1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <linux/inet.h> 45 #include <rdma/ib_cache.h> 46 #include <scsi/scsi_proto.h> 47 #include <scsi/scsi_tcq.h> 48 #include <target/target_core_base.h> 49 #include <target/target_core_fabric.h> 50 #include "ib_srpt.h" 51 52 /* Name of this kernel module. */ 53 #define DRV_NAME "ib_srpt" 54 55 #define SRPT_ID_STRING "Linux SRP target" 56 57 #undef pr_fmt 58 #define pr_fmt(fmt) DRV_NAME " " fmt 59 60 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 61 MODULE_DESCRIPTION("SCSI RDMA Protocol target driver"); 62 MODULE_LICENSE("Dual BSD/GPL"); 63 64 /* 65 * Global Variables 66 */ 67 68 static u64 srpt_service_guid; 69 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 70 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 71 72 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 73 module_param(srp_max_req_size, int, 0444); 74 MODULE_PARM_DESC(srp_max_req_size, 75 "Maximum size of SRP request messages in bytes."); 76 77 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 78 module_param(srpt_srq_size, int, 0444); 79 MODULE_PARM_DESC(srpt_srq_size, 80 "Shared receive queue (SRQ) size."); 81 82 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp) 83 { 84 return sprintf(buffer, "0x%016llx\n", *(u64 *)kp->arg); 85 } 86 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 87 0444); 88 MODULE_PARM_DESC(srpt_service_guid, 89 "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA."); 90 91 static struct ib_client srpt_client; 92 /* Protects both rdma_cm_port and rdma_cm_id. */ 93 static DEFINE_MUTEX(rdma_cm_mutex); 94 /* Port number RDMA/CM will bind to. */ 95 static u16 rdma_cm_port; 96 static struct rdma_cm_id *rdma_cm_id; 97 static void srpt_release_cmd(struct se_cmd *se_cmd); 98 static void srpt_free_ch(struct kref *kref); 99 static int srpt_queue_status(struct se_cmd *cmd); 100 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc); 101 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc); 102 static void srpt_process_wait_list(struct srpt_rdma_ch *ch); 103 104 /* 105 * The only allowed channel state changes are those that change the channel 106 * state into a state with a higher numerical value. Hence the new > prev test. 107 */ 108 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new) 109 { 110 unsigned long flags; 111 enum rdma_ch_state prev; 112 bool changed = false; 113 114 spin_lock_irqsave(&ch->spinlock, flags); 115 prev = ch->state; 116 if (new > prev) { 117 ch->state = new; 118 changed = true; 119 } 120 spin_unlock_irqrestore(&ch->spinlock, flags); 121 122 return changed; 123 } 124 125 /** 126 * srpt_event_handler - asynchronous IB event callback function 127 * @handler: IB event handler registered by ib_register_event_handler(). 128 * @event: Description of the event that occurred. 129 * 130 * Callback function called by the InfiniBand core when an asynchronous IB 131 * event occurs. This callback may occur in interrupt context. See also 132 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 133 * Architecture Specification. 134 */ 135 static void srpt_event_handler(struct ib_event_handler *handler, 136 struct ib_event *event) 137 { 138 struct srpt_device *sdev = 139 container_of(handler, struct srpt_device, event_handler); 140 struct srpt_port *sport; 141 u8 port_num; 142 143 pr_debug("ASYNC event= %d on device= %s\n", event->event, 144 dev_name(&sdev->device->dev)); 145 146 switch (event->event) { 147 case IB_EVENT_PORT_ERR: 148 port_num = event->element.port_num - 1; 149 if (port_num < sdev->device->phys_port_cnt) { 150 sport = &sdev->port[port_num]; 151 sport->lid = 0; 152 sport->sm_lid = 0; 153 } else { 154 WARN(true, "event %d: port_num %d out of range 1..%d\n", 155 event->event, port_num + 1, 156 sdev->device->phys_port_cnt); 157 } 158 break; 159 case IB_EVENT_PORT_ACTIVE: 160 case IB_EVENT_LID_CHANGE: 161 case IB_EVENT_PKEY_CHANGE: 162 case IB_EVENT_SM_CHANGE: 163 case IB_EVENT_CLIENT_REREGISTER: 164 case IB_EVENT_GID_CHANGE: 165 /* Refresh port data asynchronously. */ 166 port_num = event->element.port_num - 1; 167 if (port_num < sdev->device->phys_port_cnt) { 168 sport = &sdev->port[port_num]; 169 if (!sport->lid && !sport->sm_lid) 170 schedule_work(&sport->work); 171 } else { 172 WARN(true, "event %d: port_num %d out of range 1..%d\n", 173 event->event, port_num + 1, 174 sdev->device->phys_port_cnt); 175 } 176 break; 177 default: 178 pr_err("received unrecognized IB event %d\n", event->event); 179 break; 180 } 181 } 182 183 /** 184 * srpt_srq_event - SRQ event callback function 185 * @event: Description of the event that occurred. 186 * @ctx: Context pointer specified at SRQ creation time. 187 */ 188 static void srpt_srq_event(struct ib_event *event, void *ctx) 189 { 190 pr_debug("SRQ event %d\n", event->event); 191 } 192 193 static const char *get_ch_state_name(enum rdma_ch_state s) 194 { 195 switch (s) { 196 case CH_CONNECTING: 197 return "connecting"; 198 case CH_LIVE: 199 return "live"; 200 case CH_DISCONNECTING: 201 return "disconnecting"; 202 case CH_DRAINING: 203 return "draining"; 204 case CH_DISCONNECTED: 205 return "disconnected"; 206 } 207 return "???"; 208 } 209 210 /** 211 * srpt_qp_event - QP event callback function 212 * @event: Description of the event that occurred. 213 * @ch: SRPT RDMA channel. 214 */ 215 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 216 { 217 pr_debug("QP event %d on ch=%p sess_name=%s-%d state=%s\n", 218 event->event, ch, ch->sess_name, ch->qp->qp_num, 219 get_ch_state_name(ch->state)); 220 221 switch (event->event) { 222 case IB_EVENT_COMM_EST: 223 if (ch->using_rdma_cm) 224 rdma_notify(ch->rdma_cm.cm_id, event->event); 225 else 226 ib_cm_notify(ch->ib_cm.cm_id, event->event); 227 break; 228 case IB_EVENT_QP_LAST_WQE_REACHED: 229 pr_debug("%s-%d, state %s: received Last WQE event.\n", 230 ch->sess_name, ch->qp->qp_num, 231 get_ch_state_name(ch->state)); 232 break; 233 default: 234 pr_err("received unrecognized IB QP event %d\n", event->event); 235 break; 236 } 237 } 238 239 /** 240 * srpt_set_ioc - initialize a IOUnitInfo structure 241 * @c_list: controller list. 242 * @slot: one-based slot number. 243 * @value: four-bit value. 244 * 245 * Copies the lowest four bits of value in element slot of the array of four 246 * bit elements called c_list (controller list). The index slot is one-based. 247 */ 248 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 249 { 250 u16 id; 251 u8 tmp; 252 253 id = (slot - 1) / 2; 254 if (slot & 0x1) { 255 tmp = c_list[id] & 0xf; 256 c_list[id] = (value << 4) | tmp; 257 } else { 258 tmp = c_list[id] & 0xf0; 259 c_list[id] = (value & 0xf) | tmp; 260 } 261 } 262 263 /** 264 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram 265 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO. 266 * 267 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 268 * Specification. 269 */ 270 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 271 { 272 struct ib_class_port_info *cif; 273 274 cif = (struct ib_class_port_info *)mad->data; 275 memset(cif, 0, sizeof(*cif)); 276 cif->base_version = 1; 277 cif->class_version = 1; 278 279 ib_set_cpi_resp_time(cif, 20); 280 mad->mad_hdr.status = 0; 281 } 282 283 /** 284 * srpt_get_iou - write IOUnitInfo to a management datagram 285 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO. 286 * 287 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 288 * Specification. See also section B.7, table B.6 in the SRP r16a document. 289 */ 290 static void srpt_get_iou(struct ib_dm_mad *mad) 291 { 292 struct ib_dm_iou_info *ioui; 293 u8 slot; 294 int i; 295 296 ioui = (struct ib_dm_iou_info *)mad->data; 297 ioui->change_id = cpu_to_be16(1); 298 ioui->max_controllers = 16; 299 300 /* set present for slot 1 and empty for the rest */ 301 srpt_set_ioc(ioui->controller_list, 1, 1); 302 for (i = 1, slot = 2; i < 16; i++, slot++) 303 srpt_set_ioc(ioui->controller_list, slot, 0); 304 305 mad->mad_hdr.status = 0; 306 } 307 308 /** 309 * srpt_get_ioc - write IOControllerprofile to a management datagram 310 * @sport: HCA port through which the MAD has been received. 311 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query. 312 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE. 313 * 314 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 315 * Architecture Specification. See also section B.7, table B.7 in the SRP 316 * r16a document. 317 */ 318 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 319 struct ib_dm_mad *mad) 320 { 321 struct srpt_device *sdev = sport->sdev; 322 struct ib_dm_ioc_profile *iocp; 323 int send_queue_depth; 324 325 iocp = (struct ib_dm_ioc_profile *)mad->data; 326 327 if (!slot || slot > 16) { 328 mad->mad_hdr.status 329 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 330 return; 331 } 332 333 if (slot > 2) { 334 mad->mad_hdr.status 335 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 336 return; 337 } 338 339 if (sdev->use_srq) 340 send_queue_depth = sdev->srq_size; 341 else 342 send_queue_depth = min(MAX_SRPT_RQ_SIZE, 343 sdev->device->attrs.max_qp_wr); 344 345 memset(iocp, 0, sizeof(*iocp)); 346 strcpy(iocp->id_string, SRPT_ID_STRING); 347 iocp->guid = cpu_to_be64(srpt_service_guid); 348 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 349 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id); 350 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver); 351 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 352 iocp->subsys_device_id = 0x0; 353 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 354 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); 355 iocp->protocol = cpu_to_be16(SRP_PROTOCOL); 356 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); 357 iocp->send_queue_depth = cpu_to_be16(send_queue_depth); 358 iocp->rdma_read_depth = 4; 359 iocp->send_size = cpu_to_be32(srp_max_req_size); 360 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 361 1U << 24)); 362 iocp->num_svc_entries = 1; 363 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 364 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 365 366 mad->mad_hdr.status = 0; 367 } 368 369 /** 370 * srpt_get_svc_entries - write ServiceEntries to a management datagram 371 * @ioc_guid: I/O controller GUID to use in reply. 372 * @slot: I/O controller number. 373 * @hi: End of the range of service entries to be specified in the reply. 374 * @lo: Start of the range of service entries to be specified in the reply.. 375 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES. 376 * 377 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 378 * Specification. See also section B.7, table B.8 in the SRP r16a document. 379 */ 380 static void srpt_get_svc_entries(u64 ioc_guid, 381 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 382 { 383 struct ib_dm_svc_entries *svc_entries; 384 385 WARN_ON(!ioc_guid); 386 387 if (!slot || slot > 16) { 388 mad->mad_hdr.status 389 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 390 return; 391 } 392 393 if (slot > 2 || lo > hi || hi > 1) { 394 mad->mad_hdr.status 395 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 396 return; 397 } 398 399 svc_entries = (struct ib_dm_svc_entries *)mad->data; 400 memset(svc_entries, 0, sizeof(*svc_entries)); 401 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 402 snprintf(svc_entries->service_entries[0].name, 403 sizeof(svc_entries->service_entries[0].name), 404 "%s%016llx", 405 SRP_SERVICE_NAME_PREFIX, 406 ioc_guid); 407 408 mad->mad_hdr.status = 0; 409 } 410 411 /** 412 * srpt_mgmt_method_get - process a received management datagram 413 * @sp: HCA port through which the MAD has been received. 414 * @rq_mad: received MAD. 415 * @rsp_mad: response MAD. 416 */ 417 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 418 struct ib_dm_mad *rsp_mad) 419 { 420 u16 attr_id; 421 u32 slot; 422 u8 hi, lo; 423 424 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 425 switch (attr_id) { 426 case DM_ATTR_CLASS_PORT_INFO: 427 srpt_get_class_port_info(rsp_mad); 428 break; 429 case DM_ATTR_IOU_INFO: 430 srpt_get_iou(rsp_mad); 431 break; 432 case DM_ATTR_IOC_PROFILE: 433 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 434 srpt_get_ioc(sp, slot, rsp_mad); 435 break; 436 case DM_ATTR_SVC_ENTRIES: 437 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 438 hi = (u8) ((slot >> 8) & 0xff); 439 lo = (u8) (slot & 0xff); 440 slot = (u16) ((slot >> 16) & 0xffff); 441 srpt_get_svc_entries(srpt_service_guid, 442 slot, hi, lo, rsp_mad); 443 break; 444 default: 445 rsp_mad->mad_hdr.status = 446 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 447 break; 448 } 449 } 450 451 /** 452 * srpt_mad_send_handler - MAD send completion callback 453 * @mad_agent: Return value of ib_register_mad_agent(). 454 * @mad_wc: Work completion reporting that the MAD has been sent. 455 */ 456 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 457 struct ib_mad_send_wc *mad_wc) 458 { 459 rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE); 460 ib_free_send_mad(mad_wc->send_buf); 461 } 462 463 /** 464 * srpt_mad_recv_handler - MAD reception callback function 465 * @mad_agent: Return value of ib_register_mad_agent(). 466 * @send_buf: Not used. 467 * @mad_wc: Work completion reporting that a MAD has been received. 