1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <linux/lockdep.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46 
47 #include <linux/atomic.h>
48 
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_dbg.h>
52 #include <scsi/scsi_tcq.h>
53 #include <scsi/srp.h>
54 #include <scsi/scsi_transport_srp.h>
55 
56 #include "ib_srp.h"
57 
58 #define DRV_NAME	"ib_srp"
59 #define PFX		DRV_NAME ": "
60 
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 
65 static unsigned int srp_sg_tablesize;
66 static unsigned int cmd_sg_entries;
67 static unsigned int indirect_sg_entries;
68 static bool allow_ext_sg;
69 static bool register_always = true;
70 static bool never_register;
71 static int topspin_workarounds = 1;
72 
73 module_param(srp_sg_tablesize, uint, 0444);
74 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
75 
76 module_param(cmd_sg_entries, uint, 0444);
77 MODULE_PARM_DESC(cmd_sg_entries,
78 		 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
79 
80 module_param(indirect_sg_entries, uint, 0444);
81 MODULE_PARM_DESC(indirect_sg_entries,
82 		 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SG_MAX_SEGMENTS) ")");
83 
84 module_param(allow_ext_sg, bool, 0444);
85 MODULE_PARM_DESC(allow_ext_sg,
86 		  "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
87 
88 module_param(topspin_workarounds, int, 0444);
89 MODULE_PARM_DESC(topspin_workarounds,
90 		 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
91 
92 module_param(register_always, bool, 0444);
93 MODULE_PARM_DESC(register_always,
94 		 "Use memory registration even for contiguous memory regions");
95 
96 module_param(never_register, bool, 0444);
97 MODULE_PARM_DESC(never_register, "Never register memory");
98 
99 static const struct kernel_param_ops srp_tmo_ops;
100 
101 static int srp_reconnect_delay = 10;
102 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
103 		S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
105 
106 static int srp_fast_io_fail_tmo = 15;
107 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
108 		S_IRUGO | S_IWUSR);
109 MODULE_PARM_DESC(fast_io_fail_tmo,
110 		 "Number of seconds between the observation of a transport"
111 		 " layer error and failing all I/O. \"off\" means that this"
112 		 " functionality is disabled.");
113 
114 static int srp_dev_loss_tmo = 600;
115 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
116 		S_IRUGO | S_IWUSR);
117 MODULE_PARM_DESC(dev_loss_tmo,
118 		 "Maximum number of seconds that the SRP transport should"
119 		 " insulate transport layer errors. After this time has been"
120 		 " exceeded the SCSI host is removed. Should be"
121 		 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
122 		 " if fast_io_fail_tmo has not been set. \"off\" means that"
123 		 " this functionality is disabled.");
124 
125 static bool srp_use_imm_data = true;
126 module_param_named(use_imm_data, srp_use_imm_data, bool, 0644);
127 MODULE_PARM_DESC(use_imm_data,
128 		 "Whether or not to request permission to use immediate data during SRP login.");
129 
130 static unsigned int srp_max_imm_data = 8 * 1024;
131 module_param_named(max_imm_data, srp_max_imm_data, uint, 0644);
132 MODULE_PARM_DESC(max_imm_data, "Maximum immediate data size.");
133 
134 static unsigned ch_count;
135 module_param(ch_count, uint, 0444);
136 MODULE_PARM_DESC(ch_count,
137 		 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
138 
139 static int srp_add_one(struct ib_device *device);
140 static void srp_remove_one(struct ib_device *device, void *client_data);
141 static void srp_rename_dev(struct ib_device *device, void *client_data);
142 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc);
143 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
144 		const char *opname);
145 static int srp_ib_cm_handler(struct ib_cm_id *cm_id,
146 			     const struct ib_cm_event *event);
147 static int srp_rdma_cm_handler(struct rdma_cm_id *cm_id,
148 			       struct rdma_cm_event *event);
149 
150 static struct scsi_transport_template *ib_srp_transport_template;
151 static struct workqueue_struct *srp_remove_wq;
152 
153 static struct ib_client srp_client = {
154 	.name   = "srp",
155 	.add    = srp_add_one,
156 	.remove = srp_remove_one,
157 	.rename = srp_rename_dev
158 };
159 
160 static struct ib_sa_client srp_sa_client;
161 
162 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
163 {
164 	int tmo = *(int *)kp->arg;
165 
166 	if (tmo >= 0)
167 		return sysfs_emit(buffer, "%d\n", tmo);
168 	else
169 		return sysfs_emit(buffer, "off\n");
170 }
171 
172 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
173 {
174 	int tmo, res;
175 
176 	res = srp_parse_tmo(&tmo, val);
177 	if (res)
178 		goto out;
179 
180 	if (kp->arg == &srp_reconnect_delay)
181 		res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
182 				    srp_dev_loss_tmo);
183 	else if (kp->arg == &srp_fast_io_fail_tmo)
184 		res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
185 	else
186 		res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
187 				    tmo);
188 	if (res)
189 		goto out;
190 	*(int *)kp->arg = tmo;
191 
192 out:
193 	return res;
194 }
195 
196 static const struct kernel_param_ops srp_tmo_ops = {
197 	.get = srp_tmo_get,
198 	.set = srp_tmo_set,
199 };
200 
201 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
202 {
203 	return (struct srp_target_port *) host->hostdata;
204 }
205 
206 static const char *srp_target_info(struct Scsi_Host *host)
207 {
208 	return host_to_target(host)->target_name;
209 }
210 
211 static int srp_target_is_topspin(struct srp_target_port *target)
212 {
213 	static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
214 	static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
215 
216 	return topspin_workarounds &&
217 		(!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
218 		 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
219 }
220 
221 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
222 				   gfp_t gfp_mask,
223 				   enum dma_data_direction direction)
224 {
225 	struct srp_iu *iu;
226 
227 	iu = kmalloc(sizeof *iu, gfp_mask);
228 	if (!iu)
229 		goto out;
230 
231 	iu->buf = kzalloc(size, gfp_mask);
