1 /*
2  * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3  * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46 #include <scsi/scsi_proto.h>
47 #include <scsi/scsi_tcq.h>
48 #include <target/target_core_base.h>
49 #include <target/target_core_fabric.h>
50 #include "ib_srpt.h"
51 
52 /* Name of this kernel module. */
53 #define DRV_NAME		"ib_srpt"
54 
55 #define SRPT_ID_STRING	"Linux SRP target"
56 
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
59 
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("SCSI RDMA Protocol target driver");
62 MODULE_LICENSE("Dual BSD/GPL");
63 
64 /*
65  * Global Variables
66  */
67 
68 static u64 srpt_service_guid;
69 static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
70 static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
71 
72 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
73 module_param(srp_max_req_size, int, 0444);
74 MODULE_PARM_DESC(srp_max_req_size,
75 		 "Maximum size of SRP request messages in bytes.");
76 
77 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
78 module_param(srpt_srq_size, int, 0444);
79 MODULE_PARM_DESC(srpt_srq_size,
80 		 "Shared receive queue (SRQ) size.");
81 
82 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
83 {
84 	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
85 }
86 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
87 		  0444);
88 MODULE_PARM_DESC(srpt_service_guid,
89 		 "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA.");
90 
91 static struct ib_client srpt_client;
92 /* Protects both rdma_cm_port and rdma_cm_id. */
93 static DEFINE_MUTEX(rdma_cm_mutex);
94 /* Port number RDMA/CM will bind to. */
95 static u16 rdma_cm_port;
96 static struct rdma_cm_id *rdma_cm_id;
97 static void srpt_release_cmd(struct se_cmd *se_cmd);
98 static void srpt_free_ch(struct kref *kref);
99 static int srpt_queue_status(struct se_cmd *cmd);
100 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
101 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
102 static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
103 
104 /*
105  * The only allowed channel state changes are those that change the channel
106  * state into a state with a higher numerical value. Hence the new > prev test.
107  */
108 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
109 {
110 	unsigned long flags;
111 	enum rdma_ch_state prev;
112 	bool changed = false;
113 
114 	spin_lock_irqsave(&ch->spinlock, flags);
115 	prev = ch->state;
116 	if (new > prev) {
117 		ch->state = new;
118 		changed = true;
119 	}
120 	spin_unlock_irqrestore(&ch->spinlock, flags);
121 
122 	return changed;
123 }
124 
125 /**
126  * srpt_event_handler - asynchronous IB event callback function
127  * @handler: IB event handler registered by ib_register_event_handler().
128  * @event: Description of the event that occurred.
129  *
130  * Callback function called by the InfiniBand core when an asynchronous IB
131  * event occurs. This callback may occur in interrupt context. See also
132  * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
133  * Architecture Specification.
134  */
135 static void srpt_event_handler(struct ib_event_handler *handler,
136 			       struct ib_event *event)
137 {
138 	struct srpt_device *sdev;
139 	struct srpt_port *sport;
140 	u8 port_num;
141 
142 	sdev = ib_get_client_data(event->device, &srpt_client);
143 	if (!sdev || sdev->device != event->device)
144 		return;
145 
146 	pr_debug("ASYNC event= %d on device= %s\n", event->event,
147 		 dev_name(&sdev->device->dev));
148 
149 	switch (event->event) {
150 	case IB_EVENT_PORT_ERR:
151 		port_num = event->element.port_num - 1;
152 		if (port_num < sdev->device->phys_port_cnt) {
153 			sport = &sdev->port[port_num];
154 			sport->lid = 0;
155 			sport->sm_lid = 0;
156 		} else {
157 			WARN(true, "event %d: port_num %d out of range 1..%d\n",
158 			     event->event, port_num + 1,
159 			     sdev->device->phys_port_cnt);
160 		}
161 		break;
162 	case IB_EVENT_PORT_ACTIVE:
163 	case IB_EVENT_LID_CHANGE:
164 	case IB_EVENT_PKEY_CHANGE:
165 	case IB_EVENT_SM_CHANGE:
166 	case IB_EVENT_CLIENT_REREGISTER:
167 	case IB_EVENT_GID_CHANGE:
168 		/* Refresh port data asynchronously. */
169 		port_num = event->element.port_num - 1;
170 		if (port_num < sdev->device->phys_port_cnt) {
171 			sport = &sdev->port[port_num];
172 			if (!sport->lid && !sport->sm_lid)
173 				schedule_work(&sport->work);
174 		} else {
175 			WARN(true, "event %d: port_num %d out of range 1..%d\n",
176 			     event->event, port_num + 1,
177 			     sdev->device->phys_port_cnt);
178 		}
179 		break;
180 	default:
181 		pr_err("received unrecognized IB event %d\n", event->event);
182 		break;
183 	}
184 }
185 
186 /**
187  * srpt_srq_event - SRQ event callback function
188  * @event: Description of the event that occurred.
189  * @ctx: Context pointer specified at SRQ creation time.
190  */
191 static void srpt_srq_event(struct ib_event *event, void *ctx)
192 {
193 	pr_debug("SRQ event %d\n", event->event);
194 }
195 
196 static const char *get_ch_state_name(enum rdma_ch_state s)
197 {
198 	switch (s) {
199 	case CH_CONNECTING:
200 		return "connecting";
201 	case CH_LIVE:
202 		return "live";
203 	case CH_DISCONNECTING:
204 		return "disconnecting";
205 	case CH_DRAINING:
206 		return "draining";
207 	case CH_DISCONNECTED:
208 		return "disconnected";
209 	}
210 	return "???";
211 }
212 
213 /**
214  * srpt_qp_event - QP event callback function
215  * @event: Description of the event that occurred.
216  * @ch: SRPT RDMA channel.
217  */
218 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
219 {
220 	pr_debug("QP event %d on ch=%p sess_name=%s state=%d\n",
221 		 event->event, ch, ch->sess_name, ch->state);
222 
223 	switch (event->event) {
224 	case IB_EVENT_COMM_EST:
225 		if (ch->using_rdma_cm)
226 			rdma_notify(ch->rdma_cm.cm_id, event->event);
227 		else
228 			ib_cm_notify(ch->ib_cm.cm_id, event->event);
229 		break;
230 	case IB_EVENT_QP_LAST_WQE_REACHED:
231 		pr_debug("%s-%d, state %s: received Last WQE event.\n",
232 			 ch->sess_name, ch->qp->qp_num,
233 			 get_ch_state_name(ch->state));
234 		break;
235 	default:
236 		pr_err("received unrecognized IB QP event %d\n", event->event);
237 		break;
238 	}
239 }
240 
241 /**
242  * srpt_set_ioc - initialize a IOUnitInfo structure
243  * @c_list: controller list.
244  * @slot: one-based slot number.
245  * @value: four-bit value.
246  *
247  * Copies the lowest four bits of value in element slot of the array of four
248  * bit elements called c_list (controller list). The index slot is one-based.
249  */
250 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
251 {
252 	u16 id;
253 	u8 tmp;
254 
255 	id = (slot - 1) / 2;
256 	if (slot & 0x1) {
257 		tmp = c_list[id] & 0xf;
258 		c_list[id] = (value << 4) | tmp;
259 	} else {
260 		tmp = c_list[id] & 0xf0;
261 		c_list[id] = (value & 0xf) | tmp;
262 	}
263 }
264 
265 /**
266  * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
267  * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
268  *
269  * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
270  * Specification.
271  */
272 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
273 {
274 	struct ib_class_port_info *cif;
275 
276 	cif = (struct ib_class_port_info *)mad->data;
277 	memset(cif, 0, sizeof(*cif));
278 	cif->base_version = 1;
279 	cif->class_version = 1;
280 
281 	ib_set_cpi_resp_time(cif, 20);
282 	mad->mad_hdr.status = 0;
283 }
284 
285 /**
286  * srpt_get_iou - write IOUnitInfo to a management datagram
287  * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
288  *
289  * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
290  * Specification. See also section B.7, table B.6 in the SRP r16a document.
291  */
292 static void srpt_get_iou(struct ib_dm_mad *mad)
293 {
294 	struct ib_dm_iou_info *ioui;
295 	u8 slot;
296 	int i;
297 
298 	ioui = (struct ib_dm_iou_info *)mad->data;
299 	ioui->change_id = cpu_to_be16(1);
300 	ioui->max_controllers = 16;
301 
302 	/* set present for slot 1 and empty for the rest */
303 	srpt_set_ioc(ioui->controller_list, 1, 1);
304 	for (i = 1, slot = 2; i < 16; i++, slot++)
305 		srpt_set_ioc(ioui->controller_list, slot, 0);
306 
307 	mad->mad_hdr.status = 0;
308 }
309 
310 /**
311  * srpt_get_ioc - write IOControllerprofile to a management datagram
312  * @sport: HCA port through which the MAD has been received.
313  * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
314  * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
315  *
316  * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
317  * Architecture Specification. See also section B.7, table B.7 in the SRP
318  * r16a document.
319  */
320 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
321 			 struct ib_dm_mad *mad)
322 {
323 	struct srpt_device *sdev = sport->sdev;
324 	struct ib_dm_ioc_profile *iocp;
325 	int send_queue_depth;
326 
327 	iocp = (struct ib_dm_ioc_profile *)mad->data;
328 
329 	if (!slot || slot > 16) {
330 		mad->mad_hdr.status
331 			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
332 		return;
333 	}
334 
335 	if (slot > 2) {
336 		mad->mad_hdr.status
337 			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
338 		return;
339 	}
340 
341 	if (sdev->use_srq)
342 		send_queue_depth = sdev->srq_size;
343 	else
344 		send_queue_depth = min(MAX_SRPT_RQ_SIZE,
345 				       sdev->device->attrs.max_qp_wr);
346 
347 	memset(iocp, 0, sizeof(*iocp));
348 	strcpy(iocp->id_string, SRPT_ID_STRING);
349 	iocp->guid = cpu_to_be64(srpt_service_guid);
350 	iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
351 	iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
352 	iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
353 	iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
354 	iocp->subsys_device_id = 0x0;
355 	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
356 	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
357 	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
358 	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
359 	iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
360 	iocp->rdma_read_depth = 4;
361 	iocp->send_size = cpu_to_be32(srp_max_req_size);
362 	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
363 					  1U << 24));
364 	iocp->num_svc_entries = 1;
365 	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
366 		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
367 
368 	mad->mad_hdr.status = 0;
369 }
370 
371 /**
372  * srpt_get_svc_entries - write ServiceEntries to a management datagram
373  * @ioc_guid: I/O controller GUID to use in reply.
374  * @slot: I/O controller number.
375  * @hi: End of the range of service entries to be specified in the reply.
376  * @lo: Start of the range of service entries to be specified in the reply..
377  * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
378  *
379  * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
380  * Specification. See also section B.7, table B.8 in the SRP r16a document.
381  */
382 static void srpt_get_svc_entries(u64 ioc_guid,
383 				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
384 {
385 	struct ib_dm_svc_entries *svc_entries;
386 
387 	WARN_ON(!ioc_guid);
388 
389 	if (!slot || slot > 16) {
390 		mad->mad_hdr.status
391 			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
392 		return;
393 	}
394 
395 	if (slot > 2 || lo > hi || hi > 1) {
396 		mad->mad_hdr.status
397 			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
398 		return;
399 	}
400 
401 	svc_entries = (struct ib_dm_svc_entries *)mad->data;
402 	memset(svc_entries, 0, sizeof(*svc_entries));
403 	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
404 	snprintf(svc_entries->service_entries[0].name,
405 		 sizeof(svc_entries->service_entries[0].name),
406 		 "%s%016llx",
407 		 SRP_SERVICE_NAME_PREFIX,
408 		 ioc_guid);
409 
410 	mad->mad_hdr.status = 0;
411 }
412 
413 /**
414  * srpt_mgmt_method_get - process a received management datagram
415  * @sp:      HCA port through which the MAD has been received.
416  * @rq_mad:  received MAD.
417  * @rsp_mad: response MAD.
418  */
419 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
420 				 struct ib_dm_mad *rsp_mad)
421 {
422 	u16 attr_id;
423 	u32 slot;
424 	u8 hi, lo;
425 
426 	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
427 	switch (attr_id) {
428 	case DM_ATTR_CLASS_PORT_INFO:
429 		srpt_get_class_port_info(rsp_mad);
430 		break;
431 	case DM_ATTR_IOU_INFO:
432 		srpt_get_iou(rsp_mad);
433 		break;
434 	case DM_ATTR_IOC_PROFILE:
435 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
436 		srpt_get_ioc(sp, slot, rsp_mad);
437 		break;
438 	case DM_ATTR_SVC_ENTRIES:
439 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
440 		hi = (u8) ((slot >> 8) & 0xff);
441 		lo = (u8) (slot & 0xff);
442 		slot = (u16) ((slot >> 16) & 0xffff);
443 		srpt_get_svc_entries(srpt_service_guid,
444 				     slot, hi, lo, rsp_mad);
445 		break;
446 	default:
447 		rsp_mad->mad_hdr.status =
448 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
449 		break;
450 	}
451 }
452 
453 /**
454  * srpt_mad_send_handler - MAD send completion callback
455  * @mad_agent: Return value of ib_register_mad_agent().
456  * @mad_wc: Work completion reporting that the MAD has been sent.
457  */
458 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
459 				  struct ib_mad_send_wc *mad_wc)
460 {
461 	rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE);
462 	ib_free_send_mad(mad_wc->send_buf);
463 }
464 
465 /**
466  * srpt_mad_recv_handler - MAD reception callback function
467  * @mad_agent: Return value of ib_register_mad_agent().
468  * @send_buf: Not used.
469  * @mad_wc: Work completion reporting that a MAD has been received.
470  */
471 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
472 				  struct ib_mad_send_buf *send_buf,
473 				  struct ib_mad_recv_wc *mad_wc)
474 {
475 	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
476 	struct ib_ah *ah;
477 	struct ib_mad_send_buf *rsp;
478 	struct ib_dm_mad *dm_mad;
479 
480 	if (!mad_wc || !mad_wc->recv_buf.mad)
481 		return;
482 
483 	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
484 				  mad_wc->recv_buf.grh, mad_agent->port_num);
485 	if (IS_ERR(ah))
486 		goto err;
487 
488 	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
489 
490 	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
491 				 mad_wc->wc->pkey_index, 0,
492 				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
493 				 GFP_KERNEL,
494 				 IB_MGMT_BASE_VERSION);
495 	if (IS_ERR(rsp))
496 		goto err_rsp;
497 
498 	rsp->ah = ah;
499 
500 	dm_mad = rsp->mad;
501 	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
502 	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
503 	dm_mad->mad_hdr.status = 0;
504 
505 	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
506 	case IB_MGMT_METHOD_GET:
507 		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
508 		break;
509 	case IB_MGMT_METHOD_SET:
510 		dm_mad->mad_hdr.status =
511 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
512 		break;
513 	default:
514 		dm_mad->mad_hdr.status =
515 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
516 		break;
517 	}
518 
519 	if (!ib_post_send_mad(rsp, NULL)) {
520 		ib_free_recv_mad(mad_wc);
521 		/* will destroy_ah & free_send_mad in send completion */
522 		return;
523 	}
524 
525 	ib_free_send_mad(rsp);
526 
527 err_rsp:
528 	rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE);
529 err:
530 	ib_free_recv_mad(mad_wc);
531 }
532 
533 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
534 {
535 	const __be16 *g = (const __be16 *)guid;
536 
537 	return snprintf(buf, size, "%04x:%04x:%04x:%04x",
538 			be16_to_cpu(g[0]), be16_to_cpu(g[1]),
539 			be16_to_cpu(g[2]), be16_to_cpu(g[3]));
540 }
541 
542 /**
543  * srpt_refresh_port - configure a HCA port
544  * @sport: SRPT HCA port.