468 */ 469 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 470 struct ib_mad_send_buf *send_buf, 471 struct ib_mad_recv_wc *mad_wc) 472 { 473 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 474 struct ib_ah *ah; 475 struct ib_mad_send_buf *rsp; 476 struct ib_dm_mad *dm_mad; 477 478 if (!mad_wc || !mad_wc->recv_buf.mad) 479 return; 480 481 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 482 mad_wc->recv_buf.grh, mad_agent->port_num); 483 if (IS_ERR(ah)) 484 goto err; 485 486 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 487 488 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 489 mad_wc->wc->pkey_index, 0, 490 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 491 GFP_KERNEL, 492 IB_MGMT_BASE_VERSION); 493 if (IS_ERR(rsp)) 494 goto err_rsp; 495 496 rsp->ah = ah; 497 498 dm_mad = rsp->mad; 499 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad)); 500 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 501 dm_mad->mad_hdr.status = 0; 502 503 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 504 case IB_MGMT_METHOD_GET: 505 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 506 break; 507 case IB_MGMT_METHOD_SET: 508 dm_mad->mad_hdr.status = 509 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 510 break; 511 default: 512 dm_mad->mad_hdr.status = 513 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 514 break; 515 } 516 517 if (!ib_post_send_mad(rsp, NULL)) { 518 ib_free_recv_mad(mad_wc); 519 /* will destroy_ah & free_send_mad in send completion */ 520 return; 521 } 522 523 ib_free_send_mad(rsp); 524 525 err_rsp: 526 rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE); 527 err: 528 ib_free_recv_mad(mad_wc); 529 } 530 531 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid) 532 { 533 const __be16 *g = (const __be16 *)guid; 534 535 return snprintf(buf, size, "%04x:%04x:%04x:%04x", 536 be16_to_cpu(g[0]), be16_to_cpu(g[1]), 537 be16_to_cpu(g[2]), be16_to_cpu(g[3])); 538 } 539 540 /** 541 * srpt_refresh_port - configure a HCA port 542 * @sport: SRPT HCA port. 543 * 544 * Enable InfiniBand management datagram processing, update the cached sm_lid, 545 * lid and gid values, and register a callback function for processing MADs 546 * on the specified port. 547 * 548 * Note: It is safe to call this function more than once for the same port. 549 */ 550 static int srpt_refresh_port(struct srpt_port *sport) 551 { 552 struct ib_mad_reg_req reg_req; 553 struct ib_port_modify port_modify; 554 struct ib_port_attr port_attr; 555 int ret; 556 557 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 558 if (ret) 559 return ret; 560 561 sport->sm_lid = port_attr.sm_lid; 562 sport->lid = port_attr.lid; 563 564 ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 565 if (ret) 566 return ret; 567 568 srpt_format_guid(sport->guid_name, ARRAY_SIZE(sport->guid_name), 569 &sport->gid.global.interface_id); 570 snprintf(sport->gid_name, ARRAY_SIZE(sport->gid_name), 571 "0x%016llx%016llx", 572 be64_to_cpu(sport->gid.global.subnet_prefix), 573 be64_to_cpu(sport->gid.global.interface_id)); 574 575 if (rdma_protocol_iwarp(sport->sdev->device, sport->port)) 576 return 0; 577 578 memset(&port_modify, 0, sizeof(port_modify)); 579 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 580 port_modify.clr_port_cap_mask = 0; 581 582 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 583 if (ret) { 584 pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n", 585 dev_name(&sport->sdev->device->dev), sport->port, ret); 586 return 0; 587 } 588 589 if (!sport->mad_agent) { 590 memset(®_req, 0, sizeof(reg_req)); 591 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 592 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 593 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 594 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 595 596 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 597 sport->port, 598 IB_QPT_GSI, 599 ®_req, 0, 600 srpt_mad_send_handler, 601 srpt_mad_recv_handler, 602 sport, 0); 603 if (IS_ERR(sport->mad_agent)) { 604 pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n", 605 dev_name(&sport->sdev->device->dev), sport->port, 606 PTR_ERR(sport->mad_agent)); 607 sport->mad_agent = NULL; 608 memset(&port_modify, 0, sizeof(port_modify)); 609 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 610 ib_modify_port(sport->sdev->device, sport->port, 0, 611 &port_modify); 612 613 } 614 } 615 616 return 0; 617 } 618 619 /** 620 * srpt_unregister_mad_agent - unregister MAD callback functions 621 * @sdev: SRPT HCA pointer. 622 * @port_cnt: number of ports with registered MAD 623 * 624 * Note: It is safe to call this function more than once for the same device. 625 */ 626 static void srpt_unregister_mad_agent(struct srpt_device *sdev, int port_cnt) 627 { 628 struct ib_port_modify port_modify = { 629 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 630 }; 631 struct srpt_port *sport; 632 int i; 633 634 for (i = 1; i <= port_cnt; i++) { 635 sport = &sdev->port[i - 1]; 636 WARN_ON(sport->port != i); 637 if (sport->mad_agent) { 638 ib_modify_port(sdev->device, i, 0, &port_modify); 639 ib_unregister_mad_agent(sport->mad_agent); 640 sport->mad_agent = NULL; 641 } 642 } 643 } 644 645 /** 646 * srpt_alloc_ioctx - allocate a SRPT I/O context structure 647 * @sdev: SRPT HCA pointer. 648 * @ioctx_size: I/O context size. 649 * @buf_cache: I/O buffer cache. 650 * @dir: DMA data direction. 651 */ 652 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 653 int ioctx_size, 654 struct kmem_cache *buf_cache, 655 enum dma_data_direction dir) 656 { 657 struct srpt_ioctx *ioctx; 658 659 ioctx = kzalloc(ioctx_size, GFP_KERNEL); 660 if (!ioctx) 661 goto err; 662 663 ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL); 664 if (!ioctx->buf) 665 goto err_free_ioctx; 666 667 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, 668 kmem_cache_size(buf_cache), dir); 669 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 670 goto err_free_buf; 671 672 return ioctx; 673 674 err_free_buf: 675 kmem_cache_free(buf_cache, ioctx->buf); 676 err_free_ioctx: 677 kfree(ioctx); 678 err: 679 return NULL; 680 } 681 682 /** 683 * srpt_free_ioctx - free a SRPT I/O context structure 684 * @sdev: SRPT HCA pointer. 685 * @ioctx: I/O context pointer. 686 * @buf_cache: I/O buffer cache. 687 * @dir: DMA data direction. 688 */ 689 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 690 struct kmem_cache *buf_cache, 691 enum dma_data_direction dir) 692 { 693 if (!ioctx) 694 return; 695 696 ib_dma_unmap_single(sdev->device, ioctx->dma, 697 kmem_cache_size(buf_cache), dir); 698 kmem_cache_free(buf_cache, ioctx->buf); 699 kfree(ioctx); 700 } 701 702 /** 703 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures 704 * @sdev: Device to allocate the I/O context ring for. 705 * @ring_size: Number of elements in the I/O context ring. 706 * @ioctx_size: I/O context size. 707 * @buf_cache: I/O buffer cache. 708 * @alignment_offset: Offset in each ring buffer at which the SRP information 709 * unit starts. 710 * @dir: DMA data direction. 711 */ 712 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 713 int ring_size, int ioctx_size, 714 struct kmem_cache *buf_cache, 715 int alignment_offset, 716 enum dma_data_direction dir) 717 { 718 struct srpt_ioctx **ring; 719 int i; 720 721 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) && 722 ioctx_size != sizeof(struct srpt_send_ioctx)); 723 724 ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL); 725 if (!ring) 726 goto out; 727 for (i = 0; i < ring_size; ++i) { 728 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir); 729 if (!ring[i]) 730 goto err; 731 ring[i]->index = i; 732 ring[i]->offset = alignment_offset; 733 } 734 goto out; 735 736 err: 737 while (--i >= 0) 738 srpt_free_ioctx(sdev, ring[i], buf_cache, dir); 739 kvfree(ring); 740 ring = NULL; 741 out: 742 return ring; 743 } 744 745 /** 746 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures 747 * @ioctx_ring: I/O context ring to be freed. 748 * @sdev: SRPT HCA pointer. 749 * @ring_size: Number of ring elements. 750 * @buf_cache: I/O buffer cache. 751 * @dir: DMA data direction. 752 */ 753 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 754 struct srpt_device *sdev, int ring_size, 755 struct kmem_cache *buf_cache, 756 enum dma_data_direction dir) 757 { 758 int i; 759 760 if (!ioctx_ring) 761 return; 762 763 for (i = 0; i < ring_size; ++i) 764 srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir); 765 kvfree(ioctx_ring); 766 } 767 768 /** 769 * srpt_set_cmd_state - set the state of a SCSI command 770 * @ioctx: Send I/O context. 771 * @new: New I/O context state. 772 * 773 * Does not modify the state of aborted commands. Returns the previous command 774 * state. 775 */ 776 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 777 enum srpt_command_state new) 778 { 779 enum srpt_command_state previous; 780 781 previous = ioctx->state; 782 if (previous != SRPT_STATE_DONE) 783 ioctx->state = new; 784 785 return previous; 786 } 787 788 /** 789 * srpt_test_and_set_cmd_state - test and set the state of a command 790 * @ioctx: Send I/O context. 791 * @old: Current I/O context state. 792 * @new: New I/O context state. 793 * 794 * Returns true if and only if the previous command state was equal to 'old'. 795 */ 796 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 797 enum srpt_command_state old, 798 enum srpt_command_state new) 799 { 800 enum srpt_command_state previous; 801 802 WARN_ON(!ioctx); 803 WARN_ON(old == SRPT_STATE_DONE); 804 WARN_ON(new == SRPT_STATE_NEW); 805 806 previous = ioctx->state; 807 if (previous == old) 808 ioctx->state = new; 809 810 return previous == old; 811 } 812 813 /** 814 * srpt_post_recv - post an IB receive request 815 * @sdev: SRPT HCA pointer. 816 * @ch: SRPT RDMA channel. 817 * @ioctx: Receive I/O context pointer. 818 */ 819 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch, 820 struct srpt_recv_ioctx *ioctx) 821 { 822 struct ib_sge list; 823 struct ib_recv_wr wr; 824 825 BUG_ON(!sdev); 826 list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset; 827 list.length = srp_max_req_size; 828 list.lkey = sdev->lkey; 829 830 ioctx->ioctx.cqe.done = srpt_recv_done; 831 wr.wr_cqe = &ioctx->ioctx.cqe; 832 wr.next = NULL; 833 wr.sg_list = &list; 834 wr.num_sge = 1; 835 836 if (sdev->use_srq) 837 return ib_post_srq_recv(sdev->srq, &wr, NULL); 838 else 839 return ib_post_recv(ch->qp, &wr, NULL); 840 } 841 842 /** 843 * srpt_zerolength_write - perform a zero-length RDMA write 844 * @ch: SRPT RDMA channel. 845 * 846 * A quote from the InfiniBand specification: C9-88: For an HCA responder 847 * using Reliable Connection service, for each zero-length RDMA READ or WRITE 848 * request, the R_Key shall not be validated, even if the request includes 849 * Immediate data. 850 */ 851 static int srpt_zerolength_write(struct srpt_rdma_ch *ch) 852 { 853 struct ib_rdma_wr wr = { 854 .wr = { 855 .next = NULL, 856 { .wr_cqe = &ch->zw_cqe, }, 857 .opcode = IB_WR_RDMA_WRITE, 858 .send_flags = IB_SEND_SIGNALED, 859 } 860 }; 861 862 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name, 863 ch->qp->qp_num); 864 865 return ib_post_send(ch->qp, &wr.wr, NULL); 866 } 867 868 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc) 869 { 870 struct srpt_rdma_ch *ch = wc->qp->qp_context; 871 872 pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num, 873 wc->status); 874 875 if (wc->status == IB_WC_SUCCESS) { 876 srpt_process_wait_list(ch); 877 } else { 878 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 879 schedule_work(&ch->release_work); 880 else 881 pr_debug("%s-%d: already disconnected.\n", 882 ch->sess_name, ch->qp->qp_num); 883 } 884 } 885 886 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx, 887 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg, 888 unsigned *sg_cnt) 889 { 890 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 891 struct srpt_rdma_ch *ch = ioctx->ch; 892 struct scatterlist *prev = NULL; 893 unsigned prev_nents; 894 int ret, i; 895 896 if (nbufs == 1) { 897 ioctx->rw_ctxs = &ioctx->s_rw_ctx; 898 } else { 899 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs), 900 GFP_KERNEL); 901 if (!ioctx->rw_ctxs) 902 return -ENOMEM; 903 } 904 905 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) { 906 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 907 u64 remote_addr = be64_to_cpu(db->va); 908 u32 size = be32_to_cpu(db->len); 909 u32 rkey = be32_to_cpu(db->key); 910 911 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false, 912 i < nbufs - 1); 913 if (ret) 914 goto unwind; 915 916 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port, 917 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir); 918 if (ret < 0) { 919 target_free_sgl(ctx->sg, ctx->nents); 920 goto unwind; 921 } 922 923 ioctx->n_rdma += ret; 924 ioctx->n_rw_ctx++; 925 926 if (prev) { 927 sg_unmark_end(&prev[prev_nents - 1]); 928 sg_chain(prev, prev_nents + 1, ctx->sg); 929 } else { 930 *sg = ctx->sg; 931 } 932 933 prev = ctx->sg; 934 prev_nents = ctx->nents; 935 936 *sg_cnt += ctx->nents; 937 } 938 939 return 0; 940 941 unwind: 942 while (--i >= 0) { 943 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 944 945 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 946 ctx->sg, ctx->nents, dir); 947 target_free_sgl(ctx->sg, ctx->nents); 948 } 949 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 950 kfree(ioctx->rw_ctxs); 951 return ret; 952 } 953 954 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch, 955 struct srpt_send_ioctx *ioctx) 956 { 957 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 958 int i; 959 960 for (i = 0; i < ioctx->n_rw_ctx; i++) { 961 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 962 963 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 964 ctx->sg, ctx->nents, dir); 965 target_free_sgl(ctx->sg, ctx->nents); 966 } 967 968 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 969 kfree(ioctx->rw_ctxs); 970 } 971 972 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd) 973 { 974 /* 975 * The pointer computations below will only be compiled correctly 976 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 977 * whether srp_cmd::add_data has been declared as a byte pointer. 978 */ 979 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) && 980 !__same_type(srp_cmd->add_data[0], (u8)0)); 981 982 /* 983 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 984 * CDB LENGTH' field are reserved and the size in bytes of this field 985 * is four times the value specified in bits 3..7. Hence the "& ~3". 986 */ 987 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3); 988 } 989 990 /** 991 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request 992 * @recv_ioctx: I/O context associated with the received command @srp_cmd. 993 * @ioctx: I/O context that will be used for responding to the initiator. 994 * @srp_cmd: Pointer to the SRP_CMD request data. 995 * @dir: Pointer to the variable to which the transfer direction will be 996 * written. 997 * @sg: [out] scatterlist for the parsed SRP_CMD. 998 * @sg_cnt: [out] length of @sg. 999 * @data_len: Pointer to the variable to which the total data length of all 1000 * descriptors in the SRP_CMD request will be written. 1001 * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data 1002 * starts. 1003 * 1004 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 1005 * 1006 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 1007 * -ENOMEM when memory allocation fails and zero upon success. 1008 */ 1009 static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx, 1010 struct srpt_send_ioctx *ioctx, 1011 struct srp_cmd *srp_cmd, enum dma_data_direction *dir, 1012 struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len, 1013 u16 imm_data_offset) 1014 { 1015 BUG_ON(!dir); 1016 BUG_ON(!data_len); 1017 1018 /* 1019 * The lower four bits of the buffer format field contain the DATA-IN 1020 * buffer descriptor format, and the highest four bits contain the 1021 * DATA-OUT buffer descriptor format. 