1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_tcq.h> 45 #include <target/configfs_macros.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric_configfs.h> 48 #include <target/target_core_fabric.h> 49 #include <target/target_core_configfs.h> 50 #include "ib_srpt.h" 51 52 /* Name of this kernel module. */ 53 #define DRV_NAME "ib_srpt" 54 #define DRV_VERSION "2.0.0" 55 #define DRV_RELDATE "2011-02-14" 56 57 #define SRPT_ID_STRING "Linux SRP target" 58 59 #undef pr_fmt 60 #define pr_fmt(fmt) DRV_NAME " " fmt 61 62 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 64 "v" DRV_VERSION " (" DRV_RELDATE ")"); 65 MODULE_LICENSE("Dual BSD/GPL"); 66 67 /* 68 * Global Variables 69 */ 70 71 static u64 srpt_service_guid; 72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 74 75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 76 module_param(srp_max_req_size, int, 0444); 77 MODULE_PARM_DESC(srp_max_req_size, 78 "Maximum size of SRP request messages in bytes."); 79 80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 81 module_param(srpt_srq_size, int, 0444); 82 MODULE_PARM_DESC(srpt_srq_size, 83 "Shared receive queue (SRQ) size."); 84 85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 86 { 87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 88 } 89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 90 0444); 91 MODULE_PARM_DESC(srpt_service_guid, 92 "Using this value for ioc_guid, id_ext, and cm_listen_id" 93 " instead of using the node_guid of the first HCA."); 94 95 static struct ib_client srpt_client; 96 static struct target_fabric_configfs *srpt_target; 97 static void srpt_release_channel(struct srpt_rdma_ch *ch); 98 static int srpt_queue_status(struct se_cmd *cmd); 99 100 /** 101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE. 102 */ 103 static inline 104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir) 105 { 106 switch (dir) { 107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE; 108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE; 109 default: return dir; 110 } 111 } 112 113 /** 114 * srpt_sdev_name() - Return the name associated with the HCA. 115 * 116 * Examples are ib0, ib1, ... 117 */ 118 static inline const char *srpt_sdev_name(struct srpt_device *sdev) 119 { 120 return sdev->device->name; 121 } 122 123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch) 124 { 125 unsigned long flags; 126 enum rdma_ch_state state; 127 128 spin_lock_irqsave(&ch->spinlock, flags); 129 state = ch->state; 130 spin_unlock_irqrestore(&ch->spinlock, flags); 131 return state; 132 } 133 134 static enum rdma_ch_state 135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state) 136 { 137 unsigned long flags; 138 enum rdma_ch_state prev; 139 140 spin_lock_irqsave(&ch->spinlock, flags); 141 prev = ch->state; 142 ch->state = new_state; 143 spin_unlock_irqrestore(&ch->spinlock, flags); 144 return prev; 145 } 146 147 /** 148 * srpt_test_and_set_ch_state() - Test and set the channel state. 149 * 150 * Returns true if and only if the channel state has been set to the new state. 151 */ 152 static bool 153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old, 154 enum rdma_ch_state new) 155 { 156 unsigned long flags; 157 enum rdma_ch_state prev; 158 159 spin_lock_irqsave(&ch->spinlock, flags); 160 prev = ch->state; 161 if (prev == old) 162 ch->state = new; 163 spin_unlock_irqrestore(&ch->spinlock, flags); 164 return prev == old; 165 } 166 167 /** 168 * srpt_event_handler() - Asynchronous IB event callback function. 169 * 170 * Callback function called by the InfiniBand core when an asynchronous IB 171 * event occurs. This callback may occur in interrupt context. See also 172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 173 * Architecture Specification. 174 */ 175 static void srpt_event_handler(struct ib_event_handler *handler, 176 struct ib_event *event) 177 { 178 struct srpt_device *sdev; 179 struct srpt_port *sport; 180 181 sdev = ib_get_client_data(event->device, &srpt_client); 182 if (!sdev || sdev->device != event->device) 183 return; 184 185 pr_debug("ASYNC event= %d on device= %s\n", event->event, 186 srpt_sdev_name(sdev)); 187 188 switch (event->event) { 189 case IB_EVENT_PORT_ERR: 190 if (event->element.port_num <= sdev->device->phys_port_cnt) { 191 sport = &sdev->port[event->element.port_num - 1]; 192 sport->lid = 0; 193 sport->sm_lid = 0; 194 } 195 break; 196 case IB_EVENT_PORT_ACTIVE: 197 case IB_EVENT_LID_CHANGE: 198 case IB_EVENT_PKEY_CHANGE: 199 case IB_EVENT_SM_CHANGE: 200 case IB_EVENT_CLIENT_REREGISTER: 201 /* Refresh port data asynchronously. */ 202 if (event->element.port_num <= sdev->device->phys_port_cnt) { 203 sport = &sdev->port[event->element.port_num - 1]; 204 if (!sport->lid && !sport->sm_lid) 205 schedule_work(&sport->work); 206 } 207 break; 208 default: 209 printk(KERN_ERR "received unrecognized IB event %d\n", 210 event->event); 211 break; 212 } 213 } 214 215 /** 216 * srpt_srq_event() - SRQ event callback function. 217 */ 218 static void srpt_srq_event(struct ib_event *event, void *ctx) 219 { 220 printk(KERN_INFO "SRQ event %d\n", event->event); 221 } 222 223 /** 224 * srpt_qp_event() - QP event callback function. 225 */ 226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 227 { 228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch)); 230 231 switch (event->event) { 232 case IB_EVENT_COMM_EST: 233 ib_cm_notify(ch->cm_id, event->event); 234 break; 235 case IB_EVENT_QP_LAST_WQE_REACHED: 236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING, 237 CH_RELEASING)) 238 srpt_release_channel(ch); 239 else 240 pr_debug("%s: state %d - ignored LAST_WQE.\n", 241 ch->sess_name, srpt_get_ch_state(ch)); 242 break; 243 default: 244 printk(KERN_ERR "received unrecognized IB QP event %d\n", 245 event->event); 246 break; 247 } 248 } 249 250 /** 251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 252 * 253 * @slot: one-based slot number. 254 * @value: four-bit value. 255 * 256 * Copies the lowest four bits of value in element slot of the array of four 257 * bit elements called c_list (controller list). The index slot is one-based. 258 */ 259 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 260 { 261 u16 id; 262 u8 tmp; 263 264 id = (slot - 1) / 2; 265 if (slot & 0x1) { 266 tmp = c_list[id] & 0xf; 267 c_list[id] = (value << 4) | tmp; 268 } else { 269 tmp = c_list[id] & 0xf0; 270 c_list[id] = (value & 0xf) | tmp; 271 } 272 } 273 274 /** 275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 276 * 277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 278 * Specification. 279 */ 280 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 281 { 282 struct ib_class_port_info *cif; 283 284 cif = (struct ib_class_port_info *)mad->data; 285 memset(cif, 0, sizeof *cif); 286 cif->base_version = 1; 287 cif->class_version = 1; 288 cif->resp_time_value = 20; 289 290 mad->mad_hdr.status = 0; 291 } 292 293 /** 294 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 295 * 296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 297 * Specification. See also section B.7, table B.6 in the SRP r16a document. 298 */ 299 static void srpt_get_iou(struct ib_dm_mad *mad) 300 { 301 struct ib_dm_iou_info *ioui; 302 u8 slot; 303 int i; 304 305 ioui = (struct ib_dm_iou_info *)mad->data; 306 ioui->change_id = __constant_cpu_to_be16(1); 307 ioui->max_controllers = 16; 308 309 /* set present for slot 1 and empty for the rest */ 310 srpt_set_ioc(ioui->controller_list, 1, 1); 311 for (i = 1, slot = 2; i < 16; i++, slot++) 312 srpt_set_ioc(ioui->controller_list, slot, 0); 313 314 mad->mad_hdr.status = 0; 315 } 316 317 /** 318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 319 * 320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 321 * Architecture Specification. See also section B.7, table B.7 in the SRP 322 * r16a document. 323 */ 324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 325 struct ib_dm_mad *mad) 326 { 327 struct srpt_device *sdev = sport->sdev; 328 struct ib_dm_ioc_profile *iocp; 329 330 iocp = (struct ib_dm_ioc_profile *)mad->data; 331 332 if (!slot || slot > 16) { 333 mad->mad_hdr.status 334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 335 return; 336 } 337 338 if (slot > 2) { 339 mad->mad_hdr.status 340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 341 return; 342 } 343 344 memset(iocp, 0, sizeof *iocp); 345 strcpy(iocp->id_string, SRPT_ID_STRING); 346 iocp->guid = cpu_to_be64(srpt_service_guid); 347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id); 349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver); 350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 351 iocp->subsys_device_id = 0x0; 352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS); 354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL); 355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION); 356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 357 iocp->rdma_read_depth = 4; 358 iocp->send_size = cpu_to_be32(srp_max_req_size); 359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 360 1U << 24)); 361 iocp->num_svc_entries = 1; 362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 364 365 mad->mad_hdr.status = 0; 366 } 367 368 /** 369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 370 * 371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 372 * Specification. See also section B.7, table B.8 in the SRP r16a document. 373 */ 374 static void srpt_get_svc_entries(u64 ioc_guid, 375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 376 { 377 struct ib_dm_svc_entries *svc_entries; 378 379 WARN_ON(!ioc_guid); 380 381 if (!slot || slot > 16) { 382 mad->mad_hdr.status 383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 384 return; 385 } 386 387 if (slot > 2 || lo > hi || hi > 1) { 388 mad->mad_hdr.status 389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 390 return; 391 } 392 393 svc_entries = (struct ib_dm_svc_entries *)mad->data; 394 memset(svc_entries, 0, sizeof *svc_entries); 395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 396 snprintf(svc_entries->service_entries[0].name, 397 sizeof(svc_entries->service_entries[0].name), 398 "%s%016llx", 399 SRP_SERVICE_NAME_PREFIX, 400 ioc_guid); 401 402 mad->mad_hdr.status = 0; 403 } 404 405 /** 406 * srpt_mgmt_method_get() - Process a received management datagram. 407 * @sp: source port through which the MAD has been received. 408 * @rq_mad: received MAD. 409 * @rsp_mad: response MAD. 410 */ 411 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 412 struct ib_dm_mad *rsp_mad) 413 { 414 u16 attr_id; 415 u32 slot; 416 u8 hi, lo; 417 418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 419 switch (attr_id) { 420 case DM_ATTR_CLASS_PORT_INFO: 421 srpt_get_class_port_info(rsp_mad); 422 break; 423 case DM_ATTR_IOU_INFO: 424 srpt_get_iou(rsp_mad); 425 break; 426 case DM_ATTR_IOC_PROFILE: 427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 428 srpt_get_ioc(sp, slot, rsp_mad); 429 break; 430 case DM_ATTR_SVC_ENTRIES: 431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 432 hi = (u8) ((slot >> 8) & 0xff); 433 lo = (u8) (slot & 0xff); 434 slot = (u16) ((slot >> 16) & 0xffff); 435 srpt_get_svc_entries(srpt_service_guid, 436 slot, hi, lo, rsp_mad); 437 break; 438 default: 439 rsp_mad->mad_hdr.status = 440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 441 break; 442 } 443 } 444 445 /** 446 * srpt_mad_send_handler() - Post MAD-send callback function. 447 */ 448 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 449 struct ib_mad_send_wc *mad_wc) 450 { 451 ib_destroy_ah(mad_wc->send_buf->ah); 452 ib_free_send_mad(mad_wc->send_buf); 453 } 454 455 /** 456 * srpt_mad_recv_handler() - MAD reception callback function. 457 */ 458 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 459 struct ib_mad_recv_wc *mad_wc) 460 { 461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 462 struct ib_ah *ah; 463 struct ib_mad_send_buf *rsp; 464 struct ib_dm_mad *dm_mad; 465 466 if (!mad_wc || !mad_wc->recv_buf.mad) 467 return; 468 469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 470 mad_wc->recv_buf.grh, mad_agent->port_num); 471 if (IS_ERR(ah)) 472 goto err; 473 474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 475 476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 477 mad_wc->wc->pkey_index, 0, 478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 479 GFP_KERNEL); 480 if (IS_ERR(rsp)) 481 goto err_rsp; 482 483 rsp->ah = ah; 484 485 dm_mad = rsp->mad; 486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad); 487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 488 dm_mad->mad_hdr.status = 0; 489 490 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 491 case IB_MGMT_METHOD_GET: 492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 493 break; 494 case IB_MGMT_METHOD_SET: 495 dm_mad->mad_hdr.status = 496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 497 break; 498 default: 499 dm_mad->mad_hdr.status = 500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 501 break; 502 } 503 504 if (!ib_post_send_mad(rsp, NULL)) { 505 ib_free_recv_mad(mad_wc); 506 /* will destroy_ah & free_send_mad in send completion */ 507 return; 508 } 509 510 ib_free_send_mad(rsp); 511 512 err_rsp: 513 ib_destroy_ah(ah); 514 err: 515 ib_free_recv_mad(mad_wc); 516 } 517 518 /** 519 * srpt_refresh_port() - Configure a HCA port. 520 * 521 * Enable InfiniBand management datagram processing, update the cached sm_lid, 522 * lid and gid values, and register a callback function for processing MADs 523 * on the specified port. 524 * 525 * Note: It is safe to call this function more than once for the same port. 526 */ 527 static int srpt_refresh_port(struct srpt_port *sport) 528 { 529 struct ib_mad_reg_req reg_req; 530 struct ib_port_modify port_modify; 531 struct ib_port_attr port_attr; 532 int ret; 533 534 memset(&port_modify, 0, sizeof port_modify); 535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 536 port_modify.clr_port_cap_mask = 0; 537 538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 539 if (ret) 540 goto err_mod_port; 541 542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 543 if (ret) 544 goto err_query_port; 545 546 sport->sm_lid = port_attr.sm_lid; 547 sport->lid = port_attr.lid; 548 549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 550 if (ret) 551 goto err_query_port; 552 553 if (!sport->mad_agent) { 554 memset(®_req, 0, sizeof reg_req); 555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 559 560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 561 sport->port, 562 IB_QPT_GSI, 563 ®_req, 0, 564 srpt_mad_send_handler, 565 srpt_mad_recv_handler, 566 sport); 567 if (IS_ERR(sport->mad_agent)) { 568 ret = PTR_ERR(sport->mad_agent); 569 sport->mad_agent = NULL; 570 goto err_query_port; 571 } 572 } 573 574 return 0; 575 576 err_query_port: 577 578 port_modify.set_port_cap_mask = 0; 579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 581 582 err_mod_port: 583 584 return ret; 585 } 586 587 /** 588 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 589 * 590 * Note: It is safe to call this function more than once for the same device. 