1 /*
2  * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3  * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_tcq.h>
45 #include <target/configfs_macros.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric_configfs.h>
48 #include <target/target_core_fabric.h>
49 #include <target/target_core_configfs.h>
50 #include "ib_srpt.h"
51 
52 /* Name of this kernel module. */
53 #define DRV_NAME		"ib_srpt"
54 #define DRV_VERSION		"2.0.0"
55 #define DRV_RELDATE		"2011-02-14"
56 
57 #define SRPT_ID_STRING	"Linux SRP target"
58 
59 #undef pr_fmt
60 #define pr_fmt(fmt) DRV_NAME " " fmt
61 
62 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 		   "v" DRV_VERSION " (" DRV_RELDATE ")");
65 MODULE_LICENSE("Dual BSD/GPL");
66 
67 /*
68  * Global Variables
69  */
70 
71 static u64 srpt_service_guid;
72 static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
73 static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
74 
75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76 module_param(srp_max_req_size, int, 0444);
77 MODULE_PARM_DESC(srp_max_req_size,
78 		 "Maximum size of SRP request messages in bytes.");
79 
80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81 module_param(srpt_srq_size, int, 0444);
82 MODULE_PARM_DESC(srpt_srq_size,
83 		 "Shared receive queue (SRQ) size.");
84 
85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86 {
87 	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88 }
89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 		  0444);
91 MODULE_PARM_DESC(srpt_service_guid,
92 		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 		 " instead of using the node_guid of the first HCA.");
94 
95 static struct ib_client srpt_client;
96 static struct target_fabric_configfs *srpt_target;
97 static void srpt_release_channel(struct srpt_rdma_ch *ch);
98 static int srpt_queue_status(struct se_cmd *cmd);
99 
100 /**
101  * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102  */
103 static inline
104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105 {
106 	switch (dir) {
107 	case DMA_TO_DEVICE:	return DMA_FROM_DEVICE;
108 	case DMA_FROM_DEVICE:	return DMA_TO_DEVICE;
109 	default:		return dir;
110 	}
111 }
112 
113 /**
114  * srpt_sdev_name() - Return the name associated with the HCA.
115  *
116  * Examples are ib0, ib1, ...
117  */
118 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119 {
120 	return sdev->device->name;
121 }
122 
123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124 {
125 	unsigned long flags;
126 	enum rdma_ch_state state;
127 
128 	spin_lock_irqsave(&ch->spinlock, flags);
129 	state = ch->state;
130 	spin_unlock_irqrestore(&ch->spinlock, flags);
131 	return state;
132 }
133 
134 static enum rdma_ch_state
135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136 {
137 	unsigned long flags;
138 	enum rdma_ch_state prev;
139 
140 	spin_lock_irqsave(&ch->spinlock, flags);
141 	prev = ch->state;
142 	ch->state = new_state;
143 	spin_unlock_irqrestore(&ch->spinlock, flags);
144 	return prev;
145 }
146 
147 /**
148  * srpt_test_and_set_ch_state() - Test and set the channel state.
149  *
150  * Returns true if and only if the channel state has been set to the new state.
151  */
152 static bool
153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154 			   enum rdma_ch_state new)
155 {
156 	unsigned long flags;
157 	enum rdma_ch_state prev;
158 
159 	spin_lock_irqsave(&ch->spinlock, flags);
160 	prev = ch->state;
161 	if (prev == old)
162 		ch->state = new;
163 	spin_unlock_irqrestore(&ch->spinlock, flags);
164 	return prev == old;
165 }
166 
167 /**
168  * srpt_event_handler() - Asynchronous IB event callback function.
169  *
170  * Callback function called by the InfiniBand core when an asynchronous IB
171  * event occurs. This callback may occur in interrupt context. See also
172  * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173  * Architecture Specification.
174  */
175 static void srpt_event_handler(struct ib_event_handler *handler,
176 			       struct ib_event *event)
177 {
178 	struct srpt_device *sdev;
179 	struct srpt_port *sport;
180 
181 	sdev = ib_get_client_data(event->device, &srpt_client);
182 	if (!sdev || sdev->device != event->device)
183 		return;
184 
185 	pr_debug("ASYNC event= %d on device= %s\n", event->event,
186 		 srpt_sdev_name(sdev));
187 
188 	switch (event->event) {
189 	case IB_EVENT_PORT_ERR:
190 		if (event->element.port_num <= sdev->device->phys_port_cnt) {
191 			sport = &sdev->port[event->element.port_num - 1];
192 			sport->lid = 0;
193 			sport->sm_lid = 0;
194 		}
195 		break;
196 	case IB_EVENT_PORT_ACTIVE:
197 	case IB_EVENT_LID_CHANGE:
198 	case IB_EVENT_PKEY_CHANGE:
199 	case IB_EVENT_SM_CHANGE:
200 	case IB_EVENT_CLIENT_REREGISTER:
201 		/* Refresh port data asynchronously. */
202 		if (event->element.port_num <= sdev->device->phys_port_cnt) {
203 			sport = &sdev->port[event->element.port_num - 1];
204 			if (!sport->lid && !sport->sm_lid)
205 				schedule_work(&sport->work);
206 		}
207 		break;
208 	default:
209 		printk(KERN_ERR "received unrecognized IB event %d\n",
210 		       event->event);
211 		break;
212 	}
213 }
214 
215 /**
216  * srpt_srq_event() - SRQ event callback function.
217  */
218 static void srpt_srq_event(struct ib_event *event, void *ctx)
219 {
220 	printk(KERN_INFO "SRQ event %d\n", event->event);
221 }
222 
223 /**
224  * srpt_qp_event() - QP event callback function.
225  */
226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
227 {
228 	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229 		 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
230 
231 	switch (event->event) {
232 	case IB_EVENT_COMM_EST:
233 		ib_cm_notify(ch->cm_id, event->event);
234 		break;
235 	case IB_EVENT_QP_LAST_WQE_REACHED:
236 		if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
237 					       CH_RELEASING))
238 			srpt_release_channel(ch);
239 		else
240 			pr_debug("%s: state %d - ignored LAST_WQE.\n",
241 				 ch->sess_name, srpt_get_ch_state(ch));
242 		break;
243 	default:
244 		printk(KERN_ERR "received unrecognized IB QP event %d\n",
245 		       event->event);
246 		break;
247 	}
248 }
249 
250 /**
251  * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
252  *
253  * @slot: one-based slot number.
254  * @value: four-bit value.
255  *
256  * Copies the lowest four bits of value in element slot of the array of four
257  * bit elements called c_list (controller list). The index slot is one-based.
258  */
259 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
260 {
261 	u16 id;
262 	u8 tmp;
263 
264 	id = (slot - 1) / 2;
265 	if (slot & 0x1) {
266 		tmp = c_list[id] & 0xf;
267 		c_list[id] = (value << 4) | tmp;
268 	} else {
269 		tmp = c_list[id] & 0xf0;
270 		c_list[id] = (value & 0xf) | tmp;
271 	}
272 }
273 
274 /**
275  * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
276  *
277  * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
278  * Specification.
279  */
280 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
281 {
282 	struct ib_class_port_info *cif;
283 
284 	cif = (struct ib_class_port_info *)mad->data;
285 	memset(cif, 0, sizeof *cif);
286 	cif->base_version = 1;
287 	cif->class_version = 1;
288 	cif->resp_time_value = 20;
289 
290 	mad->mad_hdr.status = 0;
291 }
292 
293 /**
294  * srpt_get_iou() - Write IOUnitInfo to a management datagram.
295  *
296  * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
297  * Specification. See also section B.7, table B.6 in the SRP r16a document.
298  */
299 static void srpt_get_iou(struct ib_dm_mad *mad)
300 {
301 	struct ib_dm_iou_info *ioui;
302 	u8 slot;
303 	int i;
304 
305 	ioui = (struct ib_dm_iou_info *)mad->data;
306 	ioui->change_id = __constant_cpu_to_be16(1);
307 	ioui->max_controllers = 16;
308 
309 	/* set present for slot 1 and empty for the rest */
310 	srpt_set_ioc(ioui->controller_list, 1, 1);
311 	for (i = 1, slot = 2; i < 16; i++, slot++)
312 		srpt_set_ioc(ioui->controller_list, slot, 0);
313 
314 	mad->mad_hdr.status = 0;
315 }
316 
317 /**
318  * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
319  *
320  * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321  * Architecture Specification. See also section B.7, table B.7 in the SRP
322  * r16a document.
323  */
324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325 			 struct ib_dm_mad *mad)
326 {
327 	struct srpt_device *sdev = sport->sdev;
328 	struct ib_dm_ioc_profile *iocp;
329 
330 	iocp = (struct ib_dm_ioc_profile *)mad->data;
331 
332 	if (!slot || slot > 16) {
333 		mad->mad_hdr.status
334 			= __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
335 		return;
336 	}
337 
338 	if (slot > 2) {
339 		mad->mad_hdr.status
340 			= __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
341 		return;
342 	}
343 
344 	memset(iocp, 0, sizeof *iocp);
345 	strcpy(iocp->id_string, SRPT_ID_STRING);
346 	iocp->guid = cpu_to_be64(srpt_service_guid);
347 	iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348 	iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
349 	iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
350 	iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
351 	iocp->subsys_device_id = 0x0;
352 	iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
353 	iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
354 	iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
355 	iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
356 	iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
357 	iocp->rdma_read_depth = 4;
358 	iocp->send_size = cpu_to_be32(srp_max_req_size);
359 	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
360 					  1U << 24));
361 	iocp->num_svc_entries = 1;
362 	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
363 		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
364 
365 	mad->mad_hdr.status = 0;
366 }
367 
368 /**
369  * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
370  *
371  * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
372  * Specification. See also section B.7, table B.8 in the SRP r16a document.
373  */
374 static void srpt_get_svc_entries(u64 ioc_guid,
375 				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
376 {
377 	struct ib_dm_svc_entries *svc_entries;
378 
379 	WARN_ON(!ioc_guid);
380 
381 	if (!slot || slot > 16) {
382 		mad->mad_hdr.status
383 			= __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
384 		return;
385 	}
386 
387 	if (slot > 2 || lo > hi || hi > 1) {
388 		mad->mad_hdr.status
389 			= __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
390 		return;
391 	}
392 
393 	svc_entries = (struct ib_dm_svc_entries *)mad->data;
394 	memset(svc_entries, 0, sizeof *svc_entries);
395 	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
396 	snprintf(svc_entries->service_entries[0].name,
397 		 sizeof(svc_entries->service_entries[0].name),
398 		 "%s%016llx",
399 		 SRP_SERVICE_NAME_PREFIX,
400 		 ioc_guid);
401 
402 	mad->mad_hdr.status = 0;
403 }
404 
405 /**
406  * srpt_mgmt_method_get() - Process a received management datagram.
407  * @sp:      source port through which the MAD has been received.
408  * @rq_mad:  received MAD.
409  * @rsp_mad: response MAD.
410  */
411 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
412 				 struct ib_dm_mad *rsp_mad)
413 {
414 	u16 attr_id;
415 	u32 slot;
416 	u8 hi, lo;
417 
418 	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
419 	switch (attr_id) {
420 	case DM_ATTR_CLASS_PORT_INFO:
421 		srpt_get_class_port_info(rsp_mad);
422 		break;
423 	case DM_ATTR_IOU_INFO:
424 		srpt_get_iou(rsp_mad);
425 		break;
426 	case DM_ATTR_IOC_PROFILE:
427 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
428 		srpt_get_ioc(sp, slot, rsp_mad);
429 		break;
430 	case DM_ATTR_SVC_ENTRIES:
431 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
432 		hi = (u8) ((slot >> 8) & 0xff);
433 		lo = (u8) (slot & 0xff);
434 		slot = (u16) ((slot >> 16) & 0xffff);
435 		srpt_get_svc_entries(srpt_service_guid,
436 				     slot, hi, lo, rsp_mad);
437 		break;
438 	default:
439 		rsp_mad->mad_hdr.status =
440 		    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
441 		break;
442 	}
443 }
444 
445 /**
446  * srpt_mad_send_handler() - Post MAD-send callback function.
447  */
448 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
449 				  struct ib_mad_send_wc *mad_wc)
450 {
451 	ib_destroy_ah(mad_wc->send_buf->ah);
452 	ib_free_send_mad(mad_wc->send_buf);
453 }
454 
455 /**
456  * srpt_mad_recv_handler() - MAD reception callback function.
457  */
458 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
459 				  struct ib_mad_recv_wc *mad_wc)
460 {
461 	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
462 	struct ib_ah *ah;
463 	struct ib_mad_send_buf *rsp;
464 	struct ib_dm_mad *dm_mad;
465 
466 	if (!mad_wc || !mad_wc->recv_buf.mad)
467 		return;
468 
469 	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
470 				  mad_wc->recv_buf.grh, mad_agent->port_num);
471 	if (IS_ERR(ah))
472 		goto err;
473 
474 	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
475 
476 	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
477 				 mad_wc->wc->pkey_index, 0,
478 				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
479 				 GFP_KERNEL);
480 	if (IS_ERR(rsp))
481 		goto err_rsp;
482 
483 	rsp->ah = ah;
484 
485 	dm_mad = rsp->mad;
486 	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
487 	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
488 	dm_mad->mad_hdr.status = 0;
489 
490 	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
491 	case IB_MGMT_METHOD_GET:
492 		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
493 		break;
494 	case IB_MGMT_METHOD_SET:
495 		dm_mad->mad_hdr.status =
496 		    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
497 		break;
498 	default:
499 		dm_mad->mad_hdr.status =
500 		    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
501 		break;
502 	}
503 
504 	if (!ib_post_send_mad(rsp, NULL)) {
505 		ib_free_recv_mad(mad_wc);
506 		/* will destroy_ah & free_send_mad in send completion */
507 		return;
508 	}
509 
510 	ib_free_send_mad(rsp);
511 
512 err_rsp:
513 	ib_destroy_ah(ah);
514 err:
515 	ib_free_recv_mad(mad_wc);
516 }
517 
518 /**
519  * srpt_refresh_port() - Configure a HCA port.
520  *
521  * Enable InfiniBand management datagram processing, update the cached sm_lid,
522  * lid and gid values, and register a callback function for processing MADs
523  * on the specified port.
524  *
525  * Note: It is safe to call this function more than once for the same port.
526  */
527 static int srpt_refresh_port(struct srpt_port *sport)
528 {
529 	struct ib_mad_reg_req reg_req;
530 	struct ib_port_modify port_modify;
531 	struct ib_port_attr port_attr;
532 	int ret;
533 
534 	memset(&port_modify, 0, sizeof port_modify);
535 	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
536 	port_modify.clr_port_cap_mask = 0;
537 
538 	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
539 	if (ret)
540 		goto err_mod_port;
541 
542 	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
543 	if (ret)
544 		goto err_query_port;
545 
546 	sport->sm_lid = port_attr.sm_lid;
547 	sport->lid = port_attr.lid;
548 
549 	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
550 	if (ret)
551 		goto err_query_port;
552 
553 	if (!sport->mad_agent) {
554 		memset(&reg_req, 0, sizeof reg_req);
555 		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
556 		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
557 		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
558 		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
559 
560 		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
561 							 sport->port,
562 							 IB_QPT_GSI,
563 							 &reg_req, 0,
564 							 srpt_mad_send_handler,
565 							 srpt_mad_recv_handler,
566 							 sport);
567 		if (IS_ERR(sport->mad_agent)) {
568 			ret = PTR_ERR(sport->mad_agent);
569 			sport->mad_agent = NULL;
570 			goto err_query_port;
571 		}
572 	}
573 
574 	return 0;
575 
576 err_query_port:
577 
578 	port_modify.set_port_cap_mask = 0;
579 	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580 	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
581 
582 err_mod_port:
583 
584 	return ret;
585 }
586 
587 /**
588  * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589  *
590  * Note: It is safe to call this function more than once for the same device.