1022 */ 1023 if (srp_cmd->buf_fmt & 0xf) 1024 /* DATA-IN: transfer data from target to initiator (read). */ 1025 *dir = DMA_FROM_DEVICE; 1026 else if (srp_cmd->buf_fmt >> 4) 1027 /* DATA-OUT: transfer data from initiator to target (write). */ 1028 *dir = DMA_TO_DEVICE; 1029 else 1030 *dir = DMA_NONE; 1031 1032 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */ 1033 ioctx->cmd.data_direction = *dir; 1034 1035 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 1036 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 1037 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd); 1038 1039 *data_len = be32_to_cpu(db->len); 1040 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt); 1041 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 1042 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 1043 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd); 1044 int nbufs = be32_to_cpu(idb->table_desc.len) / 1045 sizeof(struct srp_direct_buf); 1046 1047 if (nbufs > 1048 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 1049 pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n", 1050 srp_cmd->data_out_desc_cnt, 1051 srp_cmd->data_in_desc_cnt, 1052 be32_to_cpu(idb->table_desc.len), 1053 sizeof(struct srp_direct_buf)); 1054 return -EINVAL; 1055 } 1056 1057 *data_len = be32_to_cpu(idb->len); 1058 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs, 1059 sg, sg_cnt); 1060 } else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) { 1061 struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd); 1062 void *data = (void *)srp_cmd + imm_data_offset; 1063 uint32_t len = be32_to_cpu(imm_buf->len); 1064 uint32_t req_size = imm_data_offset + len; 1065 1066 if (req_size > srp_max_req_size) { 1067 pr_err("Immediate data (length %d + %d) exceeds request size %d\n", 1068 imm_data_offset, len, srp_max_req_size); 1069 return -EINVAL; 1070 } 1071 if (recv_ioctx->byte_len < req_size) { 1072 pr_err("Received too few data - %d < %d\n", 1073 recv_ioctx->byte_len, req_size); 1074 return -EIO; 1075 } 1076 /* 1077 * The immediate data buffer descriptor must occur before the 1078 * immediate data itself. 1079 */ 1080 if ((void *)(imm_buf + 1) > (void *)data) { 1081 pr_err("Received invalid write request\n"); 1082 return -EINVAL; 1083 } 1084 *data_len = len; 1085 ioctx->recv_ioctx = recv_ioctx; 1086 if ((uintptr_t)data & 511) { 1087 pr_warn_once("Internal error - the receive buffers are not aligned properly.\n"); 1088 return -EINVAL; 1089 } 1090 sg_init_one(&ioctx->imm_sg, data, len); 1091 *sg = &ioctx->imm_sg; 1092 *sg_cnt = 1; 1093 return 0; 1094 } else { 1095 *data_len = 0; 1096 return 0; 1097 } 1098 } 1099 1100 /** 1101 * srpt_init_ch_qp - initialize queue pair attributes 1102 * @ch: SRPT RDMA channel. 1103 * @qp: Queue pair pointer. 1104 * 1105 * Initialized the attributes of queue pair 'qp' by allowing local write, 1106 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 1107 */ 1108 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1109 { 1110 struct ib_qp_attr *attr; 1111 int ret; 1112 1113 WARN_ON_ONCE(ch->using_rdma_cm); 1114 1115 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1116 if (!attr) 1117 return -ENOMEM; 1118 1119 attr->qp_state = IB_QPS_INIT; 1120 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE; 1121 attr->port_num = ch->sport->port; 1122 1123 ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port, 1124 ch->pkey, &attr->pkey_index); 1125 if (ret < 0) 1126 pr_err("Translating pkey %#x failed (%d) - using index 0\n", 1127 ch->pkey, ret); 1128 1129 ret = ib_modify_qp(qp, attr, 1130 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 1131 IB_QP_PKEY_INDEX); 1132 1133 kfree(attr); 1134 return ret; 1135 } 1136 1137 /** 1138 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR) 1139 * @ch: channel of the queue pair. 1140 * @qp: queue pair to change the state of. 1141 * 1142 * Returns zero upon success and a negative value upon failure. 1143 * 1144 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1145 * If this structure ever becomes larger, it might be necessary to allocate 1146 * it dynamically instead of on the stack. 1147 */ 1148 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1149 { 1150 struct ib_qp_attr qp_attr; 1151 int attr_mask; 1152 int ret; 1153 1154 WARN_ON_ONCE(ch->using_rdma_cm); 1155 1156 qp_attr.qp_state = IB_QPS_RTR; 1157 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask); 1158 if (ret) 1159 goto out; 1160 1161 qp_attr.max_dest_rd_atomic = 4; 1162 1163 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1164 1165 out: 1166 return ret; 1167 } 1168 1169 /** 1170 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS) 1171 * @ch: channel of the queue pair. 1172 * @qp: queue pair to change the state of. 1173 * 1174 * Returns zero upon success and a negative value upon failure. 1175 * 1176 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1177 * If this structure ever becomes larger, it might be necessary to allocate 1178 * it dynamically instead of on the stack. 1179 */ 1180 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1181 { 1182 struct ib_qp_attr qp_attr; 1183 int attr_mask; 1184 int ret; 1185 1186 qp_attr.qp_state = IB_QPS_RTS; 1187 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask); 1188 if (ret) 1189 goto out; 1190 1191 qp_attr.max_rd_atomic = 4; 1192 1193 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1194 1195 out: 1196 return ret; 1197 } 1198 1199 /** 1200 * srpt_ch_qp_err - set the channel queue pair state to 'error' 1201 * @ch: SRPT RDMA channel. 1202 */ 1203 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1204 { 1205 struct ib_qp_attr qp_attr; 1206 1207 qp_attr.qp_state = IB_QPS_ERR; 1208 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1209 } 1210 1211 /** 1212 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator 1213 * @ch: SRPT RDMA channel. 1214 */ 1215 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1216 { 1217 struct srpt_send_ioctx *ioctx; 1218 int tag, cpu; 1219 1220 BUG_ON(!ch); 1221 1222 tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu); 1223 if (tag < 0) 1224 return NULL; 1225 1226 ioctx = ch->ioctx_ring[tag]; 1227 BUG_ON(ioctx->ch != ch); 1228 ioctx->state = SRPT_STATE_NEW; 1229 WARN_ON_ONCE(ioctx->recv_ioctx); 1230 ioctx->n_rdma = 0; 1231 ioctx->n_rw_ctx = 0; 1232 ioctx->queue_status_only = false; 1233 /* 1234 * transport_init_se_cmd() does not initialize all fields, so do it 1235 * here. 1236 */ 1237 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1238 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1239 ioctx->cmd.map_tag = tag; 1240 ioctx->cmd.map_cpu = cpu; 1241 1242 return ioctx; 1243 } 1244 1245 /** 1246 * srpt_abort_cmd - abort a SCSI command 1247 * @ioctx: I/O context associated with the SCSI command. 1248 */ 1249 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1250 { 1251 enum srpt_command_state state; 1252 1253 BUG_ON(!ioctx); 1254 1255 /* 1256 * If the command is in a state where the target core is waiting for 1257 * the ib_srpt driver, change the state to the next state. 1258 */ 1259 1260 state = ioctx->state; 1261 switch (state) { 1262 case SRPT_STATE_NEED_DATA: 1263 ioctx->state = SRPT_STATE_DATA_IN; 1264 break; 1265 case SRPT_STATE_CMD_RSP_SENT: 1266 case SRPT_STATE_MGMT_RSP_SENT: 1267 ioctx->state = SRPT_STATE_DONE; 1268 break; 1269 default: 1270 WARN_ONCE(true, "%s: unexpected I/O context state %d\n", 1271 __func__, state); 1272 break; 1273 } 1274 1275 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state, 1276 ioctx->state, ioctx->cmd.tag); 1277 1278 switch (state) { 1279 case SRPT_STATE_NEW: 1280 case SRPT_STATE_DATA_IN: 1281 case SRPT_STATE_MGMT: 1282 case SRPT_STATE_DONE: 1283 /* 1284 * Do nothing - defer abort processing until 1285 * srpt_queue_response() is invoked. 1286 */ 1287 break; 1288 case SRPT_STATE_NEED_DATA: 1289 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag); 1290 transport_generic_request_failure(&ioctx->cmd, 1291 TCM_CHECK_CONDITION_ABORT_CMD); 1292 break; 1293 case SRPT_STATE_CMD_RSP_SENT: 1294 /* 1295 * SRP_RSP sending failed or the SRP_RSP send completion has 1296 * not been received in time. 1297 */ 1298 transport_generic_free_cmd(&ioctx->cmd, 0); 1299 break; 1300 case SRPT_STATE_MGMT_RSP_SENT: 1301 transport_generic_free_cmd(&ioctx->cmd, 0); 1302 break; 1303 default: 1304 WARN(1, "Unexpected command state (%d)", state); 1305 break; 1306 } 1307 1308 return state; 1309 } 1310 1311 /** 1312 * srpt_rdma_read_done - RDMA read completion callback 1313 * @cq: Completion queue. 1314 * @wc: Work completion. 1315 * 1316 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1317 * the data that has been transferred via IB RDMA had to be postponed until the 1318 * check_stop_free() callback. None of this is necessary anymore and needs to 1319 * be cleaned up. 1320 */ 1321 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc) 1322 { 1323 struct srpt_rdma_ch *ch = wc->qp->qp_context; 1324 struct srpt_send_ioctx *ioctx = 1325 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe); 1326 1327 WARN_ON(ioctx->n_rdma <= 0); 1328 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1329 ioctx->n_rdma = 0; 1330 1331 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1332 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n", 1333 ioctx, wc->status); 1334 srpt_abort_cmd(ioctx); 1335 return; 1336 } 1337 1338 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1339 SRPT_STATE_DATA_IN)) 1340 target_execute_cmd(&ioctx->cmd); 1341 else 1342 pr_err("%s[%d]: wrong state = %d\n", __func__, 1343 __LINE__, ioctx->state); 1344 } 1345 1346 /** 1347 * srpt_build_cmd_rsp - build a SRP_RSP response 1348 * @ch: RDMA channel through which the request has been received. 1349 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1350 * be built in the buffer ioctx->buf points at and hence this function will 1351 * overwrite the request data. 1352 * @tag: tag of the request for which this response is being generated. 1353 * @status: value for the STATUS field of the SRP_RSP information unit. 1354 * 1355 * Returns the size in bytes of the SRP_RSP response. 1356 * 1357 * An SRP_RSP response contains a SCSI status or service response. See also 1358 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1359 * response. See also SPC-2 for more information about sense data. 1360 */ 1361 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1362 struct srpt_send_ioctx *ioctx, u64 tag, 1363 int status) 1364 { 1365 struct se_cmd *cmd = &ioctx->cmd; 1366 struct srp_rsp *srp_rsp; 1367 const u8 *sense_data; 1368 int sense_data_len, max_sense_len; 1369 u32 resid = cmd->residual_count; 1370 1371 /* 1372 * The lowest bit of all SAM-3 status codes is zero (see also 1373 * paragraph 5.3 in SAM-3). 1374 */ 1375 WARN_ON(status & 1); 1376 1377 srp_rsp = ioctx->ioctx.buf; 1378 BUG_ON(!srp_rsp); 1379 1380 sense_data = ioctx->sense_data; 1381 sense_data_len = ioctx->cmd.scsi_sense_length; 1382 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1383 1384 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1385 srp_rsp->opcode = SRP_RSP; 1386 srp_rsp->req_lim_delta = 1387 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1388 srp_rsp->tag = tag; 1389 srp_rsp->status = status; 1390 1391 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1392 if (cmd->data_direction == DMA_TO_DEVICE) { 1393 /* residual data from an underflow write */ 1394 srp_rsp->flags = SRP_RSP_FLAG_DOUNDER; 1395 srp_rsp->data_out_res_cnt = cpu_to_be32(resid); 1396 } else if (cmd->data_direction == DMA_FROM_DEVICE) { 1397 /* residual data from an underflow read */ 1398 srp_rsp->flags = SRP_RSP_FLAG_DIUNDER; 1399 srp_rsp->data_in_res_cnt = cpu_to_be32(resid); 1400 } 1401 } else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1402 if (cmd->data_direction == DMA_TO_DEVICE) { 1403 /* residual data from an overflow write */ 1404 srp_rsp->flags = SRP_RSP_FLAG_DOOVER; 1405 srp_rsp->data_out_res_cnt = cpu_to_be32(resid); 1406 } else if (cmd->data_direction == DMA_FROM_DEVICE) { 1407 /* residual data from an overflow read */ 1408 srp_rsp->flags = SRP_RSP_FLAG_DIOVER; 1409 srp_rsp->data_in_res_cnt = cpu_to_be32(resid); 1410 } 1411 } 1412 1413 if (sense_data_len) { 1414 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1415 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1416 if (sense_data_len > max_sense_len) { 1417 pr_warn("truncated sense data from %d to %d bytes\n", 1418 sense_data_len, max_sense_len); 1419 sense_data_len = max_sense_len; 1420 } 1421 1422 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1423 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1424 memcpy(srp_rsp->data, sense_data, sense_data_len); 1425 } 1426 1427 return sizeof(*srp_rsp) + sense_data_len; 1428 } 1429 1430 /** 1431 * srpt_build_tskmgmt_rsp - build a task management response 1432 * @ch: RDMA channel through which the request has been received. 1433 * @ioctx: I/O context in which the SRP_RSP response will be built. 1434 * @rsp_code: RSP_CODE that will be stored in the response. 1435 * @tag: Tag of the request for which this response is being generated. 1436 * 1437 * Returns the size in bytes of the SRP_RSP response. 1438 * 1439 * An SRP_RSP response contains a SCSI status or service response. See also 1440 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1441 * response. 1442 */ 1443 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1444 struct srpt_send_ioctx *ioctx, 1445 u8 rsp_code, u64 tag) 1446 { 1447 struct srp_rsp *srp_rsp; 1448 int resp_data_len; 1449 int resp_len; 1450 1451 resp_data_len = 4; 1452 resp_len = sizeof(*srp_rsp) + resp_data_len; 1453 1454 srp_rsp = ioctx->ioctx.buf; 1455 BUG_ON(!srp_rsp); 1456 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1457 1458 srp_rsp->opcode = SRP_RSP; 1459 srp_rsp->req_lim_delta = 1460 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1461 srp_rsp->tag = tag; 1462 1463 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1464 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1465 srp_rsp->data[3] = rsp_code; 1466 1467 return resp_len; 1468 } 1469 1470 static int srpt_check_stop_free(struct se_cmd *cmd) 1471 { 1472 struct srpt_send_ioctx *ioctx = container_of(cmd, 1473 struct srpt_send_ioctx, cmd); 1474 1475 return target_put_sess_cmd(&ioctx->cmd); 1476 } 1477 1478 /** 1479 * srpt_handle_cmd - process a SRP_CMD information unit 1480 * @ch: SRPT RDMA channel. 1481 * @recv_ioctx: Receive I/O context. 1482 * @send_ioctx: Send I/O context. 