniBand management datagram processing, update the cached sm_lid, 493 * lid and gid values, and register a callback function for processing MADs 494 * on the specified port. 495 * 496 * Note: It is safe to call this function more than once for the same port. 497 */ 498 static int srpt_refresh_port(struct srpt_port *sport) 499 { 500 struct ib_mad_reg_req reg_req; 501 struct ib_port_modify port_modify; 502 struct ib_port_attr port_attr; 503 int ret; 504 505 memset(&port_modify, 0, sizeof(port_modify)); 506 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 507 port_modify.clr_port_cap_mask = 0; 508 509 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 510 if (ret) 511 goto err_mod_port; 512 513 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 514 if (ret) 515 goto err_query_port; 516 517 sport->sm_lid = port_attr.sm_lid; 518 sport->lid = port_attr.lid; 519 520 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid, 521 NULL); 522 if (ret) 523 goto err_query_port; 524 525 if (!sport->mad_agent) { 526 memset(®_req, 0, sizeof(reg_req)); 527 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 528 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 529 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 530 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 531 532 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 533 sport->port, 534 IB_QPT_GSI, 535 ®_req, 0, 536 srpt_mad_send_handler, 537 srpt_mad_recv_handler, 538 sport, 0); 539 if (IS_ERR(sport->mad_agent)) { 540 ret = PTR_ERR(sport->mad_agent); 541 sport->mad_agent = NULL; 542 goto err_query_port; 543 } 544 } 545 546 return 0; 547 548 err_query_port: 549 550 port_modify.set_port_cap_mask = 0; 551 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 552 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 553 554 err_mod_port: 555 556 return ret; 557 } 558 559 /** 560 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 561 * 562 * Note: It is safe to call this function more than once for the same device. 563 */ 564 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 565 { 566 struct ib_port_modify port_modify = { 567 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 568 }; 569 struct srpt_port *sport; 570 int i; 571 572 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 573 sport = &sdev->port[i - 1]; 574 WARN_ON(sport->port != i); 575 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 576 pr_err("disabling MAD processing failed.\n"); 577 if (sport->mad_agent) { 578 ib_unregister_mad_agent(sport->mad_agent); 579 sport->mad_agent = NULL; 580 } 581 } 582 } 583 584 /** 585 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 586 */ 587 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 588 int ioctx_size, int dma_size, 589 enum dma_data_direction dir) 590 { 591 struct srpt_ioctx *ioctx; 592 593 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 594 if (!ioctx) 595 goto err; 596 597 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 598 if (!ioctx->buf) 599 goto err_free_ioctx; 600 601 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 602 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 603 goto err_free_buf; 604 605 return ioctx; 606 607 err_free_buf: 608 kfree(ioctx->buf); 609 err_free_ioctx: 610 kfree(ioctx); 611 err: 612 return NULL; 613 } 614 615 /** 616 * srpt_free_ioctx() - Free an SRPT I/O context structure. 617 */ 618 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 619 int dma_size, enum dma_data_direction dir) 620 { 621 if (!ioctx) 622 return; 623 624 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 625 kfree(ioctx->buf); 626 kfree(ioctx); 627 } 628 629 /** 630 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 631 * @sdev: Device to allocate the I/O context ring for. 632 * @ring_size: Number of elements in the I/O context ring. 633 * @ioctx_size: I/O context size. 634 * @dma_size: DMA buffer size. 635 * @dir: DMA data direction. 636 */ 637 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 638 int ring_size, int ioctx_size, 639 int dma_size, enum dma_data_direction dir) 640 { 641 struct srpt_ioctx **ring; 642 int i; 643 644 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 645 && ioctx_size != sizeof(struct srpt_send_ioctx)); 646 647 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 648 if (!ring) 649 goto out; 650 for (i = 0; i < ring_size; ++i) { 651 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 652 if (!ring[i]) 653 goto err; 654 ring[i]->index = i; 655 } 656 goto out; 657 658 err: 659 while (--i >= 0) 660 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 661 kfree(ring); 662 ring = NULL; 663 out: 664 return ring; 665 } 666 667 /** 668 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 669 */ 670 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 671 struct srpt_device *sdev, int ring_size, 672 int dma_size, enum dma_data_direction dir) 673 { 674 int i; 675 676 for (i = 0; i < ring_size; ++i) 677 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 678 kfree(ioctx_ring); 679 } 680 681 /** 682 * srpt_get_cmd_state() - Get the state of a SCSI command. 683 */ 684 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 685 { 686 enum srpt_command_state state; 687 unsigned long flags; 688 689 BUG_ON(!ioctx); 690 691 spin_lock_irqsave(&ioctx->spinlock, flags); 692 state = ioctx->state; 693 spin_unlock_irqrestore(&ioctx->spinlock, flags); 694 return state; 695 } 696 697 /** 698 * srpt_set_cmd_state() - Set the state of a SCSI command. 699 * 700 * Does not modify the state of aborted commands. Returns the previous command 701 * state. 702 */ 703 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 704 enum srpt_command_state new) 705 { 706 enum srpt_command_state previous; 707 unsigned long flags; 708 709 BUG_ON(!ioctx); 710 711 spin_lock_irqsave(&ioctx->spinlock, flags); 712 previous = ioctx->state; 713 if (previous != SRPT_STATE_DONE) 714 ioctx->state = new; 715 spin_unlock_irqrestore(&ioctx->spinlock, flags); 716 717 return previous; 718 } 719 720 /** 721 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 722 * 723 * Returns true if and only if the previous command state was equal to 'old'. 724 */ 725 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 726 enum srpt_command_state old, 727 enum srpt_command_state new) 728 { 729 enum srpt_command_state previous; 730 unsigned long flags; 731 732 WARN_ON(!ioctx); 733 WARN_ON(old == SRPT_STATE_DONE); 734 WARN_ON(new == SRPT_STATE_NEW); 735 736 spin_lock_irqsave(&ioctx->spinlock, flags); 737 previous = ioctx->state; 738 if (previous == old) 739 ioctx->state = new; 740 spin_unlock_irqrestore(&ioctx->spinlock, flags); 741 return previous == old; 742 } 743 744 /** 745 * srpt_post_recv() - Post an IB receive request. 746 */ 747 static int srpt_post_recv(struct srpt_device *sdev, 748 struct srpt_recv_ioctx *ioctx) 749 { 750 struct ib_sge list; 751 struct ib_recv_wr wr, *bad_wr; 752 753 BUG_ON(!sdev); 754 list.addr = ioctx->ioctx.dma; 755 list.length = srp_max_req_size; 756 list.lkey = sdev->pd->local_dma_lkey; 757 758 ioctx->ioctx.cqe.done = srpt_recv_done; 759 wr.wr_cqe = &ioctx->ioctx.cqe; 760 wr.next = NULL; 761 wr.sg_list = &list; 762 wr.num_sge = 1; 763 764 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 765 } 766 767 /** 768 * srpt_zerolength_write() - Perform a zero-length RDMA write. 769 * 770 * A quote from the InfiniBand specification: C9-88: For an HCA responder 771 * using Reliable Connection service, for each zero-length RDMA READ or WRITE 772 * request, the R_Key shall not be validated, even if the request includes 773 * Immediate data. 774 */ 775 static int srpt_zerolength_write(struct srpt_rdma_ch *ch) 776 { 777 struct ib_send_wr wr, *bad_wr; 778 779 memset(&wr, 0, sizeof(wr)); 780 wr.opcode = IB_WR_RDMA_WRITE; 781 wr.wr_cqe = &ch->zw_cqe; 782 wr.send_flags = IB_SEND_SIGNALED; 783 return ib_post_send(ch->qp, &wr, &bad_wr); 784 } 785 786 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc) 787 { 788 struct srpt_rdma_ch *ch = cq->cq_context; 789 790 if (wc->status == IB_WC_SUCCESS) { 791 srpt_process_wait_list(ch); 792 } else { 793 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 794 schedule_work(&ch->release_work); 795 else 796 WARN_ONCE(1, "%s-%d\n", ch->sess_name, ch->qp->qp_num); 797 } 798 } 799 800 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx, 801 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg, 802 unsigned *sg_cnt) 803 { 804 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 805 struct srpt_rdma_ch *ch = ioctx->ch; 806 struct scatterlist *prev = NULL; 807 unsigned prev_nents; 808 int ret, i; 809 810 if (nbufs == 1) { 811 ioctx->rw_ctxs = &ioctx->s_rw_ctx; 812 } else { 813 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs), 814 GFP_KERNEL); 815 if (!ioctx->rw_ctxs) 816 return -ENOMEM; 817 } 818 819 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) { 820 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 821 u64 remote_addr = be64_to_cpu(db->va); 822 u32 size = be32_to_cpu(db->len); 823 u32 rkey = be32_to_cpu(db->key); 824 825 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false, 826 i < nbufs - 1); 827 if (ret) 828 goto unwind; 829 830 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port, 831 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir); 832 if (ret < 0) { 833 target_free_sgl(ctx->sg, ctx->nents); 834 goto unwind; 835 } 836 837 ioctx->n_rdma += ret; 838 ioctx->n_rw_ctx++; 839 840 if (prev) { 841 sg_unmark_end(&prev[prev_nents - 1]); 842 sg_chain(prev, prev_nents + 1, ctx->sg); 843 } else { 844 *sg = ctx->sg; 845 } 846 847 prev = ctx->sg; 848 prev_nents = ctx->nents; 849 850 *sg_cnt += ctx->nents; 851 } 852 853 return 0; 854 855 unwind: 856 while (--i >= 0) { 857 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 858 859 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 860 ctx->sg, ctx->nents, dir); 861 target_free_sgl(ctx->sg, ctx->nents); 862 } 863 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 864 kfree(ioctx->rw_ctxs); 865 return ret; 866 } 867 868 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch, 869 struct srpt_send_ioctx *ioctx) 870 { 871 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 872 int i; 873 874 for (i = 0; i < ioctx->n_rw_ctx; i++) { 875 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 876 877 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 878 ctx->sg, ctx->nents, dir); 879 target_free_sgl(ctx->sg, ctx->nents); 880 } 881 882 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 883 kfree(ioctx->rw_ctxs); 884 } 885 886 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd) 887 { 888 /* 889 * The pointer computations below will only be compiled correctly 890 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 891 * whether srp_cmd::add_data has been declared as a byte pointer. 