1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_tcq.h> 45 #include <target/configfs_macros.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric_configfs.h> 48 #include <target/target_core_fabric.h> 49 #include <target/target_core_configfs.h> 50 #include "ib_srpt.h" 51 52 /* Name of this kernel module. */ 53 #define DRV_NAME "ib_srpt" 54 #define DRV_VERSION "2.0.0" 55 #define DRV_RELDATE "2011-02-14" 56 57 #define SRPT_ID_STRING "Linux SRP target" 58 59 #undef pr_fmt 60 #define pr_fmt(fmt) DRV_NAME " " fmt 61 62 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 64 "v" DRV_VERSION " (" DRV_RELDATE ")"); 65 MODULE_LICENSE("Dual BSD/GPL"); 66 67 /* 68 * Global Variables 69 */ 70 71 static u64 srpt_service_guid; 72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 74 75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 76 module_param(srp_max_req_size, int, 0444); 77 MODULE_PARM_DESC(srp_max_req_size, 78 "Maximum size of SRP request messages in bytes."); 79 80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 81 module_param(srpt_srq_size, int, 0444); 82 MODULE_PARM_DESC(srpt_srq_size, 83 "Shared receive queue (SRQ) size."); 84 85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 86 { 87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 88 } 89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 90 0444); 91 MODULE_PARM_DESC(srpt_service_guid, 92 "Using this value for ioc_guid, id_ext, and cm_listen_id" 93 " instead of using the node_guid of the first HCA."); 94 95 static struct ib_client srpt_client; 96 static struct target_fabric_configfs *srpt_target; 97 static void srpt_release_channel(struct srpt_rdma_ch *ch); 98 static int srpt_queue_status(struct se_cmd *cmd); 99 100 /** 101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE. 102 */ 103 static inline 104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir) 105 { 106 switch (dir) { 107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE; 108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE; 109 default: return dir; 110 } 111 } 112 113 /** 114 * srpt_sdev_name() - Return the name associated with the HCA. 115 * 116 * Examples are ib0, ib1, ... 117 */ 118 static inline const char *srpt_sdev_name(struct srpt_device *sdev) 119 { 120 return sdev->device->name; 121 } 122 123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch) 124 { 125 unsigned long flags; 126 enum rdma_ch_state state; 127 128 spin_lock_irqsave(&ch->spinlock, flags); 129 state = ch->state; 130 spin_unlock_irqrestore(&ch->spinlock, flags); 131 return state; 132 } 133 134 static enum rdma_ch_state 135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state) 136 { 137 unsigned long flags; 138 enum rdma_ch_state prev; 139 140 spin_lock_irqsave(&ch->spinlock, flags); 141 prev = ch->state; 142 ch->state = new_state; 143 spin_unlock_irqrestore(&ch->spinlock, flags); 144 return prev; 145 } 146 147 /** 148 * srpt_test_and_set_ch_state() - Test and set the channel state. 149 * 150 * Returns true if and only if the channel state has been set to the new state. 151 */ 152 static bool 153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old, 154 enum rdma_ch_state new) 155 { 156 unsigned long flags; 157 enum rdma_ch_state prev; 158 159 spin_lock_irqsave(&ch->spinlock, flags); 160 prev = ch->state; 161 if (prev == old) 162 ch->state = new; 163 spin_unlock_irqrestore(&ch->spinlock, flags); 164 return prev == old; 165 } 166 167 /** 168 * srpt_event_handler() - Asynchronous IB event callback function. 169 * 170 * Callback function called by the InfiniBand core when an asynchronous IB 171 * event occurs. This callback may occur in interrupt context. See also 172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 173 * Architecture Specification. 174 */ 175 static void srpt_event_handler(struct ib_event_handler *handler, 176 struct ib_event *event) 177 { 178 struct srpt_device *sdev; 179 struct srpt_port *sport; 180 181 sdev = ib_get_client_data(event->device, &srpt_client); 182 if (!sdev || sdev->device != event->device) 183 return; 184 185 pr_debug("ASYNC event= %d on device= %s\n", event->event, 186 srpt_sdev_name(sdev)); 187 188 switch (event->event) { 189 case IB_EVENT_PORT_ERR: 190 if (event->element.port_num <= sdev->device->phys_port_cnt) { 191 sport = &sdev->port[event->element.port_num - 1]; 192 sport->lid = 0; 193 sport->sm_lid = 0; 194 } 195 break; 196 case IB_EVENT_PORT_ACTIVE: 197 case IB_EVENT_LID_CHANGE: 198 case IB_EVENT_PKEY_CHANGE: 199 case IB_EVENT_SM_CHANGE: 200 case IB_EVENT_CLIENT_REREGISTER: 201 /* Refresh port data asynchronously. */ 202 if (event->element.port_num <= sdev->device->phys_port_cnt) { 203 sport = &sdev->port[event->element.port_num - 1]; 204 if (!sport->lid && !sport->sm_lid) 205 schedule_work(&sport->work); 206 } 207 break; 208 default: 209 printk(KERN_ERR "received unrecognized IB event %d\n", 210 event->event); 211 break; 212 } 213 } 214 215 /** 216 * srpt_srq_event() - SRQ event callback function. 217 */ 218 static void srpt_srq_event(struct ib_event *event, void *ctx) 219 { 220 printk(KERN_INFO "SRQ event %d\n", event->event); 221 } 222 223 /** 224 * srpt_qp_event() - QP event callback function. 225 */ 226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 227 { 228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch)); 230 231 switch (event->event) { 232 case IB_EVENT_COMM_EST: 233 ib_cm_notify(ch->cm_id, event->event); 234 break; 235 case IB_EVENT_QP_LAST_WQE_REACHED: 236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING, 237 CH_RELEASING)) 238 srpt_release_channel(ch); 239 else 240 pr_debug("%s: state %d - ignored LAST_WQE.\n", 241 ch->sess_name, srpt_get_ch_state(ch)); 242 break; 243 default: 244 printk(KERN_ERR "received unrecognized IB QP event %d\n", 245 event->event); 246 break; 247 } 248 } 249 250 /** 251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 252 * 253 * @slot: one-based slot number. 254 * @value: four-bit value. 255 * 256 * Copies the lowest four bits of value in element slot of the array of four 257 * bit elements called c_list (controller list). The index slot is one-based. 258 */ 259 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 260 { 261 u16 id; 262 u8 tmp; 263 264 id = (slot - 1) / 2; 265 if (slot & 0x1) { 266 tmp = c_list[id] & 0xf; 267 c_list[id] = (value << 4) | tmp; 268 } else { 269 tmp = c_list[id] & 0xf0; 270 c_list[id] = (value & 0xf) | tmp; 271 } 272 } 273 274 /** 275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 276 * 277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 278 * Specification. 279 */ 280 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 281 { 282 struct ib_class_port_info *cif; 283 284 cif = (struct ib_class_port_info *)mad->data; 285 memset(cif, 0, sizeof *cif); 286 cif->base_version = 1; 287 cif->class_version = 1; 288 cif->resp_time_value = 20; 289 290 mad->mad_hdr.status = 0; 291 } 292 293 /** 294 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 295 * 296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 297 * Specification. See also section B.7, table B.6 in the SRP r16a document. 298 */ 299 static void srpt_get_iou(struct ib_dm_mad *mad) 300 { 301 struct ib_dm_iou_info *ioui; 302 u8 slot; 303 int i; 304 305 ioui = (struct ib_dm_iou_info *)mad->data; 306 ioui->change_id = __constant_cpu_to_be16(1); 307 ioui->max_controllers = 16; 308 309 /* set present for slot 1 and empty for the rest */ 310 srpt_set_ioc(ioui->controller_list, 1, 1); 311 for (i = 1, slot = 2; i < 16; i++, slot++) 312 srpt_set_ioc(ioui->controller_list, slot, 0); 313 314 mad->mad_hdr.status = 0; 315 } 316 317 /** 318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 319 * 320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 321 * Architecture Specification. See also section B.7, table B.7 in the SRP 322 * r16a document. 323 */ 324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 325 struct ib_dm_mad *mad) 326 { 327 struct srpt_device *sdev = sport->sdev; 328 struct ib_dm_ioc_profile *iocp; 329 330 iocp = (struct ib_dm_ioc_profile *)mad->data; 331 332 if (!slot || slot > 16) { 333 mad->mad_hdr.status 334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 335 return; 336 } 337 338 if (slot > 2) { 339 mad->mad_hdr.status 340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 341 return; 342 } 343 344 memset(iocp, 0, sizeof *iocp); 345 strcpy(iocp->id_string, SRPT_ID_STRING); 346 iocp->guid = cpu_to_be64(srpt_service_guid); 347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id); 349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver); 350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 351 iocp->subsys_device_id = 0x0; 352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS); 354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL); 355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION); 356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 357 iocp->rdma_read_depth = 4; 358 iocp->send_size = cpu_to_be32(srp_max_req_size); 359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 360 1U << 24)); 361 iocp->num_svc_entries = 1; 362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 364 365 mad->mad_hdr.status = 0; 366 } 367 368 /** 369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 370 * 371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 372 * Specification. See also section B.7, table B.8 in the SRP r16a document. 373 */ 374 static void srpt_get_svc_entries(u64 ioc_guid, 375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 376 { 377 struct ib_dm_svc_entries *svc_entries; 378 379 WARN_ON(!ioc_guid); 380 381 if (!slot || slot > 16) { 382 mad->mad_hdr.status 383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 384 return; 385 } 386 387 if (slot > 2 || lo > hi || hi > 1) { 388 mad->mad_hdr.status 389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 390 return; 391 } 392 393 svc_entries = (struct ib_dm_svc_entries *)mad->data; 394 memset(svc_entries, 0, sizeof *svc_entries); 395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 396 snprintf(svc_entries->service_entries[0].name, 397 sizeof(svc_entries->service_entries[0].name), 398 "%s%016llx", 399 SRP_SERVICE_NAME_PREFIX, 400 ioc_guid); 401 402 mad->mad_hdr.status = 0; 403 } 404 405 /** 406 * srpt_mgmt_method_get() - Process a received management datagram. 407 * @sp: source port through which the MAD has been received. 408 * @rq_mad: received MAD. 409 * @rsp_mad: response MAD. 410 */ 411 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 412 struct ib_dm_mad *rsp_mad) 413 { 414 u16 attr_id; 415 u32 slot; 416 u8 hi, lo; 417 418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 419 switch (attr_id) { 420 case DM_ATTR_CLASS_PORT_INFO: 421 srpt_get_class_port_info(rsp_mad); 422 break; 423 case DM_ATTR_IOU_INFO: 424 srpt_get_iou(rsp_mad); 425 break; 426 case DM_ATTR_IOC_PROFILE: 427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 428 srpt_get_ioc(sp, slot, rsp_mad); 429 break; 430 case DM_ATTR_SVC_ENTRIES: 431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 432 hi = (u8) ((slot >> 8) & 0xff); 433 lo = (u8) (slot & 0xff); 434 slot = (u16) ((slot >> 16) & 0xffff); 435 srpt_get_svc_entries(srpt_service_guid, 436 slot, hi, lo, rsp_mad); 437 break; 438 default: 439 rsp_mad->mad_hdr.status = 440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 441 break; 442 } 443 } 444 445 /** 446 * srpt_mad_send_handler() - Post MAD-send callback function. 447 */ 448 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 449 struct ib_mad_send_wc *mad_wc) 450 { 451 ib_destroy_ah(mad_wc->send_buf->ah); 452 ib_free_send_mad(mad_wc->send_buf); 453 } 454 455 /** 456 * srpt_mad_recv_handler() - MAD reception callback function. 457 */ 458 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 459 struct ib_mad_recv_wc *mad_wc) 460 { 461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 462 struct ib_ah *ah; 463 struct ib_mad_send_buf *rsp; 464 struct ib_dm_mad *dm_mad; 465 466 if (!mad_wc || !mad_wc->recv_buf.mad) 467 return; 468 469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 470 mad_wc->recv_buf.grh, mad_agent->port_num); 471 if (IS_ERR(ah)) 472 goto err; 473 474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 475 476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 477 mad_wc->wc->pkey_index, 0, 478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 479 GFP_KERNEL); 480 if (IS_ERR(rsp)) 481 goto err_rsp; 482 483 rsp->ah = ah; 484 485 dm_mad = rsp->mad; 486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad); 487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 488 dm_mad->mad_hdr.status = 0; 489 490 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 491 case IB_MGMT_METHOD_GET: 492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 493 break; 494 case IB_MGMT_METHOD_SET: 495 dm_mad->mad_hdr.status = 496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 497 break; 498 default: 499 dm_mad->mad_hdr.status = 500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 501 break; 502 } 503 504 if (!ib_post_send_mad(rsp, NULL)) { 505 ib_free_recv_mad(mad_wc); 506 /* will destroy_ah & free_send_mad in send completion */ 507 return; 508 } 509 510 ib_free_send_mad(rsp); 511 512 err_rsp: 513 ib_destroy_ah(ah); 514 err: 515 ib_free_recv_mad(mad_wc); 516 } 517 518 /** 519 * srpt_refresh_port() - Configure a HCA port. 520 * 521 * Enable InfiniBand management datagram processing, update the cached sm_lid, 522 * lid and gid values, and register a callback function for processing MADs 523 * on the specified port. 524 * 525 * Note: It is safe to call this function more than once for the same port. 526 */ 527 static int srpt_refresh_port(struct srpt_port *sport) 528 { 529 struct ib_mad_reg_req reg_req; 530 struct ib_port_modify port_modify; 531 struct ib_port_attr port_attr; 532 int ret; 533 534 memset(&port_modify, 0, sizeof port_modify); 535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 536 port_modify.clr_port_cap_mask = 0; 537 538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 539 if (ret) 540 goto err_mod_port; 541 542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 543 if (ret) 544 goto err_query_port; 545 546 sport->sm_lid = port_attr.sm_lid; 547 sport->lid = port_attr.lid; 548 549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 550 if (ret) 551 goto err_query_port; 552 553 if (!sport->mad_agent) { 554 memset(®_req, 0, sizeof reg_req); 555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 559 560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 561 sport->port, 562 IB_QPT_GSI, 563 ®_req, 0, 564 srpt_mad_send_handler, 565 srpt_mad_recv_handler, 566 sport); 567 if (IS_ERR(sport->mad_agent)) { 568 ret = PTR_ERR(sport->mad_agent); 569 sport->mad_agent = NULL; 570 goto err_query_port; 571 } 572 } 573 574 return 0; 575 576 err_query_port: 577 578 port_modify.set_port_cap_mask = 0; 579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 581 582 err_mod_port: 583 584 return ret; 585 } 586 587 /** 588 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 589 * 590 * Note: It is safe to call this function more than once for the same device. 