1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_tcq.h> 45 #include <target/configfs_macros.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric_configfs.h> 48 #include <target/target_core_fabric.h> 49 #include <target/target_core_configfs.h> 50 #include "ib_srpt.h" 51 52 /* Name of this kernel module. */ 53 #define DRV_NAME "ib_srpt" 54 #define DRV_VERSION "2.0.0" 55 #define DRV_RELDATE "2011-02-14" 56 57 #define SRPT_ID_STRING "Linux SRP target" 58 59 #undef pr_fmt 60 #define pr_fmt(fmt) DRV_NAME " " fmt 61 62 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 64 "v" DRV_VERSION " (" DRV_RELDATE ")"); 65 MODULE_LICENSE("Dual BSD/GPL"); 66 67 /* 68 * Global Variables 69 */ 70 71 static u64 srpt_service_guid; 72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 74 75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 76 module_param(srp_max_req_size, int, 0444); 77 MODULE_PARM_DESC(srp_max_req_size, 78 "Maximum size of SRP request messages in bytes."); 79 80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 81 module_param(srpt_srq_size, int, 0444); 82 MODULE_PARM_DESC(srpt_srq_size, 83 "Shared receive queue (SRQ) size."); 84 85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 86 { 87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 88 } 89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 90 0444); 91 MODULE_PARM_DESC(srpt_service_guid, 92 "Using this value for ioc_guid, id_ext, and cm_listen_id" 93 " instead of using the node_guid of the first HCA."); 94 95 static struct ib_client srpt_client; 96 static struct target_fabric_configfs *srpt_target; 97 static void srpt_release_channel(struct srpt_rdma_ch *ch); 98 static int srpt_queue_status(struct se_cmd *cmd); 99 100 /** 101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE. 102 */ 103 static inline 104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir) 105 { 106 switch (dir) { 107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE; 108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE; 109 default: return dir; 110 } 111 } 112 113 /** 114 * srpt_sdev_name() - Return the name associated with the HCA. 115 * 116 * Examples are ib0, ib1, ... 117 */ 118 static inline const char *srpt_sdev_name(struct srpt_device *sdev) 119 { 120 return sdev->device->name; 121 } 122 123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch) 124 { 125 unsigned long flags; 126 enum rdma_ch_state state; 127 128 spin_lock_irqsave(&ch->spinlock, flags); 129 state = ch->state; 130 spin_unlock_irqrestore(&ch->spinlock, flags); 131 return state; 132 } 133 134 static enum rdma_ch_state 135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state) 136 { 137 unsigned long flags; 138 enum rdma_ch_state prev; 139 140 spin_lock_irqsave(&ch->spinlock, flags); 141 prev = ch->state; 142 ch->state = new_state; 143 spin_unlock_irqrestore(&ch->spinlock, flags); 144 return prev; 145 } 146 147 /** 148 * srpt_test_and_set_ch_state() - Test and set the channel state. 149 * 150 * Returns true if and only if the channel state has been set to the new state. 151 */ 152 static bool 153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old, 154 enum rdma_ch_state new) 155 { 156 unsigned long flags; 157 enum rdma_ch_state prev; 158 159 spin_lock_irqsave(&ch->spinlock, flags); 160 prev = ch->state; 161 if (prev == old) 162 ch->state = new; 163 spin_unlock_irqrestore(&ch->spinlock, flags); 164 return prev == old; 165 } 166 167 /** 168 * srpt_event_handler() - Asynchronous IB event callback function. 169 * 170 * Callback function called by the InfiniBand core when an asynchronous IB 171 * event occurs. This callback may occur in interrupt context. See also 172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 173 * Architecture Specification. 174 */ 175 static void srpt_event_handler(struct ib_event_handler *handler, 176 struct ib_event *event) 177 { 178 struct srpt_device *sdev; 179 struct srpt_port *sport; 180 181 sdev = ib_get_client_data(event->device, &srpt_client); 182 if (!sdev || sdev->device != event->device) 183 return; 184 185 pr_debug("ASYNC event= %d on device= %s\n", event->event, 186 srpt_sdev_name(sdev)); 187 188 switch (event->event) { 189 case IB_EVENT_PORT_ERR: 190 if (event->element.port_num <= sdev->device->phys_port_cnt) { 191 sport = &sdev->port[event->element.port_num - 1]; 192 sport->lid = 0; 193 sport->sm_lid = 0; 194 } 195 break; 196 case IB_EVENT_PORT_ACTIVE: 197 case IB_EVENT_LID_CHANGE: 198 case IB_EVENT_PKEY_CHANGE: 199 case IB_EVENT_SM_CHANGE: 200 case IB_EVENT_CLIENT_REREGISTER: 201 /* Refresh port data asynchronously. */ 202 if (event->element.port_num <= sdev->device->phys_port_cnt) { 203 sport = &sdev->port[event->element.port_num - 1]; 204 if (!sport->lid && !sport->sm_lid) 205 schedule_work(&sport->work); 206 } 207 break; 208 default: 209 printk(KERN_ERR "received unrecognized IB event %d\n", 210 event->event); 211 break; 212 } 213 } 214 215 /** 216 * srpt_srq_event() - SRQ event callback function. 217 */ 218 static void srpt_srq_event(struct ib_event *event, void *ctx) 219 { 220 printk(KERN_INFO "SRQ event %d\n", event->event); 221 } 222 223 /** 224 * srpt_qp_event() - QP event callback function. 225 */ 226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 227 { 228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch)); 230 231 switch (event->event) { 232 case IB_EVENT_COMM_EST: 233 ib_cm_notify(ch->cm_id, event->event); 234 break; 235 case IB_EVENT_QP_LAST_WQE_REACHED: 236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING, 237 CH_RELEASING)) 238 srpt_release_channel(ch); 239 else 240 pr_debug("%s: state %d - ignored LAST_WQE.\n", 241 ch->sess_name, srpt_get_ch_state(ch)); 242 break; 243 default: 244 printk(KERN_ERR "received unrecognized IB QP event %d\n", 245 event->event); 246 break; 247 } 248 } 249 250 /** 251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 252 * 253 * @slot: one-based slot number. 254 * @value: four-bit value. 255 * 256 * Copies the lowest four bits of value in element slot of the array of four 257 * bit elements called c_list (controller list). The index slot is one-based. 258 */ 259 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 260 { 261 u16 id; 262 u8 tmp; 263 264 id = (slot - 1) / 2; 265 if (slot & 0x1) { 266 tmp = c_list[id] & 0xf; 267 c_list[id] = (value << 4) | tmp; 268 } else { 269 tmp = c_list[id] & 0xf0; 270 c_list[id] = (value & 0xf) | tmp; 271 } 272 } 273 274 /** 275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 276 * 277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 278 * Specification. 279 */ 280 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 281 { 282 struct ib_class_port_info *cif; 283 284 cif = (struct ib_class_port_info *)mad->data; 285 memset(cif, 0, sizeof *cif); 286 cif->base_version = 1; 287 cif->class_version = 1; 288 cif->resp_time_value = 20; 289 290 mad->mad_hdr.status = 0; 291 } 292 293 /** 294 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 295 * 296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 297 * Specification. See also section B.7, table B.6 in the SRP r16a document. 298 */ 299 static void srpt_get_iou(struct ib_dm_mad *mad) 300 { 301 struct ib_dm_iou_info *ioui; 302 u8 slot; 303 int i; 304 305 ioui = (struct ib_dm_iou_info *)mad->data; 306 ioui->change_id = __constant_cpu_to_be16(1); 307 ioui->max_controllers = 16; 308 309 /* set present for slot 1 and empty for the rest */ 310 srpt_set_ioc(ioui->controller_list, 1, 1); 311 for (i = 1, slot = 2; i < 16; i++, slot++) 312 srpt_set_ioc(ioui->controller_list, slot, 0); 313 314 mad->mad_hdr.status = 0; 315 } 316 317 /** 318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 319 * 320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 321 * Architecture Specification. See also section B.7, table B.7 in the SRP 322 * r16a document. 323 */ 324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 325 struct ib_dm_mad *mad) 326 { 327 struct srpt_device *sdev = sport->sdev; 328 struct ib_dm_ioc_profile *iocp; 329 330 iocp = (struct ib_dm_ioc_profile *)mad->data; 331 332 if (!slot || slot > 16) { 333 mad->mad_hdr.status 334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 335 return; 336 } 337 338 if (slot > 2) { 339 mad->mad_hdr.status 340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 341 return; 342 } 343 344 memset(iocp, 0, sizeof *iocp); 345 strcpy(iocp->id_string, SRPT_ID_STRING); 346 iocp->guid = cpu_to_be64(srpt_service_guid); 347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id); 349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver); 350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 351 iocp->subsys_device_id = 0x0; 352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS); 354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL); 355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION); 356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 357 iocp->rdma_read_depth = 4; 358 iocp->send_size = cpu_to_be32(srp_max_req_size); 359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 360 1U << 24)); 361 iocp->num_svc_entries = 1; 362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 364 365 mad->mad_hdr.status = 0; 366 } 367 368 /** 369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 370 * 371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 372 * Specification. See also section B.7, table B.8 in the SRP r16a document. 373 */ 374 static void srpt_get_svc_entries(u64 ioc_guid, 375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 376 { 377 struct ib_dm_svc_entries *svc_entries; 378 379 WARN_ON(!ioc_guid); 380 381 if (!slot || slot > 16) { 382 mad->mad_hdr.status 383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 384 return; 385 } 386 387 if (slot > 2 || lo > hi || hi > 1) { 388 mad->mad_hdr.status 389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 390 return; 391 } 392 393 svc_entries = (struct ib_dm_svc_entries *)mad->data; 394 memset(svc_entries, 0, sizeof *svc_entries); 395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 396 snprintf(svc_entries->service_entries[0].name, 397 sizeof(svc_entries->service_entries[0].name), 398 "%s%016llx", 399 SRP_SERVICE_NAME_PREFIX, 400 ioc_guid); 401 402 mad->mad_hdr.status = 0; 403 } 404 405 /** 406 * srpt_mgmt_method_get() - Process a received management datagram. 407 * @sp: source port through which the MAD has been received. 408 * @rq_mad: received MAD. 409 * @rsp_mad: response MAD. 410 */ 411 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 412 struct ib_dm_mad *rsp_mad) 413 { 414 u16 attr_id; 415 u32 slot; 416 u8 hi, lo; 417 418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 419 switch (attr_id) { 420 case DM_ATTR_CLASS_PORT_INFO: 421 srpt_get_class_port_info(rsp_mad); 422 break; 423 case DM_ATTR_IOU_INFO: 424 srpt_get_iou(rsp_mad); 425 break; 426 case DM_ATTR_IOC_PROFILE: 427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 428 srpt_get_ioc(sp, slot, rsp_mad); 429 break; 430 case DM_ATTR_SVC_ENTRIES: 431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 432 hi = (u8) ((slot >> 8) & 0xff); 433 lo = (u8) (slot & 0xff); 434 slot = (u16) ((slot >> 16) & 0xffff); 435 srpt_get_svc_entries(srpt_service_guid, 436 slot, hi, lo, rsp_mad); 437 break; 438 default: 439 rsp_mad->mad_hdr.status = 440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 441 break; 442 } 443 } 444 445 /** 446 * srpt_mad_send_handler() - Post MAD-send callback function. 447 */ 448 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 449 struct ib_mad_send_wc *mad_wc) 450 { 451 ib_destroy_ah(mad_wc->send_buf->ah); 452 ib_free_send_mad(mad_wc->send_buf); 453 } 454 455 /** 456 * srpt_mad_recv_handler() - MAD reception callback function. 457 */ 458 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 459 struct ib_mad_recv_wc *mad_wc) 460 { 461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 462 struct ib_ah *ah; 463 struct ib_mad_send_buf *rsp; 464 struct ib_dm_mad *dm_mad; 465 466 if (!mad_wc || !mad_wc->recv_buf.mad) 467 return; 468 469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 470 mad_wc->recv_buf.grh, mad_agent->port_num); 471 if (IS_ERR(ah)) 472 goto err; 473 474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 475 476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 477 mad_wc->wc->pkey_index, 0, 478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 479 GFP_KERNEL); 480 if (IS_ERR(rsp)) 481 goto err_rsp; 482 483 rsp->ah = ah; 484 485 dm_mad = rsp->mad; 486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad); 487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 488 dm_mad->mad_hdr.status = 0; 489 490 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 491 case IB_MGMT_METHOD_GET: 492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 493 break; 494 case IB_MGMT_METHOD_SET: 495 dm_mad->mad_hdr.status = 496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 497 break; 498 default: 499 dm_mad->mad_hdr.status = 500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 501 break; 502 } 503 504 if (!ib_post_send_mad(rsp, NULL)) { 505 ib_free_recv_mad(mad_wc); 506 /* will destroy_ah & free_send_mad in send completion */ 507 return; 508 } 509 510 ib_free_send_mad(rsp); 511 512 err_rsp: 513 ib_destroy_ah(ah); 514 err: 515 ib_free_recv_mad(mad_wc); 516 } 517 518 /** 519 * srpt_refresh_port() - Configure a HCA port. 520 * 521 * Enable InfiniBand management datagram processing, update the cached sm_lid, 522 * lid and gid values, and register a callback function for processing MADs 523 * on the specified port. 524 * 525 * Note: It is safe to call this function more than once for the same port. 526 */ 527 static int srpt_refresh_port(struct srpt_port *sport) 528 { 529 struct ib_mad_reg_req reg_req; 530 struct ib_port_modify port_modify; 531 struct ib_port_attr port_attr; 532 int ret; 533 534 memset(&port_modify, 0, sizeof port_modify); 535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 536 port_modify.clr_port_cap_mask = 0; 537 538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 539 if (ret) 540 goto err_mod_port; 541 542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 543 if (ret) 544 goto err_query_port; 545 546 sport->sm_lid = port_attr.sm_lid; 547 sport->lid = port_attr.lid; 548 549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 550 if (ret) 551 goto err_query_port; 552 553 if (!sport->mad_agent) { 554 memset(®_req, 0, sizeof reg_req); 555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 559 560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 561 sport->port, 562 IB_QPT_GSI, 563 ®_req, 0, 564 srpt_mad_send_handler, 565 srpt_mad_recv_handler, 566 sport); 567 if (IS_ERR(sport->mad_agent)) { 568 ret = PTR_ERR(sport->mad_agent); 569 sport->mad_agent = NULL; 570 goto err_query_port; 571 } 572 } 573 574 return 0; 575 576 err_query_port: 577 578 port_modify.set_port_cap_mask = 0; 579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 581 582 err_mod_port: 583 584 return ret; 585 } 586 587 /** 588 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 589 * 590 * Note: It is safe to call this function more than once for the same device. 