892 */ 893 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) && 894 !__same_type(srp_cmd->add_data[0], (u8)0)); 895 896 /* 897 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 898 * CDB LENGTH' field are reserved and the size in bytes of this field 899 * is four times the value specified in bits 3..7. Hence the "& ~3". 900 */ 901 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3); 902 } 903 904 /** 905 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 906 * @ioctx: Pointer to the I/O context associated with the request. 907 * @srp_cmd: Pointer to the SRP_CMD request data. 908 * @dir: Pointer to the variable to which the transfer direction will be 909 * written. 910 * @data_len: Pointer to the variable to which the total data length of all 911 * descriptors in the SRP_CMD request will be written. 912 * 913 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 914 * 915 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 916 * -ENOMEM when memory allocation fails and zero upon success. 917 */ 918 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 919 struct srp_cmd *srp_cmd, enum dma_data_direction *dir, 920 struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len) 921 { 922 BUG_ON(!dir); 923 BUG_ON(!data_len); 924 925 /* 926 * The lower four bits of the buffer format field contain the DATA-IN 927 * buffer descriptor format, and the highest four bits contain the 928 * DATA-OUT buffer descriptor format. 929 */ 930 if (srp_cmd->buf_fmt & 0xf) 931 /* DATA-IN: transfer data from target to initiator (read). */ 932 *dir = DMA_FROM_DEVICE; 933 else if (srp_cmd->buf_fmt >> 4) 934 /* DATA-OUT: transfer data from initiator to target (write). */ 935 *dir = DMA_TO_DEVICE; 936 else 937 *dir = DMA_NONE; 938 939 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */ 940 ioctx->cmd.data_direction = *dir; 941 942 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 943 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 944 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd); 945 946 *data_len = be32_to_cpu(db->len); 947 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt); 948 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 949 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 950 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd); 951 int nbufs = be32_to_cpu(idb->table_desc.len) / 952 sizeof(struct srp_direct_buf); 953 954 if (nbufs > 955 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 956 pr_err("received unsupported SRP_CMD request" 957 " type (%u out + %u in != %u / %zu)\n", 958 srp_cmd->data_out_desc_cnt, 959 srp_cmd->data_in_desc_cnt, 960 be32_to_cpu(idb->table_desc.len), 961 sizeof(struct srp_direct_buf)); 962 return -EINVAL; 963 } 964 965 *data_len = be32_to_cpu(idb->len); 966 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs, 967 sg, sg_cnt); 968 } else { 969 *data_len = 0; 970 return 0; 971 } 972 } 973 974 /** 975 * srpt_init_ch_qp() - Initialize queue pair attributes. 976 * 977 * Initialized the attributes of queue pair 'qp' by allowing local write, 978 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 979 */ 980 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 981 { 982 struct ib_qp_attr *attr; 983 int ret; 984 985 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 986 if (!attr) 987 return -ENOMEM; 988 989 attr->qp_state = IB_QPS_INIT; 990 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 991 IB_ACCESS_REMOTE_WRITE; 992 attr->port_num = ch->sport->port; 993 attr->pkey_index = 0; 994 995 ret = ib_modify_qp(qp, attr, 996 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 997 IB_QP_PKEY_INDEX); 998 999 kfree(attr); 1000 return ret; 1001 } 1002 1003 /** 1004 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 1005 * @ch: channel of the queue pair. 1006 * @qp: queue pair to change the state of. 1007 * 1008 * Returns zero upon success and a negative value upon failure. 1009 * 1010 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1011 * If this structure ever becomes larger, it might be necessary to allocate 1012 * it dynamically instead of on the stack. 1013 */ 1014 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1015 { 1016 struct ib_qp_attr qp_attr; 1017 int attr_mask; 1018 int ret; 1019 1020 qp_attr.qp_state = IB_QPS_RTR; 1021 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1022 if (ret) 1023 goto out; 1024 1025 qp_attr.max_dest_rd_atomic = 4; 1026 1027 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1028 1029 out: 1030 return ret; 1031 } 1032 1033 /** 1034 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1035 * @ch: channel of the queue pair. 1036 * @qp: queue pair to change the state of. 1037 * 1038 * Returns zero upon success and a negative value upon failure. 1039 * 1040 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1041 * If this structure ever becomes larger, it might be necessary to allocate 1042 * it dynamically instead of on the stack. 1043 */ 1044 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1045 { 1046 struct ib_qp_attr qp_attr; 1047 int attr_mask; 1048 int ret; 1049 1050 qp_attr.qp_state = IB_QPS_RTS; 1051 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1052 if (ret) 1053 goto out; 1054 1055 qp_attr.max_rd_atomic = 4; 1056 1057 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1058 1059 out: 1060 return ret; 1061 } 1062 1063 /** 1064 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1065 */ 1066 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1067 { 1068 struct ib_qp_attr qp_attr; 1069 1070 qp_attr.qp_state = IB_QPS_ERR; 1071 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1072 } 1073 1074 /** 1075 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1076 */ 1077 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1078 { 1079 struct srpt_send_ioctx *ioctx; 1080 unsigned long flags; 1081 1082 BUG_ON(!ch); 1083 1084 ioctx = NULL; 1085 spin_lock_irqsave(&ch->spinlock, flags); 1086 if (!list_empty(&ch->free_list)) { 1087 ioctx = list_first_entry(&ch->free_list, 1088 struct srpt_send_ioctx, free_list); 1089 list_del(&ioctx->free_list); 1090 } 1091 spin_unlock_irqrestore(&ch->spinlock, flags); 1092 1093 if (!ioctx) 1094 return ioctx; 1095 1096 BUG_ON(ioctx->ch != ch); 1097 spin_lock_init(&ioctx->spinlock); 1098 ioctx->state = SRPT_STATE_NEW; 1099 ioctx->n_rdma = 0; 1100 ioctx->n_rw_ctx = 0; 1101 init_completion(&ioctx->tx_done); 1102 ioctx->queue_status_only = false; 1103 /* 1104 * transport_init_se_cmd() does not initialize all fields, so do it 1105 * here. 1106 */ 1107 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1108 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1109 1110 return ioctx; 1111 } 1112 1113 /** 1114 * srpt_abort_cmd() - Abort a SCSI command. 1115 * @ioctx: I/O context associated with the SCSI command. 1116 * @context: Preferred execution context. 1117 */ 1118 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1119 { 1120 enum srpt_command_state state; 1121 unsigned long flags; 1122 1123 BUG_ON(!ioctx); 1124 1125 /* 1126 * If the command is in a state where the target core is waiting for 1127 * the ib_srpt driver, change the state to the next state. 1128 */ 1129 1130 spin_lock_irqsave(&ioctx->spinlock, flags); 1131 state = ioctx->state; 1132 switch (state) { 1133 case SRPT_STATE_NEED_DATA: 1134 ioctx->state = SRPT_STATE_DATA_IN; 1135 break; 1136 case SRPT_STATE_CMD_RSP_SENT: 1137 case SRPT_STATE_MGMT_RSP_SENT: 1138 ioctx->state = SRPT_STATE_DONE; 1139 break; 1140 default: 1141 WARN_ONCE(true, "%s: unexpected I/O context state %d\n", 1142 __func__, state); 1143 break; 1144 } 1145 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1146 1147 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1148 ioctx->cmd.tag); 1149 1150 switch (state) { 1151 case SRPT_STATE_NEW: 1152 case SRPT_STATE_DATA_IN: 1153 case SRPT_STATE_MGMT: 1154 case SRPT_STATE_DONE: 1155 /* 1156 * Do nothing - defer abort processing until 1157 * srpt_queue_response() is invoked. 