1483 */ 1484 static void srpt_handle_cmd(struct srpt_rdma_ch *ch, 1485 struct srpt_recv_ioctx *recv_ioctx, 1486 struct srpt_send_ioctx *send_ioctx) 1487 { 1488 struct se_cmd *cmd; 1489 struct srp_cmd *srp_cmd; 1490 struct scatterlist *sg = NULL; 1491 unsigned sg_cnt = 0; 1492 u64 data_len; 1493 enum dma_data_direction dir; 1494 int rc; 1495 1496 BUG_ON(!send_ioctx); 1497 1498 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset; 1499 cmd = &send_ioctx->cmd; 1500 cmd->tag = srp_cmd->tag; 1501 1502 switch (srp_cmd->task_attr) { 1503 case SRP_CMD_SIMPLE_Q: 1504 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1505 break; 1506 case SRP_CMD_ORDERED_Q: 1507 default: 1508 cmd->sam_task_attr = TCM_ORDERED_TAG; 1509 break; 1510 case SRP_CMD_HEAD_OF_Q: 1511 cmd->sam_task_attr = TCM_HEAD_TAG; 1512 break; 1513 case SRP_CMD_ACA: 1514 cmd->sam_task_attr = TCM_ACA_TAG; 1515 break; 1516 } 1517 1518 rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir, 1519 &sg, &sg_cnt, &data_len, ch->imm_data_offset); 1520 if (rc) { 1521 if (rc != -EAGAIN) { 1522 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1523 srp_cmd->tag); 1524 } 1525 goto busy; 1526 } 1527 1528 rc = target_init_cmd(cmd, ch->sess, &send_ioctx->sense_data[0], 1529 scsilun_to_int(&srp_cmd->lun), data_len, 1530 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF); 1531 if (rc != 0) { 1532 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc, 1533 srp_cmd->tag); 1534 goto busy; 1535 } 1536 1537 if (target_submit_prep(cmd, srp_cmd->cdb, sg, sg_cnt, NULL, 0, NULL, 0, 1538 GFP_KERNEL)) 1539 return; 1540 1541 target_submit(cmd); 1542 return; 1543 1544 busy: 1545 target_send_busy(cmd); 1546 } 1547 1548 static int srp_tmr_to_tcm(int fn) 1549 { 1550 switch (fn) { 1551 case SRP_TSK_ABORT_TASK: 1552 return TMR_ABORT_TASK; 1553 case SRP_TSK_ABORT_TASK_SET: 1554 return TMR_ABORT_TASK_SET; 1555 case SRP_TSK_CLEAR_TASK_SET: 1556 return TMR_CLEAR_TASK_SET; 1557 case SRP_TSK_LUN_RESET: 1558 return TMR_LUN_RESET; 1559 case SRP_TSK_CLEAR_ACA: 1560 return TMR_CLEAR_ACA; 1561 default: 1562 return -1; 1563 } 1564 } 1565 1566 /** 1567 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit 1568 * @ch: SRPT RDMA channel. 1569 * @recv_ioctx: Receive I/O context. 1570 * @send_ioctx: Send I/O context. 1571 * 1572 * Returns 0 if and only if the request will be processed by the target core. 1573 * 1574 * For more information about SRP_TSK_MGMT information units, see also section 1575 * 6.7 in the SRP r16a document. 1576 */ 1577 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1578 struct srpt_recv_ioctx *recv_ioctx, 1579 struct srpt_send_ioctx *send_ioctx) 1580 { 1581 struct srp_tsk_mgmt *srp_tsk; 1582 struct se_cmd *cmd; 1583 struct se_session *sess = ch->sess; 1584 int tcm_tmr; 1585 int rc; 1586 1587 BUG_ON(!send_ioctx); 1588 1589 srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset; 1590 cmd = &send_ioctx->cmd; 1591 1592 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n", 1593 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch, 1594 ch->sess); 1595 1596 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1597 send_ioctx->cmd.tag = srp_tsk->tag; 1598 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1599 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, 1600 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr, 1601 GFP_KERNEL, srp_tsk->task_tag, 1602 TARGET_SCF_ACK_KREF); 1603 if (rc != 0) { 1604 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1605 cmd->se_tfo->queue_tm_rsp(cmd); 1606 } 1607 return; 1608 } 1609 1610 /** 1611 * srpt_handle_new_iu - process a newly received information unit 1612 * @ch: RDMA channel through which the information unit has been received. 1613 * @recv_ioctx: Receive I/O context associated with the information unit. 1614 */ 1615 static bool 1616 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx) 1617 { 1618 struct srpt_send_ioctx *send_ioctx = NULL; 1619 struct srp_cmd *srp_cmd; 1620 bool res = false; 1621 u8 opcode; 1622 1623 BUG_ON(!ch); 1624 BUG_ON(!recv_ioctx); 1625 1626 if (unlikely(ch->state == CH_CONNECTING)) 1627 goto push; 1628 1629 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1630 recv_ioctx->ioctx.dma, 1631 recv_ioctx->ioctx.offset + srp_max_req_size, 1632 DMA_FROM_DEVICE); 1633 1634 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset; 1635 opcode = srp_cmd->opcode; 1636 if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) { 1637 send_ioctx = srpt_get_send_ioctx(ch); 1638 if (unlikely(!send_ioctx)) 1639 goto push; 1640 } 1641 1642 if (!list_empty(&recv_ioctx->wait_list)) { 1643 WARN_ON_ONCE(!ch->processing_wait_list); 1644 list_del_init(&recv_ioctx->wait_list); 1645 } 1646 1647 switch (opcode) { 1648 case SRP_CMD: 1649 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1650 break; 1651 case SRP_TSK_MGMT: 1652 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1653 break; 1654 case SRP_I_LOGOUT: 1655 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1656 break; 1657 case SRP_CRED_RSP: 1658 pr_debug("received SRP_CRED_RSP\n"); 1659 break; 1660 case SRP_AER_RSP: 1661 pr_debug("received SRP_AER_RSP\n"); 1662 break; 1663 case SRP_RSP: 1664 pr_err("Received SRP_RSP\n"); 1665 break; 1666 default: 1667 pr_err("received IU with unknown opcode 0x%x\n", opcode); 1668 break; 1669 } 1670 1671 if (!send_ioctx || !send_ioctx->recv_ioctx) 1672 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx); 1673 res = true; 1674 1675 out: 1676 return res; 1677 1678 push: 1679 if (list_empty(&recv_ioctx->wait_list)) { 1680 WARN_ON_ONCE(ch->processing_wait_list); 1681 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1682 } 1683 goto out; 1684 } 1685 1686 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1687 { 1688 struct srpt_rdma_ch *ch = wc->qp->qp_context; 1689 struct srpt_recv_ioctx *ioctx = 1690 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe); 1691 1692 if (wc->status == IB_WC_SUCCESS) { 1693 int req_lim; 1694 1695 req_lim = atomic_dec_return(&ch->req_lim); 1696 if (unlikely(req_lim < 0)) 1697 pr_err("req_lim = %d < 0\n", req_lim); 1698 ioctx->byte_len = wc->byte_len; 1699 srpt_handle_new_iu(ch, ioctx); 1700 } else { 1701 pr_info_ratelimited("receiving failed for ioctx %p with status %d\n", 1702 ioctx, wc->status); 1703 } 1704 } 1705 1706 /* 1707 * This function must be called from the context in which RDMA completions are 1708 * processed because it accesses the wait list without protection against 1709 * access from other threads. 1710 */ 1711 static void srpt_process_wait_list(struct srpt_rdma_ch *ch) 1712 { 1713 struct srpt_recv_ioctx *recv_ioctx, *tmp; 1714 1715 WARN_ON_ONCE(ch->state == CH_CONNECTING); 1716 1717 if (list_empty(&ch->cmd_wait_list)) 1718 return; 1719 1720 WARN_ON_ONCE(ch->processing_wait_list); 1721 ch->processing_wait_list = true; 1722 list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list, 1723 wait_list) { 1724 if (!srpt_handle_new_iu(ch, recv_ioctx)) 1725 break; 1726 } 1727 ch->processing_wait_list = false; 1728 } 1729 1730 /** 1731 * srpt_send_done - send completion callback 1732 * @cq: Completion queue. 1733 * @wc: Work completion. 1734 * 1735 * Note: Although this has not yet been observed during tests, at least in 1736 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1737 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1738 * value in each response is set to one, and it is possible that this response 1739 * makes the initiator send a new request before the send completion for that 1740 * response has been processed. This could e.g. happen if the call to 1741 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1742 * if IB retransmission causes generation of the send completion to be 1743 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1744 * are queued on cmd_wait_list. The code below processes these delayed 1745 * requests one at a time. 1746 */ 1747 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc) 1748 { 1749 struct srpt_rdma_ch *ch = wc->qp->qp_context; 1750 struct srpt_send_ioctx *ioctx = 1751 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe); 1752 enum srpt_command_state state; 1753 1754 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1755 1756 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT && 1757 state != SRPT_STATE_MGMT_RSP_SENT); 1758 1759 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 1760 1761 if (wc->status != IB_WC_SUCCESS) 1762 pr_info("sending response for ioctx 0x%p failed with status %d\n", 1763 ioctx, wc->status); 1764 1765 if (state != SRPT_STATE_DONE) { 1766 transport_generic_free_cmd(&ioctx->cmd, 0); 1767 } else { 1768 pr_err("IB completion has been received too late for wr_id = %u.\n", 1769 ioctx->ioctx.index); 1770 } 1771 1772 srpt_process_wait_list(ch); 1773 } 1774 1775 /** 1776 * srpt_create_ch_ib - create receive and send completion queues 1777 * @ch: SRPT RDMA channel. 1778 */ 1779 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 1780 { 1781 struct ib_qp_init_attr *qp_init; 1782 struct srpt_port *sport = ch->sport; 1783 struct srpt_device *sdev = sport->sdev; 1784 const struct ib_device_attr *attrs = &sdev->device->attrs; 1785 int sq_size = sport->port_attrib.srp_sq_size; 1786 int i, ret; 1787 1788 WARN_ON(ch->rq_size < 1); 1789 1790 ret = -ENOMEM; 1791 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL); 1792 if (!qp_init) 1793 goto out; 1794 1795 retry: 1796 ch->cq = ib_cq_pool_get(sdev->device, ch->rq_size + sq_size, -1, 1797 IB_POLL_WORKQUEUE); 1798 if (IS_ERR(ch->cq)) { 1799 ret = PTR_ERR(ch->cq); 1800 pr_err("failed to create CQ cqe= %d ret= %d\n", 1801 ch->rq_size + sq_size, ret); 1802 goto out; 1803 } 1804 ch->cq_size = ch->rq_size + sq_size; 1805 1806 qp_init->qp_context = (void *)ch; 1807 qp_init->event_handler 1808 = (void(*)(struct ib_event *, void*))srpt_qp_event; 1809 qp_init->send_cq = ch->cq; 1810 qp_init->recv_cq = ch->cq; 1811 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 1812 qp_init->qp_type = IB_QPT_RC; 1813 /* 1814 * We divide up our send queue size into half SEND WRs to send the 1815 * completions, and half R/W contexts to actually do the RDMA 1816 * READ/WRITE transfers. Note that we need to allocate CQ slots for 1817 * both both, as RDMA contexts will also post completions for the 1818 * RDMA READ case. 1819 */ 1820 qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr); 1821 qp_init->cap.max_rdma_ctxs = sq_size / 2; 1822 qp_init->cap.max_send_sge = attrs->max_send_sge; 1823 qp_init->cap.max_recv_sge = 1; 1824 qp_init->port_num = ch->sport->port; 1825 if (sdev->use_srq) 1826 qp_init->srq = sdev->srq; 1827 else 1828 qp_init->cap.max_recv_wr = ch->rq_size; 1829 1830 if (ch->using_rdma_cm) { 1831 ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init); 1832 ch->qp = ch->rdma_cm.cm_id->qp; 1833 } else { 1834 ch->qp = ib_create_qp(sdev->pd, qp_init); 1835 if (!IS_ERR(ch->qp)) { 1836 ret = srpt_init_ch_qp(ch, ch->qp); 1837 if (ret) 1838 ib_destroy_qp(ch->qp); 1839 } else { 1840 ret = PTR_ERR(ch->qp); 1841 } 1842 } 1843 if (ret) { 1844 bool retry = sq_size > MIN_SRPT_SQ_SIZE; 1845 1846 if (retry) { 1847 pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n", 1848 sq_size, ret); 1849 ib_cq_pool_put(ch->cq, ch->cq_size); 1850 sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE); 1851 goto retry; 1852 } else { 1853 pr_err("failed to create queue pair with sq_size = %d (%d)\n", 1854 sq_size, ret); 1855 goto err_destroy_cq; 1856 } 1857 } 1858 1859 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 1860 1861 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n", 1862 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 1863 qp_init->cap.max_send_wr, ch); 1864 1865 if (!sdev->use_srq) 1866 for (i = 0; i < ch->rq_size; i++) 1867 srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]); 1868 1869 out: 1870 kfree(qp_init); 1871 return ret; 1872 1873 err_destroy_cq: 1874 ch->qp = NULL; 1875 ib_cq_pool_put(ch->cq, ch->cq_size); 1876 goto out; 1877 } 1878 1879 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 1880 { 1881 ib_destroy_qp(ch->qp); 1882 ib_cq_pool_put(ch->cq, ch->cq_size); 1883 } 1884 1885 /** 1886 * srpt_close_ch - close a RDMA channel 1887 * @ch: SRPT RDMA channel. 1888 * 1889 * Make sure all resources associated with the channel will be deallocated at 1890 * an appropriate time. 1891 * 1892 * Returns true if and only if the channel state has been modified into 1893 * CH_DRAINING. 1894 */ 1895 static bool srpt_close_ch(struct srpt_rdma_ch *ch) 1896 { 1897 int ret; 1898 1899 if (!srpt_set_ch_state(ch, CH_DRAINING)) { 1900 pr_debug("%s: already closed\n", ch->sess_name); 1901 return false; 1902 } 1903 1904 kref_get(&ch->kref); 1905 1906 ret = srpt_ch_qp_err(ch); 1907 if (ret < 0) 1908 pr_err("%s-%d: changing queue pair into error state failed: %d\n", 1909 ch->sess_name, ch->qp->qp_num, ret); 1910 1911 ret = srpt_zerolength_write(ch); 1912 if (ret < 0) { 1913 pr_err("%s-%d: queuing zero-length write failed: %d\n", 1914 ch->sess_name, ch->qp->qp_num, ret); 1915 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 1916 schedule_work(&ch->release_work); 1917 else 1918 WARN_ON_ONCE(true); 1919 } 1920 1921 kref_put(&ch->kref, srpt_free_ch); 1922 1923 return true; 1924 } 1925 1926 /* 1927 * Change the channel state into CH_DISCONNECTING. If a channel has not yet 1928 * reached the connected state, close it. If a channel is in the connected 1929 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is 1930 * the responsibility of the caller to ensure that this function is not 1931 * invoked concurrently with the code that accepts a connection. This means 1932 * that this function must either be invoked from inside a CM callback 1933 * function or that it must be invoked with the srpt_port.mutex held. 1934 */ 1935 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch) 1936 { 1937 int ret; 1938 1939 if (!srpt_set_ch_state(ch, CH_DISCONNECTING)) 1940 return -ENOTCONN; 1941 1942 if (ch->using_rdma_cm) { 1943 ret = rdma_disconnect(ch->rdma_cm.cm_id); 1944 } else { 1945 ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0); 1946 if (ret < 0) 1947 ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0); 1948 } 1949 1950 if (ret < 0 && srpt_close_ch(ch)) 1951 ret = 0; 1952 1953 return ret; 1954 } 1955 1956 /* Send DREQ and wait for DREP. */ 1957 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch) 1958 { 1959 DECLARE_COMPLETION_ONSTACK(closed); 1960 struct srpt_port *sport = ch->sport; 1961 1962 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num, 1963 ch->state); 1964 1965 ch->closed = &closed; 1966 1967 mutex_lock(&sport->mutex); 1968 srpt_disconnect_ch(ch); 1969 mutex_unlock(&sport->mutex); 1970 1971 while (wait_for_completion_timeout(&closed, 5 * HZ) == 0) 1972 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__, 1973 ch->sess_name, ch->qp->qp_num, ch->state); 1974 1975 } 1976 1977 static void __srpt_close_all_ch(struct srpt_port *sport) 1978 { 1979 struct srpt_nexus *nexus; 1980 struct srpt_rdma_ch *ch; 1981 1982 lockdep_assert_held(&sport->mutex); 1983 1984 list_for_each_entry(nexus, &sport->nexus_list, entry) { 1985 list_for_each_entry(ch, &nexus->ch_list, list) { 1986 if (srpt_disconnect_ch(ch) >= 0) 1987 pr_info("Closing channel %s-%d because target %s_%d has been disabled\n", 1988 ch->sess_name, ch->qp->qp_num, 1989 dev_name(&sport->sdev->device->dev), 1990 sport->port); 1991 srpt_close_ch(ch); 1992 } 1993 } 1994 } 1995 1996 /* 1997 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if 1998 * it does not yet exist. 