1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_proto.h> 45 #include <scsi/scsi_tcq.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric.h> 48 #include "ib_srpt.h" 49 50 /* Name of this kernel module. */ 51 #define DRV_NAME "ib_srpt" 52 #define DRV_VERSION "2.0.0" 53 #define DRV_RELDATE "2011-02-14" 54 55 #define SRPT_ID_STRING "Linux SRP target" 56 57 #undef pr_fmt 58 #define pr_fmt(fmt) DRV_NAME " " fmt 59 60 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 62 "v" DRV_VERSION " (" DRV_RELDATE ")"); 63 MODULE_LICENSE("Dual BSD/GPL"); 64 65 /* 66 * Global Variables 67 */ 68 69 static u64 srpt_service_guid; 70 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 71 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 72 73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 74 module_param(srp_max_req_size, int, 0444); 75 MODULE_PARM_DESC(srp_max_req_size, 76 "Maximum size of SRP request messages in bytes."); 77 78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 79 module_param(srpt_srq_size, int, 0444); 80 MODULE_PARM_DESC(srpt_srq_size, 81 "Shared receive queue (SRQ) size."); 82 83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 84 { 85 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 86 } 87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 88 0444); 89 MODULE_PARM_DESC(srpt_service_guid, 90 "Using this value for ioc_guid, id_ext, and cm_listen_id" 91 " instead of using the node_guid of the first HCA."); 92 93 static struct ib_client srpt_client; 94 static void srpt_release_cmd(struct se_cmd *se_cmd); 95 static void srpt_free_ch(struct kref *kref); 96 static int srpt_queue_status(struct se_cmd *cmd); 97 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc); 98 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc); 99 static void srpt_process_wait_list(struct srpt_rdma_ch *ch); 100 101 /* 102 * The only allowed channel state changes are those that change the channel 103 * state into a state with a higher numerical value. Hence the new > prev test. 104 */ 105 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new) 106 { 107 unsigned long flags; 108 enum rdma_ch_state prev; 109 bool changed = false; 110 111 spin_lock_irqsave(&ch->spinlock, flags); 112 prev = ch->state; 113 if (new > prev) { 114 ch->state = new; 115 changed = true; 116 } 117 spin_unlock_irqrestore(&ch->spinlock, flags); 118 119 return changed; 120 } 121 122 /** 123 * srpt_event_handler() - Asynchronous IB event callback function. 124 * 125 * Callback function called by the InfiniBand core when an asynchronous IB 126 * event occurs. This callback may occur in interrupt context. See also 127 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 128 * Architecture Specification. 129 */ 130 static void srpt_event_handler(struct ib_event_handler *handler, 131 struct ib_event *event) 132 { 133 struct srpt_device *sdev; 134 struct srpt_port *sport; 135 136 sdev = ib_get_client_data(event->device, &srpt_client); 137 if (!sdev || sdev->device != event->device) 138 return; 139 140 pr_debug("ASYNC event= %d on device= %s\n", event->event, 141 sdev->device->name); 142 143 switch (event->event) { 144 case IB_EVENT_PORT_ERR: 145 if (event->element.port_num <= sdev->device->phys_port_cnt) { 146 sport = &sdev->port[event->element.port_num - 1]; 147 sport->lid = 0; 148 sport->sm_lid = 0; 149 } 150 break; 151 case IB_EVENT_PORT_ACTIVE: 152 case IB_EVENT_LID_CHANGE: 153 case IB_EVENT_PKEY_CHANGE: 154 case IB_EVENT_SM_CHANGE: 155 case IB_EVENT_CLIENT_REREGISTER: 156 case IB_EVENT_GID_CHANGE: 157 /* Refresh port data asynchronously. */ 158 if (event->element.port_num <= sdev->device->phys_port_cnt) { 159 sport = &sdev->port[event->element.port_num - 1]; 160 if (!sport->lid && !sport->sm_lid) 161 schedule_work(&sport->work); 162 } 163 break; 164 default: 165 pr_err("received unrecognized IB event %d\n", 166 event->event); 167 break; 168 } 169 } 170 171 /** 172 * srpt_srq_event() - SRQ event callback function. 173 */ 174 static void srpt_srq_event(struct ib_event *event, void *ctx) 175 { 176 pr_info("SRQ event %d\n", event->event); 177 } 178 179 static const char *get_ch_state_name(enum rdma_ch_state s) 180 { 181 switch (s) { 182 case CH_CONNECTING: 183 return "connecting"; 184 case CH_LIVE: 185 return "live"; 186 case CH_DISCONNECTING: 187 return "disconnecting"; 188 case CH_DRAINING: 189 return "draining"; 190 case CH_DISCONNECTED: 191 return "disconnected"; 192 } 193 return "???"; 194 } 195 196 /** 197 * srpt_qp_event() - QP event callback function. 198 */ 199 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 200 { 201 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 202 event->event, ch->cm_id, ch->sess_name, ch->state); 203 204 switch (event->event) { 205 case IB_EVENT_COMM_EST: 206 ib_cm_notify(ch->cm_id, event->event); 207 break; 208 case IB_EVENT_QP_LAST_WQE_REACHED: 209 pr_debug("%s-%d, state %s: received Last WQE event.\n", 210 ch->sess_name, ch->qp->qp_num, 211 get_ch_state_name(ch->state)); 212 break; 213 default: 214 pr_err("received unrecognized IB QP event %d\n", event->event); 215 break; 216 } 217 } 218 219 /** 220 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 221 * 222 * @slot: one-based slot number. 223 * @value: four-bit value. 224 * 225 * Copies the lowest four bits of value in element slot of the array of four 226 * bit elements called c_list (controller list). The index slot is one-based. 227 */ 228 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 229 { 230 u16 id; 231 u8 tmp; 232 233 id = (slot - 1) / 2; 234 if (slot & 0x1) { 235 tmp = c_list[id] & 0xf; 236 c_list[id] = (value << 4) | tmp; 237 } else { 238 tmp = c_list[id] & 0xf0; 239 c_list[id] = (value & 0xf) | tmp; 240 } 241 } 242 243 /** 244 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 245 * 246 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 247 * Specification. 248 */ 249 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 250 { 251 struct ib_class_port_info *cif; 252 253 cif = (struct ib_class_port_info *)mad->data; 254 memset(cif, 0, sizeof(*cif)); 255 cif->base_version = 1; 256 cif->class_version = 1; 257 258 ib_set_cpi_resp_time(cif, 20); 259 mad->mad_hdr.status = 0; 260 } 261 262 /** 263 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 264 * 265 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 266 * Specification. See also section B.7, table B.6 in the SRP r16a document. 267 */ 268 static void srpt_get_iou(struct ib_dm_mad *mad) 269 { 270 struct ib_dm_iou_info *ioui; 271 u8 slot; 272 int i; 273 274 ioui = (struct ib_dm_iou_info *)mad->data; 275 ioui->change_id = cpu_to_be16(1); 276 ioui->max_controllers = 16; 277 278 /* set present for slot 1 and empty for the rest */ 279 srpt_set_ioc(ioui->controller_list, 1, 1); 280 for (i = 1, slot = 2; i < 16; i++, slot++) 281 srpt_set_ioc(ioui->controller_list, slot, 0); 282 283 mad->mad_hdr.status = 0; 284 } 285 286 /** 287 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 288 * 289 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 290 * Architecture Specification. See also section B.7, table B.7 in the SRP 291 * r16a document. 292 */ 293 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 294 struct ib_dm_mad *mad) 295 { 296 struct srpt_device *sdev = sport->sdev; 297 struct ib_dm_ioc_profile *iocp; 298 299 iocp = (struct ib_dm_ioc_profile *)mad->data; 300 301 if (!slot || slot > 16) { 302 mad->mad_hdr.status 303 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 304 return; 305 } 306 307 if (slot > 2) { 308 mad->mad_hdr.status 309 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 310 return; 311 } 312 313 memset(iocp, 0, sizeof(*iocp)); 314 strcpy(iocp->id_string, SRPT_ID_STRING); 315 iocp->guid = cpu_to_be64(srpt_service_guid); 316 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 317 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id); 318 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver); 319 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 320 iocp->subsys_device_id = 0x0; 321 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 322 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); 323 iocp->protocol = cpu_to_be16(SRP_PROTOCOL); 324 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); 325 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 326 iocp->rdma_read_depth = 4; 327 iocp->send_size = cpu_to_be32(srp_max_req_size); 328 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 329 1U << 24)); 330 iocp->num_svc_entries = 1; 331 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 332 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 333 334 mad->mad_hdr.status = 0; 335 } 336 337 /** 338 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 339 * 340 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 341 * Specification. See also section B.7, table B.8 in the SRP r16a document. 342 */ 343 static void srpt_get_svc_entries(u64 ioc_guid, 344 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 345 { 346 struct ib_dm_svc_entries *svc_entries; 347 348 WARN_ON(!ioc_guid); 349 350 if (!slot || slot > 16) { 351 mad->mad_hdr.status 352 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 353 return; 354 } 355 356 if (slot > 2 || lo > hi || hi > 1) { 357 mad->mad_hdr.status 358 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 359 return; 360 } 361 362 svc_entries = (struct ib_dm_svc_entries *)mad->data; 363 memset(svc_entries, 0, sizeof(*svc_entries)); 364 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 365 snprintf(svc_entries->service_entries[0].name, 366 sizeof(svc_entries->service_entries[0].name), 367 "%s%016llx", 368 SRP_SERVICE_NAME_PREFIX, 369 ioc_guid); 370 371 mad->mad_hdr.status = 0; 372 } 373 374 /** 375 * srpt_mgmt_method_get() - Process a received management datagram. 376 * @sp: source port through which the MAD has been received. 377 * @rq_mad: received MAD. 378 * @rsp_mad: response MAD. 379 */ 380 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 381 struct ib_dm_mad *rsp_mad) 382 { 383 u16 attr_id; 384 u32 slot; 385 u8 hi, lo; 386 387 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 388 switch (attr_id) { 389 case DM_ATTR_CLASS_PORT_INFO: 390 srpt_get_class_port_info(rsp_mad); 391 break; 392 case DM_ATTR_IOU_INFO: 393 srpt_get_iou(rsp_mad); 394 break; 395 case DM_ATTR_IOC_PROFILE: 396 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 397 srpt_get_ioc(sp, slot, rsp_mad); 398 break; 399 case DM_ATTR_SVC_ENTRIES: 400 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 401 hi = (u8) ((slot >> 8) & 0xff); 402 lo = (u8) (slot & 0xff); 403 slot = (u16) ((slot >> 16) & 0xffff); 404 srpt_get_svc_entries(srpt_service_guid, 405 slot, hi, lo, rsp_mad); 406 break; 407 default: 408 rsp_mad->mad_hdr.status = 409 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 410 break; 411 } 412 } 413 414 /** 415 * srpt_mad_send_handler() - Post MAD-send callback function. 416 */ 417 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 418 struct ib_mad_send_wc *mad_wc) 419 { 420 ib_destroy_ah(mad_wc->send_buf->ah); 421 ib_free_send_mad(mad_wc->send_buf); 422 } 423 424 /** 425 * srpt_mad_recv_handler() - MAD reception callback function. 