1158 */ 1159 break; 1160 case SRPT_STATE_NEED_DATA: 1161 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag); 1162 transport_generic_request_failure(&ioctx->cmd, 1163 TCM_CHECK_CONDITION_ABORT_CMD); 1164 break; 1165 case SRPT_STATE_CMD_RSP_SENT: 1166 /* 1167 * SRP_RSP sending failed or the SRP_RSP send completion has 1168 * not been received in time. 1169 */ 1170 transport_generic_free_cmd(&ioctx->cmd, 0); 1171 break; 1172 case SRPT_STATE_MGMT_RSP_SENT: 1173 transport_generic_free_cmd(&ioctx->cmd, 0); 1174 break; 1175 default: 1176 WARN(1, "Unexpected command state (%d)", state); 1177 break; 1178 } 1179 1180 return state; 1181 } 1182 1183 /** 1184 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1185 * the data that has been transferred via IB RDMA had to be postponed until the 1186 * check_stop_free() callback. None of this is necessary anymore and needs to 1187 * be cleaned up. 1188 */ 1189 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc) 1190 { 1191 struct srpt_rdma_ch *ch = cq->cq_context; 1192 struct srpt_send_ioctx *ioctx = 1193 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe); 1194 1195 WARN_ON(ioctx->n_rdma <= 0); 1196 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1197 ioctx->n_rdma = 0; 1198 1199 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1200 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n", 1201 ioctx, wc->status); 1202 srpt_abort_cmd(ioctx); 1203 return; 1204 } 1205 1206 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1207 SRPT_STATE_DATA_IN)) 1208 target_execute_cmd(&ioctx->cmd); 1209 else 1210 pr_err("%s[%d]: wrong state = %d\n", __func__, 1211 __LINE__, srpt_get_cmd_state(ioctx)); 1212 } 1213 1214 /** 1215 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1216 * @ch: RDMA channel through which the request has been received. 1217 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1218 * be built in the buffer ioctx->buf points at and hence this function will 1219 * overwrite the request data. 1220 * @tag: tag of the request for which this response is being generated. 1221 * @status: value for the STATUS field of the SRP_RSP information unit. 1222 * 1223 * Returns the size in bytes of the SRP_RSP response. 1224 * 1225 * An SRP_RSP response contains a SCSI status or service response. See also 1226 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1227 * response. See also SPC-2 for more information about sense data. 1228 */ 1229 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1230 struct srpt_send_ioctx *ioctx, u64 tag, 1231 int status) 1232 { 1233 struct srp_rsp *srp_rsp; 1234 const u8 *sense_data; 1235 int sense_data_len, max_sense_len; 1236 1237 /* 1238 * The lowest bit of all SAM-3 status codes is zero (see also 1239 * paragraph 5.3 in SAM-3). 1240 */ 1241 WARN_ON(status & 1); 1242 1243 srp_rsp = ioctx->ioctx.buf; 1244 BUG_ON(!srp_rsp); 1245 1246 sense_data = ioctx->sense_data; 1247 sense_data_len = ioctx->cmd.scsi_sense_length; 1248 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1249 1250 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1251 srp_rsp->opcode = SRP_RSP; 1252 srp_rsp->req_lim_delta = 1253 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1254 srp_rsp->tag = tag; 1255 srp_rsp->status = status; 1256 1257 if (sense_data_len) { 1258 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1259 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1260 if (sense_data_len > max_sense_len) { 1261 pr_warn("truncated sense data from %d to %d" 1262 " bytes\n", sense_data_len, max_sense_len); 1263 sense_data_len = max_sense_len; 1264 } 1265 1266 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1267 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1268 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1269 } 1270 1271 return sizeof(*srp_rsp) + sense_data_len; 1272 } 1273 1274 /** 1275 * srpt_build_tskmgmt_rsp() - Build a task management response. 1276 * @ch: RDMA channel through which the request has been received. 1277 * @ioctx: I/O context in which the SRP_RSP response will be built. 1278 * @rsp_code: RSP_CODE that will be stored in the response. 1279 * @tag: Tag of the request for which this response is being generated. 1280 * 1281 * Returns the size in bytes of the SRP_RSP response. 1282 * 1283 * An SRP_RSP response contains a SCSI status or service response. See also 1284 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1285 * response. 1286 */ 1287 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1288 struct srpt_send_ioctx *ioctx, 1289 u8 rsp_code, u64 tag) 1290 { 1291 struct srp_rsp *srp_rsp; 1292 int resp_data_len; 1293 int resp_len; 1294 1295 resp_data_len = 4; 1296 resp_len = sizeof(*srp_rsp) + resp_data_len; 1297 1298 srp_rsp = ioctx->ioctx.buf; 1299 BUG_ON(!srp_rsp); 1300 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1301 1302 srp_rsp->opcode = SRP_RSP; 1303 srp_rsp->req_lim_delta = 1304 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1305 srp_rsp->tag = tag; 1306 1307 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1308 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1309 srp_rsp->data[3] = rsp_code; 1310 1311 return resp_len; 1312 } 1313 1314 static int srpt_check_stop_free(struct se_cmd *cmd) 1315 { 1316 struct srpt_send_ioctx *ioctx = container_of(cmd, 1317 struct srpt_send_ioctx, cmd); 1318 1319 return target_put_sess_cmd(&ioctx->cmd); 1320 } 1321 1322 /** 1323 * srpt_handle_cmd() - Process SRP_CMD. 1324 */ 1325 static void srpt_handle_cmd(struct srpt_rdma_ch *ch, 1326 struct srpt_recv_ioctx *recv_ioctx, 1327 struct srpt_send_ioctx *send_ioctx) 1328 { 1329 struct se_cmd *cmd; 1330 struct srp_cmd *srp_cmd; 1331 struct scatterlist *sg = NULL; 1332 unsigned sg_cnt = 0; 1333 u64 data_len; 1334 enum dma_data_direction dir; 1335 int rc; 1336 1337 BUG_ON(!send_ioctx); 1338 1339 srp_cmd = recv_ioctx->ioctx.buf; 1340 cmd = &send_ioctx->cmd; 1341 cmd->tag = srp_cmd->tag; 1342 1343 switch (srp_cmd->task_attr) { 1344 case SRP_CMD_SIMPLE_Q: 1345 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1346 break; 1347 case SRP_CMD_ORDERED_Q: 1348 default: 1349 cmd->sam_task_attr = TCM_ORDERED_TAG; 1350 break; 1351 case SRP_CMD_HEAD_OF_Q: 1352 cmd->sam_task_attr = TCM_HEAD_TAG; 1353 break; 1354 case SRP_CMD_ACA: 1355 cmd->sam_task_attr = TCM_ACA_TAG; 1356 break; 1357 } 1358 1359 rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt, 1360 &data_len); 1361 if (rc) { 1362 if (rc != -EAGAIN) { 1363 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1364 srp_cmd->tag); 1365 } 1366 goto release_ioctx; 1367 } 1368 1369 rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb, 1370 &send_ioctx->sense_data[0], 1371 scsilun_to_int(&srp_cmd->lun), data_len, 1372 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF, 1373 sg, sg_cnt, NULL, 0, NULL, 0); 1374 if (rc != 0) { 1375 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc, 1376 srp_cmd->tag); 1377 goto release_ioctx; 1378 } 1379 return; 1380 1381 release_ioctx: 1382 send_ioctx->state = SRPT_STATE_DONE; 1383 srpt_release_cmd(cmd); 1384 } 1385 1386 static int srp_tmr_to_tcm(int fn) 1387 { 1388 switch (fn) { 1389 case SRP_TSK_ABORT_TASK: 1390 return TMR_ABORT_TASK; 1391 case SRP_TSK_ABORT_TASK_SET: 1392 return TMR_ABORT_TASK_SET; 1393 case SRP_TSK_CLEAR_TASK_SET: 1394 return TMR_CLEAR_TASK_SET; 1395 case SRP_TSK_LUN_RESET: 1396 return TMR_LUN_RESET; 1397 case SRP_TSK_CLEAR_ACA: 1398 return TMR_CLEAR_ACA; 1399 default: 1400 return -1; 1401 } 1402 } 1403 1404 /** 1405 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1406 * 1407 * Returns 0 if and only if the request will be processed by the target core. 1408 * 1409 * For more information about SRP_TSK_MGMT information units, see also section 1410 * 6.7 in the SRP r16a document. 1411 */ 1412 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1413 struct srpt_recv_ioctx *recv_ioctx, 1414 struct srpt_send_ioctx *send_ioctx) 1415 { 1416 struct srp_tsk_mgmt *srp_tsk; 1417 struct se_cmd *cmd; 1418 struct se_session *sess = ch->sess; 1419 int tcm_tmr; 1420 int rc; 1421 1422 BUG_ON(!send_ioctx); 1423 1424 srp_tsk = recv_ioctx->ioctx.buf; 1425 cmd = &send_ioctx->cmd; 1426 1427 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1428 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1429 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1430 1431 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1432 send_ioctx->cmd.tag = srp_tsk->tag; 1433 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1434 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, 1435 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr, 1436 GFP_KERNEL, srp_tsk->task_tag, 1437 TARGET_SCF_ACK_KREF); 1438 if (rc != 0) { 1439 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1440 goto fail; 1441 } 1442 return; 1443 fail: 1444 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1445 } 1446 1447 /** 1448 * srpt_handle_new_iu() - Process a newly received information unit. 1449 * @ch: RDMA channel through which the information unit has been received. 1450 * @ioctx: SRPT I/O context associated with the information unit. 1451 */ 1452 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1453 struct srpt_recv_ioctx *recv_ioctx, 1454 struct srpt_send_ioctx *send_ioctx) 1455 { 1456 struct srp_cmd *srp_cmd; 1457 1458 BUG_ON(!ch); 1459 BUG_ON(!recv_ioctx); 1460 1461 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1462 recv_ioctx->ioctx.dma, srp_max_req_size, 1463 DMA_FROM_DEVICE); 1464 1465 if (unlikely(ch->state == CH_CONNECTING)) 1466 goto out_wait; 1467 1468 if (unlikely(ch->state != CH_LIVE)) 1469 return; 1470 1471 srp_cmd = recv_ioctx->ioctx.buf; 1472 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1473 if (!send_ioctx) { 1474 if (!list_empty(&ch->cmd_wait_list)) 1475 goto out_wait; 1476 send_ioctx = srpt_get_send_ioctx(ch); 1477 } 1478 if (unlikely(!send_ioctx)) 1479 goto out_wait; 1480 } 1481 1482 switch (srp_cmd->opcode) { 1483 case SRP_CMD: 1484 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1485 break; 1486 case SRP_TSK_MGMT: 1487 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1488 break; 1489 case SRP_I_LOGOUT: 1490 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1491 break; 1492 case SRP_CRED_RSP: 1493 pr_debug("received SRP_CRED_RSP\n"); 1494 break; 1495 case SRP_AER_RSP: 1496 pr_debug("received SRP_AER_RSP\n"); 1497 break; 1498 case SRP_RSP: 1499 pr_err("Received SRP_RSP\n"); 1500 break; 1501 default: 1502 pr_err("received IU with unknown opcode 0x%x\n", 1503 srp_cmd->opcode); 1504 break; 1505 } 1506 1507 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1508 return; 1509 1510 out_wait: 1511 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1512 } 1513 1514 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1515 { 1516 struct srpt_rdma_ch *ch = cq->cq_context; 1517 struct srpt_recv_ioctx *ioctx = 1518 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe); 1519 1520 if (wc->status == IB_WC_SUCCESS) { 1521 int req_lim; 1522 1523 req_lim = atomic_dec_return(&ch->req_lim); 1524 if (unlikely(req_lim < 0)) 1525 pr_err("req_lim = %d < 0\n", req_lim); 1526 srpt_handle_new_iu(ch, ioctx, NULL); 1527 } else { 1528 pr_info("receiving failed for ioctx %p with status %d\n", 1529 ioctx, wc->status); 1530 } 1531 } 1532 1533 /* 1534 * This function must be called from the context in which RDMA completions are 1535 * processed because it accesses the wait list without protection against 1536 * access from other threads. 