1999 */ 2000 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport, 2001 const u8 i_port_id[16], 2002 const u8 t_port_id[16]) 2003 { 2004 struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n; 2005 2006 for (;;) { 2007 mutex_lock(&sport->mutex); 2008 list_for_each_entry(n, &sport->nexus_list, entry) { 2009 if (memcmp(n->i_port_id, i_port_id, 16) == 0 && 2010 memcmp(n->t_port_id, t_port_id, 16) == 0) { 2011 nexus = n; 2012 break; 2013 } 2014 } 2015 if (!nexus && tmp_nexus) { 2016 list_add_tail_rcu(&tmp_nexus->entry, 2017 &sport->nexus_list); 2018 swap(nexus, tmp_nexus); 2019 } 2020 mutex_unlock(&sport->mutex); 2021 2022 if (nexus) 2023 break; 2024 tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL); 2025 if (!tmp_nexus) { 2026 nexus = ERR_PTR(-ENOMEM); 2027 break; 2028 } 2029 INIT_LIST_HEAD(&tmp_nexus->ch_list); 2030 memcpy(tmp_nexus->i_port_id, i_port_id, 16); 2031 memcpy(tmp_nexus->t_port_id, t_port_id, 16); 2032 } 2033 2034 kfree(tmp_nexus); 2035 2036 return nexus; 2037 } 2038 2039 static void srpt_set_enabled(struct srpt_port *sport, bool enabled) 2040 __must_hold(&sport->mutex) 2041 { 2042 lockdep_assert_held(&sport->mutex); 2043 2044 if (sport->enabled == enabled) 2045 return; 2046 sport->enabled = enabled; 2047 if (!enabled) 2048 __srpt_close_all_ch(sport); 2049 } 2050 2051 static void srpt_drop_sport_ref(struct srpt_port *sport) 2052 { 2053 if (atomic_dec_return(&sport->refcount) == 0 && sport->freed_channels) 2054 complete(sport->freed_channels); 2055 } 2056 2057 static void srpt_free_ch(struct kref *kref) 2058 { 2059 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref); 2060 2061 srpt_drop_sport_ref(ch->sport); 2062 kfree_rcu(ch, rcu); 2063 } 2064 2065 /* 2066 * Shut down the SCSI target session, tell the connection manager to 2067 * disconnect the associated RDMA channel, transition the QP to the error 2068 * state and remove the channel from the channel list. This function is 2069 * typically called from inside srpt_zerolength_write_done(). Concurrent 2070 * srpt_zerolength_write() calls from inside srpt_close_ch() are possible 2071 * as long as the channel is on sport->nexus_list. 2072 */ 2073 static void srpt_release_channel_work(struct work_struct *w) 2074 { 2075 struct srpt_rdma_ch *ch; 2076 struct srpt_device *sdev; 2077 struct srpt_port *sport; 2078 struct se_session *se_sess; 2079 2080 ch = container_of(w, struct srpt_rdma_ch, release_work); 2081 pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num); 2082 2083 sdev = ch->sport->sdev; 2084 BUG_ON(!sdev); 2085 2086 se_sess = ch->sess; 2087 BUG_ON(!se_sess); 2088 2089 target_stop_session(se_sess); 2090 target_wait_for_sess_cmds(se_sess); 2091 2092 target_remove_session(se_sess); 2093 ch->sess = NULL; 2094 2095 if (ch->using_rdma_cm) 2096 rdma_destroy_id(ch->rdma_cm.cm_id); 2097 else 2098 ib_destroy_cm_id(ch->ib_cm.cm_id); 2099 2100 sport = ch->sport; 2101 mutex_lock(&sport->mutex); 2102 list_del_rcu(&ch->list); 2103 mutex_unlock(&sport->mutex); 2104 2105 if (ch->closed) 2106 complete(ch->closed); 2107 2108 srpt_destroy_ch_ib(ch); 2109 2110 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2111 ch->sport->sdev, ch->rq_size, 2112 ch->rsp_buf_cache, DMA_TO_DEVICE); 2113 2114 kmem_cache_destroy(ch->rsp_buf_cache); 2115 2116 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring, 2117 sdev, ch->rq_size, 2118 ch->req_buf_cache, DMA_FROM_DEVICE); 2119 2120 kmem_cache_destroy(ch->req_buf_cache); 2121 2122 kref_put(&ch->kref, srpt_free_ch); 2123 } 2124 2125 /** 2126 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED 2127 * @sdev: HCA through which the login request was received. 2128 * @ib_cm_id: IB/CM connection identifier in case of IB/CM. 2129 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM. 2130 * @port_num: Port through which the REQ message was received. 2131 * @pkey: P_Key of the incoming connection. 2132 * @req: SRP login request. 2133 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted 2134 * the login request. 2135 * 2136 * Ownership of the cm_id is transferred to the target session if this 2137 * function returns zero. Otherwise the caller remains the owner of cm_id. 2138 */ 2139 static int srpt_cm_req_recv(struct srpt_device *const sdev, 2140 struct ib_cm_id *ib_cm_id, 2141 struct rdma_cm_id *rdma_cm_id, 2142 u8 port_num, __be16 pkey, 2143 const struct srp_login_req *req, 2144 const char *src_addr) 2145 { 2146 struct srpt_port *sport = &sdev->port[port_num - 1]; 2147 struct srpt_nexus *nexus; 2148 struct srp_login_rsp *rsp = NULL; 2149 struct srp_login_rej *rej = NULL; 2150 union { 2151 struct rdma_conn_param rdma_cm; 2152 struct ib_cm_rep_param ib_cm; 2153 } *rep_param = NULL; 2154 struct srpt_rdma_ch *ch = NULL; 2155 char i_port_id[36]; 2156 u32 it_iu_len; 2157 int i, tag_num, tag_size, ret; 2158 struct srpt_tpg *stpg; 2159 2160 WARN_ON_ONCE(irqs_disabled()); 2161 2162 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2163 2164 pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n", 2165 req->initiator_port_id, req->target_port_id, it_iu_len, 2166 port_num, &sport->gid, be16_to_cpu(pkey)); 2167 2168 nexus = srpt_get_nexus(sport, req->initiator_port_id, 2169 req->target_port_id); 2170 if (IS_ERR(nexus)) { 2171 ret = PTR_ERR(nexus); 2172 goto out; 2173 } 2174 2175 ret = -ENOMEM; 2176 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 2177 rej = kzalloc(sizeof(*rej), GFP_KERNEL); 2178 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL); 2179 if (!rsp || !rej || !rep_param) 2180 goto out; 2181 2182 ret = -EINVAL; 2183 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2184 rej->reason = cpu_to_be32( 2185 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2186 pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n", 2187 it_iu_len, 64, srp_max_req_size); 2188 goto reject; 2189 } 2190 2191 if (!sport->enabled) { 2192 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2193 pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n", 2194 dev_name(&sport->sdev->device->dev), port_num); 2195 goto reject; 2196 } 2197 2198 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2199 || *(__be64 *)(req->target_port_id + 8) != 2200 cpu_to_be64(srpt_service_guid)) { 2201 rej->reason = cpu_to_be32( 2202 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2203 pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n"); 2204 goto reject; 2205 } 2206 2207 ret = -ENOMEM; 2208 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 2209 if (!ch) { 2210 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2211 pr_err("rejected SRP_LOGIN_REQ because out of memory.\n"); 2212 goto reject; 2213 } 2214 2215 kref_init(&ch->kref); 2216 ch->pkey = be16_to_cpu(pkey); 2217 ch->nexus = nexus; 2218 ch->zw_cqe.done = srpt_zerolength_write_done; 2219 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2220 ch->sport = sport; 2221 if (rdma_cm_id) { 2222 ch->using_rdma_cm = true; 2223 ch->rdma_cm.cm_id = rdma_cm_id; 2224 rdma_cm_id->context = ch; 2225 } else { 2226 ch->ib_cm.cm_id = ib_cm_id; 2227 ib_cm_id->context = ch; 2228 } 2229 /* 2230 * ch->rq_size should be at least as large as the initiator queue 2231 * depth to avoid that the initiator driver has to report QUEUE_FULL 2232 * to the SCSI mid-layer. 2233 */ 2234 ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr); 2235 spin_lock_init(&ch->spinlock); 2236 ch->state = CH_CONNECTING; 2237 INIT_LIST_HEAD(&ch->cmd_wait_list); 2238 ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2239 2240 ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size, 2241 512, 0, NULL); 2242 if (!ch->rsp_buf_cache) 2243 goto free_ch; 2244 2245 ch->ioctx_ring = (struct srpt_send_ioctx **) 2246 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2247 sizeof(*ch->ioctx_ring[0]), 2248 ch->rsp_buf_cache, 0, DMA_TO_DEVICE); 2249 if (!ch->ioctx_ring) { 2250 pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n"); 2251 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2252 goto free_rsp_cache; 2253 } 2254 2255 for (i = 0; i < ch->rq_size; i++) 2256 ch->ioctx_ring[i]->ch = ch; 2257 if (!sdev->use_srq) { 2258 u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ? 2259 be16_to_cpu(req->imm_data_offset) : 0; 2260 u16 alignment_offset; 2261 u32 req_sz; 2262 2263 if (req->req_flags & SRP_IMMED_REQUESTED) 2264 pr_debug("imm_data_offset = %d\n", 2265 be16_to_cpu(req->imm_data_offset)); 2266 if (imm_data_offset >= sizeof(struct srp_cmd)) { 2267 ch->imm_data_offset = imm_data_offset; 2268 rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP; 2269 } else { 2270 ch->imm_data_offset = 0; 2271 } 2272 alignment_offset = round_up(imm_data_offset, 512) - 2273 imm_data_offset; 2274 req_sz = alignment_offset + imm_data_offset + srp_max_req_size; 2275 ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz, 2276 512, 0, NULL); 2277 if (!ch->req_buf_cache) 2278 goto free_rsp_ring; 2279 2280 ch->ioctx_recv_ring = (struct srpt_recv_ioctx **) 2281 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2282 sizeof(*ch->ioctx_recv_ring[0]), 2283 ch->req_buf_cache, 2284 alignment_offset, 2285 DMA_FROM_DEVICE); 2286 if (!ch->ioctx_recv_ring) { 2287 pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n"); 2288 rej->reason = 2289 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2290 goto free_recv_cache; 2291 } 2292 for (i = 0; i < ch->rq_size; i++) 2293 INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list); 2294 } 2295 2296 ret = srpt_create_ch_ib(ch); 2297 if (ret) { 2298 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2299 pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n"); 2300 goto free_recv_ring; 2301 } 2302 2303 strscpy(ch->sess_name, src_addr, sizeof(ch->sess_name)); 2304 snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx", 2305 be64_to_cpu(*(__be64 *)nexus->i_port_id), 2306 be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8))); 2307 2308 pr_debug("registering src addr %s or i_port_id %s\n", ch->sess_name, 2309 i_port_id); 2310 2311 tag_num = ch->rq_size; 2312 tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */ 2313 2314 if (sport->guid_id) { 2315 mutex_lock(&sport->guid_id->mutex); 2316 list_for_each_entry(stpg, &sport->guid_id->tpg_list, entry) { 2317 if (!IS_ERR_OR_NULL(ch->sess)) 2318 break; 2319 ch->sess = target_setup_session(&stpg->tpg, tag_num, 2320 tag_size, TARGET_PROT_NORMAL, 2321 ch->sess_name, ch, NULL); 2322 } 2323 mutex_unlock(&sport->guid_id->mutex); 2324 } 2325 2326 if (sport->gid_id) { 2327 mutex_lock(&sport->gid_id->mutex); 2328 list_for_each_entry(stpg, &sport->gid_id->tpg_list, entry) { 2329 if (!IS_ERR_OR_NULL(ch->sess)) 2330 break; 2331 ch->sess = target_setup_session(&stpg->tpg, tag_num, 2332 tag_size, TARGET_PROT_NORMAL, i_port_id, 2333 ch, NULL); 2334 if (!IS_ERR_OR_NULL(ch->sess)) 2335 break; 2336 /* Retry without leading "0x" */ 2337 ch->sess = target_setup_session(&stpg->tpg, tag_num, 2338 tag_size, TARGET_PROT_NORMAL, 2339 i_port_id + 2, ch, NULL); 2340 } 2341 mutex_unlock(&sport->gid_id->mutex); 2342 } 2343 2344 if (IS_ERR_OR_NULL(ch->sess)) { 2345 WARN_ON_ONCE(ch->sess == NULL); 2346 ret = PTR_ERR(ch->sess); 2347 ch->sess = NULL; 2348 pr_info("Rejected login for initiator %s: ret = %d.\n", 2349 ch->sess_name, ret); 2350 rej->reason = cpu_to_be32(ret == -ENOMEM ? 2351 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES : 2352 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2353 goto destroy_ib; 2354 } 2355 2356 /* 2357 * Once a session has been created destruction of srpt_rdma_ch objects 2358 * will decrement sport->refcount. Hence increment sport->refcount now. 2359 */ 2360 atomic_inc(&sport->refcount); 2361 2362 mutex_lock(&sport->mutex); 2363 2364 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2365 struct srpt_rdma_ch *ch2; 2366 2367 list_for_each_entry(ch2, &nexus->ch_list, list) { 2368 if (srpt_disconnect_ch(ch2) < 0) 2369 continue; 2370 pr_info("Relogin - closed existing channel %s\n", 2371 ch2->sess_name); 2372 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2373 } 2374 } else { 2375 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2376 } 2377 2378 list_add_tail_rcu(&ch->list, &nexus->ch_list); 2379 2380 if (!sport->enabled) { 2381 rej->reason = cpu_to_be32( 2382 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2383 pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n", 2384 dev_name(&sdev->device->dev), port_num); 2385 mutex_unlock(&sport->mutex); 2386 ret = -EINVAL; 2387 goto reject; 2388 } 2389 2390 mutex_unlock(&sport->mutex); 2391 2392 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp); 2393 if (ret) { 2394 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2395 pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n", 2396 ret); 2397 goto reject; 2398 } 2399 2400 pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess, 2401 ch->sess_name, ch); 2402 2403 /* create srp_login_response */ 2404 rsp->opcode = SRP_LOGIN_RSP; 2405 rsp->tag = req->tag; 2406 rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size); 2407 rsp->max_ti_iu_len = req->req_it_iu_len; 2408 ch->max_ti_iu_len = it_iu_len; 2409 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 2410 SRP_BUF_FORMAT_INDIRECT); 2411 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2412 atomic_set(&ch->req_lim, ch->rq_size); 2413 atomic_set(&ch->req_lim_delta, 0); 2414 2415 /* create cm reply */ 2416 if (ch->using_rdma_cm) { 2417 rep_param->rdma_cm.private_data = (void *)rsp; 2418 rep_param->rdma_cm.private_data_len = sizeof(*rsp); 2419 rep_param->rdma_cm.rnr_retry_count = 7; 2420 rep_param->rdma_cm.flow_control = 1; 2421 rep_param->rdma_cm.responder_resources = 4; 2422 rep_param->rdma_cm.initiator_depth = 4; 2423 } else { 2424 rep_param->ib_cm.qp_num = ch->qp->qp_num; 2425 rep_param->ib_cm.private_data = (void *)rsp; 2426 rep_param->ib_cm.private_data_len = sizeof(*rsp); 2427 rep_param->ib_cm.rnr_retry_count = 7; 2428 rep_param->ib_cm.flow_control = 1; 2429 rep_param->ib_cm.failover_accepted = 0; 2430 