591 */ 592 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 593 { 594 struct ib_port_modify port_modify = { 595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 596 }; 597 struct srpt_port *sport; 598 int i; 599 600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 601 sport = &sdev->port[i - 1]; 602 WARN_ON(sport->port != i); 603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 604 printk(KERN_ERR "disabling MAD processing failed.\n"); 605 if (sport->mad_agent) { 606 ib_unregister_mad_agent(sport->mad_agent); 607 sport->mad_agent = NULL; 608 } 609 } 610 } 611 612 /** 613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 614 */ 615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 616 int ioctx_size, int dma_size, 617 enum dma_data_direction dir) 618 { 619 struct srpt_ioctx *ioctx; 620 621 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 622 if (!ioctx) 623 goto err; 624 625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 626 if (!ioctx->buf) 627 goto err_free_ioctx; 628 629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 630 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 631 goto err_free_buf; 632 633 return ioctx; 634 635 err_free_buf: 636 kfree(ioctx->buf); 637 err_free_ioctx: 638 kfree(ioctx); 639 err: 640 return NULL; 641 } 642 643 /** 644 * srpt_free_ioctx() - Free an SRPT I/O context structure. 645 */ 646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 647 int dma_size, enum dma_data_direction dir) 648 { 649 if (!ioctx) 650 return; 651 652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 653 kfree(ioctx->buf); 654 kfree(ioctx); 655 } 656 657 /** 658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 659 * @sdev: Device to allocate the I/O context ring for. 660 * @ring_size: Number of elements in the I/O context ring. 661 * @ioctx_size: I/O context size. 662 * @dma_size: DMA buffer size. 663 * @dir: DMA data direction. 664 */ 665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 666 int ring_size, int ioctx_size, 667 int dma_size, enum dma_data_direction dir) 668 { 669 struct srpt_ioctx **ring; 670 int i; 671 672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 673 && ioctx_size != sizeof(struct srpt_send_ioctx)); 674 675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 676 if (!ring) 677 goto out; 678 for (i = 0; i < ring_size; ++i) { 679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 680 if (!ring[i]) 681 goto err; 682 ring[i]->index = i; 683 } 684 goto out; 685 686 err: 687 while (--i >= 0) 688 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 689 kfree(ring); 690 ring = NULL; 691 out: 692 return ring; 693 } 694 695 /** 696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 697 */ 698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 699 struct srpt_device *sdev, int ring_size, 700 int dma_size, enum dma_data_direction dir) 701 { 702 int i; 703 704 for (i = 0; i < ring_size; ++i) 705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 706 kfree(ioctx_ring); 707 } 708 709 /** 710 * srpt_get_cmd_state() - Get the state of a SCSI command. 711 */ 712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 713 { 714 enum srpt_command_state state; 715 unsigned long flags; 716 717 BUG_ON(!ioctx); 718 719 spin_lock_irqsave(&ioctx->spinlock, flags); 720 state = ioctx->state; 721 spin_unlock_irqrestore(&ioctx->spinlock, flags); 722 return state; 723 } 724 725 /** 726 * srpt_set_cmd_state() - Set the state of a SCSI command. 727 * 728 * Does not modify the state of aborted commands. Returns the previous command 729 * state. 730 */ 731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 732 enum srpt_command_state new) 733 { 734 enum srpt_command_state previous; 735 unsigned long flags; 736 737 BUG_ON(!ioctx); 738 739 spin_lock_irqsave(&ioctx->spinlock, flags); 740 previous = ioctx->state; 741 if (previous != SRPT_STATE_DONE) 742 ioctx->state = new; 743 spin_unlock_irqrestore(&ioctx->spinlock, flags); 744 745 return previous; 746 } 747 748 /** 749 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 750 * 751 * Returns true if and only if the previous command state was equal to 'old'. 752 */ 753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 754 enum srpt_command_state old, 755 enum srpt_command_state new) 756 { 757 enum srpt_command_state previous; 758 unsigned long flags; 759 760 WARN_ON(!ioctx); 761 WARN_ON(old == SRPT_STATE_DONE); 762 WARN_ON(new == SRPT_STATE_NEW); 763 764 spin_lock_irqsave(&ioctx->spinlock, flags); 765 previous = ioctx->state; 766 if (previous == old) 767 ioctx->state = new; 768 spin_unlock_irqrestore(&ioctx->spinlock, flags); 769 return previous == old; 770 } 771 772 /** 773 * srpt_post_recv() - Post an IB receive request. 774 */ 775 static int srpt_post_recv(struct srpt_device *sdev, 776 struct srpt_recv_ioctx *ioctx) 777 { 778 struct ib_sge list; 779 struct ib_recv_wr wr, *bad_wr; 780 781 BUG_ON(!sdev); 782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index); 783 784 list.addr = ioctx->ioctx.dma; 785 list.length = srp_max_req_size; 786 list.lkey = sdev->mr->lkey; 787 788 wr.next = NULL; 789 wr.sg_list = &list; 790 wr.num_sge = 1; 791 792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 793 } 794 795 /** 796 * srpt_post_send() - Post an IB send request. 797 * 798 * Returns zero upon success and a non-zero value upon failure. 799 */ 800 static int srpt_post_send(struct srpt_rdma_ch *ch, 801 struct srpt_send_ioctx *ioctx, int len) 802 { 803 struct ib_sge list; 804 struct ib_send_wr wr, *bad_wr; 805 struct srpt_device *sdev = ch->sport->sdev; 806 int ret; 807 808 atomic_inc(&ch->req_lim); 809 810 ret = -ENOMEM; 811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { 812 printk(KERN_WARNING "IB send queue full (needed 1)\n"); 813 goto out; 814 } 815 816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, 817 DMA_TO_DEVICE); 818 819 list.addr = ioctx->ioctx.dma; 820 list.length = len; 821 list.lkey = sdev->mr->lkey; 822 823 wr.next = NULL; 824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index); 825 wr.sg_list = &list; 826 wr.num_sge = 1; 827 wr.opcode = IB_WR_SEND; 828 wr.send_flags = IB_SEND_SIGNALED; 829 830 ret = ib_post_send(ch->qp, &wr, &bad_wr); 831 832 out: 833 if (ret < 0) { 834 atomic_inc(&ch->sq_wr_avail); 835 atomic_dec(&ch->req_lim); 836 } 837 return ret; 838 } 839 840 /** 841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 842 * @ioctx: Pointer to the I/O context associated with the request. 843 * @srp_cmd: Pointer to the SRP_CMD request data. 844 * @dir: Pointer to the variable to which the transfer direction will be 845 * written. 846 * @data_len: Pointer to the variable to which the total data length of all 847 * descriptors in the SRP_CMD request will be written. 848 * 849 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 850 * 851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 852 * -ENOMEM when memory allocation fails and zero upon success. 853 */ 854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 855 struct srp_cmd *srp_cmd, 856 enum dma_data_direction *dir, u64 *data_len) 857 { 858 struct srp_indirect_buf *idb; 859 struct srp_direct_buf *db; 860 unsigned add_cdb_offset; 861 int ret; 862 863 /* 864 * The pointer computations below will only be compiled correctly 865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 866 * whether srp_cmd::add_data has been declared as a byte pointer. 867 */ 868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) 869 && !__same_type(srp_cmd->add_data[0], (u8)0)); 870 871 BUG_ON(!dir); 872 BUG_ON(!data_len); 873 874 ret = 0; 875 *data_len = 0; 876 877 /* 878 * The lower four bits of the buffer format field contain the DATA-IN 879 * buffer descriptor format, and the highest four bits contain the 880 * DATA-OUT buffer descriptor format. 881 */ 882 *dir = DMA_NONE; 883 if (srp_cmd->buf_fmt & 0xf) 884 /* DATA-IN: transfer data from target to initiator (read). */ 885 *dir = DMA_FROM_DEVICE; 886 else if (srp_cmd->buf_fmt >> 4) 887 /* DATA-OUT: transfer data from initiator to target (write). */ 888 *dir = DMA_TO_DEVICE; 889 890 /* 891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 892 * CDB LENGTH' field are reserved and the size in bytes of this field 893 * is four times the value specified in bits 3..7. Hence the "& ~3". 894 */ 895 add_cdb_offset = srp_cmd->add_cdb_len & ~3; 896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 898 ioctx->n_rbuf = 1; 899 ioctx->rbufs = &ioctx->single_rbuf; 900 901 db = (struct srp_direct_buf *)(srp_cmd->add_data 902 + add_cdb_offset); 903 memcpy(ioctx->rbufs, db, sizeof *db); 904 *data_len = be32_to_cpu(db->len); 905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data 908 + add_cdb_offset); 909 910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db; 911 912 if (ioctx->n_rbuf > 913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 914 printk(KERN_ERR "received unsupported SRP_CMD request" 915 " type (%u out + %u in != %u / %zu)\n", 916 srp_cmd->data_out_desc_cnt, 917 srp_cmd->data_in_desc_cnt, 918 be32_to_cpu(idb->table_desc.len), 919 sizeof(*db)); 920 ioctx->n_rbuf = 0; 921 ret = -EINVAL; 922 goto out; 923 } 924 925 if (ioctx->n_rbuf == 1) 926 ioctx->rbufs = &ioctx->single_rbuf; 927 else { 928 ioctx->rbufs = 929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC); 930 if (!ioctx->rbufs) { 931 ioctx->n_rbuf = 0; 932 ret = -ENOMEM; 933 goto out; 934 } 935 } 936 937 db = idb->desc_list; 938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db); 939 *data_len = be32_to_cpu(idb->len); 940 } 941 out: 942 return ret; 943 } 944 945 /** 946 * srpt_init_ch_qp() - Initialize queue pair attributes. 947 * 948 * Initialized the attributes of queue pair 'qp' by allowing local write, 949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 950 */ 951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 952 { 953 struct ib_qp_attr *attr; 954 int ret; 955 956 attr = kzalloc(sizeof *attr, GFP_KERNEL); 957 if (!attr) 958 return -ENOMEM; 959 960 attr->qp_state = IB_QPS_INIT; 961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 962 IB_ACCESS_REMOTE_WRITE; 963 attr->port_num = ch->sport->port; 964 attr->pkey_index = 0; 965 966 ret = ib_modify_qp(qp, attr, 967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 968 IB_QP_PKEY_INDEX); 969 970 kfree(attr); 971 return ret; 972 } 973 974 /** 975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 976 * @ch: channel of the queue pair. 977 * @qp: queue pair to change the state of. 978 * 979 * Returns zero upon success and a negative value upon failure. 980 * 981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 982 * If this structure ever becomes larger, it might be necessary to allocate 983 * it dynamically instead of on the stack. 984 */ 985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 986 { 987 struct ib_qp_attr qp_attr; 988 int attr_mask; 989 int ret; 990 991 qp_attr.qp_state = IB_QPS_RTR; 992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 993 if (ret) 994 goto out; 995 996 qp_attr.max_dest_rd_atomic = 4; 997 998 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 999 1000 out: 1001 return ret; 1002 } 1003 1004 /** 1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1006 * @ch: channel of the queue pair. 1007 * @qp: queue pair to change the state of. 1008 * 1009 * Returns zero upon success and a negative value upon failure. 1010 * 1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1012 * If this structure ever becomes larger, it might be necessary to allocate 1013 * it dynamically instead of on the stack. 1014 */ 1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1016 { 1017 struct ib_qp_attr qp_attr; 1018 int attr_mask; 1019 int ret; 1020 1021 qp_attr.qp_state = IB_QPS_RTS; 1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1023 if (ret) 1024 goto out; 1025 1026 qp_attr.max_rd_atomic = 4; 1027 1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1029 1030 out: 1031 return ret; 1032 } 1033 1034 /** 1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1036 */ 1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1038 { 1039 struct ib_qp_attr qp_attr; 1040 1041 qp_attr.qp_state = IB_QPS_ERR; 1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1043 } 1044 1045 /** 1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. 1047 */ 1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1049 struct srpt_send_ioctx *ioctx) 1050 { 1051 struct scatterlist *sg; 1052 enum dma_data_direction dir; 1053 1054 BUG_ON(!ch); 1055 BUG_ON(!ioctx); 1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius); 1057 1058 while (ioctx->n_rdma) 1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge); 1060 1061 kfree(ioctx->rdma_ius); 1062 ioctx->rdma_ius = NULL; 1063 1064 if (ioctx->mapped_sg_count) { 1065 sg = ioctx->sg; 1066 WARN_ON(!sg); 1067 dir = ioctx->cmd.data_direction; 1068 BUG_ON(dir == DMA_NONE); 1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, 1070 opposite_dma_dir(dir)); 1071 ioctx->mapped_sg_count = 0; 1072 } 1073 } 1074 1075 /** 1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. 