1537 */ 1538 static void srpt_process_wait_list(struct srpt_rdma_ch *ch) 1539 { 1540 struct srpt_send_ioctx *ioctx; 1541 1542 while (!list_empty(&ch->cmd_wait_list) && 1543 ch->state >= CH_LIVE && 1544 (ioctx = srpt_get_send_ioctx(ch)) != NULL) { 1545 struct srpt_recv_ioctx *recv_ioctx; 1546 1547 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 1548 struct srpt_recv_ioctx, 1549 wait_list); 1550 list_del(&recv_ioctx->wait_list); 1551 srpt_handle_new_iu(ch, recv_ioctx, ioctx); 1552 } 1553 } 1554 1555 /** 1556 * Note: Although this has not yet been observed during tests, at least in 1557 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1558 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1559 * value in each response is set to one, and it is possible that this response 1560 * makes the initiator send a new request before the send completion for that 1561 * response has been processed. This could e.g. happen if the call to 1562 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1563 * if IB retransmission causes generation of the send completion to be 1564 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1565 * are queued on cmd_wait_list. The code below processes these delayed 1566 * requests one at a time. 1567 */ 1568 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc) 1569 { 1570 struct srpt_rdma_ch *ch = cq->cq_context; 1571 struct srpt_send_ioctx *ioctx = 1572 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe); 1573 enum srpt_command_state state; 1574 1575 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1576 1577 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT && 1578 state != SRPT_STATE_MGMT_RSP_SENT); 1579 1580 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 1581 1582 if (wc->status != IB_WC_SUCCESS) 1583 pr_info("sending response for ioctx 0x%p failed" 1584 " with status %d\n", ioctx, wc->status); 1585 1586 if (state != SRPT_STATE_DONE) { 1587 transport_generic_free_cmd(&ioctx->cmd, 0); 1588 } else { 1589 pr_err("IB completion has been received too late for" 1590 " wr_id = %u.\n", ioctx->ioctx.index); 1591 } 1592 1593 srpt_process_wait_list(ch); 1594 } 1595 1596 /** 1597 * srpt_create_ch_ib() - Create receive and send completion queues. 1598 */ 1599 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 1600 { 1601 struct ib_qp_init_attr *qp_init; 1602 struct srpt_port *sport = ch->sport; 1603 struct srpt_device *sdev = sport->sdev; 1604 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 1605 int ret; 1606 1607 WARN_ON(ch->rq_size < 1); 1608 1609 ret = -ENOMEM; 1610 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL); 1611 if (!qp_init) 1612 goto out; 1613 1614 retry: 1615 ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + srp_sq_size, 1616 0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE); 1617 if (IS_ERR(ch->cq)) { 1618 ret = PTR_ERR(ch->cq); 1619 pr_err("failed to create CQ cqe= %d ret= %d\n", 1620 ch->rq_size + srp_sq_size, ret); 1621 goto out; 1622 } 1623 1624 qp_init->qp_context = (void *)ch; 1625 qp_init->event_handler 1626 = (void(*)(struct ib_event *, void*))srpt_qp_event; 1627 qp_init->send_cq = ch->cq; 1628 qp_init->recv_cq = ch->cq; 1629 qp_init->srq = sdev->srq; 1630 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 1631 qp_init->qp_type = IB_QPT_RC; 1632 /* 1633 * We divide up our send queue size into half SEND WRs to send the 1634 * completions, and half R/W contexts to actually do the RDMA 1635 * READ/WRITE transfers. Note that we need to allocate CQ slots for 1636 * both both, as RDMA contexts will also post completions for the 1637 * RDMA READ case. 1638 */ 1639 qp_init->cap.max_send_wr = srp_sq_size / 2; 1640 qp_init->cap.max_rdma_ctxs = srp_sq_size / 2; 1641 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 1642 qp_init->port_num = ch->sport->port; 1643 1644 ch->qp = ib_create_qp(sdev->pd, qp_init); 1645 if (IS_ERR(ch->qp)) { 1646 ret = PTR_ERR(ch->qp); 1647 if (ret == -ENOMEM) { 1648 srp_sq_size /= 2; 1649 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) { 1650 ib_destroy_cq(ch->cq); 1651 goto retry; 1652 } 1653 } 1654 pr_err("failed to create_qp ret= %d\n", ret); 1655 goto err_destroy_cq; 1656 } 1657 1658 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 1659 1660 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1661 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 1662 qp_init->cap.max_send_wr, ch->cm_id); 1663 1664 ret = srpt_init_ch_qp(ch, ch->qp); 1665 if (ret) 1666 goto err_destroy_qp; 1667 1668 out: 1669 kfree(qp_init); 1670 return ret; 1671 1672 err_destroy_qp: 1673 ib_destroy_qp(ch->qp); 1674 err_destroy_cq: 1675 ib_free_cq(ch->cq); 1676 goto out; 1677 } 1678 1679 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 1680 { 1681 ib_destroy_qp(ch->qp); 1682 ib_free_cq(ch->cq); 1683 } 1684 1685 /** 1686 * srpt_close_ch() - Close an RDMA channel. 1687 * 1688 * Make sure all resources associated with the channel will be deallocated at 1689 * an appropriate time. 1690 * 1691 * Returns true if and only if the channel state has been modified into 1692 * CH_DRAINING. 1693 */ 1694 static bool srpt_close_ch(struct srpt_rdma_ch *ch) 1695 { 1696 int ret; 1697 1698 if (!srpt_set_ch_state(ch, CH_DRAINING)) { 1699 pr_debug("%s-%d: already closed\n", ch->sess_name, 1700 ch->qp->qp_num); 1701 return false; 1702 } 1703 1704 kref_get(&ch->kref); 1705 1706 ret = srpt_ch_qp_err(ch); 1707 if (ret < 0) 1708 pr_err("%s-%d: changing queue pair into error state failed: %d\n", 1709 ch->sess_name, ch->qp->qp_num, ret); 1710 1711 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name, 1712 ch->qp->qp_num); 1713 ret = srpt_zerolength_write(ch); 1714 if (ret < 0) { 1715 pr_err("%s-%d: queuing zero-length write failed: %d\n", 1716 ch->sess_name, ch->qp->qp_num, ret); 1717 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 1718 schedule_work(&ch->release_work); 1719 else 1720 WARN_ON_ONCE(true); 1721 } 1722 1723 kref_put(&ch->kref, srpt_free_ch); 1724 1725 return true; 1726 } 1727 1728 /* 1729 * Change the channel state into CH_DISCONNECTING. If a channel has not yet 1730 * reached the connected state, close it. If a channel is in the connected 1731 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is 1732 * the responsibility of the caller to ensure that this function is not 1733 * invoked concurrently with the code that accepts a connection. This means 1734 * that this function must either be invoked from inside a CM callback 1735 * function or that it must be invoked with the srpt_port.mutex held. 1736 */ 1737 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch) 1738 { 1739 int ret; 1740 1741 if (!srpt_set_ch_state(ch, CH_DISCONNECTING)) 1742 return -ENOTCONN; 1743 1744 ret = ib_send_cm_dreq(ch->cm_id, NULL, 0); 1745 if (ret < 0) 1746 ret = ib_send_cm_drep(ch->cm_id, NULL, 0); 1747 1748 if (ret < 0 && srpt_close_ch(ch)) 1749 ret = 0; 1750 1751 return ret; 1752 } 1753 1754 static void __srpt_close_all_ch(struct srpt_device *sdev) 1755 { 1756 struct srpt_rdma_ch *ch; 1757 1758 lockdep_assert_held(&sdev->mutex); 1759 1760 list_for_each_entry(ch, &sdev->rch_list, list) { 1761 if (srpt_disconnect_ch(ch) >= 0) 1762 pr_info("Closing channel %s-%d because target %s has been disabled\n", 1763 ch->sess_name, ch->qp->qp_num, 1764 sdev->device->name); 1765 srpt_close_ch(ch); 1766 } 1767 } 1768 1769 static void srpt_free_ch(struct kref *kref) 1770 { 1771 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref); 1772 1773 kfree(ch); 1774 } 1775 1776 static void srpt_release_channel_work(struct work_struct *w) 1777 { 1778 struct srpt_rdma_ch *ch; 1779 struct srpt_device *sdev; 1780 struct se_session *se_sess; 1781 1782 ch = container_of(w, struct srpt_rdma_ch, release_work); 1783 pr_debug("%s: %s-%d; release_done = %p\n", __func__, ch->sess_name, 1784 ch->qp->qp_num, ch->release_done); 1785 1786 sdev = ch->sport->sdev; 1787 BUG_ON(!sdev); 1788 1789 se_sess = ch->sess; 1790 BUG_ON(!se_sess); 1791 1792 target_sess_cmd_list_set_waiting(se_sess); 1793 target_wait_for_sess_cmds(se_sess); 1794 1795 transport_deregister_session_configfs(se_sess); 1796 transport_deregister_session(se_sess); 1797 ch->sess = NULL; 1798 1799 ib_destroy_cm_id(ch->cm_id); 1800 1801 srpt_destroy_ch_ib(ch); 1802 1803 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 1804 ch->sport->sdev, ch->rq_size, 1805 ch->rsp_size, DMA_TO_DEVICE); 1806 1807 mutex_lock(&sdev->mutex); 1808 list_del_init(&ch->list); 1809 if (ch->release_done) 1810 complete(ch->release_done); 1811 mutex_unlock(&sdev->mutex); 1812 1813 wake_up(&sdev->ch_releaseQ); 1814 1815 kref_put(&ch->kref, srpt_free_ch); 1816 } 1817 1818 /** 1819 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 1820 * 1821 * Ownership