426 */ 427 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 428 struct ib_mad_send_buf *send_buf, 429 struct ib_mad_recv_wc *mad_wc) 430 { 431 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 432 struct ib_ah *ah; 433 struct ib_mad_send_buf *rsp; 434 struct ib_dm_mad *dm_mad; 435 436 if (!mad_wc || !mad_wc->recv_buf.mad) 437 return; 438 439 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 440 mad_wc->recv_buf.grh, mad_agent->port_num); 441 if (IS_ERR(ah)) 442 goto err; 443 444 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 445 446 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 447 mad_wc->wc->pkey_index, 0, 448 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 449 GFP_KERNEL, 450 IB_MGMT_BASE_VERSION); 451 if (IS_ERR(rsp)) 452 goto err_rsp; 453 454 rsp->ah = ah; 455 456 dm_mad = rsp->mad; 457 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad)); 458 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 459 dm_mad->mad_hdr.status = 0; 460 461 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 462 case IB_MGMT_METHOD_GET: 463 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 464 break; 465 case IB_MGMT_METHOD_SET: 466 dm_mad->mad_hdr.status = 467 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 468 break; 469 default: 470 dm_mad->mad_hdr.status = 471 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 472 break; 473 } 474 475 if (!ib_post_send_mad(rsp, NULL)) { 476 ib_free_recv_mad(mad_wc); 477 /* will destroy_ah & free_send_mad in send completion */ 478 return; 479 } 480 481 ib_free_send_mad(rsp); 482 483 err_rsp: 484 ib_destroy_ah(ah); 485 err: 486 ib_free_recv_mad(mad_wc); 487 } 488 489 /** 490 * srpt_refresh_port() - Configure a HCA port. 491 * 492 * Enable InfiniBand management datagram processing, update the cached sm_lid, 493 * lid and gid values, and register a callback function for processing MADs 494 * on the specified port. 495 * 496 * Note: It is safe to call this function more than once for the same port. 497 */ 498 static int srpt_refresh_port(struct srpt_port *sport) 499 { 500 struct ib_mad_reg_req reg_req; 501 struct ib_port_modify port_modify; 502 struct ib_port_attr port_attr; 503 int ret; 504 505 memset(&port_modify, 0, sizeof(port_modify)); 506 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 507 port_modify.clr_port_cap_mask = 0; 508 509 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 510 if (ret) 511 goto err_mod_port; 512 513 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 514 if (ret) 515 goto err_query_port; 516 517 sport->sm_lid = port_attr.sm_lid; 518 sport->lid = port_attr.lid; 519 520 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid, 521 NULL); 522 if (ret) 523 goto err_query_port; 524 525 if (!sport->mad_agent) { 526 memset(®_req, 0, sizeof(reg_req)); 527 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 528 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 529 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 530 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 531 532 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 533 sport->port, 534 IB_QPT_GSI, 535 ®_req, 0, 536 srpt_mad_send_handler, 537 srpt_mad_recv_handler, 538 sport, 0); 539 if (IS_ERR(sport->mad_agent)) { 540 ret = PTR_ERR(sport->mad_agent); 541 sport->mad_agent = NULL; 542 goto err_query_port; 543 } 544 } 545 546 return 0; 547 548 err_query_port: 549 550 port_modify.set_port_cap_mask = 0; 551 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 552 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 553 554 err_mod_port: 555 556 return ret; 557 } 558 559 /** 560 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 561 * 562 * Note: It is safe to call this function more than once for the same device. 563 */ 564 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 565 { 566 struct ib_port_modify port_modify = { 567 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 568 }; 569 struct srpt_port *sport; 570 int i; 571 572 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 573 sport = &sdev->port[i - 1]; 574 WARN_ON(sport->port != i); 575 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 576 pr_err("disabling MAD processing failed.\n"); 577 if (sport->mad_agent) { 578 ib_unregister_mad_agent(sport->mad_agent); 579 sport->mad_agent = NULL; 580 } 581 } 582 } 583 584 /** 585 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 586 */ 587 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 588 int ioctx_size, int dma_size, 589 enum dma_data_direction dir) 590 { 591 struct srpt_ioctx *ioctx; 592 593 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 594 if (!ioctx) 595 goto err; 596 597 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 598 if (!ioctx->buf) 599 goto err_free_ioctx; 600 601 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 602 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 603 goto err_free_buf; 604 605 return ioctx; 606 607 err_free_buf: 608 kfree(ioctx->buf); 609 err_free_ioctx: 610 kfree(ioctx); 611 err: 612 return NULL; 613 } 614 615 /** 616 * srpt_free_ioctx() - Free an SRPT I/O context structure. 617 */ 618 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 619 int dma_size, enum dma_data_direction dir) 620 { 621 if (!ioctx) 622 return; 623 624 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 625 kfree(ioctx->buf); 626 kfree(ioctx); 627 } 628 629 /** 630 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 631 * @sdev: Device to allocate the I/O context ring for. 632 * @ring_size: Number of elements in the I/O context ring. 633 * @ioctx_size: I/O context size. 634 * @dma_size: DMA buffer size. 635 * @dir: DMA data direction. 636 */ 637 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 638 int ring_size, int ioctx_size, 639 int dma_size, enum dma_data_direction dir) 640 { 641 struct srpt_ioctx **ring; 642 int i; 643 644 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 645 && ioctx_size != sizeof(struct srpt_send_ioctx)); 646 647 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 648 if (!ring) 649 goto out; 650 for (i = 0; i < ring_size; ++i) { 651 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 652 if (!ring[i]) 653 goto err; 654 ring[i]->index = i; 655 } 656 goto out; 657 658 err: 659 while (--i >= 0) 660 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 661 kfree(ring); 662 ring = NULL; 663 out: 664 return ring; 665 } 666 667 /** 668 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 669 */ 670 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 671 struct srpt_device *sdev, int ring_size, 672 int dma_size, enum dma_data_direction dir) 673 { 674 int i; 675 676 for (i = 0; i < ring_size; ++i) 677 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 678 kfree(ioctx_ring); 679 } 680 681 /** 682 * srpt_get_cmd_state() - Get the state of a SCSI command. 683 */ 684 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 685 { 686 enum srpt_command_state state; 687 unsigned long flags; 688 689 BUG_ON(!ioctx); 690 691 spin_lock_irqsave(&ioctx->spinlock, flags); 692 state = ioctx->state; 693 spin_unlock_irqrestore(&ioctx->spinlock, flags); 694 return state; 695 } 696 697 /** 698 * srpt_set_cmd_state() - Set the state of a SCSI command. 699 * 700 * Does not modify the state of aborted commands. Returns the previous command 701 * state. 702 */ 703 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 704 enum srpt_command_state new) 705 { 706 enum srpt_command_state previous; 707 unsigned long flags; 708 709 BUG_ON(!ioctx); 710 711 spin_lock_irqsave(&ioctx->spinlock, flags); 712 previous = ioctx->state; 713 if (previous != SRPT_STATE_DONE) 714 ioctx->state = new; 715 spin_unlock_irqrestore(&ioctx->spinlock, flags); 716 717 return previous; 718 } 719 720 /** 721 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 722 * 723 * Returns true if and only if the previous command state was equal to 'old'. 724 */ 725 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 726 enum srpt_command_state old, 727 enum srpt_command_state new) 728 { 729 enum srpt_command_state previous; 730 unsigned long flags; 731 732 WARN_ON(!ioctx); 733 WARN_ON(old == SRPT_STATE_DONE); 734 WARN_ON(new == SRPT_STATE_NEW); 735 736 spin_lock_irqsave(&ioctx->spinlock, flags); 737 previous = ioctx->state; 738 if (previous == old) 739 ioctx->state = new; 740 spin_unlock_irqrestore(&ioctx->spinlock, flags); 741 return previous == old; 742 } 743 744 /** 745 * srpt_post_recv() - Post an IB receive request. 746 */ 747 static int srpt_post_recv(struct srpt_device *sdev, 748 struct srpt_recv_ioctx *ioctx) 749 { 750 struct ib_sge list; 751 struct ib_recv_wr wr, *bad_wr; 752 753 BUG_ON(!sdev); 754 list.addr = ioctx->ioctx.dma; 755 list.length = srp_max_req_size; 756 list.lkey = sdev->pd->local_dma_lkey; 757 758 ioctx->ioctx.cqe.done = srpt_recv_done; 759 wr.wr_cqe = &ioctx->ioctx.cqe; 760 wr.next = NULL; 761 wr.sg_list = &list; 762 wr.num_sge = 1; 763 764 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 765 } 766 767 /** 768 * srpt_zerolength_write() - Perform a zero-length RDMA write. 769 * 770 * A quote from the InfiniBand specification: C9-88: For an HCA responder 771 * using Reliable Connection service, for each zero-length RDMA READ or WRITE 772 * request, the R_Key shall not be validated, even if the request includes 773 * Immediate data. 774 */ 775 static int srpt_zerolength_write(struct srpt_rdma_ch *ch) 776 { 777 struct ib_send_wr wr, *bad_wr; 778 779 memset(&wr, 0, sizeof(wr)); 780 wr.opcode = IB_WR_RDMA_WRITE; 781 wr.wr_cqe = &ch->zw_cqe; 782 wr.send_flags = IB_SEND_SIGNALED; 783 return ib_post_send(ch->qp, &wr, &bad_wr); 784 } 785 786 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc) 787 { 788 struct srpt_rdma_ch *ch = cq->cq_context; 789 790 if (wc->status == IB_WC_SUCCESS) { 791 srpt_process_wait_list(ch); 792 } else { 793 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 794 schedule_work(&ch->release_work); 795 else 796 WARN_ONCE(1, "%s-%d\n", ch->sess_name, ch->qp->qp_num); 797 } 798 } 799 800 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx, 801 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg, 802 unsigned *sg_cnt) 803 { 804 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 805 struct srpt_rdma_ch *ch = ioctx->ch; 806 struct scatterlist *prev = NULL; 807 unsigned prev_nents; 808 int ret, i; 809 810 if (nbufs == 1) { 811 ioctx->rw_ctxs = &ioctx->s_rw_ctx; 812 } else { 813 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs), 814 GFP_KERNEL); 815 if (!ioctx->rw_ctxs) 816 return -ENOMEM; 817 } 818 819 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) { 820 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 821 u64 remote_addr = be64_to_cpu(db->va); 822 u32 size = be32_to_cpu(db->len); 823 u32 rkey = be32_to_cpu(db->key); 824 825 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false, 826 i < nbufs - 1); 827 if (ret) 828 goto unwind; 829 830 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port, 831 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir); 832 if (ret < 0) { 833 target_free_sgl(ctx->sg, ctx->nents); 834 goto unwind; 835 } 836 837 ioctx->n_rdma += ret; 838 ioctx->n_rw_ctx++; 839 840 if (prev) { 841 sg_unmark_end(&prev[prev_nents - 1]); 842 sg_chain(prev, prev_nents + 1, ctx->sg); 843 } else { 844 *sg = ctx->sg; 845 } 846 847 prev = ctx->sg; 848 prev_nents = ctx->nents; 849 850 *sg_cnt += ctx->nents; 851 } 852 853 return 0; 854 855 unwind: 856 while (--i >= 0) { 857 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 858 859 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 860 ctx->sg, ctx->nents, dir); 861 target_free_sgl(ctx->sg, ctx->nents); 862 } 863 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 864 kfree(ioctx->rw_ctxs); 865 return ret; 866 } 867 868 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch, 869 struct srpt_send_ioctx *ioctx) 870 { 871 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 872 int i; 873 874 for (i = 0; i < ioctx->n_rw_ctx; i++) { 875 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 876 877 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 878 ctx->sg, ctx->nents, dir); 879 target_free_sgl(ctx->sg, ctx->nents); 880 } 881 882 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 883 kfree(ioctx->rw_ctxs); 884 } 885 886 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd) 887 { 888 /* 889 * The pointer computations below will only be compiled correctly 890 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 891 * whether srp_cmd::add_data has been declared as a byte pointer. 