1077 */ 1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1079 struct srpt_send_ioctx *ioctx) 1080 { 1081 struct se_cmd *cmd; 1082 struct scatterlist *sg, *sg_orig; 1083 int sg_cnt; 1084 enum dma_data_direction dir; 1085 struct rdma_iu *riu; 1086 struct srp_direct_buf *db; 1087 dma_addr_t dma_addr; 1088 struct ib_sge *sge; 1089 u64 raddr; 1090 u32 rsize; 1091 u32 tsize; 1092 u32 dma_len; 1093 int count, nrdma; 1094 int i, j, k; 1095 1096 BUG_ON(!ch); 1097 BUG_ON(!ioctx); 1098 cmd = &ioctx->cmd; 1099 dir = cmd->data_direction; 1100 BUG_ON(dir == DMA_NONE); 1101 1102 ioctx->sg = sg = sg_orig = cmd->t_data_sg; 1103 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents; 1104 1105 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, 1106 opposite_dma_dir(dir)); 1107 if (unlikely(!count)) 1108 return -EAGAIN; 1109 1110 ioctx->mapped_sg_count = count; 1111 1112 if (ioctx->rdma_ius && ioctx->n_rdma_ius) 1113 nrdma = ioctx->n_rdma_ius; 1114 else { 1115 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE 1116 + ioctx->n_rbuf; 1117 1118 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL); 1119 if (!ioctx->rdma_ius) 1120 goto free_mem; 1121 1122 ioctx->n_rdma_ius = nrdma; 1123 } 1124 1125 db = ioctx->rbufs; 1126 tsize = cmd->data_length; 1127 dma_len = sg_dma_len(&sg[0]); 1128 riu = ioctx->rdma_ius; 1129 1130 /* 1131 * For each remote desc - calculate the #ib_sge. 1132 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then 1133 * each remote desc rdma_iu is required a rdma wr; 1134 * else 1135 * we need to allocate extra rdma_iu to carry extra #ib_sge in 1136 * another rdma wr 1137 */ 1138 for (i = 0, j = 0; 1139 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1140 rsize = be32_to_cpu(db->len); 1141 raddr = be64_to_cpu(db->va); 1142 riu->raddr = raddr; 1143 riu->rkey = be32_to_cpu(db->key); 1144 riu->sge_cnt = 0; 1145 1146 /* calculate how many sge required for this remote_buf */ 1147 while (rsize > 0 && tsize > 0) { 1148 1149 if (rsize >= dma_len) { 1150 tsize -= dma_len; 1151 rsize -= dma_len; 1152 raddr += dma_len; 1153 1154 if (tsize > 0) { 1155 ++j; 1156 if (j < count) { 1157 sg = sg_next(sg); 1158 dma_len = sg_dma_len(sg); 1159 } 1160 } 1161 } else { 1162 tsize -= rsize; 1163 dma_len -= rsize; 1164 rsize = 0; 1165 } 1166 1167 ++riu->sge_cnt; 1168 1169 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) { 1170 ++ioctx->n_rdma; 1171 riu->sge = 1172 kmalloc(riu->sge_cnt * sizeof *riu->sge, 1173 GFP_KERNEL); 1174 if (!riu->sge) 1175 goto free_mem; 1176 1177 ++riu; 1178 riu->sge_cnt = 0; 1179 riu->raddr = raddr; 1180 riu->rkey = be32_to_cpu(db->key); 1181 } 1182 } 1183 1184 ++ioctx->n_rdma; 1185 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge, 1186 GFP_KERNEL); 1187 if (!riu->sge) 1188 goto free_mem; 1189 } 1190 1191 db = ioctx->rbufs; 1192 tsize = cmd->data_length; 1193 riu = ioctx->rdma_ius; 1194 sg = sg_orig; 1195 dma_len = sg_dma_len(&sg[0]); 1196 dma_addr = sg_dma_address(&sg[0]); 1197 1198 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ 1199 for (i = 0, j = 0; 1200 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1201 rsize = be32_to_cpu(db->len); 1202 sge = riu->sge; 1203 k = 0; 1204 1205 while (rsize > 0 && tsize > 0) { 1206 sge->addr = dma_addr; 1207 sge->lkey = ch->sport->sdev->mr->lkey; 1208 1209 if (rsize >= dma_len) { 1210 sge->length = 1211 (tsize < dma_len) ? tsize : dma_len; 1212 tsize -= dma_len; 1213 rsize -= dma_len; 1214 1215 if (tsize > 0) { 1216 ++j; 1217 if (j < count) { 1218 sg = sg_next(sg); 1219 dma_len = sg_dma_len(sg); 1220 dma_addr = sg_dma_address(sg); 1221 } 1222 } 1223 } else { 1224 sge->length = (tsize < rsize) ? tsize : rsize; 1225 tsize -= rsize; 1226 dma_len -= rsize; 1227 dma_addr += rsize; 1228 rsize = 0; 1229 } 1230 1231 ++k; 1232 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) { 1233 ++riu; 1234 sge = riu->sge; 1235 k = 0; 1236 } else if (rsize > 0 && tsize > 0) 1237 ++sge; 1238 } 1239 } 1240 1241 return 0; 1242 1243 free_mem: 1244 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1245 1246 return -ENOMEM; 1247 } 1248 1249 /** 1250 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1251 */ 1252 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1253 { 1254 struct srpt_send_ioctx *ioctx; 1255 unsigned long flags; 1256 1257 BUG_ON(!ch); 1258 1259 ioctx = NULL; 1260 spin_lock_irqsave(&ch->spinlock, flags); 1261 if (!list_empty(&ch->free_list)) { 1262 ioctx = list_first_entry(&ch->free_list, 1263 struct srpt_send_ioctx, free_list); 1264 list_del(&ioctx->free_list); 1265 } 1266 spin_unlock_irqrestore(&ch->spinlock, flags); 1267 1268 if (!ioctx) 1269 return ioctx; 1270 1271 BUG_ON(ioctx->ch != ch); 1272 spin_lock_init(&ioctx->spinlock); 1273 ioctx->state = SRPT_STATE_NEW; 1274 ioctx->n_rbuf = 0; 1275 ioctx->rbufs = NULL; 1276 ioctx->n_rdma = 0; 1277 ioctx->n_rdma_ius = 0; 1278 ioctx->rdma_ius = NULL; 1279 ioctx->mapped_sg_count = 0; 1280 init_completion(&ioctx->tx_done); 1281 ioctx->queue_status_only = false; 1282 /* 1283 * transport_init_se_cmd() does not initialize all fields, so do it 1284 * here. 1285 */ 1286 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1287 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1288 1289 return ioctx; 1290 } 1291 1292 /** 1293 * srpt_abort_cmd() - Abort a SCSI command. 1294 * @ioctx: I/O context associated with the SCSI command. 1295 * @context: Preferred execution context. 1296 */ 1297 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1298 { 1299 enum srpt_command_state state; 1300 unsigned long flags; 1301 1302 BUG_ON(!ioctx); 1303 1304 /* 1305 * If the command is in a state where the target core is waiting for 1306 * the ib_srpt driver, change the state to the next state. Changing 1307 * the state of the command from SRPT_STATE_NEED_DATA to 1308 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this 1309 * function a second time. 1310 */ 1311 1312 spin_lock_irqsave(&ioctx->spinlock, flags); 1313 state = ioctx->state; 1314 switch (state) { 1315 case SRPT_STATE_NEED_DATA: 1316 ioctx->state = SRPT_STATE_DATA_IN; 1317 break; 1318 case SRPT_STATE_DATA_IN: 1319 case SRPT_STATE_CMD_RSP_SENT: 1320 case SRPT_STATE_MGMT_RSP_SENT: 1321 ioctx->state = SRPT_STATE_DONE; 1322 break; 1323 default: 1324 break; 1325 } 1326 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1327 1328 if (state == SRPT_STATE_DONE) { 1329 struct srpt_rdma_ch *ch = ioctx->ch; 1330 1331 BUG_ON(ch->sess == NULL); 1332 1333 target_put_sess_cmd(ch->sess, &ioctx->cmd); 1334 goto out; 1335 } 1336 1337 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1338 ioctx->tag); 1339 1340 switch (state) { 1341 case SRPT_STATE_NEW: 1342 case SRPT_STATE_DATA_IN: 1343 case SRPT_STATE_MGMT: 1344 /* 1345 * Do nothing - defer abort processing until 1346 * srpt_queue_response() is invoked. 1347 */ 1348 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false)); 1349 break; 1350 case SRPT_STATE_NEED_DATA: 1351 /* DMA_TO_DEVICE (write) - RDMA read error. */ 1352 1353 /* XXX(hch): this is a horrible layering violation.. */ 1354 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1355 ioctx->cmd.transport_state |= CMD_T_LUN_STOP; 1356 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE; 1357 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1358 1359 complete(&ioctx->cmd.transport_lun_stop_comp); 1360 break; 1361 case SRPT_STATE_CMD_RSP_SENT: 1362 /* 1363 * SRP_RSP sending failed or the SRP_RSP send completion has 1364 * not been received in time. 1365 */ 1366 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1367 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1368 ioctx->cmd.transport_state |= CMD_T_LUN_STOP; 1369 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1370 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1371 break; 1372 case SRPT_STATE_MGMT_RSP_SENT: 1373 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1374 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1375 break; 1376 default: 1377 WARN(1, "Unexpected command state (%d)", state); 1378 break; 1379 } 1380 1381 out: 1382 return state; 1383 } 1384 1385 /** 1386 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion. 1387 */ 1388 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id) 1389 { 1390 struct srpt_send_ioctx *ioctx; 1391 enum srpt_command_state state; 1392 struct se_cmd *cmd; 1393 u32 index; 1394 1395 atomic_inc(&ch->sq_wr_avail); 1396 1397 index = idx_from_wr_id(wr_id); 1398 ioctx = ch->ioctx_ring[index]; 1399 state = srpt_get_cmd_state(ioctx); 1400 cmd = &ioctx->cmd; 1401 1402 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1403 && state != SRPT_STATE_MGMT_RSP_SENT 1404 && state != SRPT_STATE_NEED_DATA 1405 && state != SRPT_STATE_DONE); 1406 1407 /* If SRP_RSP sending failed, undo the ch->req_lim change. */ 1408 if (state == SRPT_STATE_CMD_RSP_SENT 1409 || state == SRPT_STATE_MGMT_RSP_SENT) 1410 atomic_dec(&ch->req_lim); 1411 1412 srpt_abort_cmd(ioctx); 1413 } 1414 1415 /** 1416 * srpt_handle_send_comp() - Process an IB send completion notification. 1417 */ 1418 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch, 1419 struct srpt_send_ioctx *ioctx) 1420 { 1421 enum srpt_command_state state; 1422 1423 atomic_inc(&ch->sq_wr_avail); 1424 1425 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1426 1427 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1428 && state != SRPT_STATE_MGMT_RSP_SENT 1429 && state != SRPT_STATE_DONE)) 1430 pr_debug("state = %d\n", state); 1431 1432 if (state != SRPT_STATE_DONE) { 1433 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1434 transport_generic_free_cmd(&ioctx->cmd, 0); 1435 } else { 1436 printk(KERN_ERR "IB completion has been received too late for" 1437 " wr_id = %u.\n", ioctx->ioctx.index); 1438 } 1439 } 1440 1441 /** 1442 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification. 1443 * 1444 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1445 * the data that has been transferred via IB RDMA had to be postponed until the 1446 * check_stop_free() callback. None of this is necessary anymore and needs to 1447 * be cleaned up. 1448 */ 1449 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch, 1450 struct srpt_send_ioctx *ioctx, 1451 enum srpt_opcode opcode) 1452 { 1453 WARN_ON(ioctx->n_rdma <= 0); 1454 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1455 1456 if (opcode == SRPT_RDMA_READ_LAST) { 1457 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1458 SRPT_STATE_DATA_IN)) 1459 target_execute_cmd(&ioctx->cmd); 1460 else 1461 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__, 1462 __LINE__, srpt_get_cmd_state(ioctx)); 1463 } else if (opcode == SRPT_RDMA_ABORT) { 1464 ioctx->rdma_aborted = true; 1465 } else { 1466 WARN(true, "unexpected opcode %d\n", opcode); 1467 } 1468 } 1469 1470 /** 1471 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion. 1472 */ 1473 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch, 1474 struct srpt_send_ioctx *ioctx, 1475 enum srpt_opcode opcode) 1476 { 1477 struct se_cmd *cmd; 1478 enum srpt_command_state state; 1479 unsigned long flags; 1480 1481 cmd = &ioctx->cmd; 1482 state = srpt_get_cmd_state(ioctx); 1483 switch (opcode) { 1484 case SRPT_RDMA_READ_LAST: 1485 if (ioctx->n_rdma <= 0) { 1486 printk(KERN_ERR "Received invalid RDMA read" 1487 " error completion with idx %d\n", 1488 ioctx->ioctx.index); 1489 break; 1490 } 1491 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1492 if (state == SRPT_STATE_NEED_DATA) 1493 srpt_abort_cmd(ioctx); 1494 else 1495 printk(KERN_ERR "%s[%d]: wrong state = %d\n", 1496 __func__, __LINE__, state); 1497 break; 1498 case SRPT_RDMA_WRITE_LAST: 1499 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1500 ioctx->cmd.transport_state |= CMD_T_LUN_STOP; 1501 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1502 break; 1503 default: 1504 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__, 1505 __LINE__, opcode); 1506 break; 1507 } 1508 } 1509 1510 /** 1511 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1512 * @ch: RDMA channel through which the request has been received. 1513 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1514 * be built in the buffer ioctx->buf points at and hence this function will 1515 * overwrite the request data. 1516 * @tag: tag of the request for which this response is being generated. 1517 * @status: value for the STATUS field of the SRP_RSP information unit. 1518 * 1519 * Returns the size in bytes of the SRP_RSP response. 1520 * 1521 * An SRP_RSP response contains a SCSI status or service response. See also 1522 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1523 * response. See also SPC-2 for more information about sense data. 1524 */ 1525 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1526 struct srpt_send_ioctx *ioctx, u64 tag, 1527 int status) 1528 { 1529 struct srp_rsp *srp_rsp; 1530 const u8 *sense_data; 1531 int sense_data_len, max_sense_len; 1532 1533 /* 1534 * The lowest bit of all SAM-3 status codes is zero (see also 1535 * paragraph 5.3 in SAM-3). 1536 */ 1537 WARN_ON(status & 1); 1538 1539 srp_rsp = ioctx->ioctx.buf; 1540 BUG_ON(!srp_rsp); 1541 1542 sense_data = ioctx->sense_data; 1543 sense_data_len = ioctx->cmd.scsi_sense_length; 1544 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1545 1546 memset(srp_rsp, 0, sizeof *srp_rsp); 1547 srp_rsp->opcode = SRP_RSP; 1548 srp_rsp->req_lim_delta = 1549 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1550 srp_rsp->tag = tag; 1551 srp_rsp->status = status; 1552 1553 if (sense_data_len) { 1554 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1555 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1556 if (sense_data_len > max_sense_len) { 1557 printk(KERN_WARNING "truncated sense data from %d to %d" 1558 " bytes\n", sense_data_len, max_sense_len); 1559 sense_data_len = max_sense_len; 1560 } 1561 1562 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1563 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1564 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1565 } 1566 1567 return sizeof(*srp_rsp) + sense_data_len; 1568 } 1569 1570 /** 1571 * srpt_build_tskmgmt_rsp() - Build a task management response. 1572 * @ch: RDMA channel through which the request has been received. 1573 * @ioctx: I/O context in which the SRP_RSP response will be built. 1574 * @rsp_code: RSP_CODE that will be stored in the response. 1575 * @tag: Tag of the request for which this response is being generated. 1576 * 1577 * Returns the size in bytes of the SRP_RSP response. 1578 * 1579 * An SRP_RSP response contains a SCSI status or service response. See also 1580 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1581 * response. 