545  *
546  * Enable InfiniBand management datagram processing, update the cached sm_lid,
547  * lid and gid values, and register a callback function for processing MADs
548  * on the specified port.
549  *
550  * Note: It is safe to call this function more than once for the same port.
551  */
552 static int srpt_refresh_port(struct srpt_port *sport)
553 {
554 	struct ib_mad_reg_req reg_req;
555 	struct ib_port_modify port_modify;
556 	struct ib_port_attr port_attr;
557 	int ret;
558 
559 	memset(&port_modify, 0, sizeof(port_modify));
560 	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
561 	port_modify.clr_port_cap_mask = 0;
562 
563 	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
564 	if (ret)
565 		goto err_mod_port;
566 
567 	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
568 	if (ret)
569 		goto err_query_port;
570 
571 	sport->sm_lid = port_attr.sm_lid;
572 	sport->lid = port_attr.lid;
573 
574 	ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
575 	if (ret)
576 		goto err_query_port;
577 
578 	sport->port_guid_wwn.priv = sport;
579 	srpt_format_guid(sport->port_guid, sizeof(sport->port_guid),
580 			 &sport->gid.global.interface_id);
581 	sport->port_gid_wwn.priv = sport;
582 	snprintf(sport->port_gid, sizeof(sport->port_gid),
583 		 "0x%016llx%016llx",
584 		 be64_to_cpu(sport->gid.global.subnet_prefix),
585 		 be64_to_cpu(sport->gid.global.interface_id));
586 
587 	if (!sport->mad_agent) {
588 		memset(&reg_req, 0, sizeof(reg_req));
589 		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
590 		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
591 		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
592 		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
593 
594 		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
595 							 sport->port,
596 							 IB_QPT_GSI,
597 							 &reg_req, 0,
598 							 srpt_mad_send_handler,
599 							 srpt_mad_recv_handler,
600 							 sport, 0);
601 		if (IS_ERR(sport->mad_agent)) {
602 			ret = PTR_ERR(sport->mad_agent);
603 			sport->mad_agent = NULL;
604 			goto err_query_port;
605 		}
606 	}
607 
608 	return 0;
609 
610 err_query_port:
611 
612 	port_modify.set_port_cap_mask = 0;
613 	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
614 	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
615 
616 err_mod_port:
617 
618 	return ret;
619 }
620 
621 /**
622  * srpt_unregister_mad_agent - unregister MAD callback functions
623  * @sdev: SRPT HCA pointer.
624  *
625  * Note: It is safe to call this function more than once for the same device.
626  */
627 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
628 {
629 	struct ib_port_modify port_modify = {
630 		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
631 	};
632 	struct srpt_port *sport;
633 	int i;
634 
635 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
636 		sport = &sdev->port[i - 1];
637 		WARN_ON(sport->port != i);
638 		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
639 			pr_err("disabling MAD processing failed.\n");
640 		if (sport->mad_agent) {
641 			ib_unregister_mad_agent(sport->mad_agent);
642 			sport->mad_agent = NULL;
643 		}
644 	}
645 }
646 
647 /**
648  * srpt_alloc_ioctx - allocate a SRPT I/O context structure
649  * @sdev: SRPT HCA pointer.
650  * @ioctx_size: I/O context size.
651  * @buf_cache: I/O buffer cache.
652  * @dir: DMA data direction.
653  */
654 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
655 					   int ioctx_size,
656 					   struct kmem_cache *buf_cache,
657 					   enum dma_data_direction dir)
658 {
659 	struct srpt_ioctx *ioctx;
660 
661 	ioctx = kzalloc(ioctx_size, GFP_KERNEL);
662 	if (!ioctx)
663 		goto err;
664 
665 	ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL);
666 	if (!ioctx->buf)
667 		goto err_free_ioctx;
668 
669 	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf,
670 				       kmem_cache_size(buf_cache), dir);
671 	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
672 		goto err_free_buf;
673 
674 	return ioctx;
675 
676 err_free_buf:
677 	kmem_cache_free(buf_cache, ioctx->buf);
678 err_free_ioctx:
679 	kfree(ioctx);
680 err:
681 	return NULL;
682 }
683 
684 /**
685  * srpt_free_ioctx - free a SRPT I/O context structure
686  * @sdev: SRPT HCA pointer.
687  * @ioctx: I/O context pointer.
688  * @buf_cache: I/O buffer cache.
689  * @dir: DMA data direction.
690  */
691 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
692 			    struct kmem_cache *buf_cache,
693 			    enum dma_data_direction dir)
694 {
695 	if (!ioctx)
696 		return;
697 
698 	ib_dma_unmap_single(sdev->device, ioctx->dma,
699 			    kmem_cache_size(buf_cache), dir);
700 	kmem_cache_free(buf_cache, ioctx->buf);
701 	kfree(ioctx);
702 }
703 
704 /**
705  * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
706  * @sdev:       Device to allocate the I/O context ring for.
707  * @ring_size:  Number of elements in the I/O context ring.
708  * @ioctx_size: I/O context size.
709  * @buf_cache:  I/O buffer cache.
710  * @alignment_offset: Offset in each ring buffer at which the SRP information
711  *		unit starts.
712  * @dir:        DMA data direction.
713  */
714 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
715 				int ring_size, int ioctx_size,
716 				struct kmem_cache *buf_cache,
717 				int alignment_offset,
718 				enum dma_data_direction dir)
719 {
720 	struct srpt_ioctx **ring;
721 	int i;
722 
723 	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) &&
724 		ioctx_size != sizeof(struct srpt_send_ioctx));
725 
726 	ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL);
727 	if (!ring)
728 		goto out;
729 	for (i = 0; i < ring_size; ++i) {
730 		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir);
731 		if (!ring[i])
732 			goto err;
733 		ring[i]->index = i;
734 		ring[i]->offset = alignment_offset;
735 	}
736 	goto out;
737 
738 err:
739 	while (--i >= 0)
740 		srpt_free_ioctx(sdev, ring[i], buf_cache, dir);
741 	kvfree(ring);
742 	ring = NULL;
743 out:
744 	return ring;
745 }
746 
747 /**
748  * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
749  * @ioctx_ring: I/O context ring to be freed.
750  * @sdev: SRPT HCA pointer.
751  * @ring_size: Number of ring elements.
752  * @buf_cache: I/O buffer cache.
753  * @dir: DMA data direction.
754  */
755 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
756 				 struct srpt_device *sdev, int ring_size,
757 				 struct kmem_cache *buf_cache,
758 				 enum dma_data_direction dir)
759 {
760 	int i;
761 
762 	if (!ioctx_ring)
763 		return;
764 
765 	for (i = 0; i < ring_size; ++i)
766 		srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir);
767 	kvfree(ioctx_ring);
768 }
769 
770 /**
771  * srpt_set_cmd_state - set the state of a SCSI command
772  * @ioctx: Send I/O context.
773  * @new: New I/O context state.
774  *
775  * Does not modify the state of aborted commands. Returns the previous command
776  * state.
777  */
778 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
779 						  enum srpt_command_state new)
780 {
781 	enum srpt_command_state previous;
782 
783 	previous = ioctx->state;
784 	if (previous != SRPT_STATE_DONE)
785 		ioctx->state = new;
786 
787 	return previous;
788 }
789 
790 /**
791  * srpt_test_and_set_cmd_state - test and set the state of a command
792  * @ioctx: Send I/O context.
793  * @old: Current I/O context state.
794  * @new: New I/O context state.
795  *
796  * Returns true if and only if the previous command state was equal to 'old'.
797  */
798 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
799 					enum srpt_command_state old,
800 					enum srpt_command_state new)
801 {
802 	enum srpt_command_state previous;
803 
804 	WARN_ON(!ioctx);
805 	WARN_ON(old == SRPT_STATE_DONE);
806 	WARN_ON(new == SRPT_STATE_NEW);
807 
808 	previous = ioctx->state;
809 	if (previous == old)
810 		ioctx->state = new;
811 
812 	return previous == old;
813 }
814 
815 /**
816  * srpt_post_recv - post an IB receive request
817  * @sdev: SRPT HCA pointer.
818  * @ch: SRPT RDMA channel.
819  * @ioctx: Receive I/O context pointer.
820  */
821 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
822 			  struct srpt_recv_ioctx *ioctx)
823 {
824 	struct ib_sge list;
825 	struct ib_recv_wr wr;
826 
827 	BUG_ON(!sdev);
828 	list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset;
829 	list.length = srp_max_req_size;
830 	list.lkey = sdev->lkey;
831 
832 	ioctx->ioctx.cqe.done = srpt_recv_done;
833 	wr.wr_cqe = &ioctx->ioctx.cqe;
834 	wr.next = NULL;
835 	wr.sg_list = &list;
836 	wr.num_sge = 1;
837 
838 	if (sdev->use_srq)
839 		return ib_post_srq_recv(sdev->srq, &wr, NULL);
840 	else
841 		return ib_post_recv(ch->qp, &wr, NULL);
842 }
843 
844 /**
845  * srpt_zerolength_write - perform a zero-length RDMA write
846  * @ch: SRPT RDMA channel.
847  *
848  * A quote from the InfiniBand specification: C9-88: For an HCA responder
849  * using Reliable Connection service, for each zero-length RDMA READ or WRITE
850  * request, the R_Key shall not be validated, even if the request includes
851  * Immediate data.
852  */
853 static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
854 {
855 	struct ib_rdma_wr wr = {
856 		.wr = {
857 			.next		= NULL,
858 			{ .wr_cqe	= &ch->zw_cqe, },
859 			.opcode		= IB_WR_RDMA_WRITE,
860 			.send_flags	= IB_SEND_SIGNALED,
861 		}
862 	};
863 
864 	pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
865 		 ch->qp->qp_num);
866 
867 	return ib_post_send(ch->qp, &wr.wr, NULL);
868 }
869 
870 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
871 {
872 	struct srpt_rdma_ch *ch = cq->cq_context;
873 
874 	pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
875 		 wc->status);
876 
877 	if (wc->status == IB_WC_SUCCESS) {
878 		srpt_process_wait_list(ch);
879 	} else {
880 		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
881 			schedule_work(&ch->release_work);
882 		else
883 			pr_debug("%s-%d: already disconnected.\n",
884 				 ch->sess_name, ch->qp->qp_num);
885 	}
886 }
887 
888 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
889 		struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
890 		unsigned *sg_cnt)
891 {
892 	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
893 	struct srpt_rdma_ch *ch = ioctx->ch;
894 	struct scatterlist *prev = NULL;
895 	unsigned prev_nents;
896 	int ret, i;
897 
898 	if (nbufs == 1) {
899 		ioctx->rw_ctxs = &ioctx->s_rw_ctx;
900 	} else {
901 		ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
902 			GFP_KERNEL);
903 		if (!ioctx->rw_ctxs)
904 			return -ENOMEM;
905 	}
906 
907 	for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
908 		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
909 		u64 remote_addr = be64_to_cpu(db->va);
910 		u32 size = be32_to_cpu(db->len);
911 		u32 rkey = be32_to_cpu(db->key);
912 
913 		ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
914 				i < nbufs - 1);
915 		if (ret)
916 			goto unwind;
917 
918 		ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
919 				ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
920 		if (ret < 0) {
921 			target_free_sgl(ctx->sg, ctx->nents);
922 			goto unwind;
923 		}
924 
925 		ioctx->n_rdma += ret;
926 		ioctx->n_rw_ctx++;
927 
928 		if (prev) {
929 			sg_unmark_end(&prev[prev_nents - 1]);
930 			sg_chain(prev, prev_nents + 1, ctx->sg);
931 		} else {
932 			*sg = ctx->sg;
933 		}
934 
935 		prev = ctx->sg;
936 		prev_nents = ctx->nents;
937 
938 		*sg_cnt += ctx->nents;
939 	}
940 
941 	return 0;
942 
943 unwind:
944 	while (--i >= 0) {
945 		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
946 
947 		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
948 				ctx->sg, ctx->nents, dir);
949 		target_free_sgl(ctx->sg, ctx->nents);
950 	}
951 	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
952 		kfree(ioctx->rw_ctxs);
953 	return ret;
954 }
955 
956 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
957 				    struct srpt_send_ioctx *ioctx)
958 {
959 	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
960 	int i;
961 
962 	for (i = 0; i < ioctx->n_rw_ctx; i++) {
963 		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
964 
965 		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
966 				ctx->sg, ctx->nents, dir);
967 		target_free_sgl(ctx->sg, ctx->nents);
968 	}
969 
970 	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
971 		kfree(ioctx->rw_ctxs);
972 }
973 
974 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
975 {
976 	/*
977 	 * The pointer computations below will only be compiled correctly
978 	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
979 	 * whether srp_cmd::add_data has been declared as a byte pointer.
980 	 */
981 	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
982 		     !__same_type(srp_cmd->add_data[0], (u8)0));
983 
984 	/*
985 	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
986 	 * CDB LENGTH' field are reserved and the size in bytes of this field
987 	 * is four times the value specified in bits 3..7. Hence the "& ~3".
988 	 */
989 	return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
990 }
991 
992 /**
993  * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
994  * @recv_ioctx: I/O context associated with the received command @srp_cmd.
995  * @ioctx: I/O context that will be used for responding to the initiator.
996  * @srp_cmd: Pointer to the SRP_CMD request data.
997  * @dir: Pointer to the variable to which the transfer direction will be
998  *   written.
999  * @sg: [out] scatterlist for the parsed SRP_CMD.
1000  * @sg_cnt: [out] length of @sg.
1001  * @data_len: Pointer to the variable to which the total data length of all
1002  *   descriptors in the SRP_CMD request will be written.
1003  * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data
1004  *   starts.
1005  *
1006  * This function initializes ioctx->nrbuf and ioctx->r_bufs.
1007  *
1008  * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1009  * -ENOMEM when memory allocation fails and zero upon success.
1010  */
1011 static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx,
1012 		struct srpt_send_ioctx *ioctx,
1013 		struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1014 		struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len,
1015 		u16 imm_data_offset)
1016 {
1017 	BUG_ON(!dir);
1018 	BUG_ON(!data_len);
1019 
1020 	/*
1021 	 * The lower four bits of the buffer format field contain the DATA-IN
1022 	 * buffer descriptor format, and the highest four bits contain the
1023 	 * DATA-OUT buffer descriptor format.