232 	if (!iu->buf)
233 		goto out_free_iu;
234 
235 	iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
236 				    direction);
237 	if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
238 		goto out_free_buf;
239 
240 	iu->size      = size;
241 	iu->direction = direction;
242 
243 	return iu;
244 
245 out_free_buf:
246 	kfree(iu->buf);
247 out_free_iu:
248 	kfree(iu);
249 out:
250 	return NULL;
251 }
252 
253 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
254 {
255 	if (!iu)
256 		return;
257 
258 	ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
259 			    iu->direction);
260 	kfree(iu->buf);
261 	kfree(iu);
262 }
263 
264 static void srp_qp_event(struct ib_event *event, void *context)
265 {
266 	pr_debug("QP event %s (%d)\n",
267 		 ib_event_msg(event->event), event->event);
268 }
269 
270 static int srp_init_ib_qp(struct srp_target_port *target,
271 			  struct ib_qp *qp)
272 {
273 	struct ib_qp_attr *attr;
274 	int ret;
275 
276 	attr = kmalloc(sizeof *attr, GFP_KERNEL);
277 	if (!attr)
278 		return -ENOMEM;
279 
280 	ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
281 				  target->srp_host->port,
282 				  be16_to_cpu(target->ib_cm.pkey),
283 				  &attr->pkey_index);
284 	if (ret)
285 		goto out;
286 
287 	attr->qp_state        = IB_QPS_INIT;
288 	attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
289 				    IB_ACCESS_REMOTE_WRITE);
290 	attr->port_num        = target->srp_host->port;
291 
292 	ret = ib_modify_qp(qp, attr,
293 			   IB_QP_STATE		|
294 			   IB_QP_PKEY_INDEX	|
295 			   IB_QP_ACCESS_FLAGS	|
296 			   IB_QP_PORT);
297 
298 out:
299 	kfree(attr);
300 	return ret;
301 }
302 
303 static int srp_new_ib_cm_id(struct srp_rdma_ch *ch)
304 {
305 	struct srp_target_port *target = ch->target;
306 	struct ib_cm_id *new_cm_id;
307 
308 	new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
309 				    srp_ib_cm_handler, ch);
310 	if (IS_ERR(new_cm_id))
311 		return PTR_ERR(new_cm_id);
312 
313 	if (ch->ib_cm.cm_id)
314 		ib_destroy_cm_id(ch->ib_cm.cm_id);
315 	ch->ib_cm.cm_id = new_cm_id;
316 	if (rdma_cap_opa_ah(target->srp_host->srp_dev->dev,
317 			    target->srp_host->port))
318 		ch->ib_cm.path.rec_type = SA_PATH_REC_TYPE_OPA;
319 	else
320 		ch->ib_cm.path.rec_type = SA_PATH_REC_TYPE_IB;
321 	ch->ib_cm.path.sgid = target->sgid;
322 	ch->ib_cm.path.dgid = target->ib_cm.orig_dgid;
323 	ch->ib_cm.path.pkey = target->ib_cm.pkey;
324 	ch->ib_cm.path.service_id = target->ib_cm.service_id;
325 
326 	return 0;
327 }
328 
329 static int srp_new_rdma_cm_id(struct srp_rdma_ch *ch)
330 {
331 	struct srp_target_port *target = ch->target;
332 	struct rdma_cm_id *new_cm_id;
333 	int ret;
334 
335 	new_cm_id = rdma_create_id(target->net, srp_rdma_cm_handler, ch,
336 				   RDMA_PS_TCP, IB_QPT_RC);
337 	if (IS_ERR(new_cm_id)) {
338 		ret = PTR_ERR(new_cm_id);
339 		new_cm_id = NULL;
340 		goto out;
341 	}
342 
343 	init_completion(&ch->done);
344 	ret = rdma_resolve_addr(new_cm_id, target->rdma_cm.src_specified ?
345 				&target->rdma_cm.src.sa : NULL,
346 				&target->rdma_cm.dst.sa,
347 				SRP_PATH_REC_TIMEOUT_MS);
348 	if (ret) {
349 		pr_err("No route available from %pISpsc to %pISpsc (%d)\n",
350 		       &target->rdma_cm.src, &target->rdma_cm.dst, ret);
351 		goto out;
352 	}
353 	ret = wait_for_completion_interruptible(&ch->done);
354 	if (ret < 0)
355 		goto out;
356 
357 	ret = ch->status;
358 	if (ret) {
359 		pr_err("Resolving address %pISpsc failed (%d)\n",
360 		       &target->rdma_cm.dst, ret);
361 		goto out;
362 	}
363 
364 	swap(ch->rdma_cm.cm_id, new_cm_id);
365 
366 out:
367 	if (new_cm_id)
368 		rdma_destroy_id(new_cm_id);
369 
370 	return ret;
371 }
372 
373 static int srp_new_cm_id(struct srp_rdma_ch *ch)
374 {
375 	struct srp_target_port *target = ch->target;
376 
377 	return target->using_rdma_cm ? srp_new_rdma_cm_id(ch) :
378 		srp_new_ib_cm_id(ch);
379 }
380 
381 /**
382  * srp_destroy_fr_pool() - free the resources owned by a pool
383  * @pool: Fast registration pool to be destroyed.
384  */
385 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
386 {
387 	int i;
388 	struct srp_fr_desc *d;
389 
390 	if (!pool)
391 		return;
392 
393 	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
394 		if (d->mr)
395 			ib_dereg_mr(d->mr);
396 	}
397 	kfree(pool);
398 }
399 
400 /**
401  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
402  * @device:            IB device to allocate fast registration descriptors for.
403  * @pd:                Protection domain associated with the FR descriptors.
404  * @pool_size:         Number of descriptors to allocate.
405  * @max_page_list_len: Maximum fast registration work request page list length.
406  */
407 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
408 					      struct ib_pd *pd, int pool_size,
409 					      int max_page_list_len)
410 {
411 	struct srp_fr_pool *pool;
412 	struct srp_fr_desc *d;
413 	struct ib_mr *mr;
414 	int i, ret = -EINVAL;
415 	enum ib_mr_type mr_type;
416 
417 	if (pool_size <= 0)
418 		goto err;
419 	ret = -ENOMEM;
420 	pool = kzalloc(struct_size(pool, desc, pool_size), GFP_KERNEL);
421 	if (!pool)
422 		goto err;
423 	pool->size = pool_size;
424 	pool->max_page_list_len = max_page_list_len;
425 	spin_lock_init(&pool->lock);
426 	INIT_LIST_HEAD(&pool->free_list);
427 
428 	if (device->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
429 		mr_type = IB_MR_TYPE_SG_GAPS;
430 	else
431 		mr_type = IB_MR_TYPE_MEM_REG;
432 
433 	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
434 		mr = ib_alloc_mr(pd, mr_type, max_page_list_len);
435 		if (IS_ERR(mr)) {
436 			ret = PTR_ERR(mr);
437 			if (ret == -ENOMEM)
438 				pr_info("%s: ib_alloc_mr() failed. Try to reduce max_cmd_per_lun, max_sect or ch_count\n",
439 					dev_name(&device->dev));
440 			goto destroy_pool;
441 		}
442 		d->mr = mr;
443 		list_add_tail(&d->entry, &pool->free_list);
444 	}
445 
446 out:
447 	return pool;
448 
449 destroy_pool:
450 	srp_destroy_fr_pool(pool);
451 
452 err:
453 	pool = ERR_PTR(ret);
454 	goto out;
455 }
456 
457 /**
458  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
459  * @pool: Pool to obtain descriptor from.