1582 */ 1583 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1584 struct srpt_send_ioctx *ioctx, 1585 u8 rsp_code, u64 tag) 1586 { 1587 struct srp_rsp *srp_rsp; 1588 int resp_data_len; 1589 int resp_len; 1590 1591 resp_data_len = 4; 1592 resp_len = sizeof(*srp_rsp) + resp_data_len; 1593 1594 srp_rsp = ioctx->ioctx.buf; 1595 BUG_ON(!srp_rsp); 1596 memset(srp_rsp, 0, sizeof *srp_rsp); 1597 1598 srp_rsp->opcode = SRP_RSP; 1599 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1 1600 + atomic_xchg(&ch->req_lim_delta, 0)); 1601 srp_rsp->tag = tag; 1602 1603 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1604 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1605 srp_rsp->data[3] = rsp_code; 1606 1607 return resp_len; 1608 } 1609 1610 #define NO_SUCH_LUN ((uint64_t)-1LL) 1611 1612 /* 1613 * SCSI LUN addressing method. See also SAM-2 and the section about 1614 * eight byte LUNs. 1615 */ 1616 enum scsi_lun_addr_method { 1617 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0, 1618 SCSI_LUN_ADDR_METHOD_FLAT = 1, 1619 SCSI_LUN_ADDR_METHOD_LUN = 2, 1620 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3, 1621 }; 1622 1623 /* 1624 * srpt_unpack_lun() - Convert from network LUN to linear LUN. 1625 * 1626 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte 1627 * order (big endian) to a linear LUN. Supports three LUN addressing methods: 1628 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40). 1629 */ 1630 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len) 1631 { 1632 uint64_t res = NO_SUCH_LUN; 1633 int addressing_method; 1634 1635 if (unlikely(len < 2)) { 1636 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or " 1637 "more", len); 1638 goto out; 1639 } 1640 1641 switch (len) { 1642 case 8: 1643 if ((*((__be64 *)lun) & 1644 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0) 1645 goto out_err; 1646 break; 1647 case 4: 1648 if (*((__be16 *)&lun[2]) != 0) 1649 goto out_err; 1650 break; 1651 case 6: 1652 if (*((__be32 *)&lun[2]) != 0) 1653 goto out_err; 1654 break; 1655 case 2: 1656 break; 1657 default: 1658 goto out_err; 1659 } 1660 1661 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */ 1662 switch (addressing_method) { 1663 case SCSI_LUN_ADDR_METHOD_PERIPHERAL: 1664 case SCSI_LUN_ADDR_METHOD_FLAT: 1665 case SCSI_LUN_ADDR_METHOD_LUN: 1666 res = *(lun + 1) | (((*lun) & 0x3f) << 8); 1667 break; 1668 1669 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN: 1670 default: 1671 printk(KERN_ERR "Unimplemented LUN addressing method %u", 1672 addressing_method); 1673 break; 1674 } 1675 1676 out: 1677 return res; 1678 1679 out_err: 1680 printk(KERN_ERR "Support for multi-level LUNs has not yet been" 1681 " implemented"); 1682 goto out; 1683 } 1684 1685 static int srpt_check_stop_free(struct se_cmd *cmd) 1686 { 1687 struct srpt_send_ioctx *ioctx = container_of(cmd, 1688 struct srpt_send_ioctx, cmd); 1689 1690 return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1691 } 1692 1693 /** 1694 * srpt_handle_cmd() - Process SRP_CMD. 1695 */ 1696 static int srpt_handle_cmd(struct srpt_rdma_ch *ch, 1697 struct srpt_recv_ioctx *recv_ioctx, 1698 struct srpt_send_ioctx *send_ioctx) 1699 { 1700 struct se_cmd *cmd; 1701 struct srp_cmd *srp_cmd; 1702 uint64_t unpacked_lun; 1703 u64 data_len; 1704 enum dma_data_direction dir; 1705 sense_reason_t ret; 1706 int rc; 1707 1708 BUG_ON(!send_ioctx); 1709 1710 srp_cmd = recv_ioctx->ioctx.buf; 1711 cmd = &send_ioctx->cmd; 1712 send_ioctx->tag = srp_cmd->tag; 1713 1714 switch (srp_cmd->task_attr) { 1715 case SRP_CMD_SIMPLE_Q: 1716 cmd->sam_task_attr = MSG_SIMPLE_TAG; 1717 break; 1718 case SRP_CMD_ORDERED_Q: 1719 default: 1720 cmd->sam_task_attr = MSG_ORDERED_TAG; 1721 break; 1722 case SRP_CMD_HEAD_OF_Q: 1723 cmd->sam_task_attr = MSG_HEAD_TAG; 1724 break; 1725 case SRP_CMD_ACA: 1726 cmd->sam_task_attr = MSG_ACA_TAG; 1727 break; 1728 } 1729 1730 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) { 1731 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n", 1732 srp_cmd->tag); 1733 ret = TCM_INVALID_CDB_FIELD; 1734 goto send_sense; 1735 } 1736 1737 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun, 1738 sizeof(srp_cmd->lun)); 1739 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb, 1740 &send_ioctx->sense_data[0], unpacked_lun, data_len, 1741 MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF); 1742 if (rc != 0) { 1743 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1744 goto send_sense; 1745 } 1746 return 0; 1747 1748 send_sense: 1749 transport_send_check_condition_and_sense(cmd, ret, 0); 1750 return -1; 1751 } 1752 1753 /** 1754 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag. 1755 * @ch: RDMA channel of the task management request. 1756 * @fn: Task management function to perform. 1757 * @req_tag: Tag of the SRP task management request. 1758 * @mgmt_ioctx: I/O context of the task management request. 1759 * 1760 * Returns zero if the target core will process the task management 1761 * request asynchronously. 1762 * 1763 * Note: It is assumed that the initiator serializes tag-based task management 1764 * requests. 1765 */ 1766 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag) 1767 { 1768 struct srpt_device *sdev; 1769 struct srpt_rdma_ch *ch; 1770 struct srpt_send_ioctx *target; 1771 int ret, i; 1772 1773 ret = -EINVAL; 1774 ch = ioctx->ch; 1775 BUG_ON(!ch); 1776 BUG_ON(!ch->sport); 1777 sdev = ch->sport->sdev; 1778 BUG_ON(!sdev); 1779 spin_lock_irq(&sdev->spinlock); 1780 for (i = 0; i < ch->rq_size; ++i) { 1781 target = ch->ioctx_ring[i]; 1782 if (target->cmd.se_lun == ioctx->cmd.se_lun && 1783 target->tag == tag && 1784 srpt_get_cmd_state(target) != SRPT_STATE_DONE) { 1785 ret = 0; 1786 /* now let the target core abort &target->cmd; */ 1787 break; 1788 } 1789 } 1790 spin_unlock_irq(&sdev->spinlock); 1791 return ret; 1792 } 1793 1794 static int srp_tmr_to_tcm(int fn) 1795 { 1796 switch (fn) { 1797 case SRP_TSK_ABORT_TASK: 1798 return TMR_ABORT_TASK; 1799 case SRP_TSK_ABORT_TASK_SET: 1800 return TMR_ABORT_TASK_SET; 1801 case SRP_TSK_CLEAR_TASK_SET: 1802 return TMR_CLEAR_TASK_SET; 1803 case SRP_TSK_LUN_RESET: 1804 return TMR_LUN_RESET; 1805 case SRP_TSK_CLEAR_ACA: 1806 return TMR_CLEAR_ACA; 1807 default: 1808 return -1; 1809 } 1810 } 1811 1812 /** 1813 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1814 * 1815 * Returns 0 if and only if the request will be processed by the target core. 1816 * 1817 * For more information about SRP_TSK_MGMT information units, see also section 1818 * 6.7 in the SRP r16a document. 1819 */ 1820 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1821 struct srpt_recv_ioctx *recv_ioctx, 1822 struct srpt_send_ioctx *send_ioctx) 1823 { 1824 struct srp_tsk_mgmt *srp_tsk; 1825 struct se_cmd *cmd; 1826 struct se_session *sess = ch->sess; 1827 uint64_t unpacked_lun; 1828 uint32_t tag = 0; 1829 int tcm_tmr; 1830 int rc; 1831 1832 BUG_ON(!send_ioctx); 1833 1834 srp_tsk = recv_ioctx->ioctx.buf; 1835 cmd = &send_ioctx->cmd; 1836 1837 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1838 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1839 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1840 1841 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1842 send_ioctx->tag = srp_tsk->tag; 1843 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1844 if (tcm_tmr < 0) { 1845 send_ioctx->cmd.se_tmr_req->response = 1846 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 1847 goto fail; 1848 } 1849 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun, 1850 sizeof(srp_tsk->lun)); 1851 1852 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) { 1853 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag); 1854 if (rc < 0) { 1855 send_ioctx->cmd.se_tmr_req->response = 1856 TMR_TASK_DOES_NOT_EXIST; 1857 goto fail; 1858 } 1859 tag = srp_tsk->task_tag; 1860 } 1861 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun, 1862 srp_tsk, tcm_tmr, GFP_KERNEL, tag, 1863 TARGET_SCF_ACK_KREF); 1864 if (rc != 0) { 1865 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1866 goto fail; 1867 } 1868 return; 1869 fail: 1870 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1871 } 1872 1873 /** 1874 * srpt_handle_new_iu() - Process a newly received information unit. 1875 * @ch: RDMA channel through which the information unit has been received. 1876 * @ioctx: SRPT I/O context associated with the information unit. 1877 */ 1878 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1879 struct srpt_recv_ioctx *recv_ioctx, 1880 struct srpt_send_ioctx *send_ioctx) 1881 { 1882 struct srp_cmd *srp_cmd; 1883 enum rdma_ch_state ch_state; 1884 1885 BUG_ON(!ch); 1886 BUG_ON(!recv_ioctx); 1887 1888 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1889 recv_ioctx->ioctx.dma, srp_max_req_size, 1890 DMA_FROM_DEVICE); 1891 1892 ch_state = srpt_get_ch_state(ch); 1893 if (unlikely(ch_state == CH_CONNECTING)) { 1894 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1895 goto out; 1896 } 1897 1898 if (unlikely(ch_state != CH_LIVE)) 1899 goto out; 1900 1901 srp_cmd = recv_ioctx->ioctx.buf; 1902 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1903 if (!send_ioctx) 1904 send_ioctx = srpt_get_send_ioctx(ch); 1905 if (unlikely(!send_ioctx)) { 1906 list_add_tail(&recv_ioctx->wait_list, 1907 &ch->cmd_wait_list); 1908 goto out; 1909 } 1910 } 1911 1912 switch (srp_cmd->opcode) { 1913 case SRP_CMD: 1914 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1915 break; 1916 case SRP_TSK_MGMT: 1917 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1918 break; 1919 case SRP_I_LOGOUT: 1920 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n"); 1921 break; 1922 case SRP_CRED_RSP: 1923 pr_debug("received SRP_CRED_RSP\n"); 1924 break; 1925 case SRP_AER_RSP: 1926 pr_debug("received SRP_AER_RSP\n"); 1927 break; 1928 case SRP_RSP: 1929 printk(KERN_ERR "Received SRP_RSP\n"); 1930 break; 1931 default: 1932 printk(KERN_ERR "received IU with unknown opcode 0x%x\n", 1933 srp_cmd->opcode); 1934 break; 1935 } 1936 1937 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1938 out: 1939 return; 1940 } 1941 1942 static void srpt_process_rcv_completion(struct ib_cq *cq, 1943 struct srpt_rdma_ch *ch, 1944 struct ib_wc *wc) 1945 { 1946 struct srpt_device *sdev = ch->sport->sdev; 1947 struct srpt_recv_ioctx *ioctx; 1948 u32 index; 1949 1950 index = idx_from_wr_id(wc->wr_id); 1951 if (wc->status == IB_WC_SUCCESS) { 1952 int req_lim; 1953 1954 req_lim = atomic_dec_return(&ch->req_lim); 1955 if (unlikely(req_lim < 0)) 1956 printk(KERN_ERR "req_lim = %d < 0\n", req_lim); 1957 ioctx = sdev->ioctx_ring[index]; 1958 srpt_handle_new_iu(ch, ioctx, NULL); 1959 } else { 1960 printk(KERN_INFO "receiving failed for idx %u with status %d\n", 1961 index, wc->status); 1962 } 1963 } 1964 1965 /** 1966 * srpt_process_send_completion() - Process an IB send completion. 1967 * 1968 * Note: Although this has not yet been observed during tests, at least in 1969 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1970 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1971 * value in each response is set to one, and it is possible that this response 1972 * makes the initiator send a new request before the send completion for that 1973 * response has been processed. This could e.g. happen if the call to 1974 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1975 * if IB retransmission causes generation of the send completion to be 1976 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1977 * are queued on cmd_wait_list. The code below processes these delayed 1978 * requests one at a time. 1979 */ 1980 static void srpt_process_send_completion(struct ib_cq *cq, 1981 struct srpt_rdma_ch *ch, 1982 struct ib_wc *wc) 1983 { 1984 struct srpt_send_ioctx *send_ioctx; 1985 uint32_t index; 1986 enum srpt_opcode opcode; 1987 1988 index = idx_from_wr_id(wc->wr_id); 1989 opcode = opcode_from_wr_id(wc->wr_id); 1990 send_ioctx = ch->ioctx_ring[index]; 1991 if (wc->status == IB_WC_SUCCESS) { 1992 if (opcode == SRPT_SEND) 1993 srpt_handle_send_comp(ch, send_ioctx); 1994 else { 1995 WARN_ON(opcode != SRPT_RDMA_ABORT && 1996 wc->opcode != IB_WC_RDMA_READ); 1997 srpt_handle_rdma_comp(ch, send_ioctx, opcode); 1998 } 1999 } else { 2000 if (opcode == SRPT_SEND) { 2001 printk(KERN_INFO "sending response for idx %u failed" 2002 " with status %d\n", index, wc->status); 2003 srpt_handle_send_err_comp(ch, wc->wr_id); 2004 } else if (opcode != SRPT_RDMA_MID) { 2005 printk(KERN_INFO "RDMA t %d for idx %u failed with" 2006 " status %d", opcode, index, wc->status); 2007 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode); 2008 } 2009 } 2010 2011 while (unlikely(opcode == SRPT_SEND 2012 && !list_empty(&ch->cmd_wait_list) 2013 && srpt_get_ch_state(ch) == CH_LIVE 2014 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) { 2015 struct srpt_recv_ioctx *recv_ioctx; 2016 2017 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 2018 struct srpt_recv_ioctx, 2019 wait_list); 2020 list_del(&recv_ioctx->wait_list); 2021 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx); 2022 } 2023 } 2024 2025 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch) 2026 { 2027 struct ib_wc *const wc = ch->wc; 2028 int i, n; 2029 2030 WARN_ON(cq != ch->cq); 2031 2032 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 2033 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) { 2034 for (i = 0; i < n; i++) { 2035 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV) 2036 srpt_process_rcv_completion(cq, ch, &wc[i]); 2037 else 2038 srpt_process_send_completion(cq, ch, &wc[i]); 2039 } 2040 } 2041 } 2042 2043 /** 2044 * srpt_completion() - IB completion queue callback function. 2045 * 2046 * Notes: 2047 * - It is guaranteed that a completion handler will never be invoked 2048 * concurrently on two different CPUs for the same completion queue. See also 2049 * Documentation/infiniband/core_locking.txt and the implementation of 2050 * handle_edge_irq() in kernel/irq/chip.c. 2051 * - When threaded IRQs are enabled, completion handlers are invoked in thread 2052 * context instead of interrupt context. 