591 */ 592 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 593 { 594 struct ib_port_modify port_modify = { 595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 596 }; 597 struct srpt_port *sport; 598 int i; 599 600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 601 sport = &sdev->port[i - 1]; 602 WARN_ON(sport->port != i); 603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 604 printk(KERN_ERR "disabling MAD processing failed.\n"); 605 if (sport->mad_agent) { 606 ib_unregister_mad_agent(sport->mad_agent); 607 sport->mad_agent = NULL; 608 } 609 } 610 } 611 612 /** 613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 614 */ 615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 616 int ioctx_size, int dma_size, 617 enum dma_data_direction dir) 618 { 619 struct srpt_ioctx *ioctx; 620 621 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 622 if (!ioctx) 623 goto err; 624 625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 626 if (!ioctx->buf) 627 goto err_free_ioctx; 628 629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 630 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 631 goto err_free_buf; 632 633 return ioctx; 634 635 err_free_buf: 636 kfree(ioctx->buf); 637 err_free_ioctx: 638 kfree(ioctx); 639 err: 640 return NULL; 641 } 642 643 /** 644 * srpt_free_ioctx() - Free an SRPT I/O context structure. 645 */ 646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 647 int dma_size, enum dma_data_direction dir) 648 { 649 if (!ioctx) 650 return; 651 652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 653 kfree(ioctx->buf); 654 kfree(ioctx); 655 } 656 657 /** 658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 659 * @sdev: Device to allocate the I/O context ring for. 660 * @ring_size: Number of elements in the I/O context ring. 661 * @ioctx_size: I/O context size. 662 * @dma_size: DMA buffer size. 663 * @dir: DMA data direction. 664 */ 665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 666 int ring_size, int ioctx_size, 667 int dma_size, enum dma_data_direction dir) 668 { 669 struct srpt_ioctx **ring; 670 int i; 671 672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 673 && ioctx_size != sizeof(struct srpt_send_ioctx)); 674 675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 676 if (!ring) 677 goto out; 678 for (i = 0; i < ring_size; ++i) { 679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 680 if (!ring[i]) 681 goto err; 682 ring[i]->index = i; 683 } 684 goto out; 685 686 err: 687 while (--i >= 0) 688 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 689 kfree(ring); 690 ring = NULL; 691 out: 692 return ring; 693 } 694 695 /** 696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 697 */ 698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 699 struct srpt_device *sdev, int ring_size, 700 int dma_size, enum dma_data_direction dir) 701 { 702 int i; 703 704 for (i = 0; i < ring_size; ++i) 705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 706 kfree(ioctx_ring); 707 } 708 709 /** 710 * srpt_get_cmd_state() - Get the state of a SCSI command. 711 */ 712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 713 { 714 enum srpt_command_state state; 715 unsigned long flags; 716 717 BUG_ON(!ioctx); 718 719 spin_lock_irqsave(&ioctx->spinlock, flags); 720 state = ioctx->state; 721 spin_unlock_irqrestore(&ioctx->spinlock, flags); 722 return state; 723 } 724 725 /** 726 * srpt_set_cmd_state() - Set the state of a SCSI command. 727 * 728 * Does not modify the state of aborted commands. Returns the previous command 729 * state. 730 */ 731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 732 enum srpt_command_state new) 733 { 734 enum srpt_command_state previous; 735 unsigned long flags; 736 737 BUG_ON(!ioctx); 738 739 spin_lock_irqsave(&ioctx->spinlock, flags); 740 previous = ioctx->state; 741 if (previous != SRPT_STATE_DONE) 742 ioctx->state = new; 743 spin_unlock_irqrestore(&ioctx->spinlock, flags); 744 745 return previous; 746 } 747 748 /** 749 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 750 * 751 * Returns true if and only if the previous command state was equal to 'old'. 752 */ 753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 754 enum srpt_command_state old, 755 enum srpt_command_state new) 756 { 757 enum srpt_command_state previous; 758 unsigned long flags; 759 760 WARN_ON(!ioctx); 761 WARN_ON(old == SRPT_STATE_DONE); 762 WARN_ON(new == SRPT_STATE_NEW); 763 764 spin_lock_irqsave(&ioctx->spinlock, flags); 765 previous = ioctx->state; 766 if (previous == old) 767 ioctx->state = new; 768 spin_unlock_irqrestore(&ioctx->spinlock, flags); 769 return previous == old; 770 } 771 772 /** 773 * srpt_post_recv() - Post an IB receive request. 774 */ 775 static int srpt_post_recv(struct srpt_device *sdev, 776 struct srpt_recv_ioctx *ioctx) 777 { 778 struct ib_sge list; 779 struct ib_recv_wr wr, *bad_wr; 780 781 BUG_ON(!sdev); 782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index); 783 784 list.addr = ioctx->ioctx.dma; 785 list.length = srp_max_req_size; 786 list.lkey = sdev->mr->lkey; 787 788 wr.next = NULL; 789 wr.sg_list = &list; 790 wr.num_sge = 1; 791 792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 793 } 794 795 /** 796 * srpt_post_send() - Post an IB send request. 797 * 798 * Returns zero upon success and a non-zero value upon failure. 799 */ 800 static int srpt_post_send(struct srpt_rdma_ch *ch, 801 struct srpt_send_ioctx *ioctx, int len) 802 { 803 struct ib_sge list; 804 struct ib_send_wr wr, *bad_wr; 805 struct srpt_device *sdev = ch->sport->sdev; 806 int ret; 807 808 atomic_inc(&ch->req_lim); 809 810 ret = -ENOMEM; 811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { 812 printk(KERN_WARNING "IB send queue full (needed 1)\n"); 813 goto out; 814 } 815 816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, 817 DMA_TO_DEVICE); 818 819 list.addr = ioctx->ioctx.dma; 820 list.length = len; 821 list.lkey = sdev->mr->lkey; 822 823 wr.next = NULL; 824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index); 825 wr.sg_list = &list; 826 wr.num_sge = 1; 827 wr.opcode = IB_WR_SEND; 828 wr.send_flags = IB_SEND_SIGNALED; 829 830 ret = ib_post_send(ch->qp, &wr, &bad_wr); 831 832 out: 833 if (ret < 0) { 834 atomic_inc(&ch->sq_wr_avail); 835 atomic_dec(&ch->req_lim); 836 } 837 return ret; 838 } 839 840 /** 841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 842 * @ioctx: Pointer to the I/O context associated with the request. 843 * @srp_cmd: Pointer to the SRP_CMD request data. 844 * @dir: Pointer to the variable to which the transfer direction will be 845 * written. 846 * @data_len: Pointer to the variable to which the total data length of all 847 * descriptors in the SRP_CMD request will be written. 848 * 849 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 850 * 851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 852 * -ENOMEM when memory allocation fails and zero upon success. 853 */ 854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 855 struct srp_cmd *srp_cmd, 856 enum dma_data_direction *dir, u64 *data_len) 857 { 858 struct srp_indirect_buf *idb; 859 struct srp_direct_buf *db; 860 unsigned add_cdb_offset; 861 int ret; 862 863 /* 864 * The pointer computations below will only be compiled correctly 865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 866 * whether srp_cmd::add_data has been declared as a byte pointer. 867 */ 868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) 869 && !__same_type(srp_cmd->add_data[0], (u8)0)); 870 871 BUG_ON(!dir); 872 BUG_ON(!data_len); 873 874 ret = 0; 875 *data_len = 0; 876 877 /* 878 * The lower four bits of the buffer format field contain the DATA-IN 879 * buffer descriptor format, and the highest four bits contain the 880 * DATA-OUT buffer descriptor format. 881 */ 882 *dir = DMA_NONE; 883 if (srp_cmd->buf_fmt & 0xf) 884 /* DATA-IN: transfer data from target to initiator (read). */ 885 *dir = DMA_FROM_DEVICE; 886 else if (srp_cmd->buf_fmt >> 4) 887 /* DATA-OUT: transfer data from initiator to target (write). */ 888 *dir = DMA_TO_DEVICE; 889 890 /* 891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 892 * CDB LENGTH' field are reserved and the size in bytes of this field 893 * is four times the value specified in bits 3..7. Hence the "& ~3". 894 */ 895 add_cdb_offset = srp_cmd->add_cdb_len & ~3; 896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 898 ioctx->n_rbuf = 1; 899 ioctx->rbufs = &ioctx->single_rbuf; 900 901 db = (struct srp_direct_buf *)(srp_cmd->add_data 902 + add_cdb_offset); 903 memcpy(ioctx->rbufs, db, sizeof *db); 904 *data_len = be32_to_cpu(db->len); 905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data 908 + add_cdb_offset); 909 910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db; 911 912 if (ioctx->n_rbuf > 913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 914 printk(KERN_ERR "received unsupported SRP_CMD request" 915 " type (%u out + %u in != %u / %zu)\n", 916 srp_cmd->data_out_desc_cnt, 917 srp_cmd->data_in_desc_cnt, 918 be32_to_cpu(idb->table_desc.len), 919 sizeof(*db)); 920 ioctx->n_rbuf = 0; 921 ret = -EINVAL; 922 goto out; 923 } 924 925 if (ioctx->n_rbuf == 1) 926 ioctx->rbufs = &ioctx->single_rbuf; 927 else { 928 ioctx->rbufs = 929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC); 930 if (!ioctx->rbufs) { 931 ioctx->n_rbuf = 0; 932 ret = -ENOMEM; 933 goto out; 934 } 935 } 936 937 db = idb->desc_list; 938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db); 939 *data_len = be32_to_cpu(idb->len); 940 } 941 out: 942 return ret; 943 } 944 945 /** 946 * srpt_init_ch_qp() - Initialize queue pair attributes. 947 * 948 * Initialized the attributes of queue pair 'qp' by allowing local write, 949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 950 */ 951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 952 { 953 struct ib_qp_attr *attr; 954 int ret; 955 956 attr = kzalloc(sizeof *attr, GFP_KERNEL); 957 if (!attr) 958 return -ENOMEM; 959 960 attr->qp_state = IB_QPS_INIT; 961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 962 IB_ACCESS_REMOTE_WRITE; 963 attr->port_num = ch->sport->port; 964 attr->pkey_index = 0; 965 966 ret = ib_modify_qp(qp, attr, 967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 968 IB_QP_PKEY_INDEX); 969 970 kfree(attr); 971 return ret; 972 } 973 974 /** 975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 976 * @ch: channel of the queue pair. 977 * @qp: queue pair to change the state of. 978 * 979 * Returns zero upon success and a negative value upon failure. 980 * 981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 982 * If this structure ever becomes larger, it might be necessary to allocate 983 * it dynamically instead of on the stack. 984 */ 985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 986 { 987 struct ib_qp_attr qp_attr; 988 int attr_mask; 989 int ret; 990 991 qp_attr.qp_state = IB_QPS_RTR; 992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 993 if (ret) 994 goto out; 995 996 qp_attr.max_dest_rd_atomic = 4; 997 998 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 999 1000 out: 1001 return ret; 1002 } 1003 1004 /** 1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1006 * @ch: channel of the queue pair. 1007 * @qp: queue pair to change the state of. 1008 * 1009 * Returns zero upon success and a negative value upon failure. 1010 * 1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1012 * If this structure ever becomes larger, it might be necessary to allocate 1013 * it dynamically instead of on the stack. 1014 */ 1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1016 { 1017 struct ib_qp_attr qp_attr; 1018 int attr_mask; 1019 int ret; 1020 1021 qp_attr.qp_state = IB_QPS_RTS; 1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1023 if (ret) 1024 goto out; 1025 1026 qp_attr.max_rd_atomic = 4; 1027 1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1029 1030 out: 1031 return ret; 1032 } 1033 1034 /** 1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1036 */ 1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1038 { 1039 struct ib_qp_attr qp_attr; 1040 1041 qp_attr.qp_state = IB_QPS_ERR; 1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1043 } 1044 1045 /** 1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. 1047 */ 1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1049 struct srpt_send_ioctx *ioctx) 1050 { 1051 struct scatterlist *sg; 1052 enum dma_data_direction dir; 1053 1054 BUG_ON(!ch); 1055 BUG_ON(!ioctx); 1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius); 1057 1058 while (ioctx->n_rdma) 1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge); 1060 1061 kfree(ioctx->rdma_ius); 1062 ioctx->rdma_ius = NULL; 1063 1064 if (ioctx->mapped_sg_count) { 1065 sg = ioctx->sg; 1066 WARN_ON(!sg); 1067 dir = ioctx->cmd.data_direction; 1068 BUG_ON(dir == DMA_NONE); 1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, 1070 opposite_dma_dir(dir)); 1071 ioctx->mapped_sg_count = 0; 1072 } 1073 } 1074 1075 /** 1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. 