rep_param->ib_cm.srq = 1; 2431 rep_param->ib_cm.responder_resources = 4; 2432 rep_param->ib_cm.initiator_depth = 4; 2433 } 2434 2435 /* 2436 * Hold the sport mutex while accepting a connection to avoid that 2437 * srpt_disconnect_ch() is invoked concurrently with this code. 2438 */ 2439 mutex_lock(&sport->mutex); 2440 if (sport->enabled && ch->state == CH_CONNECTING) { 2441 if (ch->using_rdma_cm) 2442 ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm); 2443 else 2444 ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm); 2445 } else { 2446 ret = -EINVAL; 2447 } 2448 mutex_unlock(&sport->mutex); 2449 2450 switch (ret) { 2451 case 0: 2452 break; 2453 case -EINVAL: 2454 goto reject; 2455 default: 2456 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2457 pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n", 2458 ret); 2459 goto reject; 2460 } 2461 2462 goto out; 2463 2464 destroy_ib: 2465 srpt_destroy_ch_ib(ch); 2466 2467 free_recv_ring: 2468 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring, 2469 ch->sport->sdev, ch->rq_size, 2470 ch->req_buf_cache, DMA_FROM_DEVICE); 2471 2472 free_recv_cache: 2473 kmem_cache_destroy(ch->req_buf_cache); 2474 2475 free_rsp_ring: 2476 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2477 ch->sport->sdev, ch->rq_size, 2478 ch->rsp_buf_cache, DMA_TO_DEVICE); 2479 2480 free_rsp_cache: 2481 kmem_cache_destroy(ch->rsp_buf_cache); 2482 2483 free_ch: 2484 if (rdma_cm_id) 2485 rdma_cm_id->context = NULL; 2486 else 2487 ib_cm_id->context = NULL; 2488 kfree(ch); 2489 ch = NULL; 2490 2491 WARN_ON_ONCE(ret == 0); 2492 2493 reject: 2494 pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason)); 2495 rej->opcode = SRP_LOGIN_REJ; 2496 rej->tag = req->tag; 2497 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 2498 SRP_BUF_FORMAT_INDIRECT); 2499 2500 if (rdma_cm_id) 2501 rdma_reject(rdma_cm_id, rej, sizeof(*rej), 2502 IB_CM_REJ_CONSUMER_DEFINED); 2503 else 2504 ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2505 rej, sizeof(*rej)); 2506 2507 if (ch && ch->sess) { 2508 srpt_close_ch(ch); 2509 /* 2510 * Tell the caller not to free cm_id since 2511 * srpt_release_channel_work() will do that. 2512 */ 2513 ret = 0; 2514 } 2515 2516 out: 2517 kfree(rep_param); 2518 kfree(rsp); 2519 kfree(rej); 2520 2521 return ret; 2522 } 2523 2524 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id, 2525 const struct ib_cm_req_event_param *param, 2526 void *private_data) 2527 { 2528 char sguid[40]; 2529 2530 srpt_format_guid(sguid, sizeof(sguid), 2531 ¶m->primary_path->dgid.global.interface_id); 2532 2533 return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port, 2534 param->primary_path->pkey, 2535 private_data, sguid); 2536 } 2537 2538 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id, 2539 struct rdma_cm_event *event) 2540 { 2541 struct srpt_device *sdev; 2542 struct srp_login_req req; 2543 const struct srp_login_req_rdma *req_rdma; 2544 struct sa_path_rec *path_rec = cm_id->route.path_rec; 2545 char src_addr[40]; 2546 2547 sdev = ib_get_client_data(cm_id->device, &srpt_client); 2548 if (!sdev) 2549 return -ECONNREFUSED; 2550 2551 if (event->param.conn.private_data_len < sizeof(*req_rdma)) 2552 return -EINVAL; 2553 2554 /* Transform srp_login_req_rdma into srp_login_req. */ 2555 req_rdma = event->param.conn.private_data; 2556 memset(&req, 0, sizeof(req)); 2557 req.opcode = req_rdma->opcode; 2558 req.tag = req_rdma->tag; 2559 req.req_it_iu_len = req_rdma->req_it_iu_len; 2560 req.req_buf_fmt = req_rdma->req_buf_fmt; 2561 req.req_flags = req_rdma->req_flags; 2562 memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16); 2563 memcpy(req.target_port_id, req_rdma->target_port_id, 16); 2564 req.imm_data_offset = req_rdma->imm_data_offset; 2565 2566 snprintf(src_addr, sizeof(src_addr), "%pIS", 2567 &cm_id->route.addr.src_addr); 2568 2569 return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num, 2570 path_rec ? path_rec->pkey : 0, &req, src_addr); 2571 } 2572 2573 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch, 2574 enum ib_cm_rej_reason reason, 2575 const u8 *private_data, 2576 u8 private_data_len) 2577 { 2578 char *priv = NULL; 2579 int i; 2580 2581 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1, 2582 GFP_KERNEL))) { 2583 for (i = 0; i < private_data_len; i++) 2584 sprintf(priv + 3 * i, " %02x", private_data[i]); 2585 } 2586 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n", 2587 ch->sess_name, ch->qp->qp_num, reason, private_data_len ? 2588 "; private data" : "", priv ? priv : " (?)"); 2589 kfree(priv); 2590 } 2591 2592 /** 2593 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event 2594 * @ch: SRPT RDMA channel. 2595 * 2596 * An RTU (ready to use) message indicates that the connection has been 2597 * established and that the recipient may begin transmitting. 2598 */ 2599 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch) 2600 { 2601 int ret; 2602 2603 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp); 2604 if (ret < 0) { 2605 pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name, 2606 ch->qp->qp_num); 2607 srpt_close_ch(ch); 2608 return; 2609 } 2610 2611 /* 2612 * Note: calling srpt_close_ch() if the transition to the LIVE state 2613 * fails is not necessary since that means that that function has 2614 * already been invoked from another thread. 2615 */ 2616 if (!srpt_set_ch_state(ch, CH_LIVE)) { 2617 pr_err("%s-%d: channel transition to LIVE state failed\n", 2618 ch->sess_name, ch->qp->qp_num); 2619 return; 2620 } 2621 2622 /* Trigger wait list processing. */ 2623 ret = srpt_zerolength_write(ch); 2624 WARN_ONCE(ret < 0, "%d\n", ret); 2625 } 2626 2627 /** 2628 * srpt_cm_handler - IB connection manager callback function 2629 * @cm_id: IB/CM connection identifier. 2630 * @event: IB/CM event. 2631 * 2632 * A non-zero return value will cause the caller destroy the CM ID. 2633 * 2634 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2635 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2636 * a non-zero value in any other case will trigger a race with the 2637 * ib_destroy_cm_id() call in srpt_release_channel(). 2638 */ 2639 static int srpt_cm_handler(struct ib_cm_id *cm_id, 2640 const struct ib_cm_event *event) 2641 { 2642 struct srpt_rdma_ch *ch = cm_id->context; 2643 int ret; 2644 2645 ret = 0; 2646 switch (event->event) { 2647 case IB_CM_REQ_RECEIVED: 2648 ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd, 2649 event->private_data); 2650 break; 2651 case IB_CM_REJ_RECEIVED: 2652 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason, 2653 event->private_data, 2654 IB_CM_REJ_PRIVATE_DATA_SIZE); 2655 break; 2656 case IB_CM_RTU_RECEIVED: 2657 case IB_CM_USER_ESTABLISHED: 2658 srpt_cm_rtu_recv(ch); 2659 break; 2660 case IB_CM_DREQ_RECEIVED: 2661 srpt_disconnect_ch(ch); 2662 break; 2663 case IB_CM_DREP_RECEIVED: 2664 pr_info("Received CM DREP message for ch %s-%d.\n", 2665 ch->sess_name, ch->qp->qp_num); 2666 srpt_close_ch(ch); 2667 break; 2668 case IB_CM_TIMEWAIT_EXIT: 2669 pr_info("Received CM TimeWait exit for ch %s-%d.\n", 2670 ch->sess_name, ch->qp->qp_num); 2671 srpt_close_ch(ch); 2672 break; 2673 case IB_CM_REP_ERROR: 2674 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2675 ch->qp->qp_num); 2676 break; 2677 case IB_CM_DREQ_ERROR: 2678 pr_info("Received CM DREQ ERROR event.\n"); 2679 break; 2680 case IB_CM_MRA_RECEIVED: 2681 pr_info("Received CM MRA event\n"); 2682 break; 2683 default: 2684 pr_err("received unrecognized CM event %d\n", event->event); 2685 break; 2686 } 2687 2688 return ret; 2689 } 2690 2691 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id, 2692 struct rdma_cm_event *event) 2693 { 2694 struct srpt_rdma_ch *ch = cm_id->context; 2695 int ret = 0; 2696 2697 switch (event->event) { 2698 case RDMA_CM_EVENT_CONNECT_REQUEST: 2699 ret = srpt_rdma_cm_req_recv(cm_id, event); 2700 break; 2701 case RDMA_CM_EVENT_REJECTED: 2702 srpt_cm_rej_recv(ch, event->status, 2703 event->param.conn.private_data, 2704 event->param.conn.private_data_len); 2705 break; 2706 case RDMA_CM_EVENT_ESTABLISHED: 2707 srpt_cm_rtu_recv(ch); 2708 break; 2709 case RDMA_CM_EVENT_DISCONNECTED: 2710 if (ch->state < CH_DISCONNECTING) 2711 srpt_disconnect_ch(ch); 2712 else 2713 srpt_close_ch(ch); 2714 break; 2715 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 2716 srpt_close_ch(ch); 2717 break; 2718 case RDMA_CM_EVENT_UNREACHABLE: 2719 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2720 ch->qp->qp_num); 2721 break; 2722 case RDMA_CM_EVENT_DEVICE_REMOVAL: 2723 case RDMA_CM_EVENT_ADDR_CHANGE: 2724 break; 2725 default: 2726 pr_err("received unrecognized RDMA CM event %d\n", 2727 event->event); 2728 break; 2729 } 2730 2731 return ret; 2732 } 2733 2734 /* 2735 * srpt_write_pending - Start data transfer from initiator to target (write). 2736 */ 2737 static int srpt_write_pending(struct se_cmd *se_cmd) 2738 { 2739 struct srpt_send_ioctx *ioctx = 2740 container_of(se_cmd, struct srpt_send_ioctx, cmd); 2741 struct srpt_rdma_ch *ch = ioctx->ch; 2742 struct ib_send_wr *first_wr = NULL; 2743 struct ib_cqe *cqe = &ioctx->rdma_cqe; 2744 enum srpt_command_state new_state; 2745 int ret, i; 2746 2747 if (ioctx->recv_ioctx) { 2748 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2749 target_execute_cmd(&ioctx->cmd); 2750 return 0; 2751 } 2752 2753 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2754 WARN_ON(new_state == SRPT_STATE_DONE); 2755 2756 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) { 2757 pr_warn("%s: IB send queue full (needed %d)\n", 2758 __func__, ioctx->n_rdma); 2759 ret = -ENOMEM; 2760 goto out_undo; 2761 } 2762 2763 cqe->done = srpt_rdma_read_done; 2764 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2765 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2766 2767 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port, 2768 cqe, first_wr); 2769 cqe = NULL; 2770 } 2771 2772 ret = ib_post_send(ch->qp, first_wr, NULL); 2773 if (ret) { 2774 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n", 2775 __func__, ret, ioctx->n_rdma, 2776 atomic_read(&ch->sq_wr_avail)); 2777 goto out_undo; 2778 } 2779 2780 return 0; 2781 out_undo: 2782 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 2783 return ret; 2784 } 2785 2786 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2787 { 2788 switch (tcm_mgmt_status) { 2789 case TMR_FUNCTION_COMPLETE: 2790 return SRP_TSK_MGMT_SUCCESS; 2791 case TMR_FUNCTION_REJECTED: 2792 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2793 } 2794 return SRP_TSK_MGMT_FAILED; 2795 } 2796 2797 /** 2798 * srpt_queue_response - transmit the response to a SCSI command 2799 * @cmd: SCSI target command. 2800 * 2801 * Callback function called by the TCM core. Must not block since it can be 2802 * invoked on the context of the IB completion handler. 2803 */ 2804 static void srpt_queue_response(struct se_cmd *cmd) 2805 { 2806 struct srpt_send_ioctx *ioctx = 2807 container_of(cmd, struct srpt_send_ioctx, cmd); 2808 struct srpt_rdma_ch *ch = ioctx->ch; 2809 struct srpt_device *sdev = ch->sport->sdev; 2810 struct ib_send_wr send_wr, *first_wr = &send_wr; 2811 struct ib_sge sge; 2812 enum srpt_command_state state; 2813 int resp_len, ret, i; 2814 u8 srp_tm_status; 2815 2816 state = ioctx->state; 2817 switch (state) { 2818 case SRPT_STATE_NEW: 2819 case SRPT_STATE_DATA_IN: 2820 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 2821 break; 2822 case SRPT_STATE_MGMT: 2823 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 2824 break; 2825 default: 2826 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 2827 ch, ioctx->ioctx.index, ioctx->state); 2828 break; 2829 } 2830 2831 if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)) 2832 return; 2833 2834 /* For read commands, transfer the data to the initiator. */ 2835 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE && 2836 ioctx->cmd.data_length && 2837 !ioctx->queue_status_only) { 2838 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2839 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2840 2841 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, 2842 ch->sport->port, NULL, first_wr); 2843 } 2844 } 2845 2846 if (state != SRPT_STATE_MGMT) 2847 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, 2848 cmd->scsi_status); 2849 else { 2850 srp_tm_status 2851 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 2852 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 2853 ioctx->cmd.tag); 2854 } 2855 2856 atomic_inc(&ch->req_lim); 2857 2858 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma, 2859 &ch->sq_wr_avail) < 0)) { 2860 pr_warn("%s: IB send queue full (needed %d)\n", 2861 __func__, ioctx->n_rdma); 2862 goto out; 2863 } 2864 2865 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len, 2866 DMA_TO_DEVICE); 2867 2868 sge.addr = ioctx->ioctx.dma; 2869 sge.length = resp_len; 2870 sge.lkey = sdev->lkey; 2871 2872 ioctx->ioctx.cqe.done = srpt_send_done; 2873 send_wr.next = NULL; 2874 send_wr.wr_cqe = &ioctx->ioctx.cqe; 2875 send_wr.sg_list = &sge; 2876 send_wr.num_sge = 1; 2877 send_wr.opcode = IB_WR_SEND; 2878 send_wr.send_flags = IB_SEND_SIGNALED; 2879 2880 ret = ib_post_send(ch->qp, first_wr, NULL); 2881 if (ret < 0) { 2882 pr_err("%s: sending cmd response failed for tag %llu (%d)\n", 2883 __func__, ioctx->cmd.tag, ret); 2884 goto out; 2885 } 2886 2887 return; 2888 2889 out: 2890 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 2891 atomic_dec(&ch->req_lim); 2892 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 2893 target_put_sess_cmd(&ioctx->cmd); 2894 } 2895 2896 static int srpt_queue_data_in(struct se_cmd *cmd) 2897 { 2898 srpt_queue_response(cmd); 2899 return 0; 2900 } 2901 2902 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 2903 { 2904 srpt_queue_response(cmd); 2905 } 2906 2907 /* 2908 * This function is called for aborted commands if no response is sent to the 2909 * initiator. Make sure that the credits freed by aborting a command are 2910 * returned to the initiator the next time a response is sent by incrementing 2911 * ch->req_lim_delta. 