591  */
592 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
593 {
594 	struct ib_port_modify port_modify = {
595 		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
596 	};
597 	struct srpt_port *sport;
598 	int i;
599 
600 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
601 		sport = &sdev->port[i - 1];
602 		WARN_ON(sport->port != i);
603 		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
604 			printk(KERN_ERR "disabling MAD processing failed.\n");
605 		if (sport->mad_agent) {
606 			ib_unregister_mad_agent(sport->mad_agent);
607 			sport->mad_agent = NULL;
608 		}
609 	}
610 }
611 
612 /**
613  * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614  */
615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
616 					   int ioctx_size, int dma_size,
617 					   enum dma_data_direction dir)
618 {
619 	struct srpt_ioctx *ioctx;
620 
621 	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
622 	if (!ioctx)
623 		goto err;
624 
625 	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
626 	if (!ioctx->buf)
627 		goto err_free_ioctx;
628 
629 	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
630 	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
631 		goto err_free_buf;
632 
633 	return ioctx;
634 
635 err_free_buf:
636 	kfree(ioctx->buf);
637 err_free_ioctx:
638 	kfree(ioctx);
639 err:
640 	return NULL;
641 }
642 
643 /**
644  * srpt_free_ioctx() - Free an SRPT I/O context structure.
645  */
646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
647 			    int dma_size, enum dma_data_direction dir)
648 {
649 	if (!ioctx)
650 		return;
651 
652 	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
653 	kfree(ioctx->buf);
654 	kfree(ioctx);
655 }
656 
657 /**
658  * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659  * @sdev:       Device to allocate the I/O context ring for.
660  * @ring_size:  Number of elements in the I/O context ring.
661  * @ioctx_size: I/O context size.
662  * @dma_size:   DMA buffer size.
663  * @dir:        DMA data direction.
664  */
665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
666 				int ring_size, int ioctx_size,
667 				int dma_size, enum dma_data_direction dir)
668 {
669 	struct srpt_ioctx **ring;
670 	int i;
671 
672 	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
673 		&& ioctx_size != sizeof(struct srpt_send_ioctx));
674 
675 	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
676 	if (!ring)
677 		goto out;
678 	for (i = 0; i < ring_size; ++i) {
679 		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
680 		if (!ring[i])
681 			goto err;
682 		ring[i]->index = i;
683 	}
684 	goto out;
685 
686 err:
687 	while (--i >= 0)
688 		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
689 	kfree(ring);
690 	ring = NULL;
691 out:
692 	return ring;
693 }
694 
695 /**
696  * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
697  */
698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
699 				 struct srpt_device *sdev, int ring_size,
700 				 int dma_size, enum dma_data_direction dir)
701 {
702 	int i;
703 
704 	for (i = 0; i < ring_size; ++i)
705 		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
706 	kfree(ioctx_ring);
707 }
708 
709 /**
710  * srpt_get_cmd_state() - Get the state of a SCSI command.
711  */
712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
713 {
714 	enum srpt_command_state state;
715 	unsigned long flags;
716 
717 	BUG_ON(!ioctx);
718 
719 	spin_lock_irqsave(&ioctx->spinlock, flags);
720 	state = ioctx->state;
721 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
722 	return state;
723 }
724 
725 /**
726  * srpt_set_cmd_state() - Set the state of a SCSI command.
727  *
728  * Does not modify the state of aborted commands. Returns the previous command
729  * state.
730  */
731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
732 						  enum srpt_command_state new)
733 {
734 	enum srpt_command_state previous;
735 	unsigned long flags;
736 
737 	BUG_ON(!ioctx);
738 
739 	spin_lock_irqsave(&ioctx->spinlock, flags);
740 	previous = ioctx->state;
741 	if (previous != SRPT_STATE_DONE)
742 		ioctx->state = new;
743 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
744 
745 	return previous;
746 }
747 
748 /**
749  * srpt_test_and_set_cmd_state() - Test and set the state of a command.
750  *
751  * Returns true if and only if the previous command state was equal to 'old'.
752  */
753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
754 					enum srpt_command_state old,
755 					enum srpt_command_state new)
756 {
757 	enum srpt_command_state previous;
758 	unsigned long flags;
759 
760 	WARN_ON(!ioctx);
761 	WARN_ON(old == SRPT_STATE_DONE);
762 	WARN_ON(new == SRPT_STATE_NEW);
763 
764 	spin_lock_irqsave(&ioctx->spinlock, flags);
765 	previous = ioctx->state;
766 	if (previous == old)
767 		ioctx->state = new;
768 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
769 	return previous == old;
770 }
771 
772 /**
773  * srpt_post_recv() - Post an IB receive request.
774  */
775 static int srpt_post_recv(struct srpt_device *sdev,
776 			  struct srpt_recv_ioctx *ioctx)
777 {
778 	struct ib_sge list;
779 	struct ib_recv_wr wr, *bad_wr;
780 
781 	BUG_ON(!sdev);
782 	wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
783 
784 	list.addr = ioctx->ioctx.dma;
785 	list.length = srp_max_req_size;
786 	list.lkey = sdev->mr->lkey;
787 
788 	wr.next = NULL;
789 	wr.sg_list = &list;
790 	wr.num_sge = 1;
791 
792 	return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
793 }
794 
795 /**
796  * srpt_post_send() - Post an IB send request.
797  *
798  * Returns zero upon success and a non-zero value upon failure.
799  */
800 static int srpt_post_send(struct srpt_rdma_ch *ch,
801 			  struct srpt_send_ioctx *ioctx, int len)
802 {
803 	struct ib_sge list;
804 	struct ib_send_wr wr, *bad_wr;
805 	struct srpt_device *sdev = ch->sport->sdev;
806 	int ret;
807 
808 	atomic_inc(&ch->req_lim);
809 
810 	ret = -ENOMEM;
811 	if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
812 		printk(KERN_WARNING "IB send queue full (needed 1)\n");
813 		goto out;
814 	}
815 
816 	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
817 				      DMA_TO_DEVICE);
818 
819 	list.addr = ioctx->ioctx.dma;
820 	list.length = len;
821 	list.lkey = sdev->mr->lkey;
822 
823 	wr.next = NULL;
824 	wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
825 	wr.sg_list = &list;
826 	wr.num_sge = 1;
827 	wr.opcode = IB_WR_SEND;
828 	wr.send_flags = IB_SEND_SIGNALED;
829 
830 	ret = ib_post_send(ch->qp, &wr, &bad_wr);
831 
832 out:
833 	if (ret < 0) {
834 		atomic_inc(&ch->sq_wr_avail);
835 		atomic_dec(&ch->req_lim);
836 	}
837 	return ret;
838 }
839 
840 /**
841  * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
842  * @ioctx: Pointer to the I/O context associated with the request.
843  * @srp_cmd: Pointer to the SRP_CMD request data.
844  * @dir: Pointer to the variable to which the transfer direction will be
845  *   written.
846  * @data_len: Pointer to the variable to which the total data length of all
847  *   descriptors in the SRP_CMD request will be written.
848  *
849  * This function initializes ioctx->nrbuf and ioctx->r_bufs.
850  *
851  * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
852  * -ENOMEM when memory allocation fails and zero upon success.
853  */
854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
855 			     struct srp_cmd *srp_cmd,
856 			     enum dma_data_direction *dir, u64 *data_len)
857 {
858 	struct srp_indirect_buf *idb;
859 	struct srp_direct_buf *db;
860 	unsigned add_cdb_offset;
861 	int ret;
862 
863 	/*
864 	 * The pointer computations below will only be compiled correctly
865 	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
866 	 * whether srp_cmd::add_data has been declared as a byte pointer.
867 	 */
868 	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
869 		     && !__same_type(srp_cmd->add_data[0], (u8)0));
870 
871 	BUG_ON(!dir);
872 	BUG_ON(!data_len);
873 
874 	ret = 0;
875 	*data_len = 0;
876 
877 	/*
878 	 * The lower four bits of the buffer format field contain the DATA-IN
879 	 * buffer descriptor format, and the highest four bits contain the
880 	 * DATA-OUT buffer descriptor format.
881 	 */
882 	*dir = DMA_NONE;
883 	if (srp_cmd->buf_fmt & 0xf)
884 		/* DATA-IN: transfer data from target to initiator (read). */
885 		*dir = DMA_FROM_DEVICE;
886 	else if (srp_cmd->buf_fmt >> 4)
887 		/* DATA-OUT: transfer data from initiator to target (write). */
888 		*dir = DMA_TO_DEVICE;
889 
890 	/*
891 	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
892 	 * CDB LENGTH' field are reserved and the size in bytes of this field
893 	 * is four times the value specified in bits 3..7. Hence the "& ~3".
894 	 */
895 	add_cdb_offset = srp_cmd->add_cdb_len & ~3;
896 	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
897 	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
898 		ioctx->n_rbuf = 1;
899 		ioctx->rbufs = &ioctx->single_rbuf;
900 
901 		db = (struct srp_direct_buf *)(srp_cmd->add_data
902 					       + add_cdb_offset);
903 		memcpy(ioctx->rbufs, db, sizeof *db);
904 		*data_len = be32_to_cpu(db->len);
905 	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
906 		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
907 		idb = (struct srp_indirect_buf *)(srp_cmd->add_data
908 						  + add_cdb_offset);
909 
910 		ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
911 
912 		if (ioctx->n_rbuf >
913 		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
914 			printk(KERN_ERR "received unsupported SRP_CMD request"
915 			       " type (%u out + %u in != %u / %zu)\n",
916 			       srp_cmd->data_out_desc_cnt,
917 			       srp_cmd->data_in_desc_cnt,
918 			       be32_to_cpu(idb->table_desc.len),
919 			       sizeof(*db));
920 			ioctx->n_rbuf = 0;
921 			ret = -EINVAL;
922 			goto out;
923 		}
924 
925 		if (ioctx->n_rbuf == 1)
926 			ioctx->rbufs = &ioctx->single_rbuf;
927 		else {
928 			ioctx->rbufs =
929 				kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
930 			if (!ioctx->rbufs) {
931 				ioctx->n_rbuf = 0;
932 				ret = -ENOMEM;
933 				goto out;
934 			}
935 		}
936 
937 		db = idb->desc_list;
938 		memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
939 		*data_len = be32_to_cpu(idb->len);
940 	}
941 out:
942 	return ret;
943 }
944 
945 /**
946  * srpt_init_ch_qp() - Initialize queue pair attributes.
947  *
948  * Initialized the attributes of queue pair 'qp' by allowing local write,
949  * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
950  */
951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
952 {
953 	struct ib_qp_attr *attr;
954 	int ret;
955 
956 	attr = kzalloc(sizeof *attr, GFP_KERNEL);
957 	if (!attr)
958 		return -ENOMEM;
959 
960 	attr->qp_state = IB_QPS_INIT;
961 	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
962 	    IB_ACCESS_REMOTE_WRITE;
963 	attr->port_num = ch->sport->port;
964 	attr->pkey_index = 0;
965 
966 	ret = ib_modify_qp(qp, attr,
967 			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
968 			   IB_QP_PKEY_INDEX);
969 
970 	kfree(attr);
971 	return ret;
972 }
973 
974 /**
975  * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976  * @ch: channel of the queue pair.
977  * @qp: queue pair to change the state of.
978  *
979  * Returns zero upon success and a negative value upon failure.
980  *
981  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982  * If this structure ever becomes larger, it might be necessary to allocate
983  * it dynamically instead of on the stack.
984  */
985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986 {
987 	struct ib_qp_attr qp_attr;
988 	int attr_mask;
989 	int ret;
990 
991 	qp_attr.qp_state = IB_QPS_RTR;
992 	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
993 	if (ret)
994 		goto out;
995 
996 	qp_attr.max_dest_rd_atomic = 4;
997 
998 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
999 
1000 out:
1001 	return ret;
1002 }
1003 
1004 /**
1005  * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006  * @ch: channel of the queue pair.
1007  * @qp: queue pair to change the state of.
1008  *
1009  * Returns zero upon success and a negative value upon failure.
1010  *
1011  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012  * If this structure ever becomes larger, it might be necessary to allocate
1013  * it dynamically instead of on the stack.
1014  */
1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016 {
1017 	struct ib_qp_attr qp_attr;
1018 	int attr_mask;
1019 	int ret;
1020 
1021 	qp_attr.qp_state = IB_QPS_RTS;
1022 	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023 	if (ret)
1024 		goto out;
1025 
1026 	qp_attr.max_rd_atomic = 4;
1027 
1028 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029 
1030 out:
1031 	return ret;
1032 }
1033 
1034 /**
1035  * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036  */
1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038 {
1039 	struct ib_qp_attr qp_attr;
1040 
1041 	qp_attr.qp_state = IB_QPS_ERR;
1042 	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043 }
1044 
1045 /**
1046  * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047  */
1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049 				    struct srpt_send_ioctx *ioctx)
1050 {
1051 	struct scatterlist *sg;
1052 	enum dma_data_direction dir;
1053 
1054 	BUG_ON(!ch);
1055 	BUG_ON(!ioctx);
1056 	BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057 
1058 	while (ioctx->n_rdma)
1059 		kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060 
1061 	kfree(ioctx->rdma_ius);
1062 	ioctx->rdma_ius = NULL;
1063 
1064 	if (ioctx->mapped_sg_count) {
1065 		sg = ioctx->sg;
1066 		WARN_ON(!sg);
1067 		dir = ioctx->cmd.data_direction;
1068 		BUG_ON(dir == DMA_NONE);
1069 		ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070 				opposite_dma_dir(dir));
1071 		ioctx->mapped_sg_count = 0;
1072 	}
1073 }
1074 
1075 /**
1076  * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077  */
1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079 				 struct srpt_send_ioctx *ioctx)
1080 {
1081 	struct ib_device *dev = ch->sport->sdev->device;
1082 	struct se_cmd *cmd;
1083 	struct scatterlist *sg, *sg_orig;
1084 	int sg_cnt;
1085 	enum dma_data_direction dir;
1086 	struct rdma_iu *riu;
1087 	struct srp_direct_buf *db;
1088 	dma_addr_t dma_addr;
1089 	struct ib_sge *sge;
1090 	u64 raddr;
1091 	u32 rsize;
1092 	u32 tsize;
1093 	u32 dma_len;
1094 	int count, nrdma;
1095 	int i, j, k;
1096 
1097 	BUG_ON(!ch);
1098 	BUG_ON(!ioctx);
1099 	cmd = &ioctx->cmd;
1100 	dir = cmd->data_direction;
1101 	BUG_ON(dir == DMA_NONE);
1102 
1103 	ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1104 	ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1105 
1106 	count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1107 			      opposite_dma_dir(dir));
1108 	if (unlikely(!count))
1109 		return -EAGAIN;
1110 
1111 	ioctx->mapped_sg_count = count;
1112 
1113 	if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1114 		nrdma = ioctx->n_rdma_ius;
1115 	else {
1116 		nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1117 			+ ioctx->n_rbuf;
1118 
1119 		ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1120 		if (!ioctx->rdma_ius)
1121 			goto free_mem;
1122 
1123 		ioctx->n_rdma_ius = nrdma;
1124 	}
1125 
1126 	db = ioctx->rbufs;
1127 	tsize = cmd->data_length;
1128 	dma_len = ib_sg_dma_len(dev, &sg[0]);
1129 	riu = ioctx->rdma_ius;
1130 
1131 	/*
1132 	 * For each remote desc - calculate the #ib_sge.