591 */ 592 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 593 { 594 struct ib_port_modify port_modify = { 595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 596 }; 597 struct srpt_port *sport; 598 int i; 599 600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 601 sport = &sdev->port[i - 1]; 602 WARN_ON(sport->port != i); 603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 604 printk(KERN_ERR "disabling MAD processing failed.\n"); 605 if (sport->mad_agent) { 606 ib_unregister_mad_agent(sport->mad_agent); 607 sport->mad_agent = NULL; 608 } 609 } 610 } 611 612 /** 613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 614 */ 615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 616 int ioctx_size, int dma_size, 617 enum dma_data_direction dir) 618 { 619 struct srpt_ioctx *ioctx; 620 621 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 622 if (!ioctx) 623 goto err; 624 625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 626 if (!ioctx->buf) 627 goto err_free_ioctx; 628 629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 630 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 631 goto err_free_buf; 632 633 return ioctx; 634 635 err_free_buf: 636 kfree(ioctx->buf); 637 err_free_ioctx: 638 kfree(ioctx); 639 err: 640 return NULL; 641 } 642 643 /** 644 * srpt_free_ioctx() - Free an SRPT I/O context structure. 645 */ 646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 647 int dma_size, enum dma_data_direction dir) 648 { 649 if (!ioctx) 650 return; 651 652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 653 kfree(ioctx->buf); 654 kfree(ioctx); 655 } 656 657 /** 658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 659 * @sdev: Device to allocate the I/O context ring for. 660 * @ring_size: Number of elements in the I/O context ring. 661 * @ioctx_size: I/O context size. 662 * @dma_size: DMA buffer size. 663 * @dir: DMA data direction. 664 */ 665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 666 int ring_size, int ioctx_size, 667 int dma_size, enum dma_data_direction dir) 668 { 669 struct srpt_ioctx **ring; 670 int i; 671 672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 673 && ioctx_size != sizeof(struct srpt_send_ioctx)); 674 675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 676 if (!ring) 677 goto out; 678 for (i = 0; i < ring_size; ++i) { 679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 680 if (!ring[i]) 681 goto err; 682 ring[i]->index = i; 683 } 684 goto out; 685 686 err: 687 while (--i >= 0) 688 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 689 kfree(ring); 690 ring = NULL; 691 out: 692 return ring; 693 } 694 695 /** 696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 697 */ 698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 699 struct srpt_device *sdev, int ring_size, 700 int dma_size, enum dma_data_direction dir) 701 { 702 int i; 703 704 for (i = 0; i < ring_size; ++i) 705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 706 kfree(ioctx_ring); 707 } 708 709 /** 710 * srpt_get_cmd_state() - Get the state of a SCSI command. 711 */ 712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 713 { 714 enum srpt_command_state state; 715 unsigned long flags; 716 717 BUG_ON(!ioctx); 718 719 spin_lock_irqsave(&ioctx->spinlock, flags); 720 state = ioctx->state; 721 spin_unlock_irqrestore(&ioctx->spinlock, flags); 722 return state; 723 } 724 725 /** 726 * srpt_set_cmd_state() - Set the state of a SCSI command. 727 * 728 * Does not modify the state of aborted commands. Returns the previous command 729 * state. 730 */ 731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 732 enum srpt_command_state new) 733 { 734 enum srpt_command_state previous; 735 unsigned long flags; 736 737 BUG_ON(!ioctx); 738 739 spin_lock_irqsave(&ioctx->spinlock, flags); 740 previous = ioctx->state; 741 if (previous != SRPT_STATE_DONE) 742 ioctx->state = new; 743 spin_unlock_irqrestore(&ioctx->spinlock, flags); 744 745 return previous; 746 } 747 748 /** 749 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 750 * 751 * Returns true if and only if the previous command state was equal to 'old'. 752 */ 753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 754 enum srpt_command_state old, 755 enum srpt_command_state new) 756 { 757 enum srpt_command_state previous; 758 unsigned long flags; 759 760 WARN_ON(!ioctx); 761 WARN_ON(old == SRPT_STATE_DONE); 762 WARN_ON(new == SRPT_STATE_NEW); 763 764 spin_lock_irqsave(&ioctx->spinlock, flags); 765 previous = ioctx->state; 766 if (previous == old) 767 ioctx->state = new; 768 spin_unlock_irqrestore(&ioctx->spinlock, flags); 769 return previous == old; 770 } 771 772 /** 773 * srpt_post_recv() - Post an IB receive request. 774 */ 775 static int srpt_post_recv(struct srpt_device *sdev, 776 struct srpt_recv_ioctx *ioctx) 777 { 778 struct ib_sge list; 779 struct ib_recv_wr wr, *bad_wr; 780 781 BUG_ON(!sdev); 782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index); 783 784 list.addr = ioctx->ioctx.dma; 785 list.length = srp_max_req_size; 786 list.lkey = sdev->mr->lkey; 787 788 wr.next = NULL; 789 wr.sg_list = &list; 790 wr.num_sge = 1; 791 792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 793 } 794 795 /** 796 * srpt_post_send() - Post an IB send request. 797 * 798 * Returns zero upon success and a non-zero value upon failure. 799 */ 800 static int srpt_post_send(struct srpt_rdma_ch *ch, 801 struct srpt_send_ioctx *ioctx, int len) 802 { 803 struct ib_sge list; 804 struct ib_send_wr wr, *bad_wr; 805 struct srpt_device *sdev = ch->sport->sdev; 806 int ret; 807 808 atomic_inc(&ch->req_lim); 809 810 ret = -ENOMEM; 811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { 812 printk(KERN_WARNING "IB send queue full (needed 1)\n"); 813 goto out; 814 } 815 816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, 817 DMA_TO_DEVICE); 818 819 list.addr = ioctx->ioctx.dma; 820 list.length = len; 821 list.lkey = sdev->mr->lkey; 822 823 wr.next = NULL; 824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index); 825 wr.sg_list = &list; 826 wr.num_sge = 1; 827 wr.opcode = IB_WR_SEND; 828 wr.send_flags = IB_SEND_SIGNALED; 829 830 ret = ib_post_send(ch->qp, &wr, &bad_wr); 831 832 out: 833 if (ret < 0) { 834 atomic_inc(&ch->sq_wr_avail); 835 atomic_dec(&ch->req_lim); 836 } 837 return ret; 838 } 839 840 /** 841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 842 * @ioctx: Pointer to the I/O context associated with the request. 843 * @srp_cmd: Pointer to the SRP_CMD request data. 844 * @dir: Pointer to the variable to which the transfer direction will be 845 * written. 846 * @data_len: Pointer to the variable to which the total data length of all 847 * descriptors in the SRP_CMD request will be written. 848 * 849 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 850 * 851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 852 * -ENOMEM when memory allocation fails and zero upon success. 853 */ 854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 855 struct srp_cmd *srp_cmd, 856 enum dma_data_direction *dir, u64 *data_len) 857 { 858 struct srp_indirect_buf *idb; 859 struct srp_direct_buf *db; 860 unsigned add_cdb_offset; 861 int ret; 862 863 /* 864 * The pointer computations below will only be compiled correctly 865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 866 * whether srp_cmd::add_data has been declared as a byte pointer. 867 */ 868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) 869 && !__same_type(srp_cmd->add_data[0], (u8)0)); 870 871 BUG_ON(!dir); 872 BUG_ON(!data_len); 873 874 ret = 0; 875 *data_len = 0; 876 877 /* 878 * The lower four bits of the buffer format field contain the DATA-IN 879 * buffer descriptor format, and the highest four bits contain the 880 * DATA-OUT buffer descriptor format. 881 */ 882 *dir = DMA_NONE; 883 if (srp_cmd->buf_fmt & 0xf) 884 /* DATA-IN: transfer data from target to initiator (read). */ 885 *dir = DMA_FROM_DEVICE; 886 else if (srp_cmd->buf_fmt >> 4) 887 /* DATA-OUT: transfer data from initiator to target (write). */ 888 *dir = DMA_TO_DEVICE; 889 890 /* 891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 892 * CDB LENGTH' field are reserved and the size in bytes of this field 893 * is four times the value specified in bits 3..7. Hence the "& ~3". 894 */ 895 add_cdb_offset = srp_cmd->add_cdb_len & ~3; 896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 898 ioctx->n_rbuf = 1; 899 ioctx->rbufs = &ioctx->single_rbuf; 900 901 db = (struct srp_direct_buf *)(srp_cmd->add_data 902 + add_cdb_offset); 903 memcpy(ioctx->rbufs, db, sizeof *db); 904 *data_len = be32_to_cpu(db->len); 905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data 908 + add_cdb_offset); 909 910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db; 911 912 if (ioctx->n_rbuf > 913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 914 printk(KERN_ERR "received unsupported SRP_CMD request" 915 " type (%u out + %u in != %u / %zu)\n", 916 srp_cmd->data_out_desc_cnt, 917 srp_cmd->data_in_desc_cnt, 918 be32_to_cpu(idb->table_desc.len), 919 sizeof(*db)); 920 ioctx->n_rbuf = 0; 921 ret = -EINVAL; 922 goto out; 923 } 924 925 if (ioctx->n_rbuf == 1) 926 ioctx->rbufs = &ioctx->single_rbuf; 927 else { 928 ioctx->rbufs = 929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC); 930 if (!ioctx->rbufs) { 931 ioctx->n_rbuf = 0; 932 ret = -ENOMEM; 933 goto out; 934 } 935 } 936 937 db = idb->desc_list; 938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db); 939 *data_len = be32_to_cpu(idb->len); 940 } 941 out: 942 return ret; 943 } 944 945 /** 946 * srpt_init_ch_qp() - Initialize queue pair attributes. 947 * 948 * Initialized the attributes of queue pair 'qp' by allowing local write, 949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 950 */ 951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 952 { 953 struct ib_qp_attr *attr; 954 int ret; 955 956 attr = kzalloc(sizeof *attr, GFP_KERNEL); 957 if (!attr) 958 return -ENOMEM; 959 960 attr->qp_state = IB_QPS_INIT; 961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 962 IB_ACCESS_REMOTE_WRITE; 963 attr->port_num = ch->sport->port; 964 attr->pkey_index = 0; 965 966 ret = ib_modify_qp(qp, attr, 967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 968 IB_QP_PKEY_INDEX); 969 970 kfree(attr); 971 return ret; 972 } 973 974 /** 975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 976 * @ch: channel of the queue pair. 977 * @qp: queue pair to change the state of. 978 * 979 * Returns zero upon success and a negative value upon failure. 980 * 981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 982 * If this structure ever becomes larger, it might be necessary to allocate 983 * it dynamically instead of on the stack. 984 */ 985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 986 { 987 struct ib_qp_attr qp_attr; 988 int attr_mask; 989 int ret; 990 991 qp_attr.qp_state = IB_QPS_RTR; 992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 993 if (ret) 994 goto out; 995 996 qp_attr.max_dest_rd_atomic = 4; 997 998 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 999 1000 out: 1001 return ret; 1002 } 1003 1004 /** 1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1006 * @ch: channel of the queue pair. 1007 * @qp: queue pair to change the state of. 1008 * 1009 * Returns zero upon success and a negative value upon failure. 1010 * 1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1012 * If this structure ever becomes larger, it might be necessary to allocate 1013 * it dynamically instead of on the stack. 1014 */ 1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1016 { 1017 struct ib_qp_attr qp_attr; 1018 int attr_mask; 1019 int ret; 1020 1021 qp_attr.qp_state = IB_QPS_RTS; 1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1023 if (ret) 1024 goto out; 1025 1026 qp_attr.max_rd_atomic = 4; 1027 1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1029 1030 out: 1031 return ret; 1032 } 1033 1034 /** 1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1036 */ 1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1038 { 1039 struct ib_qp_attr qp_attr; 1040 1041 qp_attr.qp_state = IB_QPS_ERR; 1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1043 } 1044 1045 /** 1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. 1047 */ 1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1049 struct srpt_send_ioctx *ioctx) 1050 { 1051 struct scatterlist *sg; 1052 enum dma_data_direction dir; 1053 1054 BUG_ON(!ch); 1055 BUG_ON(!ioctx); 1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius); 1057 1058 while (ioctx->n_rdma) 1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge); 1060 1061 kfree(ioctx->rdma_ius); 1062 ioctx->rdma_ius = NULL; 1063 1064 if (ioctx->mapped_sg_count) { 1065 sg = ioctx->sg; 1066 WARN_ON(!sg); 1067 dir = ioctx->cmd.data_direction; 1068 BUG_ON(dir == DMA_NONE); 1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, 1070 opposite_dma_dir(dir)); 1071 ioctx->mapped_sg_count = 0; 1072 } 1073 } 1074 1075 /** 1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. 