1077 */ 1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1079 struct srpt_send_ioctx *ioctx) 1080 { 1081 struct se_cmd *cmd; 1082 struct scatterlist *sg, *sg_orig; 1083 int sg_cnt; 1084 enum dma_data_direction dir; 1085 struct rdma_iu *riu; 1086 struct srp_direct_buf *db; 1087 dma_addr_t dma_addr; 1088 struct ib_sge *sge; 1089 u64 raddr; 1090 u32 rsize; 1091 u32 tsize; 1092 u32 dma_len; 1093 int count, nrdma; 1094 int i, j, k; 1095 1096 BUG_ON(!ch); 1097 BUG_ON(!ioctx); 1098 cmd = &ioctx->cmd; 1099 dir = cmd->data_direction; 1100 BUG_ON(dir == DMA_NONE); 1101 1102 ioctx->sg = sg = sg_orig = cmd->t_data_sg; 1103 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents; 1104 1105 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, 1106 opposite_dma_dir(dir)); 1107 if (unlikely(!count)) 1108 return -EAGAIN; 1109 1110 ioctx->mapped_sg_count = count; 1111 1112 if (ioctx->rdma_ius && ioctx->n_rdma_ius) 1113 nrdma = ioctx->n_rdma_ius; 1114 else { 1115 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE 1116 + ioctx->n_rbuf; 1117 1118 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL); 1119 if (!ioctx->rdma_ius) 1120 goto free_mem; 1121 1122 ioctx->n_rdma_ius = nrdma; 1123 } 1124 1125 db = ioctx->rbufs; 1126 tsize = cmd->data_length; 1127 dma_len = sg_dma_len(&sg[0]); 1128 riu = ioctx->rdma_ius; 1129 1130 /* 1131 * For each remote desc - calculate the #ib_sge. 1132 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then 1133 * each remote desc rdma_iu is required a rdma wr; 1134 * else 1135 * we need to allocate extra rdma_iu to carry extra #ib_sge in 1136 * another rdma wr 1137 */ 1138 for (i = 0, j = 0; 1139 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1140 rsize = be32_to_cpu(db->len); 1141 raddr = be64_to_cpu(db->va); 1142 riu->raddr = raddr; 1143 riu->rkey = be32_to_cpu(db->key); 1144 riu->sge_cnt = 0; 1145 1146 /* calculate how many sge required for this remote_buf */ 1147 while (rsize > 0 && tsize > 0) { 1148 1149 if (rsize >= dma_len) { 1150 tsize -= dma_len; 1151 rsize -= dma_len; 1152 raddr += dma_len; 1153 1154 if (tsize > 0) { 1155 ++j; 1156 if (j < count) { 1157 sg = sg_next(sg); 1158 dma_len = sg_dma_len(sg); 1159 } 1160 } 1161 } else { 1162 tsize -= rsize; 1163 dma_len -= rsize; 1164 rsize = 0; 1165 } 1166 1167 ++riu->sge_cnt; 1168 1169 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) { 1170 ++ioctx->n_rdma; 1171 riu->sge = 1172 kmalloc(riu->sge_cnt * sizeof *riu->sge, 1173 GFP_KERNEL); 1174 if (!riu->sge) 1175 goto free_mem; 1176 1177 ++riu; 1178 riu->sge_cnt = 0; 1179 riu->raddr = raddr; 1180 riu->rkey = be32_to_cpu(db->key); 1181 } 1182 } 1183 1184 ++ioctx->n_rdma; 1185 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge, 1186 GFP_KERNEL); 1187 if (!riu->sge) 1188 goto free_mem; 1189 } 1190 1191 db = ioctx->rbufs; 1192 tsize = cmd->data_length; 1193 riu = ioctx->rdma_ius; 1194 sg = sg_orig; 1195 dma_len = sg_dma_len(&sg[0]); 1196 dma_addr = sg_dma_address(&sg[0]); 1197 1198 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ 1199 for (i = 0, j = 0; 1200 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1201 rsize = be32_to_cpu(db->len); 1202 sge = riu->sge; 1203 k = 0; 1204 1205 while (rsize > 0 && tsize > 0) { 1206 sge->addr = dma_addr; 1207 sge->lkey = ch->sport->sdev->mr->lkey; 1208 1209 if (rsize >= dma_len) { 1210 sge->length = 1211 (tsize < dma_len) ? tsize : dma_len; 1212 tsize -= dma_len; 1213 rsize -= dma_len; 1214 1215 if (tsize > 0) { 1216 ++j; 1217 if (j < count) { 1218 sg = sg_next(sg); 1219 dma_len = sg_dma_len(sg); 1220 dma_addr = sg_dma_address(sg); 1221 } 1222 } 1223 } else { 1224 sge->length = (tsize < rsize) ? tsize : rsize; 1225 tsize -= rsize; 1226 dma_len -= rsize; 1227 dma_addr += rsize; 1228 rsize = 0; 1229 } 1230 1231 ++k; 1232 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) { 1233 ++riu; 1234 sge = riu->sge; 1235 k = 0; 1236 } else if (rsize > 0 && tsize > 0) 1237 ++sge; 1238 } 1239 } 1240 1241 return 0; 1242 1243 free_mem: 1244 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1245 1246 return -ENOMEM; 1247 } 1248 1249 /** 1250 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1251 */ 1252 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1253 { 1254 struct srpt_send_ioctx *ioctx; 1255 unsigned long flags; 1256 1257 BUG_ON(!ch); 1258 1259 ioctx = NULL; 1260 spin_lock_irqsave(&ch->spinlock, flags); 1261 if (!list_empty(&ch->free_list)) { 1262 ioctx = list_first_entry(&ch->free_list, 1263 struct srpt_send_ioctx, free_list); 1264 list_del(&ioctx->free_list); 1265 } 1266 spin_unlock_irqrestore(&ch->spinlock, flags); 1267 1268 if (!ioctx) 1269 return ioctx; 1270 1271 BUG_ON(ioctx->ch != ch); 1272 spin_lock_init(&ioctx->spinlock); 1273 ioctx->state = SRPT_STATE_NEW; 1274 ioctx->n_rbuf = 0; 1275 ioctx->rbufs = NULL; 1276 ioctx->n_rdma = 0; 1277 ioctx->n_rdma_ius = 0; 1278 ioctx->rdma_ius = NULL; 1279 ioctx->mapped_sg_count = 0; 1280 init_completion(&ioctx->tx_done); 1281 ioctx->queue_status_only = false; 1282 /* 1283 * transport_init_se_cmd() does not initialize all fields, so do it 1284 * here. 1285 */ 1286 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1287 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1288 1289 return ioctx; 1290 } 1291 1292 /** 1293 * srpt_abort_cmd() - Abort a SCSI command. 1294 * @ioctx: I/O context associated with the SCSI command. 1295 * @context: Preferred execution context. 1296 */ 1297 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1298 { 1299 enum srpt_command_state state; 1300 unsigned long flags; 1301 1302 BUG_ON(!ioctx); 1303 1304 /* 1305 * If the command is in a state where the target core is waiting for 1306 * the ib_srpt driver, change the state to the next state. Changing 1307 * the state of the command from SRPT_STATE_NEED_DATA to 1308 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this 1309 * function a second time. 1310 */ 1311 1312 spin_lock_irqsave(&ioctx->spinlock, flags); 1313 state = ioctx->state; 1314 switch (state) { 1315 case SRPT_STATE_NEED_DATA: 1316 ioctx->state = SRPT_STATE_DATA_IN; 1317 break; 1318 case SRPT_STATE_DATA_IN: 1319 case SRPT_STATE_CMD_RSP_SENT: 1320 case SRPT_STATE_MGMT_RSP_SENT: 1321 ioctx->state = SRPT_STATE_DONE; 1322 break; 1323 default: 1324 break; 1325 } 1326 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1327 1328 if (state == SRPT_STATE_DONE) { 1329 struct srpt_rdma_ch *ch = ioctx->ch; 1330 1331 BUG_ON(ch->sess == NULL); 1332 1333 target_put_sess_cmd(ch->sess, &ioctx->cmd); 1334 goto out; 1335 } 1336 1337 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1338 ioctx->tag); 1339 1340 switch (state) { 1341 case SRPT_STATE_NEW: 1342 case SRPT_STATE_DATA_IN: 1343 case SRPT_STATE_MGMT: 1344 /* 1345 * Do nothing - defer abort processing until 1346 * srpt_queue_response() is invoked. 1347 */ 1348 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false)); 1349 break; 1350 case SRPT_STATE_NEED_DATA: 1351 /* DMA_TO_DEVICE (write) - RDMA read error. */ 1352 1353 /* XXX(hch): this is a horrible layering violation.. */ 1354 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1355 ioctx->cmd.transport_state |= CMD_T_LUN_STOP; 1356 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE; 1357 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1358 1359 complete(&ioctx->cmd.transport_lun_stop_comp); 1360 break; 1361 case SRPT_STATE_CMD_RSP_SENT: 1362 /* 1363 * SRP_RSP sending failed or the SRP_RSP send completion has 1364 * not been received in time. 1365 */ 1366 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1367 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1368 ioctx->cmd.transport_state |= CMD_T_LUN_STOP; 1369 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1370 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1371 break; 1372 case SRPT_STATE_MGMT_RSP_SENT: 1373 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1374 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1375 break; 1376 default: 1377 WARN(1, "Unexpected command state (%d)", state); 1378 break; 1379 } 1380 1381 out: 1382 return state; 1383 } 1384 1385 /** 1386 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion. 1387 */ 1388 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id) 1389 { 1390 struct srpt_send_ioctx *ioctx; 1391 enum srpt_command_state state; 1392 struct se_cmd *cmd; 1393 u32 index; 1394 1395 atomic_inc(&ch->sq_wr_avail); 1396 1397 index = idx_from_wr_id(wr_id); 1398 ioctx = ch->ioctx_ring[index]; 1399 state = srpt_get_cmd_state(ioctx); 1400 cmd = &ioctx->cmd; 1401 1402 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1403 && state != SRPT_STATE_MGMT_RSP_SENT 1404 && state != SRPT_STATE_NEED_DATA 1405 && state != SRPT_STATE_DONE); 1406 1407 /* If SRP_RSP sending failed, undo the ch->req_lim change. */ 1408 if (state == SRPT_STATE_CMD_RSP_SENT 1409 || state == SRPT_STATE_MGMT_RSP_SENT) 1410 atomic_dec(&ch->req_lim); 1411 1412 srpt_abort_cmd(ioctx); 1413 } 1414 1415 /** 1416 * srpt_handle_send_comp() - Process an IB send completion notification. 1417 */ 1418 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch, 1419 struct srpt_send_ioctx *ioctx) 1420 { 1421 enum srpt_command_state state; 1422 1423 atomic_inc(&ch->sq_wr_avail); 1424 1425 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1426 1427 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1428 && state != SRPT_STATE_MGMT_RSP_SENT 1429 && state != SRPT_STATE_DONE)) 1430 pr_debug("state = %d\n", state); 1431 1432 if (state != SRPT_STATE_DONE) { 1433 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1434 transport_generic_free_cmd(&ioctx->cmd, 0); 1435 } else { 1436 printk(KERN_ERR "IB completion has been received too late for" 1437 " wr_id = %u.\n", ioctx->ioctx.index); 1438 } 1439 } 1440 1441 /** 1442 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification. 1443 * 1444 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1445 * the data that has been transferred via IB RDMA had to be postponed until the 1446 * check_stop_free() callback. None of this is necessary anymore and needs to 1447 * be cleaned up. 1448 */ 1449 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch, 1450 struct srpt_send_ioctx *ioctx, 1451 enum srpt_opcode opcode) 1452 { 1453 WARN_ON(ioctx->n_rdma <= 0); 1454 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1455 1456 if (opcode == SRPT_RDMA_READ_LAST) { 1457 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1458 SRPT_STATE_DATA_IN)) 1459 target_execute_cmd(&ioctx->cmd); 1460 else 1461 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__, 1462 __LINE__, srpt_get_cmd_state(ioctx)); 1463 } else if (opcode == SRPT_RDMA_ABORT) { 1464 ioctx->rdma_aborted = true; 1465 } else { 1466 WARN(true, "unexpected opcode %d\n", opcode); 1467 } 1468 } 1469 1470 /** 1471 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion. 1472 */ 1473 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch, 1474 struct srpt_send_ioctx *ioctx, 1475 enum srpt_opcode opcode) 1476 { 1477 struct se_cmd *cmd; 1478 enum srpt_command_state state; 1479 unsigned long flags; 1480 1481 cmd = &ioctx->cmd; 1482 state = srpt_get_cmd_state(ioctx); 1483 switch (opcode) { 1484 case SRPT_RDMA_READ_LAST: 1485 if (ioctx->n_rdma <= 0) { 1486 printk(KERN_ERR "Received invalid RDMA read" 1487 " error completion with idx %d\n", 1488 ioctx->ioctx.index); 1489 break; 1490 } 1491 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1492 if (state == SRPT_STATE_NEED_DATA) 1493 srpt_abort_cmd(ioctx); 1494 else 1495 printk(KERN_ERR "%s[%d]: wrong state = %d\n", 1496 __func__, __LINE__, state); 1497 break; 1498 case SRPT_RDMA_WRITE_LAST: 1499 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1500 ioctx->cmd.transport_state |= CMD_T_LUN_STOP; 1501 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1502 break; 1503 default: 1504 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__, 1505 __LINE__, opcode); 1506 break; 1507 } 1508 } 1509 1510 /** 1511 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1512 * @ch: RDMA channel through which the request has been received. 1513 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1514 * be built in the buffer ioctx->buf points at and hence this function will 1515 * overwrite the request data. 1516 * @tag: tag of the request for which this response is being generated. 1517 * @status: value for the STATUS field of the SRP_RSP information unit. 1518 * 1519 * Returns the size in bytes of the SRP_RSP response. 1520 * 1521 * An SRP_RSP response contains a SCSI status or service response. See also 1522 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1523 * response. See also SPC-2 for more information about sense data. 1524 */ 1525 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1526 struct srpt_send_ioctx *ioctx, u64 tag, 1527 int status) 1528 { 1529 struct srp_rsp *srp_rsp; 1530 const u8 *sense_data; 1531 int sense_data_len, max_sense_len; 1532 1533 /* 1534 * The lowest bit of all SAM-3 status codes is zero (see also 1535 * paragraph 5.3 in SAM-3). 1536 */ 1537 WARN_ON(status & 1); 1538 1539 srp_rsp = ioctx->ioctx.buf; 1540 BUG_ON(!srp_rsp); 1541 1542 sense_data = ioctx->sense_data; 1543 sense_data_len = ioctx->cmd.scsi_sense_length; 1544 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1545 1546 memset(srp_rsp, 0, sizeof *srp_rsp); 1547 srp_rsp->opcode = SRP_RSP; 1548 srp_rsp->req_lim_delta = 1549 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1550 srp_rsp->tag = tag; 1551 srp_rsp->status = status; 1552 1553 if (sense_data_len) { 1554 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1555 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1556 if (sense_data_len > max_sense_len) { 1557 printk(KERN_WARNING "truncated sense data from %d to %d" 1558 " bytes\n", sense_data_len, max_sense_len); 1559 sense_data_len = max_sense_len; 1560 } 1561 1562 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1563 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1564 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1565 } 1566 1567 return sizeof(*srp_rsp) + sense_data_len; 1568 } 1569 1570 /** 1571 * srpt_build_tskmgmt_rsp() - Build a task management response. 1572 * @ch: RDMA channel through which the request has been received. 1573 * @ioctx: I/O context in which the SRP_RSP response will be built. 1574 * @rsp_code: RSP_CODE that will be stored in the response. 1575 * @tag: Tag of the request for which this response is being generated. 1576 * 1577 * Returns the size in bytes of the SRP_RSP response. 1578 * 1579 * An SRP_RSP response contains a SCSI status or service response. See also 1580 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1581 * response. 