of the cm_id is transferred to the target session if this 1822 * functions returns zero. Otherwise the caller remains the owner of cm_id. 1823 */ 1824 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 1825 struct ib_cm_req_event_param *param, 1826 void *private_data) 1827 { 1828 struct srpt_device *sdev = cm_id->context; 1829 struct srpt_port *sport = &sdev->port[param->port - 1]; 1830 struct srp_login_req *req; 1831 struct srp_login_rsp *rsp; 1832 struct srp_login_rej *rej; 1833 struct ib_cm_rep_param *rep_param; 1834 struct srpt_rdma_ch *ch, *tmp_ch; 1835 u32 it_iu_len; 1836 int i, ret = 0; 1837 unsigned char *p; 1838 1839 WARN_ON_ONCE(irqs_disabled()); 1840 1841 if (WARN_ON(!sdev || !private_data)) 1842 return -EINVAL; 1843 1844 req = (struct srp_login_req *)private_data; 1845 1846 it_iu_len = be32_to_cpu(req->req_it_iu_len); 1847 1848 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 1849 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 1850 " (guid=0x%llx:0x%llx)\n", 1851 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 1852 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 1853 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 1854 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 1855 it_iu_len, 1856 param->port, 1857 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 1858 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 1859 1860 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 1861 rej = kzalloc(sizeof(*rej), GFP_KERNEL); 1862 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL); 1863 1864 if (!rsp || !rej || !rep_param) { 1865 ret = -ENOMEM; 1866 goto out; 1867 } 1868 1869 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 1870 rej->reason = cpu_to_be32( 1871 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 1872 ret = -EINVAL; 1873 pr_err("rejected SRP_LOGIN_REQ because its" 1874 " length (%d bytes) is out of range (%d .. %d)\n", 1875 it_iu_len, 64, srp_max_req_size); 1876 goto reject; 1877 } 1878 1879 if (!sport->enabled) { 1880 rej->reason = cpu_to_be32( 1881 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1882 ret = -EINVAL; 1883 pr_err("rejected SRP_LOGIN_REQ because the target port" 1884 " has not yet been enabled\n"); 1885 goto reject; 1886 } 1887 1888 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 1889 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 1890 1891 mutex_lock(&sdev->mutex); 1892 1893 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 1894 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 1895 && !memcmp(ch->t_port_id, req->target_port_id, 16) 1896 && param->port == ch->sport->port 1897 && param->listen_id == ch->sport->sdev->cm_id 1898 && ch->cm_id) { 1899 if (srpt_disconnect_ch(ch) < 0) 1900 continue; 1901 pr_info("Relogin - closed existing channel %s\n", 1902 ch->sess_name); 1903 rsp->rsp_flags = 1904 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 1905 } 1906 } 1907 1908 mutex_unlock(&sdev->mutex); 1909 1910 } else 1911 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 1912 1913 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 1914 || *(__be64 *)(req->target_port_id + 8) != 1915 cpu_to_be64(srpt_service_guid)) { 1916 rej->reason = cpu_to_be32( 1917 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 1918 ret = -ENOMEM; 1919 pr_err("rejected SRP_LOGIN_REQ because it" 1920 " has an invalid target port identifier.\n"); 1921 goto reject; 1922 } 1923 1924 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 1925 if (!ch) { 1926 rej->reason = cpu_to_be32( 1927 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1928 pr_err("rejected SRP_LOGIN_REQ because no memory.\n"); 1929 ret = -ENOMEM; 1930 goto reject; 1931 } 1932 1933 kref_init(&ch->kref); 1934 ch->zw_cqe.done = srpt_zerolength_write_done; 1935 INIT_WORK(&ch->release_work, srpt_release_channel_work); 1936 memcpy(ch->i_port_id, req->initiator_port_id, 16); 1937 memcpy(ch->t_port_id, req->target_port_id, 16); 1938 ch->sport = &sdev->port[param->port - 1]; 1939 ch->cm_id = cm_id; 1940 cm_id->context = ch; 1941 /* 1942 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 1943 * for the SRP protocol to the command queue size. 1944 */ 1945 ch->rq_size = SRPT_RQ_SIZE; 1946 spin_lock_init(&ch->spinlock); 1947 ch->state = CH_CONNECTING; 1948 INIT_LIST_HEAD(&ch->cmd_wait_list); 1949 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 1950 1951 ch->ioctx_ring = (struct srpt_send_ioctx **) 1952 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 1953 sizeof(*ch->ioctx_ring[0]), 1954 ch->rsp_size, DMA_TO_DEVICE); 1955 if (!ch->ioctx_ring) 1956 goto free_ch; 1957 1958 INIT_LIST_HEAD(&ch->free_list); 1959 for (i = 0; i < ch->rq_size; i++) { 1960 ch->ioctx_ring[i]->ch = ch; 1961 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 1962 } 1963 1964 ret = srpt_create_ch_ib(ch); 1965 if (ret) { 1966 rej->reason = cpu_to_be32( 1967 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1968 pr_err("rejected SRP_LOGIN_REQ because creating" 1969 " a new RDMA channel failed.\n"); 1970 goto free_ring; 1971 } 1972 1973 ret = srpt_ch_qp_rtr(ch, ch->qp); 1974 if (ret) { 1975 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1976 pr_err("rejected SRP_LOGIN_REQ because enabling" 1977 " RTR failed (error code = %d)\n", ret); 1978 goto destroy_ib; 1979 } 1980 1981 /* 1982 * Use the initator port identifier as the session name, when 1983 * checking against se_node_acl->initiatorname[] this can be 1984 * with or without preceeding '0x'. 1985 */ 1986 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 1987 be64_to_cpu(*(__be64 *)ch->i_port_id), 1988 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 1989 1990 pr_debug("registering session %s\n", ch->sess_name); 1991 p = &ch->sess_name[0]; 1992 1993 try_again: 1994 ch->sess = target_alloc_session(&sport->port_tpg_1, 0, 0, 1995 TARGET_PROT_NORMAL, p, ch, NULL); 1996 if (IS_ERR(ch->sess)) { 1997 pr_info("Rejected login because no ACL has been" 1998 " configured yet for initiator %s.\n", p); 1999 /* 2000 * XXX: Hack to retry of ch->i_port_id without leading '0x' 2001 */ 2002 if (p == &ch->sess_name[0]) { 2003 p += 2; 2004 goto try_again; 2005 } 2006 rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ? 2007 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES : 2008 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2009 goto destroy_ib; 2010 } 2011 2012 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2013 ch->sess_name, ch->cm_id); 2014 2015 /* create srp_login_response */ 2016 rsp->opcode = SRP_LOGIN_RSP; 2017 rsp->tag = req->tag; 2018 rsp->max_it_iu_len = req->req_it_iu_len; 2019 rsp->max_ti_iu_len = req->req_it_iu_len; 2020 ch->max_ti_iu_len = it_iu_len; 2021 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2022 | SRP_BUF_FORMAT_INDIRECT); 2023 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2024 atomic_set(&ch->req_lim, ch->rq_size); 2025 atomic_set(&ch->req_lim_delta, 0); 2026 2027 /* create cm reply */ 2028 rep_param->qp_num = ch->qp->qp_num; 2029 rep_param->private_data = (void *)rsp; 2030 rep_param->private_data_len = sizeof(*rsp); 2031 rep_param->rnr_retry_count = 7; 2032 rep_param->flow_control = 1; 2033 rep_param->failover_accepted = 0; 2034 rep_param->srq = 1; 2035 rep_param->responder_resources = 4; 2036 rep_param->initiator_depth = 4; 2037 2038 ret = ib_send_cm_rep(cm_id, rep_param); 2039 if (ret) { 2040 pr_err("sending SRP_LOGIN_REQ response failed" 2041 " (error code = %d)\n", ret); 2042 goto release_channel; 2043 } 2044 2045 mutex_lock(&sdev->mutex); 2046 list_add_tail(&ch->list, &sdev->rch_list); 2047 mutex_unlock(&sdev->mutex); 2048 2049 goto out; 2050 2051 release_channel: 2052 srpt_disconnect_ch(ch); 2053 transport_deregister_session_configfs(ch->sess); 2054 transport_deregister_session(ch->sess); 2055 ch->sess = NULL; 2056 2057 destroy_ib: 2058 srpt_destroy_ch_ib(ch); 2059 2060 free_ring: 2061 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2062 ch->sport->sdev, ch->rq_size, 2063 ch->rsp_size, DMA_TO_DEVICE); 2064 free_ch: 2065 kfree(ch); 2066 2067 reject: 2068 rej->opcode = SRP_LOGIN_REJ; 2069 rej->tag = req->tag; 2070 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2071 | SRP_BUF_FORMAT_INDIRECT); 2072 2073 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2074 (void *)rej, sizeof(*rej)); 2075 2076 out: 2077 kfree(rep_param); 2078 kfree(rsp); 2079 kfree(rej); 2080 2081 return ret; 2082 } 2083 2084 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch, 2085 enum ib_cm_rej_reason reason, 2086 const u8 *private_data, 2087 u8 private_data_len) 2088 { 2089 char *priv = NULL; 2090 int i; 2091 2092 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1, 2093 GFP_KERNEL))) { 2094 for (i = 0; i < private_data_len; i++) 2095 sprintf(priv + 3 * i, " %02x", private_data[i]); 2096 } 2097 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n", 2098 ch->sess_name, ch->qp->qp_num, reason, private_data_len ? 2099 "; private data" : "", priv ? priv : " (?)"); 2100 kfree(priv); 2101 } 2102 2103 /** 2104 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2105 * 2106 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2107 * and that the recipient may begin transmitting (RTU = ready to use). 2108 */ 2109 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch) 2110 { 2111 int ret; 2112 2113 if (srpt_set_ch_state(ch, CH_LIVE)) { 2114 ret = srpt_ch_qp_rts(ch, ch->qp); 2115 2116 if (ret == 0) { 2117 /* Trigger wait list processing. */ 2118 ret = srpt_zerolength_write(ch); 2119 WARN_ONCE(ret < 0, "%d\n", ret); 2120 } else { 2121 srpt_close_ch(ch); 2122 } 2123 } 2124 } 2125 2126 /** 2127 * srpt_cm_handler() - IB connection manager callback function. 