1133 	 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1134 	 *      each remote desc rdma_iu is required a rdma wr;
1135 	 * else
1136 	 *      we need to allocate extra rdma_iu to carry extra #ib_sge in
1137 	 *      another rdma wr
1138 	 */
1139 	for (i = 0, j = 0;
1140 	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1141 		rsize = be32_to_cpu(db->len);
1142 		raddr = be64_to_cpu(db->va);
1143 		riu->raddr = raddr;
1144 		riu->rkey = be32_to_cpu(db->key);
1145 		riu->sge_cnt = 0;
1146 
1147 		/* calculate how many sge required for this remote_buf */
1148 		while (rsize > 0 && tsize > 0) {
1149 
1150 			if (rsize >= dma_len) {
1151 				tsize -= dma_len;
1152 				rsize -= dma_len;
1153 				raddr += dma_len;
1154 
1155 				if (tsize > 0) {
1156 					++j;
1157 					if (j < count) {
1158 						sg = sg_next(sg);
1159 						dma_len = ib_sg_dma_len(
1160 								dev, sg);
1161 					}
1162 				}
1163 			} else {
1164 				tsize -= rsize;
1165 				dma_len -= rsize;
1166 				rsize = 0;
1167 			}
1168 
1169 			++riu->sge_cnt;
1170 
1171 			if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1172 				++ioctx->n_rdma;
1173 				riu->sge =
1174 				    kmalloc(riu->sge_cnt * sizeof *riu->sge,
1175 					    GFP_KERNEL);
1176 				if (!riu->sge)
1177 					goto free_mem;
1178 
1179 				++riu;
1180 				riu->sge_cnt = 0;
1181 				riu->raddr = raddr;
1182 				riu->rkey = be32_to_cpu(db->key);
1183 			}
1184 		}
1185 
1186 		++ioctx->n_rdma;
1187 		riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1188 				   GFP_KERNEL);
1189 		if (!riu->sge)
1190 			goto free_mem;
1191 	}
1192 
1193 	db = ioctx->rbufs;
1194 	tsize = cmd->data_length;
1195 	riu = ioctx->rdma_ius;
1196 	sg = sg_orig;
1197 	dma_len = ib_sg_dma_len(dev, &sg[0]);
1198 	dma_addr = ib_sg_dma_address(dev, &sg[0]);
1199 
1200 	/* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1201 	for (i = 0, j = 0;
1202 	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1203 		rsize = be32_to_cpu(db->len);
1204 		sge = riu->sge;
1205 		k = 0;
1206 
1207 		while (rsize > 0 && tsize > 0) {
1208 			sge->addr = dma_addr;
1209 			sge->lkey = ch->sport->sdev->mr->lkey;
1210 
1211 			if (rsize >= dma_len) {
1212 				sge->length =
1213 					(tsize < dma_len) ? tsize : dma_len;
1214 				tsize -= dma_len;
1215 				rsize -= dma_len;
1216 
1217 				if (tsize > 0) {
1218 					++j;
1219 					if (j < count) {
1220 						sg = sg_next(sg);
1221 						dma_len = ib_sg_dma_len(
1222 								dev, sg);
1223 						dma_addr = ib_sg_dma_address(
1224 								dev, sg);
1225 					}
1226 				}
1227 			} else {
1228 				sge->length = (tsize < rsize) ? tsize : rsize;
1229 				tsize -= rsize;
1230 				dma_len -= rsize;
1231 				dma_addr += rsize;
1232 				rsize = 0;
1233 			}
1234 
1235 			++k;
1236 			if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1237 				++riu;
1238 				sge = riu->sge;
1239 				k = 0;
1240 			} else if (rsize > 0 && tsize > 0)
1241 				++sge;
1242 		}
1243 	}
1244 
1245 	return 0;
1246 
1247 free_mem:
1248 	srpt_unmap_sg_to_ib_sge(ch, ioctx);
1249 
1250 	return -ENOMEM;
1251 }
1252 
1253 /**
1254  * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1255  */
1256 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1257 {
1258 	struct srpt_send_ioctx *ioctx;
1259 	unsigned long flags;
1260 
1261 	BUG_ON(!ch);
1262 
1263 	ioctx = NULL;
1264 	spin_lock_irqsave(&ch->spinlock, flags);
1265 	if (!list_empty(&ch->free_list)) {
1266 		ioctx = list_first_entry(&ch->free_list,
1267 					 struct srpt_send_ioctx, free_list);
1268 		list_del(&ioctx->free_list);
1269 	}
1270 	spin_unlock_irqrestore(&ch->spinlock, flags);
1271 
1272 	if (!ioctx)
1273 		return ioctx;
1274 
1275 	BUG_ON(ioctx->ch != ch);
1276 	spin_lock_init(&ioctx->spinlock);
1277 	ioctx->state = SRPT_STATE_NEW;
1278 	ioctx->n_rbuf = 0;
1279 	ioctx->rbufs = NULL;
1280 	ioctx->n_rdma = 0;
1281 	ioctx->n_rdma_ius = 0;
1282 	ioctx->rdma_ius = NULL;
1283 	ioctx->mapped_sg_count = 0;
1284 	init_completion(&ioctx->tx_done);
1285 	ioctx->queue_status_only = false;
1286 	/*
1287 	 * transport_init_se_cmd() does not initialize all fields, so do it
1288 	 * here.
1289 	 */
1290 	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1291 	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1292 
1293 	return ioctx;
1294 }
1295 
1296 /**
1297  * srpt_abort_cmd() - Abort a SCSI command.
1298  * @ioctx:   I/O context associated with the SCSI command.
1299  * @context: Preferred execution context.
1300  */
1301 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1302 {
1303 	enum srpt_command_state state;
1304 	unsigned long flags;
1305 
1306 	BUG_ON(!ioctx);
1307 
1308 	/*
1309 	 * If the command is in a state where the target core is waiting for
1310 	 * the ib_srpt driver, change the state to the next state. Changing
1311 	 * the state of the command from SRPT_STATE_NEED_DATA to
1312 	 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1313 	 * function a second time.
1314 	 */
1315 
1316 	spin_lock_irqsave(&ioctx->spinlock, flags);
1317 	state = ioctx->state;
1318 	switch (state) {
1319 	case SRPT_STATE_NEED_DATA:
1320 		ioctx->state = SRPT_STATE_DATA_IN;
1321 		break;
1322 	case SRPT_STATE_DATA_IN:
1323 	case SRPT_STATE_CMD_RSP_SENT:
1324 	case SRPT_STATE_MGMT_RSP_SENT:
1325 		ioctx->state = SRPT_STATE_DONE;
1326 		break;
1327 	default:
1328 		break;
1329 	}
1330 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
1331 
1332 	if (state == SRPT_STATE_DONE) {
1333 		struct srpt_rdma_ch *ch = ioctx->ch;
1334 
1335 		BUG_ON(ch->sess == NULL);
1336 
1337 		target_put_sess_cmd(ch->sess, &ioctx->cmd);
1338 		goto out;
1339 	}
1340 
1341 	pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1342 		 ioctx->tag);
1343 
1344 	switch (state) {
1345 	case SRPT_STATE_NEW:
1346 	case SRPT_STATE_DATA_IN:
1347 	case SRPT_STATE_MGMT:
1348 		/*
1349 		 * Do nothing - defer abort processing until
1350 		 * srpt_queue_response() is invoked.
1351 		 */
1352 		WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1353 		break;
1354 	case SRPT_STATE_NEED_DATA:
1355 		/* DMA_TO_DEVICE (write) - RDMA read error. */
1356 
1357 		/* XXX(hch): this is a horrible layering violation.. */
1358 		spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1359 		ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1360 		spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1361 		break;
1362 	case SRPT_STATE_CMD_RSP_SENT:
1363 		/*
1364 		 * SRP_RSP sending failed or the SRP_RSP send completion has
1365 		 * not been received in time.
1366 		 */
1367 		srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1368 		target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1369 		break;
1370 	case SRPT_STATE_MGMT_RSP_SENT:
1371 		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1372 		target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1373 		break;
1374 	default:
1375 		WARN(1, "Unexpected command state (%d)", state);
1376 		break;
1377 	}
1378 
1379 out:
1380 	return state;
1381 }
1382 
1383 /**
1384  * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1385  */
1386 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1387 {
1388 	struct srpt_send_ioctx *ioctx;
1389 	enum srpt_command_state state;
1390 	struct se_cmd *cmd;
1391 	u32 index;
1392 
1393 	atomic_inc(&ch->sq_wr_avail);
1394 
1395 	index = idx_from_wr_id(wr_id);
1396 	ioctx = ch->ioctx_ring[index];
1397 	state = srpt_get_cmd_state(ioctx);
1398 	cmd = &ioctx->cmd;
1399 
1400 	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1401 		&& state != SRPT_STATE_MGMT_RSP_SENT
1402 		&& state != SRPT_STATE_NEED_DATA
1403 		&& state != SRPT_STATE_DONE);
1404 
1405 	/* If SRP_RSP sending failed, undo the ch->req_lim change. */
1406 	if (state == SRPT_STATE_CMD_RSP_SENT
1407 	    || state == SRPT_STATE_MGMT_RSP_SENT)
1408 		atomic_dec(&ch->req_lim);
1409 
1410 	srpt_abort_cmd(ioctx);
1411 }
1412 
1413 /**
1414  * srpt_handle_send_comp() - Process an IB send completion notification.
1415  */
1416 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1417 				  struct srpt_send_ioctx *ioctx)
1418 {
1419 	enum srpt_command_state state;
1420 
1421 	atomic_inc(&ch->sq_wr_avail);
1422 
1423 	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1424 
1425 	if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1426 		    && state != SRPT_STATE_MGMT_RSP_SENT
1427 		    && state != SRPT_STATE_DONE))
1428 		pr_debug("state = %d\n", state);
1429 
1430 	if (state != SRPT_STATE_DONE) {
1431 		srpt_unmap_sg_to_ib_sge(ch, ioctx);
1432 		transport_generic_free_cmd(&ioctx->cmd, 0);
1433 	} else {
1434 		printk(KERN_ERR "IB completion has been received too late for"
1435 		       " wr_id = %u.\n", ioctx->ioctx.index);
1436 	}
1437 }
1438 
1439 /**
1440  * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1441  *
1442  * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1443  * the data that has been transferred via IB RDMA had to be postponed until the
1444  * check_stop_free() callback.  None of this is necessary anymore and needs to
1445  * be cleaned up.
1446  */
1447 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1448 				  struct srpt_send_ioctx *ioctx,
1449 				  enum srpt_opcode opcode)
1450 {
1451 	WARN_ON(ioctx->n_rdma <= 0);
1452 	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1453 
1454 	if (opcode == SRPT_RDMA_READ_LAST) {
1455 		if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1456 						SRPT_STATE_DATA_IN))
1457 			target_execute_cmd(&ioctx->cmd);
1458 		else
1459 			printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1460 			       __LINE__, srpt_get_cmd_state(ioctx));
1461 	} else if (opcode == SRPT_RDMA_ABORT) {
1462 		ioctx->rdma_aborted = true;
1463 	} else {
1464 		WARN(true, "unexpected opcode %d\n", opcode);
1465 	}
1466 }
1467 
1468 /**
1469  * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1470  */
1471 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1472 				      struct srpt_send_ioctx *ioctx,
1473 				      enum srpt_opcode opcode)
1474 {
1475 	struct se_cmd *cmd;
1476 	enum srpt_command_state state;
1477 
1478 	cmd = &ioctx->cmd;
1479 	state = srpt_get_cmd_state(ioctx);
1480 	switch (opcode) {
1481 	case SRPT_RDMA_READ_LAST:
1482 		if (ioctx->n_rdma <= 0) {
1483 			printk(KERN_ERR "Received invalid RDMA read"
1484 			       " error completion with idx %d\n",
1485 			       ioctx->ioctx.index);
1486 			break;
1487 		}
1488 		atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1489 		if (state == SRPT_STATE_NEED_DATA)
1490 			srpt_abort_cmd(ioctx);
1491 		else
1492 			printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1493 			       __func__, __LINE__, state);
1494 		break;
1495 	case SRPT_RDMA_WRITE_LAST:
1496 		break;
1497 	default:
1498 		printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1499 		       __LINE__, opcode);
1500 		break;
1501 	}
1502 }
1503 
1504 /**
1505  * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1506  * @ch: RDMA channel through which the request has been received.
1507  * @ioctx: I/O context associated with the SRP_CMD request. The response will
1508  *   be built in the buffer ioctx->buf points at and hence this function will
1509  *   overwrite the request data.
1510  * @tag: tag of the request for which this response is being generated.
1511  * @status: value for the STATUS field of the SRP_RSP information unit.
1512  *
1513  * Returns the size in bytes of the SRP_RSP response.
1514  *
1515  * An SRP_RSP response contains a SCSI status or service response. See also
1516  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1517  * response. See also SPC-2 for more information about sense data.
1518  */
1519 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1520 			      struct srpt_send_ioctx *ioctx, u64 tag,
1521 			      int status)
1522 {
1523 	struct srp_rsp *srp_rsp;
1524 	const u8 *sense_data;
1525 	int sense_data_len, max_sense_len;
1526 
1527 	/*
1528 	 * The lowest bit of all SAM-3 status codes is zero (see also
1529 	 * paragraph 5.3 in SAM-3).
1530 	 */
1531 	WARN_ON(status & 1);
1532 
1533 	srp_rsp = ioctx->ioctx.buf;
1534 	BUG_ON(!srp_rsp);
1535 
1536 	sense_data = ioctx->sense_data;
1537 	sense_data_len = ioctx->cmd.scsi_sense_length;
1538 	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1539 
1540 	memset(srp_rsp, 0, sizeof *srp_rsp);
1541 	srp_rsp->opcode = SRP_RSP;
1542 	srp_rsp->req_lim_delta =
1543 		__constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1544 	srp_rsp->tag = tag;
1545 	srp_rsp->status = status;
1546 
1547 	if (sense_data_len) {
1548 		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1549 		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1550 		if (sense_data_len > max_sense_len) {
1551 			printk(KERN_WARNING "truncated sense data from %d to %d"
1552 			       " bytes\n", sense_data_len, max_sense_len);
1553 			sense_data_len = max_sense_len;
1554 		}
1555 
1556 		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1557 		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1558 		memcpy(srp_rsp + 1, sense_data, sense_data_len);
1559 	}
1560 
1561 	return sizeof(*srp_rsp) + sense_data_len;
1562 }
1563 
1564 /**
1565  * srpt_build_tskmgmt_rsp() - Build a task management response.
1566  * @ch:       RDMA channel through which the request has been received.
1567  * @ioctx:    I/O context in which the SRP_RSP response will be built.
1568  * @rsp_code: RSP_CODE that will be stored in the response.
1569  * @tag:      Tag of the request for which this response is being generated.
1570  *
1571  * Returns the size in bytes of the SRP_RSP response.
1572  *
1573  * An SRP_RSP response contains a SCSI status or service response. See also
1574  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1575  * response.
1576  */
1577 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1578 				  struct srpt_send_ioctx *ioctx,
1579 				  u8 rsp_code, u64 tag)
1580 {
1581 	struct srp_rsp *srp_rsp;
1582 	int resp_data_len;
1583 	int resp_len;
1584 
1585 	resp_data_len = 4;
1586 	resp_len = sizeof(*srp_rsp) + resp_data_len;
1587 
1588 	srp_rsp = ioctx->ioctx.buf;
1589 	BUG_ON(!srp_rsp);
1590 	memset(srp_rsp, 0, sizeof *srp_rsp);
1591 
1592 	srp_rsp->opcode = SRP_RSP;
1593 	srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1594 				    + atomic_xchg(&ch->req_lim_delta, 0));
1595 	srp_rsp->tag = tag;
1596 
1597 	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1598 	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1599 	srp_rsp->data[3] = rsp_code;
1600 
1601 	return resp_len;
1602 }
1603 
1604 #define NO_SUCH_LUN ((uint64_t)-1LL)
1605 
1606 /*
1607  * SCSI LUN addressing method. See also SAM-2 and the section about
1608  * eight byte LUNs.