892 */ 893 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) && 894 !__same_type(srp_cmd->add_data[0], (u8)0)); 895 896 /* 897 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 898 * CDB LENGTH' field are reserved and the size in bytes of this field 899 * is four times the value specified in bits 3..7. Hence the "& ~3". 900 */ 901 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3); 902 } 903 904 /** 905 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 906 * @ioctx: Pointer to the I/O context associated with the request. 907 * @srp_cmd: Pointer to the SRP_CMD request data. 908 * @dir: Pointer to the variable to which the transfer direction will be 909 * written. 910 * @data_len: Pointer to the variable to which the total data length of all 911 * descriptors in the SRP_CMD request will be written. 912 * 913 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 914 * 915 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 916 * -ENOMEM when memory allocation fails and zero upon success. 917 */ 918 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 919 struct srp_cmd *srp_cmd, enum dma_data_direction *dir, 920 struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len) 921 { 922 BUG_ON(!dir); 923 BUG_ON(!data_len); 924 925 /* 926 * The lower four bits of the buffer format field contain the DATA-IN 927 * buffer descriptor format, and the highest four bits contain the 928 * DATA-OUT buffer descriptor format. 929 */ 930 if (srp_cmd->buf_fmt & 0xf) 931 /* DATA-IN: transfer data from target to initiator (read). */ 932 *dir = DMA_FROM_DEVICE; 933 else if (srp_cmd->buf_fmt >> 4) 934 /* DATA-OUT: transfer data from initiator to target (write). */ 935 *dir = DMA_TO_DEVICE; 936 else 937 *dir = DMA_NONE; 938 939 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */ 940 ioctx->cmd.data_direction = *dir; 941 942 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 943 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 944 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd); 945 946 *data_len = be32_to_cpu(db->len); 947 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt); 948 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 949 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 950 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd); 951 int nbufs = be32_to_cpu(idb->table_desc.len) / 952 sizeof(struct srp_direct_buf); 953 954 if (nbufs > 955 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 956 pr_err("received unsupported SRP_CMD request" 957 " type (%u out + %u in != %u / %zu)\n", 958 srp_cmd->data_out_desc_cnt, 959 srp_cmd->data_in_desc_cnt, 960 be32_to_cpu(idb->table_desc.len), 961 sizeof(struct srp_direct_buf)); 962 return -EINVAL; 963 } 964 965 *data_len = be32_to_cpu(idb->len); 966 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs, 967 sg, sg_cnt); 968 } else { 969 *data_len = 0; 970 return 0; 971 } 972 } 973 974 /** 975 * srpt_init_ch_qp() - Initialize queue pair attributes. 976 * 977 * Initialized the attributes of queue pair 'qp' by allowing local write, 978 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 979 */ 980 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 981 { 982 struct ib_qp_attr *attr; 983 int ret; 984 985 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 986 if (!attr) 987 return -ENOMEM; 988 989 attr->qp_state = IB_QPS_INIT; 990 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 991 IB_ACCESS_REMOTE_WRITE; 992 attr->port_num = ch->sport->port; 993 attr->pkey_index = 0; 994 995 ret = ib_modify_qp(qp, attr, 996 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 997 IB_QP_PKEY_INDEX); 998 999 kfree(attr); 1000 return ret; 1001 } 1002 1003 /** 1004 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 1005 * @ch: channel of the queue pair. 1006 * @qp: queue pair to change the state of. 1007 * 1008 * Returns zero upon success and a negative value upon failure. 1009 * 1010 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1011 * If this structure ever becomes larger, it might be necessary to allocate 1012 * it dynamically instead of on the stack. 1013 */ 1014 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1015 { 1016 struct ib_qp_attr qp_attr; 1017 int attr_mask; 1018 int ret; 1019 1020 qp_attr.qp_state = IB_QPS_RTR; 1021 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1022 if (ret) 1023 goto out; 1024 1025 qp_attr.max_dest_rd_atomic = 4; 1026 1027 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1028 1029 out: 1030 return ret; 1031 } 1032 1033 /** 1034 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1035 * @ch: channel of the queue pair. 1036 * @qp: queue pair to change the state of. 1037 * 1038 * Returns zero upon success and a negative value upon failure. 1039 * 1040 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1041 * If this structure ever becomes larger, it might be necessary to allocate 1042 * it dynamically instead of on the stack. 1043 */ 1044 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1045 { 1046 struct ib_qp_attr qp_attr; 1047 int attr_mask; 1048 int ret; 1049 1050 qp_attr.qp_state = IB_QPS_RTS; 1051 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1052 if (ret) 1053 goto out; 1054 1055 qp_attr.max_rd_atomic = 4; 1056 1057 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1058 1059 out: 1060 return ret; 1061 } 1062 1063 /** 1064 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1065 */ 1066 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1067 { 1068 struct ib_qp_attr qp_attr; 1069 1070 qp_attr.qp_state = IB_QPS_ERR; 1071 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1072 } 1073 1074 /** 1075 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1076 */ 1077 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1078 { 1079 struct srpt_send_ioctx *ioctx; 1080 unsigned long flags; 1081 1082 BUG_ON(!ch); 1083 1084 ioctx = NULL; 1085 spin_lock_irqsave(&ch->spinlock, flags); 1086 if (!list_empty(&ch->free_list)) { 1087 ioctx = list_first_entry(&ch->free_list, 1088 struct srpt_send_ioctx, free_list); 1089 list_del(&ioctx->free_list); 1090 } 1091 spin_unlock_irqrestore(&ch->spinlock, flags); 1092 1093 if (!ioctx) 1094 return ioctx; 1095 1096 BUG_ON(ioctx->ch != ch); 1097 spin_lock_init(&ioctx->spinlock); 1098 ioctx->state = SRPT_STATE_NEW; 1099 ioctx->n_rdma = 0; 1100 ioctx->n_rw_ctx = 0; 1101 init_completion(&ioctx->tx_done); 1102 ioctx->queue_status_only = false; 1103 /* 1104 * transport_init_se_cmd() does not initialize all fields, so do it 1105 * here. 1106 */ 1107 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1108 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1109 1110 return ioctx; 1111 } 1112 1113 /** 1114 * srpt_abort_cmd() - Abort a SCSI command. 1115 * @ioctx: I/O context associated with the SCSI command. 1116 * @context: Preferred execution context. 1117 */ 1118 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1119 { 1120 enum srpt_command_state state; 1121 unsigned long flags; 1122 1123 BUG_ON(!ioctx); 1124 1125 /* 1126 * If the command is in a state where the target core is waiting for 1127 * the ib_srpt driver, change the state to the next state. 1128 */ 1129 1130 spin_lock_irqsave(&ioctx->spinlock, flags); 1131 state = ioctx->state; 1132 switch (state) { 1133 case SRPT_STATE_NEED_DATA: 1134 ioctx->state = SRPT_STATE_DATA_IN; 1135 break; 1136 case SRPT_STATE_CMD_RSP_SENT: 1137 case SRPT_STATE_MGMT_RSP_SENT: 1138 ioctx->state = SRPT_STATE_DONE; 1139 break; 1140 default: 1141 WARN_ONCE(true, "%s: unexpected I/O context state %d\n", 1142 __func__, state); 1143 break; 1144 } 1145 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1146 1147 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1148 ioctx->cmd.tag); 1149 1150 switch (state) { 1151 case SRPT_STATE_NEW: 1152 case SRPT_STATE_DATA_IN: 1153 case SRPT_STATE_MGMT: 1154 case SRPT_STATE_DONE: 1155 /* 1156 * Do nothing - defer abort processing until 1157 * srpt_queue_response() is invoked. 1158 */ 1159 break; 1160 case SRPT_STATE_NEED_DATA: 1161 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag); 1162 transport_generic_request_failure(&ioctx->cmd, 1163 TCM_CHECK_CONDITION_ABORT_CMD); 1164 break; 1165 case SRPT_STATE_CMD_RSP_SENT: 1166 /* 1167 * SRP_RSP sending failed or the SRP_RSP send completion has 1168 * not been received in time. 1169 */ 1170 transport_generic_free_cmd(&ioctx->cmd, 0); 1171 break; 1172 case SRPT_STATE_MGMT_RSP_SENT: 1173 transport_generic_free_cmd(&ioctx->cmd, 0); 1174 break; 1175 default: 1176 WARN(1, "Unexpected command state (%d)", state); 1177 break; 1178 } 1179 1180 return state; 1181 } 1182 1183 /** 1184 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1185 * the data that has been transferred via IB RDMA had to be postponed until the 1186 * check_stop_free() callback. None of this is necessary anymore and needs to 1187 * be cleaned up. 1188 */ 1189 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc) 1190 { 1191 struct srpt_rdma_ch *ch = cq->cq_context; 1192 struct srpt_send_ioctx *ioctx = 1193 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe); 1194 1195 WARN_ON(ioctx->n_rdma <= 0); 1196 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1197 ioctx->n_rdma = 0; 1198 1199 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1200 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n", 1201 ioctx, wc->status); 1202 srpt_abort_cmd(ioctx); 1203 return; 1204 } 1205 1206 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1207 SRPT_STATE_DATA_IN)) 1208 target_execute_cmd(&ioctx->cmd); 1209 else 1210 pr_err("%s[%d]: wrong state = %d\n", __func__, 1211 __LINE__, srpt_get_cmd_state(ioctx)); 1212 } 1213 1214 /** 1215 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1216 * @ch: RDMA channel through which the request has been received. 1217 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1218 * be built in the buffer ioctx->buf points at and hence this function will 1219 * overwrite the request data. 1220 * @tag: tag of the request for which this response is being generated. 1221 * @status: value for the STATUS field of the SRP_RSP information unit. 1222 * 1223 * Returns the size in bytes of the SRP_RSP response. 