2053 */ 2054 static void srpt_completion(struct ib_cq *cq, void *ctx) 2055 { 2056 struct srpt_rdma_ch *ch = ctx; 2057 2058 wake_up_interruptible(&ch->wait_queue); 2059 } 2060 2061 static int srpt_compl_thread(void *arg) 2062 { 2063 struct srpt_rdma_ch *ch; 2064 2065 /* Hibernation / freezing of the SRPT kernel thread is not supported. */ 2066 current->flags |= PF_NOFREEZE; 2067 2068 ch = arg; 2069 BUG_ON(!ch); 2070 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n", 2071 ch->sess_name, ch->thread->comm, current->pid); 2072 while (!kthread_should_stop()) { 2073 wait_event_interruptible(ch->wait_queue, 2074 (srpt_process_completion(ch->cq, ch), 2075 kthread_should_stop())); 2076 } 2077 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n", 2078 ch->sess_name, ch->thread->comm, current->pid); 2079 return 0; 2080 } 2081 2082 /** 2083 * srpt_create_ch_ib() - Create receive and send completion queues. 2084 */ 2085 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 2086 { 2087 struct ib_qp_init_attr *qp_init; 2088 struct srpt_port *sport = ch->sport; 2089 struct srpt_device *sdev = sport->sdev; 2090 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 2091 int ret; 2092 2093 WARN_ON(ch->rq_size < 1); 2094 2095 ret = -ENOMEM; 2096 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL); 2097 if (!qp_init) 2098 goto out; 2099 2100 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch, 2101 ch->rq_size + srp_sq_size, 0); 2102 if (IS_ERR(ch->cq)) { 2103 ret = PTR_ERR(ch->cq); 2104 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n", 2105 ch->rq_size + srp_sq_size, ret); 2106 goto out; 2107 } 2108 2109 qp_init->qp_context = (void *)ch; 2110 qp_init->event_handler 2111 = (void(*)(struct ib_event *, void*))srpt_qp_event; 2112 qp_init->send_cq = ch->cq; 2113 qp_init->recv_cq = ch->cq; 2114 qp_init->srq = sdev->srq; 2115 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 2116 qp_init->qp_type = IB_QPT_RC; 2117 qp_init->cap.max_send_wr = srp_sq_size; 2118 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 2119 2120 ch->qp = ib_create_qp(sdev->pd, qp_init); 2121 if (IS_ERR(ch->qp)) { 2122 ret = PTR_ERR(ch->qp); 2123 printk(KERN_ERR "failed to create_qp ret= %d\n", ret); 2124 goto err_destroy_cq; 2125 } 2126 2127 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 2128 2129 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 2130 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 2131 qp_init->cap.max_send_wr, ch->cm_id); 2132 2133 ret = srpt_init_ch_qp(ch, ch->qp); 2134 if (ret) 2135 goto err_destroy_qp; 2136 2137 init_waitqueue_head(&ch->wait_queue); 2138 2139 pr_debug("creating thread for session %s\n", ch->sess_name); 2140 2141 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl"); 2142 if (IS_ERR(ch->thread)) { 2143 printk(KERN_ERR "failed to create kernel thread %ld\n", 2144 PTR_ERR(ch->thread)); 2145 ch->thread = NULL; 2146 goto err_destroy_qp; 2147 } 2148 2149 out: 2150 kfree(qp_init); 2151 return ret; 2152 2153 err_destroy_qp: 2154 ib_destroy_qp(ch->qp); 2155 err_destroy_cq: 2156 ib_destroy_cq(ch->cq); 2157 goto out; 2158 } 2159 2160 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 2161 { 2162 if (ch->thread) 2163 kthread_stop(ch->thread); 2164 2165 ib_destroy_qp(ch->qp); 2166 ib_destroy_cq(ch->cq); 2167 } 2168 2169 /** 2170 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state. 2171 * 2172 * Reset the QP and make sure all resources associated with the channel will 2173 * be deallocated at an appropriate time. 2174 * 2175 * Note: The caller must hold ch->sport->sdev->spinlock. 2176 */ 2177 static void __srpt_close_ch(struct srpt_rdma_ch *ch) 2178 { 2179 struct srpt_device *sdev; 2180 enum rdma_ch_state prev_state; 2181 unsigned long flags; 2182 2183 sdev = ch->sport->sdev; 2184 2185 spin_lock_irqsave(&ch->spinlock, flags); 2186 prev_state = ch->state; 2187 switch (prev_state) { 2188 case CH_CONNECTING: 2189 case CH_LIVE: 2190 ch->state = CH_DISCONNECTING; 2191 break; 2192 default: 2193 break; 2194 } 2195 spin_unlock_irqrestore(&ch->spinlock, flags); 2196 2197 switch (prev_state) { 2198 case CH_CONNECTING: 2199 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0, 2200 NULL, 0); 2201 /* fall through */ 2202 case CH_LIVE: 2203 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0) 2204 printk(KERN_ERR "sending CM DREQ failed.\n"); 2205 break; 2206 case CH_DISCONNECTING: 2207 break; 2208 case CH_DRAINING: 2209 case CH_RELEASING: 2210 break; 2211 } 2212 } 2213 2214 /** 2215 * srpt_close_ch() - Close an RDMA channel. 2216 */ 2217 static void srpt_close_ch(struct srpt_rdma_ch *ch) 2218 { 2219 struct srpt_device *sdev; 2220 2221 sdev = ch->sport->sdev; 2222 spin_lock_irq(&sdev->spinlock); 2223 __srpt_close_ch(ch); 2224 spin_unlock_irq(&sdev->spinlock); 2225 } 2226 2227 /** 2228 * srpt_shutdown_session() - Whether or not a session may be shut down. 2229 */ 2230 static int srpt_shutdown_session(struct se_session *se_sess) 2231 { 2232 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2233 unsigned long flags; 2234 2235 spin_lock_irqsave(&ch->spinlock, flags); 2236 if (ch->in_shutdown) { 2237 spin_unlock_irqrestore(&ch->spinlock, flags); 2238 return true; 2239 } 2240 2241 ch->in_shutdown = true; 2242 target_sess_cmd_list_set_waiting(se_sess); 2243 spin_unlock_irqrestore(&ch->spinlock, flags); 2244 2245 return true; 2246 } 2247 2248 /** 2249 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair. 2250 * @cm_id: Pointer to the CM ID of the channel to be drained. 2251 * 2252 * Note: Must be called from inside srpt_cm_handler to avoid a race between 2253 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one() 2254 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one() 2255 * waits until all target sessions for the associated IB device have been 2256 * unregistered and target session registration involves a call to 2257 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until 2258 * this function has finished). 2259 */ 2260 static void srpt_drain_channel(struct ib_cm_id *cm_id) 2261 { 2262 struct srpt_device *sdev; 2263 struct srpt_rdma_ch *ch; 2264 int ret; 2265 bool do_reset = false; 2266 2267 WARN_ON_ONCE(irqs_disabled()); 2268 2269 sdev = cm_id->context; 2270 BUG_ON(!sdev); 2271 spin_lock_irq(&sdev->spinlock); 2272 list_for_each_entry(ch, &sdev->rch_list, list) { 2273 if (ch->cm_id == cm_id) { 2274 do_reset = srpt_test_and_set_ch_state(ch, 2275 CH_CONNECTING, CH_DRAINING) || 2276 srpt_test_and_set_ch_state(ch, 2277 CH_LIVE, CH_DRAINING) || 2278 srpt_test_and_set_ch_state(ch, 2279 CH_DISCONNECTING, CH_DRAINING); 2280 break; 2281 } 2282 } 2283 spin_unlock_irq(&sdev->spinlock); 2284 2285 if (do_reset) { 2286 if (ch->sess) 2287 srpt_shutdown_session(ch->sess); 2288 2289 ret = srpt_ch_qp_err(ch); 2290 if (ret < 0) 2291 printk(KERN_ERR "Setting queue pair in error state" 2292 " failed: %d\n", ret); 2293 } 2294 } 2295 2296 /** 2297 * srpt_find_channel() - Look up an RDMA channel. 2298 * @cm_id: Pointer to the CM ID of the channel to be looked up. 2299 * 2300 * Return NULL if no matching RDMA channel has been found. 2301 */ 2302 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev, 2303 struct ib_cm_id *cm_id) 2304 { 2305 struct srpt_rdma_ch *ch; 2306 bool found; 2307 2308 WARN_ON_ONCE(irqs_disabled()); 2309 BUG_ON(!sdev); 2310 2311 found = false; 2312 spin_lock_irq(&sdev->spinlock); 2313 list_for_each_entry(ch, &sdev->rch_list, list) { 2314 if (ch->cm_id == cm_id) { 2315 found = true; 2316 break; 2317 } 2318 } 2319 spin_unlock_irq(&sdev->spinlock); 2320 2321 return found ? ch : NULL; 2322 } 2323 2324 /** 2325 * srpt_release_channel() - Release channel resources. 2326 * 2327 * Schedules the actual release because: 2328 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would 2329 * trigger a deadlock. 2330 * - It is not safe to call TCM transport_* functions from interrupt context. 2331 */ 2332 static void srpt_release_channel(struct srpt_rdma_ch *ch) 2333 { 2334 schedule_work(&ch->release_work); 2335 } 2336 2337 static void srpt_release_channel_work(struct work_struct *w) 2338 { 2339 struct srpt_rdma_ch *ch; 2340 struct srpt_device *sdev; 2341 struct se_session *se_sess; 2342 2343 ch = container_of(w, struct srpt_rdma_ch, release_work); 2344 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess, 2345 ch->release_done); 2346 2347 sdev = ch->sport->sdev; 2348 BUG_ON(!sdev); 2349 2350 se_sess = ch->sess; 2351 BUG_ON(!se_sess); 2352 2353 target_wait_for_sess_cmds(se_sess); 2354 2355 transport_deregister_session_configfs(se_sess); 2356 transport_deregister_session(se_sess); 2357 ch->sess = NULL; 2358 2359 ib_destroy_cm_id(ch->cm_id); 2360 2361 srpt_destroy_ch_ib(ch); 2362 2363 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2364 ch->sport->sdev, ch->rq_size, 2365 ch->rsp_size, DMA_TO_DEVICE); 2366 2367 spin_lock_irq(&sdev->spinlock); 2368 list_del(&ch->list); 2369 spin_unlock_irq(&sdev->spinlock); 2370 2371 if (ch->release_done) 2372 complete(ch->release_done); 2373 2374 wake_up(&sdev->ch_releaseQ); 2375 2376 kfree(ch); 2377 } 2378 2379 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport, 2380 u8 i_port_id[16]) 2381 { 2382 struct srpt_node_acl *nacl; 2383 2384 list_for_each_entry(nacl, &sport->port_acl_list, list) 2385 if (memcmp(nacl->i_port_id, i_port_id, 2386 sizeof(nacl->i_port_id)) == 0) 2387 return nacl; 2388 2389 return NULL; 2390 } 2391 2392 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport, 2393 u8 i_port_id[16]) 2394 { 2395 struct srpt_node_acl *nacl; 2396 2397 spin_lock_irq(&sport->port_acl_lock); 2398 nacl = __srpt_lookup_acl(sport, i_port_id); 2399 spin_unlock_irq(&sport->port_acl_lock); 2400 2401 return nacl; 2402 } 2403 2404 /** 2405 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 2406 * 2407 * Ownership of the cm_id is transferred to the target session if this 2408 * functions returns zero. Otherwise the caller remains the owner of cm_id. 2409 */ 2410 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 2411 struct ib_cm_req_event_param *param, 2412 void *private_data) 2413 { 2414 struct srpt_device *sdev = cm_id->context; 2415 struct srpt_port *sport = &sdev->port[param->port - 1]; 2416 struct srp_login_req *req; 2417 struct srp_login_rsp *rsp; 2418 struct srp_login_rej *rej; 2419 struct ib_cm_rep_param *rep_param; 2420 struct srpt_rdma_ch *ch, *tmp_ch; 2421 struct srpt_node_acl *nacl; 2422 u32 it_iu_len; 2423 int i; 2424 int ret = 0; 2425 2426 WARN_ON_ONCE(irqs_disabled()); 2427 2428 if (WARN_ON(!sdev || !private_data)) 2429 return -EINVAL; 2430 2431 req = (struct srp_login_req *)private_data; 2432 2433 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2434 2435 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 2436 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 2437 " (guid=0x%llx:0x%llx)\n", 2438 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 2439 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 2440 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 2441 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 2442 it_iu_len, 2443 param->port, 2444 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 2445 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 2446 2447 rsp = kzalloc(sizeof *rsp, GFP_KERNEL); 2448 rej = kzalloc(sizeof *rej, GFP_KERNEL); 2449 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL); 2450 2451 if (!rsp || !rej || !rep_param) { 2452 ret = -ENOMEM; 2453 goto out; 2454 } 2455 2456 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2457 rej->reason = __constant_cpu_to_be32( 2458 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2459 ret = -EINVAL; 2460 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its" 2461 " length (%d bytes) is out of range (%d .. %d)\n", 2462 it_iu_len, 64, srp_max_req_size); 2463 goto reject; 2464 } 2465 2466 if (!sport->enabled) { 2467 rej->reason = __constant_cpu_to_be32( 2468 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2469 ret = -EINVAL; 2470 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port" 2471 " has not yet been enabled\n"); 2472 goto reject; 2473 } 2474 2475 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2476 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2477 2478 spin_lock_irq(&sdev->spinlock); 2479 2480 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 2481 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 2482 && !memcmp(ch->t_port_id, req->target_port_id, 16) 2483 && param->port == ch->sport->port 2484 && param->listen_id == ch->sport->sdev->cm_id 2485 && ch->cm_id) { 2486 enum rdma_ch_state ch_state; 2487 2488 ch_state = srpt_get_ch_state(ch); 2489 if (ch_state != CH_CONNECTING 2490 && ch_state != CH_LIVE) 2491 continue; 2492 2493 /* found an existing channel */ 2494 pr_debug("Found existing channel %s" 2495 " cm_id= %p state= %d\n", 2496 ch->sess_name, ch->cm_id, ch_state); 2497 2498 __srpt_close_ch(ch); 2499 2500 rsp->rsp_flags = 2501 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2502 } 2503 } 2504 2505 spin_unlock_irq(&sdev->spinlock); 2506 2507 } else 2508 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2509 2510 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2511 || *(__be64 *)(req->target_port_id + 8) != 2512 cpu_to_be64(srpt_service_guid)) { 2513 rej->reason = __constant_cpu_to_be32( 2514 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2515 ret = -ENOMEM; 2516 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it" 2517 " has an invalid target port identifier.\n"); 2518 goto reject; 2519 } 2520 2521 ch = kzalloc(sizeof *ch, GFP_KERNEL); 2522 if (!ch) { 2523 rej->reason = __constant_cpu_to_be32( 2524 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2525 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n"); 2526 ret = -ENOMEM; 2527 goto reject; 2528 } 2529 2530 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2531 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2532 memcpy(ch->t_port_id, req->target_port_id, 16); 2533 ch->sport = &sdev->port[param->port - 1]; 2534 ch->cm_id = cm_id; 2535 /* 2536 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 2537 * for the SRP protocol to the command queue size. 2538 */ 2539 ch->rq_size = SRPT_RQ_SIZE; 2540 spin_lock_init(&ch->spinlock); 2541 ch->state = CH_CONNECTING; 2542 INIT_LIST_HEAD(&ch->cmd_wait_list); 2543 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2544 2545 ch->ioctx_ring = (struct srpt_send_ioctx **) 2546 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2547 sizeof(*ch->ioctx_ring[0]), 2548 ch->rsp_size, DMA_TO_DEVICE); 2549 if (!ch->ioctx_ring) 2550 goto free_ch; 2551 2552 INIT_LIST_HEAD(&ch->free_list); 2553 for (i = 0; i < ch->rq_size; i++) { 2554 ch->ioctx_ring[i]->ch = ch; 2555 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2556 } 2557 2558 ret = srpt_create_ch_ib(ch); 2559 if (ret) { 2560 rej->reason = __constant_cpu_to_be32( 2561 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2562 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating" 2563 " a new RDMA channel failed.