2128 * 2129 * A non-zero return value will cause the caller destroy the CM ID. 2130 * 2131 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2132 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2133 * a non-zero value in any other case will trigger a race with the 2134 * ib_destroy_cm_id() call in srpt_release_channel(). 2135 */ 2136 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2137 { 2138 struct srpt_rdma_ch *ch = cm_id->context; 2139 int ret; 2140 2141 ret = 0; 2142 switch (event->event) { 2143 case IB_CM_REQ_RECEIVED: 2144 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2145 event->private_data); 2146 break; 2147 case IB_CM_REJ_RECEIVED: 2148 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason, 2149 event->private_data, 2150 IB_CM_REJ_PRIVATE_DATA_SIZE); 2151 break; 2152 case IB_CM_RTU_RECEIVED: 2153 case IB_CM_USER_ESTABLISHED: 2154 srpt_cm_rtu_recv(ch); 2155 break; 2156 case IB_CM_DREQ_RECEIVED: 2157 srpt_disconnect_ch(ch); 2158 break; 2159 case IB_CM_DREP_RECEIVED: 2160 pr_info("Received CM DREP message for ch %s-%d.\n", 2161 ch->sess_name, ch->qp->qp_num); 2162 srpt_close_ch(ch); 2163 break; 2164 case IB_CM_TIMEWAIT_EXIT: 2165 pr_info("Received CM TimeWait exit for ch %s-%d.\n", 2166 ch->sess_name, ch->qp->qp_num); 2167 srpt_close_ch(ch); 2168 break; 2169 case IB_CM_REP_ERROR: 2170 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2171 ch->qp->qp_num); 2172 break; 2173 case IB_CM_DREQ_ERROR: 2174 pr_info("Received CM DREQ ERROR event.\n"); 2175 break; 2176 case IB_CM_MRA_RECEIVED: 2177 pr_info("Received CM MRA event\n"); 2178 break; 2179 default: 2180 pr_err("received unrecognized CM event %d\n", event->event); 2181 break; 2182 } 2183 2184 return ret; 2185 } 2186 2187 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2188 { 2189 struct srpt_send_ioctx *ioctx; 2190 2191 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2192 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2193 } 2194 2195 /* 2196 * srpt_write_pending() - Start data transfer from initiator to target (write). 2197 */ 2198 static int srpt_write_pending(struct se_cmd *se_cmd) 2199 { 2200 struct srpt_send_ioctx *ioctx = 2201 container_of(se_cmd, struct srpt_send_ioctx, cmd); 2202 struct srpt_rdma_ch *ch = ioctx->ch; 2203 struct ib_send_wr *first_wr = NULL, *bad_wr; 2204 struct ib_cqe *cqe = &ioctx->rdma_cqe; 2205 enum srpt_command_state new_state; 2206 int ret, i; 2207 2208 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2209 WARN_ON(new_state == SRPT_STATE_DONE); 2210 2211 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) { 2212 pr_warn("%s: IB send queue full (needed %d)\n", 2213 __func__, ioctx->n_rdma); 2214 ret = -ENOMEM; 2215 goto out_undo; 2216 } 2217 2218 cqe->done = srpt_rdma_read_done; 2219 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2220 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2221 2222 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port, 2223 cqe, first_wr); 2224 cqe = NULL; 2225 } 2226 2227 ret = ib_post_send(ch->qp, first_wr, &bad_wr); 2228 if (ret) { 2229 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n", 2230 __func__, ret, ioctx->n_rdma, 2231 atomic_read(&ch->sq_wr_avail)); 2232 goto out_undo; 2233 } 2234 2235 return 0; 2236 out_undo: 2237 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 2238 return ret; 2239 } 2240 2241 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2242 { 2243 switch (tcm_mgmt_status) { 2244 case TMR_FUNCTION_COMPLETE: 2245 return SRP_TSK_MGMT_SUCCESS; 2246 case TMR_FUNCTION_REJECTED: 2247 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2248 } 2249 return SRP_TSK_MGMT_FAILED; 2250 } 2251 2252 /** 2253 * srpt_queue_response() - Transmits the response to a SCSI command. 2254 * 2255 * Callback function called by the TCM core. Must not block since it can be 2256 * invoked on the context of the IB completion handler. 2257 */ 2258 static void srpt_queue_response(struct se_cmd *cmd) 2259 { 2260 struct srpt_send_ioctx *ioctx = 2261 container_of(cmd, struct srpt_send_ioctx, cmd); 2262 struct srpt_rdma_ch *ch = ioctx->ch; 2263 struct srpt_device *sdev = ch->sport->sdev; 2264 struct ib_send_wr send_wr, *first_wr = NULL, *bad_wr; 2265 struct ib_sge sge; 2266 enum srpt_command_state state; 2267 unsigned long flags; 2268 int resp_len, ret, i; 2269 u8 srp_tm_status; 2270 2271 BUG_ON(!ch); 2272 2273 spin_lock_irqsave(&ioctx->spinlock, flags); 2274 state = ioctx->state; 2275 switch (state) { 2276 case SRPT_STATE_NEW: 2277 case SRPT_STATE_DATA_IN: 2278 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 2279 break; 2280 case SRPT_STATE_MGMT: 2281 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 2282 break; 2283 default: 2284 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 2285 ch, ioctx->ioctx.index, ioctx->state); 2286 break; 2287 } 2288 spin_unlock_irqrestore(&ioctx->spinlock, flags); 2289 2290 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 2291 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 2292 atomic_inc(&ch->req_lim_delta); 2293 srpt_abort_cmd(ioctx); 2294 return; 2295 } 2296 2297 /* For read commands, transfer the data to the initiator. */ 2298 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE && 2299 ioctx->cmd.data_length && 2300 !ioctx->queue_status_only) { 2301 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2302 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2303 2304 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, 2305 ch->sport->port, NULL, 2306 first_wr ? first_wr : &send_wr); 2307 } 2308 } else { 2309 first_wr = &send_wr; 2310 } 2311 2312 if (state != SRPT_STATE_MGMT) 2313 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, 2314 cmd->scsi_status); 2315 else { 2316 srp_tm_status 2317 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 2318 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 2319 ioctx->cmd.tag); 2320 } 2321 2322 atomic_inc(&ch->req_lim); 2323 2324 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma, 2325 &ch->sq_wr_avail) < 0)) { 2326 pr_warn("%s: IB send queue full (needed %d)\n", 2327 __func__, ioctx->n_rdma); 2328 ret = -ENOMEM; 2329 goto out; 2330 } 2331 2332 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len, 2333 DMA_TO_DEVICE); 2334 2335 sge.addr = ioctx->ioctx.dma; 2336 sge.length = resp_len; 2337 sge.lkey = sdev->pd->local_dma_lkey; 2338 2339 ioctx->ioctx.cqe.done = srpt_send_done; 2340 send_wr.next = NULL; 2341 send_wr.wr_cqe = &ioctx->ioctx.cqe; 2342 send_wr.sg_list = &sge; 2343 send_wr.num_sge = 1; 2344 send_wr.opcode = IB_WR_SEND; 2345 send_wr.send_flags = IB_SEND_SIGNALED; 2346 2347 ret = ib_post_send(ch->qp, first_wr, &bad_wr); 2348 if (ret < 0) { 2349 pr_err("%s: sending cmd response failed for tag %llu (%d)\n", 2350 __func__, ioctx->cmd.tag, ret); 2351 goto out; 2352 } 2353 2354 return; 2355 2356 out: 2357 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 2358 atomic_dec(&ch->req_lim); 2359 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 2360 target_put_sess_cmd(&ioctx->cmd); 2361 } 2362 2363 static int srpt_queue_data_in(struct se_cmd *cmd) 2364 { 2365 srpt_queue_response(cmd); 2366 return 0; 2367 } 2368 2369 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 2370 { 2371 srpt_queue_response(cmd); 2372 } 2373 2374 static void srpt_aborted_task(struct se_cmd *cmd) 2375 { 2376 } 2377 2378 static int srpt_queue_status(struct se_cmd *cmd) 2379 { 2380 struct srpt_send_ioctx *ioctx; 2381 2382 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 2383 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 2384 if (cmd->se_cmd_flags & 2385 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 2386 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 2387 ioctx->queue_status_only = true; 2388 srpt_queue_response(cmd); 2389 return 0; 2390 } 2391 2392 static void srpt_refresh_port_work(struct work_struct *work) 2393 { 2394 struct srpt_port *sport = container_of(work, struct srpt_port, work); 2395 2396 srpt_refresh_port(sport); 2397 } 2398 2399 /** 2400 * srpt_release_sdev() - Free the channel resources associated with a target. 2401 */ 2402 static int srpt_release_sdev(struct srpt_device *sdev) 2403 { 2404 int i, res; 2405 2406 WARN_ON_ONCE(irqs_disabled()); 2407 2408 BUG_ON(!sdev); 2409 2410 mutex_lock(&sdev->mutex); 2411 for (i = 0; i < ARRAY_SIZE(sdev->port); i++) 2412 sdev->port[i].enabled = false; 2413 __srpt_close_all_ch(sdev); 2414 mutex_unlock(&sdev->mutex); 2415 2416 res = wait_event_interruptible(sdev->ch_releaseQ, 2417 list_empty_careful(&sdev->rch_list)); 2418 if (res) 2419 pr_err("%s: interrupted.\n", __func__); 2420 2421 return 0; 2422 } 2423 2424 static struct srpt_port *__srpt_lookup_port(const char *name) 2425 { 2426 struct ib_device *dev; 2427 struct srpt_device *sdev; 2428 struct srpt_port *sport; 2429 int i; 2430 2431 list_for_each_entry(sdev, &srpt_dev_list, list) { 2432 dev = sdev->device; 2433 if (!dev) 2434 continue; 2435 2436 for (i = 0; i < dev->phys_port_cnt; i++) { 2437 sport = &sdev->port[i]; 2438 2439 if (!strcmp(sport->port_guid, name)) 2440 return sport; 2441 } 2442 } 2443 2444 return NULL; 2445 } 2446 2447 static struct srpt_port *srpt_lookup_port(const char *name) 2448 { 2449 struct srpt_port *sport; 2450 2451 spin_lock(&srpt_dev_lock); 2452 sport = __srpt_lookup_port(name); 2453 spin_unlock(&srpt_dev_lock); 2454 2455 return sport; 2456 } 2457 2458 /** 2459 * srpt_add_one() - Infiniband device addition callback function. 