1224 * 1225 * An SRP_RSP response contains a SCSI status or service response. See also 1226 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1227 * response. See also SPC-2 for more information about sense data. 1228 */ 1229 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1230 struct srpt_send_ioctx *ioctx, u64 tag, 1231 int status) 1232 { 1233 struct srp_rsp *srp_rsp; 1234 const u8 *sense_data; 1235 int sense_data_len, max_sense_len; 1236 1237 /* 1238 * The lowest bit of all SAM-3 status codes is zero (see also 1239 * paragraph 5.3 in SAM-3). 1240 */ 1241 WARN_ON(status & 1); 1242 1243 srp_rsp = ioctx->ioctx.buf; 1244 BUG_ON(!srp_rsp); 1245 1246 sense_data = ioctx->sense_data; 1247 sense_data_len = ioctx->cmd.scsi_sense_length; 1248 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1249 1250 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1251 srp_rsp->opcode = SRP_RSP; 1252 srp_rsp->req_lim_delta = 1253 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1254 srp_rsp->tag = tag; 1255 srp_rsp->status = status; 1256 1257 if (sense_data_len) { 1258 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1259 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1260 if (sense_data_len > max_sense_len) { 1261 pr_warn("truncated sense data from %d to %d" 1262 " bytes\n", sense_data_len, max_sense_len); 1263 sense_data_len = max_sense_len; 1264 } 1265 1266 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1267 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1268 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1269 } 1270 1271 return sizeof(*srp_rsp) + sense_data_len; 1272 } 1273 1274 /** 1275 * srpt_build_tskmgmt_rsp() - Build a task management response. 1276 * @ch: RDMA channel through which the request has been received. 1277 * @ioctx: I/O context in which the SRP_RSP response will be built. 1278 * @rsp_code: RSP_CODE that will be stored in the response. 1279 * @tag: Tag of the request for which this response is being generated. 1280 * 1281 * Returns the size in bytes of the SRP_RSP response. 1282 * 1283 * An SRP_RSP response contains a SCSI status or service response. See also 1284 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1285 * response. 1286 */ 1287 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1288 struct srpt_send_ioctx *ioctx, 1289 u8 rsp_code, u64 tag) 1290 { 1291 struct srp_rsp *srp_rsp; 1292 int resp_data_len; 1293 int resp_len; 1294 1295 resp_data_len = 4; 1296 resp_len = sizeof(*srp_rsp) + resp_data_len; 1297 1298 srp_rsp = ioctx->ioctx.buf; 1299 BUG_ON(!srp_rsp); 1300 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1301 1302 srp_rsp->opcode = SRP_RSP; 1303 srp_rsp->req_lim_delta = 1304 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1305 srp_rsp->tag = tag; 1306 1307 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1308 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1309 srp_rsp->data[3] = rsp_code; 1310 1311 return resp_len; 1312 } 1313 1314 static int srpt_check_stop_free(struct se_cmd *cmd) 1315 { 1316 struct srpt_send_ioctx *ioctx = container_of(cmd, 1317 struct srpt_send_ioctx, cmd); 1318 1319 return target_put_sess_cmd(&ioctx->cmd); 1320 } 1321 1322 /** 1323 * srpt_handle_cmd() - Process SRP_CMD. 1324 */ 1325 static void srpt_handle_cmd(struct srpt_rdma_ch *ch, 1326 struct srpt_recv_ioctx *recv_ioctx, 1327 struct srpt_send_ioctx *send_ioctx) 1328 { 1329 struct se_cmd *cmd; 1330 struct srp_cmd *srp_cmd; 1331 struct scatterlist *sg = NULL; 1332 unsigned sg_cnt = 0; 1333 u64 data_len; 1334 enum dma_data_direction dir; 1335 int rc; 1336 1337 BUG_ON(!send_ioctx); 1338 1339 srp_cmd = recv_ioctx->ioctx.buf; 1340 cmd = &send_ioctx->cmd; 1341 cmd->tag = srp_cmd->tag; 1342 1343 switch (srp_cmd->task_attr) { 1344 case SRP_CMD_SIMPLE_Q: 1345 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1346 break; 1347 case SRP_CMD_ORDERED_Q: 1348 default: 1349 cmd->sam_task_attr = TCM_ORDERED_TAG; 1350 break; 1351 case SRP_CMD_HEAD_OF_Q: 1352 cmd->sam_task_attr = TCM_HEAD_TAG; 1353 break; 1354 case SRP_CMD_ACA: 1355 cmd->sam_task_attr = TCM_ACA_TAG; 1356 break; 1357 } 1358 1359 rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt, 1360 &data_len); 1361 if (rc) { 1362 if (rc != -EAGAIN) { 1363 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1364 srp_cmd->tag); 1365 } 1366 goto release_ioctx; 1367 } 1368 1369 rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb, 1370 &send_ioctx->sense_data[0], 1371 scsilun_to_int(&srp_cmd->lun), data_len, 1372 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF, 1373 sg, sg_cnt, NULL, 0, NULL, 0); 1374 if (rc != 0) { 1375 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc, 1376 srp_cmd->tag); 1377 goto release_ioctx; 1378 } 1379 return; 1380 1381 release_ioctx: 1382 send_ioctx->state = SRPT_STATE_DONE; 1383 srpt_release_cmd(cmd); 1384 } 1385 1386 static int srp_tmr_to_tcm(int fn) 1387 { 1388 switch (fn) { 1389 case SRP_TSK_ABORT_TASK: 1390 return TMR_ABORT_TASK; 1391 case SRP_TSK_ABORT_TASK_SET: 1392 return TMR_ABORT_TASK_SET; 1393 case SRP_TSK_CLEAR_TASK_SET: 1394 return TMR_CLEAR_TASK_SET; 1395 case SRP_TSK_LUN_RESET: 1396 return TMR_LUN_RESET; 1397 case SRP_TSK_CLEAR_ACA: 1398 return TMR_CLEAR_ACA; 1399 default: 1400 return -1; 1401 } 1402 } 1403 1404 /** 1405 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1406 * 1407 * Returns 0 if and only if the request will be processed by the target core. 1408 * 1409 * For more information about SRP_TSK_MGMT information units, see also section 1410 * 6.7 in the SRP r16a document. 1411 */ 1412 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1413 struct srpt_recv_ioctx *recv_ioctx, 1414 struct srpt_send_ioctx *send_ioctx) 1415 { 1416 struct srp_tsk_mgmt *srp_tsk; 1417 struct se_cmd *cmd; 1418 struct se_session *sess = ch->sess; 1419 int tcm_tmr; 1420 int rc; 1421 1422 BUG_ON(!send_ioctx); 1423 1424 srp_tsk = recv_ioctx->ioctx.buf; 1425 cmd = &send_ioctx->cmd; 1426 1427 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1428 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1429 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1430 1431 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1432 send_ioctx->cmd.tag = srp_tsk->tag; 1433 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1434 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, 1435 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr, 1436 GFP_KERNEL, srp_tsk->task_tag, 1437 TARGET_SCF_ACK_KREF); 1438 if (rc != 0) { 1439 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1440 goto fail; 1441 } 1442 return; 1443 fail: 1444 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1445 } 1446 1447 /** 1448 * srpt_handle_new_iu() - Process a newly received information unit. 1449 * @ch: RDMA channel through which the information unit has been received. 1450 * @ioctx: SRPT I/O context associated with the information unit. 1451 */ 1452 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1453 struct srpt_recv_ioctx *recv_ioctx, 1454 struct srpt_send_ioctx *send_ioctx) 1455 { 1456 struct srp_cmd *srp_cmd; 1457 1458 BUG_ON(!ch); 1459 BUG_ON(!recv_ioctx); 1460 1461 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1462 recv_ioctx->ioctx.dma, srp_max_req_size, 1463 DMA_FROM_DEVICE); 1464 1465 if (unlikely(ch->state == CH_CONNECTING)) 1466 goto out_wait; 1467 1468 if (unlikely(ch->state != CH_LIVE)) 1469 return; 1470 1471 srp_cmd = recv_ioctx->ioctx.buf; 1472 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1473 if (!send_ioctx) { 1474 if (!list_empty(&ch->cmd_wait_list)) 1475 goto out_wait; 1476 send_ioctx = srpt_get_send_ioctx(ch); 1477 } 1478 if (unlikely(!send_ioctx)) 1479 goto out_wait; 1480 } 1481 1482 switch (srp_cmd->opcode) { 1483 case SRP_CMD: 1484 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1485 break; 1486 case SRP_TSK_MGMT: 1487 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1488 break; 1489 case SRP_I_LOGOUT: 1490 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1491 break; 1492 case SRP_CRED_RSP: 1493 pr_debug("received SRP_CRED_RSP\n"); 1494 break; 1495 case SRP_AER_RSP: 1496 pr_debug("received SRP_AER_RSP\n"); 1497 break; 1498 case SRP_RSP: 1499 pr_err("Received SRP_RSP\n"); 1500 break; 1501 default: 1502 pr_err("received IU with unknown opcode 0x%x\n", 1503 srp_cmd->opcode); 1504 break; 1505 } 1506 1507 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1508 return; 1509 1510 out_wait: 1511 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1512 } 1513 1514 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1515 { 1516 struct srpt_rdma_ch *ch = cq->cq_context; 1517 struct srpt_recv_ioctx *ioctx = 1518 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe); 1519 1520 if (wc->status == IB_WC_SUCCESS) { 1521 int req_lim; 1522 1523 req_lim = atomic_dec_return(&ch->req_lim); 1524 if (unlikely(req_lim < 0)) 1525 pr_err("req_lim = %d < 0\n", req_lim); 1526 srpt_handle_new_iu(ch, ioctx, NULL); 1527 } else { 1528 pr_info("receiving failed for ioctx %p with status %d\n", 1529 ioctx, wc->status); 1530 } 1531 } 1532 1533 /* 1534 * This function must be called from the context in which RDMA completions are 1535 * processed because it accesses the wait list without protection against 1536 * access from other threads. 1537 */ 1538 static void srpt_process_wait_list(struct srpt_rdma_ch *ch) 1539 { 1540 struct srpt_send_ioctx *ioctx; 1541 1542 while (!list_empty(&ch->cmd_wait_list) && 1543 ch->state >= CH_LIVE && 1544 (ioctx = srpt_get_send_ioctx(ch)) != NULL) { 1545 struct srpt_recv_ioctx *recv_ioctx; 1546 1547 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 1548 struct srpt_recv_ioctx, 1549 wait_list); 1550 list_del(&recv_ioctx->wait_list); 1551 srpt_handle_new_iu(ch, recv_ioctx, ioctx); 1552 } 1553 } 1554 1555 /** 1556 * Note: Although this has not yet been observed during tests, at least in 1557 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1558 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1559 * value in each response is set to one, and it is possible that this response 1560 * makes the initiator send a new request before the send completion for that 1561 * response has been processed. This could e.g. happen if the call to 1562 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1563 * if IB retransmission causes generation of the send completion to be 1564 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1565 * are queued on cmd_wait_list. The code below processes these delayed 1566 * requests one at a time. 1567 */ 1568 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc) 1569 { 1570 struct srpt_rdma_ch *ch = cq->cq_context; 1571 struct srpt_send_ioctx *ioctx = 1572 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe); 1573 enum srpt_command_state state; 1574 1575 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1576 1577 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT && 1578 state != SRPT_STATE_MGMT_RSP_SENT); 1579 1580 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 1581 1582 if (wc->status != IB_WC_SUCCESS) 1583 pr_info("sending response for ioctx 0x%p failed" 1584 " with status %d\n", ioctx, wc->status); 1585 1586 if (state != SRPT_STATE_DONE) { 1587 transport_generic_free_cmd(&ioctx->cmd, 0); 1588 } else { 1589 pr_err("IB completion has been received too late for" 1590 " wr_id = %u.\n", ioctx->ioctx.index); 1591 } 1592 1593 srpt_process_wait_list(ch); 1594 } 1595 1596 /** 1597 * srpt_create_ch_ib() - Create receive and send completion queues. 