1609  */
1610 enum scsi_lun_addr_method {
1611 	SCSI_LUN_ADDR_METHOD_PERIPHERAL   = 0,
1612 	SCSI_LUN_ADDR_METHOD_FLAT         = 1,
1613 	SCSI_LUN_ADDR_METHOD_LUN          = 2,
1614 	SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1615 };
1616 
1617 /*
1618  * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1619  *
1620  * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1621  * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1622  * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1623  */
1624 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1625 {
1626 	uint64_t res = NO_SUCH_LUN;
1627 	int addressing_method;
1628 
1629 	if (unlikely(len < 2)) {
1630 		printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1631 		       "more", len);
1632 		goto out;
1633 	}
1634 
1635 	switch (len) {
1636 	case 8:
1637 		if ((*((__be64 *)lun) &
1638 		     __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1639 			goto out_err;
1640 		break;
1641 	case 4:
1642 		if (*((__be16 *)&lun[2]) != 0)
1643 			goto out_err;
1644 		break;
1645 	case 6:
1646 		if (*((__be32 *)&lun[2]) != 0)
1647 			goto out_err;
1648 		break;
1649 	case 2:
1650 		break;
1651 	default:
1652 		goto out_err;
1653 	}
1654 
1655 	addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1656 	switch (addressing_method) {
1657 	case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1658 	case SCSI_LUN_ADDR_METHOD_FLAT:
1659 	case SCSI_LUN_ADDR_METHOD_LUN:
1660 		res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1661 		break;
1662 
1663 	case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1664 	default:
1665 		printk(KERN_ERR "Unimplemented LUN addressing method %u",
1666 		       addressing_method);
1667 		break;
1668 	}
1669 
1670 out:
1671 	return res;
1672 
1673 out_err:
1674 	printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1675 	       " implemented");
1676 	goto out;
1677 }
1678 
1679 static int srpt_check_stop_free(struct se_cmd *cmd)
1680 {
1681 	struct srpt_send_ioctx *ioctx = container_of(cmd,
1682 				struct srpt_send_ioctx, cmd);
1683 
1684 	return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1685 }
1686 
1687 /**
1688  * srpt_handle_cmd() - Process SRP_CMD.
1689  */
1690 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1691 			   struct srpt_recv_ioctx *recv_ioctx,
1692 			   struct srpt_send_ioctx *send_ioctx)
1693 {
1694 	struct se_cmd *cmd;
1695 	struct srp_cmd *srp_cmd;
1696 	uint64_t unpacked_lun;
1697 	u64 data_len;
1698 	enum dma_data_direction dir;
1699 	sense_reason_t ret;
1700 	int rc;
1701 
1702 	BUG_ON(!send_ioctx);
1703 
1704 	srp_cmd = recv_ioctx->ioctx.buf;
1705 	cmd = &send_ioctx->cmd;
1706 	send_ioctx->tag = srp_cmd->tag;
1707 
1708 	switch (srp_cmd->task_attr) {
1709 	case SRP_CMD_SIMPLE_Q:
1710 		cmd->sam_task_attr = MSG_SIMPLE_TAG;
1711 		break;
1712 	case SRP_CMD_ORDERED_Q:
1713 	default:
1714 		cmd->sam_task_attr = MSG_ORDERED_TAG;
1715 		break;
1716 	case SRP_CMD_HEAD_OF_Q:
1717 		cmd->sam_task_attr = MSG_HEAD_TAG;
1718 		break;
1719 	case SRP_CMD_ACA:
1720 		cmd->sam_task_attr = MSG_ACA_TAG;
1721 		break;
1722 	}
1723 
1724 	if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1725 		printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1726 		       srp_cmd->tag);
1727 		ret = TCM_INVALID_CDB_FIELD;
1728 		goto send_sense;
1729 	}
1730 
1731 	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1732 				       sizeof(srp_cmd->lun));
1733 	rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1734 			&send_ioctx->sense_data[0], unpacked_lun, data_len,
1735 			MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1736 	if (rc != 0) {
1737 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1738 		goto send_sense;
1739 	}
1740 	return 0;
1741 
1742 send_sense:
1743 	transport_send_check_condition_and_sense(cmd, ret, 0);
1744 	return -1;
1745 }
1746 
1747 /**
1748  * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1749  * @ch: RDMA channel of the task management request.
1750  * @fn: Task management function to perform.
1751  * @req_tag: Tag of the SRP task management request.
1752  * @mgmt_ioctx: I/O context of the task management request.
1753  *
1754  * Returns zero if the target core will process the task management
1755  * request asynchronously.
1756  *
1757  * Note: It is assumed that the initiator serializes tag-based task management
1758  * requests.
1759  */
1760 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1761 {
1762 	struct srpt_device *sdev;
1763 	struct srpt_rdma_ch *ch;
1764 	struct srpt_send_ioctx *target;
1765 	int ret, i;
1766 
1767 	ret = -EINVAL;
1768 	ch = ioctx->ch;
1769 	BUG_ON(!ch);
1770 	BUG_ON(!ch->sport);
1771 	sdev = ch->sport->sdev;
1772 	BUG_ON(!sdev);
1773 	spin_lock_irq(&sdev->spinlock);
1774 	for (i = 0; i < ch->rq_size; ++i) {
1775 		target = ch->ioctx_ring[i];
1776 		if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1777 		    target->tag == tag &&
1778 		    srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1779 			ret = 0;
1780 			/* now let the target core abort &target->cmd; */
1781 			break;
1782 		}
1783 	}
1784 	spin_unlock_irq(&sdev->spinlock);
1785 	return ret;
1786 }
1787 
1788 static int srp_tmr_to_tcm(int fn)
1789 {
1790 	switch (fn) {
1791 	case SRP_TSK_ABORT_TASK:
1792 		return TMR_ABORT_TASK;
1793 	case SRP_TSK_ABORT_TASK_SET:
1794 		return TMR_ABORT_TASK_SET;
1795 	case SRP_TSK_CLEAR_TASK_SET:
1796 		return TMR_CLEAR_TASK_SET;
1797 	case SRP_TSK_LUN_RESET:
1798 		return TMR_LUN_RESET;
1799 	case SRP_TSK_CLEAR_ACA:
1800 		return TMR_CLEAR_ACA;
1801 	default:
1802 		return -1;
1803 	}
1804 }
1805 
1806 /**
1807  * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1808  *
1809  * Returns 0 if and only if the request will be processed by the target core.
1810  *
1811  * For more information about SRP_TSK_MGMT information units, see also section
1812  * 6.7 in the SRP r16a document.
1813  */
1814 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1815 				 struct srpt_recv_ioctx *recv_ioctx,
1816 				 struct srpt_send_ioctx *send_ioctx)
1817 {
1818 	struct srp_tsk_mgmt *srp_tsk;
1819 	struct se_cmd *cmd;
1820 	struct se_session *sess = ch->sess;
1821 	uint64_t unpacked_lun;
1822 	uint32_t tag = 0;
1823 	int tcm_tmr;
1824 	int rc;
1825 
1826 	BUG_ON(!send_ioctx);
1827 
1828 	srp_tsk = recv_ioctx->ioctx.buf;
1829 	cmd = &send_ioctx->cmd;
1830 
1831 	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1832 		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1833 		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1834 
1835 	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1836 	send_ioctx->tag = srp_tsk->tag;
1837 	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1838 	if (tcm_tmr < 0) {
1839 		send_ioctx->cmd.se_tmr_req->response =
1840 			TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1841 		goto fail;
1842 	}
1843 	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1844 				       sizeof(srp_tsk->lun));
1845 
1846 	if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
1847 		rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1848 		if (rc < 0) {
1849 			send_ioctx->cmd.se_tmr_req->response =
1850 					TMR_TASK_DOES_NOT_EXIST;
1851 			goto fail;
1852 		}
1853 		tag = srp_tsk->task_tag;
1854 	}
1855 	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1856 				srp_tsk, tcm_tmr, GFP_KERNEL, tag,
1857 				TARGET_SCF_ACK_KREF);
1858 	if (rc != 0) {
1859 		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1860 		goto fail;
1861 	}
1862 	return;
1863 fail:
1864 	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1865 }
1866 
1867 /**
1868  * srpt_handle_new_iu() - Process a newly received information unit.
1869  * @ch:    RDMA channel through which the information unit has been received.
1870  * @ioctx: SRPT I/O context associated with the information unit.
1871  */
1872 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1873 			       struct srpt_recv_ioctx *recv_ioctx,
1874 			       struct srpt_send_ioctx *send_ioctx)
1875 {
1876 	struct srp_cmd *srp_cmd;
1877 	enum rdma_ch_state ch_state;
1878 
1879 	BUG_ON(!ch);
1880 	BUG_ON(!recv_ioctx);
1881 
1882 	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1883 				   recv_ioctx->ioctx.dma, srp_max_req_size,
1884 				   DMA_FROM_DEVICE);
1885 
1886 	ch_state = srpt_get_ch_state(ch);
1887 	if (unlikely(ch_state == CH_CONNECTING)) {
1888 		list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1889 		goto out;
1890 	}
1891 
1892 	if (unlikely(ch_state != CH_LIVE))
1893 		goto out;
1894 
1895 	srp_cmd = recv_ioctx->ioctx.buf;
1896 	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1897 		if (!send_ioctx)
1898 			send_ioctx = srpt_get_send_ioctx(ch);
1899 		if (unlikely(!send_ioctx)) {
1900 			list_add_tail(&recv_ioctx->wait_list,
1901 				      &ch->cmd_wait_list);
1902 			goto out;
1903 		}
1904 	}
1905 
1906 	switch (srp_cmd->opcode) {
1907 	case SRP_CMD:
1908 		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1909 		break;
1910 	case SRP_TSK_MGMT:
1911 		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1912 		break;
1913 	case SRP_I_LOGOUT:
1914 		printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1915 		break;
1916 	case SRP_CRED_RSP:
1917 		pr_debug("received SRP_CRED_RSP\n");
1918 		break;
1919 	case SRP_AER_RSP:
1920 		pr_debug("received SRP_AER_RSP\n");
1921 		break;
1922 	case SRP_RSP:
1923 		printk(KERN_ERR "Received SRP_RSP\n");
1924 		break;
1925 	default:
1926 		printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1927 		       srp_cmd->opcode);
1928 		break;
1929 	}
1930 
1931 	srpt_post_recv(ch->sport->sdev, recv_ioctx);
1932 out:
1933 	return;
1934 }
1935 
1936 static void srpt_process_rcv_completion(struct ib_cq *cq,
1937 					struct srpt_rdma_ch *ch,
1938 					struct ib_wc *wc)
1939 {
1940 	struct srpt_device *sdev = ch->sport->sdev;
1941 	struct srpt_recv_ioctx *ioctx;
1942 	u32 index;
1943 
1944 	index = idx_from_wr_id(wc->wr_id);
1945 	if (wc->status == IB_WC_SUCCESS) {
1946 		int req_lim;
1947 
1948 		req_lim = atomic_dec_return(&ch->req_lim);
1949 		if (unlikely(req_lim < 0))
1950 			printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
1951 		ioctx = sdev->ioctx_ring[index];
1952 		srpt_handle_new_iu(ch, ioctx, NULL);
1953 	} else {
1954 		printk(KERN_INFO "receiving failed for idx %u with status %d\n",
1955 		       index, wc->status);
1956 	}
1957 }
1958 
1959 /**
1960  * srpt_process_send_completion() - Process an IB send completion.
1961  *
1962  * Note: Although this has not yet been observed during tests, at least in
1963  * theory it is possible that the srpt_get_send_ioctx() call invoked by
1964  * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1965  * value in each response is set to one, and it is possible that this response
1966  * makes the initiator send a new request before the send completion for that
1967  * response has been processed. This could e.g. happen if the call to
1968  * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1969  * if IB retransmission causes generation of the send completion to be
1970  * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1971  * are queued on cmd_wait_list. The code below processes these delayed
1972  * requests one at a time.
1973  */
1974 static void srpt_process_send_completion(struct ib_cq *cq,
1975 					 struct srpt_rdma_ch *ch,
1976 					 struct ib_wc *wc)
1977 {
1978 	struct srpt_send_ioctx *send_ioctx;
1979 	uint32_t index;
1980 	enum srpt_opcode opcode;
1981 
1982 	index = idx_from_wr_id(wc->wr_id);
1983 	opcode = opcode_from_wr_id(wc->wr_id);
1984 	send_ioctx = ch->ioctx_ring[index];
1985 	if (wc->status == IB_WC_SUCCESS) {
1986 		if (opcode == SRPT_SEND)
1987 			srpt_handle_send_comp(ch, send_ioctx);
1988 		else {
1989 			WARN_ON(opcode != SRPT_RDMA_ABORT &&
1990 				wc->opcode != IB_WC_RDMA_READ);
1991 			srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1992 		}
1993 	} else {
1994 		if (opcode == SRPT_SEND) {
1995 			printk(KERN_INFO "sending response for idx %u failed"
1996 			       " with status %d\n", index, wc->status);
1997 			srpt_handle_send_err_comp(ch, wc->wr_id);
1998 		} else if (opcode != SRPT_RDMA_MID) {
1999 			printk(KERN_INFO "RDMA t %d for idx %u failed with"
2000 				" status %d", opcode, index, wc->status);
2001 			srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2002 		}
2003 	}
2004 
2005 	while (unlikely(opcode == SRPT_SEND
2006 			&& !list_empty(&ch->cmd_wait_list)
2007 			&& srpt_get_ch_state(ch) == CH_LIVE
2008 			&& (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2009 		struct srpt_recv_ioctx *recv_ioctx;
2010 
2011 		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2012 					      struct srpt_recv_ioctx,
2013 					      wait_list);
2014 		list_del(&recv_ioctx->wait_list);
2015 		srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2016 	}
2017 }
2018 
2019 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2020 {
2021 	struct ib_wc *const wc = ch->wc;
2022 	int i, n;
2023 
2024 	WARN_ON(cq != ch->cq);
2025 
2026 	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2027 	while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2028 		for (i = 0; i < n; i++) {
2029 			if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2030 				srpt_process_rcv_completion(cq, ch, &wc[i]);
2031 			else
2032 				srpt_process_send_completion(cq, ch, &wc[i]);
2033 		}
2034 	}
2035 }
2036 
2037 /**
2038  * srpt_completion() - IB completion queue callback function.
2039  *
2040  * Notes:
2041  * - It is guaranteed that a completion handler will never be invoked
2042  *   concurrently on two different CPUs for the same completion queue. See also
2043  *   Documentation/infiniband/core_locking.txt and the implementation of
2044  *   handle_edge_irq() in kernel/irq/chip.c.
2045  * - When threaded IRQs are enabled, completion handlers are invoked in thread
2046  *   context instead of interrupt context.