460  */
461 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
462 {
463 	struct srp_fr_desc *d = NULL;
464 	unsigned long flags;
465 
466 	spin_lock_irqsave(&pool->lock, flags);
467 	if (!list_empty(&pool->free_list)) {
468 		d = list_first_entry(&pool->free_list, typeof(*d), entry);
469 		list_del(&d->entry);
470 	}
471 	spin_unlock_irqrestore(&pool->lock, flags);
472 
473 	return d;
474 }
475 
476 /**
477  * srp_fr_pool_put() - put an FR descriptor back in the free list
478  * @pool: Pool the descriptor was allocated from.
479  * @desc: Pointer to an array of fast registration descriptor pointers.
480  * @n:    Number of descriptors to put back.
481  *
482  * Note: The caller must already have queued an invalidation request for
483  * desc->mr->rkey before calling this function.
484  */
485 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
486 			    int n)
487 {
488 	unsigned long flags;
489 	int i;
490 
491 	spin_lock_irqsave(&pool->lock, flags);
492 	for (i = 0; i < n; i++)
493 		list_add(&desc[i]->entry, &pool->free_list);
494 	spin_unlock_irqrestore(&pool->lock, flags);
495 }
496 
497 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
498 {
499 	struct srp_device *dev = target->srp_host->srp_dev;
500 
501 	return srp_create_fr_pool(dev->dev, dev->pd, target->mr_pool_size,
502 				  dev->max_pages_per_mr);
503 }
504 
505 /**
506  * srp_destroy_qp() - destroy an RDMA queue pair
507  * @ch: SRP RDMA channel.
508  *
509  * Drain the qp before destroying it.  This avoids that the receive
510  * completion handler can access the queue pair while it is
511  * being destroyed.
512  */
513 static void srp_destroy_qp(struct srp_rdma_ch *ch)
514 {
515 	spin_lock_irq(&ch->lock);
516 	ib_process_cq_direct(ch->send_cq, -1);
517 	spin_unlock_irq(&ch->lock);
518 
519 	ib_drain_qp(ch->qp);
520 	ib_destroy_qp(ch->qp);
521 }
522 
523 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
524 {
525 	struct srp_target_port *target = ch->target;
526 	struct srp_device *dev = target->srp_host->srp_dev;
527 	const struct ib_device_attr *attr = &dev->dev->attrs;
528 	struct ib_qp_init_attr *init_attr;
529 	struct ib_cq *recv_cq, *send_cq;
530 	struct ib_qp *qp;
531 	struct srp_fr_pool *fr_pool = NULL;
532 	const int m = 1 + dev->use_fast_reg * target->mr_per_cmd * 2;
533 	int ret;
534 
535 	init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
536 	if (!init_attr)
537 		return -ENOMEM;
538 
539 	/* queue_size + 1 for ib_drain_rq() */
540 	recv_cq = ib_alloc_cq(dev->dev, ch, target->queue_size + 1,
541 				ch->comp_vector, IB_POLL_SOFTIRQ);
542 	if (IS_ERR(recv_cq)) {
543 		ret = PTR_ERR(recv_cq);
544 		goto err;
545 	}
546 
547 	send_cq = ib_alloc_cq(dev->dev, ch, m * target->queue_size,
548 				ch->comp_vector, IB_POLL_DIRECT);
549 	if (IS_ERR(send_cq)) {
550 		ret = PTR_ERR(send_cq);
551 		goto err_recv_cq;
552 	}
553 
554 	init_attr->event_handler       = srp_qp_event;
555 	init_attr->cap.max_send_wr     = m * target->queue_size;
556 	init_attr->cap.max_recv_wr     = target->queue_size + 1;
557 	init_attr->cap.max_recv_sge    = 1;
558 	init_attr->cap.max_send_sge    = min(SRP_MAX_SGE, attr->max_send_sge);
559 	init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
560 	init_attr->qp_type             = IB_QPT_RC;
561 	init_attr->send_cq             = send_cq;
562 	init_attr->recv_cq             = recv_cq;
563 
564 	ch->max_imm_sge = min(init_attr->cap.max_send_sge - 1U, 255U);
565 
566 	if (target->using_rdma_cm) {
567 		ret = rdma_create_qp(ch->rdma_cm.cm_id, dev->pd, init_attr);
568 		qp = ch->rdma_cm.cm_id->qp;
569 	} else {
570 		qp = ib_create_qp(dev->pd, init_attr);
571 		if (!IS_ERR(qp)) {
572 			ret = srp_init_ib_qp(target, qp);
573 			if (ret)
574 				ib_destroy_qp(qp);
575 		} else {
576 			ret = PTR_ERR(qp);
577 		}
578 	}
579 	if (ret) {
580 		pr_err("QP creation failed for dev %s: %d\n",
581 		       dev_name(&dev->dev->dev), ret);
582 		goto err_send_cq;
583 	}
584 
585 	if (dev->use_fast_reg) {
586 		fr_pool = srp_alloc_fr_pool(target);
587 		if (IS_ERR(fr_pool)) {
588 			ret = PTR_ERR(fr_pool);
589 			shost_printk(KERN_WARNING, target->scsi_host, PFX
590 				     "FR pool allocation failed (%d)\n", ret);
591 			goto err_qp;
592 		}
593 	}
594 
595 	if (ch->qp)
596 		srp_destroy_qp(ch);
597 	if (ch->recv_cq)
598 		ib_free_cq(ch->recv_cq);
599 	if (ch->send_cq)
600 		ib_free_cq(ch->send_cq);
601 
602 	ch->qp = qp;
603 	ch->recv_cq = recv_cq;
604 	ch->send_cq = send_cq;
605 
606 	if (dev->use_fast_reg) {
607 		if (ch->fr_pool)
608 			srp_destroy_fr_pool(ch->fr_pool);
609 		ch->fr_pool = fr_pool;
610 	}
611 
612 	kfree(init_attr);
613 	return 0;
614 
615 err_qp:
616 	if (target->using_rdma_cm)
617 		rdma_destroy_qp(ch->rdma_cm.cm_id);
618 	else
619 		ib_destroy_qp(qp);
620 
621 err_send_cq:
622 	ib_free_cq(send_cq);
623 
624 err_recv_cq:
625 	ib_free_cq(recv_cq);
626 
627 err:
628 	kfree(init_attr);
629 	return ret;
630 }
631 
632 /*
633  * Note: this function may be called without srp_alloc_iu_bufs() having been
634  * invoked. Hence the ch->[rt]x_ring checks.