1077 */ 1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1079 struct srpt_send_ioctx *ioctx) 1080 { 1081 struct ib_device *dev = ch->sport->sdev->device; 1082 struct se_cmd *cmd; 1083 struct scatterlist *sg, *sg_orig; 1084 int sg_cnt; 1085 enum dma_data_direction dir; 1086 struct rdma_iu *riu; 1087 struct srp_direct_buf *db; 1088 dma_addr_t dma_addr; 1089 struct ib_sge *sge; 1090 u64 raddr; 1091 u32 rsize; 1092 u32 tsize; 1093 u32 dma_len; 1094 int count, nrdma; 1095 int i, j, k; 1096 1097 BUG_ON(!ch); 1098 BUG_ON(!ioctx); 1099 cmd = &ioctx->cmd; 1100 dir = cmd->data_direction; 1101 BUG_ON(dir == DMA_NONE); 1102 1103 ioctx->sg = sg = sg_orig = cmd->t_data_sg; 1104 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents; 1105 1106 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, 1107 opposite_dma_dir(dir)); 1108 if (unlikely(!count)) 1109 return -EAGAIN; 1110 1111 ioctx->mapped_sg_count = count; 1112 1113 if (ioctx->rdma_ius && ioctx->n_rdma_ius) 1114 nrdma = ioctx->n_rdma_ius; 1115 else { 1116 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE 1117 + ioctx->n_rbuf; 1118 1119 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL); 1120 if (!ioctx->rdma_ius) 1121 goto free_mem; 1122 1123 ioctx->n_rdma_ius = nrdma; 1124 } 1125 1126 db = ioctx->rbufs; 1127 tsize = cmd->data_length; 1128 dma_len = ib_sg_dma_len(dev, &sg[0]); 1129 riu = ioctx->rdma_ius; 1130 1131 /* 1132 * For each remote desc - calculate the #ib_sge. 1133 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then 1134 * each remote desc rdma_iu is required a rdma wr; 1135 * else 1136 * we need to allocate extra rdma_iu to carry extra #ib_sge in 1137 * another rdma wr 1138 */ 1139 for (i = 0, j = 0; 1140 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1141 rsize = be32_to_cpu(db->len); 1142 raddr = be64_to_cpu(db->va); 1143 riu->raddr = raddr; 1144 riu->rkey = be32_to_cpu(db->key); 1145 riu->sge_cnt = 0; 1146 1147 /* calculate how many sge required for this remote_buf */ 1148 while (rsize > 0 && tsize > 0) { 1149 1150 if (rsize >= dma_len) { 1151 tsize -= dma_len; 1152 rsize -= dma_len; 1153 raddr += dma_len; 1154 1155 if (tsize > 0) { 1156 ++j; 1157 if (j < count) { 1158 sg = sg_next(sg); 1159 dma_len = ib_sg_dma_len( 1160 dev, sg); 1161 } 1162 } 1163 } else { 1164 tsize -= rsize; 1165 dma_len -= rsize; 1166 rsize = 0; 1167 } 1168 1169 ++riu->sge_cnt; 1170 1171 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) { 1172 ++ioctx->n_rdma; 1173 riu->sge = 1174 kmalloc(riu->sge_cnt * sizeof *riu->sge, 1175 GFP_KERNEL); 1176 if (!riu->sge) 1177 goto free_mem; 1178 1179 ++riu; 1180 riu->sge_cnt = 0; 1181 riu->raddr = raddr; 1182 riu->rkey = be32_to_cpu(db->key); 1183 } 1184 } 1185 1186 ++ioctx->n_rdma; 1187 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge, 1188 GFP_KERNEL); 1189 if (!riu->sge) 1190 goto free_mem; 1191 } 1192 1193 db = ioctx->rbufs; 1194 tsize = cmd->data_length; 1195 riu = ioctx->rdma_ius; 1196 sg = sg_orig; 1197 dma_len = ib_sg_dma_len(dev, &sg[0]); 1198 dma_addr = ib_sg_dma_address(dev, &sg[0]); 1199 1200 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ 1201 for (i = 0, j = 0; 1202 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1203 rsize = be32_to_cpu(db->len); 1204 sge = riu->sge; 1205 k = 0; 1206 1207 while (rsize > 0 && tsize > 0) { 1208 sge->addr = dma_addr; 1209 sge->lkey = ch->sport->sdev->mr->lkey; 1210 1211 if (rsize >= dma_len) { 1212 sge->length = 1213 (tsize < dma_len) ? tsize : dma_len; 1214 tsize -= dma_len; 1215 rsize -= dma_len; 1216 1217 if (tsize > 0) { 1218 ++j; 1219 if (j < count) { 1220 sg = sg_next(sg); 1221 dma_len = ib_sg_dma_len( 1222 dev, sg); 1223 dma_addr = ib_sg_dma_address( 1224 dev, sg); 1225 } 1226 } 1227 } else { 1228 sge->length = (tsize < rsize) ? tsize : rsize; 1229 tsize -= rsize; 1230 dma_len -= rsize; 1231 dma_addr += rsize; 1232 rsize = 0; 1233 } 1234 1235 ++k; 1236 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) { 1237 ++riu; 1238 sge = riu->sge; 1239 k = 0; 1240 } else if (rsize > 0 && tsize > 0) 1241 ++sge; 1242 } 1243 } 1244 1245 return 0; 1246 1247 free_mem: 1248 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1249 1250 return -ENOMEM; 1251 } 1252 1253 /** 1254 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1255 */ 1256 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1257 { 1258 struct srpt_send_ioctx *ioctx; 1259 unsigned long flags; 1260 1261 BUG_ON(!ch); 1262 1263 ioctx = NULL; 1264 spin_lock_irqsave(&ch->spinlock, flags); 1265 if (!list_empty(&ch->free_list)) { 1266 ioctx = list_first_entry(&ch->free_list, 1267 struct srpt_send_ioctx, free_list); 1268 list_del(&ioctx->free_list); 1269 } 1270 spin_unlock_irqrestore(&ch->spinlock, flags); 1271 1272 if (!ioctx) 1273 return ioctx; 1274 1275 BUG_ON(ioctx->ch != ch); 1276 spin_lock_init(&ioctx->spinlock); 1277 ioctx->state = SRPT_STATE_NEW; 1278 ioctx->n_rbuf = 0; 1279 ioctx->rbufs = NULL; 1280 ioctx->n_rdma = 0; 1281 ioctx->n_rdma_ius = 0; 1282 ioctx->rdma_ius = NULL; 1283 ioctx->mapped_sg_count = 0; 1284 init_completion(&ioctx->tx_done); 1285 ioctx->queue_status_only = false; 1286 /* 1287 * transport_init_se_cmd() does not initialize all fields, so do it 1288 * here. 1289 */ 1290 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1291 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1292 1293 return ioctx; 1294 } 1295 1296 /** 1297 * srpt_abort_cmd() - Abort a SCSI command. 1298 * @ioctx: I/O context associated with the SCSI command. 1299 * @context: Preferred execution context. 1300 */ 1301 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1302 { 1303 enum srpt_command_state state; 1304 unsigned long flags; 1305 1306 BUG_ON(!ioctx); 1307 1308 /* 1309 * If the command is in a state where the target core is waiting for 1310 * the ib_srpt driver, change the state to the next state. Changing 1311 * the state of the command from SRPT_STATE_NEED_DATA to 1312 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this 1313 * function a second time. 1314 */ 1315 1316 spin_lock_irqsave(&ioctx->spinlock, flags); 1317 state = ioctx->state; 1318 switch (state) { 1319 case SRPT_STATE_NEED_DATA: 1320 ioctx->state = SRPT_STATE_DATA_IN; 1321 break; 1322 case SRPT_STATE_DATA_IN: 1323 case SRPT_STATE_CMD_RSP_SENT: 1324 case SRPT_STATE_MGMT_RSP_SENT: 1325 ioctx->state = SRPT_STATE_DONE; 1326 break; 1327 default: 1328 break; 1329 } 1330 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1331 1332 if (state == SRPT_STATE_DONE) { 1333 struct srpt_rdma_ch *ch = ioctx->ch; 1334 1335 BUG_ON(ch->sess == NULL); 1336 1337 target_put_sess_cmd(ch->sess, &ioctx->cmd); 1338 goto out; 1339 } 1340 1341 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1342 ioctx->tag); 1343 1344 switch (state) { 1345 case SRPT_STATE_NEW: 1346 case SRPT_STATE_DATA_IN: 1347 case SRPT_STATE_MGMT: 1348 /* 1349 * Do nothing - defer abort processing until 1350 * srpt_queue_response() is invoked. 1351 */ 1352 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false)); 1353 break; 1354 case SRPT_STATE_NEED_DATA: 1355 /* DMA_TO_DEVICE (write) - RDMA read error. */ 1356 1357 /* XXX(hch): this is a horrible layering violation.. */ 1358 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1359 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE; 1360 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1361 break; 1362 case SRPT_STATE_CMD_RSP_SENT: 1363 /* 1364 * SRP_RSP sending failed or the SRP_RSP send completion has 1365 * not been received in time. 1366 */ 1367 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1368 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1369 break; 1370 case SRPT_STATE_MGMT_RSP_SENT: 1371 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1372 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1373 break; 1374 default: 1375 WARN(1, "Unexpected command state (%d)", state); 1376 break; 1377 } 1378 1379 out: 1380 return state; 1381 } 1382 1383 /** 1384 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion. 1385 */ 1386 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id) 1387 { 1388 struct srpt_send_ioctx *ioctx; 1389 enum srpt_command_state state; 1390 struct se_cmd *cmd; 1391 u32 index; 1392 1393 atomic_inc(&ch->sq_wr_avail); 1394 1395 index = idx_from_wr_id(wr_id); 1396 ioctx = ch->ioctx_ring[index]; 1397 state = srpt_get_cmd_state(ioctx); 1398 cmd = &ioctx->cmd; 1399 1400 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1401 && state != SRPT_STATE_MGMT_RSP_SENT 1402 && state != SRPT_STATE_NEED_DATA 1403 && state != SRPT_STATE_DONE); 1404 1405 /* If SRP_RSP sending failed, undo the ch->req_lim change. */ 1406 if (state == SRPT_STATE_CMD_RSP_SENT 1407 || state == SRPT_STATE_MGMT_RSP_SENT) 1408 atomic_dec(&ch->req_lim); 1409 1410 srpt_abort_cmd(ioctx); 1411 } 1412 1413 /** 1414 * srpt_handle_send_comp() - Process an IB send completion notification. 1415 */ 1416 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch, 1417 struct srpt_send_ioctx *ioctx) 1418 { 1419 enum srpt_command_state state; 1420 1421 atomic_inc(&ch->sq_wr_avail); 1422 1423 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1424 1425 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1426 && state != SRPT_STATE_MGMT_RSP_SENT 1427 && state != SRPT_STATE_DONE)) 1428 pr_debug("state = %d\n", state); 1429 1430 if (state != SRPT_STATE_DONE) { 1431 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1432 transport_generic_free_cmd(&ioctx->cmd, 0); 1433 } else { 1434 printk(KERN_ERR "IB completion has been received too late for" 1435 " wr_id = %u.\n", ioctx->ioctx.index); 1436 } 1437 } 1438 1439 /** 1440 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification. 1441 * 1442 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1443 * the data that has been transferred via IB RDMA had to be postponed until the 1444 * check_stop_free() callback. None of this is necessary anymore and needs to 1445 * be cleaned up. 1446 */ 1447 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch, 1448 struct srpt_send_ioctx *ioctx, 1449 enum srpt_opcode opcode) 1450 { 1451 WARN_ON(ioctx->n_rdma <= 0); 1452 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1453 1454 if (opcode == SRPT_RDMA_READ_LAST) { 1455 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1456 SRPT_STATE_DATA_IN)) 1457 target_execute_cmd(&ioctx->cmd); 1458 else 1459 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__, 1460 __LINE__, srpt_get_cmd_state(ioctx)); 1461 } else if (opcode == SRPT_RDMA_ABORT) { 1462 ioctx->rdma_aborted = true; 1463 } else { 1464 WARN(true, "unexpected opcode %d\n", opcode); 1465 } 1466 } 1467 1468 /** 1469 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion. 1470 */ 1471 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch, 1472 struct srpt_send_ioctx *ioctx, 1473 enum srpt_opcode opcode) 1474 { 1475 struct se_cmd *cmd; 1476 enum srpt_command_state state; 1477 1478 cmd = &ioctx->cmd; 1479 state = srpt_get_cmd_state(ioctx); 1480 switch (opcode) { 1481 case SRPT_RDMA_READ_LAST: 1482 if (ioctx->n_rdma <= 0) { 1483 printk(KERN_ERR "Received invalid RDMA read" 1484 " error completion with idx %d\n", 1485 ioctx->ioctx.index); 1486 break; 1487 } 1488 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1489 if (state == SRPT_STATE_NEED_DATA) 1490 srpt_abort_cmd(ioctx); 1491 else 1492 printk(KERN_ERR "%s[%d]: wrong state = %d\n", 1493 __func__, __LINE__, state); 1494 break; 1495 case SRPT_RDMA_WRITE_LAST: 1496 break; 1497 default: 1498 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__, 1499 __LINE__, opcode); 1500 break; 1501 } 1502 } 1503 1504 /** 1505 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1506 * @ch: RDMA channel through which the request has been received. 1507 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1508 * be built in the buffer ioctx->buf points at and hence this function will 1509 * overwrite the request data. 1510 * @tag: tag of the request for which this response is being generated. 1511 * @status: value for the STATUS field of the SRP_RSP information unit. 1512 * 1513 * Returns the size in bytes of the SRP_RSP response. 1514 * 1515 * An SRP_RSP response contains a SCSI status or service response. See also 1516 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1517 * response. See also SPC-2 for more information about sense data. 1518 */ 1519 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1520 struct srpt_send_ioctx *ioctx, u64 tag, 1521 int status) 1522 { 1523 struct srp_rsp *srp_rsp; 1524 const u8 *sense_data; 1525 int sense_data_len, max_sense_len; 1526 1527 /* 1528 * The lowest bit of all SAM-3 status codes is zero (see also 1529 * paragraph 5.3 in SAM-3). 1530 */ 1531 WARN_ON(status & 1); 1532 1533 srp_rsp = ioctx->ioctx.buf; 1534 BUG_ON(!srp_rsp); 1535 1536 sense_data = ioctx->sense_data; 1537 sense_data_len = ioctx->cmd.scsi_sense_length; 1538 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1539 1540 memset(srp_rsp, 0, sizeof *srp_rsp); 1541 srp_rsp->opcode = SRP_RSP; 1542 srp_rsp->req_lim_delta = 1543 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1544 srp_rsp->tag = tag; 1545 srp_rsp->status = status; 1546 1547 if (sense_data_len) { 1548 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1549 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1550 if (sense_data_len > max_sense_len) { 1551 printk(KERN_WARNING "truncated sense data from %d to %d" 1552 " bytes\n", sense_data_len, max_sense_len); 1553 sense_data_len = max_sense_len; 1554 } 1555 1556 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1557 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1558 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1559 } 1560 1561 return sizeof(*srp_rsp) + sense_data_len; 1562 } 1563 1564 /** 1565 * srpt_build_tskmgmt_rsp() - Build a task management response. 1566 * @ch: RDMA channel through which the request has been received. 1567 * @ioctx: I/O context in which the SRP_RSP response will be built. 1568 * @rsp_code: RSP_CODE that will be stored in the response. 1569 * @tag: Tag of the request for which this response is being generated. 1570 * 1571 * Returns the size in bytes of the SRP_RSP response. 1572 * 1573 * An SRP_RSP response contains a SCSI status or service response. See also 1574 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1575 * response. 