2047  */
2048 static void srpt_completion(struct ib_cq *cq, void *ctx)
2049 {
2050 	struct srpt_rdma_ch *ch = ctx;
2051 
2052 	wake_up_interruptible(&ch->wait_queue);
2053 }
2054 
2055 static int srpt_compl_thread(void *arg)
2056 {
2057 	struct srpt_rdma_ch *ch;
2058 
2059 	/* Hibernation / freezing of the SRPT kernel thread is not supported. */
2060 	current->flags |= PF_NOFREEZE;
2061 
2062 	ch = arg;
2063 	BUG_ON(!ch);
2064 	printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2065 	       ch->sess_name, ch->thread->comm, current->pid);
2066 	while (!kthread_should_stop()) {
2067 		wait_event_interruptible(ch->wait_queue,
2068 			(srpt_process_completion(ch->cq, ch),
2069 			 kthread_should_stop()));
2070 	}
2071 	printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2072 	       ch->sess_name, ch->thread->comm, current->pid);
2073 	return 0;
2074 }
2075 
2076 /**
2077  * srpt_create_ch_ib() - Create receive and send completion queues.
2078  */
2079 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2080 {
2081 	struct ib_qp_init_attr *qp_init;
2082 	struct srpt_port *sport = ch->sport;
2083 	struct srpt_device *sdev = sport->sdev;
2084 	u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2085 	int ret;
2086 
2087 	WARN_ON(ch->rq_size < 1);
2088 
2089 	ret = -ENOMEM;
2090 	qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2091 	if (!qp_init)
2092 		goto out;
2093 
2094 	ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2095 			      ch->rq_size + srp_sq_size, 0);
2096 	if (IS_ERR(ch->cq)) {
2097 		ret = PTR_ERR(ch->cq);
2098 		printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2099 		       ch->rq_size + srp_sq_size, ret);
2100 		goto out;
2101 	}
2102 
2103 	qp_init->qp_context = (void *)ch;
2104 	qp_init->event_handler
2105 		= (void(*)(struct ib_event *, void*))srpt_qp_event;
2106 	qp_init->send_cq = ch->cq;
2107 	qp_init->recv_cq = ch->cq;
2108 	qp_init->srq = sdev->srq;
2109 	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2110 	qp_init->qp_type = IB_QPT_RC;
2111 	qp_init->cap.max_send_wr = srp_sq_size;
2112 	qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2113 
2114 	ch->qp = ib_create_qp(sdev->pd, qp_init);
2115 	if (IS_ERR(ch->qp)) {
2116 		ret = PTR_ERR(ch->qp);
2117 		printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2118 		goto err_destroy_cq;
2119 	}
2120 
2121 	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2122 
2123 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2124 		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2125 		 qp_init->cap.max_send_wr, ch->cm_id);
2126 
2127 	ret = srpt_init_ch_qp(ch, ch->qp);
2128 	if (ret)
2129 		goto err_destroy_qp;
2130 
2131 	init_waitqueue_head(&ch->wait_queue);
2132 
2133 	pr_debug("creating thread for session %s\n", ch->sess_name);
2134 
2135 	ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2136 	if (IS_ERR(ch->thread)) {
2137 		printk(KERN_ERR "failed to create kernel thread %ld\n",
2138 		       PTR_ERR(ch->thread));
2139 		ch->thread = NULL;
2140 		goto err_destroy_qp;
2141 	}
2142 
2143 out:
2144 	kfree(qp_init);
2145 	return ret;
2146 
2147 err_destroy_qp:
2148 	ib_destroy_qp(ch->qp);
2149 err_destroy_cq:
2150 	ib_destroy_cq(ch->cq);
2151 	goto out;
2152 }
2153 
2154 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2155 {
2156 	if (ch->thread)
2157 		kthread_stop(ch->thread);
2158 
2159 	ib_destroy_qp(ch->qp);
2160 	ib_destroy_cq(ch->cq);
2161 }
2162 
2163 /**
2164  * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2165  *
2166  * Reset the QP and make sure all resources associated with the channel will
2167  * be deallocated at an appropriate time.
2168  *
2169  * Note: The caller must hold ch->sport->sdev->spinlock.
2170  */
2171 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2172 {
2173 	struct srpt_device *sdev;
2174 	enum rdma_ch_state prev_state;
2175 	unsigned long flags;
2176 
2177 	sdev = ch->sport->sdev;
2178 
2179 	spin_lock_irqsave(&ch->spinlock, flags);
2180 	prev_state = ch->state;
2181 	switch (prev_state) {
2182 	case CH_CONNECTING:
2183 	case CH_LIVE:
2184 		ch->state = CH_DISCONNECTING;
2185 		break;
2186 	default:
2187 		break;
2188 	}
2189 	spin_unlock_irqrestore(&ch->spinlock, flags);
2190 
2191 	switch (prev_state) {
2192 	case CH_CONNECTING:
2193 		ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2194 			       NULL, 0);
2195 		/* fall through */
2196 	case CH_LIVE:
2197 		if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2198 			printk(KERN_ERR "sending CM DREQ failed.\n");
2199 		break;
2200 	case CH_DISCONNECTING:
2201 		break;
2202 	case CH_DRAINING:
2203 	case CH_RELEASING:
2204 		break;
2205 	}
2206 }
2207 
2208 /**
2209  * srpt_close_ch() - Close an RDMA channel.
2210  */
2211 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2212 {
2213 	struct srpt_device *sdev;
2214 
2215 	sdev = ch->sport->sdev;
2216 	spin_lock_irq(&sdev->spinlock);
2217 	__srpt_close_ch(ch);
2218 	spin_unlock_irq(&sdev->spinlock);
2219 }
2220 
2221 /**
2222  * srpt_shutdown_session() - Whether or not a session may be shut down.
2223  */
2224 static int srpt_shutdown_session(struct se_session *se_sess)
2225 {
2226 	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2227 	unsigned long flags;
2228 
2229 	spin_lock_irqsave(&ch->spinlock, flags);
2230 	if (ch->in_shutdown) {
2231 		spin_unlock_irqrestore(&ch->spinlock, flags);
2232 		return true;
2233 	}
2234 
2235 	ch->in_shutdown = true;
2236 	target_sess_cmd_list_set_waiting(se_sess);
2237 	spin_unlock_irqrestore(&ch->spinlock, flags);
2238 
2239 	return true;
2240 }
2241 
2242 /**
2243  * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2244  * @cm_id: Pointer to the CM ID of the channel to be drained.
2245  *
2246  * Note: Must be called from inside srpt_cm_handler to avoid a race between
2247  * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2248  * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2249  * waits until all target sessions for the associated IB device have been
2250  * unregistered and target session registration involves a call to
2251  * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2252  * this function has finished).
2253  */
2254 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2255 {
2256 	struct srpt_device *sdev;
2257 	struct srpt_rdma_ch *ch;
2258 	int ret;
2259 	bool do_reset = false;
2260 
2261 	WARN_ON_ONCE(irqs_disabled());
2262 
2263 	sdev = cm_id->context;
2264 	BUG_ON(!sdev);
2265 	spin_lock_irq(&sdev->spinlock);
2266 	list_for_each_entry(ch, &sdev->rch_list, list) {
2267 		if (ch->cm_id == cm_id) {
2268 			do_reset = srpt_test_and_set_ch_state(ch,
2269 					CH_CONNECTING, CH_DRAINING) ||
2270 				   srpt_test_and_set_ch_state(ch,
2271 					CH_LIVE, CH_DRAINING) ||
2272 				   srpt_test_and_set_ch_state(ch,
2273 					CH_DISCONNECTING, CH_DRAINING);
2274 			break;
2275 		}
2276 	}
2277 	spin_unlock_irq(&sdev->spinlock);
2278 
2279 	if (do_reset) {
2280 		if (ch->sess)
2281 			srpt_shutdown_session(ch->sess);
2282 
2283 		ret = srpt_ch_qp_err(ch);
2284 		if (ret < 0)
2285 			printk(KERN_ERR "Setting queue pair in error state"
2286 			       " failed: %d\n", ret);
2287 	}
2288 }
2289 
2290 /**
2291  * srpt_find_channel() - Look up an RDMA channel.
2292  * @cm_id: Pointer to the CM ID of the channel to be looked up.
2293  *
2294  * Return NULL if no matching RDMA channel has been found.
2295  */
2296 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2297 					      struct ib_cm_id *cm_id)
2298 {
2299 	struct srpt_rdma_ch *ch;
2300 	bool found;
2301 
2302 	WARN_ON_ONCE(irqs_disabled());
2303 	BUG_ON(!sdev);
2304 
2305 	found = false;
2306 	spin_lock_irq(&sdev->spinlock);
2307 	list_for_each_entry(ch, &sdev->rch_list, list) {
2308 		if (ch->cm_id == cm_id) {
2309 			found = true;
2310 			break;
2311 		}
2312 	}
2313 	spin_unlock_irq(&sdev->spinlock);
2314 
2315 	return found ? ch : NULL;
2316 }
2317 
2318 /**
2319  * srpt_release_channel() - Release channel resources.
2320  *
2321  * Schedules the actual release because:
2322  * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2323  *   trigger a deadlock.
2324  * - It is not safe to call TCM transport_* functions from interrupt context.
2325  */
2326 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2327 {
2328 	schedule_work(&ch->release_work);
2329 }
2330 
2331 static void srpt_release_channel_work(struct work_struct *w)
2332 {
2333 	struct srpt_rdma_ch *ch;
2334 	struct srpt_device *sdev;
2335 	struct se_session *se_sess;
2336 
2337 	ch = container_of(w, struct srpt_rdma_ch, release_work);
2338 	pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2339 		 ch->release_done);
2340 
2341 	sdev = ch->sport->sdev;
2342 	BUG_ON(!sdev);
2343 
2344 	se_sess = ch->sess;
2345 	BUG_ON(!se_sess);
2346 
2347 	target_wait_for_sess_cmds(se_sess);
2348 
2349 	transport_deregister_session_configfs(se_sess);
2350 	transport_deregister_session(se_sess);
2351 	ch->sess = NULL;
2352 
2353 	ib_destroy_cm_id(ch->cm_id);
2354 
2355 	srpt_destroy_ch_ib(ch);
2356 
2357 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2358 			     ch->sport->sdev, ch->rq_size,
2359 			     ch->rsp_size, DMA_TO_DEVICE);
2360 
2361 	spin_lock_irq(&sdev->spinlock);
2362 	list_del(&ch->list);
2363 	spin_unlock_irq(&sdev->spinlock);
2364 
2365 	if (ch->release_done)
2366 		complete(ch->release_done);
2367 
2368 	wake_up(&sdev->ch_releaseQ);
2369 
2370 	kfree(ch);
2371 }
2372 
2373 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2374 					       u8 i_port_id[16])
2375 {
2376 	struct srpt_node_acl *nacl;
2377 
2378 	list_for_each_entry(nacl, &sport->port_acl_list, list)
2379 		if (memcmp(nacl->i_port_id, i_port_id,
2380 			   sizeof(nacl->i_port_id)) == 0)
2381 			return nacl;
2382 
2383 	return NULL;
2384 }
2385 
2386 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2387 					     u8 i_port_id[16])
2388 {
2389 	struct srpt_node_acl *nacl;
2390 
2391 	spin_lock_irq(&sport->port_acl_lock);
2392 	nacl = __srpt_lookup_acl(sport, i_port_id);
2393 	spin_unlock_irq(&sport->port_acl_lock);
2394 
2395 	return nacl;
2396 }
2397 
2398 /**
2399  * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2400  *
2401  * Ownership of the cm_id is transferred to the target session if this
2402  * functions returns zero. Otherwise the caller remains the owner of cm_id.
2403  */
2404 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2405 			    struct ib_cm_req_event_param *param,
2406 			    void *private_data)
2407 {
2408 	struct srpt_device *sdev = cm_id->context;
2409 	struct srpt_port *sport = &sdev->port[param->port - 1];
2410 	struct srp_login_req *req;
2411 	struct srp_login_rsp *rsp;
2412 	struct srp_login_rej *rej;
2413 	struct ib_cm_rep_param *rep_param;
2414 	struct srpt_rdma_ch *ch, *tmp_ch;
2415 	struct srpt_node_acl *nacl;
2416 	u32 it_iu_len;
2417 	int i;
2418 	int ret = 0;
2419 
2420 	WARN_ON_ONCE(irqs_disabled());
2421 
2422 	if (WARN_ON(!sdev || !private_data))
2423 		return -EINVAL;
2424 
2425 	req = (struct srp_login_req *)private_data;
2426 
2427 	it_iu_len = be32_to_cpu(req->req_it_iu_len);
2428 
2429 	printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2430 	       " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2431 	       " (guid=0x%llx:0x%llx)\n",
2432 	       be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2433 	       be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2434 	       be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2435 	       be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2436 	       it_iu_len,
2437 	       param->port,
2438 	       be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2439 	       be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2440 
2441 	rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2442 	rej = kzalloc(sizeof *rej, GFP_KERNEL);
2443 	rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2444 
2445 	if (!rsp || !rej || !rep_param) {
2446 		ret = -ENOMEM;
2447 		goto out;
2448 	}
2449 
2450 	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2451 		rej->reason = __constant_cpu_to_be32(
2452 				SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2453 		ret = -EINVAL;
2454 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2455 		       " length (%d bytes) is out of range (%d .. %d)\n",
2456 		       it_iu_len, 64, srp_max_req_size);
2457 		goto reject;
2458 	}
2459 
2460 	if (!sport->enabled) {
2461 		rej->reason = __constant_cpu_to_be32(
2462 			     SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2463 		ret = -EINVAL;
2464 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2465 		       " has not yet been enabled\n");
2466 		goto reject;
2467 	}
2468 
2469 	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2470 		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2471 
2472 		spin_lock_irq(&sdev->spinlock);
2473 
2474 		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2475 			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2476 			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
2477 			    && param->port == ch->sport->port
2478 			    && param->listen_id == ch->sport->sdev->cm_id
2479 			    && ch->cm_id) {
2480 				enum rdma_ch_state ch_state;
2481 
2482 				ch_state = srpt_get_ch_state(ch);
2483 				if (ch_state != CH_CONNECTING
2484 				    && ch_state != CH_LIVE)
2485 					continue;
2486 
2487 				/* found an existing channel */
2488 				pr_debug("Found existing channel %s"
2489 					 " cm_id= %p state= %d\n",
2490 					 ch->sess_name, ch->cm_id, ch_state);
2491 
2492 				__srpt_close_ch(ch);
2493 
2494 				rsp->rsp_flags =
2495 					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2496 			}
2497 		}
2498 
2499 		spin_unlock_irq(&sdev->spinlock);
2500 
2501 	} else
2502 		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2503 
2504 	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2505 	    || *(__be64 *)(req->target_port_id + 8) !=
2506 	       cpu_to_be64(srpt_service_guid)) {
2507 		rej->reason = __constant_cpu_to_be32(
2508 				SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2509 		ret = -ENOMEM;
2510 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2511 		       " has an invalid target port identifier.\n");
2512 		goto reject;
2513 	}
2514 
2515 	ch = kzalloc(sizeof *ch, GFP_KERNEL);
2516 	if (!ch) {
2517 		rej->reason = __constant_cpu_to_be32(
2518 					SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2519 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2520 		ret = -ENOMEM;
2521 		goto reject;
2522 	}
2523 
2524 	INIT_WORK(&ch->release_work, srpt_release_channel_work);
2525 	memcpy(ch->i_port_id, req->initiator_port_id, 16);
2526 	memcpy(ch->t_port_id, req->target_port_id, 16);
2527 	ch->sport = &sdev->port[param->port - 1];
2528 	ch->cm_id = cm_id;
2529 	/*
2530 	 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2531 	 * for the SRP protocol to the command queue size.