635  */
636 static void srp_free_ch_ib(struct srp_target_port *target,
637 			   struct srp_rdma_ch *ch)
638 {
639 	struct srp_device *dev = target->srp_host->srp_dev;
640 	int i;
641 
642 	if (!ch->target)
643 		return;
644 
645 	if (target->using_rdma_cm) {
646 		if (ch->rdma_cm.cm_id) {
647 			rdma_destroy_id(ch->rdma_cm.cm_id);
648 			ch->rdma_cm.cm_id = NULL;
649 		}
650 	} else {
651 		if (ch->ib_cm.cm_id) {
652 			ib_destroy_cm_id(ch->ib_cm.cm_id);
653 			ch->ib_cm.cm_id = NULL;
654 		}
655 	}
656 
657 	/* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
658 	if (!ch->qp)
659 		return;
660 
661 	if (dev->use_fast_reg) {
662 		if (ch->fr_pool)
663 			srp_destroy_fr_pool(ch->fr_pool);
664 	}
665 
666 	srp_destroy_qp(ch);
667 	ib_free_cq(ch->send_cq);
668 	ib_free_cq(ch->recv_cq);
669 
670 	/*
671 	 * Avoid that the SCSI error handler tries to use this channel after
672 	 * it has been freed. The SCSI error handler can namely continue
673 	 * trying to perform recovery actions after scsi_remove_host()
674 	 * returned.
675 	 */
676 	ch->target = NULL;
677 
678 	ch->qp = NULL;
679 	ch->send_cq = ch->recv_cq = NULL;
680 
681 	if (ch->rx_ring) {
682 		for (i = 0; i < target->queue_size; ++i)
683 			srp_free_iu(target->srp_host, ch->rx_ring[i]);
684 		kfree(ch->rx_ring);
685 		ch->rx_ring = NULL;
686 	}
687 	if (ch->tx_ring) {
688 		for (i = 0; i < target->queue_size; ++i)
689 			srp_free_iu(target->srp_host, ch->tx_ring[i]);
690 		kfree(ch->tx_ring);
691 		ch->tx_ring = NULL;
692 	}
693 }
694 
695 static void srp_path_rec_completion(int status,
696 				    struct sa_path_rec *pathrec,
697 				    unsigned int num_paths, void *ch_ptr)
698 {
699 	struct srp_rdma_ch *ch = ch_ptr;
700 	struct srp_target_port *target = ch->target;
701 
702 	ch->status = status;
703 	if (status)
704 		shost_printk(KERN_ERR, target->scsi_host,
705 			     PFX "Got failed path rec status %d\n", status);
706 	else
707 		ch->ib_cm.path = *pathrec;
708 	complete(&ch->done);
709 }
710 
711 static int srp_ib_lookup_path(struct srp_rdma_ch *ch)
712 {
713 	struct srp_target_port *target = ch->target;
714 	int ret;
715 
716 	ch->ib_cm.path.numb_path = 1;
717 
718 	init_completion(&ch->done);
719 
720 	ch->ib_cm.path_query_id = ib_sa_path_rec_get(&srp_sa_client,
721 					       target->srp_host->srp_dev->dev,
722 					       target->srp_host->port,
723 					       &ch->ib_cm.path,
724 					       IB_SA_PATH_REC_SERVICE_ID |
725 					       IB_SA_PATH_REC_DGID	 |
726 					       IB_SA_PATH_REC_SGID	 |
727 					       IB_SA_PATH_REC_NUMB_PATH	 |
728 					       IB_SA_PATH_REC_PKEY,
729 					       SRP_PATH_REC_TIMEOUT_MS,
730 					       GFP_KERNEL,
731 					       srp_path_rec_completion,
732 					       ch, &ch->ib_cm.path_query);
733 	if (ch->ib_cm.path_query_id < 0)
734 		return ch->ib_cm.path_query_id;
735 
736 	ret = wait_for_completion_interruptible(&ch->done);
737 	if (ret < 0)
738 		return ret;
739 
740 	if (ch->status < 0)
741 		shost_printk(KERN_WARNING, target->scsi_host,
742 			     PFX "Path record query failed: sgid %pI6, dgid %pI6, pkey %#04x, service_id %#16llx\n",
743 			     ch->ib_cm.path.sgid.raw, ch->ib_cm.path.dgid.raw,
744 			     be16_to_cpu(target->ib_cm.pkey),
745 			     be64_to_cpu(target->ib_cm.service_id));
746 
747 	return ch->status;
748 }
749 
750 static int srp_rdma_lookup_path(struct srp_rdma_ch *ch)
751 {
752 	struct srp_target_port *target = ch->target;
753 	int ret;
754 
755 	init_completion(&ch->done);
756 
757 	ret = rdma_resolve_route(ch->rdma_cm.cm_id, SRP_PATH_REC_TIMEOUT_MS);
758 	if (ret)
759 		return ret;
760 
761 	wait_for_completion_interruptible(&ch->done);
762 
763 	if (ch->status != 0)
764 		shost_printk(KERN_WARNING, target->scsi_host,
765 			     PFX "Path resolution failed\n");
766 
767 	return ch->status;
768 }
769 
770 static int srp_lookup_path(struct srp_rdma_ch *ch)
771 {
772 	struct srp_target_port *target = ch->target;
773 
774 	return target->using_rdma_cm ? srp_rdma_lookup_path(ch) :
775 		srp_ib_lookup_path(ch);
776 }
777 
778 static u8 srp_get_subnet_timeout(struct srp_host *host)
779 {
780 	struct ib_port_attr attr;
781 	int ret;
782 	u8 subnet_timeout = 18;
783 
784 	ret = ib_query_port(host->srp_dev->dev, host->port, &attr);
785 	if (ret == 0)
786 		subnet_timeout = attr.subnet_timeout;
787 
788 	if (unlikely(subnet_timeout < 15))
789 		pr_warn("%s: subnet timeout %d may cause SRP login to fail.\n",
790 			dev_name(&host->srp_dev->dev->dev), subnet_timeout);
791 
792 	return subnet_timeout;
793 }
794 
795 static int srp_send_req(struct srp_rdma_ch *ch, uint32_t max_iu_len,
796 			bool multich)
797 {
798 	struct srp_target_port *target = ch->target;
799 	struct {
800 		struct rdma_conn_param	  rdma_param;
801 		struct srp_login_req_rdma rdma_req;
802 		struct ib_cm_req_param	  ib_param;
803 		struct srp_login_req	  ib_req;
804 	} *req = NULL;
805 	char *ipi, *tpi;
806 	int status;
807 
808 	req = kzalloc(sizeof *req, GFP_KERNEL);
809 	if (!req)
810 		return -ENOMEM;
811 
812 	req->ib_param.flow_control = 1;
813 	req->ib_param.retry_count = target->tl_retry_count;
814 
815 	/*
816 	 * Pick some arbitrary defaults here; we could make these
817 	 * module parameters if anyone cared about setting them.