2460 */ 2461 static void srpt_add_one(struct ib_device *device) 2462 { 2463 struct srpt_device *sdev; 2464 struct srpt_port *sport; 2465 struct ib_srq_init_attr srq_attr; 2466 int i; 2467 2468 pr_debug("device = %p, device->dma_ops = %p\n", device, 2469 device->dma_ops); 2470 2471 sdev = kzalloc(sizeof(*sdev), GFP_KERNEL); 2472 if (!sdev) 2473 goto err; 2474 2475 sdev->device = device; 2476 INIT_LIST_HEAD(&sdev->rch_list); 2477 init_waitqueue_head(&sdev->ch_releaseQ); 2478 mutex_init(&sdev->mutex); 2479 2480 sdev->pd = ib_alloc_pd(device); 2481 if (IS_ERR(sdev->pd)) 2482 goto free_dev; 2483 2484 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr); 2485 2486 srq_attr.event_handler = srpt_srq_event; 2487 srq_attr.srq_context = (void *)sdev; 2488 srq_attr.attr.max_wr = sdev->srq_size; 2489 srq_attr.attr.max_sge = 1; 2490 srq_attr.attr.srq_limit = 0; 2491 srq_attr.srq_type = IB_SRQT_BASIC; 2492 2493 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 2494 if (IS_ERR(sdev->srq)) 2495 goto err_pd; 2496 2497 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 2498 __func__, sdev->srq_size, sdev->device->attrs.max_srq_wr, 2499 device->name); 2500 2501 if (!srpt_service_guid) 2502 srpt_service_guid = be64_to_cpu(device->node_guid); 2503 2504 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 2505 if (IS_ERR(sdev->cm_id)) 2506 goto err_srq; 2507 2508 /* print out target login information */ 2509 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 2510 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 2511 srpt_service_guid, srpt_service_guid); 2512 2513 /* 2514 * We do not have a consistent service_id (ie. also id_ext of target_id) 2515 * to identify this target. We currently use the guid of the first HCA 2516 * in the system as service_id; therefore, the target_id will change 2517 * if this HCA is gone bad and replaced by different HCA 2518 */ 2519 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0)) 2520 goto err_cm; 2521 2522 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 2523 srpt_event_handler); 2524 if (ib_register_event_handler(&sdev->event_handler)) 2525 goto err_cm; 2526 2527 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 2528 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 2529 sizeof(*sdev->ioctx_ring[0]), 2530 srp_max_req_size, DMA_FROM_DEVICE); 2531 if (!sdev->ioctx_ring) 2532 goto err_event; 2533 2534 for (i = 0; i < sdev->srq_size; ++i) 2535 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 2536 2537 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 2538 2539 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 2540 sport = &sdev->port[i - 1]; 2541 sport->sdev = sdev; 2542 sport->port = i; 2543 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 2544 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 2545 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 2546 INIT_WORK(&sport->work, srpt_refresh_port_work); 2547 2548 if (srpt_refresh_port(sport)) { 2549 pr_err("MAD registration failed for %s-%d.\n", 2550 sdev->device->name, i); 2551 goto err_ring; 2552 } 2553 snprintf(sport->port_guid, sizeof(sport->port_guid), 2554 "0x%016llx%016llx", 2555 be64_to_cpu(sport->gid.global.subnet_prefix), 2556 be64_to_cpu(sport->gid.global.interface_id)); 2557 } 2558 2559 spin_lock(&srpt_dev_lock); 2560 list_add_tail(&sdev->list, &srpt_dev_list); 2561 spin_unlock(&srpt_dev_lock); 2562 2563 out: 2564 ib_set_client_data(device, &srpt_client, sdev); 2565 pr_debug("added %s.\n", device->name); 2566 return; 2567 2568 err_ring: 2569 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 2570 sdev->srq_size, srp_max_req_size, 2571 DMA_FROM_DEVICE); 2572 err_event: 2573 ib_unregister_event_handler(&sdev->event_handler); 2574 err_cm: 2575 ib_destroy_cm_id(sdev->cm_id); 2576 err_srq: 2577 ib_destroy_srq(sdev->srq); 2578 err_pd: 2579 ib_dealloc_pd(sdev->pd); 2580 free_dev: 2581 kfree(sdev); 2582 err: 2583 sdev = NULL; 2584 pr_info("%s(%s) failed.\n", __func__, device->name); 2585 goto out; 2586 } 2587 2588 /** 2589 * srpt_remove_one() - InfiniBand device removal callback function. 2590 */ 2591 static void srpt_remove_one(struct ib_device *device, void *client_data) 2592 { 2593 struct srpt_device *sdev = client_data; 2594 int i; 2595 2596 if (!sdev) { 2597 pr_info("%s(%s): nothing to do.\n", __func__, device->name); 2598 return; 2599 } 2600 2601 srpt_unregister_mad_agent(sdev); 2602 2603 ib_unregister_event_handler(&sdev->event_handler); 2604 2605 /* Cancel any work queued by the just unregistered IB event handler. */ 2606 for (i = 0; i < sdev->device->phys_port_cnt; i++) 2607 cancel_work_sync(&sdev->port[i].work); 2608 2609 ib_destroy_cm_id(sdev->cm_id); 2610 2611 /* 2612 * Unregistering a target must happen after destroying sdev->cm_id 2613 * such that no new SRP_LOGIN_REQ information units can arrive while 2614 * destroying the target. 2615 */ 2616 spin_lock(&srpt_dev_lock); 2617 list_del(&sdev->list); 2618 spin_unlock(&srpt_dev_lock); 2619 srpt_release_sdev(sdev); 2620 2621 ib_destroy_srq(sdev->srq); 2622 ib_dealloc_pd(sdev->pd); 2623 2624 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 2625 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 2626 sdev->ioctx_ring = NULL; 2627 kfree(sdev); 2628 } 2629 2630 static struct ib_client srpt_client = { 2631 .name = DRV_NAME, 2632 .add = srpt_add_one, 2633 .remove = srpt_remove_one 2634 }; 2635 2636 static int srpt_check_true(struct se_portal_group *se_tpg) 2637 { 2638 return 1; 2639 } 2640 2641 static int srpt_check_false(struct se_portal_group *se_tpg) 2642 { 2643 return 0; 2644 } 2645 2646 static char *srpt_get_fabric_name(void) 2647 { 2648 return "srpt"; 2649 } 2650 2651 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 2652 { 2653 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 2654 2655 return sport->port_guid; 2656 } 2657 2658 static u16 srpt_get_tag(struct se_portal_group *tpg) 2659 { 2660 return 1; 2661 } 2662 2663 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 2664 { 2665 return 1; 2666 } 2667 2668 static void srpt_release_cmd(struct se_cmd *se_cmd) 2669 { 2670 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 2671 struct srpt_send_ioctx, cmd); 2672 struct srpt_rdma_ch *ch = ioctx->ch; 2673 unsigned long flags; 2674 2675 WARN_ON(ioctx->state != SRPT_STATE_DONE); 2676 2677 if (ioctx->n_rw_ctx) { 2678 srpt_free_rw_ctxs(ch, ioctx); 2679 ioctx->n_rw_ctx = 0; 2680 } 2681 2682 spin_lock_irqsave(&ch->spinlock, flags); 2683 list_add(&ioctx->free_list, &ch->free_list); 2684 spin_unlock_irqrestore(&ch->spinlock, flags); 2685 } 2686 2687 /** 2688 * srpt_close_session() - Forcibly close a session. 2689 * 2690 * Callback function invoked by the TCM core to clean up sessions associated 2691 * with a node ACL when the user invokes 2692 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 2693 */ 2694 static void srpt_close_session(struct se_session *se_sess) 2695 { 2696 DECLARE_COMPLETION_ONSTACK(release_done); 2697 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2698 struct srpt_device *sdev = ch->sport->sdev; 2699 bool wait; 2700 2701 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num, 2702 ch->state); 2703 2704 mutex_lock(&sdev->mutex); 2705 BUG_ON(ch->release_done); 2706 ch->release_done = &release_done; 2707 wait = !list_empty(&ch->list); 2708 srpt_disconnect_ch(ch); 2709 mutex_unlock(&sdev->mutex); 2710 2711 if (!wait) 2712 return; 2713 2714 while (wait_for_completion_timeout(&release_done, 180 * HZ) == 0) 2715 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__, 2716 ch->sess_name, ch->qp->qp_num, ch->state); 2717 } 2718 2719 /** 2720 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 2721 * 2722 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 2723 * This object represents an arbitrary integer used to uniquely identify a 2724 * particular attached remote initiator port to a particular SCSI target port 2725 * within a particular SCSI target device within a particular SCSI instance. 2726 */ 2727 static u32 srpt_sess_get_index(struct se_session *se_sess) 2728 { 2729 return 0; 2730 } 2731 2732 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 2733 { 2734 } 2735 2736 /* Note: only used from inside debug printk's by the TCM core. */ 2737 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 2738 { 2739 struct srpt_send_ioctx *ioctx; 2740 2741 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2742 return srpt_get_cmd_state(ioctx); 2743 } 2744 2745 /** 2746 * srpt_parse_i_port_id() - Parse an initiator port ID. 2747 * @name: ASCII representation of a 128-bit initiator port ID. 2748 * @i_port_id: Binary 128-bit port ID. 2749 */ 2750 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 2751 { 2752 const char *p; 2753 unsigned len, count, leading_zero_bytes; 2754 int ret, rc; 2755 2756 p = name; 2757 if (strncasecmp(p, "0x", 2) == 0) 2758 p += 2; 2759 ret = -EINVAL; 2760 len = strlen(p); 2761 if (len % 2) 2762 goto out; 2763 count = min(len / 2, 16U); 2764 leading_zero_bytes = 16 - count; 2765 memset(i_port_id, 0, leading_zero_bytes); 2766 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 2767 if (rc < 0) 2768 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 2769 ret = 0; 2770 out: 2771 return ret; 2772 } 2773 2774 /* 2775 * configfs callback function invoked for 2776 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 2777 */ 2778 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) 2779 { 2780 u8 i_port_id[16]; 2781 2782 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 2783 pr_err("invalid initiator port ID %s\n", name); 2784 return -EINVAL; 2785 } 2786 return 0; 2787 } 2788 2789 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, 2790 char *page) 2791 { 2792 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2793 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2794 2795 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 2796 } 2797 2798 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, 2799 const char *page, size_t count) 2800 { 2801 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2802 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2803 unsigned long