\n"); 2564 goto free_ring; 2565 } 2566 2567 ret = srpt_ch_qp_rtr(ch, ch->qp); 2568 if (ret) { 2569 rej->reason = __constant_cpu_to_be32( 2570 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2571 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling" 2572 " RTR failed (error code = %d)\n", ret); 2573 goto destroy_ib; 2574 } 2575 /* 2576 * Use the initator port identifier as the session name. 2577 */ 2578 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2579 be64_to_cpu(*(__be64 *)ch->i_port_id), 2580 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2581 2582 pr_debug("registering session %s\n", ch->sess_name); 2583 2584 nacl = srpt_lookup_acl(sport, ch->i_port_id); 2585 if (!nacl) { 2586 printk(KERN_INFO "Rejected login because no ACL has been" 2587 " configured yet for initiator %s.\n", ch->sess_name); 2588 rej->reason = __constant_cpu_to_be32( 2589 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2590 goto destroy_ib; 2591 } 2592 2593 ch->sess = transport_init_session(); 2594 if (IS_ERR(ch->sess)) { 2595 rej->reason = __constant_cpu_to_be32( 2596 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2597 pr_debug("Failed to create session\n"); 2598 goto deregister_session; 2599 } 2600 ch->sess->se_node_acl = &nacl->nacl; 2601 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch); 2602 2603 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2604 ch->sess_name, ch->cm_id); 2605 2606 /* create srp_login_response */ 2607 rsp->opcode = SRP_LOGIN_RSP; 2608 rsp->tag = req->tag; 2609 rsp->max_it_iu_len = req->req_it_iu_len; 2610 rsp->max_ti_iu_len = req->req_it_iu_len; 2611 ch->max_ti_iu_len = it_iu_len; 2612 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2613 | SRP_BUF_FORMAT_INDIRECT); 2614 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2615 atomic_set(&ch->req_lim, ch->rq_size); 2616 atomic_set(&ch->req_lim_delta, 0); 2617 2618 /* create cm reply */ 2619 rep_param->qp_num = ch->qp->qp_num; 2620 rep_param->private_data = (void *)rsp; 2621 rep_param->private_data_len = sizeof *rsp; 2622 rep_param->rnr_retry_count = 7; 2623 rep_param->flow_control = 1; 2624 rep_param->failover_accepted = 0; 2625 rep_param->srq = 1; 2626 rep_param->responder_resources = 4; 2627 rep_param->initiator_depth = 4; 2628 2629 ret = ib_send_cm_rep(cm_id, rep_param); 2630 if (ret) { 2631 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed" 2632 " (error code = %d)\n", ret); 2633 goto release_channel; 2634 } 2635 2636 spin_lock_irq(&sdev->spinlock); 2637 list_add_tail(&ch->list, &sdev->rch_list); 2638 spin_unlock_irq(&sdev->spinlock); 2639 2640 goto out; 2641 2642 release_channel: 2643 srpt_set_ch_state(ch, CH_RELEASING); 2644 transport_deregister_session_configfs(ch->sess); 2645 2646 deregister_session: 2647 transport_deregister_session(ch->sess); 2648 ch->sess = NULL; 2649 2650 destroy_ib: 2651 srpt_destroy_ch_ib(ch); 2652 2653 free_ring: 2654 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2655 ch->sport->sdev, ch->rq_size, 2656 ch->rsp_size, DMA_TO_DEVICE); 2657 free_ch: 2658 kfree(ch); 2659 2660 reject: 2661 rej->opcode = SRP_LOGIN_REJ; 2662 rej->tag = req->tag; 2663 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2664 | SRP_BUF_FORMAT_INDIRECT); 2665 2666 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2667 (void *)rej, sizeof *rej); 2668 2669 out: 2670 kfree(rep_param); 2671 kfree(rsp); 2672 kfree(rej); 2673 2674 return ret; 2675 } 2676 2677 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id) 2678 { 2679 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id); 2680 srpt_drain_channel(cm_id); 2681 } 2682 2683 /** 2684 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2685 * 2686 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2687 * and that the recipient may begin transmitting (RTU = ready to use). 2688 */ 2689 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id) 2690 { 2691 struct srpt_rdma_ch *ch; 2692 int ret; 2693 2694 ch = srpt_find_channel(cm_id->context, cm_id); 2695 BUG_ON(!ch); 2696 2697 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) { 2698 struct srpt_recv_ioctx *ioctx, *ioctx_tmp; 2699 2700 ret = srpt_ch_qp_rts(ch, ch->qp); 2701 2702 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list, 2703 wait_list) { 2704 list_del(&ioctx->wait_list); 2705 srpt_handle_new_iu(ch, ioctx, NULL); 2706 } 2707 if (ret) 2708 srpt_close_ch(ch); 2709 } 2710 } 2711 2712 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id) 2713 { 2714 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id); 2715 srpt_drain_channel(cm_id); 2716 } 2717 2718 static void srpt_cm_rep_error(struct ib_cm_id *cm_id) 2719 { 2720 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id); 2721 srpt_drain_channel(cm_id); 2722 } 2723 2724 /** 2725 * srpt_cm_dreq_recv() - Process reception of a DREQ message. 2726 */ 2727 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id) 2728 { 2729 struct srpt_rdma_ch *ch; 2730 unsigned long flags; 2731 bool send_drep = false; 2732 2733 ch = srpt_find_channel(cm_id->context, cm_id); 2734 BUG_ON(!ch); 2735 2736 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch)); 2737 2738 spin_lock_irqsave(&ch->spinlock, flags); 2739 switch (ch->state) { 2740 case CH_CONNECTING: 2741 case CH_LIVE: 2742 send_drep = true; 2743 ch->state = CH_DISCONNECTING; 2744 break; 2745 case CH_DISCONNECTING: 2746 case CH_DRAINING: 2747 case CH_RELEASING: 2748 WARN(true, "unexpected channel state %d\n", ch->state); 2749 break; 2750 } 2751 spin_unlock_irqrestore(&ch->spinlock, flags); 2752 2753 if (send_drep) { 2754 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0) 2755 printk(KERN_ERR "Sending IB DREP failed.\n"); 2756 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n", 2757 ch->sess_name); 2758 } 2759 } 2760 2761 /** 2762 * srpt_cm_drep_recv() - Process reception of a DREP message. 2763 */ 2764 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id) 2765 { 2766 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n", 2767 cm_id); 2768 srpt_drain_channel(cm_id); 2769 } 2770 2771 /** 2772 * srpt_cm_handler() - IB connection manager callback function. 2773 * 2774 * A non-zero return value will cause the caller destroy the CM ID. 2775 * 2776 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2777 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2778 * a non-zero value in any other case will trigger a race with the 2779 * ib_destroy_cm_id() call in srpt_release_channel(). 2780 */ 2781 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2782 { 2783 int ret; 2784 2785 ret = 0; 2786 switch (event->event) { 2787 case IB_CM_REQ_RECEIVED: 2788 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2789 event->private_data); 2790 break; 2791 case IB_CM_REJ_RECEIVED: 2792 srpt_cm_rej_recv(cm_id); 2793 break; 2794 case IB_CM_RTU_RECEIVED: 2795 case IB_CM_USER_ESTABLISHED: 2796 srpt_cm_rtu_recv(cm_id); 2797 break; 2798 case IB_CM_DREQ_RECEIVED: 2799 srpt_cm_dreq_recv(cm_id); 2800 break; 2801 case IB_CM_DREP_RECEIVED: 2802 srpt_cm_drep_recv(cm_id); 2803 break; 2804 case IB_CM_TIMEWAIT_EXIT: 2805 srpt_cm_timewait_exit(cm_id); 2806 break; 2807 case IB_CM_REP_ERROR: 2808 srpt_cm_rep_error(cm_id); 2809 break; 2810 case IB_CM_DREQ_ERROR: 2811 printk(KERN_INFO "Received IB DREQ ERROR event.\n"); 2812 break; 2813 case IB_CM_MRA_RECEIVED: 2814 printk(KERN_INFO "Received IB MRA event\n"); 2815 break; 2816 default: 2817 printk(KERN_ERR "received unrecognized IB CM event %d\n", 2818 event->event); 2819 break; 2820 } 2821 2822 return ret; 2823 } 2824 2825 /** 2826 * srpt_perform_rdmas() - Perform IB RDMA. 2827 * 2828 * Returns zero upon success or a negative number upon failure. 2829 */ 2830 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, 2831 struct srpt_send_ioctx *ioctx) 2832 { 2833 struct ib_send_wr wr; 2834 struct ib_send_wr *bad_wr; 2835 struct rdma_iu *riu; 2836 int i; 2837 int ret; 2838 int sq_wr_avail; 2839 enum dma_data_direction dir; 2840 const int n_rdma = ioctx->n_rdma; 2841 2842 dir = ioctx->cmd.data_direction; 2843 if (dir == DMA_TO_DEVICE) { 2844 /* write */ 2845 ret = -ENOMEM; 2846 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); 2847 if (sq_wr_avail < 0) { 2848 printk(KERN_WARNING "IB send queue full (needed %d)\n", 2849 n_rdma); 2850 goto out; 2851 } 2852 } 2853 2854 ioctx->rdma_aborted = false; 2855 ret = 0; 2856 riu = ioctx->rdma_ius; 2857 memset(&wr, 0, sizeof wr); 2858 2859 for (i = 0; i < n_rdma; ++i, ++riu) { 2860 if (dir == DMA_FROM_DEVICE) { 2861 wr.opcode = IB_WR_RDMA_WRITE; 2862 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2863 SRPT_RDMA_WRITE_LAST : 2864 SRPT_RDMA_MID, 2865 ioctx->ioctx.index); 2866 } else { 2867 wr.opcode = IB_WR_RDMA_READ; 2868 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2869 SRPT_RDMA_READ_LAST : 2870 SRPT_RDMA_MID, 2871 ioctx->ioctx.index); 2872 } 2873 wr.next = NULL; 2874 wr.wr.rdma.remote_addr = riu->raddr; 2875 wr.wr.rdma.rkey = riu->rkey; 2876 wr.num_sge = riu->sge_cnt; 2877 wr.sg_list = riu->sge; 2878 2879 /* only get completion event for the last rdma write */ 2880 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE) 2881 wr.send_flags = IB_SEND_SIGNALED; 2882 2883 ret = ib_post_send(ch->qp, &wr, &bad_wr); 2884 if (ret) 2885 break; 2886 } 2887 2888 if (ret) 2889 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d", 2890 __func__, __LINE__, ret, i, n_rdma); 2891 if (ret && i > 0) { 2892 wr.num_sge = 0; 2893 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index); 2894 wr.send_flags = IB_SEND_SIGNALED; 2895 while (ch->state == CH_LIVE && 2896 ib_post_send(ch->qp, &wr, &bad_wr) != 0) { 2897 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]", 2898 ioctx->ioctx.index); 2899 msleep(1000); 2900 } 2901 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) { 2902 printk(KERN_INFO "Waiting until RDMA abort finished [%d]", 2903 ioctx->ioctx.index); 2904 msleep(1000); 2905 } 2906 } 2907 out: 2908 if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) 2909 atomic_add(n_rdma, &ch->sq_wr_avail); 2910 return ret; 2911 } 2912 2913 /** 2914 * srpt_xfer_data() - Start data transfer from initiator to target. 2915 */ 2916 static int srpt_xfer_data(struct srpt_rdma_ch *ch, 2917 struct srpt_send_ioctx *ioctx) 2918 { 2919 int ret; 2920 2921 ret = srpt_map_sg_to_ib_sge(ch, ioctx); 2922 if (ret) { 2923 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret); 2924 goto out; 2925 } 2926 2927 ret = srpt_perform_rdmas(ch, ioctx); 2928 if (ret) { 2929 if (ret == -EAGAIN || ret == -ENOMEM) 2930 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n", 2931 __func__, __LINE__, ret); 2932 else 2933 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n", 2934 __func__, __LINE__, ret); 2935 goto out_unmap; 2936 } 2937 2938 out: 2939 return ret; 2940 out_unmap: 2941 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2942 goto out; 2943 } 2944 2945 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2946 { 2947 struct srpt_send_ioctx *ioctx; 2948 2949 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2950 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2951 } 2952 2953 /* 2954 * srpt_write_pending() - Start data transfer from initiator to target (write). 2955 */ 2956 static int srpt_write_pending(struct se_cmd *se_cmd) 2957 { 2958 struct srpt_rdma_ch *ch; 2959 struct srpt_send_ioctx *ioctx; 2960 enum srpt_command_state new_state; 2961 enum rdma_ch_state ch_state; 2962 int ret; 2963 2964 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2965 2966 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2967 WARN_ON(new_state == SRPT_STATE_DONE); 2968 2969 ch = ioctx->ch; 2970 BUG_ON(!ch); 2971 2972 ch_state = srpt_get_ch_state(ch); 2973 switch (ch_state) { 2974 case CH_CONNECTING: 2975 WARN(true, "unexpected channel state %d\n", ch_state); 2976 ret = -EINVAL; 2977 goto out; 2978 case CH_LIVE: 2979 break; 2980 case CH_DISCONNECTING: 2981 case CH_DRAINING: 2982 case CH_RELEASING: 2983 pr_debug("cmd with tag %lld: channel disconnecting\n", 2984 ioctx->tag); 2985 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2986 ret = -EINVAL; 2987 goto out; 2988 } 2989 ret = srpt_xfer_data(ch, ioctx); 2990 2991 out: 2992 return ret; 2993 } 2994 2995 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2996 { 2997 switch (tcm_mgmt_status) { 2998 case TMR_FUNCTION_COMPLETE: 2999 return SRP_TSK_MGMT_SUCCESS; 3000 case TMR_FUNCTION_REJECTED: 3001 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 3002 } 3003 return SRP_TSK_MGMT_FAILED; 3004 } 3005 3006 /** 3007 * srpt_queue_response() - Transmits the response to a SCSI command. 3008 * 3009 * Callback function called by the TCM core. Must not block since it can be 3010 * invoked on the context of the IB completion handler. 