818 	 */
819 	req->ib_param.responder_resources = 4;
820 	req->ib_param.rnr_retry_count = 7;
821 	req->ib_param.max_cm_retries = 15;
822 
823 	req->ib_req.opcode = SRP_LOGIN_REQ;
824 	req->ib_req.tag = 0;
825 	req->ib_req.req_it_iu_len = cpu_to_be32(max_iu_len);
826 	req->ib_req.req_buf_fmt	= cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
827 					      SRP_BUF_FORMAT_INDIRECT);
828 	req->ib_req.req_flags = (multich ? SRP_MULTICHAN_MULTI :
829 				 SRP_MULTICHAN_SINGLE);
830 	if (srp_use_imm_data) {
831 		req->ib_req.req_flags |= SRP_IMMED_REQUESTED;
832 		req->ib_req.imm_data_offset = cpu_to_be16(SRP_IMM_DATA_OFFSET);
833 	}
834 
835 	if (target->using_rdma_cm) {
836 		req->rdma_param.flow_control = req->ib_param.flow_control;
837 		req->rdma_param.responder_resources =
838 			req->ib_param.responder_resources;
839 		req->rdma_param.initiator_depth = req->ib_param.initiator_depth;
840 		req->rdma_param.retry_count = req->ib_param.retry_count;
841 		req->rdma_param.rnr_retry_count = req->ib_param.rnr_retry_count;
842 		req->rdma_param.private_data = &req->rdma_req;
843 		req->rdma_param.private_data_len = sizeof(req->rdma_req);
844 
845 		req->rdma_req.opcode = req->ib_req.opcode;
846 		req->rdma_req.tag = req->ib_req.tag;
847 		req->rdma_req.req_it_iu_len = req->ib_req.req_it_iu_len;
848 		req->rdma_req.req_buf_fmt = req->ib_req.req_buf_fmt;
849 		req->rdma_req.req_flags	= req->ib_req.req_flags;
850 		req->rdma_req.imm_data_offset = req->ib_req.imm_data_offset;
851 
852 		ipi = req->rdma_req.initiator_port_id;
853 		tpi = req->rdma_req.target_port_id;
854 	} else {
855 		u8 subnet_timeout;
856 
857 		subnet_timeout = srp_get_subnet_timeout(target->srp_host);
858 
859 		req->ib_param.primary_path = &ch->ib_cm.path;
860 		req->ib_param.alternate_path = NULL;
861 		req->ib_param.service_id = target->ib_cm.service_id;
862 		get_random_bytes(&req->ib_param.starting_psn, 4);
863 		req->ib_param.starting_psn &= 0xffffff;
864 		req->ib_param.qp_num = ch->qp->qp_num;
865 		req->ib_param.qp_type = ch->qp->qp_type;
866 		req->ib_param.local_cm_response_timeout = subnet_timeout + 2;
867 		req->ib_param.remote_cm_response_timeout = subnet_timeout + 2;
868 		req->ib_param.private_data = &req->ib_req;
869 		req->ib_param.private_data_len = sizeof(req->ib_req);
870 
871 		ipi = req->ib_req.initiator_port_id;
872 		tpi = req->ib_req.target_port_id;
873 	}
874 
875 	/*
876 	 * In the published SRP specification (draft rev. 16a), the
877 	 * port identifier format is 8 bytes of ID extension followed
878 	 * by 8 bytes of GUID.  Older drafts put the two halves in the
879 	 * opposite order, so that the GUID comes first.
880 	 *
881 	 * Targets conforming to these obsolete drafts can be
882 	 * recognized by the I/O Class they report.
883 	 */
884 	if (target->io_class == SRP_REV10_IB_IO_CLASS) {
885 		memcpy(ipi,     &target->sgid.global.interface_id, 8);
886 		memcpy(ipi + 8, &target->initiator_ext, 8);
887 		memcpy(tpi,     &target->ioc_guid, 8);
888 		memcpy(tpi + 8, &target->id_ext, 8);
889 	} else {
890 		memcpy(ipi,     &target->initiator_ext, 8);
891 		memcpy(ipi + 8, &target->sgid.global.interface_id, 8);
892 		memcpy(tpi,     &target->id_ext, 8);
893 		memcpy(tpi + 8, &target->ioc_guid, 8);
894 	}
895 
896 	/*
897 	 * Topspin/Cisco SRP targets will reject our login unless we
898 	 * zero out the first 8 bytes of our initiator port ID and set
899 	 * the second 8 bytes to the local node GUID.
900 	 */
901 	if (srp_target_is_topspin(target)) {
902 		shost_printk(KERN_DEBUG, target->scsi_host,
903 			     PFX "Topspin/Cisco initiator port ID workaround "
904 			     "activated for target GUID %016llx\n",
905 			     be64_to_cpu(target->ioc_guid));
906 		memset(ipi, 0, 8);
907 		memcpy(ipi + 8, &target->srp_host->srp_dev->dev->node_guid, 8);
908 	}
909 
910 	if (target->using_rdma_cm)
911 		status = rdma_connect(ch->rdma_cm.cm_id, &req->rdma_param);
912 	else
913 		status = ib_send_cm_req(ch->ib_cm.cm_id, &req->ib_param);
914 
915 	kfree(req);
916 
917 	return status;
918 }
919 
920 static bool srp_queue_remove_work(struct srp_target_port *target)
921 {
922 	bool changed = false;
923 
924 	spin_lock_irq(&target->lock);
925 	if (target->state != SRP_TARGET_REMOVED) {
926 		target->state = SRP_TARGET_REMOVED;
927 		changed = true;
928 	}
929 	spin_unlock_irq(&target->lock);
930 
931 	if (changed)
932 		queue_work(srp_remove_wq, &target->remove_work);
933 
934 	return changed;
935 }
936 
937 static void srp_disconnect_target(struct srp_target_port *target)
938 {
939 	struct srp_rdma_ch *ch;
940 	int i, ret;
941 
942 	/* XXX should send SRP_I_LOGOUT request */
943 
944 	for (i = 0; i < target->ch_count; i++) {
945 		ch = &target->ch[i];
946 		ch->connected = false;
947 		ret = 0;
948 		if (target->using_rdma_cm) {
949 			if (ch->rdma_cm.cm_id)
950 				rdma_disconnect(ch->rdma_cm.cm_id);
951 		} else {
952 			if (ch->ib_cm.cm_id)
953 				ret = ib_send_cm_dreq(ch->ib_cm.cm_id,
954 						      NULL, 0);
955 		}
956 		if (ret < 0) {
957 			shost_printk(KERN_DEBUG, target->scsi_host,
958 				     PFX "Sending CM DREQ failed\n");
959 		}
960 	}
961 }
962 
963 static int srp_exit_cmd_priv(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
964 {
965 	struct srp_target_port *target = host_to_target(shost);
966 	struct srp_device *dev = target->srp_host->srp_dev;
967 	struct ib_device *ibdev = dev->dev;
968 	struct srp_request *req = scsi_cmd_priv(cmd);
969 
970 	kfree(req->fr_list);
971 	if (req->indirect_dma_addr) {
972 		ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
973 				    target->indirect_size,
974 				    DMA_TO_DEVICE);
975 	}
976 	kfree(req->indirect_desc);
977 
978 	return 0;
979 }
980 
981 static int srp_init_cmd_priv(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
982 {
983 	struct srp_target_port *target = host_to_target(shost);
984 	struct srp_device *srp_dev = target->srp_host->srp_dev;
985 	struct ib_device *ibdev = srp_dev->dev;
986 	struct srp_request *req = scsi_cmd_priv(cmd);
987 	dma_addr_t dma_addr;
988 	int ret = -ENOMEM;
989 
990 	if (srp_dev->use_fast_reg) {
991 		req->fr_list = kmalloc_array(target->mr_per_cmd, sizeof(void *),
992 					GFP_KERNEL);
993 		if (!req->fr_list)
994 			goto out;
995 	}
996 	req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
997 	if (!req->indirect_desc)
998 		goto out;
999 
1000 	dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
1001 				     target->indirect_size,
1002 				     DMA_TO_DEVICE);
1003 	if (ib_dma_mapping_error(ibdev, dma_addr)) {
1004 		srp_exit_cmd_priv(shost, cmd);
1005 		goto out;
1006 	}
1007 
1008 	req->indirect_dma_addr = dma_addr;
1009 	ret = 0;
1010 
1011 out:
1012 	return ret;
1013 }
1014 
1015 /**
1016  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
1017  * @shost: SCSI host whose attributes to remove from sysfs.