1024 	 */
1025 	if (srp_cmd->buf_fmt & 0xf)
1026 		/* DATA-IN: transfer data from target to initiator (read). */
1027 		*dir = DMA_FROM_DEVICE;
1028 	else if (srp_cmd->buf_fmt >> 4)
1029 		/* DATA-OUT: transfer data from initiator to target (write). */
1030 		*dir = DMA_TO_DEVICE;
1031 	else
1032 		*dir = DMA_NONE;
1033 
1034 	/* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1035 	ioctx->cmd.data_direction = *dir;
1036 
1037 	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1038 	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1039 		struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1040 
1041 		*data_len = be32_to_cpu(db->len);
1042 		return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1043 	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1044 		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1045 		struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1046 		int nbufs = be32_to_cpu(idb->table_desc.len) /
1047 				sizeof(struct srp_direct_buf);
1048 
1049 		if (nbufs >
1050 		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1051 			pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n",
1052 			       srp_cmd->data_out_desc_cnt,
1053 			       srp_cmd->data_in_desc_cnt,
1054 			       be32_to_cpu(idb->table_desc.len),
1055 			       sizeof(struct srp_direct_buf));
1056 			return -EINVAL;
1057 		}
1058 
1059 		*data_len = be32_to_cpu(idb->len);
1060 		return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1061 				sg, sg_cnt);
1062 	} else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) {
1063 		struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd);
1064 		void *data = (void *)srp_cmd + imm_data_offset;
1065 		uint32_t len = be32_to_cpu(imm_buf->len);
1066 		uint32_t req_size = imm_data_offset + len;
1067 
1068 		if (req_size > srp_max_req_size) {
1069 			pr_err("Immediate data (length %d + %d) exceeds request size %d\n",
1070 			       imm_data_offset, len, srp_max_req_size);
1071 			return -EINVAL;
1072 		}
1073 		if (recv_ioctx->byte_len < req_size) {
1074 			pr_err("Received too few data - %d < %d\n",
1075 			       recv_ioctx->byte_len, req_size);
1076 			return -EIO;
1077 		}
1078 		/*
1079 		 * The immediate data buffer descriptor must occur before the
1080 		 * immediate data itself.
1081 		 */
1082 		if ((void *)(imm_buf + 1) > (void *)data) {
1083 			pr_err("Received invalid write request\n");
1084 			return -EINVAL;
1085 		}
1086 		*data_len = len;
1087 		ioctx->recv_ioctx = recv_ioctx;
1088 		if ((uintptr_t)data & 511) {
1089 			pr_warn_once("Internal error - the receive buffers are not aligned properly.\n");
1090 			return -EINVAL;
1091 		}
1092 		sg_init_one(&ioctx->imm_sg, data, len);
1093 		*sg = &ioctx->imm_sg;
1094 		*sg_cnt = 1;
1095 		return 0;
1096 	} else {
1097 		*data_len = 0;
1098 		return 0;
1099 	}
1100 }
1101 
1102 /**
1103  * srpt_init_ch_qp - initialize queue pair attributes
1104  * @ch: SRPT RDMA channel.
1105  * @qp: Queue pair pointer.
1106  *
1107  * Initialized the attributes of queue pair 'qp' by allowing local write,
1108  * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1109  */
1110 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1111 {
1112 	struct ib_qp_attr *attr;
1113 	int ret;
1114 
1115 	WARN_ON_ONCE(ch->using_rdma_cm);
1116 
1117 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1118 	if (!attr)
1119 		return -ENOMEM;
1120 
1121 	attr->qp_state = IB_QPS_INIT;
1122 	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1123 	attr->port_num = ch->sport->port;
1124 
1125 	ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1126 				  ch->pkey, &attr->pkey_index);
1127 	if (ret < 0)
1128 		pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1129 		       ch->pkey, ret);
1130 
1131 	ret = ib_modify_qp(qp, attr,
1132 			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1133 			   IB_QP_PKEY_INDEX);
1134 
1135 	kfree(attr);
1136 	return ret;
1137 }
1138 
1139 /**
1140  * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1141  * @ch: channel of the queue pair.
1142  * @qp: queue pair to change the state of.
1143  *
1144  * Returns zero upon success and a negative value upon failure.
1145  *
1146  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1147  * If this structure ever becomes larger, it might be necessary to allocate
1148  * it dynamically instead of on the stack.
1149  */
1150 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1151 {
1152 	struct ib_qp_attr qp_attr;
1153 	int attr_mask;
1154 	int ret;
1155 
1156 	WARN_ON_ONCE(ch->using_rdma_cm);
1157 
1158 	qp_attr.qp_state = IB_QPS_RTR;
1159 	ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1160 	if (ret)
1161 		goto out;
1162 
1163 	qp_attr.max_dest_rd_atomic = 4;
1164 
1165 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1166 
1167 out:
1168 	return ret;
1169 }
1170 
1171 /**
1172  * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1173  * @ch: channel of the queue pair.
1174  * @qp: queue pair to change the state of.
1175  *
1176  * Returns zero upon success and a negative value upon failure.
1177  *
1178  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1179  * If this structure ever becomes larger, it might be necessary to allocate
1180  * it dynamically instead of on the stack.
1181  */
1182 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1183 {
1184 	struct ib_qp_attr qp_attr;
1185 	int attr_mask;
1186 	int ret;
1187 
1188 	qp_attr.qp_state = IB_QPS_RTS;
1189 	ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1190 	if (ret)
1191 		goto out;
1192 
1193 	qp_attr.max_rd_atomic = 4;
1194 
1195 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1196 
1197 out:
1198 	return ret;
1199 }
1200 
1201 /**
1202  * srpt_ch_qp_err - set the channel queue pair state to 'error'
1203  * @ch: SRPT RDMA channel.
1204  */
1205 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1206 {
1207 	struct ib_qp_attr qp_attr;
1208 
1209 	qp_attr.qp_state = IB_QPS_ERR;
1210 	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1211 }
1212 
1213 /**
1214  * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1215  * @ch: SRPT RDMA channel.
1216  */
1217 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1218 {
1219 	struct srpt_send_ioctx *ioctx;
1220 	unsigned long flags;
1221 
1222 	BUG_ON(!ch);
1223 
1224 	ioctx = NULL;
1225 	spin_lock_irqsave(&ch->spinlock, flags);
1226 	if (!list_empty(&ch->free_list)) {
1227 		ioctx = list_first_entry(&ch->free_list,
1228 					 struct srpt_send_ioctx, free_list);
1229 		list_del(&ioctx->free_list);
1230 	}
1231 	spin_unlock_irqrestore(&ch->spinlock, flags);
1232 
1233 	if (!ioctx)
1234 		return ioctx;
1235 
1236 	BUG_ON(ioctx->ch != ch);
1237 	ioctx->state = SRPT_STATE_NEW;
1238 	WARN_ON_ONCE(ioctx->recv_ioctx);
1239 	ioctx->n_rdma = 0;
1240 	ioctx->n_rw_ctx = 0;
1241 	ioctx->queue_status_only = false;
1242 	/*
1243 	 * transport_init_se_cmd() does not initialize all fields, so do it
1244 	 * here.
1245 	 */
1246 	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1247 	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1248 
1249 	return ioctx;
1250 }
1251 
1252 /**
1253  * srpt_abort_cmd - abort a SCSI command
1254  * @ioctx:   I/O context associated with the SCSI command.
1255  */
1256 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1257 {
1258 	enum srpt_command_state state;
1259 
1260 	BUG_ON(!ioctx);
1261 
1262 	/*
1263 	 * If the command is in a state where the target core is waiting for
1264 	 * the ib_srpt driver, change the state to the next state.
1265 	 */
1266 
1267 	state = ioctx->state;
1268 	switch (state) {
1269 	case SRPT_STATE_NEED_DATA:
1270 		ioctx->state = SRPT_STATE_DATA_IN;
1271 		break;
1272 	case SRPT_STATE_CMD_RSP_SENT:
1273 	case SRPT_STATE_MGMT_RSP_SENT:
1274 		ioctx->state = SRPT_STATE_DONE;
1275 		break;
1276 	default:
1277 		WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1278 			  __func__, state);
1279 		break;
1280 	}
1281 
1282 	pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1283 		 ioctx->state, ioctx->cmd.tag);
1284 
1285 	switch (state) {
1286 	case SRPT_STATE_NEW:
1287 	case SRPT_STATE_DATA_IN:
1288 	case SRPT_STATE_MGMT:
1289 	case SRPT_STATE_DONE:
1290 		/*
1291 		 * Do nothing - defer abort processing until
1292 		 * srpt_queue_response() is invoked.
1293 		 */
1294 		break;
1295 	case SRPT_STATE_NEED_DATA:
1296 		pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1297 		transport_generic_request_failure(&ioctx->cmd,
1298 					TCM_CHECK_CONDITION_ABORT_CMD);
1299 		break;
1300 	case SRPT_STATE_CMD_RSP_SENT:
1301 		/*
1302 		 * SRP_RSP sending failed or the SRP_RSP send completion has
1303 		 * not been received in time.
1304 		 */
1305 		transport_generic_free_cmd(&ioctx->cmd, 0);
1306 		break;
1307 	case SRPT_STATE_MGMT_RSP_SENT:
1308 		transport_generic_free_cmd(&ioctx->cmd, 0);
1309 		break;
1310 	default:
1311 		WARN(1, "Unexpected command state (%d)", state);
1312 		break;
1313 	}
1314 
1315 	return state;
1316 }
1317 
1318 /**
1319  * srpt_rdma_read_done - RDMA read completion callback
1320  * @cq: Completion queue.
1321  * @wc: Work completion.
1322  *
1323  * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1324  * the data that has been transferred via IB RDMA had to be postponed until the
1325  * check_stop_free() callback.  None of this is necessary anymore and needs to
1326  * be cleaned up.
1327  */
1328 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1329 {
1330 	struct srpt_rdma_ch *ch = cq->cq_context;
1331 	struct srpt_send_ioctx *ioctx =
1332 		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1333 
1334 	WARN_ON(ioctx->n_rdma <= 0);
1335 	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1336 	ioctx->n_rdma = 0;
1337 
1338 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1339 		pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1340 			ioctx, wc->status);
1341 		srpt_abort_cmd(ioctx);
1342 		return;
1343 	}
1344 
1345 	if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1346 					SRPT_STATE_DATA_IN))
1347 		target_execute_cmd(&ioctx->cmd);
1348 	else
1349 		pr_err("%s[%d]: wrong state = %d\n", __func__,
1350 		       __LINE__, ioctx->state);
1351 }
1352 
1353 /**
1354  * srpt_build_cmd_rsp - build a SRP_RSP response
1355  * @ch: RDMA channel through which the request has been received.
1356  * @ioctx: I/O context associated with the SRP_CMD request. The response will
1357  *   be built in the buffer ioctx->buf points at and hence this function will
1358  *   overwrite the request data.
1359  * @tag: tag of the request for which this response is being generated.
1360  * @status: value for the STATUS field of the SRP_RSP information unit.
1361  *
1362  * Returns the size in bytes of the SRP_RSP response.
1363  *
1364  * An SRP_RSP response contains a SCSI status or service response. See also
1365  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1366  * response. See also SPC-2 for more information about sense data.
1367  */
1368 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1369 			      struct srpt_send_ioctx *ioctx, u64 tag,
1370 			      int status)
1371 {
1372 	struct srp_rsp *srp_rsp;
1373 	const u8 *sense_data;
1374 	int sense_data_len, max_sense_len;
1375 
1376 	/*
1377 	 * The lowest bit of all SAM-3 status codes is zero (see also
1378 	 * paragraph 5.3 in SAM-3).
1379 	 */
1380 	WARN_ON(status & 1);
1381 
1382 	srp_rsp = ioctx->ioctx.buf;
1383 	BUG_ON(!srp_rsp);
1384 
1385 	sense_data = ioctx->sense_data;
1386 	sense_data_len = ioctx->cmd.scsi_sense_length;
1387 	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1388 
1389 	memset(srp_rsp, 0, sizeof(*srp_rsp));
1390 	srp_rsp->opcode = SRP_RSP;
1391 	srp_rsp->req_lim_delta =
1392 		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1393 	srp_rsp->tag = tag;
1394 	srp_rsp->status = status;
1395 
1396 	if (sense_data_len) {
1397 		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1398 		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1399 		if (sense_data_len > max_sense_len) {
1400 			pr_warn("truncated sense data from %d to %d bytes\n",
1401 				sense_data_len, max_sense_len);
1402 			sense_data_len = max_sense_len;
1403 		}
1404 
1405 		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1406 		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1407 		memcpy(srp_rsp + 1, sense_data, sense_data_len);
1408 	}
1409 
1410 	return sizeof(*srp_rsp) + sense_data_len;
1411 }
1412 
1413 /**
1414  * srpt_build_tskmgmt_rsp - build a task management response
1415  * @ch:       RDMA channel through which the request has been received.
1416  * @ioctx:    I/O context in which the SRP_RSP response will be built.
1417  * @rsp_code: RSP_CODE that will be stored in the response.
1418  * @tag:      Tag of the request for which this response is being generated.
1419  *
1420  * Returns the size in bytes of the SRP_RSP response.
1421  *
1422  * An SRP_RSP response contains a SCSI status or service response. See also
1423  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1424  * response.
1425  */
1426 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1427 				  struct srpt_send_ioctx *ioctx,
1428 				  u8 rsp_code, u64 tag)
1429 {
1430 	struct srp_rsp *srp_rsp;
1431 	int resp_data_len;
1432 	int resp_len;
1433 
1434 	resp_data_len = 4;
1435 	resp_len = sizeof(*srp_rsp) + resp_data_len;
1436 
1437 	srp_rsp = ioctx->ioctx.buf;
1438 	BUG_ON(!srp_rsp);
1439 	memset(srp_rsp, 0, sizeof(*srp_rsp));
1440 
1441 	srp_rsp->opcode = SRP_RSP;
1442 	srp_rsp->req_lim_delta =
1443 		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1444 	srp_rsp->tag = tag;
1445 
1446 	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1447 	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1448 	srp_rsp->data[3] = rsp_code;
1449 
1450 	return resp_len;
1451 }
1452 
1453 static int srpt_check_stop_free(struct se_cmd *cmd)
1454 {
1455 	struct srpt_send_ioctx *ioctx = container_of(cmd,
1456 				struct srpt_send_ioctx, cmd);
1457 
1458 	return target_put_sess_cmd(&ioctx->cmd);
1459 }
1460 
1461 /**
1462  * srpt_handle_cmd - process a SRP_CMD information unit
1463  * @ch: SRPT RDMA channel.
1464  * @recv_ioctx: Receive I/O context.
1465  * @send_ioctx: Send I/O context.
1466  */
1467 static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1468 			    struct srpt_recv_ioctx *recv_ioctx,
1469 			    struct srpt_send_ioctx *send_ioctx)
1470 {
1471 	struct se_cmd *cmd;
1472 	struct srp_cmd *srp_cmd;
1473 	struct scatterlist *sg = NULL;
1474 	unsigned sg_cnt = 0;
1475 	u64 data_len;
1476 	enum dma_data_direction dir;
1477 	int rc;
1478 
1479 	BUG_ON(!send_ioctx);
1480 
1481 	srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1482 	cmd = &send_ioctx->cmd;
1483 	cmd->tag = srp_cmd->tag;
1484 
1485 	switch (srp_cmd->task_attr) {
1486 	case SRP_CMD_SIMPLE_Q:
1487 		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1488 		break;
1489 	case SRP_CMD_ORDERED_Q:
1490 	default:
1491 		cmd->sam_task_attr = TCM_ORDERED_TAG;
1492 		break;
1493 	case SRP_CMD_HEAD_OF_Q:
1494 		cmd->sam_task_attr = TCM_HEAD_TAG;
1495 		break;
1496 	case SRP_CMD_ACA:
1497 		cmd->sam_task_attr = TCM_ACA_TAG;
1498 		break;
1499 	}
1500 
1501 	rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir,
1502 			       &sg, &sg_cnt, &data_len, ch->imm_data_offset);
1503 	if (rc) {
1504 		if (rc != -EAGAIN) {
1505 			pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1506 			       srp_cmd->tag);
1507 		}
1508 		goto release_ioctx;
1509 	}
1510 
1511 	rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
1512 			       &send_ioctx->sense_data[0],
1513 			       scsilun_to_int(&srp_cmd->lun), data_len,
1514 			       TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
1515 			       sg, sg_cnt, NULL, 0, NULL, 0);
1516 	if (rc != 0) {
1517 		pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1518 			 srp_cmd->tag);
1519 		goto release_ioctx;
1520 	}
1521 	return;
1522 
1523 release_ioctx:
1524 	send_ioctx->state = SRPT_STATE_DONE;
1525 	srpt_release_cmd(cmd);
1526 }
1527 
1528 static int srp_tmr_to_tcm(int fn)
1529 {
1530 	switch (fn) {
1531 	case SRP_TSK_ABORT_TASK:
1532 		return TMR_ABORT_TASK;
1533 	case SRP_TSK_ABORT_TASK_SET:
1534 		return TMR_ABORT_TASK_SET;
1535 	case SRP_TSK_CLEAR_TASK_SET:
1536 		return TMR_CLEAR_TASK_SET;
1537 	case SRP_TSK_LUN_RESET:
1538 		return TMR_LUN_RESET;
1539 	case SRP_TSK_CLEAR_ACA:
1540 		return TMR_CLEAR_ACA;
1541 	default:
1542 		return -1;
1543 	}
1544 }
1545 
1546 /**
1547  * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1548  * @ch: SRPT RDMA channel.