val; 2804 int ret; 2805 2806 ret = kstrtoul(page, 0, &val); 2807 if (ret < 0) { 2808 pr_err("kstrtoul() failed with ret: %d\n", ret); 2809 return -EINVAL; 2810 } 2811 if (val > MAX_SRPT_RDMA_SIZE) { 2812 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 2813 MAX_SRPT_RDMA_SIZE); 2814 return -EINVAL; 2815 } 2816 if (val < DEFAULT_MAX_RDMA_SIZE) { 2817 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 2818 val, DEFAULT_MAX_RDMA_SIZE); 2819 return -EINVAL; 2820 } 2821 sport->port_attrib.srp_max_rdma_size = val; 2822 2823 return count; 2824 } 2825 2826 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, 2827 char *page) 2828 { 2829 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2830 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2831 2832 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 2833 } 2834 2835 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, 2836 const char *page, size_t count) 2837 { 2838 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2839 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2840 unsigned long val; 2841 int ret; 2842 2843 ret = kstrtoul(page, 0, &val); 2844 if (ret < 0) { 2845 pr_err("kstrtoul() failed with ret: %d\n", ret); 2846 return -EINVAL; 2847 } 2848 if (val > MAX_SRPT_RSP_SIZE) { 2849 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 2850 MAX_SRPT_RSP_SIZE); 2851 return -EINVAL; 2852 } 2853 if (val < MIN_MAX_RSP_SIZE) { 2854 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 2855 MIN_MAX_RSP_SIZE); 2856 return -EINVAL; 2857 } 2858 sport->port_attrib.srp_max_rsp_size = val; 2859 2860 return count; 2861 } 2862 2863 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, 2864 char *page) 2865 { 2866 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2867 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2868 2869 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 2870 } 2871 2872 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, 2873 const char *page, size_t count) 2874 { 2875 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2876 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2877 unsigned long val; 2878 int ret; 2879 2880 ret = kstrtoul(page, 0, &val); 2881 if (ret < 0) { 2882 pr_err("kstrtoul() failed with ret: %d\n", ret); 2883 return -EINVAL; 2884 } 2885 if (val > MAX_SRPT_SRQ_SIZE) { 2886 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 2887 MAX_SRPT_SRQ_SIZE); 2888 return -EINVAL; 2889 } 2890 if (val < MIN_SRPT_SRQ_SIZE) { 2891 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 2892 MIN_SRPT_SRQ_SIZE); 2893 return -EINVAL; 2894 } 2895 sport->port_attrib.srp_sq_size = val; 2896 2897 return count; 2898 } 2899 2900 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size); 2901 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size); 2902 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size); 2903 2904 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 2905 &srpt_tpg_attrib_attr_srp_max_rdma_size, 2906 &srpt_tpg_attrib_attr_srp_max_rsp_size, 2907 &srpt_tpg_attrib_attr_srp_sq_size, 2908 NULL, 2909 }; 2910 2911 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page) 2912 { 2913 struct se_portal_group *se_tpg = to_tpg(item); 2914 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2915 2916 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 2917 } 2918 2919 static ssize_t srpt_tpg_enable_store(struct config_item *item, 2920 const char *page, size_t count) 2921 { 2922 struct se_portal_group *se_tpg = to_tpg(item); 2923 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2924 struct srpt_device *sdev = sport->sdev; 2925 struct srpt_rdma_ch *ch; 2926 unsigned long tmp; 2927 int ret; 2928 2929 ret = kstrtoul(page, 0, &tmp); 2930 if (ret < 0) { 2931 pr_err("Unable to extract srpt_tpg_store_enable\n"); 2932 return -EINVAL; 2933 } 2934 2935 if ((tmp != 0) && (tmp != 1)) { 2936 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 2937 return -EINVAL; 2938 } 2939 if (sport->enabled == tmp) 2940 goto out; 2941 sport->enabled = tmp; 2942 if (sport->enabled) 2943 goto out; 2944 2945 mutex_lock(&sdev->mutex); 2946 list_for_each_entry(ch, &sdev->rch_list, list) { 2947 if (ch->sport == sport) { 2948 pr_debug("%s: ch %p %s-%d\n", __func__, ch, 2949 ch->sess_name, ch->qp->qp_num); 2950 srpt_disconnect_ch(ch); 2951 srpt_close_ch(ch); 2952 } 2953 } 2954 mutex_unlock(&sdev->mutex); 2955 2956 out: 2957 return count; 2958 } 2959 2960 CONFIGFS_ATTR(srpt_tpg_, enable); 2961 2962 static struct configfs_attribute *srpt_tpg_attrs[] = { 2963 &srpt_tpg_attr_enable, 2964 NULL, 2965 }; 2966 2967 /** 2968 * configfs callback invoked for 2969 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 2970 */ 2971 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 2972 struct config_group *group, 2973 const char *name) 2974 { 2975 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 2976 int res; 2977 2978 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 2979 res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP); 2980 if (res) 2981 return ERR_PTR(res); 2982 2983 return &sport->port_tpg_1; 2984 } 2985 2986 /** 2987 * configfs callback invoked for 2988 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 2989 */ 2990 static void srpt_drop_tpg(struct se_portal_group *tpg) 2991 { 2992 struct srpt_port *sport = container_of(tpg, 2993 struct srpt_port, port_tpg_1); 2994 2995 sport->enabled = false; 2996 core_tpg_deregister(&sport->port_tpg_1); 2997 } 2998 2999 /** 3000 * configfs callback invoked for 3001 * mkdir /sys/kernel/config/target/$driver/$port 3002 */ 3003 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3004 struct config_group *group, 3005 const char *name) 3006 { 3007 struct srpt_port *sport; 3008 int ret; 3009 3010 sport = srpt_lookup_port(name); 3011 pr_debug("make_tport(%s)\n", name); 3012 ret = -EINVAL; 3013 if (!sport) 3014 goto err; 3015 3016 return &sport->port_wwn; 3017 3018 err: 3019 return ERR_PTR(ret); 3020 } 3021 3022 /** 3023 * configfs callback invoked for 3024 * rmdir /sys/kernel/config/target/$driver/$port 3025 */ 3026 static void srpt_drop_tport(struct se_wwn *wwn) 3027 { 3028 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3029 3030 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3031 } 3032 3033 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf) 3034 { 3035 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3036 } 3037 3038 CONFIGFS_ATTR_RO(srpt_wwn_, version); 3039 3040 static struct configfs_attribute *srpt_wwn_attrs[] = { 3041 &srpt_wwn_attr_version, 3042 NULL, 3043 }; 3044 3045 static const struct target_core_fabric_ops srpt_template = { 3046 .module = THIS_MODULE, 3047 .name = "srpt", 3048 .get_fabric_name = srpt_get_fabric_name, 3049 .tpg_get_wwn = srpt_get_fabric_wwn, 3050 .tpg_get_tag = srpt_get_tag, 3051 .tpg_check_demo_mode = srpt_check_false, 3052 .tpg_check_demo_mode_cache = srpt_check_true, 3053 .tpg_check_demo_mode_write_protect = srpt_check_true, 3054 .tpg_check_prod_mode_write_protect = srpt_check_false, 3055 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3056 .release_cmd = srpt_release_cmd, 3057 .check_stop_free = srpt_check_stop_free, 3058 .close_session = srpt_close_session, 3059 .sess_get_index = srpt_sess_get_index, 3060 .sess_get_initiator_sid = NULL, 3061 .write_pending = srpt_write_pending, 3062 .write_pending_status = srpt_write_pending_status, 3063 .set_default_node_attributes = srpt_set_default_node_attrs, 3064 .get_cmd_state = srpt_get_tcm_cmd_state, 3065 .queue_data_in = srpt_queue_data_in, 3066 .queue_status = srpt_queue_status, 3067 .queue_tm_rsp = srpt_queue_tm_rsp, 3068 .aborted_task = srpt_aborted_task, 3069 /* 3070 * Setup function pointers for generic logic in 3071 * target_core_fabric_configfs.c 3072 */ 3073 .fabric_make_wwn = srpt_make_tport, 3074 .fabric_drop_wwn = srpt_drop_tport, 3075 .fabric_make_tpg = srpt_make_tpg, 3076 .fabric_drop_tpg = srpt_drop_tpg, 3077 .fabric_init_nodeacl = srpt_init_nodeacl, 3078 3079 .tfc_wwn_attrs = srpt_wwn_attrs, 3080 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3081 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3082 }; 3083 3084 /** 3085 * srpt_init_module() - Kernel module initialization. 3086 * 3087 * Note: Since ib_register_client() registers callback functions, and since at 3088 * least one of these callback functions (srpt_add_one()) calls target core 3089 * functions, this driver must be registered with the target core before 3090 * ib_register_client() is called. 3091 */ 3092 static int __init srpt_init_module(void) 3093 { 3094 int ret; 3095 3096 ret = -EINVAL; 3097 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3098 pr_err("invalid value %d for kernel module parameter" 3099 " srp_max_req_size -- must be at least %d.\n", 3100 srp_max_req_size, MIN_MAX_REQ_SIZE); 3101 goto out; 3102 } 3103 3104 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3105 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3106 pr_err("invalid value %d for kernel module parameter" 3107 " srpt_srq_size -- must be in the range [%d..%d].\n", 3108 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3109 goto out; 3110 } 3111 3112 ret = target_register_template(&srpt_template); 3113 if (ret) 3114 goto out; 3115 3116 ret = ib_register_client(&srpt_client); 3117 if (ret) { 3118 pr_err("couldn't register IB client\n"); 3119 goto out_unregister_target; 3120 } 3121 3122 return 0; 3123 3124 out_unregister_target: 3125 target_unregister_template(&srpt_template); 3126 out: 3127 return ret; 3128 } 3129 3130 static void __exit srpt_cleanup_module(void) 3131 { 3132 ib_unregister_client(&srpt_client); 3133 target_unregister_template(&srpt_template); 3134 } 3135 3136 module_init(srpt_init_module); 3137 module_exit(srpt_cleanup_module); 3138