1018  *
1019  * Note: Any attributes defined in the host template and that did not exist
1020  * before invocation of this function will be ignored.
1021  */
1022 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
1023 {
1024 	const struct attribute_group **g;
1025 	struct attribute **attr;
1026 
1027 	for (g = shost->hostt->shost_groups; *g; ++g) {
1028 		for (attr = (*g)->attrs; *attr; ++attr) {
1029 			struct device_attribute *dev_attr =
1030 				container_of(*attr, typeof(*dev_attr), attr);
1031 
1032 			device_remove_file(&shost->shost_dev, dev_attr);
1033 		}
1034 	}
1035 }
1036 
1037 static void srp_remove_target(struct srp_target_port *target)
1038 {
1039 	struct srp_rdma_ch *ch;
1040 	int i;
1041 
1042 	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
1043 
1044 	srp_del_scsi_host_attr(target->scsi_host);
1045 	srp_rport_get(target->rport);
1046 	srp_remove_host(target->scsi_host);
1047 	scsi_remove_host(target->scsi_host);
1048 	srp_stop_rport_timers(target->rport);
1049 	srp_disconnect_target(target);
1050 	kobj_ns_drop(KOBJ_NS_TYPE_NET, target->net);
1051 	for (i = 0; i < target->ch_count; i++) {
1052 		ch = &target->ch[i];
1053 		srp_free_ch_ib(target, ch);
1054 	}
1055 	cancel_work_sync(&target->tl_err_work);
1056 	srp_rport_put(target->rport);
1057 	kfree(target->ch);
1058 	target->ch = NULL;
1059 
1060 	spin_lock(&target->srp_host->target_lock);
1061 	list_del(&target->list);
1062 	spin_unlock(&target->srp_host->target_lock);
1063 
1064 	scsi_host_put(target->scsi_host);
1065 }
1066 
1067 static void srp_remove_work(struct work_struct *work)
1068 {
1069 	struct srp_target_port *target =
1070 		container_of(work, struct srp_target_port, remove_work);
1071 
1072 	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
1073 
1074 	srp_remove_target(target);
1075 }
1076 
1077 static void srp_rport_delete(struct srp_rport *rport)
1078 {
1079 	struct srp_target_port *target = rport->lld_data;
1080 
1081 	srp_queue_remove_work(target);
1082 }
1083 
1084 /**
1085  * srp_connected_ch() - number of connected channels
1086  * @target: SRP target port.
1087  */
1088 static int srp_connected_ch(struct srp_target_port *target)
1089 {
1090 	int i, c = 0;
1091 
1092 	for (i = 0; i < target->ch_count; i++)
1093 		c += target->ch[i].connected;
1094 
1095 	return c;
1096 }
1097 
1098 static int srp_connect_ch(struct srp_rdma_ch *ch, uint32_t max_iu_len,
1099 			  bool multich)
1100 {
1101 	struct srp_target_port *target = ch->target;
1102 	int ret;
1103 
1104 	WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
1105 
1106 	ret = srp_lookup_path(ch);
1107 	if (ret)
1108 		goto out;
1109 
1110 	while (1) {
1111 		init_completion(&ch->done);
1112 		ret = srp_send_req(ch, max_iu_len, multich);
1113 		if (ret)
1114 			goto out;
1115 		ret = wait_for_completion_interruptible(&ch->done);
1116 		if (ret < 0)
1117 			goto out;
1118 
1119 		/*
1120 		 * The CM event handling code will set status to
1121 		 * SRP_PORT_REDIRECT if we get a port redirect REJ
1122 		 * back, or SRP_DLID_REDIRECT if we get a lid/qp
1123 		 * redirect REJ back.