1576 */ 1577 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1578 struct srpt_send_ioctx *ioctx, 1579 u8 rsp_code, u64 tag) 1580 { 1581 struct srp_rsp *srp_rsp; 1582 int resp_data_len; 1583 int resp_len; 1584 1585 resp_data_len = 4; 1586 resp_len = sizeof(*srp_rsp) + resp_data_len; 1587 1588 srp_rsp = ioctx->ioctx.buf; 1589 BUG_ON(!srp_rsp); 1590 memset(srp_rsp, 0, sizeof *srp_rsp); 1591 1592 srp_rsp->opcode = SRP_RSP; 1593 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1 1594 + atomic_xchg(&ch->req_lim_delta, 0)); 1595 srp_rsp->tag = tag; 1596 1597 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1598 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1599 srp_rsp->data[3] = rsp_code; 1600 1601 return resp_len; 1602 } 1603 1604 #define NO_SUCH_LUN ((uint64_t)-1LL) 1605 1606 /* 1607 * SCSI LUN addressing method. See also SAM-2 and the section about 1608 * eight byte LUNs. 1609 */ 1610 enum scsi_lun_addr_method { 1611 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0, 1612 SCSI_LUN_ADDR_METHOD_FLAT = 1, 1613 SCSI_LUN_ADDR_METHOD_LUN = 2, 1614 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3, 1615 }; 1616 1617 /* 1618 * srpt_unpack_lun() - Convert from network LUN to linear LUN. 1619 * 1620 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte 1621 * order (big endian) to a linear LUN. Supports three LUN addressing methods: 1622 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40). 1623 */ 1624 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len) 1625 { 1626 uint64_t res = NO_SUCH_LUN; 1627 int addressing_method; 1628 1629 if (unlikely(len < 2)) { 1630 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or " 1631 "more", len); 1632 goto out; 1633 } 1634 1635 switch (len) { 1636 case 8: 1637 if ((*((__be64 *)lun) & 1638 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0) 1639 goto out_err; 1640 break; 1641 case 4: 1642 if (*((__be16 *)&lun[2]) != 0) 1643 goto out_err; 1644 break; 1645 case 6: 1646 if (*((__be32 *)&lun[2]) != 0) 1647 goto out_err; 1648 break; 1649 case 2: 1650 break; 1651 default: 1652 goto out_err; 1653 } 1654 1655 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */ 1656 switch (addressing_method) { 1657 case SCSI_LUN_ADDR_METHOD_PERIPHERAL: 1658 case SCSI_LUN_ADDR_METHOD_FLAT: 1659 case SCSI_LUN_ADDR_METHOD_LUN: 1660 res = *(lun + 1) | (((*lun) & 0x3f) << 8); 1661 break; 1662 1663 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN: 1664 default: 1665 printk(KERN_ERR "Unimplemented LUN addressing method %u", 1666 addressing_method); 1667 break; 1668 } 1669 1670 out: 1671 return res; 1672 1673 out_err: 1674 printk(KERN_ERR "Support for multi-level LUNs has not yet been" 1675 " implemented"); 1676 goto out; 1677 } 1678 1679 static int srpt_check_stop_free(struct se_cmd *cmd) 1680 { 1681 struct srpt_send_ioctx *ioctx = container_of(cmd, 1682 struct srpt_send_ioctx, cmd); 1683 1684 return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1685 } 1686 1687 /** 1688 * srpt_handle_cmd() - Process SRP_CMD. 1689 */ 1690 static int srpt_handle_cmd(struct srpt_rdma_ch *ch, 1691 struct srpt_recv_ioctx *recv_ioctx, 1692 struct srpt_send_ioctx *send_ioctx) 1693 { 1694 struct se_cmd *cmd; 1695 struct srp_cmd *srp_cmd; 1696 uint64_t unpacked_lun; 1697 u64 data_len; 1698 enum dma_data_direction dir; 1699 sense_reason_t ret; 1700 int rc; 1701 1702 BUG_ON(!send_ioctx); 1703 1704 srp_cmd = recv_ioctx->ioctx.buf; 1705 cmd = &send_ioctx->cmd; 1706 send_ioctx->tag = srp_cmd->tag; 1707 1708 switch (srp_cmd->task_attr) { 1709 case SRP_CMD_SIMPLE_Q: 1710 cmd->sam_task_attr = MSG_SIMPLE_TAG; 1711 break; 1712 case SRP_CMD_ORDERED_Q: 1713 default: 1714 cmd->sam_task_attr = MSG_ORDERED_TAG; 1715 break; 1716 case SRP_CMD_HEAD_OF_Q: 1717 cmd->sam_task_attr = MSG_HEAD_TAG; 1718 break; 1719 case SRP_CMD_ACA: 1720 cmd->sam_task_attr = MSG_ACA_TAG; 1721 break; 1722 } 1723 1724 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) { 1725 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n", 1726 srp_cmd->tag); 1727 ret = TCM_INVALID_CDB_FIELD; 1728 goto send_sense; 1729 } 1730 1731 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun, 1732 sizeof(srp_cmd->lun)); 1733 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb, 1734 &send_ioctx->sense_data[0], unpacked_lun, data_len, 1735 MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF); 1736 if (rc != 0) { 1737 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1738 goto send_sense; 1739 } 1740 return 0; 1741 1742 send_sense: 1743 transport_send_check_condition_and_sense(cmd, ret, 0); 1744 return -1; 1745 } 1746 1747 /** 1748 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag. 1749 * @ch: RDMA channel of the task management request. 1750 * @fn: Task management function to perform. 1751 * @req_tag: Tag of the SRP task management request. 1752 * @mgmt_ioctx: I/O context of the task management request. 1753 * 1754 * Returns zero if the target core will process the task management 1755 * request asynchronously. 1756 * 1757 * Note: It is assumed that the initiator serializes tag-based task management 1758 * requests. 1759 */ 1760 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag) 1761 { 1762 struct srpt_device *sdev; 1763 struct srpt_rdma_ch *ch; 1764 struct srpt_send_ioctx *target; 1765 int ret, i; 1766 1767 ret = -EINVAL; 1768 ch = ioctx->ch; 1769 BUG_ON(!ch); 1770 BUG_ON(!ch->sport); 1771 sdev = ch->sport->sdev; 1772 BUG_ON(!sdev); 1773 spin_lock_irq(&sdev->spinlock); 1774 for (i = 0; i < ch->rq_size; ++i) { 1775 target = ch->ioctx_ring[i]; 1776 if (target->cmd.se_lun == ioctx->cmd.se_lun && 1777 target->tag == tag && 1778 srpt_get_cmd_state(target) != SRPT_STATE_DONE) { 1779 ret = 0; 1780 /* now let the target core abort &target->cmd; */ 1781 break; 1782 } 1783 } 1784 spin_unlock_irq(&sdev->spinlock); 1785 return ret; 1786 } 1787 1788 static int srp_tmr_to_tcm(int fn) 1789 { 1790 switch (fn) { 1791 case SRP_TSK_ABORT_TASK: 1792 return TMR_ABORT_TASK; 1793 case SRP_TSK_ABORT_TASK_SET: 1794 return TMR_ABORT_TASK_SET; 1795 case SRP_TSK_CLEAR_TASK_SET: 1796 return TMR_CLEAR_TASK_SET; 1797 case SRP_TSK_LUN_RESET: 1798 return TMR_LUN_RESET; 1799 case SRP_TSK_CLEAR_ACA: 1800 return TMR_CLEAR_ACA; 1801 default: 1802 return -1; 1803 } 1804 } 1805 1806 /** 1807 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1808 * 1809 * Returns 0 if and only if the request will be processed by the target core. 1810 * 1811 * For more information about SRP_TSK_MGMT information units, see also section 1812 * 6.7 in the SRP r16a document. 1813 */ 1814 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1815 struct srpt_recv_ioctx *recv_ioctx, 1816 struct srpt_send_ioctx *send_ioctx) 1817 { 1818 struct srp_tsk_mgmt *srp_tsk; 1819 struct se_cmd *cmd; 1820 struct se_session *sess = ch->sess; 1821 uint64_t unpacked_lun; 1822 uint32_t tag = 0; 1823 int tcm_tmr; 1824 int rc; 1825 1826 BUG_ON(!send_ioctx); 1827 1828 srp_tsk = recv_ioctx->ioctx.buf; 1829 cmd = &send_ioctx->cmd; 1830 1831 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1832 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1833 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1834 1835 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1836 send_ioctx->tag = srp_tsk->tag; 1837 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1838 if (tcm_tmr < 0) { 1839 send_ioctx->cmd.se_tmr_req->response = 1840 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 1841 goto fail; 1842 } 1843 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun, 1844 sizeof(srp_tsk->lun)); 1845 1846 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) { 1847 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag); 1848 if (rc < 0) { 1849 send_ioctx->cmd.se_tmr_req->response = 1850 TMR_TASK_DOES_NOT_EXIST; 1851 goto fail; 1852 } 1853 tag = srp_tsk->task_tag; 1854 } 1855 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun, 1856 srp_tsk, tcm_tmr, GFP_KERNEL, tag, 1857 TARGET_SCF_ACK_KREF); 1858 if (rc != 0) { 1859 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1860 goto fail; 1861 } 1862 return; 1863 fail: 1864 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1865 } 1866 1867 /** 1868 * srpt_handle_new_iu() - Process a newly received information unit. 1869 * @ch: RDMA channel through which the information unit has been received. 1870 * @ioctx: SRPT I/O context associated with the information unit. 1871 */ 1872 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1873 struct srpt_recv_ioctx *recv_ioctx, 1874 struct srpt_send_ioctx *send_ioctx) 1875 { 1876 struct srp_cmd *srp_cmd; 1877 enum rdma_ch_state ch_state; 1878 1879 BUG_ON(!ch); 1880 BUG_ON(!recv_ioctx); 1881 1882 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1883 recv_ioctx->ioctx.dma, srp_max_req_size, 1884 DMA_FROM_DEVICE); 1885 1886 ch_state = srpt_get_ch_state(ch); 1887 if (unlikely(ch_state == CH_CONNECTING)) { 1888 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1889 goto out; 1890 } 1891 1892 if (unlikely(ch_state != CH_LIVE)) 1893 goto out; 1894 1895 srp_cmd = recv_ioctx->ioctx.buf; 1896 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1897 if (!send_ioctx) 1898 send_ioctx = srpt_get_send_ioctx(ch); 1899 if (unlikely(!send_ioctx)) { 1900 list_add_tail(&recv_ioctx->wait_list, 1901 &ch->cmd_wait_list); 1902 goto out; 1903 } 1904 } 1905 1906 switch (srp_cmd->opcode) { 1907 case SRP_CMD: 1908 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1909 break; 1910 case SRP_TSK_MGMT: 1911 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1912 break; 1913 case SRP_I_LOGOUT: 1914 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n"); 1915 break; 1916 case SRP_CRED_RSP: 1917 pr_debug("received SRP_CRED_RSP\n"); 1918 break; 1919 case SRP_AER_RSP: 1920 pr_debug("received SRP_AER_RSP\n"); 1921 break; 1922 case SRP_RSP: 1923 printk(KERN_ERR "Received SRP_RSP\n"); 1924 break; 1925 default: 1926 printk(KERN_ERR "received IU with unknown opcode 0x%x\n", 1927 srp_cmd->opcode); 1928 break; 1929 } 1930 1931 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1932 out: 1933 return; 1934 } 1935 1936 static void srpt_process_rcv_completion(struct ib_cq *cq, 1937 struct srpt_rdma_ch *ch, 1938 struct ib_wc *wc) 1939 { 1940 struct srpt_device *sdev = ch->sport->sdev; 1941 struct srpt_recv_ioctx *ioctx; 1942 u32 index; 1943 1944 index = idx_from_wr_id(wc->wr_id); 1945 if (wc->status == IB_WC_SUCCESS) { 1946 int req_lim; 1947 1948 req_lim = atomic_dec_return(&ch->req_lim); 1949 if (unlikely(req_lim < 0)) 1950 printk(KERN_ERR "req_lim = %d < 0\n", req_lim); 1951 ioctx = sdev->ioctx_ring[index]; 1952 srpt_handle_new_iu(ch, ioctx, NULL); 1953 } else { 1954 printk(KERN_INFO "receiving failed for idx %u with status %d\n", 1955 index, wc->status); 1956 } 1957 } 1958 1959 /** 1960 * srpt_process_send_completion() - Process an IB send completion. 1961 * 1962 * Note: Although this has not yet been observed during tests, at least in 1963 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1964 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1965 * value in each response is set to one, and it is possible that this response 1966 * makes the initiator send a new request before the send completion for that 1967 * response has been processed. This could e.g. happen if the call to 1968 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1969 * if IB retransmission causes generation of the send completion to be 1970 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1971 * are queued on cmd_wait_list. The code below processes these delayed 1972 * requests one at a time. 1973 */ 1974 static void srpt_process_send_completion(struct ib_cq *cq, 1975 struct srpt_rdma_ch *ch, 1976 struct ib_wc *wc) 1977 { 1978 struct srpt_send_ioctx *send_ioctx; 1979 uint32_t index; 1980 enum srpt_opcode opcode; 1981 1982 index = idx_from_wr_id(wc->wr_id); 1983 opcode = opcode_from_wr_id(wc->wr_id); 1984 send_ioctx = ch->ioctx_ring[index]; 1985 if (wc->status == IB_WC_SUCCESS) { 1986 if (opcode == SRPT_SEND) 1987 srpt_handle_send_comp(ch, send_ioctx); 1988 else { 1989 WARN_ON(opcode != SRPT_RDMA_ABORT && 1990 wc->opcode != IB_WC_RDMA_READ); 1991 srpt_handle_rdma_comp(ch, send_ioctx, opcode); 1992 } 1993 } else { 1994 if (opcode == SRPT_SEND) { 1995 printk(KERN_INFO "sending response for idx %u failed" 1996 " with status %d\n", index, wc->status); 1997 srpt_handle_send_err_comp(ch, wc->wr_id); 1998 } else if (opcode != SRPT_RDMA_MID) { 1999 printk(KERN_INFO "RDMA t %d for idx %u failed with" 2000 " status %d", opcode, index, wc->status); 2001 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode); 2002 } 2003 } 2004 2005 while (unlikely(opcode == SRPT_SEND 2006 && !list_empty(&ch->cmd_wait_list) 2007 && srpt_get_ch_state(ch) == CH_LIVE 2008 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) { 2009 struct srpt_recv_ioctx *recv_ioctx; 2010 2011 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 2012 struct srpt_recv_ioctx, 2013 wait_list); 2014 list_del(&recv_ioctx->wait_list); 2015 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx); 2016 } 2017 } 2018 2019 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch) 2020 { 2021 struct ib_wc *const wc = ch->wc; 2022 int i, n; 2023 2024 WARN_ON(cq != ch->cq); 2025 2026 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 2027 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) { 2028 for (i = 0; i < n; i++) { 2029 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV) 2030 srpt_process_rcv_completion(cq, ch, &wc[i]); 2031 else 2032 srpt_process_send_completion(cq, ch, &wc[i]); 2033 } 2034 } 2035 } 2036 2037 /** 2038 * srpt_completion() - IB completion queue callback function. 2039 * 2040 * Notes: 2041 * - It is guaranteed that a completion handler will never be invoked 2042 * concurrently on two different CPUs for the same completion queue. See also 2043 * Documentation/infiniband/core_locking.txt and the implementation of 2044 * handle_edge_irq() in kernel/irq/chip.c. 2045 * - When threaded IRQs are enabled, completion handlers are invoked in thread 2046 * context instead of interrupt context. 2047 */ 2048 static void srpt_completion(struct ib_cq *cq, void *ctx) 2049 { 2050 struct srpt_rdma_ch *ch = ctx; 2051 2052 wake_up_interruptible(&ch->wait_queue); 2053 } 2054 2055 static int srpt_compl_thread(void *arg) 2056 { 2057 struct srpt_rdma_ch *ch; 2058 2059 /* Hibernation / freezing of the SRPT kernel thread is not supported. */ 2060 current->flags |= PF_NOFREEZE; 2061 2062 ch = arg; 2063 BUG_ON(!ch); 2064 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n", 2065 ch->sess_name, ch->thread->comm, current->pid); 2066 while (!kthread_should_stop()) { 2067 wait_event_interruptible(ch->wait_queue, 2068 (srpt_process_completion(ch->cq, ch), 2069 kthread_should_stop())); 2070 } 2071 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n", 2072 ch->sess_name, ch->thread->comm, current->pid); 2073 return 0; 2074 } 2075 2076 /** 2077 * srpt_create_ch_ib() - Create receive and send completion queues. 