1549  * @recv_ioctx: Receive I/O context.
1550  * @send_ioctx: Send I/O context.
1551  *
1552  * Returns 0 if and only if the request will be processed by the target core.
1553  *
1554  * For more information about SRP_TSK_MGMT information units, see also section
1555  * 6.7 in the SRP r16a document.
1556  */
1557 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1558 				 struct srpt_recv_ioctx *recv_ioctx,
1559 				 struct srpt_send_ioctx *send_ioctx)
1560 {
1561 	struct srp_tsk_mgmt *srp_tsk;
1562 	struct se_cmd *cmd;
1563 	struct se_session *sess = ch->sess;
1564 	int tcm_tmr;
1565 	int rc;
1566 
1567 	BUG_ON(!send_ioctx);
1568 
1569 	srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1570 	cmd = &send_ioctx->cmd;
1571 
1572 	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1573 		 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1574 		 ch->sess);
1575 
1576 	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1577 	send_ioctx->cmd.tag = srp_tsk->tag;
1578 	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1579 	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1580 			       scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1581 			       GFP_KERNEL, srp_tsk->task_tag,
1582 			       TARGET_SCF_ACK_KREF);
1583 	if (rc != 0) {
1584 		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1585 		goto fail;
1586 	}
1587 	return;
1588 fail:
1589 	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1590 }
1591 
1592 /**
1593  * srpt_handle_new_iu - process a newly received information unit
1594  * @ch:    RDMA channel through which the information unit has been received.
1595  * @recv_ioctx: Receive I/O context associated with the information unit.
1596  */
1597 static bool
1598 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1599 {
1600 	struct srpt_send_ioctx *send_ioctx = NULL;
1601 	struct srp_cmd *srp_cmd;
1602 	bool res = false;
1603 	u8 opcode;
1604 
1605 	BUG_ON(!ch);
1606 	BUG_ON(!recv_ioctx);
1607 
1608 	if (unlikely(ch->state == CH_CONNECTING))
1609 		goto push;
1610 
1611 	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1612 				   recv_ioctx->ioctx.dma,
1613 				   recv_ioctx->ioctx.offset + srp_max_req_size,
1614 				   DMA_FROM_DEVICE);
1615 
1616 	srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1617 	opcode = srp_cmd->opcode;
1618 	if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1619 		send_ioctx = srpt_get_send_ioctx(ch);
1620 		if (unlikely(!send_ioctx))
1621 			goto push;
1622 	}
1623 
1624 	if (!list_empty(&recv_ioctx->wait_list)) {
1625 		WARN_ON_ONCE(!ch->processing_wait_list);
1626 		list_del_init(&recv_ioctx->wait_list);
1627 	}
1628 
1629 	switch (opcode) {
1630 	case SRP_CMD:
1631 		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1632 		break;
1633 	case SRP_TSK_MGMT:
1634 		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1635 		break;
1636 	case SRP_I_LOGOUT:
1637 		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1638 		break;
1639 	case SRP_CRED_RSP:
1640 		pr_debug("received SRP_CRED_RSP\n");
1641 		break;
1642 	case SRP_AER_RSP:
1643 		pr_debug("received SRP_AER_RSP\n");
1644 		break;
1645 	case SRP_RSP:
1646 		pr_err("Received SRP_RSP\n");
1647 		break;
1648 	default:
1649 		pr_err("received IU with unknown opcode 0x%x\n", opcode);
1650 		break;
1651 	}
1652 
1653 	if (!send_ioctx || !send_ioctx->recv_ioctx)
1654 		srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1655 	res = true;
1656 
1657 out:
1658 	return res;
1659 
1660 push:
1661 	if (list_empty(&recv_ioctx->wait_list)) {
1662 		WARN_ON_ONCE(ch->processing_wait_list);
1663 		list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1664 	}
1665 	goto out;
1666 }
1667 
1668 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1669 {
1670 	struct srpt_rdma_ch *ch = cq->cq_context;
1671 	struct srpt_recv_ioctx *ioctx =
1672 		container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1673 
1674 	if (wc->status == IB_WC_SUCCESS) {
1675 		int req_lim;
1676 
1677 		req_lim = atomic_dec_return(&ch->req_lim);
1678 		if (unlikely(req_lim < 0))
1679 			pr_err("req_lim = %d < 0\n", req_lim);
1680 		ioctx->byte_len = wc->byte_len;
1681 		srpt_handle_new_iu(ch, ioctx);
1682 	} else {
1683 		pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1684 				    ioctx, wc->status);
1685 	}
1686 }
1687 
1688 /*
1689  * This function must be called from the context in which RDMA completions are
1690  * processed because it accesses the wait list without protection against
1691  * access from other threads.
1692  */
1693 static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1694 {
1695 	struct srpt_recv_ioctx *recv_ioctx, *tmp;
1696 
1697 	WARN_ON_ONCE(ch->state == CH_CONNECTING);
1698 
1699 	if (list_empty(&ch->cmd_wait_list))
1700 		return;
1701 
1702 	WARN_ON_ONCE(ch->processing_wait_list);
1703 	ch->processing_wait_list = true;
1704 	list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1705 				 wait_list) {
1706 		if (!srpt_handle_new_iu(ch, recv_ioctx))
1707 			break;
1708 	}
1709 	ch->processing_wait_list = false;
1710 }
1711 
1712 /**
1713  * srpt_send_done - send completion callback
1714  * @cq: Completion queue.
1715  * @wc: Work completion.
1716  *
1717  * Note: Although this has not yet been observed during tests, at least in
1718  * theory it is possible that the srpt_get_send_ioctx() call invoked by
1719  * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1720  * value in each response is set to one, and it is possible that this response
1721  * makes the initiator send a new request before the send completion for that
1722  * response has been processed. This could e.g. happen if the call to
1723  * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1724  * if IB retransmission causes generation of the send completion to be
1725  * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1726  * are queued on cmd_wait_list. The code below processes these delayed
1727  * requests one at a time.
1728  */
1729 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1730 {
1731 	struct srpt_rdma_ch *ch = cq->cq_context;
1732 	struct srpt_send_ioctx *ioctx =
1733 		container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1734 	enum srpt_command_state state;
1735 
1736 	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1737 
1738 	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1739 		state != SRPT_STATE_MGMT_RSP_SENT);
1740 
1741 	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1742 
1743 	if (wc->status != IB_WC_SUCCESS)
1744 		pr_info("sending response for ioctx 0x%p failed with status %d\n",
1745 			ioctx, wc->status);
1746 
1747 	if (state != SRPT_STATE_DONE) {
1748 		transport_generic_free_cmd(&ioctx->cmd, 0);
1749 	} else {
1750 		pr_err("IB completion has been received too late for wr_id = %u.\n",
1751 		       ioctx->ioctx.index);
1752 	}
1753 
1754 	srpt_process_wait_list(ch);
1755 }
1756 
1757 /**
1758  * srpt_create_ch_ib - create receive and send completion queues
1759  * @ch: SRPT RDMA channel.
1760  */
1761 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1762 {
1763 	struct ib_qp_init_attr *qp_init;
1764 	struct srpt_port *sport = ch->sport;
1765 	struct srpt_device *sdev = sport->sdev;
1766 	const struct ib_device_attr *attrs = &sdev->device->attrs;
1767 	int sq_size = sport->port_attrib.srp_sq_size;
1768 	int i, ret;
1769 
1770 	WARN_ON(ch->rq_size < 1);
1771 
1772 	ret = -ENOMEM;
1773 	qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1774 	if (!qp_init)
1775 		goto out;
1776 
1777 retry:
1778 	ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + sq_size,
1779 			0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1780 	if (IS_ERR(ch->cq)) {
1781 		ret = PTR_ERR(ch->cq);
1782 		pr_err("failed to create CQ cqe= %d ret= %d\n",
1783 		       ch->rq_size + sq_size, ret);
1784 		goto out;
1785 	}
1786 
1787 	qp_init->qp_context = (void *)ch;
1788 	qp_init->event_handler
1789 		= (void(*)(struct ib_event *, void*))srpt_qp_event;
1790 	qp_init->send_cq = ch->cq;
1791 	qp_init->recv_cq = ch->cq;
1792 	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1793 	qp_init->qp_type = IB_QPT_RC;
1794 	/*
1795 	 * We divide up our send queue size into half SEND WRs to send the
1796 	 * completions, and half R/W contexts to actually do the RDMA
1797 	 * READ/WRITE transfers.  Note that we need to allocate CQ slots for
1798 	 * both both, as RDMA contexts will also post completions for the
1799 	 * RDMA READ case.
1800 	 */
1801 	qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1802 	qp_init->cap.max_rdma_ctxs = sq_size / 2;
1803 	qp_init->cap.max_send_sge = min(attrs->max_send_sge,
1804 					SRPT_MAX_SG_PER_WQE);
1805 	qp_init->cap.max_recv_sge = min(attrs->max_recv_sge,
1806 					SRPT_MAX_SG_PER_WQE);
1807 	qp_init->port_num = ch->sport->port;
1808 	if (sdev->use_srq) {
1809 		qp_init->srq = sdev->srq;
1810 	} else {
1811 		qp_init->cap.max_recv_wr = ch->rq_size;
1812 		qp_init->cap.max_recv_sge = min(attrs->max_recv_sge,
1813 						SRPT_MAX_SG_PER_WQE);
1814 	}
1815 
1816 	if (ch->using_rdma_cm) {
1817 		ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1818 		ch->qp = ch->rdma_cm.cm_id->qp;
1819 	} else {
1820 		ch->qp = ib_create_qp(sdev->pd, qp_init);
1821 		if (!IS_ERR(ch->qp)) {
1822 			ret = srpt_init_ch_qp(ch, ch->qp);
1823 			if (ret)
1824 				ib_destroy_qp(ch->qp);
1825 		} else {
1826 			ret = PTR_ERR(ch->qp);
1827 		}
1828 	}
1829 	if (ret) {
1830 		bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1831 
1832 		if (retry) {
1833 			pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1834 				 sq_size, ret);
1835 			ib_free_cq(ch->cq);
1836 			sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1837 			goto retry;
1838 		} else {
1839 			pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1840 			       sq_size, ret);
1841 			goto err_destroy_cq;
1842 		}
1843 	}
1844 
1845 	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1846 
1847 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1848 		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1849 		 qp_init->cap.max_send_wr, ch);
1850 
1851 	if (!sdev->use_srq)
1852 		for (i = 0; i < ch->rq_size; i++)
1853 			srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1854 
1855 out:
1856 	kfree(qp_init);
1857 	return ret;
1858 
1859 err_destroy_cq:
1860 	ch->qp = NULL;
1861 	ib_free_cq(ch->cq);
1862 	goto out;
1863 }
1864 
1865 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1866 {
1867 	ib_destroy_qp(ch->qp);
1868 	ib_free_cq(ch->cq);
1869 }
1870 
1871 /**
1872  * srpt_close_ch - close a RDMA channel
1873  * @ch: SRPT RDMA channel.
1874  *
1875  * Make sure all resources associated with the channel will be deallocated at
1876  * an appropriate time.
1877  *
1878  * Returns true if and only if the channel state has been modified into
1879  * CH_DRAINING.
1880  */
1881 static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1882 {
1883 	int ret;
1884 
1885 	if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1886 		pr_debug("%s: already closed\n", ch->sess_name);
1887 		return false;
1888 	}
1889 
1890 	kref_get(&ch->kref);
1891 
1892 	ret = srpt_ch_qp_err(ch);
1893 	if (ret < 0)
1894 		pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1895 		       ch->sess_name, ch->qp->qp_num, ret);
1896 
1897 	ret = srpt_zerolength_write(ch);
1898 	if (ret < 0) {
1899 		pr_err("%s-%d: queuing zero-length write failed: %d\n",
1900 		       ch->sess_name, ch->qp->qp_num, ret);
1901 		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1902 			schedule_work(&ch->release_work);
1903 		else
1904 			WARN_ON_ONCE(true);
1905 	}
1906 
1907 	kref_put(&ch->kref, srpt_free_ch);
1908 
1909 	return true;
1910 }
1911 
1912 /*
1913  * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1914  * reached the connected state, close it. If a channel is in the connected
1915  * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1916  * the responsibility of the caller to ensure that this function is not
1917  * invoked concurrently with the code that accepts a connection. This means
1918  * that this function must either be invoked from inside a CM callback
1919  * function or that it must be invoked with the srpt_port.mutex held.
1920  */
1921 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1922 {
1923 	int ret;
1924 
1925 	if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1926 		return -ENOTCONN;
1927 
1928 	if (ch->using_rdma_cm) {
1929 		ret = rdma_disconnect(ch->rdma_cm.cm_id);
1930 	} else {
1931 		ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
1932 		if (ret < 0)
1933 			ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
1934 	}
1935 
1936 	if (ret < 0 && srpt_close_ch(ch))
1937 		ret = 0;
1938 
1939 	return ret;
1940 }
1941 
1942 static bool srpt_ch_closed(struct srpt_port *sport, struct srpt_rdma_ch *ch)
1943 {
1944 	struct srpt_nexus *nexus;
1945 	struct srpt_rdma_ch *ch2;
1946 	bool res = true;
1947 
1948 	rcu_read_lock();
1949 	list_for_each_entry(nexus, &sport->nexus_list, entry) {
1950 		list_for_each_entry(ch2, &nexus->ch_list, list) {
1951 			if (ch2 == ch) {
1952 				res = false;
1953 				goto done;
1954 			}
1955 		}
1956 	}
1957 done:
1958 	rcu_read_unlock();
1959 
1960 	return res;
1961 }
1962 
1963 /* Send DREQ and wait for DREP. */
1964 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1965 {
1966 	struct srpt_port *sport = ch->sport;
1967 
1968 	pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1969 		 ch->state);
1970 
1971 	mutex_lock(&sport->mutex);
1972 	srpt_disconnect_ch(ch);
1973 	mutex_unlock(&sport->mutex);
1974 
1975 	while (wait_event_timeout(sport->ch_releaseQ, srpt_ch_closed(sport, ch),
1976 				  5 * HZ) == 0)
1977 		pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1978 			ch->sess_name, ch->qp->qp_num, ch->state);
1979 
1980 }
1981 
1982 static void __srpt_close_all_ch(struct srpt_port *sport)
1983 {
1984 	struct srpt_nexus *nexus;
1985 	struct srpt_rdma_ch *ch;
1986 
1987 	lockdep_assert_held(&sport->mutex);
1988 
1989 	list_for_each_entry(nexus, &sport->nexus_list, entry) {
1990 		list_for_each_entry(ch, &nexus->ch_list, list) {
1991 			if (srpt_disconnect_ch(ch) >= 0)
1992 				pr_info("Closing channel %s because target %s_%d has been disabled\n",
1993 					ch->sess_name,
1994 					dev_name(&sport->sdev->device->dev),
1995 					sport->port);
1996 			srpt_close_ch(ch);
1997 		}
1998 	}
1999 }
2000 
2001 /*
2002  * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
2003  * it does not yet exist.