1124 		 */
1125 		ret = ch->status;
1126 		switch (ret) {
1127 		case 0:
1128 			ch->connected = true;
1129 			goto out;
1130 
1131 		case SRP_PORT_REDIRECT:
1132 			ret = srp_lookup_path(ch);
1133 			if (ret)
1134 				goto out;
1135 			break;
1136 
1137 		case SRP_DLID_REDIRECT:
1138 			break;
1139 
1140 		case SRP_STALE_CONN:
1141 			shost_printk(KERN_ERR, target->scsi_host, PFX
1142 				     "giving up on stale connection\n");
1143 			ret = -ECONNRESET;
1144 			goto out;
1145 
1146 		default:
1147 			goto out;
1148 		}
1149 	}
1150 
1151 out:
1152 	return ret <= 0 ? ret : -ENODEV;
1153 }
1154 
1155 static void srp_inv_rkey_err_done(struct ib_cq *cq, struct ib_wc *wc)
1156 {
1157 	srp_handle_qp_err(cq, wc, "INV RKEY");
1158 }
1159 
1160 static int srp_inv_rkey(struct srp_request *req, struct srp_rdma_ch *ch,
1161 		u32 rkey)
1162 {
1163 	struct ib_send_wr wr = {
1164 		.opcode		    = IB_WR_LOCAL_INV,
1165 		.next		    = NULL,
1166 		.num_sge	    = 0,
1167 		.send_flags	    = 0,
1168 		.ex.invalidate_rkey = rkey,
1169 	};
1170 
1171 	wr.wr_cqe = &req->reg_cqe;
1172 	req->reg_cqe.done = srp_inv_rkey_err_done;
1173 	return ib_post_send(ch->qp, &wr, NULL);
1174 }
1175 
1176 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1177 			   struct srp_rdma_ch *ch,
1178 			   struct srp_request *req)
1179 {
1180 	struct srp_target_port *target = ch->target;
1181 	struct srp_device *dev = target->srp_host->srp_dev;
1182 	struct ib_device *ibdev = dev->dev;
1183 	int i, res;
1184 
1185 	if (!scsi_sglist(scmnd) ||
1186 	    (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1187 	     scmnd->sc_data_direction != DMA_FROM_DEVICE))
1188 		return;
1189 
1190 	if (dev->use_fast_reg) {
1191 		struct srp_fr_desc **pfr;
1192 
1193 		for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1194 			res = srp_inv_rkey(req, ch, (*pfr)->mr->rkey);
1195 			if (res < 0) {
1196 				shost_printk(KERN_ERR, target->scsi_host, PFX
1197 				  "Queueing INV WR for rkey %#x failed (%d)\n",
1198 				  (*pfr)->mr->rkey, res);
1199 				queue_work(system_long_wq,
1200 					   &target->tl_err_work);
1201 			}
1202 		}
1203 		if (req->nmdesc)
1204 			srp_fr_pool_put(ch->fr_pool, req->fr_list,
1205 					req->nmdesc);
1206 	}
1207 
1208 	ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1209 			scmnd->sc_data_direction);
1210 }
1211 
1212 /**
1213  * srp_claim_req - Take ownership of the scmnd associated with a request.
1214  * @ch: SRP RDMA channel.
1215  * @req: SRP request.
1216  * @sdev: If not NULL, only take ownership for this SCSI device.
1217  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1218  *         ownership of @req->scmnd if it equals @scmnd.
1219  *
1220  * Return value:
1221  * Either NULL or a pointer to the SCSI command the caller became owner of.
1222  */
1223 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1224 				       struct srp_request *req,
1225 				       struct scsi_device *sdev,
1226 				       struct scsi_cmnd *scmnd)
1227 {
1228 	unsigned long flags;
1229 
1230 	spin_lock_irqsave(&ch->lock, flags);
1231 	if (req->scmnd &&
1232 	    (!sdev || req->scmnd->device == sdev) &&
1233 	    (!scmnd || req->scmnd == scmnd)) {
1234 		scmnd = req->scmnd;
1235 		req->scmnd = NULL;
1236 	} else {
1237 		scmnd = NULL;
1238 	}
1239 	spin_unlock_irqrestore(&ch->lock, flags);
1240 
1241 	return scmnd;
1242 }
1243 
1244 /**
1245  * srp_free_req() - Unmap data and adjust ch->req_lim.
1246  * @ch:     SRP RDMA channel.
1247  * @req:    Request to be freed.
1248  * @scmnd:  SCSI command associated with @req.
1249  * @req_lim_delta: Amount to be added to @target->req_lim.
1250  */
1251 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1252 			 struct scsi_cmnd *scmnd, s32 req_lim_delta)
1253 {
1254 	unsigned long flags;
1255 
1256 	srp_unmap_data(scmnd, ch, req);
1257 
1258 	spin_lock_irqsave(&ch->lock, flags);
1259 	ch->req_lim += req_lim_delta;
1260 	spin_unlock_irqrestore(&ch->lock, flags);
1261 }
1262 
1263 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1264 			   struct scsi_device *sdev, int result)
1265 {
1266 	struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1267 
1268 	if (scmnd) {
1269 		srp_free_req(ch, req, scmnd, 0);
1270 		scmnd->result = result;
1271 		scsi_done(scmnd);
1272 	}
1273 }
1274 
1275 struct srp_terminate_context {
1276 	struct srp_target_port *srp_target;
1277 	int scsi_result;
1278 };
1279 
1280 static bool srp_terminate_cmd(struct scsi_cmnd *scmnd, void *context_ptr)
1281 {
1282 	struct srp_terminate_context *context = context_ptr;
1283 	struct srp_target_port *target = context->srp_target;
1284 	u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmnd));
1285 	struct srp_rdma_ch *ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
1286 	struct srp_request *req = scsi_cmd_priv(scmnd);
1287 
1288 	srp_finish_req(ch, req, NULL, context->scsi_result);
1289 
1290 	return true;
1291 }
1292 
1293 static void srp_terminate_io(struct srp_rport *rport)
1294 {
1295 	struct srp_target_port *target = rport->lld_data;
1296 	struct srp_terminate_context context = { .srp_target = target,
1297 		.scsi_result = DID_TRANSPORT_FAILFAST << 16 };
1298 
1299 	scsi_host_busy_iter(target->scsi_host, srp_terminate_cmd, &context);
1300 }
1301 
1302 /* Calculate maximum initiator to target information unit length. */
1303 static uint32_t srp_max_it_iu_len(int cmd_sg_cnt, bool use_imm_data,
1304 				  uint32_t max_it_iu_size)
1305 {
1306 	uint32_t max_iu_len = sizeof(struct srp_cmd) + SRP_MAX_ADD_CDB_LEN +
1307 		sizeof(struct srp_indirect_buf) +
1308 		cmd_sg_cnt * sizeof(struct srp_direct_buf);
1309 
1310 	if (use_imm_data)
1311 		max_iu_len = max(max_iu_len, SRP_IMM_DATA_OFFSET +
1312 				 srp_max_imm_data);
1313 
1314 	if (max_it_iu_size)
1315 		max_iu_len = min(max_iu_len, max_it_iu_size);
1316 
1317 	pr_debug("max_iu_len = %d\n", max_iu_len);
1318 
1319 	return max_iu_len;
1320 }
1321 
1322 /*
1323  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1324  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1325  * srp_reset_device() or srp_reset_host() calls will occur while this function
1326  * is in progress. One way to realize that is not to call this function
1327  * directly but to call srp_reconnect_rport() instead since that last function
1328  * serializes calls of this function via rport->mutex and also blocks
1329  * srp_queuecommand() calls before invoking this function.