1598 */ 1599 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 1600 { 1601 struct ib_qp_init_attr *qp_init; 1602 struct srpt_port *sport = ch->sport; 1603 struct srpt_device *sdev = sport->sdev; 1604 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 1605 int ret; 1606 1607 WARN_ON(ch->rq_size < 1); 1608 1609 ret = -ENOMEM; 1610 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL); 1611 if (!qp_init) 1612 goto out; 1613 1614 retry: 1615 ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + srp_sq_size, 1616 0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE); 1617 if (IS_ERR(ch->cq)) { 1618 ret = PTR_ERR(ch->cq); 1619 pr_err("failed to create CQ cqe= %d ret= %d\n", 1620 ch->rq_size + srp_sq_size, ret); 1621 goto out; 1622 } 1623 1624 qp_init->qp_context = (void *)ch; 1625 qp_init->event_handler 1626 = (void(*)(struct ib_event *, void*))srpt_qp_event; 1627 qp_init->send_cq = ch->cq; 1628 qp_init->recv_cq = ch->cq; 1629 qp_init->srq = sdev->srq; 1630 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 1631 qp_init->qp_type = IB_QPT_RC; 1632 /* 1633 * We divide up our send queue size into half SEND WRs to send the 1634 * completions, and half R/W contexts to actually do the RDMA 1635 * READ/WRITE transfers. Note that we need to allocate CQ slots for 1636 * both both, as RDMA contexts will also post completions for the 1637 * RDMA READ case. 1638 */ 1639 qp_init->cap.max_send_wr = srp_sq_size / 2; 1640 qp_init->cap.max_rdma_ctxs = srp_sq_size / 2; 1641 qp_init->cap.max_send_sge = max(sdev->device->attrs.max_sge_rd, 1642 sdev->device->attrs.max_sge); 1643 qp_init->port_num = ch->sport->port; 1644 1645 ch->qp = ib_create_qp(sdev->pd, qp_init); 1646 if (IS_ERR(ch->qp)) { 1647 ret = PTR_ERR(ch->qp); 1648 if (ret == -ENOMEM) { 1649 srp_sq_size /= 2; 1650 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) { 1651 ib_destroy_cq(ch->cq); 1652 goto retry; 1653 } 1654 } 1655 pr_err("failed to create_qp ret= %d\n", ret); 1656 goto err_destroy_cq; 1657 } 1658 1659 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 1660 1661 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1662 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 1663 qp_init->cap.max_send_wr, ch->cm_id); 1664 1665 ret = srpt_init_ch_qp(ch, ch->qp); 1666 if (ret) 1667 goto err_destroy_qp; 1668 1669 out: 1670 kfree(qp_init); 1671 return ret; 1672 1673 err_destroy_qp: 1674 ib_destroy_qp(ch->qp); 1675 err_destroy_cq: 1676 ib_free_cq(ch->cq); 1677 goto out; 1678 } 1679 1680 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 1681 { 1682 ib_destroy_qp(ch->qp); 1683 ib_free_cq(ch->cq); 1684 } 1685 1686 /** 1687 * srpt_close_ch() - Close an RDMA channel. 1688 * 1689 * Make sure all resources associated with the channel will be deallocated at 1690 * an appropriate time. 1691 * 1692 * Returns true if and only if the channel state has been modified into 1693 * CH_DRAINING. 1694 */ 1695 static bool srpt_close_ch(struct srpt_rdma_ch *ch) 1696 { 1697 int ret; 1698 1699 if (!srpt_set_ch_state(ch, CH_DRAINING)) { 1700 pr_debug("%s-%d: already closed\n", ch->sess_name, 1701 ch->qp->qp_num); 1702 return false; 1703 } 1704 1705 kref_get(&ch->kref); 1706 1707 ret = srpt_ch_qp_err(ch); 1708 if (ret < 0) 1709 pr_err("%s-%d: changing queue pair into error state failed: %d\n", 1710 ch->sess_name, ch->qp->qp_num, ret); 1711 1712 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name, 1713 ch->qp->qp_num); 1714 ret = srpt_zerolength_write(ch); 1715 if (ret < 0) { 1716 pr_err("%s-%d: queuing zero-length write failed: %d\n", 1717 ch->sess_name, ch->qp->qp_num, ret); 1718 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 1719 schedule_work(&ch->release_work); 1720 else 1721 WARN_ON_ONCE(true); 1722 } 1723 1724 kref_put(&ch->kref, srpt_free_ch); 1725 1726 return true; 1727 } 1728 1729 /* 1730 * Change the channel state into CH_DISCONNECTING. If a channel has not yet 1731 * reached the connected state, close it. If a channel is in the connected 1732 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is 1733 * the responsibility of the caller to ensure that this function is not 1734 * invoked concurrently with the code that accepts a connection. This means 1735 * that this function must either be invoked from inside a CM callback 1736 * function or that it must be invoked with the srpt_port.mutex held. 1737 */ 1738 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch) 1739 { 1740 int ret; 1741 1742 if (!srpt_set_ch_state(ch, CH_DISCONNECTING)) 1743 return -ENOTCONN; 1744 1745 ret = ib_send_cm_dreq(ch->cm_id, NULL, 0); 1746 if (ret < 0) 1747 ret = ib_send_cm_drep(ch->cm_id, NULL, 0); 1748 1749 if (ret < 0 && srpt_close_ch(ch)) 1750 ret = 0; 1751 1752 return ret; 1753 } 1754 1755 static void __srpt_close_all_ch(struct srpt_device *sdev) 1756 { 1757 struct srpt_rdma_ch *ch; 1758 1759 lockdep_assert_held(&sdev->mutex); 1760 1761 list_for_each_entry(ch, &sdev->rch_list, list) { 1762 if (srpt_disconnect_ch(ch) >= 0) 1763 pr_info("Closing channel %s-%d because target %s has been disabled\n", 1764 ch->sess_name, ch->qp->qp_num, 1765 sdev->device->name); 1766 srpt_close_ch(ch); 1767 } 1768 } 1769 1770 static void srpt_free_ch(struct kref *kref) 1771 { 1772 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref); 1773 1774 kfree(ch); 1775 } 1776 1777 static void srpt_release_channel_work(struct work_struct *w) 1778 { 1779 struct srpt_rdma_ch *ch; 1780 struct srpt_device *sdev; 1781 struct se_session *se_sess; 1782 1783 ch = container_of(w, struct srpt_rdma_ch, release_work); 1784 pr_debug("%s: %s-%d; release_done = %p\n", __func__, ch->sess_name, 1785 ch->qp->qp_num, ch->release_done); 1786 1787 sdev = ch->sport->sdev; 1788 BUG_ON(!sdev); 1789 1790 se_sess = ch->sess; 1791 BUG_ON(!se_sess); 1792 1793 target_sess_cmd_list_set_waiting(se_sess); 1794 target_wait_for_sess_cmds(se_sess); 1795 1796 transport_deregister_session_configfs(se_sess); 1797 transport_deregister_session(se_sess); 1798 ch->sess = NULL; 1799 1800 ib_destroy_cm_id(ch->cm_id); 1801 1802 srpt_destroy_ch_ib(ch); 1803 1804 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 1805 ch->sport->sdev, ch->rq_size, 1806 ch->rsp_size, DMA_TO_DEVICE); 1807 1808 mutex_lock(&sdev->mutex); 1809 list_del_init(&ch->list); 1810 if (ch->release_done) 1811 complete(ch->release_done); 1812 mutex_unlock(&sdev->mutex); 1813 1814 wake_up(&sdev->ch_releaseQ); 1815 1816 kref_put(&ch->kref, srpt_free_ch); 1817 } 1818 1819 /** 1820 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 1821 * 1822 * Ownership of the cm_id is transferred to the target session if this 1823 * functions returns zero. Otherwise the caller remains the owner of cm_id. 1824 */ 1825 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 1826 struct ib_cm_req_event_param *param, 1827 void *private_data) 1828 { 1829 struct srpt_device *sdev = cm_id->context; 1830 struct srpt_port *sport = &sdev->port[param->port - 1]; 1831 struct srp_login_req *req; 1832 struct srp_login_rsp *rsp; 1833 struct srp_login_rej *rej; 1834 struct ib_cm_rep_param *rep_param; 1835 struct srpt_rdma_ch *ch, *tmp_ch; 1836 u32 it_iu_len; 1837 int i, ret = 0; 1838 unsigned char *p; 1839 1840 WARN_ON_ONCE(irqs_disabled()); 1841 1842 if (WARN_ON(!sdev || !private_data)) 1843 return -EINVAL; 1844 1845 req = (struct srp_login_req *)private_data; 1846 1847 it_iu_len = be32_to_cpu(req->req_it_iu_len); 1848 1849 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 1850 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 1851 " (guid=0x%llx:0x%llx)\n", 1852 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 1853 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 1854 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 1855 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 1856 it_iu_len, 1857 param->port, 1858 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 1859 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 1860 1861 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 1862 rej = kzalloc(sizeof(*rej), GFP_KERNEL); 1863 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL); 1864 1865 if (!rsp || !rej || !rep_param) { 1866 ret = -ENOMEM; 1867 goto out; 1868 } 1869 1870 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 1871 rej->reason = cpu_to_be32( 1872 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 1873 ret = -EINVAL; 1874 pr_err("rejected SRP_LOGIN_REQ because its" 1875 " length (%d bytes) is out of range (%d .. %d)\n", 1876 it_iu_len, 64, srp_max_req_size); 1877 goto reject; 1878 } 1879 1880 if (!sport->enabled) { 1881 rej->reason = cpu_to_be32( 1882 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1883 ret = -EINVAL; 1884 pr_err("rejected SRP_LOGIN_REQ because the target port" 1885 " has not yet been enabled\n"); 1886 goto reject; 1887 } 1888 1889 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 1890 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 1891 1892 mutex_lock(&sdev->mutex); 1893 1894 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 1895 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 1896 && !memcmp(ch->t_port_id, req->target_port_id, 16) 1897 && param->port == ch->sport->port 1898 && param->listen_id == ch->sport->sdev->cm_id 1899 && ch->cm_id) { 1900 if (srpt_disconnect_ch(ch) < 0) 1901 continue; 1902 pr_info("Relogin - closed existing channel %s\n", 1903 ch->sess_name); 1904 rsp->rsp_flags = 1905 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 1906 } 1907 } 1908 1909 mutex_unlock(&sdev->mutex); 1910 1911 } else 1912 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 1913 1914 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 1915 || *(__be64 *)(req->target_port_id + 8) != 1916 cpu_to_be64(srpt_service_guid)) { 1917 rej->reason = cpu_to_be32( 1918 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 1919 ret = -ENOMEM; 1920 pr_err("rejected SRP_LOGIN_REQ because it" 1921 " has an invalid target port identifier.\n"); 1922 goto reject; 1923 } 1924 1925 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 1926 if (!ch) { 1927 rej->reason = cpu_to_be32( 1928 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1929 pr_err("rejected SRP_LOGIN_REQ because no memory.\n"); 1930 ret = -ENOMEM; 1931 goto reject; 1932 } 1933 1934 kref_init(&ch->kref); 1935 ch->zw_cqe.done = srpt_zerolength_write_done; 1936 INIT_WORK(&ch->release_work, srpt_release_channel_work); 1937 memcpy(ch->i_port_id, req->initiator_port_id, 16); 1938 memcpy(ch->t_port_id, req->target_port_id, 16); 1939 ch->sport = &sdev->port[param->port - 1]; 1940 ch->cm_id = cm_id; 1941 cm_id->context = ch; 1942 /* 1943 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 1944 * for the SRP protocol to the command queue size. 1945 */ 1946 ch->rq_size = SRPT_RQ_SIZE; 1947 spin_lock_init(&ch->spinlock); 1948 ch->state = CH_CONNECTING; 1949 INIT_LIST_HEAD(&ch->cmd_wait_list); 1950 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 1951 1952 ch->ioctx_ring = (struct srpt_send_ioctx **) 1953 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 1954 sizeof(*ch->ioctx_ring[0]), 1955 ch->rsp_size, DMA_TO_DEVICE); 1956 if (!ch->ioctx_ring) 1957 goto free_ch; 1958 1959 INIT_LIST_HEAD(&ch->free_list); 1960 for (i = 0; i < ch->rq_size; i++) { 1961 ch->ioctx_ring[i]->ch = ch; 1962 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 1963 } 1964 1965 ret = srpt_create_ch_ib(ch); 1966 if (ret) { 1967 rej->reason = cpu_to_be32( 1968 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1969 pr_err("rejected SRP_LOGIN_REQ because creating" 1970 " a new RDMA channel failed.