2078 */ 2079 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 2080 { 2081 struct ib_qp_init_attr *qp_init; 2082 struct srpt_port *sport = ch->sport; 2083 struct srpt_device *sdev = sport->sdev; 2084 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 2085 int ret; 2086 2087 WARN_ON(ch->rq_size < 1); 2088 2089 ret = -ENOMEM; 2090 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL); 2091 if (!qp_init) 2092 goto out; 2093 2094 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch, 2095 ch->rq_size + srp_sq_size, 0); 2096 if (IS_ERR(ch->cq)) { 2097 ret = PTR_ERR(ch->cq); 2098 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n", 2099 ch->rq_size + srp_sq_size, ret); 2100 goto out; 2101 } 2102 2103 qp_init->qp_context = (void *)ch; 2104 qp_init->event_handler 2105 = (void(*)(struct ib_event *, void*))srpt_qp_event; 2106 qp_init->send_cq = ch->cq; 2107 qp_init->recv_cq = ch->cq; 2108 qp_init->srq = sdev->srq; 2109 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 2110 qp_init->qp_type = IB_QPT_RC; 2111 qp_init->cap.max_send_wr = srp_sq_size; 2112 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 2113 2114 ch->qp = ib_create_qp(sdev->pd, qp_init); 2115 if (IS_ERR(ch->qp)) { 2116 ret = PTR_ERR(ch->qp); 2117 printk(KERN_ERR "failed to create_qp ret= %d\n", ret); 2118 goto err_destroy_cq; 2119 } 2120 2121 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 2122 2123 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 2124 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 2125 qp_init->cap.max_send_wr, ch->cm_id); 2126 2127 ret = srpt_init_ch_qp(ch, ch->qp); 2128 if (ret) 2129 goto err_destroy_qp; 2130 2131 init_waitqueue_head(&ch->wait_queue); 2132 2133 pr_debug("creating thread for session %s\n", ch->sess_name); 2134 2135 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl"); 2136 if (IS_ERR(ch->thread)) { 2137 printk(KERN_ERR "failed to create kernel thread %ld\n", 2138 PTR_ERR(ch->thread)); 2139 ch->thread = NULL; 2140 goto err_destroy_qp; 2141 } 2142 2143 out: 2144 kfree(qp_init); 2145 return ret; 2146 2147 err_destroy_qp: 2148 ib_destroy_qp(ch->qp); 2149 err_destroy_cq: 2150 ib_destroy_cq(ch->cq); 2151 goto out; 2152 } 2153 2154 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 2155 { 2156 if (ch->thread) 2157 kthread_stop(ch->thread); 2158 2159 ib_destroy_qp(ch->qp); 2160 ib_destroy_cq(ch->cq); 2161 } 2162 2163 /** 2164 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state. 2165 * 2166 * Reset the QP and make sure all resources associated with the channel will 2167 * be deallocated at an appropriate time. 2168 * 2169 * Note: The caller must hold ch->sport->sdev->spinlock. 2170 */ 2171 static void __srpt_close_ch(struct srpt_rdma_ch *ch) 2172 { 2173 struct srpt_device *sdev; 2174 enum rdma_ch_state prev_state; 2175 unsigned long flags; 2176 2177 sdev = ch->sport->sdev; 2178 2179 spin_lock_irqsave(&ch->spinlock, flags); 2180 prev_state = ch->state; 2181 switch (prev_state) { 2182 case CH_CONNECTING: 2183 case CH_LIVE: 2184 ch->state = CH_DISCONNECTING; 2185 break; 2186 default: 2187 break; 2188 } 2189 spin_unlock_irqrestore(&ch->spinlock, flags); 2190 2191 switch (prev_state) { 2192 case CH_CONNECTING: 2193 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0, 2194 NULL, 0); 2195 /* fall through */ 2196 case CH_LIVE: 2197 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0) 2198 printk(KERN_ERR "sending CM DREQ failed.\n"); 2199 break; 2200 case CH_DISCONNECTING: 2201 break; 2202 case CH_DRAINING: 2203 case CH_RELEASING: 2204 break; 2205 } 2206 } 2207 2208 /** 2209 * srpt_close_ch() - Close an RDMA channel. 2210 */ 2211 static void srpt_close_ch(struct srpt_rdma_ch *ch) 2212 { 2213 struct srpt_device *sdev; 2214 2215 sdev = ch->sport->sdev; 2216 spin_lock_irq(&sdev->spinlock); 2217 __srpt_close_ch(ch); 2218 spin_unlock_irq(&sdev->spinlock); 2219 } 2220 2221 /** 2222 * srpt_shutdown_session() - Whether or not a session may be shut down. 2223 */ 2224 static int srpt_shutdown_session(struct se_session *se_sess) 2225 { 2226 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2227 unsigned long flags; 2228 2229 spin_lock_irqsave(&ch->spinlock, flags); 2230 if (ch->in_shutdown) { 2231 spin_unlock_irqrestore(&ch->spinlock, flags); 2232 return true; 2233 } 2234 2235 ch->in_shutdown = true; 2236 target_sess_cmd_list_set_waiting(se_sess); 2237 spin_unlock_irqrestore(&ch->spinlock, flags); 2238 2239 return true; 2240 } 2241 2242 /** 2243 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair. 2244 * @cm_id: Pointer to the CM ID of the channel to be drained. 2245 * 2246 * Note: Must be called from inside srpt_cm_handler to avoid a race between 2247 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one() 2248 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one() 2249 * waits until all target sessions for the associated IB device have been 2250 * unregistered and target session registration involves a call to 2251 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until 2252 * this function has finished). 2253 */ 2254 static void srpt_drain_channel(struct ib_cm_id *cm_id) 2255 { 2256 struct srpt_device *sdev; 2257 struct srpt_rdma_ch *ch; 2258 int ret; 2259 bool do_reset = false; 2260 2261 WARN_ON_ONCE(irqs_disabled()); 2262 2263 sdev = cm_id->context; 2264 BUG_ON(!sdev); 2265 spin_lock_irq(&sdev->spinlock); 2266 list_for_each_entry(ch, &sdev->rch_list, list) { 2267 if (ch->cm_id == cm_id) { 2268 do_reset = srpt_test_and_set_ch_state(ch, 2269 CH_CONNECTING, CH_DRAINING) || 2270 srpt_test_and_set_ch_state(ch, 2271 CH_LIVE, CH_DRAINING) || 2272 srpt_test_and_set_ch_state(ch, 2273 CH_DISCONNECTING, CH_DRAINING); 2274 break; 2275 } 2276 } 2277 spin_unlock_irq(&sdev->spinlock); 2278 2279 if (do_reset) { 2280 if (ch->sess) 2281 srpt_shutdown_session(ch->sess); 2282 2283 ret = srpt_ch_qp_err(ch); 2284 if (ret < 0) 2285 printk(KERN_ERR "Setting queue pair in error state" 2286 " failed: %d\n", ret); 2287 } 2288 } 2289 2290 /** 2291 * srpt_find_channel() - Look up an RDMA channel. 2292 * @cm_id: Pointer to the CM ID of the channel to be looked up. 2293 * 2294 * Return NULL if no matching RDMA channel has been found. 2295 */ 2296 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev, 2297 struct ib_cm_id *cm_id) 2298 { 2299 struct srpt_rdma_ch *ch; 2300 bool found; 2301 2302 WARN_ON_ONCE(irqs_disabled()); 2303 BUG_ON(!sdev); 2304 2305 found = false; 2306 spin_lock_irq(&sdev->spinlock); 2307 list_for_each_entry(ch, &sdev->rch_list, list) { 2308 if (ch->cm_id == cm_id) { 2309 found = true; 2310 break; 2311 } 2312 } 2313 spin_unlock_irq(&sdev->spinlock); 2314 2315 return found ? ch : NULL; 2316 } 2317 2318 /** 2319 * srpt_release_channel() - Release channel resources. 2320 * 2321 * Schedules the actual release because: 2322 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would 2323 * trigger a deadlock. 2324 * - It is not safe to call TCM transport_* functions from interrupt context. 2325 */ 2326 static void srpt_release_channel(struct srpt_rdma_ch *ch) 2327 { 2328 schedule_work(&ch->release_work); 2329 } 2330 2331 static void srpt_release_channel_work(struct work_struct *w) 2332 { 2333 struct srpt_rdma_ch *ch; 2334 struct srpt_device *sdev; 2335 struct se_session *se_sess; 2336 2337 ch = container_of(w, struct srpt_rdma_ch, release_work); 2338 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess, 2339 ch->release_done); 2340 2341 sdev = ch->sport->sdev; 2342 BUG_ON(!sdev); 2343 2344 se_sess = ch->sess; 2345 BUG_ON(!se_sess); 2346 2347 target_wait_for_sess_cmds(se_sess); 2348 2349 transport_deregister_session_configfs(se_sess); 2350 transport_deregister_session(se_sess); 2351 ch->sess = NULL; 2352 2353 ib_destroy_cm_id(ch->cm_id); 2354 2355 srpt_destroy_ch_ib(ch); 2356 2357 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2358 ch->sport->sdev, ch->rq_size, 2359 ch->rsp_size, DMA_TO_DEVICE); 2360 2361 spin_lock_irq(&sdev->spinlock); 2362 list_del(&ch->list); 2363 spin_unlock_irq(&sdev->spinlock); 2364 2365 if (ch->release_done) 2366 complete(ch->release_done); 2367 2368 wake_up(&sdev->ch_releaseQ); 2369 2370 kfree(ch); 2371 } 2372 2373 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport, 2374 u8 i_port_id[16]) 2375 { 2376 struct srpt_node_acl *nacl; 2377 2378 list_for_each_entry(nacl, &sport->port_acl_list, list) 2379 if (memcmp(nacl->i_port_id, i_port_id, 2380 sizeof(nacl->i_port_id)) == 0) 2381 return nacl; 2382 2383 return NULL; 2384 } 2385 2386 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport, 2387 u8 i_port_id[16]) 2388 { 2389 struct srpt_node_acl *nacl; 2390 2391 spin_lock_irq(&sport->port_acl_lock); 2392 nacl = __srpt_lookup_acl(sport, i_port_id); 2393 spin_unlock_irq(&sport->port_acl_lock); 2394 2395 return nacl; 2396 } 2397 2398 /** 2399 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 2400 * 2401 * Ownership of the cm_id is transferred to the target session if this 2402 * functions returns zero. Otherwise the caller remains the owner of cm_id. 2403 */ 2404 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 2405 struct ib_cm_req_event_param *param, 2406 void *private_data) 2407 { 2408 struct srpt_device *sdev = cm_id->context; 2409 struct srpt_port *sport = &sdev->port[param->port - 1]; 2410 struct srp_login_req *req; 2411 struct srp_login_rsp *rsp; 2412 struct srp_login_rej *rej; 2413 struct ib_cm_rep_param *rep_param; 2414 struct srpt_rdma_ch *ch, *tmp_ch; 2415 struct srpt_node_acl *nacl; 2416 u32 it_iu_len; 2417 int i; 2418 int ret = 0; 2419 2420 WARN_ON_ONCE(irqs_disabled()); 2421 2422 if (WARN_ON(!sdev || !private_data)) 2423 return -EINVAL; 2424 2425 req = (struct srp_login_req *)private_data; 2426 2427 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2428 2429 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 2430 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 2431 " (guid=0x%llx:0x%llx)\n", 2432 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 2433 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 2434 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 2435 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 2436 it_iu_len, 2437 param->port, 2438 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 2439 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 2440 2441 rsp = kzalloc(sizeof *rsp, GFP_KERNEL); 2442 rej = kzalloc(sizeof *rej, GFP_KERNEL); 2443 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL); 2444 2445 if (!rsp || !rej || !rep_param) { 2446 ret = -ENOMEM; 2447 goto out; 2448 } 2449 2450 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2451 rej->reason = __constant_cpu_to_be32( 2452 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2453 ret = -EINVAL; 2454 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its" 2455 " length (%d bytes) is out of range (%d .. %d)\n", 2456 it_iu_len, 64, srp_max_req_size); 2457 goto reject; 2458 } 2459 2460 if (!sport->enabled) { 2461 rej->reason = __constant_cpu_to_be32( 2462 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2463 ret = -EINVAL; 2464 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port" 2465 " has not yet been enabled\n"); 2466 goto reject; 2467 } 2468 2469 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2470 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2471 2472 spin_lock_irq(&sdev->spinlock); 2473 2474 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 2475 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 2476 && !memcmp(ch->t_port_id, req->target_port_id, 16) 2477 && param->port == ch->sport->port 2478 && param->listen_id == ch->sport->sdev->cm_id 2479 && ch->cm_id) { 2480 enum rdma_ch_state ch_state; 2481 2482 ch_state = srpt_get_ch_state(ch); 2483 if (ch_state != CH_CONNECTING 2484 && ch_state != CH_LIVE) 2485 continue; 2486 2487 /* found an existing channel */ 2488 pr_debug("Found existing channel %s" 2489 " cm_id= %p state= %d\n", 2490 ch->sess_name, ch->cm_id, ch_state); 2491 2492 __srpt_close_ch(ch); 2493 2494 rsp->rsp_flags = 2495 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2496 } 2497 } 2498 2499 spin_unlock_irq(&sdev->spinlock); 2500 2501 } else 2502 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2503 2504 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2505 || *(__be64 *)(req->target_port_id + 8) != 2506 cpu_to_be64(srpt_service_guid)) { 2507 rej->reason = __constant_cpu_to_be32( 2508 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2509 ret = -ENOMEM; 2510 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it" 2511 " has an invalid target port identifier.\n"); 2512 goto reject; 2513 } 2514 2515 ch = kzalloc(sizeof *ch, GFP_KERNEL); 2516 if (!ch) { 2517 rej->reason = __constant_cpu_to_be32( 2518 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2519 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n"); 2520 ret = -ENOMEM; 2521 goto reject; 2522 } 2523 2524 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2525 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2526 memcpy(ch->t_port_id, req->target_port_id, 16); 2527 ch->sport = &sdev->port[param->port - 1]; 2528 ch->cm_id = cm_id; 2529 /* 2530 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 2531 * for the SRP protocol to the command queue size. 2532 */ 2533 ch->rq_size = SRPT_RQ_SIZE; 2534 spin_lock_init(&ch->spinlock); 2535 ch->state = CH_CONNECTING; 2536 INIT_LIST_HEAD(&ch->cmd_wait_list); 2537 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2538 2539 ch->ioctx_ring = (struct srpt_send_ioctx **) 2540 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2541 sizeof(*ch->ioctx_ring[0]), 2542 ch->rsp_size, DMA_TO_DEVICE); 2543 if (!ch->ioctx_ring) 2544 goto free_ch; 2545 2546 INIT_LIST_HEAD(&ch->free_list); 2547 for (i = 0; i < ch->rq_size; i++) { 2548 ch->ioctx_ring[i]->ch = ch; 2549 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2550 } 2551 2552 ret = srpt_create_ch_ib(ch); 2553 if (ret) { 2554 rej->reason = __constant_cpu_to_be32( 2555 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2556 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating" 2557 " a new RDMA channel failed.