1582 */ 1583 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1584 struct srpt_send_ioctx *ioctx, 1585 u8 rsp_code, u64 tag) 1586 { 1587 struct srp_rsp *srp_rsp; 1588 int resp_data_len; 1589 int resp_len; 1590 1591 resp_data_len = (rsp_code == SRP_TSK_MGMT_SUCCESS) ? 0 : 4; 1592 resp_len = sizeof(*srp_rsp) + resp_data_len; 1593 1594 srp_rsp = ioctx->ioctx.buf; 1595 BUG_ON(!srp_rsp); 1596 memset(srp_rsp, 0, sizeof *srp_rsp); 1597 1598 srp_rsp->opcode = SRP_RSP; 1599 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1 1600 + atomic_xchg(&ch->req_lim_delta, 0)); 1601 srp_rsp->tag = tag; 1602 1603 if (rsp_code != SRP_TSK_MGMT_SUCCESS) { 1604 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1605 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1606 srp_rsp->data[3] = rsp_code; 1607 } 1608 1609 return resp_len; 1610 } 1611 1612 #define NO_SUCH_LUN ((uint64_t)-1LL) 1613 1614 /* 1615 * SCSI LUN addressing method. See also SAM-2 and the section about 1616 * eight byte LUNs. 1617 */ 1618 enum scsi_lun_addr_method { 1619 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0, 1620 SCSI_LUN_ADDR_METHOD_FLAT = 1, 1621 SCSI_LUN_ADDR_METHOD_LUN = 2, 1622 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3, 1623 }; 1624 1625 /* 1626 * srpt_unpack_lun() - Convert from network LUN to linear LUN. 1627 * 1628 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte 1629 * order (big endian) to a linear LUN. Supports three LUN addressing methods: 1630 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40). 1631 */ 1632 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len) 1633 { 1634 uint64_t res = NO_SUCH_LUN; 1635 int addressing_method; 1636 1637 if (unlikely(len < 2)) { 1638 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or " 1639 "more", len); 1640 goto out; 1641 } 1642 1643 switch (len) { 1644 case 8: 1645 if ((*((__be64 *)lun) & 1646 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0) 1647 goto out_err; 1648 break; 1649 case 4: 1650 if (*((__be16 *)&lun[2]) != 0) 1651 goto out_err; 1652 break; 1653 case 6: 1654 if (*((__be32 *)&lun[2]) != 0) 1655 goto out_err; 1656 break; 1657 case 2: 1658 break; 1659 default: 1660 goto out_err; 1661 } 1662 1663 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */ 1664 switch (addressing_method) { 1665 case SCSI_LUN_ADDR_METHOD_PERIPHERAL: 1666 case SCSI_LUN_ADDR_METHOD_FLAT: 1667 case SCSI_LUN_ADDR_METHOD_LUN: 1668 res = *(lun + 1) | (((*lun) & 0x3f) << 8); 1669 break; 1670 1671 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN: 1672 default: 1673 printk(KERN_ERR "Unimplemented LUN addressing method %u", 1674 addressing_method); 1675 break; 1676 } 1677 1678 out: 1679 return res; 1680 1681 out_err: 1682 printk(KERN_ERR "Support for multi-level LUNs has not yet been" 1683 " implemented"); 1684 goto out; 1685 } 1686 1687 static int srpt_check_stop_free(struct se_cmd *cmd) 1688 { 1689 struct srpt_send_ioctx *ioctx = container_of(cmd, 1690 struct srpt_send_ioctx, cmd); 1691 1692 return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1693 } 1694 1695 /** 1696 * srpt_handle_cmd() - Process SRP_CMD. 1697 */ 1698 static int srpt_handle_cmd(struct srpt_rdma_ch *ch, 1699 struct srpt_recv_ioctx *recv_ioctx, 1700 struct srpt_send_ioctx *send_ioctx) 1701 { 1702 struct se_cmd *cmd; 1703 struct srp_cmd *srp_cmd; 1704 uint64_t unpacked_lun; 1705 u64 data_len; 1706 enum dma_data_direction dir; 1707 sense_reason_t ret; 1708 int rc; 1709 1710 BUG_ON(!send_ioctx); 1711 1712 srp_cmd = recv_ioctx->ioctx.buf; 1713 cmd = &send_ioctx->cmd; 1714 send_ioctx->tag = srp_cmd->tag; 1715 1716 switch (srp_cmd->task_attr) { 1717 case SRP_CMD_SIMPLE_Q: 1718 cmd->sam_task_attr = MSG_SIMPLE_TAG; 1719 break; 1720 case SRP_CMD_ORDERED_Q: 1721 default: 1722 cmd->sam_task_attr = MSG_ORDERED_TAG; 1723 break; 1724 case SRP_CMD_HEAD_OF_Q: 1725 cmd->sam_task_attr = MSG_HEAD_TAG; 1726 break; 1727 case SRP_CMD_ACA: 1728 cmd->sam_task_attr = MSG_ACA_TAG; 1729 break; 1730 } 1731 1732 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) { 1733 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n", 1734 srp_cmd->tag); 1735 ret = TCM_INVALID_CDB_FIELD; 1736 goto send_sense; 1737 } 1738 1739 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun, 1740 sizeof(srp_cmd->lun)); 1741 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb, 1742 &send_ioctx->sense_data[0], unpacked_lun, data_len, 1743 MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF); 1744 if (rc != 0) { 1745 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1746 goto send_sense; 1747 } 1748 return 0; 1749 1750 send_sense: 1751 transport_send_check_condition_and_sense(cmd, ret, 0); 1752 return -1; 1753 } 1754 1755 /** 1756 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag. 1757 * @ch: RDMA channel of the task management request. 1758 * @fn: Task management function to perform. 1759 * @req_tag: Tag of the SRP task management request. 1760 * @mgmt_ioctx: I/O context of the task management request. 1761 * 1762 * Returns zero if the target core will process the task management 1763 * request asynchronously. 1764 * 1765 * Note: It is assumed that the initiator serializes tag-based task management 1766 * requests. 1767 */ 1768 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag) 1769 { 1770 struct srpt_device *sdev; 1771 struct srpt_rdma_ch *ch; 1772 struct srpt_send_ioctx *target; 1773 int ret, i; 1774 1775 ret = -EINVAL; 1776 ch = ioctx->ch; 1777 BUG_ON(!ch); 1778 BUG_ON(!ch->sport); 1779 sdev = ch->sport->sdev; 1780 BUG_ON(!sdev); 1781 spin_lock_irq(&sdev->spinlock); 1782 for (i = 0; i < ch->rq_size; ++i) { 1783 target = ch->ioctx_ring[i]; 1784 if (target->cmd.se_lun == ioctx->cmd.se_lun && 1785 target->tag == tag && 1786 srpt_get_cmd_state(target) != SRPT_STATE_DONE) { 1787 ret = 0; 1788 /* now let the target core abort &target->cmd; */ 1789 break; 1790 } 1791 } 1792 spin_unlock_irq(&sdev->spinlock); 1793 return ret; 1794 } 1795 1796 static int srp_tmr_to_tcm(int fn) 1797 { 1798 switch (fn) { 1799 case SRP_TSK_ABORT_TASK: 1800 return TMR_ABORT_TASK; 1801 case SRP_TSK_ABORT_TASK_SET: 1802 return TMR_ABORT_TASK_SET; 1803 case SRP_TSK_CLEAR_TASK_SET: 1804 return TMR_CLEAR_TASK_SET; 1805 case SRP_TSK_LUN_RESET: 1806 return TMR_LUN_RESET; 1807 case SRP_TSK_CLEAR_ACA: 1808 return TMR_CLEAR_ACA; 1809 default: 1810 return -1; 1811 } 1812 } 1813 1814 /** 1815 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1816 * 1817 * Returns 0 if and only if the request will be processed by the target core. 1818 * 1819 * For more information about SRP_TSK_MGMT information units, see also section 1820 * 6.7 in the SRP r16a document. 1821 */ 1822 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1823 struct srpt_recv_ioctx *recv_ioctx, 1824 struct srpt_send_ioctx *send_ioctx) 1825 { 1826 struct srp_tsk_mgmt *srp_tsk; 1827 struct se_cmd *cmd; 1828 struct se_session *sess = ch->sess; 1829 uint64_t unpacked_lun; 1830 uint32_t tag = 0; 1831 int tcm_tmr; 1832 int rc; 1833 1834 BUG_ON(!send_ioctx); 1835 1836 srp_tsk = recv_ioctx->ioctx.buf; 1837 cmd = &send_ioctx->cmd; 1838 1839 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1840 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1841 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1842 1843 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1844 send_ioctx->tag = srp_tsk->tag; 1845 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1846 if (tcm_tmr < 0) { 1847 send_ioctx->cmd.se_tmr_req->response = 1848 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 1849 goto fail; 1850 } 1851 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun, 1852 sizeof(srp_tsk->lun)); 1853 1854 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) { 1855 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag); 1856 if (rc < 0) { 1857 send_ioctx->cmd.se_tmr_req->response = 1858 TMR_TASK_DOES_NOT_EXIST; 1859 goto fail; 1860 } 1861 tag = srp_tsk->task_tag; 1862 } 1863 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun, 1864 srp_tsk, tcm_tmr, GFP_KERNEL, tag, 1865 TARGET_SCF_ACK_KREF); 1866 if (rc != 0) { 1867 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1868 goto fail; 1869 } 1870 return; 1871 fail: 1872 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1873 } 1874 1875 /** 1876 * srpt_handle_new_iu() - Process a newly received information unit. 1877 * @ch: RDMA channel through which the information unit has been received. 1878 * @ioctx: SRPT I/O context associated with the information unit. 1879 */ 1880 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1881 struct srpt_recv_ioctx *recv_ioctx, 1882 struct srpt_send_ioctx *send_ioctx) 1883 { 1884 struct srp_cmd *srp_cmd; 1885 enum rdma_ch_state ch_state; 1886 1887 BUG_ON(!ch); 1888 BUG_ON(!recv_ioctx); 1889 1890 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1891 recv_ioctx->ioctx.dma, srp_max_req_size, 1892 DMA_FROM_DEVICE); 1893 1894 ch_state = srpt_get_ch_state(ch); 1895 if (unlikely(ch_state == CH_CONNECTING)) { 1896 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1897 goto out; 1898 } 1899 1900 if (unlikely(ch_state != CH_LIVE)) 1901 goto out; 1902 1903 srp_cmd = recv_ioctx->ioctx.buf; 1904 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1905 if (!send_ioctx) 1906 send_ioctx = srpt_get_send_ioctx(ch); 1907 if (unlikely(!send_ioctx)) { 1908 list_add_tail(&recv_ioctx->wait_list, 1909 &ch->cmd_wait_list); 1910 goto out; 1911 } 1912 } 1913 1914 switch (srp_cmd->opcode) { 1915 case SRP_CMD: 1916 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1917 break; 1918 case SRP_TSK_MGMT: 1919 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1920 break; 1921 case SRP_I_LOGOUT: 1922 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n"); 1923 break; 1924 case SRP_CRED_RSP: 1925 pr_debug("received SRP_CRED_RSP\n"); 1926 break; 1927 case SRP_AER_RSP: 1928 pr_debug("received SRP_AER_RSP\n"); 1929 break; 1930 case SRP_RSP: 1931 printk(KERN_ERR "Received SRP_RSP\n"); 1932 break; 1933 default: 1934 printk(KERN_ERR "received IU with unknown opcode 0x%x\n", 1935 srp_cmd->opcode); 1936 break; 1937 } 1938 1939 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1940 out: 1941 return; 1942 } 1943 1944 static void srpt_process_rcv_completion(struct ib_cq *cq, 1945 struct srpt_rdma_ch *ch, 1946 struct ib_wc *wc) 1947 { 1948 struct srpt_device *sdev = ch->sport->sdev; 1949 struct srpt_recv_ioctx *ioctx; 1950 u32 index; 1951 1952 index = idx_from_wr_id(wc->wr_id); 1953 if (wc->status == IB_WC_SUCCESS) { 1954 int req_lim; 1955 1956 req_lim = atomic_dec_return(&ch->req_lim); 1957 if (unlikely(req_lim < 0)) 1958 printk(KERN_ERR "req_lim = %d < 0\n", req_lim); 1959 ioctx = sdev->ioctx_ring[index]; 1960 srpt_handle_new_iu(ch, ioctx, NULL); 1961 } else { 1962 printk(KERN_INFO "receiving failed for idx %u with status %d\n", 1963 index, wc->status); 1964 } 1965 } 1966 1967 /** 1968 * srpt_process_send_completion() - Process an IB send completion. 1969 * 1970 * Note: Although this has not yet been observed during tests, at least in 1971 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1972 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1973 * value in each response is set to one, and it is possible that this response 1974 * makes the initiator send a new request before the send completion for that 1975 * response has been processed. This could e.g. happen if the call to 1976 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1977 * if IB retransmission causes generation of the send completion to be 1978 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1979 * are queued on cmd_wait_list. The code below processes these delayed 1980 * requests one at a time. 1981 */ 1982 static void srpt_process_send_completion(struct ib_cq *cq, 1983 struct srpt_rdma_ch *ch, 1984 struct ib_wc *wc) 1985 { 1986 struct srpt_send_ioctx *send_ioctx; 1987 uint32_t index; 1988 enum srpt_opcode opcode; 1989 1990 index = idx_from_wr_id(wc->wr_id); 1991 opcode = opcode_from_wr_id(wc->wr_id); 1992 send_ioctx = ch->ioctx_ring[index]; 1993 if (wc->status == IB_WC_SUCCESS) { 1994 if (opcode == SRPT_SEND) 1995 srpt_handle_send_comp(ch, send_ioctx); 1996 else { 1997 WARN_ON(opcode != SRPT_RDMA_ABORT && 1998 wc->opcode != IB_WC_RDMA_READ); 1999 srpt_handle_rdma_comp(ch, send_ioctx, opcode); 2000 } 2001 } else { 2002 if (opcode == SRPT_SEND) { 2003 printk(KERN_INFO "sending response for idx %u failed" 2004 " with status %d\n", index, wc->status); 2005 srpt_handle_send_err_comp(ch, wc->wr_id); 2006 } else if (opcode != SRPT_RDMA_MID) { 2007 printk(KERN_INFO "RDMA t %d for idx %u failed with" 2008 " status %d", opcode, index, wc->status); 2009 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode); 2010 } 2011 } 2012 2013 while (unlikely(opcode == SRPT_SEND 2014 && !list_empty(&ch->cmd_wait_list) 2015 && srpt_get_ch_state(ch) == CH_LIVE 2016 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) { 2017 struct srpt_recv_ioctx *recv_ioctx; 2018 2019 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 2020 struct srpt_recv_ioctx, 2021 wait_list); 2022 list_del(&recv_ioctx->wait_list); 2023 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx); 2024 } 2025 } 2026 2027 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch) 2028 { 2029 struct ib_wc *const wc = ch->wc; 2030 int i, n; 2031 2032 WARN_ON(cq != ch->cq); 2033 2034 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 2035 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) { 2036 for (i = 0; i < n; i++) { 2037 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV) 2038 srpt_process_rcv_completion(cq, ch, &wc[i]); 2039 else 2040 srpt_process_send_completion(cq, ch, &wc[i]); 2041 } 2042 } 2043 } 2044 2045 /** 2046 * srpt_completion() - IB completion queue callback function. 2047 * 2048 * Notes: 2049 * - It is guaranteed that a completion handler will never be invoked 2050 * concurrently on two different CPUs for the same completion queue. See also 2051 * Documentation/infiniband/core_locking.txt and the implementation of 2052 * handle_edge_irq() in kernel/irq/chip.c. 2053 * - When threaded IRQs are enabled, completion handlers are invoked in thread 2054 * context instead of interrupt context. 