\n"); 1971 goto free_ring; 1972 } 1973 1974 ret = srpt_ch_qp_rtr(ch, ch->qp); 1975 if (ret) { 1976 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1977 pr_err("rejected SRP_LOGIN_REQ because enabling" 1978 " RTR failed (error code = %d)\n", ret); 1979 goto destroy_ib; 1980 } 1981 1982 /* 1983 * Use the initator port identifier as the session name, when 1984 * checking against se_node_acl->initiatorname[] this can be 1985 * with or without preceeding '0x'. 1986 */ 1987 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 1988 be64_to_cpu(*(__be64 *)ch->i_port_id), 1989 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 1990 1991 pr_debug("registering session %s\n", ch->sess_name); 1992 p = &ch->sess_name[0]; 1993 1994 try_again: 1995 ch->sess = target_alloc_session(&sport->port_tpg_1, 0, 0, 1996 TARGET_PROT_NORMAL, p, ch, NULL); 1997 if (IS_ERR(ch->sess)) { 1998 pr_info("Rejected login because no ACL has been" 1999 " configured yet for initiator %s.\n", p); 2000 /* 2001 * XXX: Hack to retry of ch->i_port_id without leading '0x' 2002 */ 2003 if (p == &ch->sess_name[0]) { 2004 p += 2; 2005 goto try_again; 2006 } 2007 rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ? 2008 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES : 2009 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2010 goto destroy_ib; 2011 } 2012 2013 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2014 ch->sess_name, ch->cm_id); 2015 2016 /* create srp_login_response */ 2017 rsp->opcode = SRP_LOGIN_RSP; 2018 rsp->tag = req->tag; 2019 rsp->max_it_iu_len = req->req_it_iu_len; 2020 rsp->max_ti_iu_len = req->req_it_iu_len; 2021 ch->max_ti_iu_len = it_iu_len; 2022 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2023 | SRP_BUF_FORMAT_INDIRECT); 2024 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2025 atomic_set(&ch->req_lim, ch->rq_size); 2026 atomic_set(&ch->req_lim_delta, 0); 2027 2028 /* create cm reply */ 2029 rep_param->qp_num = ch->qp->qp_num; 2030 rep_param->private_data = (void *)rsp; 2031 rep_param->private_data_len = sizeof(*rsp); 2032 rep_param->rnr_retry_count = 7; 2033 rep_param->flow_control = 1; 2034 rep_param->failover_accepted = 0; 2035 rep_param->srq = 1; 2036 rep_param->responder_resources = 4; 2037 rep_param->initiator_depth = 4; 2038 2039 ret = ib_send_cm_rep(cm_id, rep_param); 2040 if (ret) { 2041 pr_err("sending SRP_LOGIN_REQ response failed" 2042 " (error code = %d)\n", ret); 2043 goto release_channel; 2044 } 2045 2046 mutex_lock(&sdev->mutex); 2047 list_add_tail(&ch->list, &sdev->rch_list); 2048 mutex_unlock(&sdev->mutex); 2049 2050 goto out; 2051 2052 release_channel: 2053 srpt_disconnect_ch(ch); 2054 transport_deregister_session_configfs(ch->sess); 2055 transport_deregister_session(ch->sess); 2056 ch->sess = NULL; 2057 2058 destroy_ib: 2059 srpt_destroy_ch_ib(ch); 2060 2061 free_ring: 2062 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2063 ch->sport->sdev, ch->rq_size, 2064 ch->rsp_size, DMA_TO_DEVICE); 2065 free_ch: 2066 kfree(ch); 2067 2068 reject: 2069 rej->opcode = SRP_LOGIN_REJ; 2070 rej->tag = req->tag; 2071 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2072 | SRP_BUF_FORMAT_INDIRECT); 2073 2074 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2075 (void *)rej, sizeof(*rej)); 2076 2077 out: 2078 kfree(rep_param); 2079 kfree(rsp); 2080 kfree(rej); 2081 2082 return ret; 2083 } 2084 2085 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch, 2086 enum ib_cm_rej_reason reason, 2087 const u8 *private_data, 2088 u8 private_data_len) 2089 { 2090 char *priv = NULL; 2091 int i; 2092 2093 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1, 2094 GFP_KERNEL))) { 2095 for (i = 0; i < private_data_len; i++) 2096 sprintf(priv + 3 * i, " %02x", private_data[i]); 2097 } 2098 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n", 2099 ch->sess_name, ch->qp->qp_num, reason, private_data_len ? 2100 "; private data" : "", priv ? priv : " (?)"); 2101 kfree(priv); 2102 } 2103 2104 /** 2105 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2106 * 2107 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2108 * and that the recipient may begin transmitting (RTU = ready to use). 2109 */ 2110 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch) 2111 { 2112 int ret; 2113 2114 if (srpt_set_ch_state(ch, CH_LIVE)) { 2115 ret = srpt_ch_qp_rts(ch, ch->qp); 2116 2117 if (ret == 0) { 2118 /* Trigger wait list processing. */ 2119 ret = srpt_zerolength_write(ch); 2120 WARN_ONCE(ret < 0, "%d\n", ret); 2121 } else { 2122 srpt_close_ch(ch); 2123 } 2124 } 2125 } 2126 2127 /** 2128 * srpt_cm_handler() - IB connection manager callback function. 2129 * 2130 * A non-zero return value will cause the caller destroy the CM ID. 2131 * 2132 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2133 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2134 * a non-zero value in any other case will trigger a race with the 2135 * ib_destroy_cm_id() call in srpt_release_channel(). 2136 */ 2137 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2138 { 2139 struct srpt_rdma_ch *ch = cm_id->context; 2140 int ret; 2141 2142 ret = 0; 2143 switch (event->event) { 2144 case IB_CM_REQ_RECEIVED: 2145 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2146 event->private_data); 2147 break; 2148 case IB_CM_REJ_RECEIVED: 2149 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason, 2150 event->private_data, 2151 IB_CM_REJ_PRIVATE_DATA_SIZE); 2152 break; 2153 case IB_CM_RTU_RECEIVED: 2154 case IB_CM_USER_ESTABLISHED: 2155 srpt_cm_rtu_recv(ch); 2156 break; 2157 case IB_CM_DREQ_RECEIVED: 2158 srpt_disconnect_ch(ch); 2159 break; 2160 case IB_CM_DREP_RECEIVED: 2161 pr_info("Received CM DREP message for ch %s-%d.\n", 2162 ch->sess_name, ch->qp->qp_num); 2163 srpt_close_ch(ch); 2164 break; 2165 case IB_CM_TIMEWAIT_EXIT: 2166 pr_info("Received CM TimeWait exit for ch %s-%d.\n", 2167 ch->sess_name, ch->qp->qp_num); 2168 srpt_close_ch(ch); 2169 break; 2170 case IB_CM_REP_ERROR: 2171 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2172 ch->qp->qp_num); 2173 break; 2174 case IB_CM_DREQ_ERROR: 2175 pr_info("Received CM DREQ ERROR event.\n"); 2176 break; 2177 case IB_CM_MRA_RECEIVED: 2178 pr_info("Received CM MRA event\n"); 2179 break; 2180 default: 2181 pr_err("received unrecognized CM event %d\n", event->event); 2182 break; 2183 } 2184 2185 return ret; 2186 } 2187 2188 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2189 { 2190 struct srpt_send_ioctx *ioctx; 2191 2192 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2193 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2194 } 2195 2196 /* 2197 * srpt_write_pending() - Start data transfer from initiator to target (write). 2198 */ 2199 static int srpt_write_pending(struct se_cmd *se_cmd) 2200 { 2201 struct srpt_send_ioctx *ioctx = 2202 container_of(se_cmd, struct srpt_send_ioctx, cmd); 2203 struct srpt_rdma_ch *ch = ioctx->ch; 2204 struct ib_send_wr *first_wr = NULL, *bad_wr; 2205 struct ib_cqe *cqe = &ioctx->rdma_cqe; 2206 enum srpt_command_state new_state; 2207 int ret, i; 2208 2209 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2210 WARN_ON(new_state == SRPT_STATE_DONE); 2211 2212 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) { 2213 pr_warn("%s: IB send queue full (needed %d)\n", 2214 __func__, ioctx->n_rdma); 2215 ret = -ENOMEM; 2216 goto out_undo; 2217 } 2218 2219 cqe->done = srpt_rdma_read_done; 2220 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2221 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2222 2223 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port, 2224 cqe, first_wr); 2225 cqe = NULL; 2226 } 2227 2228 ret = ib_post_send(ch->qp, first_wr, &bad_wr); 2229 if (ret) { 2230 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n", 2231 __func__, ret, ioctx->n_rdma, 2232 atomic_read(&ch->sq_wr_avail)); 2233 goto out_undo; 2234 } 2235 2236 return 0; 2237 out_undo: 2238 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 2239 return ret; 2240 } 2241 2242 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2243 { 2244 switch (tcm_mgmt_status) { 2245 case TMR_FUNCTION_COMPLETE: 2246 return SRP_TSK_MGMT_SUCCESS; 2247 case TMR_FUNCTION_REJECTED: 2248 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2249 } 2250 return SRP_TSK_MGMT_FAILED; 2251 } 2252 2253 /** 2254 * srpt_queue_response() - Transmits the response to a SCSI command. 2255 * 2256 * Callback function called by the TCM core. Must not block since it can be 2257 * invoked on the context of the IB completion handler. 2258 */ 2259 static void srpt_queue_response(struct se_cmd *cmd) 2260 { 2261 struct srpt_send_ioctx *ioctx = 2262 container_of(cmd, struct srpt_send_ioctx, cmd); 2263 struct srpt_rdma_ch *ch = ioctx->ch; 2264 struct srpt_device *sdev = ch->sport->sdev; 2265 struct ib_send_wr send_wr, *first_wr = NULL, *bad_wr; 2266 struct ib_sge sge; 2267 enum srpt_command_state state; 2268 unsigned long flags; 2269 int resp_len, ret, i; 2270 u8 srp_tm_status; 2271 2272 BUG_ON(!ch); 2273 2274 spin_lock_irqsave(&ioctx->spinlock, flags); 2275 state = ioctx->state; 2276 switch (state) { 2277 case SRPT_STATE_NEW: 2278 case SRPT_STATE_DATA_IN: 2279 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 2280 break; 2281 case SRPT_STATE_MGMT: 2282 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 2283 break; 2284 default: 2285 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 2286 ch, ioctx->ioctx.index, ioctx->state); 2287 break; 2288 } 2289 spin_unlock_irqrestore(&ioctx->spinlock, flags); 2290 2291 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 2292 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 2293 atomic_inc(&ch->req_lim_delta); 2294 srpt_abort_cmd(ioctx); 2295 return; 2296 } 2297 2298 /* For read commands, transfer the data to the initiator. */ 2299 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE && 2300 ioctx->cmd.data_length && 2301 !ioctx->queue_status_only) { 2302 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2303 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2304 2305 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, 2306 ch->sport->port, NULL, 2307 first_wr ? first_wr : &send_wr); 2308 } 2309 } else { 2310 first_wr = &send_wr; 2311 } 2312 2313 if (state != SRPT_STATE_MGMT) 2314 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, 2315 cmd->scsi_status); 2316 else { 2317 srp_tm_status 2318 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 2319 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 2320 ioctx->cmd.tag); 2321 } 2322 2323 atomic_inc(&ch->req_lim); 2324 2325 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma, 2326 &ch->sq_wr_avail) < 0)) { 2327 pr_warn("%s: IB send queue full (needed %d)\n", 2328 __func__, ioctx->n_rdma); 2329 ret = -ENOMEM; 2330 goto out; 2331 } 2332 2333 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len, 2334 DMA_TO_DEVICE); 2335 2336 sge.addr = ioctx->ioctx.dma; 2337 sge.length = resp_len; 2338 sge.lkey = sdev->pd->local_dma_lkey; 2339 2340 ioctx->ioctx.cqe.done = srpt_send_done; 2341 send_wr.next = NULL; 2342 send_wr.wr_cqe = &ioctx->ioctx.cqe; 2343 send_wr.sg_list = &sge; 2344 send_wr.num_sge = 1; 2345 send_wr.opcode = IB_WR_SEND; 2346 send_wr.send_flags = IB_SEND_SIGNALED; 2347 2348 ret = ib_post_send(ch->qp, first_wr, &bad_wr); 2349 if (ret < 0) { 2350 pr_err("%s: sending cmd response failed for tag %llu (%d)\n", 2351 __func__, ioctx->cmd.tag, ret); 2352 goto out; 2353 } 2354 2355 return; 2356 2357 out: 2358 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 2359 atomic_dec(&ch->req_lim); 2360 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 2361 target_put_sess_cmd(&ioctx->cmd); 2362 } 2363 2364 static int srpt_queue_data_in(struct se_cmd *cmd) 2365 { 2366 srpt_queue_response(cmd); 2367 return 0; 2368 } 2369 2370 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 2371 { 2372 srpt_queue_response(cmd); 2373 } 2374 2375 static void srpt_aborted_task(struct se_cmd *cmd) 2376 { 2377 } 2378 2379 static int srpt_queue_status(struct se_cmd *cmd) 2380 { 2381 struct srpt_send_ioctx *ioctx; 2382 2383 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 2384 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 2385 if (cmd->se_cmd_flags & 2386 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 2387 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 2388 ioctx->queue_status_only = true; 2389 srpt_queue_response(cmd); 2390 return 0; 2391 } 2392 2393 static void srpt_refresh_port_work(struct work_struct *work) 2394 { 2395 struct srpt_port *sport = container_of(work, struct srpt_port, work); 2396 2397 srpt_refresh_port(sport); 2398 } 2399 2400 /** 2401 * srpt_release_sdev() - Free the channel resources associated with a target. 