2532 	 */
2533 	ch->rq_size = SRPT_RQ_SIZE;
2534 	spin_lock_init(&ch->spinlock);
2535 	ch->state = CH_CONNECTING;
2536 	INIT_LIST_HEAD(&ch->cmd_wait_list);
2537 	ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2538 
2539 	ch->ioctx_ring = (struct srpt_send_ioctx **)
2540 		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2541 				      sizeof(*ch->ioctx_ring[0]),
2542 				      ch->rsp_size, DMA_TO_DEVICE);
2543 	if (!ch->ioctx_ring)
2544 		goto free_ch;
2545 
2546 	INIT_LIST_HEAD(&ch->free_list);
2547 	for (i = 0; i < ch->rq_size; i++) {
2548 		ch->ioctx_ring[i]->ch = ch;
2549 		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2550 	}
2551 
2552 	ret = srpt_create_ch_ib(ch);
2553 	if (ret) {
2554 		rej->reason = __constant_cpu_to_be32(
2555 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2556 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2557 		       " a new RDMA channel failed.\n");
2558 		goto free_ring;
2559 	}
2560 
2561 	ret = srpt_ch_qp_rtr(ch, ch->qp);
2562 	if (ret) {
2563 		rej->reason = __constant_cpu_to_be32(
2564 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2565 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2566 		       " RTR failed (error code = %d)\n", ret);
2567 		goto destroy_ib;
2568 	}
2569 	/*
2570 	 * Use the initator port identifier as the session name.
2571 	 */
2572 	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2573 			be64_to_cpu(*(__be64 *)ch->i_port_id),
2574 			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2575 
2576 	pr_debug("registering session %s\n", ch->sess_name);
2577 
2578 	nacl = srpt_lookup_acl(sport, ch->i_port_id);
2579 	if (!nacl) {
2580 		printk(KERN_INFO "Rejected login because no ACL has been"
2581 		       " configured yet for initiator %s.\n", ch->sess_name);
2582 		rej->reason = __constant_cpu_to_be32(
2583 				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2584 		goto destroy_ib;
2585 	}
2586 
2587 	ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2588 	if (IS_ERR(ch->sess)) {
2589 		rej->reason = __constant_cpu_to_be32(
2590 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2591 		pr_debug("Failed to create session\n");
2592 		goto deregister_session;
2593 	}
2594 	ch->sess->se_node_acl = &nacl->nacl;
2595 	transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2596 
2597 	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2598 		 ch->sess_name, ch->cm_id);
2599 
2600 	/* create srp_login_response */
2601 	rsp->opcode = SRP_LOGIN_RSP;
2602 	rsp->tag = req->tag;
2603 	rsp->max_it_iu_len = req->req_it_iu_len;
2604 	rsp->max_ti_iu_len = req->req_it_iu_len;
2605 	ch->max_ti_iu_len = it_iu_len;
2606 	rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2607 					      | SRP_BUF_FORMAT_INDIRECT);
2608 	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2609 	atomic_set(&ch->req_lim, ch->rq_size);
2610 	atomic_set(&ch->req_lim_delta, 0);
2611 
2612 	/* create cm reply */
2613 	rep_param->qp_num = ch->qp->qp_num;
2614 	rep_param->private_data = (void *)rsp;
2615 	rep_param->private_data_len = sizeof *rsp;
2616 	rep_param->rnr_retry_count = 7;
2617 	rep_param->flow_control = 1;
2618 	rep_param->failover_accepted = 0;
2619 	rep_param->srq = 1;
2620 	rep_param->responder_resources = 4;
2621 	rep_param->initiator_depth = 4;
2622 
2623 	ret = ib_send_cm_rep(cm_id, rep_param);
2624 	if (ret) {
2625 		printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2626 		       " (error code = %d)\n", ret);
2627 		goto release_channel;
2628 	}
2629 
2630 	spin_lock_irq(&sdev->spinlock);
2631 	list_add_tail(&ch->list, &sdev->rch_list);
2632 	spin_unlock_irq(&sdev->spinlock);
2633 
2634 	goto out;
2635 
2636 release_channel:
2637 	srpt_set_ch_state(ch, CH_RELEASING);
2638 	transport_deregister_session_configfs(ch->sess);
2639 
2640 deregister_session:
2641 	transport_deregister_session(ch->sess);
2642 	ch->sess = NULL;
2643 
2644 destroy_ib:
2645 	srpt_destroy_ch_ib(ch);
2646 
2647 free_ring:
2648 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2649 			     ch->sport->sdev, ch->rq_size,
2650 			     ch->rsp_size, DMA_TO_DEVICE);
2651 free_ch:
2652 	kfree(ch);
2653 
2654 reject:
2655 	rej->opcode = SRP_LOGIN_REJ;
2656 	rej->tag = req->tag;
2657 	rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2658 					      | SRP_BUF_FORMAT_INDIRECT);
2659 
2660 	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2661 			     (void *)rej, sizeof *rej);
2662 
2663 out:
2664 	kfree(rep_param);
2665 	kfree(rsp);
2666 	kfree(rej);
2667 
2668 	return ret;
2669 }
2670 
2671 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2672 {
2673 	printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2674 	srpt_drain_channel(cm_id);
2675 }
2676 
2677 /**
2678  * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2679  *
2680  * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2681  * and that the recipient may begin transmitting (RTU = ready to use).
2682  */
2683 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2684 {
2685 	struct srpt_rdma_ch *ch;
2686 	int ret;
2687 
2688 	ch = srpt_find_channel(cm_id->context, cm_id);
2689 	BUG_ON(!ch);
2690 
2691 	if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2692 		struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2693 
2694 		ret = srpt_ch_qp_rts(ch, ch->qp);
2695 
2696 		list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2697 					 wait_list) {
2698 			list_del(&ioctx->wait_list);
2699 			srpt_handle_new_iu(ch, ioctx, NULL);
2700 		}
2701 		if (ret)
2702 			srpt_close_ch(ch);
2703 	}
2704 }
2705 
2706 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2707 {
2708 	printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2709 	srpt_drain_channel(cm_id);
2710 }
2711 
2712 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2713 {
2714 	printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2715 	srpt_drain_channel(cm_id);
2716 }
2717 
2718 /**
2719  * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2720  */
2721 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2722 {
2723 	struct srpt_rdma_ch *ch;
2724 	unsigned long flags;
2725 	bool send_drep = false;
2726 
2727 	ch = srpt_find_channel(cm_id->context, cm_id);
2728 	BUG_ON(!ch);
2729 
2730 	pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2731 
2732 	spin_lock_irqsave(&ch->spinlock, flags);
2733 	switch (ch->state) {
2734 	case CH_CONNECTING:
2735 	case CH_LIVE:
2736 		send_drep = true;
2737 		ch->state = CH_DISCONNECTING;
2738 		break;
2739 	case CH_DISCONNECTING:
2740 	case CH_DRAINING:
2741 	case CH_RELEASING:
2742 		WARN(true, "unexpected channel state %d\n", ch->state);
2743 		break;
2744 	}
2745 	spin_unlock_irqrestore(&ch->spinlock, flags);
2746 
2747 	if (send_drep) {
2748 		if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2749 			printk(KERN_ERR "Sending IB DREP failed.\n");
2750 		printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2751 		       ch->sess_name);
2752 	}
2753 }
2754 
2755 /**
2756  * srpt_cm_drep_recv() - Process reception of a DREP message.
2757  */
2758 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2759 {
2760 	printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2761 	       cm_id);
2762 	srpt_drain_channel(cm_id);
2763 }
2764 
2765 /**
2766  * srpt_cm_handler() - IB connection manager callback function.
2767  *
2768  * A non-zero return value will cause the caller destroy the CM ID.
2769  *
2770  * Note: srpt_cm_handler() must only return a non-zero value when transferring
2771  * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2772  * a non-zero value in any other case will trigger a race with the
2773  * ib_destroy_cm_id() call in srpt_release_channel().
2774  */
2775 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2776 {
2777 	int ret;
2778 
2779 	ret = 0;
2780 	switch (event->event) {
2781 	case IB_CM_REQ_RECEIVED:
2782 		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2783 				       event->private_data);
2784 		break;
2785 	case IB_CM_REJ_RECEIVED:
2786 		srpt_cm_rej_recv(cm_id);
2787 		break;
2788 	case IB_CM_RTU_RECEIVED:
2789 	case IB_CM_USER_ESTABLISHED:
2790 		srpt_cm_rtu_recv(cm_id);
2791 		break;
2792 	case IB_CM_DREQ_RECEIVED:
2793 		srpt_cm_dreq_recv(cm_id);
2794 		break;
2795 	case IB_CM_DREP_RECEIVED:
2796 		srpt_cm_drep_recv(cm_id);
2797 		break;
2798 	case IB_CM_TIMEWAIT_EXIT:
2799 		srpt_cm_timewait_exit(cm_id);
2800 		break;
2801 	case IB_CM_REP_ERROR:
2802 		srpt_cm_rep_error(cm_id);
2803 		break;
2804 	case IB_CM_DREQ_ERROR:
2805 		printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2806 		break;
2807 	case IB_CM_MRA_RECEIVED:
2808 		printk(KERN_INFO "Received IB MRA event\n");
2809 		break;
2810 	default:
2811 		printk(KERN_ERR "received unrecognized IB CM event %d\n",
2812 		       event->event);
2813 		break;
2814 	}
2815 
2816 	return ret;
2817 }
2818 
2819 /**
2820  * srpt_perform_rdmas() - Perform IB RDMA.
2821  *
2822  * Returns zero upon success or a negative number upon failure.
2823  */
2824 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2825 			      struct srpt_send_ioctx *ioctx)
2826 {
2827 	struct ib_send_wr wr;
2828 	struct ib_send_wr *bad_wr;
2829 	struct rdma_iu *riu;
2830 	int i;
2831 	int ret;
2832 	int sq_wr_avail;
2833 	enum dma_data_direction dir;
2834 	const int n_rdma = ioctx->n_rdma;
2835 
2836 	dir = ioctx->cmd.data_direction;
2837 	if (dir == DMA_TO_DEVICE) {
2838 		/* write */
2839 		ret = -ENOMEM;
2840 		sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2841 		if (sq_wr_avail < 0) {
2842 			printk(KERN_WARNING "IB send queue full (needed %d)\n",
2843 			       n_rdma);
2844 			goto out;
2845 		}
2846 	}
2847 
2848 	ioctx->rdma_aborted = false;
2849 	ret = 0;
2850 	riu = ioctx->rdma_ius;
2851 	memset(&wr, 0, sizeof wr);
2852 
2853 	for (i = 0; i < n_rdma; ++i, ++riu) {
2854 		if (dir == DMA_FROM_DEVICE) {
2855 			wr.opcode = IB_WR_RDMA_WRITE;
2856 			wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2857 						SRPT_RDMA_WRITE_LAST :
2858 						SRPT_RDMA_MID,
2859 						ioctx->ioctx.index);
2860 		} else {
2861 			wr.opcode = IB_WR_RDMA_READ;
2862 			wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2863 						SRPT_RDMA_READ_LAST :
2864 						SRPT_RDMA_MID,
2865 						ioctx->ioctx.index);
2866 		}
2867 		wr.next = NULL;
2868 		wr.wr.rdma.remote_addr = riu->raddr;
2869 		wr.wr.rdma.rkey = riu->rkey;
2870 		wr.num_sge = riu->sge_cnt;
2871 		wr.sg_list = riu->sge;
2872 
2873 		/* only get completion event for the last rdma write */
2874 		if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2875 			wr.send_flags = IB_SEND_SIGNALED;
2876 
2877 		ret = ib_post_send(ch->qp, &wr, &bad_wr);
2878 		if (ret)
2879 			break;
2880 	}
2881 
2882 	if (ret)
2883 		printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2884 				 __func__, __LINE__, ret, i, n_rdma);
2885 	if (ret && i > 0) {
2886 		wr.num_sge = 0;
2887 		wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2888 		wr.send_flags = IB_SEND_SIGNALED;
2889 		while (ch->state == CH_LIVE &&
2890 			ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2891 			printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2892 				ioctx->ioctx.index);
2893 			msleep(1000);
2894 		}
2895 		while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2896 			printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2897 				ioctx->ioctx.index);
2898 			msleep(1000);
2899 		}
2900 	}
2901 out:
2902 	if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2903 		atomic_add(n_rdma, &ch->sq_wr_avail);
2904 	return ret;
2905 }
2906 
2907 /**
2908  * srpt_xfer_data() - Start data transfer from initiator to target.
2909  */
2910 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2911 			  struct srpt_send_ioctx *ioctx)
2912 {
2913 	int ret;
2914 
2915 	ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2916 	if (ret) {
2917 		printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2918 		goto out;
2919 	}
2920 
2921 	ret = srpt_perform_rdmas(ch, ioctx);
2922 	if (ret) {
2923 		if (ret == -EAGAIN || ret == -ENOMEM)
2924 			printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2925 				   __func__, __LINE__, ret);
2926 		else
2927 			printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2928 			       __func__, __LINE__, ret);
2929 		goto out_unmap;
2930 	}
2931 
2932 out:
2933 	return ret;
2934 out_unmap:
2935 	srpt_unmap_sg_to_ib_sge(ch, ioctx);
2936 	goto out;
2937 }
2938 
2939 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2940 {
2941 	struct srpt_send_ioctx *ioctx;
2942 
2943 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2944 	return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2945 }
2946 
2947 /*
2948  * srpt_write_pending() - Start data transfer from initiator to target (write).
2949  */
2950 static int srpt_write_pending(struct se_cmd *se_cmd)
2951 {
2952 	struct srpt_rdma_ch *ch;
2953 	struct srpt_send_ioctx *ioctx;
2954 	enum srpt_command_state new_state;
2955 	enum rdma_ch_state ch_state;
2956 	int ret;
2957 
2958 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2959 
2960 	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2961 	WARN_ON(new_state == SRPT_STATE_DONE);
2962 
2963 	ch = ioctx->ch;
2964 	BUG_ON(!ch);
2965 
2966 	ch_state = srpt_get_ch_state(ch);
2967 	switch (ch_state) {
2968 	case CH_CONNECTING:
2969 		WARN(true, "unexpected channel state %d\n", ch_state);
2970 		ret = -EINVAL;
2971 		goto out;
2972 	case CH_LIVE:
2973 		break;
2974 	case CH_DISCONNECTING:
2975 	case CH_DRAINING:
2976 	case CH_RELEASING:
2977 		pr_debug("cmd with tag %lld: channel disconnecting\n",
2978 			 ioctx->tag);
2979 		srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2980 		ret = -EINVAL;
2981 		goto out;
2982 	}
2983 	ret = srpt_xfer_data(ch, ioctx);
2984 
2985 out:
2986 	return ret;
2987 }
2988 
2989 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2990 {
2991 	switch (tcm_mgmt_status) {
2992 	case TMR_FUNCTION_COMPLETE:
2993 		return SRP_TSK_MGMT_SUCCESS;
2994 	case TMR_FUNCTION_REJECTED:
2995 		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2996 	}
2997 	return SRP_TSK_MGMT_FAILED;
2998 }
2999 
3000 /**
3001  * srpt_queue_response() - Transmits the response to a SCSI command.
3002  *
3003  * Callback function called by the TCM core. Must not block since it can be
3004  * invoked on the context of the IB completion handler.