3011 */ 3012 static void srpt_queue_response(struct se_cmd *cmd) 3013 { 3014 struct srpt_rdma_ch *ch; 3015 struct srpt_send_ioctx *ioctx; 3016 enum srpt_command_state state; 3017 unsigned long flags; 3018 int ret; 3019 enum dma_data_direction dir; 3020 int resp_len; 3021 u8 srp_tm_status; 3022 3023 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3024 ch = ioctx->ch; 3025 BUG_ON(!ch); 3026 3027 spin_lock_irqsave(&ioctx->spinlock, flags); 3028 state = ioctx->state; 3029 switch (state) { 3030 case SRPT_STATE_NEW: 3031 case SRPT_STATE_DATA_IN: 3032 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 3033 break; 3034 case SRPT_STATE_MGMT: 3035 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 3036 break; 3037 default: 3038 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 3039 ch, ioctx->ioctx.index, ioctx->state); 3040 break; 3041 } 3042 spin_unlock_irqrestore(&ioctx->spinlock, flags); 3043 3044 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 3045 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 3046 atomic_inc(&ch->req_lim_delta); 3047 srpt_abort_cmd(ioctx); 3048 return; 3049 } 3050 3051 dir = ioctx->cmd.data_direction; 3052 3053 /* For read commands, transfer the data to the initiator. */ 3054 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && 3055 !ioctx->queue_status_only) { 3056 ret = srpt_xfer_data(ch, ioctx); 3057 if (ret) { 3058 printk(KERN_ERR "xfer_data failed for tag %llu\n", 3059 ioctx->tag); 3060 return; 3061 } 3062 } 3063 3064 if (state != SRPT_STATE_MGMT) 3065 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag, 3066 cmd->scsi_status); 3067 else { 3068 srp_tm_status 3069 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 3070 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 3071 ioctx->tag); 3072 } 3073 ret = srpt_post_send(ch, ioctx, resp_len); 3074 if (ret) { 3075 printk(KERN_ERR "sending cmd response failed for tag %llu\n", 3076 ioctx->tag); 3077 srpt_unmap_sg_to_ib_sge(ch, ioctx); 3078 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 3079 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 3080 } 3081 } 3082 3083 static int srpt_queue_data_in(struct se_cmd *cmd) 3084 { 3085 srpt_queue_response(cmd); 3086 return 0; 3087 } 3088 3089 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 3090 { 3091 srpt_queue_response(cmd); 3092 } 3093 3094 static int srpt_queue_status(struct se_cmd *cmd) 3095 { 3096 struct srpt_send_ioctx *ioctx; 3097 3098 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3099 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 3100 if (cmd->se_cmd_flags & 3101 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 3102 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 3103 ioctx->queue_status_only = true; 3104 srpt_queue_response(cmd); 3105 return 0; 3106 } 3107 3108 static void srpt_refresh_port_work(struct work_struct *work) 3109 { 3110 struct srpt_port *sport = container_of(work, struct srpt_port, work); 3111 3112 srpt_refresh_port(sport); 3113 } 3114 3115 static int srpt_ch_list_empty(struct srpt_device *sdev) 3116 { 3117 int res; 3118 3119 spin_lock_irq(&sdev->spinlock); 3120 res = list_empty(&sdev->rch_list); 3121 spin_unlock_irq(&sdev->spinlock); 3122 3123 return res; 3124 } 3125 3126 /** 3127 * srpt_release_sdev() - Free the channel resources associated with a target. 3128 */ 3129 static int srpt_release_sdev(struct srpt_device *sdev) 3130 { 3131 struct srpt_rdma_ch *ch, *tmp_ch; 3132 int res; 3133 3134 WARN_ON_ONCE(irqs_disabled()); 3135 3136 BUG_ON(!sdev); 3137 3138 spin_lock_irq(&sdev->spinlock); 3139 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) 3140 __srpt_close_ch(ch); 3141 spin_unlock_irq(&sdev->spinlock); 3142 3143 res = wait_event_interruptible(sdev->ch_releaseQ, 3144 srpt_ch_list_empty(sdev)); 3145 if (res) 3146 printk(KERN_ERR "%s: interrupted.\n", __func__); 3147 3148 return 0; 3149 } 3150 3151 static struct srpt_port *__srpt_lookup_port(const char *name) 3152 { 3153 struct ib_device *dev; 3154 struct srpt_device *sdev; 3155 struct srpt_port *sport; 3156 int i; 3157 3158 list_for_each_entry(sdev, &srpt_dev_list, list) { 3159 dev = sdev->device; 3160 if (!dev) 3161 continue; 3162 3163 for (i = 0; i < dev->phys_port_cnt; i++) { 3164 sport = &sdev->port[i]; 3165 3166 if (!strcmp(sport->port_guid, name)) 3167 return sport; 3168 } 3169 } 3170 3171 return NULL; 3172 } 3173 3174 static struct srpt_port *srpt_lookup_port(const char *name) 3175 { 3176 struct srpt_port *sport; 3177 3178 spin_lock(&srpt_dev_lock); 3179 sport = __srpt_lookup_port(name); 3180 spin_unlock(&srpt_dev_lock); 3181 3182 return sport; 3183 } 3184 3185 /** 3186 * srpt_add_one() - Infiniband device addition callback function. 3187 */ 3188 static void srpt_add_one(struct ib_device *device) 3189 { 3190 struct srpt_device *sdev; 3191 struct srpt_port *sport; 3192 struct ib_srq_init_attr srq_attr; 3193 int i; 3194 3195 pr_debug("device = %p, device->dma_ops = %p\n", device, 3196 device->dma_ops); 3197 3198 sdev = kzalloc(sizeof *sdev, GFP_KERNEL); 3199 if (!sdev) 3200 goto err; 3201 3202 sdev->device = device; 3203 INIT_LIST_HEAD(&sdev->rch_list); 3204 init_waitqueue_head(&sdev->ch_releaseQ); 3205 spin_lock_init(&sdev->spinlock); 3206 3207 if (ib_query_device(device, &sdev->dev_attr)) 3208 goto free_dev; 3209 3210 sdev->pd = ib_alloc_pd(device); 3211 if (IS_ERR(sdev->pd)) 3212 goto free_dev; 3213 3214 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE); 3215 if (IS_ERR(sdev->mr)) 3216 goto err_pd; 3217 3218 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr); 3219 3220 srq_attr.event_handler = srpt_srq_event; 3221 srq_attr.srq_context = (void *)sdev; 3222 srq_attr.attr.max_wr = sdev->srq_size; 3223 srq_attr.attr.max_sge = 1; 3224 srq_attr.attr.srq_limit = 0; 3225 srq_attr.srq_type = IB_SRQT_BASIC; 3226 3227 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 3228 if (IS_ERR(sdev->srq)) 3229 goto err_mr; 3230 3231 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 3232 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr, 3233 device->name); 3234 3235 if (!srpt_service_guid) 3236 srpt_service_guid = be64_to_cpu(device->node_guid); 3237 3238 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3239 if (IS_ERR(sdev->cm_id)) 3240 goto err_srq; 3241 3242 /* print out target login information */ 3243 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3244 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3245 srpt_service_guid, srpt_service_guid); 3246 3247 /* 3248 * We do not have a consistent service_id (ie. also id_ext of target_id) 3249 * to identify this target. We currently use the guid of the first HCA 3250 * in the system as service_id; therefore, the target_id will change 3251 * if this HCA is gone bad and replaced by different HCA 3252 */ 3253 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL)) 3254 goto err_cm; 3255 3256 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3257 srpt_event_handler); 3258 if (ib_register_event_handler(&sdev->event_handler)) 3259 goto err_cm; 3260 3261 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3262 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3263 sizeof(*sdev->ioctx_ring[0]), 3264 srp_max_req_size, DMA_FROM_DEVICE); 3265 if (!sdev->ioctx_ring) 3266 goto err_event; 3267 3268 for (i = 0; i < sdev->srq_size; ++i) 3269 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 3270 3271 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 3272 3273 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3274 sport = &sdev->port[i - 1]; 3275 sport->sdev = sdev; 3276 sport->port = i; 3277 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3278 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3279 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3280 INIT_WORK(&sport->work, srpt_refresh_port_work); 3281 INIT_LIST_HEAD(&sport->port_acl_list); 3282 spin_lock_init(&sport->port_acl_lock); 3283 3284 if (srpt_refresh_port(sport)) { 3285 printk(KERN_ERR "MAD registration failed for %s-%d.\n", 3286 srpt_sdev_name(sdev), i); 3287 goto err_ring; 3288 } 3289 snprintf(sport->port_guid, sizeof(sport->port_guid), 3290 "0x%016llx%016llx", 3291 be64_to_cpu(sport->gid.global.subnet_prefix), 3292 be64_to_cpu(sport->gid.global.interface_id)); 3293 } 3294 3295 spin_lock(&srpt_dev_lock); 3296 list_add_tail(&sdev->list, &srpt_dev_list); 3297 spin_unlock(&srpt_dev_lock); 3298 3299 out: 3300 ib_set_client_data(device, &srpt_client, sdev); 3301 pr_debug("added %s.\n", device->name); 3302 return; 3303 3304 err_ring: 3305 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3306 sdev->srq_size, srp_max_req_size, 3307 DMA_FROM_DEVICE); 3308 err_event: 3309 ib_unregister_event_handler(&sdev->event_handler); 3310 err_cm: 3311 ib_destroy_cm_id(sdev->cm_id); 3312 err_srq: 3313 ib_destroy_srq(sdev->srq); 3314 err_mr: 3315 ib_dereg_mr(sdev->mr); 3316 err_pd: 3317 ib_dealloc_pd(sdev->pd); 3318 free_dev: 3319 kfree(sdev); 3320 err: 3321 sdev = NULL; 3322 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name); 3323 goto out; 3324 } 3325 3326 /** 3327 * srpt_remove_one() - InfiniBand device removal callback function. 3328 */ 3329 static void srpt_remove_one(struct ib_device *device) 3330 { 3331 struct srpt_device *sdev; 3332 int i; 3333 3334 sdev = ib_get_client_data(device, &srpt_client); 3335 if (!sdev) { 3336 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__, 3337 device->name); 3338 return; 3339 } 3340 3341 srpt_unregister_mad_agent(sdev); 3342 3343 ib_unregister_event_handler(&sdev->event_handler); 3344 3345 /* Cancel any work queued by the just unregistered IB event handler. */ 3346 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3347 cancel_work_sync(&sdev->port[i].work); 3348 3349 ib_destroy_cm_id(sdev->cm_id); 3350 3351 /* 3352 * Unregistering a target must happen after destroying sdev->cm_id 3353 * such that no new SRP_LOGIN_REQ information units can arrive while 3354 * destroying the target. 3355 */ 3356 spin_lock(&srpt_dev_lock); 3357 list_del(&sdev->list); 3358 spin_unlock(&srpt_dev_lock); 3359 srpt_release_sdev(sdev); 3360 3361 ib_destroy_srq(sdev->srq); 3362 ib_dereg_mr(sdev->mr); 3363 ib_dealloc_pd(sdev->pd); 3364 3365 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3366 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 3367 sdev->ioctx_ring = NULL; 3368 kfree(sdev); 3369 } 3370 3371 static struct ib_client srpt_client = { 3372 .name = DRV_NAME, 3373 .add = srpt_add_one, 3374 .remove = srpt_remove_one 3375 }; 3376 3377 static int srpt_check_true(struct se_portal_group *se_tpg) 3378 { 3379 return 1; 3380 } 3381 3382 static int srpt_check_false(struct se_portal_group *se_tpg) 3383 { 3384 return 0; 3385 } 3386 3387 static char *srpt_get_fabric_name(void) 3388 { 3389 return "srpt"; 3390 } 3391 3392 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg) 3393 { 3394 return SCSI_TRANSPORTID_PROTOCOLID_SRP; 3395 } 3396 3397 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3398 { 3399 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3400 3401 return sport->port_guid; 3402 } 3403 3404 static u16 srpt_get_tag(struct se_portal_group *tpg) 3405 { 3406 return 1; 3407 } 3408 3409 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg) 3410 { 3411 return 1; 3412 } 3413 3414 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg, 3415 struct se_node_acl *se_nacl, 3416 struct t10_pr_registration *pr_reg, 3417 int *format_code, unsigned char *buf) 3418 { 3419 struct srpt_node_acl *nacl; 3420 struct spc_rdma_transport_id *tr_id; 3421 3422 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3423 tr_id = (void *)buf; 3424 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP; 3425 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id)); 3426 return sizeof(*tr_id); 3427 } 3428 3429 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg, 3430 struct se_node_acl *se_nacl, 3431 struct t10_pr_registration *pr_reg, 3432 int *format_code) 3433 { 3434 *format_code = 0; 3435 return sizeof(struct spc_rdma_transport_id); 3436 } 3437 3438 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg, 3439 const char *buf, u32 *out_tid_len, 3440 char **port_nexus_ptr) 3441 { 3442 struct spc_rdma_transport_id *tr_id; 3443 3444 *port_nexus_ptr = NULL; 3445 *out_tid_len = sizeof(struct spc_rdma_transport_id); 3446 tr_id = (void *)buf; 3447 return (char *)tr_id->i_port_id; 3448 } 3449 3450 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg) 3451 { 3452 struct srpt_node_acl *nacl; 3453 3454 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL); 3455 if (!nacl) { 3456 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n"); 3457 return NULL; 3458 } 3459 3460 return &nacl->nacl; 3461 } 3462 3463 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg, 3464 struct se_node_acl *se_nacl) 3465 { 3466 struct srpt_node_acl *nacl; 3467 3468 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3469 kfree(nacl); 3470 } 3471 3472 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3473 { 3474 return 1; 3475 } 3476 3477 static void srpt_release_cmd(struct se_cmd *se_cmd) 3478 { 3479 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3480 struct srpt_send_ioctx, cmd); 3481 struct srpt_rdma_ch *ch = ioctx->ch; 3482 unsigned long flags; 3483 3484 WARN_ON(ioctx->state != SRPT_STATE_DONE); 3485 WARN_ON(ioctx->mapped_sg_count != 0); 3486 3487 if (ioctx->n_rbuf > 1) { 3488 kfree(ioctx->rbufs); 3489 ioctx->rbufs = NULL; 3490 ioctx->n_rbuf = 0; 3491 } 3492 3493 spin_lock_irqsave(&ch->spinlock, flags); 3494 list_add(&ioctx->free_list, &ch->free_list); 3495 spin_unlock_irqrestore(&ch->spinlock, flags); 3496 } 3497 3498 /** 3499 * srpt_close_session() - Forcibly close a session. 3500 * 3501 * Callback function invoked by the TCM core to clean up sessions associated 3502 * with a node ACL when the user invokes 3503 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3504 */ 3505 static void srpt_close_session(struct se_session *se_sess) 3506 { 3507 DECLARE_COMPLETION_ONSTACK(release_done); 3508 struct srpt_rdma_ch *ch; 3509 struct srpt_device *sdev; 3510 int res; 3511 3512 ch = se_sess->fabric_sess_ptr; 3513 WARN_ON(ch->sess != se_sess); 3514 3515 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch)); 3516 3517 sdev = ch->sport->sdev; 3518 spin_lock_irq(&sdev->spinlock); 3519 BUG_ON(ch->release_done); 3520 ch->release_done = &release_done; 3521 __srpt_close_ch(ch); 3522 spin_unlock_irq(&sdev->spinlock); 3523 3524 res = wait_for_completion_timeout(&release_done, 60 * HZ); 3525 WARN_ON(res <= 0); 3526 } 3527 3528 /** 3529 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 3530 * 3531 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3532 * This object represents an arbitrary integer used to uniquely identify a 3533 * particular attached remote initiator port to a particular SCSI target port 3534 * within a particular SCSI target device within a particular SCSI instance. 