2004  */
2005 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
2006 					 const u8 i_port_id[16],
2007 					 const u8 t_port_id[16])
2008 {
2009 	struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
2010 
2011 	for (;;) {
2012 		mutex_lock(&sport->mutex);
2013 		list_for_each_entry(n, &sport->nexus_list, entry) {
2014 			if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
2015 			    memcmp(n->t_port_id, t_port_id, 16) == 0) {
2016 				nexus = n;
2017 				break;
2018 			}
2019 		}
2020 		if (!nexus && tmp_nexus) {
2021 			list_add_tail_rcu(&tmp_nexus->entry,
2022 					  &sport->nexus_list);
2023 			swap(nexus, tmp_nexus);
2024 		}
2025 		mutex_unlock(&sport->mutex);
2026 
2027 		if (nexus)
2028 			break;
2029 		tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
2030 		if (!tmp_nexus) {
2031 			nexus = ERR_PTR(-ENOMEM);
2032 			break;
2033 		}
2034 		INIT_LIST_HEAD(&tmp_nexus->ch_list);
2035 		memcpy(tmp_nexus->i_port_id, i_port_id, 16);
2036 		memcpy(tmp_nexus->t_port_id, t_port_id, 16);
2037 	}
2038 
2039 	kfree(tmp_nexus);
2040 
2041 	return nexus;
2042 }
2043 
2044 static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
2045 	__must_hold(&sport->mutex)
2046 {
2047 	lockdep_assert_held(&sport->mutex);
2048 
2049 	if (sport->enabled == enabled)
2050 		return;
2051 	sport->enabled = enabled;
2052 	if (!enabled)
2053 		__srpt_close_all_ch(sport);
2054 }
2055 
2056 static void srpt_free_ch(struct kref *kref)
2057 {
2058 	struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2059 
2060 	kfree_rcu(ch, rcu);
2061 }
2062 
2063 /*
2064  * Shut down the SCSI target session, tell the connection manager to
2065  * disconnect the associated RDMA channel, transition the QP to the error
2066  * state and remove the channel from the channel list. This function is
2067  * typically called from inside srpt_zerolength_write_done(). Concurrent
2068  * srpt_zerolength_write() calls from inside srpt_close_ch() are possible
2069  * as long as the channel is on sport->nexus_list.
2070  */
2071 static void srpt_release_channel_work(struct work_struct *w)
2072 {
2073 	struct srpt_rdma_ch *ch;
2074 	struct srpt_device *sdev;
2075 	struct srpt_port *sport;
2076 	struct se_session *se_sess;
2077 
2078 	ch = container_of(w, struct srpt_rdma_ch, release_work);
2079 	pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2080 
2081 	sdev = ch->sport->sdev;
2082 	BUG_ON(!sdev);
2083 
2084 	se_sess = ch->sess;
2085 	BUG_ON(!se_sess);
2086 
2087 	target_sess_cmd_list_set_waiting(se_sess);
2088 	target_wait_for_sess_cmds(se_sess);
2089 
2090 	target_remove_session(se_sess);
2091 	ch->sess = NULL;
2092 
2093 	if (ch->using_rdma_cm)
2094 		rdma_destroy_id(ch->rdma_cm.cm_id);
2095 	else
2096 		ib_destroy_cm_id(ch->ib_cm.cm_id);
2097 
2098 	sport = ch->sport;
2099 	mutex_lock(&sport->mutex);
2100 	list_del_rcu(&ch->list);
2101 	mutex_unlock(&sport->mutex);
2102 
2103 	srpt_destroy_ch_ib(ch);
2104 
2105 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2106 			     ch->sport->sdev, ch->rq_size,
2107 			     ch->rsp_buf_cache, DMA_TO_DEVICE);
2108 
2109 	kmem_cache_destroy(ch->rsp_buf_cache);
2110 
2111 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2112 			     sdev, ch->rq_size,
2113 			     ch->req_buf_cache, DMA_FROM_DEVICE);
2114 
2115 	kmem_cache_destroy(ch->req_buf_cache);
2116 
2117 	wake_up(&sport->ch_releaseQ);
2118 
2119 	kref_put(&ch->kref, srpt_free_ch);
2120 }
2121 
2122 /**
2123  * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2124  * @sdev: HCA through which the login request was received.
2125  * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2126  * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2127  * @port_num: Port through which the REQ message was received.
2128  * @pkey: P_Key of the incoming connection.
2129  * @req: SRP login request.
2130  * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2131  * the login request.
2132  *
2133  * Ownership of the cm_id is transferred to the target session if this
2134  * function returns zero. Otherwise the caller remains the owner of cm_id.
2135  */
2136 static int srpt_cm_req_recv(struct srpt_device *const sdev,
2137 			    struct ib_cm_id *ib_cm_id,
2138 			    struct rdma_cm_id *rdma_cm_id,
2139 			    u8 port_num, __be16 pkey,
2140 			    const struct srp_login_req *req,
2141 			    const char *src_addr)
2142 {
2143 	struct srpt_port *sport = &sdev->port[port_num - 1];
2144 	struct srpt_nexus *nexus;
2145 	struct srp_login_rsp *rsp = NULL;
2146 	struct srp_login_rej *rej = NULL;
2147 	union {
2148 		struct rdma_conn_param rdma_cm;
2149 		struct ib_cm_rep_param ib_cm;
2150 	} *rep_param = NULL;
2151 	struct srpt_rdma_ch *ch = NULL;
2152 	char i_port_id[36];
2153 	u32 it_iu_len;
2154 	int i, ret;
2155 
2156 	WARN_ON_ONCE(irqs_disabled());
2157 
2158 	if (WARN_ON(!sdev || !req))
2159 		return -EINVAL;
2160 
2161 	it_iu_len = be32_to_cpu(req->req_it_iu_len);
2162 
2163 	pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2164 		req->initiator_port_id, req->target_port_id, it_iu_len,
2165 		port_num, &sport->gid, be16_to_cpu(pkey));
2166 
2167 	nexus = srpt_get_nexus(sport, req->initiator_port_id,
2168 			       req->target_port_id);
2169 	if (IS_ERR(nexus)) {
2170 		ret = PTR_ERR(nexus);
2171 		goto out;
2172 	}
2173 
2174 	ret = -ENOMEM;
2175 	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2176 	rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2177 	rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2178 	if (!rsp || !rej || !rep_param)
2179 		goto out;
2180 
2181 	ret = -EINVAL;
2182 	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2183 		rej->reason = cpu_to_be32(
2184 				SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2185 		pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2186 		       it_iu_len, 64, srp_max_req_size);
2187 		goto reject;
2188 	}
2189 
2190 	if (!sport->enabled) {
2191 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2192 		pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2193 			dev_name(&sport->sdev->device->dev), port_num);
2194 		goto reject;
2195 	}
2196 
2197 	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2198 	    || *(__be64 *)(req->target_port_id + 8) !=
2199 	       cpu_to_be64(srpt_service_guid)) {
2200 		rej->reason = cpu_to_be32(
2201 				SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2202 		pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2203 		goto reject;
2204 	}
2205 
2206 	ret = -ENOMEM;
2207 	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2208 	if (!ch) {
2209 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2210 		pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2211 		goto reject;
2212 	}
2213 
2214 	kref_init(&ch->kref);
2215 	ch->pkey = be16_to_cpu(pkey);
2216 	ch->nexus = nexus;
2217 	ch->zw_cqe.done = srpt_zerolength_write_done;
2218 	INIT_WORK(&ch->release_work, srpt_release_channel_work);
2219 	ch->sport = sport;
2220 	if (ib_cm_id) {
2221 		ch->ib_cm.cm_id = ib_cm_id;
2222 		ib_cm_id->context = ch;
2223 	} else {
2224 		ch->using_rdma_cm = true;
2225 		ch->rdma_cm.cm_id = rdma_cm_id;
2226 		rdma_cm_id->context = ch;
2227 	}
2228 	/*
2229 	 * ch->rq_size should be at least as large as the initiator queue
2230 	 * depth to avoid that the initiator driver has to report QUEUE_FULL
2231 	 * to the SCSI mid-layer.
2232 	 */
2233 	ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2234 	spin_lock_init(&ch->spinlock);
2235 	ch->state = CH_CONNECTING;
2236 	INIT_LIST_HEAD(&ch->cmd_wait_list);
2237 	ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2238 
2239 	ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size,
2240 					      512, 0, NULL);
2241 	if (!ch->rsp_buf_cache)
2242 		goto free_ch;
2243 
2244 	ch->ioctx_ring = (struct srpt_send_ioctx **)
2245 		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2246 				      sizeof(*ch->ioctx_ring[0]),
2247 				      ch->rsp_buf_cache, 0, DMA_TO_DEVICE);
2248 	if (!ch->ioctx_ring) {
2249 		pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2250 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2251 		goto free_rsp_cache;
2252 	}
2253 
2254 	INIT_LIST_HEAD(&ch->free_list);
2255 	for (i = 0; i < ch->rq_size; i++) {
2256 		ch->ioctx_ring[i]->ch = ch;
2257 		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2258 	}
2259 	if (!sdev->use_srq) {
2260 		u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ?
2261 			be16_to_cpu(req->imm_data_offset) : 0;
2262 		u16 alignment_offset;
2263 		u32 req_sz;
2264 
2265 		if (req->req_flags & SRP_IMMED_REQUESTED)
2266 			pr_debug("imm_data_offset = %d\n",
2267 				 be16_to_cpu(req->imm_data_offset));
2268 		if (imm_data_offset >= sizeof(struct srp_cmd)) {
2269 			ch->imm_data_offset = imm_data_offset;
2270 			rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP;
2271 		} else {
2272 			ch->imm_data_offset = 0;
2273 		}
2274 		alignment_offset = round_up(imm_data_offset, 512) -
2275 			imm_data_offset;
2276 		req_sz = alignment_offset + imm_data_offset + srp_max_req_size;
2277 		ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz,
2278 						      512, 0, NULL);
2279 		if (!ch->req_buf_cache)
2280 			goto free_rsp_ring;
2281 
2282 		ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2283 			srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2284 					      sizeof(*ch->ioctx_recv_ring[0]),
2285 					      ch->req_buf_cache,
2286 					      alignment_offset,
2287 					      DMA_FROM_DEVICE);
2288 		if (!ch->ioctx_recv_ring) {
2289 			pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2290 			rej->reason =
2291 			    cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2292 			goto free_recv_cache;
2293 		}
2294 		for (i = 0; i < ch->rq_size; i++)
2295 			INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2296 	}
2297 
2298 	ret = srpt_create_ch_ib(ch);
2299 	if (ret) {
2300 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2301 		pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2302 		goto free_recv_ring;
2303 	}
2304 
2305 	strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2306 	snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2307 			be64_to_cpu(*(__be64 *)nexus->i_port_id),
2308 			be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2309 
2310 	pr_debug("registering session %s\n", ch->sess_name);
2311 
2312 	if (sport->port_guid_tpg.se_tpg_wwn)
2313 		ch->sess = target_setup_session(&sport->port_guid_tpg, 0, 0,
2314 						TARGET_PROT_NORMAL,
2315 						ch->sess_name, ch, NULL);
2316 	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
2317 		ch->sess = target_setup_session(&sport->port_gid_tpg, 0, 0,
2318 					TARGET_PROT_NORMAL, i_port_id, ch,
2319 					NULL);
2320 	/* Retry without leading "0x" */
2321 	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
2322 		ch->sess = target_setup_session(&sport->port_gid_tpg, 0, 0,
2323 						TARGET_PROT_NORMAL,
2324 						i_port_id + 2, ch, NULL);
2325 	if (IS_ERR_OR_NULL(ch->sess)) {
2326 		WARN_ON_ONCE(ch->sess == NULL);
2327 		ret = PTR_ERR(ch->sess);
2328 		ch->sess = NULL;
2329 		pr_info("Rejected login for initiator %s: ret = %d.\n",
2330 			ch->sess_name, ret);
2331 		rej->reason = cpu_to_be32(ret == -ENOMEM ?
2332 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2333 				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2334 		goto destroy_ib;
2335 	}
2336 
2337 	mutex_lock(&sport->mutex);
2338 
2339 	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2340 		struct srpt_rdma_ch *ch2;
2341 
2342 		list_for_each_entry(ch2, &nexus->ch_list, list) {
2343 			if (srpt_disconnect_ch(ch2) < 0)
2344 				continue;
2345 			pr_info("Relogin - closed existing channel %s\n",
2346 				ch2->sess_name);
2347 			rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2348 		}
2349 	} else {
2350 		rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2351 	}
2352 
2353 	list_add_tail_rcu(&ch->list, &nexus->ch_list);
2354 
2355 	if (!sport->enabled) {
2356 		rej->reason = cpu_to_be32(
2357 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2358 		pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2359 			dev_name(&sdev->device->dev), port_num);
2360 		mutex_unlock(&sport->mutex);
2361 		goto reject;
2362 	}
2363 
2364 	mutex_unlock(&sport->mutex);
2365 
2366 	ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2367 	if (ret) {
2368 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2369 		pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2370 		       ret);
2371 		goto reject;
2372 	}
2373 
2374 	pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2375 		 ch->sess_name, ch);
2376 
2377 	/* create srp_login_response */
2378 	rsp->opcode = SRP_LOGIN_RSP;
2379 	rsp->tag = req->tag;
2380 	rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size);
2381 	rsp->max_ti_iu_len = req->req_it_iu_len;
2382 	ch->max_ti_iu_len = it_iu_len;
2383 	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2384 				   SRP_BUF_FORMAT_INDIRECT);
2385 	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2386 	atomic_set(&ch->req_lim, ch->rq_size);
2387 	atomic_set(&ch->req_lim_delta, 0);
2388 
2389 	/* create cm reply */
2390 	if (ch->using_rdma_cm) {
2391 		rep_param->rdma_cm.private_data = (void *)rsp;
2392 		rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2393 		rep_param->rdma_cm.rnr_retry_count = 7;
2394 		rep_param->rdma_cm.flow_control = 1;
2395 		rep_param->rdma_cm.responder_resources = 4;
2396 		rep_param->rdma_cm.initiator_depth = 4;
2397 	} else {
2398 		rep_param->ib_cm.qp_num = ch->qp->qp_num;
2399 		rep_param->ib_cm.private_data = (void *)rsp;
2400 		rep_param->ib_cm.private_data_len = sizeof(*rsp);
2401 		rep_param->ib_cm.rnr_retry_count = 7;
2402 		rep_param->ib_cm.flow_control = 1;
2403 		rep_param->ib_cm.failover_accepted = 0;
2404 		rep_param->ib_cm.srq = 1;
2405 		rep_param->ib_cm.responder_resources = 4;
2406 		rep_param->ib_cm.initiator_depth = 4;
2407 	}
2408 
2409 	/*
2410 	 * Hold the sport mutex while accepting a connection to avoid that
2411 	 * srpt_disconnect_ch() is invoked concurrently with this code.