3005  */
3006 static void srpt_queue_response(struct se_cmd *cmd)
3007 {
3008 	struct srpt_rdma_ch *ch;
3009 	struct srpt_send_ioctx *ioctx;
3010 	enum srpt_command_state state;
3011 	unsigned long flags;
3012 	int ret;
3013 	enum dma_data_direction dir;
3014 	int resp_len;
3015 	u8 srp_tm_status;
3016 
3017 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3018 	ch = ioctx->ch;
3019 	BUG_ON(!ch);
3020 
3021 	spin_lock_irqsave(&ioctx->spinlock, flags);
3022 	state = ioctx->state;
3023 	switch (state) {
3024 	case SRPT_STATE_NEW:
3025 	case SRPT_STATE_DATA_IN:
3026 		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3027 		break;
3028 	case SRPT_STATE_MGMT:
3029 		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3030 		break;
3031 	default:
3032 		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3033 			ch, ioctx->ioctx.index, ioctx->state);
3034 		break;
3035 	}
3036 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
3037 
3038 	if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3039 		     || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3040 		atomic_inc(&ch->req_lim_delta);
3041 		srpt_abort_cmd(ioctx);
3042 		return;
3043 	}
3044 
3045 	dir = ioctx->cmd.data_direction;
3046 
3047 	/* For read commands, transfer the data to the initiator. */
3048 	if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3049 	    !ioctx->queue_status_only) {
3050 		ret = srpt_xfer_data(ch, ioctx);
3051 		if (ret) {
3052 			printk(KERN_ERR "xfer_data failed for tag %llu\n",
3053 			       ioctx->tag);
3054 			return;
3055 		}
3056 	}
3057 
3058 	if (state != SRPT_STATE_MGMT)
3059 		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3060 					      cmd->scsi_status);
3061 	else {
3062 		srp_tm_status
3063 			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3064 		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3065 						 ioctx->tag);
3066 	}
3067 	ret = srpt_post_send(ch, ioctx, resp_len);
3068 	if (ret) {
3069 		printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3070 		       ioctx->tag);
3071 		srpt_unmap_sg_to_ib_sge(ch, ioctx);
3072 		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3073 		target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
3074 	}
3075 }
3076 
3077 static int srpt_queue_data_in(struct se_cmd *cmd)
3078 {
3079 	srpt_queue_response(cmd);
3080 	return 0;
3081 }
3082 
3083 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3084 {
3085 	srpt_queue_response(cmd);
3086 }
3087 
3088 static void srpt_aborted_task(struct se_cmd *cmd)
3089 {
3090 	struct srpt_send_ioctx *ioctx = container_of(cmd,
3091 				struct srpt_send_ioctx, cmd);
3092 
3093 	srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3094 }
3095 
3096 static int srpt_queue_status(struct se_cmd *cmd)
3097 {
3098 	struct srpt_send_ioctx *ioctx;
3099 
3100 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3101 	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3102 	if (cmd->se_cmd_flags &
3103 	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3104 		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3105 	ioctx->queue_status_only = true;
3106 	srpt_queue_response(cmd);
3107 	return 0;
3108 }
3109 
3110 static void srpt_refresh_port_work(struct work_struct *work)
3111 {
3112 	struct srpt_port *sport = container_of(work, struct srpt_port, work);
3113 
3114 	srpt_refresh_port(sport);
3115 }
3116 
3117 static int srpt_ch_list_empty(struct srpt_device *sdev)
3118 {
3119 	int res;
3120 
3121 	spin_lock_irq(&sdev->spinlock);
3122 	res = list_empty(&sdev->rch_list);
3123 	spin_unlock_irq(&sdev->spinlock);
3124 
3125 	return res;
3126 }
3127 
3128 /**
3129  * srpt_release_sdev() - Free the channel resources associated with a target.
3130  */
3131 static int srpt_release_sdev(struct srpt_device *sdev)
3132 {
3133 	struct srpt_rdma_ch *ch, *tmp_ch;
3134 	int res;
3135 
3136 	WARN_ON_ONCE(irqs_disabled());
3137 
3138 	BUG_ON(!sdev);
3139 
3140 	spin_lock_irq(&sdev->spinlock);
3141 	list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3142 		__srpt_close_ch(ch);
3143 	spin_unlock_irq(&sdev->spinlock);
3144 
3145 	res = wait_event_interruptible(sdev->ch_releaseQ,
3146 				       srpt_ch_list_empty(sdev));
3147 	if (res)
3148 		printk(KERN_ERR "%s: interrupted.\n", __func__);
3149 
3150 	return 0;
3151 }
3152 
3153 static struct srpt_port *__srpt_lookup_port(const char *name)
3154 {
3155 	struct ib_device *dev;
3156 	struct srpt_device *sdev;
3157 	struct srpt_port *sport;
3158 	int i;
3159 
3160 	list_for_each_entry(sdev, &srpt_dev_list, list) {
3161 		dev = sdev->device;
3162 		if (!dev)
3163 			continue;
3164 
3165 		for (i = 0; i < dev->phys_port_cnt; i++) {
3166 			sport = &sdev->port[i];
3167 
3168 			if (!strcmp(sport->port_guid, name))
3169 				return sport;
3170 		}
3171 	}
3172 
3173 	return NULL;
3174 }
3175 
3176 static struct srpt_port *srpt_lookup_port(const char *name)
3177 {
3178 	struct srpt_port *sport;
3179 
3180 	spin_lock(&srpt_dev_lock);
3181 	sport = __srpt_lookup_port(name);
3182 	spin_unlock(&srpt_dev_lock);
3183 
3184 	return sport;
3185 }
3186 
3187 /**
3188  * srpt_add_one() - Infiniband device addition callback function.
3189  */
3190 static void srpt_add_one(struct ib_device *device)
3191 {
3192 	struct srpt_device *sdev;
3193 	struct srpt_port *sport;
3194 	struct ib_srq_init_attr srq_attr;
3195 	int i;
3196 
3197 	pr_debug("device = %p, device->dma_ops = %p\n", device,
3198 		 device->dma_ops);
3199 
3200 	sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3201 	if (!sdev)
3202 		goto err;
3203 
3204 	sdev->device = device;
3205 	INIT_LIST_HEAD(&sdev->rch_list);
3206 	init_waitqueue_head(&sdev->ch_releaseQ);
3207 	spin_lock_init(&sdev->spinlock);
3208 
3209 	if (ib_query_device(device, &sdev->dev_attr))
3210 		goto free_dev;
3211 
3212 	sdev->pd = ib_alloc_pd(device);
3213 	if (IS_ERR(sdev->pd))
3214 		goto free_dev;
3215 
3216 	sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3217 	if (IS_ERR(sdev->mr))
3218 		goto err_pd;
3219 
3220 	sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3221 
3222 	srq_attr.event_handler = srpt_srq_event;
3223 	srq_attr.srq_context = (void *)sdev;
3224 	srq_attr.attr.max_wr = sdev->srq_size;
3225 	srq_attr.attr.max_sge = 1;
3226 	srq_attr.attr.srq_limit = 0;
3227 	srq_attr.srq_type = IB_SRQT_BASIC;
3228 
3229 	sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3230 	if (IS_ERR(sdev->srq))
3231 		goto err_mr;
3232 
3233 	pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3234 		 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3235 		 device->name);
3236 
3237 	if (!srpt_service_guid)
3238 		srpt_service_guid = be64_to_cpu(device->node_guid);
3239 
3240 	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3241 	if (IS_ERR(sdev->cm_id))
3242 		goto err_srq;
3243 
3244 	/* print out target login information */
3245 	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3246 		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3247 		 srpt_service_guid, srpt_service_guid);
3248 
3249 	/*
3250 	 * We do not have a consistent service_id (ie. also id_ext of target_id)
3251 	 * to identify this target. We currently use the guid of the first HCA
3252 	 * in the system as service_id; therefore, the target_id will change
3253 	 * if this HCA is gone bad and replaced by different HCA
3254 	 */
3255 	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3256 		goto err_cm;
3257 
3258 	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3259 			      srpt_event_handler);
3260 	if (ib_register_event_handler(&sdev->event_handler))
3261 		goto err_cm;
3262 
3263 	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3264 		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3265 				      sizeof(*sdev->ioctx_ring[0]),
3266 				      srp_max_req_size, DMA_FROM_DEVICE);
3267 	if (!sdev->ioctx_ring)
3268 		goto err_event;
3269 
3270 	for (i = 0; i < sdev->srq_size; ++i)
3271 		srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3272 
3273 	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3274 
3275 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3276 		sport = &sdev->port[i - 1];
3277 		sport->sdev = sdev;
3278 		sport->port = i;
3279 		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3280 		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3281 		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3282 		INIT_WORK(&sport->work, srpt_refresh_port_work);
3283 		INIT_LIST_HEAD(&sport->port_acl_list);
3284 		spin_lock_init(&sport->port_acl_lock);
3285 
3286 		if (srpt_refresh_port(sport)) {
3287 			printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3288 			       srpt_sdev_name(sdev), i);
3289 			goto err_ring;
3290 		}
3291 		snprintf(sport->port_guid, sizeof(sport->port_guid),
3292 			"0x%016llx%016llx",
3293 			be64_to_cpu(sport->gid.global.subnet_prefix),
3294 			be64_to_cpu(sport->gid.global.interface_id));
3295 	}
3296 
3297 	spin_lock(&srpt_dev_lock);
3298 	list_add_tail(&sdev->list, &srpt_dev_list);
3299 	spin_unlock(&srpt_dev_lock);
3300 
3301 out:
3302 	ib_set_client_data(device, &srpt_client, sdev);
3303 	pr_debug("added %s.\n", device->name);
3304 	return;
3305 
3306 err_ring:
3307 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3308 			     sdev->srq_size, srp_max_req_size,
3309 			     DMA_FROM_DEVICE);
3310 err_event:
3311 	ib_unregister_event_handler(&sdev->event_handler);
3312 err_cm:
3313 	ib_destroy_cm_id(sdev->cm_id);
3314 err_srq:
3315 	ib_destroy_srq(sdev->srq);
3316 err_mr:
3317 	ib_dereg_mr(sdev->mr);
3318 err_pd:
3319 	ib_dealloc_pd(sdev->pd);
3320 free_dev:
3321 	kfree(sdev);
3322 err:
3323 	sdev = NULL;
3324 	printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3325 	goto out;
3326 }
3327 
3328 /**
3329  * srpt_remove_one() - InfiniBand device removal callback function.
3330  */
3331 static void srpt_remove_one(struct ib_device *device)
3332 {
3333 	struct srpt_device *sdev;
3334 	int i;
3335 
3336 	sdev = ib_get_client_data(device, &srpt_client);
3337 	if (!sdev) {
3338 		printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3339 		       device->name);
3340 		return;
3341 	}
3342 
3343 	srpt_unregister_mad_agent(sdev);
3344 
3345 	ib_unregister_event_handler(&sdev->event_handler);
3346 
3347 	/* Cancel any work queued by the just unregistered IB event handler. */
3348 	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3349 		cancel_work_sync(&sdev->port[i].work);
3350 
3351 	ib_destroy_cm_id(sdev->cm_id);
3352 
3353 	/*
3354 	 * Unregistering a target must happen after destroying sdev->cm_id
3355 	 * such that no new SRP_LOGIN_REQ information units can arrive while
3356 	 * destroying the target.
3357 	 */
3358 	spin_lock(&srpt_dev_lock);
3359 	list_del(&sdev->list);
3360 	spin_unlock(&srpt_dev_lock);
3361 	srpt_release_sdev(sdev);
3362 
3363 	ib_destroy_srq(sdev->srq);
3364 	ib_dereg_mr(sdev->mr);
3365 	ib_dealloc_pd(sdev->pd);
3366 
3367 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3368 			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3369 	sdev->ioctx_ring = NULL;
3370 	kfree(sdev);
3371 }
3372 
3373 static struct ib_client srpt_client = {
3374 	.name = DRV_NAME,
3375 	.add = srpt_add_one,
3376 	.remove = srpt_remove_one
3377 };
3378 
3379 static int srpt_check_true(struct se_portal_group *se_tpg)
3380 {
3381 	return 1;
3382 }
3383 
3384 static int srpt_check_false(struct se_portal_group *se_tpg)
3385 {
3386 	return 0;
3387 }
3388 
3389 static char *srpt_get_fabric_name(void)
3390 {
3391 	return "srpt";
3392 }
3393 
3394 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3395 {
3396 	return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3397 }
3398 
3399 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3400 {
3401 	struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3402 
3403 	return sport->port_guid;
3404 }
3405 
3406 static u16 srpt_get_tag(struct se_portal_group *tpg)
3407 {
3408 	return 1;
3409 }
3410 
3411 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3412 {
3413 	return 1;
3414 }
3415 
3416 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3417 				    struct se_node_acl *se_nacl,
3418 				    struct t10_pr_registration *pr_reg,
3419 				    int *format_code, unsigned char *buf)
3420 {
3421 	struct srpt_node_acl *nacl;
3422 	struct spc_rdma_transport_id *tr_id;
3423 
3424 	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3425 	tr_id = (void *)buf;
3426 	tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3427 	memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3428 	return sizeof(*tr_id);
3429 }
3430 
3431 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3432 					struct se_node_acl *se_nacl,
3433 					struct t10_pr_registration *pr_reg,
3434 					int *format_code)
3435 {
3436 	*format_code = 0;
3437 	return sizeof(struct spc_rdma_transport_id);
3438 }
3439 
3440 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3441 					    const char *buf, u32 *out_tid_len,
3442 					    char **port_nexus_ptr)
3443 {
3444 	struct spc_rdma_transport_id *tr_id;
3445 
3446 	*port_nexus_ptr = NULL;
3447 	*out_tid_len = sizeof(struct spc_rdma_transport_id);
3448 	tr_id = (void *)buf;
3449 	return (char *)tr_id->i_port_id;
3450 }
3451 
3452 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3453 {
3454 	struct srpt_node_acl *nacl;
3455 
3456 	nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3457 	if (!nacl) {
3458 		printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
3459 		return NULL;
3460 	}
3461 
3462 	return &nacl->nacl;
3463 }
3464 
3465 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3466 				    struct se_node_acl *se_nacl)
3467 {
3468 	struct srpt_node_acl *nacl;
3469 
3470 	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3471 	kfree(nacl);
3472 }
3473 
3474 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3475 {
3476 	return 1;
3477 }
3478 
3479 static void srpt_release_cmd(struct se_cmd *se_cmd)
3480 {
3481 	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3482 				struct srpt_send_ioctx, cmd);
3483 	struct srpt_rdma_ch *ch = ioctx->ch;
3484 	unsigned long flags;
3485 
3486 	WARN_ON(ioctx->state != SRPT_STATE_DONE);
3487 	WARN_ON(ioctx->mapped_sg_count != 0);
3488 
3489 	if (ioctx->n_rbuf > 1) {
3490 		kfree(ioctx->rbufs);
3491 		ioctx->rbufs = NULL;
3492 		ioctx->n_rbuf = 0;
3493 	}
3494 
3495 	spin_lock_irqsave(&ch->spinlock, flags);
3496 	list_add(&ioctx->free_list, &ch->free_list);
3497 	spin_unlock_irqrestore(&ch->spinlock, flags);
3498 }
3499 
3500 /**
3501  * srpt_close_session() - Forcibly close a session.
3502  *
3503  * Callback function invoked by the TCM core to clean up sessions associated
3504  * with a node ACL when the user invokes
3505  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3506  */
3507 static void srpt_close_session(struct se_session *se_sess)
3508 {
3509 	DECLARE_COMPLETION_ONSTACK(release_done);
3510 	struct srpt_rdma_ch *ch;
3511 	struct srpt_device *sdev;
3512 	int res;
3513 
3514 	ch = se_sess->fabric_sess_ptr;
3515 	WARN_ON(ch->sess != se_sess);
3516 
3517 	pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3518 
3519 	sdev = ch->sport->sdev;
3520 	spin_lock_irq(&sdev->spinlock);
3521 	BUG_ON(ch->release_done);
3522 	ch->release_done = &release_done;
3523 	__srpt_close_ch(ch);
3524 	spin_unlock_irq(&sdev->spinlock);
3525 
3526 	res = wait_for_completion_timeout(&release_done, 60 * HZ);
3527 	WARN_ON(res <= 0);
3528 }
3529 
3530 /**
3531  * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3532  *
3533  * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3534  * This object represents an arbitrary integer used to uniquely identify a
3535  * particular attached remote initiator port to a particular SCSI target port
3536  * within a particular SCSI target device within a particular SCSI instance.