3535 */ 3536 static u32 srpt_sess_get_index(struct se_session *se_sess) 3537 { 3538 return 0; 3539 } 3540 3541 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3542 { 3543 } 3544 3545 static u32 srpt_get_task_tag(struct se_cmd *se_cmd) 3546 { 3547 struct srpt_send_ioctx *ioctx; 3548 3549 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3550 return ioctx->tag; 3551 } 3552 3553 /* Note: only used from inside debug printk's by the TCM core. */ 3554 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3555 { 3556 struct srpt_send_ioctx *ioctx; 3557 3558 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3559 return srpt_get_cmd_state(ioctx); 3560 } 3561 3562 /** 3563 * srpt_parse_i_port_id() - Parse an initiator port ID. 3564 * @name: ASCII representation of a 128-bit initiator port ID. 3565 * @i_port_id: Binary 128-bit port ID. 3566 */ 3567 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3568 { 3569 const char *p; 3570 unsigned len, count, leading_zero_bytes; 3571 int ret, rc; 3572 3573 p = name; 3574 if (strnicmp(p, "0x", 2) == 0) 3575 p += 2; 3576 ret = -EINVAL; 3577 len = strlen(p); 3578 if (len % 2) 3579 goto out; 3580 count = min(len / 2, 16U); 3581 leading_zero_bytes = 16 - count; 3582 memset(i_port_id, 0, leading_zero_bytes); 3583 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 3584 if (rc < 0) 3585 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 3586 ret = 0; 3587 out: 3588 return ret; 3589 } 3590 3591 /* 3592 * configfs callback function invoked for 3593 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3594 */ 3595 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg, 3596 struct config_group *group, 3597 const char *name) 3598 { 3599 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3600 struct se_node_acl *se_nacl, *se_nacl_new; 3601 struct srpt_node_acl *nacl; 3602 int ret = 0; 3603 u32 nexus_depth = 1; 3604 u8 i_port_id[16]; 3605 3606 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 3607 printk(KERN_ERR "invalid initiator port ID %s\n", name); 3608 ret = -EINVAL; 3609 goto err; 3610 } 3611 3612 se_nacl_new = srpt_alloc_fabric_acl(tpg); 3613 if (!se_nacl_new) { 3614 ret = -ENOMEM; 3615 goto err; 3616 } 3617 /* 3618 * nacl_new may be released by core_tpg_add_initiator_node_acl() 3619 * when converting a node ACL from demo mode to explict 3620 */ 3621 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name, 3622 nexus_depth); 3623 if (IS_ERR(se_nacl)) { 3624 ret = PTR_ERR(se_nacl); 3625 goto err; 3626 } 3627 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */ 3628 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3629 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16); 3630 nacl->sport = sport; 3631 3632 spin_lock_irq(&sport->port_acl_lock); 3633 list_add_tail(&nacl->list, &sport->port_acl_list); 3634 spin_unlock_irq(&sport->port_acl_lock); 3635 3636 return se_nacl; 3637 err: 3638 return ERR_PTR(ret); 3639 } 3640 3641 /* 3642 * configfs callback function invoked for 3643 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3644 */ 3645 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl) 3646 { 3647 struct srpt_node_acl *nacl; 3648 struct srpt_device *sdev; 3649 struct srpt_port *sport; 3650 3651 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3652 sport = nacl->sport; 3653 sdev = sport->sdev; 3654 spin_lock_irq(&sport->port_acl_lock); 3655 list_del(&nacl->list); 3656 spin_unlock_irq(&sport->port_acl_lock); 3657 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1); 3658 srpt_release_fabric_acl(NULL, se_nacl); 3659 } 3660 3661 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size( 3662 struct se_portal_group *se_tpg, 3663 char *page) 3664 { 3665 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3666 3667 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3668 } 3669 3670 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size( 3671 struct se_portal_group *se_tpg, 3672 const char *page, 3673 size_t count) 3674 { 3675 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3676 unsigned long val; 3677 int ret; 3678 3679 ret = strict_strtoul(page, 0, &val); 3680 if (ret < 0) { 3681 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3682 return -EINVAL; 3683 } 3684 if (val > MAX_SRPT_RDMA_SIZE) { 3685 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3686 MAX_SRPT_RDMA_SIZE); 3687 return -EINVAL; 3688 } 3689 if (val < DEFAULT_MAX_RDMA_SIZE) { 3690 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3691 val, DEFAULT_MAX_RDMA_SIZE); 3692 return -EINVAL; 3693 } 3694 sport->port_attrib.srp_max_rdma_size = val; 3695 3696 return count; 3697 } 3698 3699 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR); 3700 3701 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size( 3702 struct se_portal_group *se_tpg, 3703 char *page) 3704 { 3705 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3706 3707 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3708 } 3709 3710 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size( 3711 struct se_portal_group *se_tpg, 3712 const char *page, 3713 size_t count) 3714 { 3715 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3716 unsigned long val; 3717 int ret; 3718 3719 ret = strict_strtoul(page, 0, &val); 3720 if (ret < 0) { 3721 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3722 return -EINVAL; 3723 } 3724 if (val > MAX_SRPT_RSP_SIZE) { 3725 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3726 MAX_SRPT_RSP_SIZE); 3727 return -EINVAL; 3728 } 3729 if (val < MIN_MAX_RSP_SIZE) { 3730 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3731 MIN_MAX_RSP_SIZE); 3732 return -EINVAL; 3733 } 3734 sport->port_attrib.srp_max_rsp_size = val; 3735 3736 return count; 3737 } 3738 3739 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR); 3740 3741 static ssize_t srpt_tpg_attrib_show_srp_sq_size( 3742 struct se_portal_group *se_tpg, 3743 char *page) 3744 { 3745 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3746 3747 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3748 } 3749 3750 static ssize_t srpt_tpg_attrib_store_srp_sq_size( 3751 struct se_portal_group *se_tpg, 3752 const char *page, 3753 size_t count) 3754 { 3755 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3756 unsigned long val; 3757 int ret; 3758 3759 ret = strict_strtoul(page, 0, &val); 3760 if (ret < 0) { 3761 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3762 return -EINVAL; 3763 } 3764 if (val > MAX_SRPT_SRQ_SIZE) { 3765 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3766 MAX_SRPT_SRQ_SIZE); 3767 return -EINVAL; 3768 } 3769 if (val < MIN_SRPT_SRQ_SIZE) { 3770 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3771 MIN_SRPT_SRQ_SIZE); 3772 return -EINVAL; 3773 } 3774 sport->port_attrib.srp_sq_size = val; 3775 3776 return count; 3777 } 3778 3779 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR); 3780 3781 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3782 &srpt_tpg_attrib_srp_max_rdma_size.attr, 3783 &srpt_tpg_attrib_srp_max_rsp_size.attr, 3784 &srpt_tpg_attrib_srp_sq_size.attr, 3785 NULL, 3786 }; 3787 3788 static ssize_t srpt_tpg_show_enable( 3789 struct se_portal_group *se_tpg, 3790 char *page) 3791 { 3792 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3793 3794 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3795 } 3796 3797 static ssize_t srpt_tpg_store_enable( 3798 struct se_portal_group *se_tpg, 3799 const char *page, 3800 size_t count) 3801 { 3802 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3803 unsigned long tmp; 3804 int ret; 3805 3806 ret = strict_strtoul(page, 0, &tmp); 3807 if (ret < 0) { 3808 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n"); 3809 return -EINVAL; 3810 } 3811 3812 if ((tmp != 0) && (tmp != 1)) { 3813 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3814 return -EINVAL; 3815 } 3816 if (tmp == 1) 3817 sport->enabled = true; 3818 else 3819 sport->enabled = false; 3820 3821 return count; 3822 } 3823 3824 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR); 3825 3826 static struct configfs_attribute *srpt_tpg_attrs[] = { 3827 &srpt_tpg_enable.attr, 3828 NULL, 3829 }; 3830 3831 /** 3832 * configfs callback invoked for 3833 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3834 */ 3835 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3836 struct config_group *group, 3837 const char *name) 3838 { 3839 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3840 int res; 3841 3842 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 3843 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn, 3844 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL); 3845 if (res) 3846 return ERR_PTR(res); 3847 3848 return &sport->port_tpg_1; 3849 } 3850 3851 /** 3852 * configfs callback invoked for 3853 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3854 */ 3855 static void srpt_drop_tpg(struct se_portal_group *tpg) 3856 { 3857 struct srpt_port *sport = container_of(tpg, 3858 struct srpt_port, port_tpg_1); 3859 3860 sport->enabled = false; 3861 core_tpg_deregister(&sport->port_tpg_1); 3862 } 3863 3864 /** 3865 * configfs callback invoked for 3866 * mkdir /sys/kernel/config/target/$driver/$port 3867 */ 3868 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3869 struct config_group *group, 3870 const char *name) 3871 { 3872 struct srpt_port *sport; 3873 int ret; 3874 3875 sport = srpt_lookup_port(name); 3876 pr_debug("make_tport(%s)\n", name); 3877 ret = -EINVAL; 3878 if (!sport) 3879 goto err; 3880 3881 return &sport->port_wwn; 3882 3883 err: 3884 return ERR_PTR(ret); 3885 } 3886 3887 /** 3888 * configfs callback invoked for 3889 * rmdir /sys/kernel/config/target/$driver/$port 3890 */ 3891 static void srpt_drop_tport(struct se_wwn *wwn) 3892 { 3893 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3894 3895 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3896 } 3897 3898 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf, 3899 char *buf) 3900 { 3901 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3902 } 3903 3904 TF_WWN_ATTR_RO(srpt, version); 3905 3906 static struct configfs_attribute *srpt_wwn_attrs[] = { 3907 &srpt_wwn_version.attr, 3908 NULL, 3909 }; 3910 3911 static struct target_core_fabric_ops srpt_template = { 3912 .get_fabric_name = srpt_get_fabric_name, 3913 .get_fabric_proto_ident = srpt_get_fabric_proto_ident, 3914 .tpg_get_wwn = srpt_get_fabric_wwn, 3915 .tpg_get_tag = srpt_get_tag, 3916 .tpg_get_default_depth = srpt_get_default_depth, 3917 .tpg_get_pr_transport_id = srpt_get_pr_transport_id, 3918 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len, 3919 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id, 3920 .tpg_check_demo_mode = srpt_check_false, 3921 .tpg_check_demo_mode_cache = srpt_check_true, 3922 .tpg_check_demo_mode_write_protect = srpt_check_true, 3923 .tpg_check_prod_mode_write_protect = srpt_check_false, 3924 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl, 3925 .tpg_release_fabric_acl = srpt_release_fabric_acl, 3926 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3927 .release_cmd = srpt_release_cmd, 3928 .check_stop_free = srpt_check_stop_free, 3929 .shutdown_session = srpt_shutdown_session, 3930 .close_session = srpt_close_session, 3931 .sess_get_index = srpt_sess_get_index, 3932 .sess_get_initiator_sid = NULL, 3933 .write_pending = srpt_write_pending, 3934 .write_pending_status = srpt_write_pending_status, 3935 .set_default_node_attributes = srpt_set_default_node_attrs, 3936 .get_task_tag = srpt_get_task_tag, 3937 .get_cmd_state = srpt_get_tcm_cmd_state, 3938 .queue_data_in = srpt_queue_data_in, 3939 .queue_status = srpt_queue_status, 3940 .queue_tm_rsp = srpt_queue_tm_rsp, 3941 /* 3942 * Setup function pointers for generic logic in 3943 * target_core_fabric_configfs.c 3944 */ 3945 .fabric_make_wwn = srpt_make_tport, 3946 .fabric_drop_wwn = srpt_drop_tport, 3947 .fabric_make_tpg = srpt_make_tpg, 3948 .fabric_drop_tpg = srpt_drop_tpg, 3949 .fabric_post_link = NULL, 3950 .fabric_pre_unlink = NULL, 3951 .fabric_make_np = NULL, 3952 .fabric_drop_np = NULL, 3953 .fabric_make_nodeacl = srpt_make_nodeacl, 3954 .fabric_drop_nodeacl = srpt_drop_nodeacl, 3955 }; 3956 3957 /** 3958 * srpt_init_module() - Kernel module initialization. 3959 * 3960 * Note: Since ib_register_client() registers callback functions, and since at 3961 * least one of these callback functions (srpt_add_one()) calls target core 3962 * functions, this driver must be registered with the target core before 3963 * ib_register_client() is called. 3964 */ 3965 static int __init srpt_init_module(void) 3966 { 3967 int ret; 3968 3969 ret = -EINVAL; 3970 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3971 printk(KERN_ERR "invalid value %d for kernel module parameter" 3972 " srp_max_req_size -- must be at least %d.\n", 3973 srp_max_req_size, MIN_MAX_REQ_SIZE); 3974 goto out; 3975 } 3976 3977 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3978 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3979 printk(KERN_ERR "invalid value %d for kernel module parameter" 3980 " srpt_srq_size -- must be in the range [%d..%d].\n", 3981 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3982 goto out; 3983 } 3984 3985 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt"); 3986 if (IS_ERR(srpt_target)) { 3987 printk(KERN_ERR "couldn't register\n"); 3988 ret = PTR_ERR(srpt_target); 3989 goto out; 3990 } 3991 3992 srpt_target->tf_ops = srpt_template; 3993 3994 /* 3995 * Set up default attribute lists. 3996 */ 3997 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs; 3998 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs; 3999 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs; 4000 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL; 4001 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL; 4002 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL; 4003 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL; 4004 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL; 4005 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL; 4006 4007 ret = target_fabric_configfs_register(srpt_target); 4008 if (ret < 0) { 4009 printk(KERN_ERR "couldn't register\n"); 4010 goto out_free_target; 4011 } 4012 4013 ret = ib_register_client(&srpt_client); 4014 if (ret) { 4015 printk(KERN_ERR "couldn't register IB client\n"); 4016 goto out_unregister_target; 4017 } 4018 4019 return 0; 4020 4021 out_unregister_target: 4022 target_fabric_configfs_deregister(srpt_target); 4023 srpt_target = NULL; 4024 out_free_target: 4025 if (srpt_target) 4026 target_fabric_configfs_free(srpt_target); 4027 out: 4028 return ret; 4029 } 4030 4031 static void __exit srpt_cleanup_module(void) 4032 { 4033 ib_unregister_client(&srpt_client); 4034 target_fabric_configfs_deregister(srpt_target); 4035 srpt_target = NULL; 4036 } 4037 4038 module_init(srpt_init_module); 4039 module_exit(srpt_cleanup_module); 4040