2055 */ 2056 static void srpt_completion(struct ib_cq *cq, void *ctx) 2057 { 2058 struct srpt_rdma_ch *ch = ctx; 2059 2060 wake_up_interruptible(&ch->wait_queue); 2061 } 2062 2063 static int srpt_compl_thread(void *arg) 2064 { 2065 struct srpt_rdma_ch *ch; 2066 2067 /* Hibernation / freezing of the SRPT kernel thread is not supported. */ 2068 current->flags |= PF_NOFREEZE; 2069 2070 ch = arg; 2071 BUG_ON(!ch); 2072 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n", 2073 ch->sess_name, ch->thread->comm, current->pid); 2074 while (!kthread_should_stop()) { 2075 wait_event_interruptible(ch->wait_queue, 2076 (srpt_process_completion(ch->cq, ch), 2077 kthread_should_stop())); 2078 } 2079 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n", 2080 ch->sess_name, ch->thread->comm, current->pid); 2081 return 0; 2082 } 2083 2084 /** 2085 * srpt_create_ch_ib() - Create receive and send completion queues. 2086 */ 2087 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 2088 { 2089 struct ib_qp_init_attr *qp_init; 2090 struct srpt_port *sport = ch->sport; 2091 struct srpt_device *sdev = sport->sdev; 2092 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 2093 int ret; 2094 2095 WARN_ON(ch->rq_size < 1); 2096 2097 ret = -ENOMEM; 2098 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL); 2099 if (!qp_init) 2100 goto out; 2101 2102 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch, 2103 ch->rq_size + srp_sq_size, 0); 2104 if (IS_ERR(ch->cq)) { 2105 ret = PTR_ERR(ch->cq); 2106 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n", 2107 ch->rq_size + srp_sq_size, ret); 2108 goto out; 2109 } 2110 2111 qp_init->qp_context = (void *)ch; 2112 qp_init->event_handler 2113 = (void(*)(struct ib_event *, void*))srpt_qp_event; 2114 qp_init->send_cq = ch->cq; 2115 qp_init->recv_cq = ch->cq; 2116 qp_init->srq = sdev->srq; 2117 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 2118 qp_init->qp_type = IB_QPT_RC; 2119 qp_init->cap.max_send_wr = srp_sq_size; 2120 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 2121 2122 ch->qp = ib_create_qp(sdev->pd, qp_init); 2123 if (IS_ERR(ch->qp)) { 2124 ret = PTR_ERR(ch->qp); 2125 printk(KERN_ERR "failed to create_qp ret= %d\n", ret); 2126 goto err_destroy_cq; 2127 } 2128 2129 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 2130 2131 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 2132 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 2133 qp_init->cap.max_send_wr, ch->cm_id); 2134 2135 ret = srpt_init_ch_qp(ch, ch->qp); 2136 if (ret) 2137 goto err_destroy_qp; 2138 2139 init_waitqueue_head(&ch->wait_queue); 2140 2141 pr_debug("creating thread for session %s\n", ch->sess_name); 2142 2143 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl"); 2144 if (IS_ERR(ch->thread)) { 2145 printk(KERN_ERR "failed to create kernel thread %ld\n", 2146 PTR_ERR(ch->thread)); 2147 ch->thread = NULL; 2148 goto err_destroy_qp; 2149 } 2150 2151 out: 2152 kfree(qp_init); 2153 return ret; 2154 2155 err_destroy_qp: 2156 ib_destroy_qp(ch->qp); 2157 err_destroy_cq: 2158 ib_destroy_cq(ch->cq); 2159 goto out; 2160 } 2161 2162 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 2163 { 2164 if (ch->thread) 2165 kthread_stop(ch->thread); 2166 2167 ib_destroy_qp(ch->qp); 2168 ib_destroy_cq(ch->cq); 2169 } 2170 2171 /** 2172 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state. 2173 * 2174 * Reset the QP and make sure all resources associated with the channel will 2175 * be deallocated at an appropriate time. 2176 * 2177 * Note: The caller must hold ch->sport->sdev->spinlock. 2178 */ 2179 static void __srpt_close_ch(struct srpt_rdma_ch *ch) 2180 { 2181 struct srpt_device *sdev; 2182 enum rdma_ch_state prev_state; 2183 unsigned long flags; 2184 2185 sdev = ch->sport->sdev; 2186 2187 spin_lock_irqsave(&ch->spinlock, flags); 2188 prev_state = ch->state; 2189 switch (prev_state) { 2190 case CH_CONNECTING: 2191 case CH_LIVE: 2192 ch->state = CH_DISCONNECTING; 2193 break; 2194 default: 2195 break; 2196 } 2197 spin_unlock_irqrestore(&ch->spinlock, flags); 2198 2199 switch (prev_state) { 2200 case CH_CONNECTING: 2201 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0, 2202 NULL, 0); 2203 /* fall through */ 2204 case CH_LIVE: 2205 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0) 2206 printk(KERN_ERR "sending CM DREQ failed.\n"); 2207 break; 2208 case CH_DISCONNECTING: 2209 break; 2210 case CH_DRAINING: 2211 case CH_RELEASING: 2212 break; 2213 } 2214 } 2215 2216 /** 2217 * srpt_close_ch() - Close an RDMA channel. 2218 */ 2219 static void srpt_close_ch(struct srpt_rdma_ch *ch) 2220 { 2221 struct srpt_device *sdev; 2222 2223 sdev = ch->sport->sdev; 2224 spin_lock_irq(&sdev->spinlock); 2225 __srpt_close_ch(ch); 2226 spin_unlock_irq(&sdev->spinlock); 2227 } 2228 2229 /** 2230 * srpt_shutdown_session() - Whether or not a session may be shut down. 2231 */ 2232 static int srpt_shutdown_session(struct se_session *se_sess) 2233 { 2234 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2235 unsigned long flags; 2236 2237 spin_lock_irqsave(&ch->spinlock, flags); 2238 if (ch->in_shutdown) { 2239 spin_unlock_irqrestore(&ch->spinlock, flags); 2240 return true; 2241 } 2242 2243 ch->in_shutdown = true; 2244 target_sess_cmd_list_set_waiting(se_sess); 2245 spin_unlock_irqrestore(&ch->spinlock, flags); 2246 2247 return true; 2248 } 2249 2250 /** 2251 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair. 2252 * @cm_id: Pointer to the CM ID of the channel to be drained. 2253 * 2254 * Note: Must be called from inside srpt_cm_handler to avoid a race between 2255 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one() 2256 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one() 2257 * waits until all target sessions for the associated IB device have been 2258 * unregistered and target session registration involves a call to 2259 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until 2260 * this function has finished). 2261 */ 2262 static void srpt_drain_channel(struct ib_cm_id *cm_id) 2263 { 2264 struct srpt_device *sdev; 2265 struct srpt_rdma_ch *ch; 2266 int ret; 2267 bool do_reset = false; 2268 2269 WARN_ON_ONCE(irqs_disabled()); 2270 2271 sdev = cm_id->context; 2272 BUG_ON(!sdev); 2273 spin_lock_irq(&sdev->spinlock); 2274 list_for_each_entry(ch, &sdev->rch_list, list) { 2275 if (ch->cm_id == cm_id) { 2276 do_reset = srpt_test_and_set_ch_state(ch, 2277 CH_CONNECTING, CH_DRAINING) || 2278 srpt_test_and_set_ch_state(ch, 2279 CH_LIVE, CH_DRAINING) || 2280 srpt_test_and_set_ch_state(ch, 2281 CH_DISCONNECTING, CH_DRAINING); 2282 break; 2283 } 2284 } 2285 spin_unlock_irq(&sdev->spinlock); 2286 2287 if (do_reset) { 2288 if (ch->sess) 2289 srpt_shutdown_session(ch->sess); 2290 2291 ret = srpt_ch_qp_err(ch); 2292 if (ret < 0) 2293 printk(KERN_ERR "Setting queue pair in error state" 2294 " failed: %d\n", ret); 2295 } 2296 } 2297 2298 /** 2299 * srpt_find_channel() - Look up an RDMA channel. 2300 * @cm_id: Pointer to the CM ID of the channel to be looked up. 2301 * 2302 * Return NULL if no matching RDMA channel has been found. 2303 */ 2304 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev, 2305 struct ib_cm_id *cm_id) 2306 { 2307 struct srpt_rdma_ch *ch; 2308 bool found; 2309 2310 WARN_ON_ONCE(irqs_disabled()); 2311 BUG_ON(!sdev); 2312 2313 found = false; 2314 spin_lock_irq(&sdev->spinlock); 2315 list_for_each_entry(ch, &sdev->rch_list, list) { 2316 if (ch->cm_id == cm_id) { 2317 found = true; 2318 break; 2319 } 2320 } 2321 spin_unlock_irq(&sdev->spinlock); 2322 2323 return found ? ch : NULL; 2324 } 2325 2326 /** 2327 * srpt_release_channel() - Release channel resources. 2328 * 2329 * Schedules the actual release because: 2330 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would 2331 * trigger a deadlock. 2332 * - It is not safe to call TCM transport_* functions from interrupt context. 2333 */ 2334 static void srpt_release_channel(struct srpt_rdma_ch *ch) 2335 { 2336 schedule_work(&ch->release_work); 2337 } 2338 2339 static void srpt_release_channel_work(struct work_struct *w) 2340 { 2341 struct srpt_rdma_ch *ch; 2342 struct srpt_device *sdev; 2343 struct se_session *se_sess; 2344 2345 ch = container_of(w, struct srpt_rdma_ch, release_work); 2346 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess, 2347 ch->release_done); 2348 2349 sdev = ch->sport->sdev; 2350 BUG_ON(!sdev); 2351 2352 se_sess = ch->sess; 2353 BUG_ON(!se_sess); 2354 2355 target_wait_for_sess_cmds(se_sess); 2356 2357 transport_deregister_session_configfs(se_sess); 2358 transport_deregister_session(se_sess); 2359 ch->sess = NULL; 2360 2361 srpt_destroy_ch_ib(ch); 2362 2363 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2364 ch->sport->sdev, ch->rq_size, 2365 ch->rsp_size, DMA_TO_DEVICE); 2366 2367 spin_lock_irq(&sdev->spinlock); 2368 list_del(&ch->list); 2369 spin_unlock_irq(&sdev->spinlock); 2370 2371 ib_destroy_cm_id(ch->cm_id); 2372 2373 if (ch->release_done) 2374 complete(ch->release_done); 2375 2376 wake_up(&sdev->ch_releaseQ); 2377 2378 kfree(ch); 2379 } 2380 2381 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport, 2382 u8 i_port_id[16]) 2383 { 2384 struct srpt_node_acl *nacl; 2385 2386 list_for_each_entry(nacl, &sport->port_acl_list, list) 2387 if (memcmp(nacl->i_port_id, i_port_id, 2388 sizeof(nacl->i_port_id)) == 0) 2389 return nacl; 2390 2391 return NULL; 2392 } 2393 2394 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport, 2395 u8 i_port_id[16]) 2396 { 2397 struct srpt_node_acl *nacl; 2398 2399 spin_lock_irq(&sport->port_acl_lock); 2400 nacl = __srpt_lookup_acl(sport, i_port_id); 2401 spin_unlock_irq(&sport->port_acl_lock); 2402 2403 return nacl; 2404 } 2405 2406 /** 2407 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 2408 * 2409 * Ownership of the cm_id is transferred to the target session if this 2410 * functions returns zero. Otherwise the caller remains the owner of cm_id. 2411 */ 2412 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 2413 struct ib_cm_req_event_param *param, 2414 void *private_data) 2415 { 2416 struct srpt_device *sdev = cm_id->context; 2417 struct srpt_port *sport = &sdev->port[param->port - 1]; 2418 struct srp_login_req *req; 2419 struct srp_login_rsp *rsp; 2420 struct srp_login_rej *rej; 2421 struct ib_cm_rep_param *rep_param; 2422 struct srpt_rdma_ch *ch, *tmp_ch; 2423 struct srpt_node_acl *nacl; 2424 u32 it_iu_len; 2425 int i; 2426 int ret = 0; 2427 2428 WARN_ON_ONCE(irqs_disabled()); 2429 2430 if (WARN_ON(!sdev || !private_data)) 2431 return -EINVAL; 2432 2433 req = (struct srp_login_req *)private_data; 2434 2435 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2436 2437 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 2438 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 2439 " (guid=0x%llx:0x%llx)\n", 2440 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 2441 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 2442 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 2443 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 2444 it_iu_len, 2445 param->port, 2446 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 2447 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 2448 2449 rsp = kzalloc(sizeof *rsp, GFP_KERNEL); 2450 rej = kzalloc(sizeof *rej, GFP_KERNEL); 2451 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL); 2452 2453 if (!rsp || !rej || !rep_param) { 2454 ret = -ENOMEM; 2455 goto out; 2456 } 2457 2458 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2459 rej->reason = __constant_cpu_to_be32( 2460 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2461 ret = -EINVAL; 2462 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its" 2463 " length (%d bytes) is out of range (%d .. %d)\n", 2464 it_iu_len, 64, srp_max_req_size); 2465 goto reject; 2466 } 2467 2468 if (!sport->enabled) { 2469 rej->reason = __constant_cpu_to_be32( 2470 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2471 ret = -EINVAL; 2472 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port" 2473 " has not yet been enabled\n"); 2474 goto reject; 2475 } 2476 2477 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2478 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2479 2480 spin_lock_irq(&sdev->spinlock); 2481 2482 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 2483 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 2484 && !memcmp(ch->t_port_id, req->target_port_id, 16) 2485 && param->port == ch->sport->port 2486 && param->listen_id == ch->sport->sdev->cm_id 2487 && ch->cm_id) { 2488 enum rdma_ch_state ch_state; 2489 2490 ch_state = srpt_get_ch_state(ch); 2491 if (ch_state != CH_CONNECTING 2492 && ch_state != CH_LIVE) 2493 continue; 2494 2495 /* found an existing channel */ 2496 pr_debug("Found existing channel %s" 2497 " cm_id= %p state= %d\n", 2498 ch->sess_name, ch->cm_id, ch_state); 2499 2500 __srpt_close_ch(ch); 2501 2502 rsp->rsp_flags = 2503 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2504 } 2505 } 2506 2507 spin_unlock_irq(&sdev->spinlock); 2508 2509 } else 2510 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2511 2512 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2513 || *(__be64 *)(req->target_port_id + 8) != 2514 cpu_to_be64(srpt_service_guid)) { 2515 rej->reason = __constant_cpu_to_be32( 2516 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2517 ret = -ENOMEM; 2518 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it" 2519 " has an invalid target port identifier.\n"); 2520 goto reject; 2521 } 2522 2523 ch = kzalloc(sizeof *ch, GFP_KERNEL); 2524 if (!ch) { 2525 rej->reason = __constant_cpu_to_be32( 2526 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2527 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n"); 2528 ret = -ENOMEM; 2529 goto reject; 2530 } 2531 2532 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2533 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2534 memcpy(ch->t_port_id, req->target_port_id, 16); 2535 ch->sport = &sdev->port[param->port - 1]; 2536 ch->cm_id = cm_id; 2537 /* 2538 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 2539 * for the SRP protocol to the command queue size. 2540 */ 2541 ch->rq_size = SRPT_RQ_SIZE; 2542 spin_lock_init(&ch->spinlock); 2543 ch->state = CH_CONNECTING; 2544 INIT_LIST_HEAD(&ch->cmd_wait_list); 2545 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2546 2547 ch->ioctx_ring = (struct srpt_send_ioctx **) 2548 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2549 sizeof(*ch->ioctx_ring[0]), 2550 ch->rsp_size, DMA_TO_DEVICE); 2551 if (!ch->ioctx_ring) 2552 goto free_ch; 2553 2554 INIT_LIST_HEAD(&ch->free_list); 2555 for (i = 0; i < ch->rq_size; i++) { 2556 ch->ioctx_ring[i]->ch = ch; 2557 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2558 } 2559 2560 ret = srpt_create_ch_ib(ch); 2561 if (ret) { 2562 rej->reason = __constant_cpu_to_be32( 2563 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2564 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating" 2565 " a new RDMA channel failed.