2412 	 */
2413 	mutex_lock(&sport->mutex);
2414 	if (sport->enabled && ch->state == CH_CONNECTING) {
2415 		if (ch->using_rdma_cm)
2416 			ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2417 		else
2418 			ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2419 	} else {
2420 		ret = -EINVAL;
2421 	}
2422 	mutex_unlock(&sport->mutex);
2423 
2424 	switch (ret) {
2425 	case 0:
2426 		break;
2427 	case -EINVAL:
2428 		goto reject;
2429 	default:
2430 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2431 		pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2432 		       ret);
2433 		goto reject;
2434 	}
2435 
2436 	goto out;
2437 
2438 destroy_ib:
2439 	srpt_destroy_ch_ib(ch);
2440 
2441 free_recv_ring:
2442 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2443 			     ch->sport->sdev, ch->rq_size,
2444 			     ch->req_buf_cache, DMA_FROM_DEVICE);
2445 
2446 free_recv_cache:
2447 	kmem_cache_destroy(ch->req_buf_cache);
2448 
2449 free_rsp_ring:
2450 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2451 			     ch->sport->sdev, ch->rq_size,
2452 			     ch->rsp_buf_cache, DMA_TO_DEVICE);
2453 
2454 free_rsp_cache:
2455 	kmem_cache_destroy(ch->rsp_buf_cache);
2456 
2457 free_ch:
2458 	if (rdma_cm_id)
2459 		rdma_cm_id->context = NULL;
2460 	else
2461 		ib_cm_id->context = NULL;
2462 	kfree(ch);
2463 	ch = NULL;
2464 
2465 	WARN_ON_ONCE(ret == 0);
2466 
2467 reject:
2468 	pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2469 	rej->opcode = SRP_LOGIN_REJ;
2470 	rej->tag = req->tag;
2471 	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2472 				   SRP_BUF_FORMAT_INDIRECT);
2473 
2474 	if (rdma_cm_id)
2475 		rdma_reject(rdma_cm_id, rej, sizeof(*rej));
2476 	else
2477 		ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2478 			       rej, sizeof(*rej));
2479 
2480 	if (ch && ch->sess) {
2481 		srpt_close_ch(ch);
2482 		/*
2483 		 * Tell the caller not to free cm_id since
2484 		 * srpt_release_channel_work() will do that.
2485 		 */
2486 		ret = 0;
2487 	}
2488 
2489 out:
2490 	kfree(rep_param);
2491 	kfree(rsp);
2492 	kfree(rej);
2493 
2494 	return ret;
2495 }
2496 
2497 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2498 			       const struct ib_cm_req_event_param *param,
2499 			       void *private_data)
2500 {
2501 	char sguid[40];
2502 
2503 	srpt_format_guid(sguid, sizeof(sguid),
2504 			 &param->primary_path->dgid.global.interface_id);
2505 
2506 	return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2507 				param->primary_path->pkey,
2508 				private_data, sguid);
2509 }
2510 
2511 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2512 				 struct rdma_cm_event *event)
2513 {
2514 	struct srpt_device *sdev;
2515 	struct srp_login_req req;
2516 	const struct srp_login_req_rdma *req_rdma;
2517 	char src_addr[40];
2518 
2519 	sdev = ib_get_client_data(cm_id->device, &srpt_client);
2520 	if (!sdev)
2521 		return -ECONNREFUSED;
2522 
2523 	if (event->param.conn.private_data_len < sizeof(*req_rdma))
2524 		return -EINVAL;
2525 
2526 	/* Transform srp_login_req_rdma into srp_login_req. */
2527 	req_rdma = event->param.conn.private_data;
2528 	memset(&req, 0, sizeof(req));
2529 	req.opcode		= req_rdma->opcode;
2530 	req.tag			= req_rdma->tag;
2531 	req.req_it_iu_len	= req_rdma->req_it_iu_len;
2532 	req.req_buf_fmt		= req_rdma->req_buf_fmt;
2533 	req.req_flags		= req_rdma->req_flags;
2534 	memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2535 	memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2536 	req.imm_data_offset	= req_rdma->imm_data_offset;
2537 
2538 	snprintf(src_addr, sizeof(src_addr), "%pIS",
2539 		 &cm_id->route.addr.src_addr);
2540 
2541 	return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2542 				cm_id->route.path_rec->pkey, &req, src_addr);
2543 }
2544 
2545 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2546 			     enum ib_cm_rej_reason reason,
2547 			     const u8 *private_data,
2548 			     u8 private_data_len)
2549 {
2550 	char *priv = NULL;
2551 	int i;
2552 
2553 	if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2554 						GFP_KERNEL))) {
2555 		for (i = 0; i < private_data_len; i++)
2556 			sprintf(priv + 3 * i, " %02x", private_data[i]);
2557 	}
2558 	pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2559 		ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2560 		"; private data" : "", priv ? priv : " (?)");
2561 	kfree(priv);
2562 }
2563 
2564 /**
2565  * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2566  * @ch: SRPT RDMA channel.
2567  *
2568  * An RTU (ready to use) message indicates that the connection has been
2569  * established and that the recipient may begin transmitting.
2570  */
2571 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2572 {
2573 	int ret;
2574 
2575 	ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2576 	if (ret < 0) {
2577 		pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2578 		       ch->qp->qp_num);
2579 		srpt_close_ch(ch);
2580 		return;
2581 	}
2582 
2583 	/*
2584 	 * Note: calling srpt_close_ch() if the transition to the LIVE state
2585 	 * fails is not necessary since that means that that function has
2586 	 * already been invoked from another thread.
2587 	 */
2588 	if (!srpt_set_ch_state(ch, CH_LIVE)) {
2589 		pr_err("%s-%d: channel transition to LIVE state failed\n",
2590 		       ch->sess_name, ch->qp->qp_num);
2591 		return;
2592 	}
2593 
2594 	/* Trigger wait list processing. */
2595 	ret = srpt_zerolength_write(ch);
2596 	WARN_ONCE(ret < 0, "%d\n", ret);
2597 }
2598 
2599 /**
2600  * srpt_cm_handler - IB connection manager callback function
2601  * @cm_id: IB/CM connection identifier.
2602  * @event: IB/CM event.
2603  *
2604  * A non-zero return value will cause the caller destroy the CM ID.
2605  *
2606  * Note: srpt_cm_handler() must only return a non-zero value when transferring
2607  * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2608  * a non-zero value in any other case will trigger a race with the
2609  * ib_destroy_cm_id() call in srpt_release_channel().
2610  */
2611 static int srpt_cm_handler(struct ib_cm_id *cm_id,
2612 			   const struct ib_cm_event *event)
2613 {
2614 	struct srpt_rdma_ch *ch = cm_id->context;
2615 	int ret;
2616 
2617 	ret = 0;
2618 	switch (event->event) {
2619 	case IB_CM_REQ_RECEIVED:
2620 		ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2621 					  event->private_data);
2622 		break;
2623 	case IB_CM_REJ_RECEIVED:
2624 		srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2625 				 event->private_data,
2626 				 IB_CM_REJ_PRIVATE_DATA_SIZE);
2627 		break;
2628 	case IB_CM_RTU_RECEIVED:
2629 	case IB_CM_USER_ESTABLISHED:
2630 		srpt_cm_rtu_recv(ch);
2631 		break;
2632 	case IB_CM_DREQ_RECEIVED:
2633 		srpt_disconnect_ch(ch);
2634 		break;
2635 	case IB_CM_DREP_RECEIVED:
2636 		pr_info("Received CM DREP message for ch %s-%d.\n",
2637 			ch->sess_name, ch->qp->qp_num);
2638 		srpt_close_ch(ch);
2639 		break;
2640 	case IB_CM_TIMEWAIT_EXIT:
2641 		pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2642 			ch->sess_name, ch->qp->qp_num);
2643 		srpt_close_ch(ch);
2644 		break;
2645 	case IB_CM_REP_ERROR:
2646 		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2647 			ch->qp->qp_num);
2648 		break;
2649 	case IB_CM_DREQ_ERROR:
2650 		pr_info("Received CM DREQ ERROR event.\n");
2651 		break;
2652 	case IB_CM_MRA_RECEIVED:
2653 		pr_info("Received CM MRA event\n");
2654 		break;
2655 	default:
2656 		pr_err("received unrecognized CM event %d\n", event->event);
2657 		break;
2658 	}
2659 
2660 	return ret;
2661 }
2662 
2663 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2664 				struct rdma_cm_event *event)
2665 {
2666 	struct srpt_rdma_ch *ch = cm_id->context;
2667 	int ret = 0;
2668 
2669 	switch (event->event) {
2670 	case RDMA_CM_EVENT_CONNECT_REQUEST:
2671 		ret = srpt_rdma_cm_req_recv(cm_id, event);
2672 		break;
2673 	case RDMA_CM_EVENT_REJECTED:
2674 		srpt_cm_rej_recv(ch, event->status,
2675 				 event->param.conn.private_data,
2676 				 event->param.conn.private_data_len);
2677 		break;
2678 	case RDMA_CM_EVENT_ESTABLISHED:
2679 		srpt_cm_rtu_recv(ch);
2680 		break;
2681 	case RDMA_CM_EVENT_DISCONNECTED:
2682 		if (ch->state < CH_DISCONNECTING)
2683 			srpt_disconnect_ch(ch);
2684 		else
2685 			srpt_close_ch(ch);
2686 		break;
2687 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2688 		srpt_close_ch(ch);
2689 		break;
2690 	case RDMA_CM_EVENT_UNREACHABLE:
2691 		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2692 			ch->qp->qp_num);
2693 		break;
2694 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
2695 	case RDMA_CM_EVENT_ADDR_CHANGE:
2696 		break;
2697 	default:
2698 		pr_err("received unrecognized RDMA CM event %d\n",
2699 		       event->event);
2700 		break;
2701 	}
2702 
2703 	return ret;
2704 }
2705 
2706 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2707 {
2708 	struct srpt_send_ioctx *ioctx;
2709 
2710 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2711 	return ioctx->state == SRPT_STATE_NEED_DATA;
2712 }
2713 
2714 /*
2715  * srpt_write_pending - Start data transfer from initiator to target (write).
2716  */
2717 static int srpt_write_pending(struct se_cmd *se_cmd)
2718 {
2719 	struct srpt_send_ioctx *ioctx =
2720 		container_of(se_cmd, struct srpt_send_ioctx, cmd);
2721 	struct srpt_rdma_ch *ch = ioctx->ch;
2722 	struct ib_send_wr *first_wr = NULL;
2723 	struct ib_cqe *cqe = &ioctx->rdma_cqe;
2724 	enum srpt_command_state new_state;
2725 	int ret, i;
2726 
2727 	if (ioctx->recv_ioctx) {
2728 		srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2729 		target_execute_cmd(&ioctx->cmd);
2730 		return 0;
2731 	}
2732 
2733 	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2734 	WARN_ON(new_state == SRPT_STATE_DONE);
2735 
2736 	if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2737 		pr_warn("%s: IB send queue full (needed %d)\n",
2738 				__func__, ioctx->n_rdma);
2739 		ret = -ENOMEM;
2740 		goto out_undo;
2741 	}
2742 
2743 	cqe->done = srpt_rdma_read_done;
2744 	for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2745 		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2746 
2747 		first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2748 				cqe, first_wr);
2749 		cqe = NULL;
2750 	}
2751 
2752 	ret = ib_post_send(ch->qp, first_wr, NULL);
2753 	if (ret) {
2754 		pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2755 			 __func__, ret, ioctx->n_rdma,
2756 			 atomic_read(&ch->sq_wr_avail));
2757 		goto out_undo;
2758 	}
2759 
2760 	return 0;
2761 out_undo:
2762 	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2763 	return ret;
2764 }
2765 
2766 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2767 {
2768 	switch (tcm_mgmt_status) {
2769 	case TMR_FUNCTION_COMPLETE:
2770 		return SRP_TSK_MGMT_SUCCESS;
2771 	case TMR_FUNCTION_REJECTED:
2772 		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2773 	}
2774 	return SRP_TSK_MGMT_FAILED;
2775 }
2776 
2777 /**
2778  * srpt_queue_response - transmit the response to a SCSI command
2779  * @cmd: SCSI target command.
2780  *
2781  * Callback function called by the TCM core. Must not block since it can be
2782  * invoked on the context of the IB completion handler.
2783  */
2784 static void srpt_queue_response(struct se_cmd *cmd)
2785 {
2786 	struct srpt_send_ioctx *ioctx =
2787 		container_of(cmd, struct srpt_send_ioctx, cmd);
2788 	struct srpt_rdma_ch *ch = ioctx->ch;
2789 	struct srpt_device *sdev = ch->sport->sdev;
2790 	struct ib_send_wr send_wr, *first_wr = &send_wr;
2791 	struct ib_sge sge;
2792 	enum srpt_command_state state;
2793 	int resp_len, ret, i;
2794 	u8 srp_tm_status;
2795 
2796 	BUG_ON(!ch);
2797 
2798 	state = ioctx->state;
2799 	switch (state) {
2800 	case SRPT_STATE_NEW:
2801 	case SRPT_STATE_DATA_IN:
2802 		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2803 		break;
2804 	case SRPT_STATE_MGMT:
2805 		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2806 		break;
2807 	default:
2808 		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2809 			ch, ioctx->ioctx.index, ioctx->state);
2810 		break;
2811 	}
2812 
2813 	if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))
2814 		return;
2815 
2816 	/* For read commands, transfer the data to the initiator. */
2817 	if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2818 	    ioctx->cmd.data_length &&
2819 	    !ioctx->queue_status_only) {
2820 		for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2821 			struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2822 
2823 			first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2824 					ch->sport->port, NULL, first_wr);
2825 		}
2826 	}
2827 
2828 	if (state != SRPT_STATE_MGMT)
2829 		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2830 					      cmd->scsi_status);
2831 	else {
2832 		srp_tm_status
2833 			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2834 		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2835 						 ioctx->cmd.tag);
2836 	}
2837 
2838 	atomic_inc(&ch->req_lim);
2839 
2840 	if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2841 			&ch->sq_wr_avail) < 0)) {
2842 		pr_warn("%s: IB send queue full (needed %d)\n",
2843 				__func__, ioctx->n_rdma);
2844 		ret = -ENOMEM;
2845 		goto out;
2846 	}
2847 
2848 	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2849 				      DMA_TO_DEVICE);
2850 
2851 	sge.addr = ioctx->ioctx.dma;
2852 	sge.length = resp_len;
2853 	sge.lkey = sdev->lkey;
2854 
2855 	ioctx->ioctx.cqe.done = srpt_send_done;
2856 	send_wr.next = NULL;
2857 	send_wr.wr_cqe = &ioctx->ioctx.cqe;
2858 	send_wr.sg_list = &sge;
2859 	send_wr.num_sge = 1;
2860 	send_wr.opcode = IB_WR_SEND;
2861 	send_wr.send_flags = IB_SEND_SIGNALED;
2862 
2863 	ret = ib_post_send(ch->qp, first_wr, NULL);
2864 	if (ret < 0) {
2865 		pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2866 			__func__, ioctx->cmd.tag, ret);
2867 		goto out;
2868 	}
2869 
2870 	return;
2871 
2872 out:
2873 	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2874 	atomic_dec(&ch->req_lim);
2875 	srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2876 	target_put_sess_cmd(&ioctx->cmd);
2877 }
2878 
2879 static int srpt_queue_data_in(struct se_cmd *cmd)
2880 {
2881 	srpt_queue_response(cmd);
2882 	return 0;
2883 }
2884 
2885 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2886 {
2887 	srpt_queue_response(cmd);
2888 }
2889 
2890 static void srpt_aborted_task(struct se_cmd *cmd)
2891 {
2892 }
2893 
2894 static int srpt_queue_status(struct se_cmd *cmd)
2895 {
2896 	struct srpt_send_ioctx *ioctx;
2897 
2898 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2899 	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2900 	if (cmd->se_cmd_flags &
2901 	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2902 		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2903 	ioctx->queue_status_only = true;
2904 	srpt_queue_response(cmd);
2905 	return 0;
2906 }
2907 
2908 static void srpt_refresh_port_work(struct work_struct *work)
2909 {
2910 	struct srpt_port *sport = container_of(work, struct srpt_port, work);
2911 
2912 	srpt_refresh_port(sport);
2913 }
2914 
2915 static bool srpt_ch_list_empty(struct srpt_port *sport)
2916 {
2917 	struct srpt_nexus *nexus;
2918 	bool res = true;
2919 
2920 	rcu_read_lock();
2921 	list_for_each_entry(nexus, &sport->nexus_list, entry)
2922 		if (!list_empty(&nexus->ch_list))
2923 			res = false;
2924 	rcu_read_unlock();
2925 
2926 	return res;
2927 }
2928 
2929 /**
2930  * srpt_release_sport - disable login and wait for associated channels
2931  * @sport: SRPT HCA port.