\n"); 2558 goto free_ring; 2559 } 2560 2561 ret = srpt_ch_qp_rtr(ch, ch->qp); 2562 if (ret) { 2563 rej->reason = __constant_cpu_to_be32( 2564 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2565 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling" 2566 " RTR failed (error code = %d)\n", ret); 2567 goto destroy_ib; 2568 } 2569 /* 2570 * Use the initator port identifier as the session name. 2571 */ 2572 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2573 be64_to_cpu(*(__be64 *)ch->i_port_id), 2574 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2575 2576 pr_debug("registering session %s\n", ch->sess_name); 2577 2578 nacl = srpt_lookup_acl(sport, ch->i_port_id); 2579 if (!nacl) { 2580 printk(KERN_INFO "Rejected login because no ACL has been" 2581 " configured yet for initiator %s.\n", ch->sess_name); 2582 rej->reason = __constant_cpu_to_be32( 2583 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2584 goto destroy_ib; 2585 } 2586 2587 ch->sess = transport_init_session(TARGET_PROT_NORMAL); 2588 if (IS_ERR(ch->sess)) { 2589 rej->reason = __constant_cpu_to_be32( 2590 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2591 pr_debug("Failed to create session\n"); 2592 goto deregister_session; 2593 } 2594 ch->sess->se_node_acl = &nacl->nacl; 2595 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch); 2596 2597 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2598 ch->sess_name, ch->cm_id); 2599 2600 /* create srp_login_response */ 2601 rsp->opcode = SRP_LOGIN_RSP; 2602 rsp->tag = req->tag; 2603 rsp->max_it_iu_len = req->req_it_iu_len; 2604 rsp->max_ti_iu_len = req->req_it_iu_len; 2605 ch->max_ti_iu_len = it_iu_len; 2606 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2607 | SRP_BUF_FORMAT_INDIRECT); 2608 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2609 atomic_set(&ch->req_lim, ch->rq_size); 2610 atomic_set(&ch->req_lim_delta, 0); 2611 2612 /* create cm reply */ 2613 rep_param->qp_num = ch->qp->qp_num; 2614 rep_param->private_data = (void *)rsp; 2615 rep_param->private_data_len = sizeof *rsp; 2616 rep_param->rnr_retry_count = 7; 2617 rep_param->flow_control = 1; 2618 rep_param->failover_accepted = 0; 2619 rep_param->srq = 1; 2620 rep_param->responder_resources = 4; 2621 rep_param->initiator_depth = 4; 2622 2623 ret = ib_send_cm_rep(cm_id, rep_param); 2624 if (ret) { 2625 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed" 2626 " (error code = %d)\n", ret); 2627 goto release_channel; 2628 } 2629 2630 spin_lock_irq(&sdev->spinlock); 2631 list_add_tail(&ch->list, &sdev->rch_list); 2632 spin_unlock_irq(&sdev->spinlock); 2633 2634 goto out; 2635 2636 release_channel: 2637 srpt_set_ch_state(ch, CH_RELEASING); 2638 transport_deregister_session_configfs(ch->sess); 2639 2640 deregister_session: 2641 transport_deregister_session(ch->sess); 2642 ch->sess = NULL; 2643 2644 destroy_ib: 2645 srpt_destroy_ch_ib(ch); 2646 2647 free_ring: 2648 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2649 ch->sport->sdev, ch->rq_size, 2650 ch->rsp_size, DMA_TO_DEVICE); 2651 free_ch: 2652 kfree(ch); 2653 2654 reject: 2655 rej->opcode = SRP_LOGIN_REJ; 2656 rej->tag = req->tag; 2657 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2658 | SRP_BUF_FORMAT_INDIRECT); 2659 2660 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2661 (void *)rej, sizeof *rej); 2662 2663 out: 2664 kfree(rep_param); 2665 kfree(rsp); 2666 kfree(rej); 2667 2668 return ret; 2669 } 2670 2671 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id) 2672 { 2673 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id); 2674 srpt_drain_channel(cm_id); 2675 } 2676 2677 /** 2678 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2679 * 2680 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2681 * and that the recipient may begin transmitting (RTU = ready to use). 2682 */ 2683 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id) 2684 { 2685 struct srpt_rdma_ch *ch; 2686 int ret; 2687 2688 ch = srpt_find_channel(cm_id->context, cm_id); 2689 BUG_ON(!ch); 2690 2691 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) { 2692 struct srpt_recv_ioctx *ioctx, *ioctx_tmp; 2693 2694 ret = srpt_ch_qp_rts(ch, ch->qp); 2695 2696 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list, 2697 wait_list) { 2698 list_del(&ioctx->wait_list); 2699 srpt_handle_new_iu(ch, ioctx, NULL); 2700 } 2701 if (ret) 2702 srpt_close_ch(ch); 2703 } 2704 } 2705 2706 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id) 2707 { 2708 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id); 2709 srpt_drain_channel(cm_id); 2710 } 2711 2712 static void srpt_cm_rep_error(struct ib_cm_id *cm_id) 2713 { 2714 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id); 2715 srpt_drain_channel(cm_id); 2716 } 2717 2718 /** 2719 * srpt_cm_dreq_recv() - Process reception of a DREQ message. 2720 */ 2721 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id) 2722 { 2723 struct srpt_rdma_ch *ch; 2724 unsigned long flags; 2725 bool send_drep = false; 2726 2727 ch = srpt_find_channel(cm_id->context, cm_id); 2728 BUG_ON(!ch); 2729 2730 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch)); 2731 2732 spin_lock_irqsave(&ch->spinlock, flags); 2733 switch (ch->state) { 2734 case CH_CONNECTING: 2735 case CH_LIVE: 2736 send_drep = true; 2737 ch->state = CH_DISCONNECTING; 2738 break; 2739 case CH_DISCONNECTING: 2740 case CH_DRAINING: 2741 case CH_RELEASING: 2742 WARN(true, "unexpected channel state %d\n", ch->state); 2743 break; 2744 } 2745 spin_unlock_irqrestore(&ch->spinlock, flags); 2746 2747 if (send_drep) { 2748 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0) 2749 printk(KERN_ERR "Sending IB DREP failed.\n"); 2750 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n", 2751 ch->sess_name); 2752 } 2753 } 2754 2755 /** 2756 * srpt_cm_drep_recv() - Process reception of a DREP message. 2757 */ 2758 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id) 2759 { 2760 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n", 2761 cm_id); 2762 srpt_drain_channel(cm_id); 2763 } 2764 2765 /** 2766 * srpt_cm_handler() - IB connection manager callback function. 2767 * 2768 * A non-zero return value will cause the caller destroy the CM ID. 2769 * 2770 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2771 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2772 * a non-zero value in any other case will trigger a race with the 2773 * ib_destroy_cm_id() call in srpt_release_channel(). 2774 */ 2775 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2776 { 2777 int ret; 2778 2779 ret = 0; 2780 switch (event->event) { 2781 case IB_CM_REQ_RECEIVED: 2782 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2783 event->private_data); 2784 break; 2785 case IB_CM_REJ_RECEIVED: 2786 srpt_cm_rej_recv(cm_id); 2787 break; 2788 case IB_CM_RTU_RECEIVED: 2789 case IB_CM_USER_ESTABLISHED: 2790 srpt_cm_rtu_recv(cm_id); 2791 break; 2792 case IB_CM_DREQ_RECEIVED: 2793 srpt_cm_dreq_recv(cm_id); 2794 break; 2795 case IB_CM_DREP_RECEIVED: 2796 srpt_cm_drep_recv(cm_id); 2797 break; 2798 case IB_CM_TIMEWAIT_EXIT: 2799 srpt_cm_timewait_exit(cm_id); 2800 break; 2801 case IB_CM_REP_ERROR: 2802 srpt_cm_rep_error(cm_id); 2803 break; 2804 case IB_CM_DREQ_ERROR: 2805 printk(KERN_INFO "Received IB DREQ ERROR event.\n"); 2806 break; 2807 case IB_CM_MRA_RECEIVED: 2808 printk(KERN_INFO "Received IB MRA event\n"); 2809 break; 2810 default: 2811 printk(KERN_ERR "received unrecognized IB CM event %d\n", 2812 event->event); 2813 break; 2814 } 2815 2816 return ret; 2817 } 2818 2819 /** 2820 * srpt_perform_rdmas() - Perform IB RDMA. 2821 * 2822 * Returns zero upon success or a negative number upon failure. 2823 */ 2824 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, 2825 struct srpt_send_ioctx *ioctx) 2826 { 2827 struct ib_send_wr wr; 2828 struct ib_send_wr *bad_wr; 2829 struct rdma_iu *riu; 2830 int i; 2831 int ret; 2832 int sq_wr_avail; 2833 enum dma_data_direction dir; 2834 const int n_rdma = ioctx->n_rdma; 2835 2836 dir = ioctx->cmd.data_direction; 2837 if (dir == DMA_TO_DEVICE) { 2838 /* write */ 2839 ret = -ENOMEM; 2840 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); 2841 if (sq_wr_avail < 0) { 2842 printk(KERN_WARNING "IB send queue full (needed %d)\n", 2843 n_rdma); 2844 goto out; 2845 } 2846 } 2847 2848 ioctx->rdma_aborted = false; 2849 ret = 0; 2850 riu = ioctx->rdma_ius; 2851 memset(&wr, 0, sizeof wr); 2852 2853 for (i = 0; i < n_rdma; ++i, ++riu) { 2854 if (dir == DMA_FROM_DEVICE) { 2855 wr.opcode = IB_WR_RDMA_WRITE; 2856 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2857 SRPT_RDMA_WRITE_LAST : 2858 SRPT_RDMA_MID, 2859 ioctx->ioctx.index); 2860 } else { 2861 wr.opcode = IB_WR_RDMA_READ; 2862 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2863 SRPT_RDMA_READ_LAST : 2864 SRPT_RDMA_MID, 2865 ioctx->ioctx.index); 2866 } 2867 wr.next = NULL; 2868 wr.wr.rdma.remote_addr = riu->raddr; 2869 wr.wr.rdma.rkey = riu->rkey; 2870 wr.num_sge = riu->sge_cnt; 2871 wr.sg_list = riu->sge; 2872 2873 /* only get completion event for the last rdma write */ 2874 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE) 2875 wr.send_flags = IB_SEND_SIGNALED; 2876 2877 ret = ib_post_send(ch->qp, &wr, &bad_wr); 2878 if (ret) 2879 break; 2880 } 2881 2882 if (ret) 2883 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d", 2884 __func__, __LINE__, ret, i, n_rdma); 2885 if (ret && i > 0) { 2886 wr.num_sge = 0; 2887 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index); 2888 wr.send_flags = IB_SEND_SIGNALED; 2889 while (ch->state == CH_LIVE && 2890 ib_post_send(ch->qp, &wr, &bad_wr) != 0) { 2891 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]", 2892 ioctx->ioctx.index); 2893 msleep(1000); 2894 } 2895 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) { 2896 printk(KERN_INFO "Waiting until RDMA abort finished [%d]", 2897 ioctx->ioctx.index); 2898 msleep(1000); 2899 } 2900 } 2901 out: 2902 if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) 2903 atomic_add(n_rdma, &ch->sq_wr_avail); 2904 return ret; 2905 } 2906 2907 /** 2908 * srpt_xfer_data() - Start data transfer from initiator to target. 2909 */ 2910 static int srpt_xfer_data(struct srpt_rdma_ch *ch, 2911 struct srpt_send_ioctx *ioctx) 2912 { 2913 int ret; 2914 2915 ret = srpt_map_sg_to_ib_sge(ch, ioctx); 2916 if (ret) { 2917 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret); 2918 goto out; 2919 } 2920 2921 ret = srpt_perform_rdmas(ch, ioctx); 2922 if (ret) { 2923 if (ret == -EAGAIN || ret == -ENOMEM) 2924 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n", 2925 __func__, __LINE__, ret); 2926 else 2927 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n", 2928 __func__, __LINE__, ret); 2929 goto out_unmap; 2930 } 2931 2932 out: 2933 return ret; 2934 out_unmap: 2935 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2936 goto out; 2937 } 2938 2939 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2940 { 2941 struct srpt_send_ioctx *ioctx; 2942 2943 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2944 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2945 } 2946 2947 /* 2948 * srpt_write_pending() - Start data transfer from initiator to target (write). 2949 */ 2950 static int srpt_write_pending(struct se_cmd *se_cmd) 2951 { 2952 struct srpt_rdma_ch *ch; 2953 struct srpt_send_ioctx *ioctx; 2954 enum srpt_command_state new_state; 2955 enum rdma_ch_state ch_state; 2956 int ret; 2957 2958 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2959 2960 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2961 WARN_ON(new_state == SRPT_STATE_DONE); 2962 2963 ch = ioctx->ch; 2964 BUG_ON(!ch); 2965 2966 ch_state = srpt_get_ch_state(ch); 2967 switch (ch_state) { 2968 case CH_CONNECTING: 2969 WARN(true, "unexpected channel state %d\n", ch_state); 2970 ret = -EINVAL; 2971 goto out; 2972 case CH_LIVE: 2973 break; 2974 case CH_DISCONNECTING: 2975 case CH_DRAINING: 2976 case CH_RELEASING: 2977 pr_debug("cmd with tag %lld: channel disconnecting\n", 2978 ioctx->tag); 2979 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2980 ret = -EINVAL; 2981 goto out; 2982 } 2983 ret = srpt_xfer_data(ch, ioctx); 2984 2985 out: 2986 return ret; 2987 } 2988 2989 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2990 { 2991 switch (tcm_mgmt_status) { 2992 case TMR_FUNCTION_COMPLETE: 2993 return SRP_TSK_MGMT_SUCCESS; 2994 case TMR_FUNCTION_REJECTED: 2995 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2996 } 2997 return SRP_TSK_MGMT_FAILED; 2998 } 2999 3000 /** 3001 * srpt_queue_response() - Transmits the response to a SCSI command. 3002 * 3003 * Callback function called by the TCM core. Must not block since it can be 3004 * invoked on the context of the IB completion handler. 