2402 */ 2403 static int srpt_release_sdev(struct srpt_device *sdev) 2404 { 2405 int i, res; 2406 2407 WARN_ON_ONCE(irqs_disabled()); 2408 2409 BUG_ON(!sdev); 2410 2411 mutex_lock(&sdev->mutex); 2412 for (i = 0; i < ARRAY_SIZE(sdev->port); i++) 2413 sdev->port[i].enabled = false; 2414 __srpt_close_all_ch(sdev); 2415 mutex_unlock(&sdev->mutex); 2416 2417 res = wait_event_interruptible(sdev->ch_releaseQ, 2418 list_empty_careful(&sdev->rch_list)); 2419 if (res) 2420 pr_err("%s: interrupted.\n", __func__); 2421 2422 return 0; 2423 } 2424 2425 static struct srpt_port *__srpt_lookup_port(const char *name) 2426 { 2427 struct ib_device *dev; 2428 struct srpt_device *sdev; 2429 struct srpt_port *sport; 2430 int i; 2431 2432 list_for_each_entry(sdev, &srpt_dev_list, list) { 2433 dev = sdev->device; 2434 if (!dev) 2435 continue; 2436 2437 for (i = 0; i < dev->phys_port_cnt; i++) { 2438 sport = &sdev->port[i]; 2439 2440 if (!strcmp(sport->port_guid, name)) 2441 return sport; 2442 } 2443 } 2444 2445 return NULL; 2446 } 2447 2448 static struct srpt_port *srpt_lookup_port(const char *name) 2449 { 2450 struct srpt_port *sport; 2451 2452 spin_lock(&srpt_dev_lock); 2453 sport = __srpt_lookup_port(name); 2454 spin_unlock(&srpt_dev_lock); 2455 2456 return sport; 2457 } 2458 2459 /** 2460 * srpt_add_one() - Infiniband device addition callback function. 2461 */ 2462 static void srpt_add_one(struct ib_device *device) 2463 { 2464 struct srpt_device *sdev; 2465 struct srpt_port *sport; 2466 struct ib_srq_init_attr srq_attr; 2467 int i; 2468 2469 pr_debug("device = %p, device->dma_ops = %p\n", device, 2470 device->dma_ops); 2471 2472 sdev = kzalloc(sizeof(*sdev), GFP_KERNEL); 2473 if (!sdev) 2474 goto err; 2475 2476 sdev->device = device; 2477 INIT_LIST_HEAD(&sdev->rch_list); 2478 init_waitqueue_head(&sdev->ch_releaseQ); 2479 mutex_init(&sdev->mutex); 2480 2481 sdev->pd = ib_alloc_pd(device); 2482 if (IS_ERR(sdev->pd)) 2483 goto free_dev; 2484 2485 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr); 2486 2487 srq_attr.event_handler = srpt_srq_event; 2488 srq_attr.srq_context = (void *)sdev; 2489 srq_attr.attr.max_wr = sdev->srq_size; 2490 srq_attr.attr.max_sge = 1; 2491 srq_attr.attr.srq_limit = 0; 2492 srq_attr.srq_type = IB_SRQT_BASIC; 2493 2494 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 2495 if (IS_ERR(sdev->srq)) 2496 goto err_pd; 2497 2498 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 2499 __func__, sdev->srq_size, sdev->device->attrs.max_srq_wr, 2500 device->name); 2501 2502 if (!srpt_service_guid) 2503 srpt_service_guid = be64_to_cpu(device->node_guid); 2504 2505 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 2506 if (IS_ERR(sdev->cm_id)) 2507 goto err_srq; 2508 2509 /* print out target login information */ 2510 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 2511 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 2512 srpt_service_guid, srpt_service_guid); 2513 2514 /* 2515 * We do not have a consistent service_id (ie. also id_ext of target_id) 2516 * to identify this target. We currently use the guid of the first HCA 2517 * in the system as service_id; therefore, the target_id will change 2518 * if this HCA is gone bad and replaced by different HCA 2519 */ 2520 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0)) 2521 goto err_cm; 2522 2523 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 2524 srpt_event_handler); 2525 if (ib_register_event_handler(&sdev->event_handler)) 2526 goto err_cm; 2527 2528 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 2529 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 2530 sizeof(*sdev->ioctx_ring[0]), 2531 srp_max_req_size, DMA_FROM_DEVICE); 2532 if (!sdev->ioctx_ring) 2533 goto err_event; 2534 2535 for (i = 0; i < sdev->srq_size; ++i) 2536 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 2537 2538 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 2539 2540 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 2541 sport = &sdev->port[i - 1]; 2542 sport->sdev = sdev; 2543 sport->port = i; 2544 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 2545 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 2546 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 2547 INIT_WORK(&sport->work, srpt_refresh_port_work); 2548 2549 if (srpt_refresh_port(sport)) { 2550 pr_err("MAD registration failed for %s-%d.\n", 2551 sdev->device->name, i); 2552 goto err_ring; 2553 } 2554 snprintf(sport->port_guid, sizeof(sport->port_guid), 2555 "0x%016llx%016llx", 2556 be64_to_cpu(sport->gid.global.subnet_prefix), 2557 be64_to_cpu(sport->gid.global.interface_id)); 2558 } 2559 2560 spin_lock(&srpt_dev_lock); 2561 list_add_tail(&sdev->list, &srpt_dev_list); 2562 spin_unlock(&srpt_dev_lock); 2563 2564 out: 2565 ib_set_client_data(device, &srpt_client, sdev); 2566 pr_debug("added %s.\n", device->name); 2567 return; 2568 2569 err_ring: 2570 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 2571 sdev->srq_size, srp_max_req_size, 2572 DMA_FROM_DEVICE); 2573 err_event: 2574 ib_unregister_event_handler(&sdev->event_handler); 2575 err_cm: 2576 ib_destroy_cm_id(sdev->cm_id); 2577 err_srq: 2578 ib_destroy_srq(sdev->srq); 2579 err_pd: 2580 ib_dealloc_pd(sdev->pd); 2581 free_dev: 2582 kfree(sdev); 2583 err: 2584 sdev = NULL; 2585 pr_info("%s(%s) failed.\n", __func__, device->name); 2586 goto out; 2587 } 2588 2589 /** 2590 * srpt_remove_one() - InfiniBand device removal callback function. 2591 */ 2592 static void srpt_remove_one(struct ib_device *device, void *client_data) 2593 { 2594 struct srpt_device *sdev = client_data; 2595 int i; 2596 2597 if (!sdev) { 2598 pr_info("%s(%s): nothing to do.\n", __func__, device->name); 2599 return; 2600 } 2601 2602 srpt_unregister_mad_agent(sdev); 2603 2604 ib_unregister_event_handler(&sdev->event_handler); 2605 2606 /* Cancel any work queued by the just unregistered IB event handler. */ 2607 for (i = 0; i < sdev->device->phys_port_cnt; i++) 2608 cancel_work_sync(&sdev->port[i].work); 2609 2610 ib_destroy_cm_id(sdev->cm_id); 2611 2612 /* 2613 * Unregistering a target must happen after destroying sdev->cm_id 2614 * such that no new SRP_LOGIN_REQ information units can arrive while 2615 * destroying the target. 2616 */ 2617 spin_lock(&srpt_dev_lock); 2618 list_del(&sdev->list); 2619 spin_unlock(&srpt_dev_lock); 2620 srpt_release_sdev(sdev); 2621 2622 ib_destroy_srq(sdev->srq); 2623 ib_dealloc_pd(sdev->pd); 2624 2625 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 2626 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 2627 sdev->ioctx_ring = NULL; 2628 kfree(sdev); 2629 } 2630 2631 static struct ib_client srpt_client = { 2632 .name = DRV_NAME, 2633 .add = srpt_add_one, 2634 .remove = srpt_remove_one 2635 }; 2636 2637 static int srpt_check_true(struct se_portal_group *se_tpg) 2638 { 2639 return 1; 2640 } 2641 2642 static int srpt_check_false(struct se_portal_group *se_tpg) 2643 { 2644 return 0; 2645 } 2646 2647 static char *srpt_get_fabric_name(void) 2648 { 2649 return "srpt"; 2650 } 2651 2652 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 2653 { 2654 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 2655 2656 return sport->port_guid; 2657 } 2658 2659 static u16 srpt_get_tag(struct se_portal_group *tpg) 2660 { 2661 return 1; 2662 } 2663 2664 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 2665 { 2666 return 1; 2667 } 2668 2669 static void srpt_release_cmd(struct se_cmd *se_cmd) 2670 { 2671 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 2672 struct srpt_send_ioctx, cmd); 2673 struct srpt_rdma_ch *ch = ioctx->ch; 2674 unsigned long flags; 2675 2676 WARN_ON(ioctx->state != SRPT_STATE_DONE); 2677 2678 if (ioctx->n_rw_ctx) { 2679 srpt_free_rw_ctxs(ch, ioctx); 2680 ioctx->n_rw_ctx = 0; 2681 } 2682 2683 spin_lock_irqsave(&ch->spinlock, flags); 2684 list_add(&ioctx->free_list, &ch->free_list); 2685 spin_unlock_irqrestore(&ch->spinlock, flags); 2686 } 2687 2688 /** 2689 * srpt_close_session() - Forcibly close a session. 2690 * 2691 * Callback function invoked by the TCM core to clean up sessions associated 2692 * with a node ACL when the user invokes 2693 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 2694 */ 2695 static void srpt_close_session(struct se_session *se_sess) 2696 { 2697 DECLARE_COMPLETION_ONSTACK(release_done); 2698 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2699 struct srpt_device *sdev = ch->sport->sdev; 2700 bool wait; 2701 2702 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num, 2703 ch->state); 2704 2705 mutex_lock(&sdev->mutex); 2706 BUG_ON(ch->release_done); 2707 ch->release_done = &release_done; 2708 wait = !list_empty(&ch->list); 2709 srpt_disconnect_ch(ch); 2710 mutex_unlock(&sdev->mutex); 2711 2712 if (!wait) 2713 return; 2714 2715 while (wait_for_completion_timeout(&release_done, 180 * HZ) == 0) 2716 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__, 2717 ch->sess_name, ch->qp->qp_num, ch->state); 2718 } 2719 2720 /** 2721 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 2722 * 2723 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 2724 * This object represents an arbitrary integer used to uniquely identify a 2725 * particular attached remote initiator port to a particular SCSI target port 2726 * within a particular SCSI target device within a particular SCSI instance. 