2932  */
2933 static int srpt_release_sport(struct srpt_port *sport)
2934 {
2935 	struct srpt_nexus *nexus, *next_n;
2936 	struct srpt_rdma_ch *ch;
2937 
2938 	WARN_ON_ONCE(irqs_disabled());
2939 
2940 	mutex_lock(&sport->mutex);
2941 	srpt_set_enabled(sport, false);
2942 	mutex_unlock(&sport->mutex);
2943 
2944 	while (wait_event_timeout(sport->ch_releaseQ,
2945 				  srpt_ch_list_empty(sport), 5 * HZ) <= 0) {
2946 		pr_info("%s_%d: waiting for session unregistration ...\n",
2947 			dev_name(&sport->sdev->device->dev), sport->port);
2948 		rcu_read_lock();
2949 		list_for_each_entry(nexus, &sport->nexus_list, entry) {
2950 			list_for_each_entry(ch, &nexus->ch_list, list) {
2951 				pr_info("%s-%d: state %s\n",
2952 					ch->sess_name, ch->qp->qp_num,
2953 					get_ch_state_name(ch->state));
2954 			}
2955 		}
2956 		rcu_read_unlock();
2957 	}
2958 
2959 	mutex_lock(&sport->mutex);
2960 	list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
2961 		list_del(&nexus->entry);
2962 		kfree_rcu(nexus, rcu);
2963 	}
2964 	mutex_unlock(&sport->mutex);
2965 
2966 	return 0;
2967 }
2968 
2969 static struct se_wwn *__srpt_lookup_wwn(const char *name)
2970 {
2971 	struct ib_device *dev;
2972 	struct srpt_device *sdev;
2973 	struct srpt_port *sport;
2974 	int i;
2975 
2976 	list_for_each_entry(sdev, &srpt_dev_list, list) {
2977 		dev = sdev->device;
2978 		if (!dev)
2979 			continue;
2980 
2981 		for (i = 0; i < dev->phys_port_cnt; i++) {
2982 			sport = &sdev->port[i];
2983 
2984 			if (strcmp(sport->port_guid, name) == 0)
2985 				return &sport->port_guid_wwn;
2986 			if (strcmp(sport->port_gid, name) == 0)
2987 				return &sport->port_gid_wwn;
2988 		}
2989 	}
2990 
2991 	return NULL;
2992 }
2993 
2994 static struct se_wwn *srpt_lookup_wwn(const char *name)
2995 {
2996 	struct se_wwn *wwn;
2997 
2998 	spin_lock(&srpt_dev_lock);
2999 	wwn = __srpt_lookup_wwn(name);
3000 	spin_unlock(&srpt_dev_lock);
3001 
3002 	return wwn;
3003 }
3004 
3005 static void srpt_free_srq(struct srpt_device *sdev)
3006 {
3007 	if (!sdev->srq)
3008 		return;
3009 
3010 	ib_destroy_srq(sdev->srq);
3011 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3012 			     sdev->srq_size, sdev->req_buf_cache,
3013 			     DMA_FROM_DEVICE);
3014 	kmem_cache_destroy(sdev->req_buf_cache);
3015 	sdev->srq = NULL;
3016 }
3017 
3018 static int srpt_alloc_srq(struct srpt_device *sdev)
3019 {
3020 	struct ib_srq_init_attr srq_attr = {
3021 		.event_handler = srpt_srq_event,
3022 		.srq_context = (void *)sdev,
3023 		.attr.max_wr = sdev->srq_size,
3024 		.attr.max_sge = 1,
3025 		.srq_type = IB_SRQT_BASIC,
3026 	};
3027 	struct ib_device *device = sdev->device;
3028 	struct ib_srq *srq;
3029 	int i;
3030 
3031 	WARN_ON_ONCE(sdev->srq);
3032 	srq = ib_create_srq(sdev->pd, &srq_attr);
3033 	if (IS_ERR(srq)) {
3034 		pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
3035 		return PTR_ERR(srq);
3036 	}
3037 
3038 	pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
3039 		 sdev->device->attrs.max_srq_wr, dev_name(&device->dev));
3040 
3041 	sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf",
3042 						srp_max_req_size, 0, 0, NULL);
3043 	if (!sdev->req_buf_cache)
3044 		goto free_srq;
3045 
3046 	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3047 		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3048 				      sizeof(*sdev->ioctx_ring[0]),
3049 				      sdev->req_buf_cache, 0, DMA_FROM_DEVICE);
3050 	if (!sdev->ioctx_ring)
3051 		goto free_cache;
3052 
3053 	sdev->use_srq = true;
3054 	sdev->srq = srq;
3055 
3056 	for (i = 0; i < sdev->srq_size; ++i) {
3057 		INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
3058 		srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
3059 	}
3060 
3061 	return 0;
3062 
3063 free_cache:
3064 	kmem_cache_destroy(sdev->req_buf_cache);
3065 
3066 free_srq:
3067 	ib_destroy_srq(srq);
3068 	return -ENOMEM;
3069 }
3070 
3071 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
3072 {
3073 	struct ib_device *device = sdev->device;
3074 	int ret = 0;
3075 
3076 	if (!use_srq) {
3077 		srpt_free_srq(sdev);
3078 		sdev->use_srq = false;
3079 	} else if (use_srq && !sdev->srq) {
3080 		ret = srpt_alloc_srq(sdev);
3081 	}
3082 	pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__,
3083 		 dev_name(&device->dev), sdev->use_srq, ret);
3084 	return ret;
3085 }
3086 
3087 /**
3088  * srpt_add_one - InfiniBand device addition callback function
3089  * @device: Describes a HCA.
3090  */
3091 static void srpt_add_one(struct ib_device *device)
3092 {
3093 	struct srpt_device *sdev;
3094 	struct srpt_port *sport;
3095 	int i, ret;
3096 
3097 	pr_debug("device = %p\n", device);
3098 
3099 	sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt),
3100 		       GFP_KERNEL);
3101 	if (!sdev)
3102 		goto err;
3103 
3104 	sdev->device = device;
3105 	mutex_init(&sdev->sdev_mutex);
3106 
3107 	sdev->pd = ib_alloc_pd(device, 0);
3108 	if (IS_ERR(sdev->pd))
3109 		goto free_dev;
3110 
3111 	sdev->lkey = sdev->pd->local_dma_lkey;
3112 
3113 	sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
3114 
3115 	srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
3116 
3117 	if (!srpt_service_guid)
3118 		srpt_service_guid = be64_to_cpu(device->node_guid);
3119 
3120 	if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
3121 		sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3122 	if (IS_ERR(sdev->cm_id)) {
3123 		pr_info("ib_create_cm_id() failed: %ld\n",
3124 			PTR_ERR(sdev->cm_id));
3125 		sdev->cm_id = NULL;
3126 		if (!rdma_cm_id)
3127 			goto err_ring;
3128 	}
3129 
3130 	/* print out target login information */
3131 	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n",
3132 		 srpt_service_guid, srpt_service_guid, srpt_service_guid);
3133 
3134 	/*
3135 	 * We do not have a consistent service_id (ie. also id_ext of target_id)
3136 	 * to identify this target. We currently use the guid of the first HCA
3137 	 * in the system as service_id; therefore, the target_id will change
3138 	 * if this HCA is gone bad and replaced by different HCA
3139 	 */
3140 	ret = sdev->cm_id ?
3141 		ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) :
3142 		0;
3143 	if (ret < 0) {
3144 		pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3145 		       sdev->cm_id->state);
3146 		goto err_cm;
3147 	}
3148 
3149 	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3150 			      srpt_event_handler);
3151 	ib_register_event_handler(&sdev->event_handler);
3152 
3153 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3154 		sport = &sdev->port[i - 1];
3155 		INIT_LIST_HEAD(&sport->nexus_list);
3156 		init_waitqueue_head(&sport->ch_releaseQ);
3157 		mutex_init(&sport->mutex);
3158 		sport->sdev = sdev;
3159 		sport->port = i;
3160 		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3161 		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3162 		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3163 		sport->port_attrib.use_srq = false;
3164 		INIT_WORK(&sport->work, srpt_refresh_port_work);
3165 
3166 		if (srpt_refresh_port(sport)) {
3167 			pr_err("MAD registration failed for %s-%d.\n",
3168 			       dev_name(&sdev->device->dev), i);
3169 			goto err_event;
3170 		}
3171 	}
3172 
3173 	spin_lock(&srpt_dev_lock);
3174 	list_add_tail(&sdev->list, &srpt_dev_list);
3175 	spin_unlock(&srpt_dev_lock);
3176 
3177 out:
3178 	ib_set_client_data(device, &srpt_client, sdev);
3179 	pr_debug("added %s.\n", dev_name(&device->dev));
3180 	return;
3181 
3182 err_event:
3183 	ib_unregister_event_handler(&sdev->event_handler);
3184 err_cm:
3185 	if (sdev->cm_id)
3186 		ib_destroy_cm_id(sdev->cm_id);
3187 err_ring:
3188 	srpt_free_srq(sdev);
3189 	ib_dealloc_pd(sdev->pd);
3190 free_dev:
3191 	kfree(sdev);
3192 err:
3193 	sdev = NULL;
3194 	pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev));
3195 	goto out;
3196 }
3197 
3198 /**
3199  * srpt_remove_one - InfiniBand device removal callback function
3200  * @device: Describes a HCA.
3201  * @client_data: The value passed as the third argument to ib_set_client_data().
3202  */
3203 static void srpt_remove_one(struct ib_device *device, void *client_data)
3204 {
3205 	struct srpt_device *sdev = client_data;
3206 	int i;
3207 
3208 	if (!sdev) {
3209 		pr_info("%s(%s): nothing to do.\n", __func__,
3210 			dev_name(&device->dev));
3211 		return;
3212 	}
3213 
3214 	srpt_unregister_mad_agent(sdev);
3215 
3216 	ib_unregister_event_handler(&sdev->event_handler);
3217 
3218 	/* Cancel any work queued by the just unregistered IB event handler. */
3219 	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3220 		cancel_work_sync(&sdev->port[i].work);
3221 
3222 	if (sdev->cm_id)
3223 		ib_destroy_cm_id(sdev->cm_id);
3224 
3225 	ib_set_client_data(device, &srpt_client, NULL);
3226 
3227 	/*
3228 	 * Unregistering a target must happen after destroying sdev->cm_id
3229 	 * such that no new SRP_LOGIN_REQ information units can arrive while
3230 	 * destroying the target.
3231 	 */
3232 	spin_lock(&srpt_dev_lock);
3233 	list_del(&sdev->list);
3234 	spin_unlock(&srpt_dev_lock);
3235 
3236 	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3237 		srpt_release_sport(&sdev->port[i]);
3238 
3239 	srpt_free_srq(sdev);
3240 
3241 	ib_dealloc_pd(sdev->pd);
3242 
3243 	kfree(sdev);
3244 }
3245 
3246 static struct ib_client srpt_client = {
3247 	.name = DRV_NAME,
3248 	.add = srpt_add_one,
3249 	.remove = srpt_remove_one
3250 };
3251 
3252 static int srpt_check_true(struct se_portal_group *se_tpg)
3253 {
3254 	return 1;
3255 }
3256 
3257 static int srpt_check_false(struct se_portal_group *se_tpg)
3258 {
3259 	return 0;
3260 }
3261 
3262 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3263 {
3264 	return tpg->se_tpg_wwn->priv;
3265 }
3266 
3267 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3268 {
3269 	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3270 
3271 	WARN_ON_ONCE(tpg != &sport->port_guid_tpg &&
3272 		     tpg != &sport->port_gid_tpg);
3273 	return tpg == &sport->port_guid_tpg ? sport->port_guid :
3274 		sport->port_gid;
3275 }
3276 
3277 static u16 srpt_get_tag(struct se_portal_group *tpg)
3278 {
3279 	return 1;
3280 }
3281 
3282 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3283 {
3284 	return 1;
3285 }
3286 
3287 static void srpt_release_cmd(struct se_cmd *se_cmd)
3288 {
3289 	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3290 				struct srpt_send_ioctx, cmd);
3291 	struct srpt_rdma_ch *ch = ioctx->ch;
3292 	struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx;
3293 	unsigned long flags;
3294 
3295 	WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3296 		     !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3297 
3298 	if (recv_ioctx) {
3299 		WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list));
3300 		ioctx->recv_ioctx = NULL;
3301 		srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
3302 	}
3303 
3304 	if (ioctx->n_rw_ctx) {
3305 		srpt_free_rw_ctxs(ch, ioctx);
3306 		ioctx->n_rw_ctx = 0;
3307 	}
3308 
3309 	spin_lock_irqsave(&ch->spinlock, flags);
3310 	list_add(&ioctx->free_list, &ch->free_list);
3311 	spin_unlock_irqrestore(&ch->spinlock, flags);
3312 }
3313 
3314 /**
3315  * srpt_close_session - forcibly close a session
3316  * @se_sess: SCSI target session.
3317  *
3318  * Callback function invoked by the TCM core to clean up sessions associated
3319  * with a node ACL when the user invokes
3320  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3321  */
3322 static void srpt_close_session(struct se_session *se_sess)
3323 {
3324 	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3325 
3326 	srpt_disconnect_ch_sync(ch);
3327 }
3328 
3329 /**
3330  * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
3331  * @se_sess: SCSI target session.
3332  *
3333  * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3334  * This object represents an arbitrary integer used to uniquely identify a
3335  * particular attached remote initiator port to a particular SCSI target port
3336  * within a particular SCSI target device within a particular SCSI instance.
3337  */
3338 static u32 srpt_sess_get_index(struct se_session *se_sess)
3339 {
3340 	return 0;
3341 }
3342 
3343 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3344 {
3345 }
3346 
3347 /* Note: only used from inside debug printk's by the TCM core. */
3348 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3349 {
3350 	struct srpt_send_ioctx *ioctx;
3351 
3352 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3353 	return ioctx->state;
3354 }
3355 
3356 static int srpt_parse_guid(u64 *guid, const char *name)
3357 {
3358 	u16 w[4];
3359 	int ret = -EINVAL;
3360 
3361 	if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3362 		goto out;
3363 	*guid = get_unaligned_be64(w);
3364 	ret = 0;
3365 out:
3366 	return ret;
3367 }
3368 
3369 /**
3370  * srpt_parse_i_port_id - parse an initiator port ID
3371  * @name: ASCII representation of a 128-bit initiator port ID.