2912 */ 2913 static void srpt_aborted_task(struct se_cmd *cmd) 2914 { 2915 struct srpt_send_ioctx *ioctx = container_of(cmd, 2916 struct srpt_send_ioctx, cmd); 2917 struct srpt_rdma_ch *ch = ioctx->ch; 2918 2919 atomic_inc(&ch->req_lim_delta); 2920 } 2921 2922 static int srpt_queue_status(struct se_cmd *cmd) 2923 { 2924 struct srpt_send_ioctx *ioctx; 2925 2926 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 2927 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 2928 if (cmd->se_cmd_flags & 2929 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 2930 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 2931 ioctx->queue_status_only = true; 2932 srpt_queue_response(cmd); 2933 return 0; 2934 } 2935 2936 static void srpt_refresh_port_work(struct work_struct *work) 2937 { 2938 struct srpt_port *sport = container_of(work, struct srpt_port, work); 2939 2940 srpt_refresh_port(sport); 2941 } 2942 2943 /** 2944 * srpt_release_sport - disable login and wait for associated channels 2945 * @sport: SRPT HCA port. 2946 */ 2947 static int srpt_release_sport(struct srpt_port *sport) 2948 { 2949 DECLARE_COMPLETION_ONSTACK(c); 2950 struct srpt_nexus *nexus, *next_n; 2951 struct srpt_rdma_ch *ch; 2952 2953 WARN_ON_ONCE(irqs_disabled()); 2954 2955 sport->freed_channels = &c; 2956 2957 mutex_lock(&sport->mutex); 2958 srpt_set_enabled(sport, false); 2959 mutex_unlock(&sport->mutex); 2960 2961 while (atomic_read(&sport->refcount) > 0 && 2962 wait_for_completion_timeout(&c, 5 * HZ) <= 0) { 2963 pr_info("%s_%d: waiting for unregistration of %d sessions ...\n", 2964 dev_name(&sport->sdev->device->dev), sport->port, 2965 atomic_read(&sport->refcount)); 2966 rcu_read_lock(); 2967 list_for_each_entry(nexus, &sport->nexus_list, entry) { 2968 list_for_each_entry(ch, &nexus->ch_list, list) { 2969 pr_info("%s-%d: state %s\n", 2970 ch->sess_name, ch->qp->qp_num, 2971 get_ch_state_name(ch->state)); 2972 } 2973 } 2974 rcu_read_unlock(); 2975 } 2976 2977 mutex_lock(&sport->mutex); 2978 list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) { 2979 list_del(&nexus->entry); 2980 kfree_rcu(nexus, rcu); 2981 } 2982 mutex_unlock(&sport->mutex); 2983 2984 return 0; 2985 } 2986 2987 struct port_and_port_id { 2988 struct srpt_port *sport; 2989 struct srpt_port_id **port_id; 2990 }; 2991 2992 static struct port_and_port_id __srpt_lookup_port(const char *name) 2993 { 2994 struct ib_device *dev; 2995 struct srpt_device *sdev; 2996 struct srpt_port *sport; 2997 int i; 2998 2999 list_for_each_entry(sdev, &srpt_dev_list, list) { 3000 dev = sdev->device; 3001 if (!dev) 3002 continue; 3003 3004 for (i = 0; i < dev->phys_port_cnt; i++) { 3005 sport = &sdev->port[i]; 3006 3007 if (strcmp(sport->guid_name, name) == 0) { 3008 kref_get(&sdev->refcnt); 3009 return (struct port_and_port_id){ 3010 sport, &sport->guid_id}; 3011 } 3012 if (strcmp(sport->gid_name, name) == 0) { 3013 kref_get(&sdev->refcnt); 3014 return (struct port_and_port_id){ 3015 sport, &sport->gid_id}; 3016 } 3017 } 3018 } 3019 3020 return (struct port_and_port_id){}; 3021 } 3022 3023 /** 3024 * srpt_lookup_port() - Look up an RDMA port by name 3025 * @name: ASCII port name 3026 * 3027 * Increments the RDMA port reference count if an RDMA port pointer is returned. 3028 * The caller must drop that reference count by calling srpt_port_put_ref(). 3029 */ 3030 static struct port_and_port_id srpt_lookup_port(const char *name) 3031 { 3032 struct port_and_port_id papi; 3033 3034 spin_lock(&srpt_dev_lock); 3035 papi = __srpt_lookup_port(name); 3036 spin_unlock(&srpt_dev_lock); 3037 3038 return papi; 3039 } 3040 3041 static void srpt_free_srq(struct srpt_device *sdev) 3042 { 3043 if (!sdev->srq) 3044 return; 3045 3046 ib_destroy_srq(sdev->srq); 3047 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3048 sdev->srq_size, sdev->req_buf_cache, 3049 DMA_FROM_DEVICE); 3050 kmem_cache_destroy(sdev->req_buf_cache); 3051 sdev->srq = NULL; 3052 } 3053 3054 static int srpt_alloc_srq(struct srpt_device *sdev) 3055 { 3056 struct ib_srq_init_attr srq_attr = { 3057 .event_handler = srpt_srq_event, 3058 .srq_context = (void *)sdev, 3059 .attr.max_wr = sdev->srq_size, 3060 .attr.max_sge = 1, 3061 .srq_type = IB_SRQT_BASIC, 3062 }; 3063 struct ib_device *device = sdev->device; 3064 struct ib_srq *srq; 3065 int i; 3066 3067 WARN_ON_ONCE(sdev->srq); 3068 srq = ib_create_srq(sdev->pd, &srq_attr); 3069 if (IS_ERR(srq)) { 3070 pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq)); 3071 return PTR_ERR(srq); 3072 } 3073 3074 pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size, 3075 sdev->device->attrs.max_srq_wr, dev_name(&device->dev)); 3076 3077 sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf", 3078 srp_max_req_size, 0, 0, NULL); 3079 if (!sdev->req_buf_cache) 3080 goto free_srq; 3081 3082 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3083 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3084 sizeof(*sdev->ioctx_ring[0]), 3085 sdev->req_buf_cache, 0, DMA_FROM_DEVICE); 3086 if (!sdev->ioctx_ring) 3087 goto free_cache; 3088 3089 sdev->use_srq = true; 3090 sdev->srq = srq; 3091 3092 for (i = 0; i < sdev->srq_size; ++i) { 3093 INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list); 3094 srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]); 3095 } 3096 3097 return 0; 3098 3099 free_cache: 3100 kmem_cache_destroy(sdev->req_buf_cache); 3101 3102 free_srq: 3103 ib_destroy_srq(srq); 3104 return -ENOMEM; 3105 } 3106 3107 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq) 3108 { 3109 struct ib_device *device = sdev->device; 3110 int ret = 0; 3111 3112 if (!use_srq) { 3113 srpt_free_srq(sdev); 3114 sdev->use_srq = false; 3115 } else if (use_srq && !sdev->srq) { 3116 ret = srpt_alloc_srq(sdev); 3117 } 3118 pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, 3119 dev_name(&device->dev), sdev->use_srq, ret); 3120 return ret; 3121 } 3122 3123 static void srpt_free_sdev(struct kref *refcnt) 3124 { 3125 struct srpt_device *sdev = container_of(refcnt, typeof(*sdev), refcnt); 3126 3127 kfree(sdev); 3128 } 3129 3130 static void srpt_sdev_put(struct srpt_device *sdev) 3131 { 3132 kref_put(&sdev->refcnt, srpt_free_sdev); 3133 } 3134 3135 /** 3136 * srpt_add_one - InfiniBand device addition callback function 3137 * @device: Describes a HCA. 3138 */ 3139 static int srpt_add_one(struct ib_device *device) 3140 { 3141 struct srpt_device *sdev; 3142 struct srpt_port *sport; 3143 int ret; 3144 u32 i; 3145 3146 pr_debug("device = %p\n", device); 3147 3148 sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt), 3149 GFP_KERNEL); 3150 if (!sdev) 3151 return -ENOMEM; 3152 3153 kref_init(&sdev->refcnt); 3154 sdev->device = device; 3155 mutex_init(&sdev->sdev_mutex); 3156 3157 sdev->pd = ib_alloc_pd(device, 0); 3158 if (IS_ERR(sdev->pd)) { 3159 ret = PTR_ERR(sdev->pd); 3160 goto free_dev; 3161 } 3162 3163 sdev->lkey = sdev->pd->local_dma_lkey; 3164 3165 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr); 3166 3167 srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq); 3168 3169 if (!srpt_service_guid) 3170 srpt_service_guid = be64_to_cpu(device->node_guid); 3171 3172 if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND) 3173 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3174 if (IS_ERR(sdev->cm_id)) { 3175 pr_info("ib_create_cm_id() failed: %ld\n", 3176 PTR_ERR(sdev->cm_id)); 3177 ret = PTR_ERR(sdev->cm_id); 3178 sdev->cm_id = NULL; 3179 if (!rdma_cm_id) 3180 goto err_ring; 3181 } 3182 3183 /* print out target login information */ 3184 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n", 3185 srpt_service_guid, srpt_service_guid, srpt_service_guid); 3186 3187 /* 3188 * We do not have a consistent service_id (ie. also id_ext of target_id) 3189 * to identify this target. We currently use the guid of the first HCA 3190 * in the system as service_id; therefore, the target_id will change 3191 * if this HCA is gone bad and replaced by different HCA 3192 */ 3193 ret = sdev->cm_id ? 3194 ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid)) : 3195 0; 3196 if (ret < 0) { 3197 pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret, 3198 sdev->cm_id->state); 3199 goto err_cm; 3200 } 3201 3202 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3203 srpt_event_handler); 3204 ib_register_event_handler(&sdev->event_handler); 3205 3206 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3207 sport = &sdev->port[i - 1]; 3208 INIT_LIST_HEAD(&sport->nexus_list); 3209 mutex_init(&sport->mutex); 3210 sport->sdev = sdev; 3211 sport->port = i; 3212 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3213 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3214 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3215 sport->port_attrib.use_srq = false; 3216 INIT_WORK(&sport->work, srpt_refresh_port_work); 3217 3218 ret = srpt_refresh_port(sport); 3219 if (ret) { 3220 pr_err("MAD registration failed for %s-%d.\n", 3221 dev_name(&sdev->device->dev), i); 3222 i--; 3223 goto err_port; 3224 } 3225 } 3226 3227 spin_lock(&srpt_dev_lock); 3228 list_add_tail(&sdev->list, &srpt_dev_list); 3229 spin_unlock(&srpt_dev_lock); 3230 3231 ib_set_client_data(device, &srpt_client, sdev); 3232 pr_debug("added %s.\n", dev_name(&device->dev)); 3233 return 0; 3234 3235 err_port: 3236 srpt_unregister_mad_agent(sdev, i); 3237 ib_unregister_event_handler(&sdev->event_handler); 3238 err_cm: 3239 if (sdev->cm_id) 3240 ib_destroy_cm_id(sdev->cm_id); 3241 err_ring: 3242 srpt_free_srq(sdev); 3243 ib_dealloc_pd(sdev->pd); 3244 free_dev: 3245 srpt_sdev_put(sdev); 3246 pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev)); 3247 return ret; 3248 } 3249 3250 /** 3251 * srpt_remove_one - InfiniBand device removal callback function 3252 * @device: Describes a HCA. 3253 * @client_data: The value passed as the third argument to ib_set_client_data(). 3254 */ 3255 static void srpt_remove_one(struct ib_device *device, void *client_data) 3256 { 3257 struct srpt_device *sdev = client_data; 3258 int i; 3259 3260 srpt_unregister_mad_agent(sdev, sdev->device->phys_port_cnt); 3261 3262 ib_unregister_event_handler(&sdev->event_handler); 3263 3264 /* Cancel any work queued by the just unregistered IB event handler. */ 3265 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3266 cancel_work_sync(&sdev->port[i].work); 3267 3268 if (sdev->cm_id) 3269 ib_destroy_cm_id(sdev->cm_id); 3270 3271 ib_set_client_data(device, &srpt_client, NULL); 3272 3273 /* 3274 * Unregistering a target must happen after destroying sdev->cm_id 3275 * such that no new SRP_LOGIN_REQ information units can arrive while 3276 * destroying the target. 3277 */ 3278 spin_lock(&srpt_dev_lock); 3279 list_del(&sdev->list); 3280 spin_unlock(&srpt_dev_lock); 3281 3282 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3283 srpt_release_sport(&sdev->port[i]); 3284 3285 srpt_free_srq(sdev); 3286 3287 ib_dealloc_pd(sdev->pd); 3288 3289 srpt_sdev_put(sdev); 3290 } 3291 3292 static struct ib_client srpt_client = { 3293 .name = DRV_NAME, 3294 .add = srpt_add_one, 3295 .remove = srpt_remove_one 3296 }; 3297 3298 static int srpt_check_true(struct se_portal_group *se_tpg) 3299 { 3300 return 1; 3301 } 3302 3303 static int srpt_check_false(struct se_portal_group *se_tpg) 3304 { 3305 return 0; 3306 } 3307 3308 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg) 3309 { 3310 return tpg->se_tpg_wwn->priv; 3311 } 3312 3313 static struct srpt_port_id *srpt_wwn_to_sport_id(struct se_wwn *wwn) 3314 { 3315 struct srpt_port *sport = wwn->priv; 3316 3317 if (sport->guid_id && &sport->guid_id->wwn == wwn) 3318 return sport->guid_id; 3319 if (sport->gid_id && &sport->gid_id->wwn == wwn) 3320 return sport->gid_id; 3321 WARN_ON_ONCE(true); 3322 return NULL; 3323 } 3324 3325 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3326 { 3327 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg); 3328 3329 return stpg->sport_id->name; 3330 } 3331 3332 static u16 srpt_get_tag(struct se_portal_group *tpg) 3333 { 3334 return 1; 3335 } 3336 3337 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3338 { 3339 return 1; 3340 } 3341 3342 static void srpt_release_cmd(struct se_cmd *se_cmd) 3343 { 3344 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3345 struct srpt_send_ioctx, cmd); 3346 struct srpt_rdma_ch *ch = ioctx->ch; 3347 struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx; 3348 3349 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE && 3350 !(ioctx->cmd.transport_state & CMD_T_ABORTED)); 3351 3352 if (recv_ioctx) { 3353 WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list)); 3354 ioctx->recv_ioctx = NULL; 3355 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx); 3356 } 3357 3358 if (ioctx->n_rw_ctx) { 3359 srpt_free_rw_ctxs(ch, ioctx); 3360 ioctx->n_rw_ctx = 0; 3361 } 3362 3363 target_free_tag(se_cmd->se_sess, se_cmd); 3364 } 3365 3366 /** 3367 * srpt_close_session - forcibly close a session 3368 * @se_sess: SCSI target session. 3369 * 3370 * Callback function invoked by the TCM core to clean up sessions associated 3371 * with a node ACL when the user invokes 3372 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3373 */ 3374 static void srpt_close_session(struct se_session *se_sess) 3375 { 3376 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 3377 3378 srpt_disconnect_ch_sync(ch); 3379 } 3380 3381 /** 3382 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB) 3383 * @se_sess: SCSI target session. 3384 * 3385 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3386 * This object represents an arbitrary integer used to uniquely identify a 3387 * particular attached remote initiator port to a particular SCSI target port 3388 * within a particular SCSI target device within a particular SCSI instance. 