2727 */ 2728 static u32 srpt_sess_get_index(struct se_session *se_sess) 2729 { 2730 return 0; 2731 } 2732 2733 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 2734 { 2735 } 2736 2737 /* Note: only used from inside debug printk's by the TCM core. */ 2738 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 2739 { 2740 struct srpt_send_ioctx *ioctx; 2741 2742 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2743 return srpt_get_cmd_state(ioctx); 2744 } 2745 2746 /** 2747 * srpt_parse_i_port_id() - Parse an initiator port ID. 2748 * @name: ASCII representation of a 128-bit initiator port ID. 2749 * @i_port_id: Binary 128-bit port ID. 2750 */ 2751 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 2752 { 2753 const char *p; 2754 unsigned len, count, leading_zero_bytes; 2755 int ret, rc; 2756 2757 p = name; 2758 if (strncasecmp(p, "0x", 2) == 0) 2759 p += 2; 2760 ret = -EINVAL; 2761 len = strlen(p); 2762 if (len % 2) 2763 goto out; 2764 count = min(len / 2, 16U); 2765 leading_zero_bytes = 16 - count; 2766 memset(i_port_id, 0, leading_zero_bytes); 2767 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 2768 if (rc < 0) 2769 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 2770 ret = 0; 2771 out: 2772 return ret; 2773 } 2774 2775 /* 2776 * configfs callback function invoked for 2777 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 2778 */ 2779 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) 2780 { 2781 u8 i_port_id[16]; 2782 2783 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 2784 pr_err("invalid initiator port ID %s\n", name); 2785 return -EINVAL; 2786 } 2787 return 0; 2788 } 2789 2790 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, 2791 char *page) 2792 { 2793 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2794 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2795 2796 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 2797 } 2798 2799 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, 2800 const char *page, size_t count) 2801 { 2802 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2803 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2804 unsigned long val; 2805 int ret; 2806 2807 ret = kstrtoul(page, 0, &val); 2808 if (ret < 0) { 2809 pr_err("kstrtoul() failed with ret: %d\n", ret); 2810 return -EINVAL; 2811 } 2812 if (val > MAX_SRPT_RDMA_SIZE) { 2813 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 2814 MAX_SRPT_RDMA_SIZE); 2815 return -EINVAL; 2816 } 2817 if (val < DEFAULT_MAX_RDMA_SIZE) { 2818 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 2819 val, DEFAULT_MAX_RDMA_SIZE); 2820 return -EINVAL; 2821 } 2822 sport->port_attrib.srp_max_rdma_size = val; 2823 2824 return count; 2825 } 2826 2827 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, 2828 char *page) 2829 { 2830 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2831 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2832 2833 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 2834 } 2835 2836 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, 2837 const char *page, size_t count) 2838 { 2839 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2840 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2841 unsigned long val; 2842 int ret; 2843 2844 ret = kstrtoul(page, 0, &val); 2845 if (ret < 0) { 2846 pr_err("kstrtoul() failed with ret: %d\n", ret); 2847 return -EINVAL; 2848 } 2849 if (val > MAX_SRPT_RSP_SIZE) { 2850 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 2851 MAX_SRPT_RSP_SIZE); 2852 return -EINVAL; 2853 } 2854 if (val < MIN_MAX_RSP_SIZE) { 2855 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 2856 MIN_MAX_RSP_SIZE); 2857 return -EINVAL; 2858 } 2859 sport->port_attrib.srp_max_rsp_size = val; 2860 2861 return count; 2862 } 2863 2864 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, 2865 char *page) 2866 { 2867 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2868 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2869 2870 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 2871 } 2872 2873 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, 2874 const char *page, size_t count) 2875 { 2876 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2877 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2878 unsigned long val; 2879 int ret; 2880 2881 ret = kstrtoul(page, 0, &val); 2882 if (ret < 0) { 2883 pr_err("kstrtoul() failed with ret: %d\n", ret); 2884 return -EINVAL; 2885 } 2886 if (val > MAX_SRPT_SRQ_SIZE) { 2887 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 2888 MAX_SRPT_SRQ_SIZE); 2889 return -EINVAL; 2890 } 2891 if (val < MIN_SRPT_SRQ_SIZE) { 2892 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 2893 MIN_SRPT_SRQ_SIZE); 2894 return -EINVAL; 2895 } 2896 sport->port_attrib.srp_sq_size = val; 2897 2898 return count; 2899 } 2900 2901 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size); 2902 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size); 2903 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size); 2904 2905 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 2906 &srpt_tpg_attrib_attr_srp_max_rdma_size, 2907 &srpt_tpg_attrib_attr_srp_max_rsp_size, 2908 &srpt_tpg_attrib_attr_srp_sq_size, 2909 NULL, 2910 }; 2911 2912 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page) 2913 { 2914 struct se_portal_group *se_tpg = to_tpg(item); 2915 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2916 2917 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 2918 } 2919 2920 static ssize_t srpt_tpg_enable_store(struct config_item *item, 2921 const char *page, size_t count) 2922 { 2923 struct se_portal_group *se_tpg = to_tpg(item); 2924 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 2925 struct srpt_device *sdev = sport->sdev; 2926 struct srpt_rdma_ch *ch; 2927 unsigned long tmp; 2928 int ret; 2929 2930 ret = kstrtoul(page, 0, &tmp); 2931 if (ret < 0) { 2932 pr_err("Unable to extract srpt_tpg_store_enable\n"); 2933 return -EINVAL; 2934 } 2935 2936 if ((tmp != 0) && (tmp != 1)) { 2937 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 2938 return -EINVAL; 2939 } 2940 if (sport->enabled == tmp) 2941 goto out; 2942 sport->enabled = tmp; 2943 if (sport->enabled) 2944 goto out; 2945 2946 mutex_lock(&sdev->mutex); 2947 list_for_each_entry(ch, &sdev->rch_list, list) { 2948 if (ch->sport == sport) { 2949 pr_debug("%s: ch %p %s-%d\n", __func__, ch, 2950 ch->sess_name, ch->qp->qp_num); 2951 srpt_disconnect_ch(ch); 2952 srpt_close_ch(ch); 2953 } 2954 } 2955 mutex_unlock(&sdev->mutex); 2956 2957 out: 2958 return count; 2959 } 2960 2961 CONFIGFS_ATTR(srpt_tpg_, enable); 2962 2963 static struct configfs_attribute *srpt_tpg_attrs[] = { 2964 &srpt_tpg_attr_enable, 2965 NULL, 2966 }; 2967 2968 /** 2969 * configfs callback invoked for 2970 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 2971 */ 2972 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 2973 struct config_group *group, 2974 const char *name) 2975 { 2976 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 2977 int res; 2978 2979 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 2980 res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP); 2981 if (res) 2982 return ERR_PTR(res); 2983 2984 return &sport->port_tpg_1; 2985 } 2986 2987 /** 2988 * configfs callback invoked for 2989 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 2990 */ 2991 static void srpt_drop_tpg(struct se_portal_group *tpg) 2992 { 2993 struct srpt_port *sport = container_of(tpg, 2994 struct srpt_port, port_tpg_1); 2995 2996 sport->enabled = false; 2997 core_tpg_deregister(&sport->port_tpg_1); 2998 } 2999 3000 /** 3001 * configfs callback invoked for 3002 * mkdir /sys/kernel/config/target/$driver/$port 3003 */ 3004 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3005 struct config_group *group, 3006 const char *name) 3007 { 3008 struct srpt_port *sport; 3009 int ret; 3010 3011 sport = srpt_lookup_port(name); 3012 pr_debug("make_tport(%s)\n", name); 3013 ret = -EINVAL; 3014 if (!sport) 3015 goto err; 3016 3017 return &sport->port_wwn; 3018 3019 err: 3020 return ERR_PTR(ret); 3021 } 3022 3023 /** 3024 * configfs callback invoked for 3025 * rmdir /sys/kernel/config/target/$driver/$port 3026 */ 3027 static void srpt_drop_tport(struct se_wwn *wwn) 3028 { 3029 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3030 3031 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3032 } 3033 3034 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf) 3035 { 3036 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3037 } 3038 3039 CONFIGFS_ATTR_RO(srpt_wwn_, version); 3040 3041 static struct configfs_attribute *srpt_wwn_attrs[] = { 3042 &srpt_wwn_attr_version, 3043 NULL, 3044 }; 3045 3046 static const struct target_core_fabric_ops srpt_template = { 3047 .module = THIS_MODULE, 3048 .name = "srpt", 3049 .get_fabric_name = srpt_get_fabric_name, 3050 .tpg_get_wwn = srpt_get_fabric_wwn, 3051 .tpg_get_tag = srpt_get_tag, 3052 .tpg_check_demo_mode = srpt_check_false, 3053 .tpg_check_demo_mode_cache = srpt_check_true, 3054 .tpg_check_demo_mode_write_protect = srpt_check_true, 3055 .tpg_check_prod_mode_write_protect = srpt_check_false, 3056 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3057 .release_cmd = srpt_release_cmd, 3058 .check_stop_free = srpt_check_stop_free, 3059 .close_session = srpt_close_session, 3060 .sess_get_index = srpt_sess_get_index, 3061 .sess_get_initiator_sid = NULL, 3062 .write_pending = srpt_write_pending, 3063 .write_pending_status = srpt_write_pending_status, 3064 .set_default_node_attributes = srpt_set_default_node_attrs, 3065 .get_cmd_state = srpt_get_tcm_cmd_state, 3066 .queue_data_in = srpt_queue_data_in, 3067 .queue_status = srpt_queue_status, 3068 .queue_tm_rsp = srpt_queue_tm_rsp, 3069 .aborted_task = srpt_aborted_task, 3070 /* 3071 * Setup function pointers for generic logic in 3072 * target_core_fabric_configfs.c 3073 */ 3074 .fabric_make_wwn = srpt_make_tport, 3075 .fabric_drop_wwn = srpt_drop_tport, 3076 .fabric_make_tpg = srpt_make_tpg, 3077 .fabric_drop_tpg = srpt_drop_tpg, 3078 .fabric_init_nodeacl = srpt_init_nodeacl, 3079 3080 .tfc_wwn_attrs = srpt_wwn_attrs, 3081 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3082 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3083 }; 3084 3085 /** 3086 * srpt_init_module() - Kernel module initialization. 3087 * 3088 * Note: Since ib_register_client() registers callback functions, and since at 3089 * least one of these callback functions (srpt_add_one()) calls target core 3090 * functions, this driver must be registered with the target core before 3091 * ib_register_client() is called. 3092 */ 3093 static int __init srpt_init_module(void) 3094 { 3095 int ret; 3096 3097 ret = -EINVAL; 3098 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3099 pr_err("invalid value %d for kernel module parameter" 3100 " srp_max_req_size -- must be at least %d.\n", 3101 srp_max_req_size, MIN_MAX_REQ_SIZE); 3102 goto out; 3103 } 3104 3105 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3106 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3107 pr_err("invalid value %d for kernel module parameter" 3108 " srpt_srq_size -- must be in the range [%d..%d].\n", 3109 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3110 goto out; 3111 } 3112 3113 ret = target_register_template(&srpt_template); 3114 if (ret) 3115 goto out; 3116 3117 ret = ib_register_client(&srpt_client); 3118 if (ret) { 3119 pr_err("couldn't register IB client\n"); 3120 goto out_unregister_target; 3121 } 3122 3123 return 0; 3124 3125 out_unregister_target: 3126 target_unregister_template(&srpt_template); 3127 out: 3128 return ret; 3129 } 3130 3131 static void __exit srpt_cleanup_module(void) 3132 { 3133 ib_unregister_client(&srpt_client); 3134 target_unregister_template(&srpt_template); 3135 } 3136 3137 module_init(srpt_init_module); 3138 module_exit(srpt_cleanup_module); 3139