\n"); 2566 goto free_ring; 2567 } 2568 2569 ret = srpt_ch_qp_rtr(ch, ch->qp); 2570 if (ret) { 2571 rej->reason = __constant_cpu_to_be32( 2572 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2573 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling" 2574 " RTR failed (error code = %d)\n", ret); 2575 goto destroy_ib; 2576 } 2577 /* 2578 * Use the initator port identifier as the session name. 2579 */ 2580 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2581 be64_to_cpu(*(__be64 *)ch->i_port_id), 2582 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2583 2584 pr_debug("registering session %s\n", ch->sess_name); 2585 2586 nacl = srpt_lookup_acl(sport, ch->i_port_id); 2587 if (!nacl) { 2588 printk(KERN_INFO "Rejected login because no ACL has been" 2589 " configured yet for initiator %s.\n", ch->sess_name); 2590 rej->reason = __constant_cpu_to_be32( 2591 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2592 goto destroy_ib; 2593 } 2594 2595 ch->sess = transport_init_session(); 2596 if (IS_ERR(ch->sess)) { 2597 rej->reason = __constant_cpu_to_be32( 2598 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2599 pr_debug("Failed to create session\n"); 2600 goto deregister_session; 2601 } 2602 ch->sess->se_node_acl = &nacl->nacl; 2603 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch); 2604 2605 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2606 ch->sess_name, ch->cm_id); 2607 2608 /* create srp_login_response */ 2609 rsp->opcode = SRP_LOGIN_RSP; 2610 rsp->tag = req->tag; 2611 rsp->max_it_iu_len = req->req_it_iu_len; 2612 rsp->max_ti_iu_len = req->req_it_iu_len; 2613 ch->max_ti_iu_len = it_iu_len; 2614 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2615 | SRP_BUF_FORMAT_INDIRECT); 2616 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2617 atomic_set(&ch->req_lim, ch->rq_size); 2618 atomic_set(&ch->req_lim_delta, 0); 2619 2620 /* create cm reply */ 2621 rep_param->qp_num = ch->qp->qp_num; 2622 rep_param->private_data = (void *)rsp; 2623 rep_param->private_data_len = sizeof *rsp; 2624 rep_param->rnr_retry_count = 7; 2625 rep_param->flow_control = 1; 2626 rep_param->failover_accepted = 0; 2627 rep_param->srq = 1; 2628 rep_param->responder_resources = 4; 2629 rep_param->initiator_depth = 4; 2630 2631 ret = ib_send_cm_rep(cm_id, rep_param); 2632 if (ret) { 2633 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed" 2634 " (error code = %d)\n", ret); 2635 goto release_channel; 2636 } 2637 2638 spin_lock_irq(&sdev->spinlock); 2639 list_add_tail(&ch->list, &sdev->rch_list); 2640 spin_unlock_irq(&sdev->spinlock); 2641 2642 goto out; 2643 2644 release_channel: 2645 srpt_set_ch_state(ch, CH_RELEASING); 2646 transport_deregister_session_configfs(ch->sess); 2647 2648 deregister_session: 2649 transport_deregister_session(ch->sess); 2650 ch->sess = NULL; 2651 2652 destroy_ib: 2653 srpt_destroy_ch_ib(ch); 2654 2655 free_ring: 2656 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2657 ch->sport->sdev, ch->rq_size, 2658 ch->rsp_size, DMA_TO_DEVICE); 2659 free_ch: 2660 kfree(ch); 2661 2662 reject: 2663 rej->opcode = SRP_LOGIN_REJ; 2664 rej->tag = req->tag; 2665 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2666 | SRP_BUF_FORMAT_INDIRECT); 2667 2668 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2669 (void *)rej, sizeof *rej); 2670 2671 out: 2672 kfree(rep_param); 2673 kfree(rsp); 2674 kfree(rej); 2675 2676 return ret; 2677 } 2678 2679 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id) 2680 { 2681 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id); 2682 srpt_drain_channel(cm_id); 2683 } 2684 2685 /** 2686 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2687 * 2688 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2689 * and that the recipient may begin transmitting (RTU = ready to use). 2690 */ 2691 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id) 2692 { 2693 struct srpt_rdma_ch *ch; 2694 int ret; 2695 2696 ch = srpt_find_channel(cm_id->context, cm_id); 2697 BUG_ON(!ch); 2698 2699 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) { 2700 struct srpt_recv_ioctx *ioctx, *ioctx_tmp; 2701 2702 ret = srpt_ch_qp_rts(ch, ch->qp); 2703 2704 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list, 2705 wait_list) { 2706 list_del(&ioctx->wait_list); 2707 srpt_handle_new_iu(ch, ioctx, NULL); 2708 } 2709 if (ret) 2710 srpt_close_ch(ch); 2711 } 2712 } 2713 2714 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id) 2715 { 2716 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id); 2717 srpt_drain_channel(cm_id); 2718 } 2719 2720 static void srpt_cm_rep_error(struct ib_cm_id *cm_id) 2721 { 2722 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id); 2723 srpt_drain_channel(cm_id); 2724 } 2725 2726 /** 2727 * srpt_cm_dreq_recv() - Process reception of a DREQ message. 2728 */ 2729 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id) 2730 { 2731 struct srpt_rdma_ch *ch; 2732 unsigned long flags; 2733 bool send_drep = false; 2734 2735 ch = srpt_find_channel(cm_id->context, cm_id); 2736 BUG_ON(!ch); 2737 2738 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch)); 2739 2740 spin_lock_irqsave(&ch->spinlock, flags); 2741 switch (ch->state) { 2742 case CH_CONNECTING: 2743 case CH_LIVE: 2744 send_drep = true; 2745 ch->state = CH_DISCONNECTING; 2746 break; 2747 case CH_DISCONNECTING: 2748 case CH_DRAINING: 2749 case CH_RELEASING: 2750 WARN(true, "unexpected channel state %d\n", ch->state); 2751 break; 2752 } 2753 spin_unlock_irqrestore(&ch->spinlock, flags); 2754 2755 if (send_drep) { 2756 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0) 2757 printk(KERN_ERR "Sending IB DREP failed.\n"); 2758 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n", 2759 ch->sess_name); 2760 } 2761 } 2762 2763 /** 2764 * srpt_cm_drep_recv() - Process reception of a DREP message. 2765 */ 2766 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id) 2767 { 2768 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n", 2769 cm_id); 2770 srpt_drain_channel(cm_id); 2771 } 2772 2773 /** 2774 * srpt_cm_handler() - IB connection manager callback function. 2775 * 2776 * A non-zero return value will cause the caller destroy the CM ID. 2777 * 2778 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2779 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2780 * a non-zero value in any other case will trigger a race with the 2781 * ib_destroy_cm_id() call in srpt_release_channel(). 2782 */ 2783 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2784 { 2785 int ret; 2786 2787 ret = 0; 2788 switch (event->event) { 2789 case IB_CM_REQ_RECEIVED: 2790 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2791 event->private_data); 2792 break; 2793 case IB_CM_REJ_RECEIVED: 2794 srpt_cm_rej_recv(cm_id); 2795 break; 2796 case IB_CM_RTU_RECEIVED: 2797 case IB_CM_USER_ESTABLISHED: 2798 srpt_cm_rtu_recv(cm_id); 2799 break; 2800 case IB_CM_DREQ_RECEIVED: 2801 srpt_cm_dreq_recv(cm_id); 2802 break; 2803 case IB_CM_DREP_RECEIVED: 2804 srpt_cm_drep_recv(cm_id); 2805 break; 2806 case IB_CM_TIMEWAIT_EXIT: 2807 srpt_cm_timewait_exit(cm_id); 2808 break; 2809 case IB_CM_REP_ERROR: 2810 srpt_cm_rep_error(cm_id); 2811 break; 2812 case IB_CM_DREQ_ERROR: 2813 printk(KERN_INFO "Received IB DREQ ERROR event.\n"); 2814 break; 2815 case IB_CM_MRA_RECEIVED: 2816 printk(KERN_INFO "Received IB MRA event\n"); 2817 break; 2818 default: 2819 printk(KERN_ERR "received unrecognized IB CM event %d\n", 2820 event->event); 2821 break; 2822 } 2823 2824 return ret; 2825 } 2826 2827 /** 2828 * srpt_perform_rdmas() - Perform IB RDMA. 2829 * 2830 * Returns zero upon success or a negative number upon failure. 2831 */ 2832 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, 2833 struct srpt_send_ioctx *ioctx) 2834 { 2835 struct ib_send_wr wr; 2836 struct ib_send_wr *bad_wr; 2837 struct rdma_iu *riu; 2838 int i; 2839 int ret; 2840 int sq_wr_avail; 2841 enum dma_data_direction dir; 2842 const int n_rdma = ioctx->n_rdma; 2843 2844 dir = ioctx->cmd.data_direction; 2845 if (dir == DMA_TO_DEVICE) { 2846 /* write */ 2847 ret = -ENOMEM; 2848 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); 2849 if (sq_wr_avail < 0) { 2850 printk(KERN_WARNING "IB send queue full (needed %d)\n", 2851 n_rdma); 2852 goto out; 2853 } 2854 } 2855 2856 ioctx->rdma_aborted = false; 2857 ret = 0; 2858 riu = ioctx->rdma_ius; 2859 memset(&wr, 0, sizeof wr); 2860 2861 for (i = 0; i < n_rdma; ++i, ++riu) { 2862 if (dir == DMA_FROM_DEVICE) { 2863 wr.opcode = IB_WR_RDMA_WRITE; 2864 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2865 SRPT_RDMA_WRITE_LAST : 2866 SRPT_RDMA_MID, 2867 ioctx->ioctx.index); 2868 } else { 2869 wr.opcode = IB_WR_RDMA_READ; 2870 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2871 SRPT_RDMA_READ_LAST : 2872 SRPT_RDMA_MID, 2873 ioctx->ioctx.index); 2874 } 2875 wr.next = NULL; 2876 wr.wr.rdma.remote_addr = riu->raddr; 2877 wr.wr.rdma.rkey = riu->rkey; 2878 wr.num_sge = riu->sge_cnt; 2879 wr.sg_list = riu->sge; 2880 2881 /* only get completion event for the last rdma write */ 2882 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE) 2883 wr.send_flags = IB_SEND_SIGNALED; 2884 2885 ret = ib_post_send(ch->qp, &wr, &bad_wr); 2886 if (ret) 2887 break; 2888 } 2889 2890 if (ret) 2891 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d", 2892 __func__, __LINE__, ret, i, n_rdma); 2893 if (ret && i > 0) { 2894 wr.num_sge = 0; 2895 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index); 2896 wr.send_flags = IB_SEND_SIGNALED; 2897 while (ch->state == CH_LIVE && 2898 ib_post_send(ch->qp, &wr, &bad_wr) != 0) { 2899 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]", 2900 ioctx->ioctx.index); 2901 msleep(1000); 2902 } 2903 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) { 2904 printk(KERN_INFO "Waiting until RDMA abort finished [%d]", 2905 ioctx->ioctx.index); 2906 msleep(1000); 2907 } 2908 } 2909 out: 2910 if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) 2911 atomic_add(n_rdma, &ch->sq_wr_avail); 2912 return ret; 2913 } 2914 2915 /** 2916 * srpt_xfer_data() - Start data transfer from initiator to target. 2917 */ 2918 static int srpt_xfer_data(struct srpt_rdma_ch *ch, 2919 struct srpt_send_ioctx *ioctx) 2920 { 2921 int ret; 2922 2923 ret = srpt_map_sg_to_ib_sge(ch, ioctx); 2924 if (ret) { 2925 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret); 2926 goto out; 2927 } 2928 2929 ret = srpt_perform_rdmas(ch, ioctx); 2930 if (ret) { 2931 if (ret == -EAGAIN || ret == -ENOMEM) 2932 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n", 2933 __func__, __LINE__, ret); 2934 else 2935 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n", 2936 __func__, __LINE__, ret); 2937 goto out_unmap; 2938 } 2939 2940 out: 2941 return ret; 2942 out_unmap: 2943 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2944 goto out; 2945 } 2946 2947 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2948 { 2949 struct srpt_send_ioctx *ioctx; 2950 2951 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2952 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2953 } 2954 2955 /* 2956 * srpt_write_pending() - Start data transfer from initiator to target (write). 2957 */ 2958 static int srpt_write_pending(struct se_cmd *se_cmd) 2959 { 2960 struct srpt_rdma_ch *ch; 2961 struct srpt_send_ioctx *ioctx; 2962 enum srpt_command_state new_state; 2963 enum rdma_ch_state ch_state; 2964 int ret; 2965 2966 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2967 2968 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2969 WARN_ON(new_state == SRPT_STATE_DONE); 2970 2971 ch = ioctx->ch; 2972 BUG_ON(!ch); 2973 2974 ch_state = srpt_get_ch_state(ch); 2975 switch (ch_state) { 2976 case CH_CONNECTING: 2977 WARN(true, "unexpected channel state %d\n", ch_state); 2978 ret = -EINVAL; 2979 goto out; 2980 case CH_LIVE: 2981 break; 2982 case CH_DISCONNECTING: 2983 case CH_DRAINING: 2984 case CH_RELEASING: 2985 pr_debug("cmd with tag %lld: channel disconnecting\n", 2986 ioctx->tag); 2987 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2988 ret = -EINVAL; 2989 goto out; 2990 } 2991 ret = srpt_xfer_data(ch, ioctx); 2992 2993 out: 2994 return ret; 2995 } 2996 2997 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2998 { 2999 switch (tcm_mgmt_status) { 3000 case TMR_FUNCTION_COMPLETE: 3001 return SRP_TSK_MGMT_SUCCESS; 3002 case TMR_FUNCTION_REJECTED: 3003 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 3004 } 3005 return SRP_TSK_MGMT_FAILED; 3006 } 3007 3008 /** 3009 * srpt_queue_response() - Transmits the response to a SCSI command. 3010 * 3011 * Callback function called by the TCM core. Must not block since it can be 3012 * invoked on the context of the IB completion handler. 