3389 */ 3390 static u32 srpt_sess_get_index(struct se_session *se_sess) 3391 { 3392 return 0; 3393 } 3394 3395 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3396 { 3397 } 3398 3399 /* Note: only used from inside debug printk's by the TCM core. */ 3400 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3401 { 3402 struct srpt_send_ioctx *ioctx; 3403 3404 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3405 return ioctx->state; 3406 } 3407 3408 static int srpt_parse_guid(u64 *guid, const char *name) 3409 { 3410 u16 w[4]; 3411 int ret = -EINVAL; 3412 3413 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4) 3414 goto out; 3415 *guid = get_unaligned_be64(w); 3416 ret = 0; 3417 out: 3418 return ret; 3419 } 3420 3421 /** 3422 * srpt_parse_i_port_id - parse an initiator port ID 3423 * @name: ASCII representation of a 128-bit initiator port ID. 3424 * @i_port_id: Binary 128-bit port ID. 3425 */ 3426 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3427 { 3428 const char *p; 3429 unsigned len, count, leading_zero_bytes; 3430 int ret; 3431 3432 p = name; 3433 if (strncasecmp(p, "0x", 2) == 0) 3434 p += 2; 3435 ret = -EINVAL; 3436 len = strlen(p); 3437 if (len % 2) 3438 goto out; 3439 count = min(len / 2, 16U); 3440 leading_zero_bytes = 16 - count; 3441 memset(i_port_id, 0, leading_zero_bytes); 3442 ret = hex2bin(i_port_id + leading_zero_bytes, p, count); 3443 3444 out: 3445 return ret; 3446 } 3447 3448 /* 3449 * configfs callback function invoked for mkdir 3450 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3451 * 3452 * i_port_id must be an initiator port GUID, GID or IP address. See also the 3453 * target_alloc_session() calls in this driver. Examples of valid initiator 3454 * port IDs: 3455 * 0x0000000000000000505400fffe4a0b7b 3456 * 0000000000000000505400fffe4a0b7b 3457 * 5054:00ff:fe4a:0b7b 3458 * 192.168.122.76 3459 */ 3460 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) 3461 { 3462 struct sockaddr_storage sa; 3463 u64 guid; 3464 u8 i_port_id[16]; 3465 int ret; 3466 3467 ret = srpt_parse_guid(&guid, name); 3468 if (ret < 0) 3469 ret = srpt_parse_i_port_id(i_port_id, name); 3470 if (ret < 0) 3471 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL, 3472 &sa); 3473 if (ret < 0) 3474 pr_err("invalid initiator port ID %s\n", name); 3475 return ret; 3476 } 3477 3478 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, 3479 char *page) 3480 { 3481 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3482 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3483 3484 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3485 } 3486 3487 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, 3488 const char *page, size_t count) 3489 { 3490 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3491 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3492 unsigned long val; 3493 int ret; 3494 3495 ret = kstrtoul(page, 0, &val); 3496 if (ret < 0) { 3497 pr_err("kstrtoul() failed with ret: %d\n", ret); 3498 return -EINVAL; 3499 } 3500 if (val > MAX_SRPT_RDMA_SIZE) { 3501 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3502 MAX_SRPT_RDMA_SIZE); 3503 return -EINVAL; 3504 } 3505 if (val < DEFAULT_MAX_RDMA_SIZE) { 3506 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3507 val, DEFAULT_MAX_RDMA_SIZE); 3508 return -EINVAL; 3509 } 3510 sport->port_attrib.srp_max_rdma_size = val; 3511 3512 return count; 3513 } 3514 3515 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, 3516 char *page) 3517 { 3518 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3519 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3520 3521 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3522 } 3523 3524 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, 3525 const char *page, size_t count) 3526 { 3527 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3528 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3529 unsigned long val; 3530 int ret; 3531 3532 ret = kstrtoul(page, 0, &val); 3533 if (ret < 0) { 3534 pr_err("kstrtoul() failed with ret: %d\n", ret); 3535 return -EINVAL; 3536 } 3537 if (val > MAX_SRPT_RSP_SIZE) { 3538 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3539 MAX_SRPT_RSP_SIZE); 3540 return -EINVAL; 3541 } 3542 if (val < MIN_MAX_RSP_SIZE) { 3543 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3544 MIN_MAX_RSP_SIZE); 3545 return -EINVAL; 3546 } 3547 sport->port_attrib.srp_max_rsp_size = val; 3548 3549 return count; 3550 } 3551 3552 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, 3553 char *page) 3554 { 3555 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3556 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3557 3558 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_sq_size); 3559 } 3560 3561 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, 3562 const char *page, size_t count) 3563 { 3564 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3565 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3566 unsigned long val; 3567 int ret; 3568 3569 ret = kstrtoul(page, 0, &val); 3570 if (ret < 0) { 3571 pr_err("kstrtoul() failed with ret: %d\n", ret); 3572 return -EINVAL; 3573 } 3574 if (val > MAX_SRPT_SRQ_SIZE) { 3575 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3576 MAX_SRPT_SRQ_SIZE); 3577 return -EINVAL; 3578 } 3579 if (val < MIN_SRPT_SRQ_SIZE) { 3580 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3581 MIN_SRPT_SRQ_SIZE); 3582 return -EINVAL; 3583 } 3584 sport->port_attrib.srp_sq_size = val; 3585 3586 return count; 3587 } 3588 3589 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item, 3590 char *page) 3591 { 3592 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3593 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3594 3595 return sysfs_emit(page, "%d\n", sport->port_attrib.use_srq); 3596 } 3597 3598 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item, 3599 const char *page, size_t count) 3600 { 3601 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3602 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3603 struct srpt_device *sdev = sport->sdev; 3604 unsigned long val; 3605 bool enabled; 3606 int ret; 3607 3608 ret = kstrtoul(page, 0, &val); 3609 if (ret < 0) 3610 return ret; 3611 if (val != !!val) 3612 return -EINVAL; 3613 3614 ret = mutex_lock_interruptible(&sdev->sdev_mutex); 3615 if (ret < 0) 3616 return ret; 3617 ret = mutex_lock_interruptible(&sport->mutex); 3618 if (ret < 0) 3619 goto unlock_sdev; 3620 enabled = sport->enabled; 3621 /* Log out all initiator systems before changing 'use_srq'. */ 3622 srpt_set_enabled(sport, false); 3623 sport->port_attrib.use_srq = val; 3624 srpt_use_srq(sdev, sport->port_attrib.use_srq); 3625 srpt_set_enabled(sport, enabled); 3626 ret = count; 3627 mutex_unlock(&sport->mutex); 3628 unlock_sdev: 3629 mutex_unlock(&sdev->sdev_mutex); 3630 3631 return ret; 3632 } 3633 3634 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size); 3635 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size); 3636 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size); 3637 CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq); 3638 3639 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3640 &srpt_tpg_attrib_attr_srp_max_rdma_size, 3641 &srpt_tpg_attrib_attr_srp_max_rsp_size, 3642 &srpt_tpg_attrib_attr_srp_sq_size, 3643 &srpt_tpg_attrib_attr_use_srq, 3644 NULL, 3645 }; 3646 3647 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr) 3648 { 3649 struct rdma_cm_id *rdma_cm_id; 3650 int ret; 3651 3652 rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler, 3653 NULL, RDMA_PS_TCP, IB_QPT_RC); 3654 if (IS_ERR(rdma_cm_id)) { 3655 pr_err("RDMA/CM ID creation failed: %ld\n", 3656 PTR_ERR(rdma_cm_id)); 3657 goto out; 3658 } 3659 3660 ret = rdma_bind_addr(rdma_cm_id, listen_addr); 3661 if (ret) { 3662 char addr_str[64]; 3663 3664 snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr); 3665 pr_err("Binding RDMA/CM ID to address %s failed: %d\n", 3666 addr_str, ret); 3667 rdma_destroy_id(rdma_cm_id); 3668 rdma_cm_id = ERR_PTR(ret); 3669 goto out; 3670 } 3671 3672 ret = rdma_listen(rdma_cm_id, 128); 3673 if (ret) { 3674 pr_err("rdma_listen() failed: %d\n", ret); 3675 rdma_destroy_id(rdma_cm_id); 3676 rdma_cm_id = ERR_PTR(ret); 3677 } 3678 3679 out: 3680 return rdma_cm_id; 3681 } 3682 3683 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page) 3684 { 3685 return sysfs_emit(page, "%d\n", rdma_cm_port); 3686 } 3687 3688 static ssize_t srpt_rdma_cm_port_store(struct config_item *item, 3689 const char *page, size_t count) 3690 { 3691 struct sockaddr_in addr4 = { .sin_family = AF_INET }; 3692 struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 }; 3693 struct rdma_cm_id *new_id = NULL; 3694 u16 val; 3695 int ret; 3696 3697 ret = kstrtou16(page, 0, &val); 3698 if (ret < 0) 3699 return ret; 3700 ret = count; 3701 if (rdma_cm_port == val) 3702 goto out; 3703 3704 if (val) { 3705 addr6.sin6_port = cpu_to_be16(val); 3706 new_id = srpt_create_rdma_id((struct sockaddr *)&addr6); 3707 if (IS_ERR(new_id)) { 3708 addr4.sin_port = cpu_to_be16(val); 3709 new_id = srpt_create_rdma_id((struct sockaddr *)&addr4); 3710 if (IS_ERR(new_id)) { 3711 ret = PTR_ERR(new_id); 3712 goto out; 3713 } 3714 } 3715 } 3716 3717 mutex_lock(&rdma_cm_mutex); 3718 rdma_cm_port = val; 3719 swap(rdma_cm_id, new_id); 3720 mutex_unlock(&rdma_cm_mutex); 3721 3722 if (new_id) 3723 rdma_destroy_id(new_id); 3724 ret = count; 3725 out: 3726 return ret; 3727 } 3728 3729 CONFIGFS_ATTR(srpt_, rdma_cm_port); 3730 3731 static struct configfs_attribute *srpt_da_attrs[] = { 3732 &srpt_attr_rdma_cm_port, 3733 NULL, 3734 }; 3735 3736 static int srpt_enable_tpg(struct se_portal_group *se_tpg, bool enable) 3737 { 3738 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3739 3740 mutex_lock(&sport->mutex); 3741 srpt_set_enabled(sport, enable); 3742 mutex_unlock(&sport->mutex); 3743 3744 return 0; 3745 } 3746 3747 /** 3748 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg 3749 * @wwn: Corresponds to $driver/$port. 3750 * @name: $tpg. 3751 */ 3752 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3753 const char *name) 3754 { 3755 struct srpt_port_id *sport_id = srpt_wwn_to_sport_id(wwn); 3756 struct srpt_tpg *stpg; 3757 int res = -ENOMEM; 3758 3759 stpg = kzalloc(sizeof(*stpg), GFP_KERNEL); 3760 if (!stpg) 3761 return ERR_PTR(res); 3762 stpg->sport_id = sport_id; 3763 res = core_tpg_register(wwn, &stpg->tpg, SCSI_PROTOCOL_SRP); 3764 if (res) { 3765 kfree(stpg); 3766 return ERR_PTR(res); 3767 } 3768 3769 mutex_lock(&sport_id->mutex); 3770 list_add_tail(&stpg->entry, &sport_id->tpg_list); 3771 mutex_unlock(&sport_id->mutex); 3772 3773 return &stpg->tpg; 3774 } 3775 3776 /** 3777 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg 3778 * @tpg: Target portal group to deregister. 3779 */ 3780 static void srpt_drop_tpg(struct se_portal_group *tpg) 3781 { 3782 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg); 3783 struct srpt_port_id *sport_id = stpg->sport_id; 3784 struct srpt_port *sport = srpt_tpg_to_sport(tpg); 3785 3786 mutex_lock(&sport_id->mutex); 3787 list_del(&stpg->entry); 3788 mutex_unlock(&sport_id->mutex); 3789 3790 sport->enabled = false; 3791 core_tpg_deregister(tpg); 3792 kfree(stpg); 3793 } 3794 3795 /** 3796 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port 3797 * @tf: Not used. 3798 * @group: Not used. 3799 * @name: $port. 3800 */ 3801 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3802 struct config_group *group, 3803 const char *name) 3804 { 3805 struct port_and_port_id papi = srpt_lookup_port(name); 3806 struct srpt_port *sport = papi.sport; 3807 struct srpt_port_id *port_id; 3808 3809 if (!papi.port_id) 3810 return ERR_PTR(-EINVAL); 3811 if (*papi.port_id) { 3812 /* Attempt to create a directory that already exists. */ 3813 WARN_ON_ONCE(true); 3814 return &(*papi.port_id)->wwn; 3815 } 3816 port_id = kzalloc(sizeof(*port_id), GFP_KERNEL); 3817 if (!port_id) { 3818 srpt_sdev_put(sport->sdev); 3819 return ERR_PTR(-ENOMEM); 3820 } 3821 mutex_init(&port_id->mutex); 3822 INIT_LIST_HEAD(&port_id->tpg_list); 3823 port_id->wwn.priv = sport; 3824 memcpy(port_id->name, port_id == sport->guid_id ? sport->guid_name : 3825 sport->gid_name, ARRAY_SIZE(port_id->name)); 3826 3827 *papi.port_id = port_id; 3828 3829 return &port_id->wwn; 3830 } 3831 3832 /** 3833 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port 3834 * @wwn: $port. 3835 */ 3836 static void srpt_drop_tport(struct se_wwn *wwn) 3837 { 3838 struct srpt_port_id *port_id = container_of(wwn, typeof(*port_id), wwn); 3839 struct srpt_port *sport = wwn->priv; 3840 3841 if (sport->guid_id == port_id) 3842 sport->guid_id = NULL; 3843 else if (sport->gid_id == port_id) 3844 sport->gid_id = NULL; 3845 else 3846 WARN_ON_ONCE(true); 3847 3848 srpt_sdev_put(sport->sdev); 3849 kfree(port_id); 3850 } 3851 3852 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf) 3853 { 3854 return sysfs_emit(buf, "\n"); 3855 } 3856 3857 CONFIGFS_ATTR_RO(srpt_wwn_, version); 3858 3859 static struct configfs_attribute *srpt_wwn_attrs[] = { 3860 &srpt_wwn_attr_version, 3861 NULL, 3862 }; 3863 3864 static const struct target_core_fabric_ops srpt_template = { 3865 .module = THIS_MODULE, 3866 .fabric_name = "srpt", 3867 .tpg_get_wwn = srpt_get_fabric_wwn, 3868 .tpg_get_tag = srpt_get_tag, 3869 .tpg_check_demo_mode = srpt_check_false, 3870 .tpg_check_demo_mode_cache = srpt_check_true, 3871 .tpg_check_demo_mode_write_protect = srpt_check_true, 3872 .tpg_check_prod_mode_write_protect = srpt_check_false, 3873 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3874 .release_cmd = srpt_release_cmd, 3875 .check_stop_free = srpt_check_stop_free, 3876 .close_session = srpt_close_session, 3877 .sess_get_index = srpt_sess_get_index, 3878 .sess_get_initiator_sid = NULL, 3879 .write_pending = srpt_write_pending, 3880 .set_default_node_attributes = srpt_set_default_node_attrs, 3881 .get_cmd_state = srpt_get_tcm_cmd_state, 3882 .queue_data_in = srpt_queue_data_in, 3883 .queue_status = srpt_queue_status, 3884 .queue_tm_rsp = srpt_queue_tm_rsp, 3885 .aborted_task = srpt_aborted_task, 3886 /* 3887 * Setup function pointers for generic logic in 3888 * target_core_fabric_configfs.c 3889 */ 3890 .fabric_make_wwn = srpt_make_tport, 3891 .fabric_drop_wwn = srpt_drop_tport, 3892 .fabric_make_tpg = srpt_make_tpg, 3893 .fabric_enable_tpg = srpt_enable_tpg, 3894 .fabric_drop_tpg = srpt_drop_tpg, 3895 .fabric_init_nodeacl = srpt_init_nodeacl, 3896 3897 .tfc_discovery_attrs = srpt_da_attrs, 3898 .tfc_wwn_attrs = srpt_wwn_attrs, 3899 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3900 }; 3901 3902 /** 3903 * srpt_init_module - kernel module initialization 3904 * 3905 * Note: Since ib_register_client() registers callback functions, and since at 3906 * least one of these callback functions (srpt_add_one()) calls target core 3907 * functions, this driver must be registered with the target core before 3908 * ib_register_client() is called. 3909 */ 3910 static int __init srpt_init_module(void) 3911 { 3912 int ret; 3913 3914 ret = -EINVAL; 3915 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3916 pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n", 3917 srp_max_req_size, MIN_MAX_REQ_SIZE); 3918 goto out; 3919 } 3920 3921 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3922 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3923 pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n", 3924 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3925 goto out; 3926 } 3927 3928 ret = target_register_template(&srpt_template); 3929 if (ret) 3930 goto out; 3931 3932 ret = ib_register_client(&srpt_client); 3933 if (ret) { 3934 pr_err("couldn't register IB client\n"); 3935 goto out_unregister_target; 3936 } 3937 3938 return 0; 3939 3940 out_unregister_target: 3941 target_unregister_template(&srpt_template); 3942 out: 3943 return ret; 3944 } 3945 3946 static void __exit srpt_cleanup_module(void) 3947 { 3948 if (rdma_cm_id) 3949 rdma_destroy_id(rdma_cm_id); 3950 ib_unregister_client(&srpt_client); 3951 target_unregister_template(&srpt_template); 3952 } 3953 3954 module_init(srpt_init_module); 3955 module_exit(srpt_cleanup_module); 3956