3372  * @i_port_id: Binary 128-bit port ID.
3373  */
3374 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3375 {
3376 	const char *p;
3377 	unsigned len, count, leading_zero_bytes;
3378 	int ret;
3379 
3380 	p = name;
3381 	if (strncasecmp(p, "0x", 2) == 0)
3382 		p += 2;
3383 	ret = -EINVAL;
3384 	len = strlen(p);
3385 	if (len % 2)
3386 		goto out;
3387 	count = min(len / 2, 16U);
3388 	leading_zero_bytes = 16 - count;
3389 	memset(i_port_id, 0, leading_zero_bytes);
3390 	ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3391 
3392 out:
3393 	return ret;
3394 }
3395 
3396 /*
3397  * configfs callback function invoked for mkdir
3398  * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3399  *
3400  * i_port_id must be an initiator port GUID, GID or IP address. See also the
3401  * target_alloc_session() calls in this driver. Examples of valid initiator
3402  * port IDs:
3403  * 0x0000000000000000505400fffe4a0b7b
3404  * 0000000000000000505400fffe4a0b7b
3405  * 5054:00ff:fe4a:0b7b
3406  * 192.168.122.76
3407  */
3408 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3409 {
3410 	struct sockaddr_storage sa;
3411 	u64 guid;
3412 	u8 i_port_id[16];
3413 	int ret;
3414 
3415 	ret = srpt_parse_guid(&guid, name);
3416 	if (ret < 0)
3417 		ret = srpt_parse_i_port_id(i_port_id, name);
3418 	if (ret < 0)
3419 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3420 					   &sa);
3421 	if (ret < 0)
3422 		pr_err("invalid initiator port ID %s\n", name);
3423 	return ret;
3424 }
3425 
3426 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3427 		char *page)
3428 {
3429 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3430 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3431 
3432 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3433 }
3434 
3435 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3436 		const char *page, size_t count)
3437 {
3438 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3439 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3440 	unsigned long val;
3441 	int ret;
3442 
3443 	ret = kstrtoul(page, 0, &val);
3444 	if (ret < 0) {
3445 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3446 		return -EINVAL;
3447 	}
3448 	if (val > MAX_SRPT_RDMA_SIZE) {
3449 		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3450 			MAX_SRPT_RDMA_SIZE);
3451 		return -EINVAL;
3452 	}
3453 	if (val < DEFAULT_MAX_RDMA_SIZE) {
3454 		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3455 			val, DEFAULT_MAX_RDMA_SIZE);
3456 		return -EINVAL;
3457 	}
3458 	sport->port_attrib.srp_max_rdma_size = val;
3459 
3460 	return count;
3461 }
3462 
3463 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3464 		char *page)
3465 {
3466 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3467 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3468 
3469 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3470 }
3471 
3472 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3473 		const char *page, size_t count)
3474 {
3475 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3476 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3477 	unsigned long val;
3478 	int ret;
3479 
3480 	ret = kstrtoul(page, 0, &val);
3481 	if (ret < 0) {
3482 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3483 		return -EINVAL;
3484 	}
3485 	if (val > MAX_SRPT_RSP_SIZE) {
3486 		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3487 			MAX_SRPT_RSP_SIZE);
3488 		return -EINVAL;
3489 	}
3490 	if (val < MIN_MAX_RSP_SIZE) {
3491 		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3492 			MIN_MAX_RSP_SIZE);
3493 		return -EINVAL;
3494 	}
3495 	sport->port_attrib.srp_max_rsp_size = val;
3496 
3497 	return count;
3498 }
3499 
3500 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3501 		char *page)
3502 {
3503 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3504 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3505 
3506 	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3507 }
3508 
3509 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3510 		const char *page, size_t count)
3511 {
3512 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3513 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3514 	unsigned long val;
3515 	int ret;
3516 
3517 	ret = kstrtoul(page, 0, &val);
3518 	if (ret < 0) {
3519 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3520 		return -EINVAL;
3521 	}
3522 	if (val > MAX_SRPT_SRQ_SIZE) {
3523 		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3524 			MAX_SRPT_SRQ_SIZE);
3525 		return -EINVAL;
3526 	}
3527 	if (val < MIN_SRPT_SRQ_SIZE) {
3528 		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3529 			MIN_SRPT_SRQ_SIZE);
3530 		return -EINVAL;
3531 	}
3532 	sport->port_attrib.srp_sq_size = val;
3533 
3534 	return count;
3535 }
3536 
3537 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3538 					    char *page)
3539 {
3540 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3541 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3542 
3543 	return sprintf(page, "%d\n", sport->port_attrib.use_srq);
3544 }
3545 
3546 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3547 					     const char *page, size_t count)
3548 {
3549 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3550 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3551 	struct srpt_device *sdev = sport->sdev;
3552 	unsigned long val;
3553 	bool enabled;
3554 	int ret;
3555 
3556 	ret = kstrtoul(page, 0, &val);
3557 	if (ret < 0)
3558 		return ret;
3559 	if (val != !!val)
3560 		return -EINVAL;
3561 
3562 	ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3563 	if (ret < 0)
3564 		return ret;
3565 	ret = mutex_lock_interruptible(&sport->mutex);
3566 	if (ret < 0)
3567 		goto unlock_sdev;
3568 	enabled = sport->enabled;
3569 	/* Log out all initiator systems before changing 'use_srq'. */
3570 	srpt_set_enabled(sport, false);
3571 	sport->port_attrib.use_srq = val;
3572 	srpt_use_srq(sdev, sport->port_attrib.use_srq);
3573 	srpt_set_enabled(sport, enabled);
3574 	ret = count;
3575 	mutex_unlock(&sport->mutex);
3576 unlock_sdev:
3577 	mutex_unlock(&sdev->sdev_mutex);
3578 
3579 	return ret;
3580 }
3581 
3582 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
3583 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
3584 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3585 CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3586 
3587 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3588 	&srpt_tpg_attrib_attr_srp_max_rdma_size,
3589 	&srpt_tpg_attrib_attr_srp_max_rsp_size,
3590 	&srpt_tpg_attrib_attr_srp_sq_size,
3591 	&srpt_tpg_attrib_attr_use_srq,
3592 	NULL,
3593 };
3594 
3595 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3596 {
3597 	struct rdma_cm_id *rdma_cm_id;
3598 	int ret;
3599 
3600 	rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3601 				    NULL, RDMA_PS_TCP, IB_QPT_RC);
3602 	if (IS_ERR(rdma_cm_id)) {
3603 		pr_err("RDMA/CM ID creation failed: %ld\n",
3604 		       PTR_ERR(rdma_cm_id));
3605 		goto out;
3606 	}
3607 
3608 	ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3609 	if (ret) {
3610 		char addr_str[64];
3611 
3612 		snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3613 		pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3614 		       addr_str, ret);
3615 		rdma_destroy_id(rdma_cm_id);
3616 		rdma_cm_id = ERR_PTR(ret);
3617 		goto out;
3618 	}
3619 
3620 	ret = rdma_listen(rdma_cm_id, 128);
3621 	if (ret) {
3622 		pr_err("rdma_listen() failed: %d\n", ret);
3623 		rdma_destroy_id(rdma_cm_id);
3624 		rdma_cm_id = ERR_PTR(ret);
3625 	}
3626 
3627 out:
3628 	return rdma_cm_id;
3629 }
3630 
3631 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3632 {
3633 	return sprintf(page, "%d\n", rdma_cm_port);
3634 }
3635 
3636 static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3637 				       const char *page, size_t count)
3638 {
3639 	struct sockaddr_in  addr4 = { .sin_family  = AF_INET  };
3640 	struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3641 	struct rdma_cm_id *new_id = NULL;
3642 	u16 val;
3643 	int ret;
3644 
3645 	ret = kstrtou16(page, 0, &val);
3646 	if (ret < 0)
3647 		return ret;
3648 	ret = count;
3649 	if (rdma_cm_port == val)
3650 		goto out;
3651 
3652 	if (val) {
3653 		addr6.sin6_port = cpu_to_be16(val);
3654 		new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3655 		if (IS_ERR(new_id)) {
3656 			addr4.sin_port = cpu_to_be16(val);
3657 			new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3658 			if (IS_ERR(new_id)) {
3659 				ret = PTR_ERR(new_id);
3660 				goto out;
3661 			}
3662 		}
3663 	}
3664 
3665 	mutex_lock(&rdma_cm_mutex);
3666 	rdma_cm_port = val;
3667 	swap(rdma_cm_id, new_id);
3668 	mutex_unlock(&rdma_cm_mutex);
3669 
3670 	if (new_id)
3671 		rdma_destroy_id(new_id);
3672 	ret = count;
3673 out:
3674 	return ret;
3675 }
3676 
3677 CONFIGFS_ATTR(srpt_, rdma_cm_port);
3678 
3679 static struct configfs_attribute *srpt_da_attrs[] = {
3680 	&srpt_attr_rdma_cm_port,
3681 	NULL,
3682 };
3683 
3684 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3685 {
3686 	struct se_portal_group *se_tpg = to_tpg(item);
3687 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3688 
3689 	return snprintf(page, PAGE_SIZE, "%d\n", sport->enabled);
3690 }
3691 
3692 static ssize_t srpt_tpg_enable_store(struct config_item *item,
3693 		const char *page, size_t count)
3694 {
3695 	struct se_portal_group *se_tpg = to_tpg(item);
3696 	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3697 	unsigned long tmp;
3698 	int ret;
3699 
3700 	ret = kstrtoul(page, 0, &tmp);
3701 	if (ret < 0) {
3702 		pr_err("Unable to extract srpt_tpg_store_enable\n");
3703 		return -EINVAL;
3704 	}
3705 
3706 	if ((tmp != 0) && (tmp != 1)) {
3707 		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3708 		return -EINVAL;
3709 	}
3710 
3711 	mutex_lock(&sport->mutex);
3712 	srpt_set_enabled(sport, tmp);
3713 	mutex_unlock(&sport->mutex);
3714 
3715 	return count;
3716 }
3717 
3718 CONFIGFS_ATTR(srpt_tpg_, enable);
3719 
3720 static struct configfs_attribute *srpt_tpg_attrs[] = {
3721 	&srpt_tpg_attr_enable,
3722 	NULL,
3723 };
3724 
3725 /**
3726  * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3727  * @wwn: Corresponds to $driver/$port.
3728  * @name: $tpg.
3729  */
3730 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3731 					     const char *name)
3732 {
3733 	struct srpt_port *sport = wwn->priv;
3734 	struct se_portal_group *tpg;
3735 	int res;
3736 
3737 	WARN_ON_ONCE(wwn != &sport->port_guid_wwn &&
3738 		     wwn != &sport->port_gid_wwn);
3739 	tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg :
3740 		&sport->port_gid_tpg;
3741 	res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP);
3742 	if (res)
3743 		return ERR_PTR(res);
3744 
3745 	return tpg;
3746 }
3747 
3748 /**
3749  * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3750  * @tpg: Target portal group to deregister.
3751  */
3752 static void srpt_drop_tpg(struct se_portal_group *tpg)
3753 {
3754 	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3755 
3756 	sport->enabled = false;
3757 	core_tpg_deregister(tpg);
3758 }
3759 
3760 /**
3761  * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3762  * @tf: Not used.
3763  * @group: Not used.
3764  * @name: $port.
3765  */
3766 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3767 				      struct config_group *group,
3768 				      const char *name)
3769 {
3770 	return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3771 }
3772 
3773 /**
3774  * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3775  * @wwn: $port.
3776  */
3777 static void srpt_drop_tport(struct se_wwn *wwn)
3778 {
3779 }
3780 
3781 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3782 {
3783 	return scnprintf(buf, PAGE_SIZE, "\n");
3784 }
3785 
3786 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3787 
3788 static struct configfs_attribute *srpt_wwn_attrs[] = {
3789 	&srpt_wwn_attr_version,
3790 	NULL,
3791 };
3792 
3793 static const struct target_core_fabric_ops srpt_template = {
3794 	.module				= THIS_MODULE,
3795 	.fabric_name			= "srpt",
3796 	.tpg_get_wwn			= srpt_get_fabric_wwn,
3797 	.tpg_get_tag			= srpt_get_tag,
3798 	.tpg_check_demo_mode		= srpt_check_false,
3799 	.tpg_check_demo_mode_cache	= srpt_check_true,
3800 	.tpg_check_demo_mode_write_protect = srpt_check_true,
3801 	.tpg_check_prod_mode_write_protect = srpt_check_false,
3802 	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
3803 	.release_cmd			= srpt_release_cmd,
3804 	.check_stop_free		= srpt_check_stop_free,
3805 	.close_session			= srpt_close_session,
3806 	.sess_get_index			= srpt_sess_get_index,
3807 	.sess_get_initiator_sid		= NULL,
3808 	.write_pending			= srpt_write_pending,
3809 	.write_pending_status		= srpt_write_pending_status,
3810 	.set_default_node_attributes	= srpt_set_default_node_attrs,
3811 	.get_cmd_state			= srpt_get_tcm_cmd_state,
3812 	.queue_data_in			= srpt_queue_data_in,
3813 	.queue_status			= srpt_queue_status,
3814 	.queue_tm_rsp			= srpt_queue_tm_rsp,
3815 	.aborted_task			= srpt_aborted_task,
3816 	/*
3817 	 * Setup function pointers for generic logic in
3818 	 * target_core_fabric_configfs.c
3819 	 */
3820 	.fabric_make_wwn		= srpt_make_tport,
3821 	.fabric_drop_wwn		= srpt_drop_tport,
3822 	.fabric_make_tpg		= srpt_make_tpg,
3823 	.fabric_drop_tpg		= srpt_drop_tpg,
3824 	.fabric_init_nodeacl		= srpt_init_nodeacl,
3825 
3826 	.tfc_discovery_attrs		= srpt_da_attrs,
3827 	.tfc_wwn_attrs			= srpt_wwn_attrs,
3828 	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
3829 	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3830 };
3831 
3832 /**
3833  * srpt_init_module - kernel module initialization
3834  *
3835  * Note: Since ib_register_client() registers callback functions, and since at
3836  * least one of these callback functions (srpt_add_one()) calls target core
3837  * functions, this driver must be registered with the target core before
3838  * ib_register_client() is called.
3839  */
3840 static int __init srpt_init_module(void)
3841 {
3842 	int ret;
3843 
3844 	ret = -EINVAL;
3845 	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3846 		pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n",
3847 		       srp_max_req_size, MIN_MAX_REQ_SIZE);
3848 		goto out;
3849 	}
3850 
3851 	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3852 	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3853 		pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n",
3854 		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3855 		goto out;
3856 	}
3857 
3858 	ret = target_register_template(&srpt_template);
3859 	if (ret)
3860 		goto out;
3861 
3862 	ret = ib_register_client(&srpt_client);
3863 	if (ret) {
3864 		pr_err("couldn't register IB client\n");
3865 		goto out_unregister_target;
3866 	}
3867 
3868 	return 0;
3869 
3870 out_unregister_target:
3871 	target_unregister_template(&srpt_template);
3872 out:
3873 	return ret;
3874 }
3875 
3876 static void __exit srpt_cleanup_module(void)
3877 {
3878 	if (rdma_cm_id)
3879 		rdma_destroy_id(rdma_cm_id);
3880 	ib_unregister_client(&srpt_client);
3881 	target_unregister_template(&srpt_template);
3882 }
3883 
3884 module_init(srpt_init_module);
3885 module_exit(srpt_cleanup_module);
3886