3013 */ 3014 static int srpt_queue_response(struct se_cmd *cmd) 3015 { 3016 struct srpt_rdma_ch *ch; 3017 struct srpt_send_ioctx *ioctx; 3018 enum srpt_command_state state; 3019 unsigned long flags; 3020 int ret; 3021 enum dma_data_direction dir; 3022 int resp_len; 3023 u8 srp_tm_status; 3024 3025 ret = 0; 3026 3027 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3028 ch = ioctx->ch; 3029 BUG_ON(!ch); 3030 3031 spin_lock_irqsave(&ioctx->spinlock, flags); 3032 state = ioctx->state; 3033 switch (state) { 3034 case SRPT_STATE_NEW: 3035 case SRPT_STATE_DATA_IN: 3036 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 3037 break; 3038 case SRPT_STATE_MGMT: 3039 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 3040 break; 3041 default: 3042 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 3043 ch, ioctx->ioctx.index, ioctx->state); 3044 break; 3045 } 3046 spin_unlock_irqrestore(&ioctx->spinlock, flags); 3047 3048 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 3049 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 3050 atomic_inc(&ch->req_lim_delta); 3051 srpt_abort_cmd(ioctx); 3052 goto out; 3053 } 3054 3055 dir = ioctx->cmd.data_direction; 3056 3057 /* For read commands, transfer the data to the initiator. */ 3058 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && 3059 !ioctx->queue_status_only) { 3060 ret = srpt_xfer_data(ch, ioctx); 3061 if (ret) { 3062 printk(KERN_ERR "xfer_data failed for tag %llu\n", 3063 ioctx->tag); 3064 goto out; 3065 } 3066 } 3067 3068 if (state != SRPT_STATE_MGMT) 3069 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag, 3070 cmd->scsi_status); 3071 else { 3072 srp_tm_status 3073 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 3074 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 3075 ioctx->tag); 3076 } 3077 ret = srpt_post_send(ch, ioctx, resp_len); 3078 if (ret) { 3079 printk(KERN_ERR "sending cmd response failed for tag %llu\n", 3080 ioctx->tag); 3081 srpt_unmap_sg_to_ib_sge(ch, ioctx); 3082 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 3083 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 3084 } 3085 3086 out: 3087 return ret; 3088 } 3089 3090 static int srpt_queue_status(struct se_cmd *cmd) 3091 { 3092 struct srpt_send_ioctx *ioctx; 3093 3094 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3095 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 3096 if (cmd->se_cmd_flags & 3097 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 3098 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 3099 ioctx->queue_status_only = true; 3100 return srpt_queue_response(cmd); 3101 } 3102 3103 static void srpt_refresh_port_work(struct work_struct *work) 3104 { 3105 struct srpt_port *sport = container_of(work, struct srpt_port, work); 3106 3107 srpt_refresh_port(sport); 3108 } 3109 3110 static int srpt_ch_list_empty(struct srpt_device *sdev) 3111 { 3112 int res; 3113 3114 spin_lock_irq(&sdev->spinlock); 3115 res = list_empty(&sdev->rch_list); 3116 spin_unlock_irq(&sdev->spinlock); 3117 3118 return res; 3119 } 3120 3121 /** 3122 * srpt_release_sdev() - Free the channel resources associated with a target. 3123 */ 3124 static int srpt_release_sdev(struct srpt_device *sdev) 3125 { 3126 struct srpt_rdma_ch *ch, *tmp_ch; 3127 int res; 3128 3129 WARN_ON_ONCE(irqs_disabled()); 3130 3131 BUG_ON(!sdev); 3132 3133 spin_lock_irq(&sdev->spinlock); 3134 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) 3135 __srpt_close_ch(ch); 3136 spin_unlock_irq(&sdev->spinlock); 3137 3138 res = wait_event_interruptible(sdev->ch_releaseQ, 3139 srpt_ch_list_empty(sdev)); 3140 if (res) 3141 printk(KERN_ERR "%s: interrupted.\n", __func__); 3142 3143 return 0; 3144 } 3145 3146 static struct srpt_port *__srpt_lookup_port(const char *name) 3147 { 3148 struct ib_device *dev; 3149 struct srpt_device *sdev; 3150 struct srpt_port *sport; 3151 int i; 3152 3153 list_for_each_entry(sdev, &srpt_dev_list, list) { 3154 dev = sdev->device; 3155 if (!dev) 3156 continue; 3157 3158 for (i = 0; i < dev->phys_port_cnt; i++) { 3159 sport = &sdev->port[i]; 3160 3161 if (!strcmp(sport->port_guid, name)) 3162 return sport; 3163 } 3164 } 3165 3166 return NULL; 3167 } 3168 3169 static struct srpt_port *srpt_lookup_port(const char *name) 3170 { 3171 struct srpt_port *sport; 3172 3173 spin_lock(&srpt_dev_lock); 3174 sport = __srpt_lookup_port(name); 3175 spin_unlock(&srpt_dev_lock); 3176 3177 return sport; 3178 } 3179 3180 /** 3181 * srpt_add_one() - Infiniband device addition callback function. 3182 */ 3183 static void srpt_add_one(struct ib_device *device) 3184 { 3185 struct srpt_device *sdev; 3186 struct srpt_port *sport; 3187 struct ib_srq_init_attr srq_attr; 3188 int i; 3189 3190 pr_debug("device = %p, device->dma_ops = %p\n", device, 3191 device->dma_ops); 3192 3193 sdev = kzalloc(sizeof *sdev, GFP_KERNEL); 3194 if (!sdev) 3195 goto err; 3196 3197 sdev->device = device; 3198 INIT_LIST_HEAD(&sdev->rch_list); 3199 init_waitqueue_head(&sdev->ch_releaseQ); 3200 spin_lock_init(&sdev->spinlock); 3201 3202 if (ib_query_device(device, &sdev->dev_attr)) 3203 goto free_dev; 3204 3205 sdev->pd = ib_alloc_pd(device); 3206 if (IS_ERR(sdev->pd)) 3207 goto free_dev; 3208 3209 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE); 3210 if (IS_ERR(sdev->mr)) 3211 goto err_pd; 3212 3213 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr); 3214 3215 srq_attr.event_handler = srpt_srq_event; 3216 srq_attr.srq_context = (void *)sdev; 3217 srq_attr.attr.max_wr = sdev->srq_size; 3218 srq_attr.attr.max_sge = 1; 3219 srq_attr.attr.srq_limit = 0; 3220 srq_attr.srq_type = IB_SRQT_BASIC; 3221 3222 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 3223 if (IS_ERR(sdev->srq)) 3224 goto err_mr; 3225 3226 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 3227 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr, 3228 device->name); 3229 3230 if (!srpt_service_guid) 3231 srpt_service_guid = be64_to_cpu(device->node_guid); 3232 3233 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3234 if (IS_ERR(sdev->cm_id)) 3235 goto err_srq; 3236 3237 /* print out target login information */ 3238 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3239 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3240 srpt_service_guid, srpt_service_guid); 3241 3242 /* 3243 * We do not have a consistent service_id (ie. also id_ext of target_id) 3244 * to identify this target. We currently use the guid of the first HCA 3245 * in the system as service_id; therefore, the target_id will change 3246 * if this HCA is gone bad and replaced by different HCA 3247 */ 3248 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL)) 3249 goto err_cm; 3250 3251 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3252 srpt_event_handler); 3253 if (ib_register_event_handler(&sdev->event_handler)) 3254 goto err_cm; 3255 3256 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3257 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3258 sizeof(*sdev->ioctx_ring[0]), 3259 srp_max_req_size, DMA_FROM_DEVICE); 3260 if (!sdev->ioctx_ring) 3261 goto err_event; 3262 3263 for (i = 0; i < sdev->srq_size; ++i) 3264 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 3265 3266 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 3267 3268 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3269 sport = &sdev->port[i - 1]; 3270 sport->sdev = sdev; 3271 sport->port = i; 3272 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3273 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3274 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3275 INIT_WORK(&sport->work, srpt_refresh_port_work); 3276 INIT_LIST_HEAD(&sport->port_acl_list); 3277 spin_lock_init(&sport->port_acl_lock); 3278 3279 if (srpt_refresh_port(sport)) { 3280 printk(KERN_ERR "MAD registration failed for %s-%d.\n", 3281 srpt_sdev_name(sdev), i); 3282 goto err_ring; 3283 } 3284 snprintf(sport->port_guid, sizeof(sport->port_guid), 3285 "0x%016llx%016llx", 3286 be64_to_cpu(sport->gid.global.subnet_prefix), 3287 be64_to_cpu(sport->gid.global.interface_id)); 3288 } 3289 3290 spin_lock(&srpt_dev_lock); 3291 list_add_tail(&sdev->list, &srpt_dev_list); 3292 spin_unlock(&srpt_dev_lock); 3293 3294 out: 3295 ib_set_client_data(device, &srpt_client, sdev); 3296 pr_debug("added %s.\n", device->name); 3297 return; 3298 3299 err_ring: 3300 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3301 sdev->srq_size, srp_max_req_size, 3302 DMA_FROM_DEVICE); 3303 err_event: 3304 ib_unregister_event_handler(&sdev->event_handler); 3305 err_cm: 3306 ib_destroy_cm_id(sdev->cm_id); 3307 err_srq: 3308 ib_destroy_srq(sdev->srq); 3309 err_mr: 3310 ib_dereg_mr(sdev->mr); 3311 err_pd: 3312 ib_dealloc_pd(sdev->pd); 3313 free_dev: 3314 kfree(sdev); 3315 err: 3316 sdev = NULL; 3317 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name); 3318 goto out; 3319 } 3320 3321 /** 3322 * srpt_remove_one() - InfiniBand device removal callback function. 3323 */ 3324 static void srpt_remove_one(struct ib_device *device) 3325 { 3326 struct srpt_device *sdev; 3327 int i; 3328 3329 sdev = ib_get_client_data(device, &srpt_client); 3330 if (!sdev) { 3331 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__, 3332 device->name); 3333 return; 3334 } 3335 3336 srpt_unregister_mad_agent(sdev); 3337 3338 ib_unregister_event_handler(&sdev->event_handler); 3339 3340 /* Cancel any work queued by the just unregistered IB event handler. */ 3341 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3342 cancel_work_sync(&sdev->port[i].work); 3343 3344 ib_destroy_cm_id(sdev->cm_id); 3345 3346 /* 3347 * Unregistering a target must happen after destroying sdev->cm_id 3348 * such that no new SRP_LOGIN_REQ information units can arrive while 3349 * destroying the target. 3350 */ 3351 spin_lock(&srpt_dev_lock); 3352 list_del(&sdev->list); 3353 spin_unlock(&srpt_dev_lock); 3354 srpt_release_sdev(sdev); 3355 3356 ib_destroy_srq(sdev->srq); 3357 ib_dereg_mr(sdev->mr); 3358 ib_dealloc_pd(sdev->pd); 3359 3360 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3361 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 3362 sdev->ioctx_ring = NULL; 3363 kfree(sdev); 3364 } 3365 3366 static struct ib_client srpt_client = { 3367 .name = DRV_NAME, 3368 .add = srpt_add_one, 3369 .remove = srpt_remove_one 3370 }; 3371 3372 static int srpt_check_true(struct se_portal_group *se_tpg) 3373 { 3374 return 1; 3375 } 3376 3377 static int srpt_check_false(struct se_portal_group *se_tpg) 3378 { 3379 return 0; 3380 } 3381 3382 static char *srpt_get_fabric_name(void) 3383 { 3384 return "srpt"; 3385 } 3386 3387 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg) 3388 { 3389 return SCSI_TRANSPORTID_PROTOCOLID_SRP; 3390 } 3391 3392 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3393 { 3394 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3395 3396 return sport->port_guid; 3397 } 3398 3399 static u16 srpt_get_tag(struct se_portal_group *tpg) 3400 { 3401 return 1; 3402 } 3403 3404 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg) 3405 { 3406 return 1; 3407 } 3408 3409 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg, 3410 struct se_node_acl *se_nacl, 3411 struct t10_pr_registration *pr_reg, 3412 int *format_code, unsigned char *buf) 3413 { 3414 struct srpt_node_acl *nacl; 3415 struct spc_rdma_transport_id *tr_id; 3416 3417 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3418 tr_id = (void *)buf; 3419 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP; 3420 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id)); 3421 return sizeof(*tr_id); 3422 } 3423 3424 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg, 3425 struct se_node_acl *se_nacl, 3426 struct t10_pr_registration *pr_reg, 3427 int *format_code) 3428 { 3429 *format_code = 0; 3430 return sizeof(struct spc_rdma_transport_id); 3431 } 3432 3433 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg, 3434 const char *buf, u32 *out_tid_len, 3435 char **port_nexus_ptr) 3436 { 3437 struct spc_rdma_transport_id *tr_id; 3438 3439 *port_nexus_ptr = NULL; 3440 *out_tid_len = sizeof(struct spc_rdma_transport_id); 3441 tr_id = (void *)buf; 3442 return (char *)tr_id->i_port_id; 3443 } 3444 3445 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg) 3446 { 3447 struct srpt_node_acl *nacl; 3448 3449 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL); 3450 if (!nacl) { 3451 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n"); 3452 return NULL; 3453 } 3454 3455 return &nacl->nacl; 3456 } 3457 3458 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg, 3459 struct se_node_acl *se_nacl) 3460 { 3461 struct srpt_node_acl *nacl; 3462 3463 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3464 kfree(nacl); 3465 } 3466 3467 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3468 { 3469 return 1; 3470 } 3471 3472 static void srpt_release_cmd(struct se_cmd *se_cmd) 3473 { 3474 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3475 struct srpt_send_ioctx, cmd); 3476 struct srpt_rdma_ch *ch = ioctx->ch; 3477 unsigned long flags; 3478 3479 WARN_ON(ioctx->state != SRPT_STATE_DONE); 3480 WARN_ON(ioctx->mapped_sg_count != 0); 3481 3482 if (ioctx->n_rbuf > 1) { 3483 kfree(ioctx->rbufs); 3484 ioctx->rbufs = NULL; 3485 ioctx->n_rbuf = 0; 3486 } 3487 3488 spin_lock_irqsave(&ch->spinlock, flags); 3489 list_add(&ioctx->free_list, &ch->free_list); 3490 spin_unlock_irqrestore(&ch->spinlock, flags); 3491 } 3492 3493 /** 3494 * srpt_close_session() - Forcibly close a session. 3495 * 3496 * Callback function invoked by the TCM core to clean up sessions associated 3497 * with a node ACL when the user invokes 3498 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3499 */ 3500 static void srpt_close_session(struct se_session *se_sess) 3501 { 3502 DECLARE_COMPLETION_ONSTACK(release_done); 3503 struct srpt_rdma_ch *ch; 3504 struct srpt_device *sdev; 3505 int res; 3506 3507 ch = se_sess->fabric_sess_ptr; 3508 WARN_ON(ch->sess != se_sess); 3509 3510 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch)); 3511 3512 sdev = ch->sport->sdev; 3513 spin_lock_irq(&sdev->spinlock); 3514 BUG_ON(ch->release_done); 3515 ch->release_done = &release_done; 3516 __srpt_close_ch(ch); 3517 spin_unlock_irq(&sdev->spinlock); 3518 3519 res = wait_for_completion_timeout(&release_done, 60 * HZ); 3520 WARN_ON(res <= 0); 3521 } 3522 3523 /** 3524 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 3525 * 3526 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3527 * This object represents an arbitrary integer used to uniquely identify a 3528 * particular attached remote initiator port to a particular SCSI target port 3529 * within a particular SCSI target device within a particular SCSI instance. 