3005 */ 3006 static void srpt_queue_response(struct se_cmd *cmd) 3007 { 3008 struct srpt_rdma_ch *ch; 3009 struct srpt_send_ioctx *ioctx; 3010 enum srpt_command_state state; 3011 unsigned long flags; 3012 int ret; 3013 enum dma_data_direction dir; 3014 int resp_len; 3015 u8 srp_tm_status; 3016 3017 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3018 ch = ioctx->ch; 3019 BUG_ON(!ch); 3020 3021 spin_lock_irqsave(&ioctx->spinlock, flags); 3022 state = ioctx->state; 3023 switch (state) { 3024 case SRPT_STATE_NEW: 3025 case SRPT_STATE_DATA_IN: 3026 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 3027 break; 3028 case SRPT_STATE_MGMT: 3029 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 3030 break; 3031 default: 3032 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 3033 ch, ioctx->ioctx.index, ioctx->state); 3034 break; 3035 } 3036 spin_unlock_irqrestore(&ioctx->spinlock, flags); 3037 3038 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 3039 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 3040 atomic_inc(&ch->req_lim_delta); 3041 srpt_abort_cmd(ioctx); 3042 return; 3043 } 3044 3045 dir = ioctx->cmd.data_direction; 3046 3047 /* For read commands, transfer the data to the initiator. */ 3048 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && 3049 !ioctx->queue_status_only) { 3050 ret = srpt_xfer_data(ch, ioctx); 3051 if (ret) { 3052 printk(KERN_ERR "xfer_data failed for tag %llu\n", 3053 ioctx->tag); 3054 return; 3055 } 3056 } 3057 3058 if (state != SRPT_STATE_MGMT) 3059 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag, 3060 cmd->scsi_status); 3061 else { 3062 srp_tm_status 3063 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 3064 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 3065 ioctx->tag); 3066 } 3067 ret = srpt_post_send(ch, ioctx, resp_len); 3068 if (ret) { 3069 printk(KERN_ERR "sending cmd response failed for tag %llu\n", 3070 ioctx->tag); 3071 srpt_unmap_sg_to_ib_sge(ch, ioctx); 3072 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 3073 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 3074 } 3075 } 3076 3077 static int srpt_queue_data_in(struct se_cmd *cmd) 3078 { 3079 srpt_queue_response(cmd); 3080 return 0; 3081 } 3082 3083 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 3084 { 3085 srpt_queue_response(cmd); 3086 } 3087 3088 static void srpt_aborted_task(struct se_cmd *cmd) 3089 { 3090 struct srpt_send_ioctx *ioctx = container_of(cmd, 3091 struct srpt_send_ioctx, cmd); 3092 3093 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 3094 } 3095 3096 static int srpt_queue_status(struct se_cmd *cmd) 3097 { 3098 struct srpt_send_ioctx *ioctx; 3099 3100 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3101 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 3102 if (cmd->se_cmd_flags & 3103 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 3104 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 3105 ioctx->queue_status_only = true; 3106 srpt_queue_response(cmd); 3107 return 0; 3108 } 3109 3110 static void srpt_refresh_port_work(struct work_struct *work) 3111 { 3112 struct srpt_port *sport = container_of(work, struct srpt_port, work); 3113 3114 srpt_refresh_port(sport); 3115 } 3116 3117 static int srpt_ch_list_empty(struct srpt_device *sdev) 3118 { 3119 int res; 3120 3121 spin_lock_irq(&sdev->spinlock); 3122 res = list_empty(&sdev->rch_list); 3123 spin_unlock_irq(&sdev->spinlock); 3124 3125 return res; 3126 } 3127 3128 /** 3129 * srpt_release_sdev() - Free the channel resources associated with a target. 3130 */ 3131 static int srpt_release_sdev(struct srpt_device *sdev) 3132 { 3133 struct srpt_rdma_ch *ch, *tmp_ch; 3134 int res; 3135 3136 WARN_ON_ONCE(irqs_disabled()); 3137 3138 BUG_ON(!sdev); 3139 3140 spin_lock_irq(&sdev->spinlock); 3141 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) 3142 __srpt_close_ch(ch); 3143 spin_unlock_irq(&sdev->spinlock); 3144 3145 res = wait_event_interruptible(sdev->ch_releaseQ, 3146 srpt_ch_list_empty(sdev)); 3147 if (res) 3148 printk(KERN_ERR "%s: interrupted.\n", __func__); 3149 3150 return 0; 3151 } 3152 3153 static struct srpt_port *__srpt_lookup_port(const char *name) 3154 { 3155 struct ib_device *dev; 3156 struct srpt_device *sdev; 3157 struct srpt_port *sport; 3158 int i; 3159 3160 list_for_each_entry(sdev, &srpt_dev_list, list) { 3161 dev = sdev->device; 3162 if (!dev) 3163 continue; 3164 3165 for (i = 0; i < dev->phys_port_cnt; i++) { 3166 sport = &sdev->port[i]; 3167 3168 if (!strcmp(sport->port_guid, name)) 3169 return sport; 3170 } 3171 } 3172 3173 return NULL; 3174 } 3175 3176 static struct srpt_port *srpt_lookup_port(const char *name) 3177 { 3178 struct srpt_port *sport; 3179 3180 spin_lock(&srpt_dev_lock); 3181 sport = __srpt_lookup_port(name); 3182 spin_unlock(&srpt_dev_lock); 3183 3184 return sport; 3185 } 3186 3187 /** 3188 * srpt_add_one() - Infiniband device addition callback function. 3189 */ 3190 static void srpt_add_one(struct ib_device *device) 3191 { 3192 struct srpt_device *sdev; 3193 struct srpt_port *sport; 3194 struct ib_srq_init_attr srq_attr; 3195 int i; 3196 3197 pr_debug("device = %p, device->dma_ops = %p\n", device, 3198 device->dma_ops); 3199 3200 sdev = kzalloc(sizeof *sdev, GFP_KERNEL); 3201 if (!sdev) 3202 goto err; 3203 3204 sdev->device = device; 3205 INIT_LIST_HEAD(&sdev->rch_list); 3206 init_waitqueue_head(&sdev->ch_releaseQ); 3207 spin_lock_init(&sdev->spinlock); 3208 3209 if (ib_query_device(device, &sdev->dev_attr)) 3210 goto free_dev; 3211 3212 sdev->pd = ib_alloc_pd(device); 3213 if (IS_ERR(sdev->pd)) 3214 goto free_dev; 3215 3216 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE); 3217 if (IS_ERR(sdev->mr)) 3218 goto err_pd; 3219 3220 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr); 3221 3222 srq_attr.event_handler = srpt_srq_event; 3223 srq_attr.srq_context = (void *)sdev; 3224 srq_attr.attr.max_wr = sdev->srq_size; 3225 srq_attr.attr.max_sge = 1; 3226 srq_attr.attr.srq_limit = 0; 3227 srq_attr.srq_type = IB_SRQT_BASIC; 3228 3229 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 3230 if (IS_ERR(sdev->srq)) 3231 goto err_mr; 3232 3233 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 3234 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr, 3235 device->name); 3236 3237 if (!srpt_service_guid) 3238 srpt_service_guid = be64_to_cpu(device->node_guid); 3239 3240 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3241 if (IS_ERR(sdev->cm_id)) 3242 goto err_srq; 3243 3244 /* print out target login information */ 3245 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3246 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3247 srpt_service_guid, srpt_service_guid); 3248 3249 /* 3250 * We do not have a consistent service_id (ie. also id_ext of target_id) 3251 * to identify this target. We currently use the guid of the first HCA 3252 * in the system as service_id; therefore, the target_id will change 3253 * if this HCA is gone bad and replaced by different HCA 3254 */ 3255 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL)) 3256 goto err_cm; 3257 3258 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3259 srpt_event_handler); 3260 if (ib_register_event_handler(&sdev->event_handler)) 3261 goto err_cm; 3262 3263 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3264 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3265 sizeof(*sdev->ioctx_ring[0]), 3266 srp_max_req_size, DMA_FROM_DEVICE); 3267 if (!sdev->ioctx_ring) 3268 goto err_event; 3269 3270 for (i = 0; i < sdev->srq_size; ++i) 3271 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 3272 3273 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 3274 3275 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3276 sport = &sdev->port[i - 1]; 3277 sport->sdev = sdev; 3278 sport->port = i; 3279 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3280 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3281 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3282 INIT_WORK(&sport->work, srpt_refresh_port_work); 3283 INIT_LIST_HEAD(&sport->port_acl_list); 3284 spin_lock_init(&sport->port_acl_lock); 3285 3286 if (srpt_refresh_port(sport)) { 3287 printk(KERN_ERR "MAD registration failed for %s-%d.\n", 3288 srpt_sdev_name(sdev), i); 3289 goto err_ring; 3290 } 3291 snprintf(sport->port_guid, sizeof(sport->port_guid), 3292 "0x%016llx%016llx", 3293 be64_to_cpu(sport->gid.global.subnet_prefix), 3294 be64_to_cpu(sport->gid.global.interface_id)); 3295 } 3296 3297 spin_lock(&srpt_dev_lock); 3298 list_add_tail(&sdev->list, &srpt_dev_list); 3299 spin_unlock(&srpt_dev_lock); 3300 3301 out: 3302 ib_set_client_data(device, &srpt_client, sdev); 3303 pr_debug("added %s.\n", device->name); 3304 return; 3305 3306 err_ring: 3307 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3308 sdev->srq_size, srp_max_req_size, 3309 DMA_FROM_DEVICE); 3310 err_event: 3311 ib_unregister_event_handler(&sdev->event_handler); 3312 err_cm: 3313 ib_destroy_cm_id(sdev->cm_id); 3314 err_srq: 3315 ib_destroy_srq(sdev->srq); 3316 err_mr: 3317 ib_dereg_mr(sdev->mr); 3318 err_pd: 3319 ib_dealloc_pd(sdev->pd); 3320 free_dev: 3321 kfree(sdev); 3322 err: 3323 sdev = NULL; 3324 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name); 3325 goto out; 3326 } 3327 3328 /** 3329 * srpt_remove_one() - InfiniBand device removal callback function. 3330 */ 3331 static void srpt_remove_one(struct ib_device *device) 3332 { 3333 struct srpt_device *sdev; 3334 int i; 3335 3336 sdev = ib_get_client_data(device, &srpt_client); 3337 if (!sdev) { 3338 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__, 3339 device->name); 3340 return; 3341 } 3342 3343 srpt_unregister_mad_agent(sdev); 3344 3345 ib_unregister_event_handler(&sdev->event_handler); 3346 3347 /* Cancel any work queued by the just unregistered IB event handler. */ 3348 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3349 cancel_work_sync(&sdev->port[i].work); 3350 3351 ib_destroy_cm_id(sdev->cm_id); 3352 3353 /* 3354 * Unregistering a target must happen after destroying sdev->cm_id 3355 * such that no new SRP_LOGIN_REQ information units can arrive while 3356 * destroying the target. 3357 */ 3358 spin_lock(&srpt_dev_lock); 3359 list_del(&sdev->list); 3360 spin_unlock(&srpt_dev_lock); 3361 srpt_release_sdev(sdev); 3362 3363 ib_destroy_srq(sdev->srq); 3364 ib_dereg_mr(sdev->mr); 3365 ib_dealloc_pd(sdev->pd); 3366 3367 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3368 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 3369 sdev->ioctx_ring = NULL; 3370 kfree(sdev); 3371 } 3372 3373 static struct ib_client srpt_client = { 3374 .name = DRV_NAME, 3375 .add = srpt_add_one, 3376 .remove = srpt_remove_one 3377 }; 3378 3379 static int srpt_check_true(struct se_portal_group *se_tpg) 3380 { 3381 return 1; 3382 } 3383 3384 static int srpt_check_false(struct se_portal_group *se_tpg) 3385 { 3386 return 0; 3387 } 3388 3389 static char *srpt_get_fabric_name(void) 3390 { 3391 return "srpt"; 3392 } 3393 3394 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg) 3395 { 3396 return SCSI_TRANSPORTID_PROTOCOLID_SRP; 3397 } 3398 3399 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3400 { 3401 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3402 3403 return sport->port_guid; 3404 } 3405 3406 static u16 srpt_get_tag(struct se_portal_group *tpg) 3407 { 3408 return 1; 3409 } 3410 3411 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg) 3412 { 3413 return 1; 3414 } 3415 3416 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg, 3417 struct se_node_acl *se_nacl, 3418 struct t10_pr_registration *pr_reg, 3419 int *format_code, unsigned char *buf) 3420 { 3421 struct srpt_node_acl *nacl; 3422 struct spc_rdma_transport_id *tr_id; 3423 3424 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3425 tr_id = (void *)buf; 3426 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP; 3427 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id)); 3428 return sizeof(*tr_id); 3429 } 3430 3431 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg, 3432 struct se_node_acl *se_nacl, 3433 struct t10_pr_registration *pr_reg, 3434 int *format_code) 3435 { 3436 *format_code = 0; 3437 return sizeof(struct spc_rdma_transport_id); 3438 } 3439 3440 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg, 3441 const char *buf, u32 *out_tid_len, 3442 char **port_nexus_ptr) 3443 { 3444 struct spc_rdma_transport_id *tr_id; 3445 3446 *port_nexus_ptr = NULL; 3447 *out_tid_len = sizeof(struct spc_rdma_transport_id); 3448 tr_id = (void *)buf; 3449 return (char *)tr_id->i_port_id; 3450 } 3451 3452 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg) 3453 { 3454 struct srpt_node_acl *nacl; 3455 3456 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL); 3457 if (!nacl) { 3458 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n"); 3459 return NULL; 3460 } 3461 3462 return &nacl->nacl; 3463 } 3464 3465 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg, 3466 struct se_node_acl *se_nacl) 3467 { 3468 struct srpt_node_acl *nacl; 3469 3470 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3471 kfree(nacl); 3472 } 3473 3474 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3475 { 3476 return 1; 3477 } 3478 3479 static void srpt_release_cmd(struct se_cmd *se_cmd) 3480 { 3481 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3482 struct srpt_send_ioctx, cmd); 3483 struct srpt_rdma_ch *ch = ioctx->ch; 3484 unsigned long flags; 3485 3486 WARN_ON(ioctx->state != SRPT_STATE_DONE); 3487 WARN_ON(ioctx->mapped_sg_count != 0); 3488 3489 if (ioctx->n_rbuf > 1) { 3490 kfree(ioctx->rbufs); 3491 ioctx->rbufs = NULL; 3492 ioctx->n_rbuf = 0; 3493 } 3494 3495 spin_lock_irqsave(&ch->spinlock, flags); 3496 list_add(&ioctx->free_list, &ch->free_list); 3497 spin_unlock_irqrestore(&ch->spinlock, flags); 3498 } 3499 3500 /** 3501 * srpt_close_session() - Forcibly close a session. 3502 * 3503 * Callback function invoked by the TCM core to clean up sessions associated 3504 * with a node ACL when the user invokes 3505 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3506 */ 3507 static void srpt_close_session(struct se_session *se_sess) 3508 { 3509 DECLARE_COMPLETION_ONSTACK(release_done); 3510 struct srpt_rdma_ch *ch; 3511 struct srpt_device *sdev; 3512 int res; 3513 3514 ch = se_sess->fabric_sess_ptr; 3515 WARN_ON(ch->sess != se_sess); 3516 3517 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch)); 3518 3519 sdev = ch->sport->sdev; 3520 spin_lock_irq(&sdev->spinlock); 3521 BUG_ON(ch->release_done); 3522 ch->release_done = &release_done; 3523 __srpt_close_ch(ch); 3524 spin_unlock_irq(&sdev->spinlock); 3525 3526 res = wait_for_completion_timeout(&release_done, 60 * HZ); 3527 WARN_ON(res <= 0); 3528 } 3529 3530 /** 3531 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 3532 * 3533 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3534 * This object represents an arbitrary integer used to uniquely identify a 3535 * particular attached remote initiator port to a particular SCSI target port 3536 * within a particular SCSI target device within a particular SCSI instance. 