3537  */
3538 static u32 srpt_sess_get_index(struct se_session *se_sess)
3539 {
3540 	return 0;
3541 }
3542 
3543 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3544 {
3545 }
3546 
3547 static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3548 {
3549 	struct srpt_send_ioctx *ioctx;
3550 
3551 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3552 	return ioctx->tag;
3553 }
3554 
3555 /* Note: only used from inside debug printk's by the TCM core. */
3556 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3557 {
3558 	struct srpt_send_ioctx *ioctx;
3559 
3560 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3561 	return srpt_get_cmd_state(ioctx);
3562 }
3563 
3564 /**
3565  * srpt_parse_i_port_id() - Parse an initiator port ID.
3566  * @name: ASCII representation of a 128-bit initiator port ID.
3567  * @i_port_id: Binary 128-bit port ID.
3568  */
3569 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3570 {
3571 	const char *p;
3572 	unsigned len, count, leading_zero_bytes;
3573 	int ret, rc;
3574 
3575 	p = name;
3576 	if (strnicmp(p, "0x", 2) == 0)
3577 		p += 2;
3578 	ret = -EINVAL;
3579 	len = strlen(p);
3580 	if (len % 2)
3581 		goto out;
3582 	count = min(len / 2, 16U);
3583 	leading_zero_bytes = 16 - count;
3584 	memset(i_port_id, 0, leading_zero_bytes);
3585 	rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3586 	if (rc < 0)
3587 		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3588 	ret = 0;
3589 out:
3590 	return ret;
3591 }
3592 
3593 /*
3594  * configfs callback function invoked for
3595  * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3596  */
3597 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3598 					     struct config_group *group,
3599 					     const char *name)
3600 {
3601 	struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3602 	struct se_node_acl *se_nacl, *se_nacl_new;
3603 	struct srpt_node_acl *nacl;
3604 	int ret = 0;
3605 	u32 nexus_depth = 1;
3606 	u8 i_port_id[16];
3607 
3608 	if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3609 		printk(KERN_ERR "invalid initiator port ID %s\n", name);
3610 		ret = -EINVAL;
3611 		goto err;
3612 	}
3613 
3614 	se_nacl_new = srpt_alloc_fabric_acl(tpg);
3615 	if (!se_nacl_new) {
3616 		ret = -ENOMEM;
3617 		goto err;
3618 	}
3619 	/*
3620 	 * nacl_new may be released by core_tpg_add_initiator_node_acl()
3621 	 * when converting a node ACL from demo mode to explict
3622 	 */
3623 	se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3624 						  nexus_depth);
3625 	if (IS_ERR(se_nacl)) {
3626 		ret = PTR_ERR(se_nacl);
3627 		goto err;
3628 	}
3629 	/* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3630 	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3631 	memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3632 	nacl->sport = sport;
3633 
3634 	spin_lock_irq(&sport->port_acl_lock);
3635 	list_add_tail(&nacl->list, &sport->port_acl_list);
3636 	spin_unlock_irq(&sport->port_acl_lock);
3637 
3638 	return se_nacl;
3639 err:
3640 	return ERR_PTR(ret);
3641 }
3642 
3643 /*
3644  * configfs callback function invoked for
3645  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3646  */
3647 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3648 {
3649 	struct srpt_node_acl *nacl;
3650 	struct srpt_device *sdev;
3651 	struct srpt_port *sport;
3652 
3653 	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3654 	sport = nacl->sport;
3655 	sdev = sport->sdev;
3656 	spin_lock_irq(&sport->port_acl_lock);
3657 	list_del(&nacl->list);
3658 	spin_unlock_irq(&sport->port_acl_lock);
3659 	core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3660 	srpt_release_fabric_acl(NULL, se_nacl);
3661 }
3662 
3663 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3664 	struct se_portal_group *se_tpg,
3665 	char *page)
3666 {
3667 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3668 
3669 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3670 }
3671 
3672 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3673 	struct se_portal_group *se_tpg,
3674 	const char *page,
3675 	size_t count)
3676 {
3677 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3678 	unsigned long val;
3679 	int ret;
3680 
3681 	ret = kstrtoul(page, 0, &val);
3682 	if (ret < 0) {
3683 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3684 		return -EINVAL;
3685 	}
3686 	if (val > MAX_SRPT_RDMA_SIZE) {
3687 		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3688 			MAX_SRPT_RDMA_SIZE);
3689 		return -EINVAL;
3690 	}
3691 	if (val < DEFAULT_MAX_RDMA_SIZE) {
3692 		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3693 			val, DEFAULT_MAX_RDMA_SIZE);
3694 		return -EINVAL;
3695 	}
3696 	sport->port_attrib.srp_max_rdma_size = val;
3697 
3698 	return count;
3699 }
3700 
3701 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3702 
3703 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3704 	struct se_portal_group *se_tpg,
3705 	char *page)
3706 {
3707 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3708 
3709 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3710 }
3711 
3712 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3713 	struct se_portal_group *se_tpg,
3714 	const char *page,
3715 	size_t count)
3716 {
3717 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3718 	unsigned long val;
3719 	int ret;
3720 
3721 	ret = kstrtoul(page, 0, &val);
3722 	if (ret < 0) {
3723 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3724 		return -EINVAL;
3725 	}
3726 	if (val > MAX_SRPT_RSP_SIZE) {
3727 		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3728 			MAX_SRPT_RSP_SIZE);
3729 		return -EINVAL;
3730 	}
3731 	if (val < MIN_MAX_RSP_SIZE) {
3732 		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3733 			MIN_MAX_RSP_SIZE);
3734 		return -EINVAL;
3735 	}
3736 	sport->port_attrib.srp_max_rsp_size = val;
3737 
3738 	return count;
3739 }
3740 
3741 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3742 
3743 static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3744 	struct se_portal_group *se_tpg,
3745 	char *page)
3746 {
3747 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3748 
3749 	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3750 }
3751 
3752 static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3753 	struct se_portal_group *se_tpg,
3754 	const char *page,
3755 	size_t count)
3756 {
3757 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3758 	unsigned long val;
3759 	int ret;
3760 
3761 	ret = kstrtoul(page, 0, &val);
3762 	if (ret < 0) {
3763 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3764 		return -EINVAL;
3765 	}
3766 	if (val > MAX_SRPT_SRQ_SIZE) {
3767 		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3768 			MAX_SRPT_SRQ_SIZE);
3769 		return -EINVAL;
3770 	}
3771 	if (val < MIN_SRPT_SRQ_SIZE) {
3772 		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3773 			MIN_SRPT_SRQ_SIZE);
3774 		return -EINVAL;
3775 	}
3776 	sport->port_attrib.srp_sq_size = val;
3777 
3778 	return count;
3779 }
3780 
3781 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3782 
3783 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3784 	&srpt_tpg_attrib_srp_max_rdma_size.attr,
3785 	&srpt_tpg_attrib_srp_max_rsp_size.attr,
3786 	&srpt_tpg_attrib_srp_sq_size.attr,
3787 	NULL,
3788 };
3789 
3790 static ssize_t srpt_tpg_show_enable(
3791 	struct se_portal_group *se_tpg,
3792 	char *page)
3793 {
3794 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3795 
3796 	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3797 }
3798 
3799 static ssize_t srpt_tpg_store_enable(
3800 	struct se_portal_group *se_tpg,
3801 	const char *page,
3802 	size_t count)
3803 {
3804 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3805 	unsigned long tmp;
3806         int ret;
3807 
3808 	ret = kstrtoul(page, 0, &tmp);
3809 	if (ret < 0) {
3810 		printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3811 		return -EINVAL;
3812 	}
3813 
3814 	if ((tmp != 0) && (tmp != 1)) {
3815 		printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3816 		return -EINVAL;
3817 	}
3818 	if (tmp == 1)
3819 		sport->enabled = true;
3820 	else
3821 		sport->enabled = false;
3822 
3823 	return count;
3824 }
3825 
3826 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3827 
3828 static struct configfs_attribute *srpt_tpg_attrs[] = {
3829 	&srpt_tpg_enable.attr,
3830 	NULL,
3831 };
3832 
3833 /**
3834  * configfs callback invoked for
3835  * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3836  */
3837 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3838 					     struct config_group *group,
3839 					     const char *name)
3840 {
3841 	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3842 	int res;
3843 
3844 	/* Initialize sport->port_wwn and sport->port_tpg_1 */
3845 	res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3846 			&sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3847 	if (res)
3848 		return ERR_PTR(res);
3849 
3850 	return &sport->port_tpg_1;
3851 }
3852 
3853 /**
3854  * configfs callback invoked for
3855  * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3856  */
3857 static void srpt_drop_tpg(struct se_portal_group *tpg)
3858 {
3859 	struct srpt_port *sport = container_of(tpg,
3860 				struct srpt_port, port_tpg_1);
3861 
3862 	sport->enabled = false;
3863 	core_tpg_deregister(&sport->port_tpg_1);
3864 }
3865 
3866 /**
3867  * configfs callback invoked for
3868  * mkdir /sys/kernel/config/target/$driver/$port
3869  */
3870 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3871 				      struct config_group *group,
3872 				      const char *name)
3873 {
3874 	struct srpt_port *sport;
3875 	int ret;
3876 
3877 	sport = srpt_lookup_port(name);
3878 	pr_debug("make_tport(%s)\n", name);
3879 	ret = -EINVAL;
3880 	if (!sport)
3881 		goto err;
3882 
3883 	return &sport->port_wwn;
3884 
3885 err:
3886 	return ERR_PTR(ret);
3887 }
3888 
3889 /**
3890  * configfs callback invoked for
3891  * rmdir /sys/kernel/config/target/$driver/$port
3892  */
3893 static void srpt_drop_tport(struct se_wwn *wwn)
3894 {
3895 	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3896 
3897 	pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3898 }
3899 
3900 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3901 					      char *buf)
3902 {
3903 	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3904 }
3905 
3906 TF_WWN_ATTR_RO(srpt, version);
3907 
3908 static struct configfs_attribute *srpt_wwn_attrs[] = {
3909 	&srpt_wwn_version.attr,
3910 	NULL,
3911 };
3912 
3913 static struct target_core_fabric_ops srpt_template = {
3914 	.get_fabric_name		= srpt_get_fabric_name,
3915 	.get_fabric_proto_ident		= srpt_get_fabric_proto_ident,
3916 	.tpg_get_wwn			= srpt_get_fabric_wwn,
3917 	.tpg_get_tag			= srpt_get_tag,
3918 	.tpg_get_default_depth		= srpt_get_default_depth,
3919 	.tpg_get_pr_transport_id	= srpt_get_pr_transport_id,
3920 	.tpg_get_pr_transport_id_len	= srpt_get_pr_transport_id_len,
3921 	.tpg_parse_pr_out_transport_id	= srpt_parse_pr_out_transport_id,
3922 	.tpg_check_demo_mode		= srpt_check_false,
3923 	.tpg_check_demo_mode_cache	= srpt_check_true,
3924 	.tpg_check_demo_mode_write_protect = srpt_check_true,
3925 	.tpg_check_prod_mode_write_protect = srpt_check_false,
3926 	.tpg_alloc_fabric_acl		= srpt_alloc_fabric_acl,
3927 	.tpg_release_fabric_acl		= srpt_release_fabric_acl,
3928 	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
3929 	.release_cmd			= srpt_release_cmd,
3930 	.check_stop_free		= srpt_check_stop_free,
3931 	.shutdown_session		= srpt_shutdown_session,
3932 	.close_session			= srpt_close_session,
3933 	.sess_get_index			= srpt_sess_get_index,
3934 	.sess_get_initiator_sid		= NULL,
3935 	.write_pending			= srpt_write_pending,
3936 	.write_pending_status		= srpt_write_pending_status,
3937 	.set_default_node_attributes	= srpt_set_default_node_attrs,
3938 	.get_task_tag			= srpt_get_task_tag,
3939 	.get_cmd_state			= srpt_get_tcm_cmd_state,
3940 	.queue_data_in			= srpt_queue_data_in,
3941 	.queue_status			= srpt_queue_status,
3942 	.queue_tm_rsp			= srpt_queue_tm_rsp,
3943 	.aborted_task			= srpt_aborted_task,
3944 	/*
3945 	 * Setup function pointers for generic logic in
3946 	 * target_core_fabric_configfs.c
3947 	 */
3948 	.fabric_make_wwn		= srpt_make_tport,
3949 	.fabric_drop_wwn		= srpt_drop_tport,
3950 	.fabric_make_tpg		= srpt_make_tpg,
3951 	.fabric_drop_tpg		= srpt_drop_tpg,
3952 	.fabric_post_link		= NULL,
3953 	.fabric_pre_unlink		= NULL,
3954 	.fabric_make_np			= NULL,
3955 	.fabric_drop_np			= NULL,
3956 	.fabric_make_nodeacl		= srpt_make_nodeacl,
3957 	.fabric_drop_nodeacl		= srpt_drop_nodeacl,
3958 };
3959 
3960 /**
3961  * srpt_init_module() - Kernel module initialization.
3962  *
3963  * Note: Since ib_register_client() registers callback functions, and since at
3964  * least one of these callback functions (srpt_add_one()) calls target core
3965  * functions, this driver must be registered with the target core before
3966  * ib_register_client() is called.
3967  */
3968 static int __init srpt_init_module(void)
3969 {
3970 	int ret;
3971 
3972 	ret = -EINVAL;
3973 	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3974 		printk(KERN_ERR "invalid value %d for kernel module parameter"
3975 		       " srp_max_req_size -- must be at least %d.\n",
3976 		       srp_max_req_size, MIN_MAX_REQ_SIZE);
3977 		goto out;
3978 	}
3979 
3980 	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3981 	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3982 		printk(KERN_ERR "invalid value %d for kernel module parameter"
3983 		       " srpt_srq_size -- must be in the range [%d..%d].\n",
3984 		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3985 		goto out;
3986 	}
3987 
3988 	srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
3989 	if (IS_ERR(srpt_target)) {
3990 		printk(KERN_ERR "couldn't register\n");
3991 		ret = PTR_ERR(srpt_target);
3992 		goto out;
3993 	}
3994 
3995 	srpt_target->tf_ops = srpt_template;
3996 
3997 	/*
3998 	 * Set up default attribute lists.
3999 	 */
4000 	srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
4001 	srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
4002 	srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
4003 	srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
4004 	srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
4005 	srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
4006 	srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
4007 	srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
4008 	srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
4009 
4010 	ret = target_fabric_configfs_register(srpt_target);
4011 	if (ret < 0) {
4012 		printk(KERN_ERR "couldn't register\n");
4013 		goto out_free_target;
4014 	}
4015 
4016 	ret = ib_register_client(&srpt_client);
4017 	if (ret) {
4018 		printk(KERN_ERR "couldn't register IB client\n");
4019 		goto out_unregister_target;
4020 	}
4021 
4022 	return 0;
4023 
4024 out_unregister_target:
4025 	target_fabric_configfs_deregister(srpt_target);
4026 	srpt_target = NULL;
4027 out_free_target:
4028 	if (srpt_target)
4029 		target_fabric_configfs_free(srpt_target);
4030 out:
4031 	return ret;
4032 }
4033 
4034 static void __exit srpt_cleanup_module(void)
4035 {
4036 	ib_unregister_client(&srpt_client);
4037 	target_fabric_configfs_deregister(srpt_target);
4038 	srpt_target = NULL;
4039 }
4040 
4041 module_init(srpt_init_module);
4042 module_exit(srpt_cleanup_module);
4043