3530 */ 3531 static u32 srpt_sess_get_index(struct se_session *se_sess) 3532 { 3533 return 0; 3534 } 3535 3536 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3537 { 3538 } 3539 3540 static u32 srpt_get_task_tag(struct se_cmd *se_cmd) 3541 { 3542 struct srpt_send_ioctx *ioctx; 3543 3544 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3545 return ioctx->tag; 3546 } 3547 3548 /* Note: only used from inside debug printk's by the TCM core. */ 3549 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3550 { 3551 struct srpt_send_ioctx *ioctx; 3552 3553 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3554 return srpt_get_cmd_state(ioctx); 3555 } 3556 3557 /** 3558 * srpt_parse_i_port_id() - Parse an initiator port ID. 3559 * @name: ASCII representation of a 128-bit initiator port ID. 3560 * @i_port_id: Binary 128-bit port ID. 3561 */ 3562 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3563 { 3564 const char *p; 3565 unsigned len, count, leading_zero_bytes; 3566 int ret, rc; 3567 3568 p = name; 3569 if (strnicmp(p, "0x", 2) == 0) 3570 p += 2; 3571 ret = -EINVAL; 3572 len = strlen(p); 3573 if (len % 2) 3574 goto out; 3575 count = min(len / 2, 16U); 3576 leading_zero_bytes = 16 - count; 3577 memset(i_port_id, 0, leading_zero_bytes); 3578 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 3579 if (rc < 0) 3580 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 3581 ret = 0; 3582 out: 3583 return ret; 3584 } 3585 3586 /* 3587 * configfs callback function invoked for 3588 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3589 */ 3590 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg, 3591 struct config_group *group, 3592 const char *name) 3593 { 3594 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3595 struct se_node_acl *se_nacl, *se_nacl_new; 3596 struct srpt_node_acl *nacl; 3597 int ret = 0; 3598 u32 nexus_depth = 1; 3599 u8 i_port_id[16]; 3600 3601 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 3602 printk(KERN_ERR "invalid initiator port ID %s\n", name); 3603 ret = -EINVAL; 3604 goto err; 3605 } 3606 3607 se_nacl_new = srpt_alloc_fabric_acl(tpg); 3608 if (!se_nacl_new) { 3609 ret = -ENOMEM; 3610 goto err; 3611 } 3612 /* 3613 * nacl_new may be released by core_tpg_add_initiator_node_acl() 3614 * when converting a node ACL from demo mode to explict 3615 */ 3616 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name, 3617 nexus_depth); 3618 if (IS_ERR(se_nacl)) { 3619 ret = PTR_ERR(se_nacl); 3620 goto err; 3621 } 3622 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */ 3623 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3624 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16); 3625 nacl->sport = sport; 3626 3627 spin_lock_irq(&sport->port_acl_lock); 3628 list_add_tail(&nacl->list, &sport->port_acl_list); 3629 spin_unlock_irq(&sport->port_acl_lock); 3630 3631 return se_nacl; 3632 err: 3633 return ERR_PTR(ret); 3634 } 3635 3636 /* 3637 * configfs callback function invoked for 3638 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3639 */ 3640 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl) 3641 { 3642 struct srpt_node_acl *nacl; 3643 struct srpt_device *sdev; 3644 struct srpt_port *sport; 3645 3646 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3647 sport = nacl->sport; 3648 sdev = sport->sdev; 3649 spin_lock_irq(&sport->port_acl_lock); 3650 list_del(&nacl->list); 3651 spin_unlock_irq(&sport->port_acl_lock); 3652 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1); 3653 srpt_release_fabric_acl(NULL, se_nacl); 3654 } 3655 3656 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size( 3657 struct se_portal_group *se_tpg, 3658 char *page) 3659 { 3660 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3661 3662 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3663 } 3664 3665 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size( 3666 struct se_portal_group *se_tpg, 3667 const char *page, 3668 size_t count) 3669 { 3670 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3671 unsigned long val; 3672 int ret; 3673 3674 ret = strict_strtoul(page, 0, &val); 3675 if (ret < 0) { 3676 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3677 return -EINVAL; 3678 } 3679 if (val > MAX_SRPT_RDMA_SIZE) { 3680 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3681 MAX_SRPT_RDMA_SIZE); 3682 return -EINVAL; 3683 } 3684 if (val < DEFAULT_MAX_RDMA_SIZE) { 3685 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3686 val, DEFAULT_MAX_RDMA_SIZE); 3687 return -EINVAL; 3688 } 3689 sport->port_attrib.srp_max_rdma_size = val; 3690 3691 return count; 3692 } 3693 3694 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR); 3695 3696 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size( 3697 struct se_portal_group *se_tpg, 3698 char *page) 3699 { 3700 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3701 3702 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3703 } 3704 3705 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size( 3706 struct se_portal_group *se_tpg, 3707 const char *page, 3708 size_t count) 3709 { 3710 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3711 unsigned long val; 3712 int ret; 3713 3714 ret = strict_strtoul(page, 0, &val); 3715 if (ret < 0) { 3716 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3717 return -EINVAL; 3718 } 3719 if (val > MAX_SRPT_RSP_SIZE) { 3720 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3721 MAX_SRPT_RSP_SIZE); 3722 return -EINVAL; 3723 } 3724 if (val < MIN_MAX_RSP_SIZE) { 3725 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3726 MIN_MAX_RSP_SIZE); 3727 return -EINVAL; 3728 } 3729 sport->port_attrib.srp_max_rsp_size = val; 3730 3731 return count; 3732 } 3733 3734 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR); 3735 3736 static ssize_t srpt_tpg_attrib_show_srp_sq_size( 3737 struct se_portal_group *se_tpg, 3738 char *page) 3739 { 3740 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3741 3742 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3743 } 3744 3745 static ssize_t srpt_tpg_attrib_store_srp_sq_size( 3746 struct se_portal_group *se_tpg, 3747 const char *page, 3748 size_t count) 3749 { 3750 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3751 unsigned long val; 3752 int ret; 3753 3754 ret = strict_strtoul(page, 0, &val); 3755 if (ret < 0) { 3756 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3757 return -EINVAL; 3758 } 3759 if (val > MAX_SRPT_SRQ_SIZE) { 3760 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3761 MAX_SRPT_SRQ_SIZE); 3762 return -EINVAL; 3763 } 3764 if (val < MIN_SRPT_SRQ_SIZE) { 3765 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3766 MIN_SRPT_SRQ_SIZE); 3767 return -EINVAL; 3768 } 3769 sport->port_attrib.srp_sq_size = val; 3770 3771 return count; 3772 } 3773 3774 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR); 3775 3776 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3777 &srpt_tpg_attrib_srp_max_rdma_size.attr, 3778 &srpt_tpg_attrib_srp_max_rsp_size.attr, 3779 &srpt_tpg_attrib_srp_sq_size.attr, 3780 NULL, 3781 }; 3782 3783 static ssize_t srpt_tpg_show_enable( 3784 struct se_portal_group *se_tpg, 3785 char *page) 3786 { 3787 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3788 3789 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3790 } 3791 3792 static ssize_t srpt_tpg_store_enable( 3793 struct se_portal_group *se_tpg, 3794 const char *page, 3795 size_t count) 3796 { 3797 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3798 unsigned long tmp; 3799 int ret; 3800 3801 ret = strict_strtoul(page, 0, &tmp); 3802 if (ret < 0) { 3803 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n"); 3804 return -EINVAL; 3805 } 3806 3807 if ((tmp != 0) && (tmp != 1)) { 3808 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3809 return -EINVAL; 3810 } 3811 if (tmp == 1) 3812 sport->enabled = true; 3813 else 3814 sport->enabled = false; 3815 3816 return count; 3817 } 3818 3819 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR); 3820 3821 static struct configfs_attribute *srpt_tpg_attrs[] = { 3822 &srpt_tpg_enable.attr, 3823 NULL, 3824 }; 3825 3826 /** 3827 * configfs callback invoked for 3828 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3829 */ 3830 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3831 struct config_group *group, 3832 const char *name) 3833 { 3834 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3835 int res; 3836 3837 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 3838 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn, 3839 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL); 3840 if (res) 3841 return ERR_PTR(res); 3842 3843 return &sport->port_tpg_1; 3844 } 3845 3846 /** 3847 * configfs callback invoked for 3848 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3849 */ 3850 static void srpt_drop_tpg(struct se_portal_group *tpg) 3851 { 3852 struct srpt_port *sport = container_of(tpg, 3853 struct srpt_port, port_tpg_1); 3854 3855 sport->enabled = false; 3856 core_tpg_deregister(&sport->port_tpg_1); 3857 } 3858 3859 /** 3860 * configfs callback invoked for 3861 * mkdir /sys/kernel/config/target/$driver/$port 3862 */ 3863 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3864 struct config_group *group, 3865 const char *name) 3866 { 3867 struct srpt_port *sport; 3868 int ret; 3869 3870 sport = srpt_lookup_port(name); 3871 pr_debug("make_tport(%s)\n", name); 3872 ret = -EINVAL; 3873 if (!sport) 3874 goto err; 3875 3876 return &sport->port_wwn; 3877 3878 err: 3879 return ERR_PTR(ret); 3880 } 3881 3882 /** 3883 * configfs callback invoked for 3884 * rmdir /sys/kernel/config/target/$driver/$port 3885 */ 3886 static void srpt_drop_tport(struct se_wwn *wwn) 3887 { 3888 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3889 3890 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3891 } 3892 3893 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf, 3894 char *buf) 3895 { 3896 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3897 } 3898 3899 TF_WWN_ATTR_RO(srpt, version); 3900 3901 static struct configfs_attribute *srpt_wwn_attrs[] = { 3902 &srpt_wwn_version.attr, 3903 NULL, 3904 }; 3905 3906 static struct target_core_fabric_ops srpt_template = { 3907 .get_fabric_name = srpt_get_fabric_name, 3908 .get_fabric_proto_ident = srpt_get_fabric_proto_ident, 3909 .tpg_get_wwn = srpt_get_fabric_wwn, 3910 .tpg_get_tag = srpt_get_tag, 3911 .tpg_get_default_depth = srpt_get_default_depth, 3912 .tpg_get_pr_transport_id = srpt_get_pr_transport_id, 3913 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len, 3914 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id, 3915 .tpg_check_demo_mode = srpt_check_false, 3916 .tpg_check_demo_mode_cache = srpt_check_true, 3917 .tpg_check_demo_mode_write_protect = srpt_check_true, 3918 .tpg_check_prod_mode_write_protect = srpt_check_false, 3919 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl, 3920 .tpg_release_fabric_acl = srpt_release_fabric_acl, 3921 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3922 .release_cmd = srpt_release_cmd, 3923 .check_stop_free = srpt_check_stop_free, 3924 .shutdown_session = srpt_shutdown_session, 3925 .close_session = srpt_close_session, 3926 .sess_get_index = srpt_sess_get_index, 3927 .sess_get_initiator_sid = NULL, 3928 .write_pending = srpt_write_pending, 3929 .write_pending_status = srpt_write_pending_status, 3930 .set_default_node_attributes = srpt_set_default_node_attrs, 3931 .get_task_tag = srpt_get_task_tag, 3932 .get_cmd_state = srpt_get_tcm_cmd_state, 3933 .queue_data_in = srpt_queue_response, 3934 .queue_status = srpt_queue_status, 3935 .queue_tm_rsp = srpt_queue_response, 3936 /* 3937 * Setup function pointers for generic logic in 3938 * target_core_fabric_configfs.c 3939 */ 3940 .fabric_make_wwn = srpt_make_tport, 3941 .fabric_drop_wwn = srpt_drop_tport, 3942 .fabric_make_tpg = srpt_make_tpg, 3943 .fabric_drop_tpg = srpt_drop_tpg, 3944 .fabric_post_link = NULL, 3945 .fabric_pre_unlink = NULL, 3946 .fabric_make_np = NULL, 3947 .fabric_drop_np = NULL, 3948 .fabric_make_nodeacl = srpt_make_nodeacl, 3949 .fabric_drop_nodeacl = srpt_drop_nodeacl, 3950 }; 3951 3952 /** 3953 * srpt_init_module() - Kernel module initialization. 3954 * 3955 * Note: Since ib_register_client() registers callback functions, and since at 3956 * least one of these callback functions (srpt_add_one()) calls target core 3957 * functions, this driver must be registered with the target core before 3958 * ib_register_client() is called. 3959 */ 3960 static int __init srpt_init_module(void) 3961 { 3962 int ret; 3963 3964 ret = -EINVAL; 3965 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3966 printk(KERN_ERR "invalid value %d for kernel module parameter" 3967 " srp_max_req_size -- must be at least %d.\n", 3968 srp_max_req_size, MIN_MAX_REQ_SIZE); 3969 goto out; 3970 } 3971 3972 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3973 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3974 printk(KERN_ERR "invalid value %d for kernel module parameter" 3975 " srpt_srq_size -- must be in the range [%d..%d].\n", 3976 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3977 goto out; 3978 } 3979 3980 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt"); 3981 if (IS_ERR(srpt_target)) { 3982 printk(KERN_ERR "couldn't register\n"); 3983 ret = PTR_ERR(srpt_target); 3984 goto out; 3985 } 3986 3987 srpt_target->tf_ops = srpt_template; 3988 3989 /* 3990 * Set up default attribute lists. 3991 */ 3992 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs; 3993 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs; 3994 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs; 3995 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL; 3996 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL; 3997 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL; 3998 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL; 3999 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL; 4000 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL; 4001 4002 ret = target_fabric_configfs_register(srpt_target); 4003 if (ret < 0) { 4004 printk(KERN_ERR "couldn't register\n"); 4005 goto out_free_target; 4006 } 4007 4008 ret = ib_register_client(&srpt_client); 4009 if (ret) { 4010 printk(KERN_ERR "couldn't register IB client\n"); 4011 goto out_unregister_target; 4012 } 4013 4014 return 0; 4015 4016 out_unregister_target: 4017 target_fabric_configfs_deregister(srpt_target); 4018 srpt_target = NULL; 4019 out_free_target: 4020 if (srpt_target) 4021 target_fabric_configfs_free(srpt_target); 4022 out: 4023 return ret; 4024 } 4025 4026 static void __exit srpt_cleanup_module(void) 4027 { 4028 ib_unregister_client(&srpt_client); 4029 target_fabric_configfs_deregister(srpt_target); 4030 srpt_target = NULL; 4031 } 4032 4033 module_init(srpt_init_module); 4034 module_exit(srpt_cleanup_module); 4035