3537 */ 3538 static u32 srpt_sess_get_index(struct se_session *se_sess) 3539 { 3540 return 0; 3541 } 3542 3543 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3544 { 3545 } 3546 3547 static u32 srpt_get_task_tag(struct se_cmd *se_cmd) 3548 { 3549 struct srpt_send_ioctx *ioctx; 3550 3551 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3552 return ioctx->tag; 3553 } 3554 3555 /* Note: only used from inside debug printk's by the TCM core. */ 3556 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3557 { 3558 struct srpt_send_ioctx *ioctx; 3559 3560 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3561 return srpt_get_cmd_state(ioctx); 3562 } 3563 3564 /** 3565 * srpt_parse_i_port_id() - Parse an initiator port ID. 3566 * @name: ASCII representation of a 128-bit initiator port ID. 3567 * @i_port_id: Binary 128-bit port ID. 3568 */ 3569 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3570 { 3571 const char *p; 3572 unsigned len, count, leading_zero_bytes; 3573 int ret, rc; 3574 3575 p = name; 3576 if (strnicmp(p, "0x", 2) == 0) 3577 p += 2; 3578 ret = -EINVAL; 3579 len = strlen(p); 3580 if (len % 2) 3581 goto out; 3582 count = min(len / 2, 16U); 3583 leading_zero_bytes = 16 - count; 3584 memset(i_port_id, 0, leading_zero_bytes); 3585 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 3586 if (rc < 0) 3587 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 3588 ret = 0; 3589 out: 3590 return ret; 3591 } 3592 3593 /* 3594 * configfs callback function invoked for 3595 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3596 */ 3597 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg, 3598 struct config_group *group, 3599 const char *name) 3600 { 3601 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3602 struct se_node_acl *se_nacl, *se_nacl_new; 3603 struct srpt_node_acl *nacl; 3604 int ret = 0; 3605 u32 nexus_depth = 1; 3606 u8 i_port_id[16]; 3607 3608 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 3609 printk(KERN_ERR "invalid initiator port ID %s\n", name); 3610 ret = -EINVAL; 3611 goto err; 3612 } 3613 3614 se_nacl_new = srpt_alloc_fabric_acl(tpg); 3615 if (!se_nacl_new) { 3616 ret = -ENOMEM; 3617 goto err; 3618 } 3619 /* 3620 * nacl_new may be released by core_tpg_add_initiator_node_acl() 3621 * when converting a node ACL from demo mode to explict 3622 */ 3623 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name, 3624 nexus_depth); 3625 if (IS_ERR(se_nacl)) { 3626 ret = PTR_ERR(se_nacl); 3627 goto err; 3628 } 3629 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */ 3630 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3631 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16); 3632 nacl->sport = sport; 3633 3634 spin_lock_irq(&sport->port_acl_lock); 3635 list_add_tail(&nacl->list, &sport->port_acl_list); 3636 spin_unlock_irq(&sport->port_acl_lock); 3637 3638 return se_nacl; 3639 err: 3640 return ERR_PTR(ret); 3641 } 3642 3643 /* 3644 * configfs callback function invoked for 3645 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3646 */ 3647 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl) 3648 { 3649 struct srpt_node_acl *nacl; 3650 struct srpt_device *sdev; 3651 struct srpt_port *sport; 3652 3653 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3654 sport = nacl->sport; 3655 sdev = sport->sdev; 3656 spin_lock_irq(&sport->port_acl_lock); 3657 list_del(&nacl->list); 3658 spin_unlock_irq(&sport->port_acl_lock); 3659 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1); 3660 srpt_release_fabric_acl(NULL, se_nacl); 3661 } 3662 3663 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size( 3664 struct se_portal_group *se_tpg, 3665 char *page) 3666 { 3667 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3668 3669 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3670 } 3671 3672 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size( 3673 struct se_portal_group *se_tpg, 3674 const char *page, 3675 size_t count) 3676 { 3677 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3678 unsigned long val; 3679 int ret; 3680 3681 ret = kstrtoul(page, 0, &val); 3682 if (ret < 0) { 3683 pr_err("kstrtoul() failed with ret: %d\n", ret); 3684 return -EINVAL; 3685 } 3686 if (val > MAX_SRPT_RDMA_SIZE) { 3687 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3688 MAX_SRPT_RDMA_SIZE); 3689 return -EINVAL; 3690 } 3691 if (val < DEFAULT_MAX_RDMA_SIZE) { 3692 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3693 val, DEFAULT_MAX_RDMA_SIZE); 3694 return -EINVAL; 3695 } 3696 sport->port_attrib.srp_max_rdma_size = val; 3697 3698 return count; 3699 } 3700 3701 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR); 3702 3703 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size( 3704 struct se_portal_group *se_tpg, 3705 char *page) 3706 { 3707 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3708 3709 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3710 } 3711 3712 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size( 3713 struct se_portal_group *se_tpg, 3714 const char *page, 3715 size_t count) 3716 { 3717 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3718 unsigned long val; 3719 int ret; 3720 3721 ret = kstrtoul(page, 0, &val); 3722 if (ret < 0) { 3723 pr_err("kstrtoul() failed with ret: %d\n", ret); 3724 return -EINVAL; 3725 } 3726 if (val > MAX_SRPT_RSP_SIZE) { 3727 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3728 MAX_SRPT_RSP_SIZE); 3729 return -EINVAL; 3730 } 3731 if (val < MIN_MAX_RSP_SIZE) { 3732 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3733 MIN_MAX_RSP_SIZE); 3734 return -EINVAL; 3735 } 3736 sport->port_attrib.srp_max_rsp_size = val; 3737 3738 return count; 3739 } 3740 3741 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR); 3742 3743 static ssize_t srpt_tpg_attrib_show_srp_sq_size( 3744 struct se_portal_group *se_tpg, 3745 char *page) 3746 { 3747 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3748 3749 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3750 } 3751 3752 static ssize_t srpt_tpg_attrib_store_srp_sq_size( 3753 struct se_portal_group *se_tpg, 3754 const char *page, 3755 size_t count) 3756 { 3757 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3758 unsigned long val; 3759 int ret; 3760 3761 ret = kstrtoul(page, 0, &val); 3762 if (ret < 0) { 3763 pr_err("kstrtoul() failed with ret: %d\n", ret); 3764 return -EINVAL; 3765 } 3766 if (val > MAX_SRPT_SRQ_SIZE) { 3767 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3768 MAX_SRPT_SRQ_SIZE); 3769 return -EINVAL; 3770 } 3771 if (val < MIN_SRPT_SRQ_SIZE) { 3772 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3773 MIN_SRPT_SRQ_SIZE); 3774 return -EINVAL; 3775 } 3776 sport->port_attrib.srp_sq_size = val; 3777 3778 return count; 3779 } 3780 3781 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR); 3782 3783 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3784 &srpt_tpg_attrib_srp_max_rdma_size.attr, 3785 &srpt_tpg_attrib_srp_max_rsp_size.attr, 3786 &srpt_tpg_attrib_srp_sq_size.attr, 3787 NULL, 3788 }; 3789 3790 static ssize_t srpt_tpg_show_enable( 3791 struct se_portal_group *se_tpg, 3792 char *page) 3793 { 3794 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3795 3796 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3797 } 3798 3799 static ssize_t srpt_tpg_store_enable( 3800 struct se_portal_group *se_tpg, 3801 const char *page, 3802 size_t count) 3803 { 3804 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3805 unsigned long tmp; 3806 int ret; 3807 3808 ret = kstrtoul(page, 0, &tmp); 3809 if (ret < 0) { 3810 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n"); 3811 return -EINVAL; 3812 } 3813 3814 if ((tmp != 0) && (tmp != 1)) { 3815 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3816 return -EINVAL; 3817 } 3818 if (tmp == 1) 3819 sport->enabled = true; 3820 else 3821 sport->enabled = false; 3822 3823 return count; 3824 } 3825 3826 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR); 3827 3828 static struct configfs_attribute *srpt_tpg_attrs[] = { 3829 &srpt_tpg_enable.attr, 3830 NULL, 3831 }; 3832 3833 /** 3834 * configfs callback invoked for 3835 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3836 */ 3837 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3838 struct config_group *group, 3839 const char *name) 3840 { 3841 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3842 int res; 3843 3844 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 3845 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn, 3846 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL); 3847 if (res) 3848 return ERR_PTR(res); 3849 3850 return &sport->port_tpg_1; 3851 } 3852 3853 /** 3854 * configfs callback invoked for 3855 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3856 */ 3857 static void srpt_drop_tpg(struct se_portal_group *tpg) 3858 { 3859 struct srpt_port *sport = container_of(tpg, 3860 struct srpt_port, port_tpg_1); 3861 3862 sport->enabled = false; 3863 core_tpg_deregister(&sport->port_tpg_1); 3864 } 3865 3866 /** 3867 * configfs callback invoked for 3868 * mkdir /sys/kernel/config/target/$driver/$port 3869 */ 3870 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3871 struct config_group *group, 3872 const char *name) 3873 { 3874 struct srpt_port *sport; 3875 int ret; 3876 3877 sport = srpt_lookup_port(name); 3878 pr_debug("make_tport(%s)\n", name); 3879 ret = -EINVAL; 3880 if (!sport) 3881 goto err; 3882 3883 return &sport->port_wwn; 3884 3885 err: 3886 return ERR_PTR(ret); 3887 } 3888 3889 /** 3890 * configfs callback invoked for 3891 * rmdir /sys/kernel/config/target/$driver/$port 3892 */ 3893 static void srpt_drop_tport(struct se_wwn *wwn) 3894 { 3895 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3896 3897 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3898 } 3899 3900 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf, 3901 char *buf) 3902 { 3903 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3904 } 3905 3906 TF_WWN_ATTR_RO(srpt, version); 3907 3908 static struct configfs_attribute *srpt_wwn_attrs[] = { 3909 &srpt_wwn_version.attr, 3910 NULL, 3911 }; 3912 3913 static struct target_core_fabric_ops srpt_template = { 3914 .get_fabric_name = srpt_get_fabric_name, 3915 .get_fabric_proto_ident = srpt_get_fabric_proto_ident, 3916 .tpg_get_wwn = srpt_get_fabric_wwn, 3917 .tpg_get_tag = srpt_get_tag, 3918 .tpg_get_default_depth = srpt_get_default_depth, 3919 .tpg_get_pr_transport_id = srpt_get_pr_transport_id, 3920 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len, 3921 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id, 3922 .tpg_check_demo_mode = srpt_check_false, 3923 .tpg_check_demo_mode_cache = srpt_check_true, 3924 .tpg_check_demo_mode_write_protect = srpt_check_true, 3925 .tpg_check_prod_mode_write_protect = srpt_check_false, 3926 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl, 3927 .tpg_release_fabric_acl = srpt_release_fabric_acl, 3928 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3929 .release_cmd = srpt_release_cmd, 3930 .check_stop_free = srpt_check_stop_free, 3931 .shutdown_session = srpt_shutdown_session, 3932 .close_session = srpt_close_session, 3933 .sess_get_index = srpt_sess_get_index, 3934 .sess_get_initiator_sid = NULL, 3935 .write_pending = srpt_write_pending, 3936 .write_pending_status = srpt_write_pending_status, 3937 .set_default_node_attributes = srpt_set_default_node_attrs, 3938 .get_task_tag = srpt_get_task_tag, 3939 .get_cmd_state = srpt_get_tcm_cmd_state, 3940 .queue_data_in = srpt_queue_data_in, 3941 .queue_status = srpt_queue_status, 3942 .queue_tm_rsp = srpt_queue_tm_rsp, 3943 .aborted_task = srpt_aborted_task, 3944 /* 3945 * Setup function pointers for generic logic in 3946 * target_core_fabric_configfs.c 3947 */ 3948 .fabric_make_wwn = srpt_make_tport, 3949 .fabric_drop_wwn = srpt_drop_tport, 3950 .fabric_make_tpg = srpt_make_tpg, 3951 .fabric_drop_tpg = srpt_drop_tpg, 3952 .fabric_post_link = NULL, 3953 .fabric_pre_unlink = NULL, 3954 .fabric_make_np = NULL, 3955 .fabric_drop_np = NULL, 3956 .fabric_make_nodeacl = srpt_make_nodeacl, 3957 .fabric_drop_nodeacl = srpt_drop_nodeacl, 3958 }; 3959 3960 /** 3961 * srpt_init_module() - Kernel module initialization. 3962 * 3963 * Note: Since ib_register_client() registers callback functions, and since at 3964 * least one of these callback functions (srpt_add_one()) calls target core 3965 * functions, this driver must be registered with the target core before 3966 * ib_register_client() is called. 3967 */ 3968 static int __init srpt_init_module(void) 3969 { 3970 int ret; 3971 3972 ret = -EINVAL; 3973 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3974 printk(KERN_ERR "invalid value %d for kernel module parameter" 3975 " srp_max_req_size -- must be at least %d.\n", 3976 srp_max_req_size, MIN_MAX_REQ_SIZE); 3977 goto out; 3978 } 3979 3980 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3981 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3982 printk(KERN_ERR "invalid value %d for kernel module parameter" 3983 " srpt_srq_size -- must be in the range [%d..%d].\n", 3984 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3985 goto out; 3986 } 3987 3988 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt"); 3989 if (IS_ERR(srpt_target)) { 3990 printk(KERN_ERR "couldn't register\n"); 3991 ret = PTR_ERR(srpt_target); 3992 goto out; 3993 } 3994 3995 srpt_target->tf_ops = srpt_template; 3996 3997 /* 3998 * Set up default attribute lists. 3999 */ 4000 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs; 4001 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs; 4002 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs; 4003 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL; 4004 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL; 4005 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL; 4006 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL; 4007 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL; 4008 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL; 4009 4010 ret = target_fabric_configfs_register(srpt_target); 4011 if (ret < 0) { 4012 printk(KERN_ERR "couldn't register\n"); 4013 goto out_free_target; 4014 } 4015 4016 ret = ib_register_client(&srpt_client); 4017 if (ret) { 4018 printk(KERN_ERR "couldn't register IB client\n"); 4019 goto out_unregister_target; 4020 } 4021 4022 return 0; 4023 4024 out_unregister_target: 4025 target_fabric_configfs_deregister(srpt_target); 4026 srpt_target = NULL; 4027 out_free_target: 4028 if (srpt_target) 4029 target_fabric_configfs_free(srpt_target); 4030 out: 4031 return ret; 4032 } 4033 4034 static void __exit srpt_cleanup_module(void) 4035 { 4036 ib_unregister_client(&srpt_client); 4037 target_fabric_configfs_deregister(srpt_target); 4038 srpt_target = NULL; 4039 } 4040 4041 module_init(srpt_init_module); 4042 module_exit(srpt_cleanup_module); 4043