1330  */
1331 static int srp_rport_reconnect(struct srp_rport *rport)
1332 {
1333 	struct srp_target_port *target = rport->lld_data;
1334 	struct srp_rdma_ch *ch;
1335 	uint32_t max_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
1336 						srp_use_imm_data,
1337 						target->max_it_iu_size);
1338 	int i, j, ret = 0;
1339 	bool multich = false;
1340 
1341 	srp_disconnect_target(target);
1342 
1343 	if (target->state == SRP_TARGET_SCANNING)
1344 		return -ENODEV;
1345 
1346 	/*
1347 	 * Now get a new local CM ID so that we avoid confusing the target in
1348 	 * case things are really fouled up. Doing so also ensures that all CM
1349 	 * callbacks will have finished before a new QP is allocated.
1350 	 */
1351 	for (i = 0; i < target->ch_count; i++) {
1352 		ch = &target->ch[i];
1353 		ret += srp_new_cm_id(ch);
1354 	}
1355 	{
1356 		struct srp_terminate_context context = {
1357 			.srp_target = target, .scsi_result = DID_RESET << 16};
1358 
1359 		scsi_host_busy_iter(target->scsi_host, srp_terminate_cmd,
1360 				    &context);
1361 	}
1362 	for (i = 0; i < target->ch_count; i++) {
1363 		ch = &target->ch[i];
1364 		/*
1365 		 * Whether or not creating a new CM ID succeeded, create a new
1366 		 * QP. This guarantees that all completion callback function
1367 		 * invocations have finished before request resetting starts.
1368 		 */
1369 		ret += srp_create_ch_ib(ch);
1370 
1371 		INIT_LIST_HEAD(&ch->free_tx);
1372 		for (j = 0; j < target->queue_size; ++j)
1373 			list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1374 	}
1375 
1376 	target->qp_in_error = false;
1377 
1378 	for (i = 0; i < target->ch_count; i++) {
1379 		ch = &target->ch[i];
1380 		if (ret)
1381 			break;
1382 		ret = srp_connect_ch(ch, max_iu_len, multich);
1383 		multich = true;
1384 	}
1385 
1386 	if (ret == 0)
1387 		shost_printk(KERN_INFO, target->scsi_host,
1388 			     PFX "reconnect succeeded\n");
1389 
1390 	return ret;
1391 }
1392 
1393 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1394 			 unsigned int dma_len, u32 rkey)
1395 {
1396 	struct srp_direct_buf *desc = state->desc;
1397 
1398 	WARN_ON_ONCE(!dma_len);
1399 
1400 	desc->va = cpu_to_be64(dma_addr);
1401 	desc->key = cpu_to_be32(rkey);
1402 	desc->len = cpu_to_be32(dma_len);
1403 
1404 	state->total_len += dma_len;
1405 	state->desc++;
1406 	state->ndesc++;
1407 }
1408 
1409 static void srp_reg_mr_err_done(struct ib_cq *cq, struct ib_wc *wc)
1410 {
1411 	srp_handle_qp_err(cq, wc, "FAST REG");
1412 }
1413 
1414 /*
1415  * Map up to sg_nents elements of state->sg where *sg_offset_p is the offset
1416  * where to start in the first element. If sg_offset_p != NULL then
1417  * *sg_offset_p is updated to the offset in state->sg[retval] of the first
1418  * byte that has not yet been mapped.
1419  */
1420 static int srp_map_finish_fr(struct srp_map_state *state,
1421 			     struct srp_request *req,
1422 			     struct srp_rdma_ch *ch, int sg_nents,
1423 			     unsigned int *sg_offset_p)
1424 {
1425 	struct srp_target_port *target = ch->target;
1426 	struct srp_device *dev = target->srp_host->srp_dev;
1427 	struct ib_reg_wr wr;
1428 	struct srp_fr_desc *desc;
1429 	u32 rkey;
1430 	int n, err;
1431 
1432 	if (state->fr.next >= state->fr.end) {
1433 		shost_printk(KERN_ERR, ch->target->scsi_host,
1434 			     PFX "Out of MRs (mr_per_cmd = %d)\n",
1435 			     ch->target->mr_per_cmd);
1436 		return -ENOMEM;
1437 	}
1438 
1439 	WARN_ON_ONCE(!dev->use_fast_reg);
1440 
1441 	if (sg_nents == 1 && target->global_rkey) {
1442 		unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1443 
1444 		srp_map_desc(state, sg_dma_address(state->sg) + sg_offset,
1445 			     sg_dma_len(state->sg) - sg_offset,
1446 			     target->global_rkey);
1447 		if (sg_offset_p)
1448 			*sg_offset_p = 0;
1449 		return 1;
1450 	}
1451 
1452 	desc = srp_fr_pool_get(ch->fr_pool);
1453 	if (!desc)
1454 		return -ENOMEM;
1455 
1456 	rkey = ib_inc_rkey(desc->mr->rkey);
1457 	ib_update_fast_reg_key(desc->mr, rkey);
1458 
1459 	n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, sg_offset_p,
1460 			 dev->mr_page_size);
1461 	if (unlikely(n < 0)) {
1462 		srp_fr_pool_put(ch->fr_pool, &desc, 1);
1463 		pr_debug("%s: ib_map_mr_sg(%d, %d) returned %d.\n",
1464 			 dev_name(&req->scmnd->device->sdev_gendev), sg_nents,
1465 			 sg_offset_p ? *sg_offset_p : -1, n);
1466 		return n;
1467 	}
1468 
1469 	WARN_ON_ONCE(desc->mr->length == 0);
1470 
1471 	req->reg_cqe.done = srp_reg_mr_err_done;
1472 
1473 	wr.wr.next = NULL;
1474 	wr.wr.opcode = IB_WR_REG_MR;
1475 	wr.wr.wr_cqe = &req->reg_cqe;
1476 	wr.wr.num_sge = 0;
1477 	wr.wr.send_flags = 0;
1478 	wr.mr = desc->mr;
1479 	wr.key = desc->mr->rkey;
1480 	wr.access = (IB_ACCESS_LOCAL_WRITE |
1481 		     IB_ACCESS_REMOTE_READ |
1482 		     IB_ACCESS_REMOTE_WRITE);
1483 
1484 	*state->fr.next++ = desc;
1485 	state->nmdesc++;
1486 
1487 	srp_map_desc(state, desc->mr->iova,
1488 		     desc->mr->length, desc->mr->rkey);
1489 
1490 	err = ib_post_send(ch->qp, &wr.wr, NULL);
1491 	if (unlikely(err)) {
1492 		WARN_ON_ONCE(err == -ENOMEM);
1493 		return err;
1494 	}
1495 
1496 	return n;
1497 }
1498 
1499 static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1500 			 struct srp_request *req, struct scatterlist *scat,
1501 			 int count)
1502 {
1503 	unsigned int sg_offset = 0;
1504 
1505 	state->fr.next = req->fr_list;
1506 	state->fr.end = req->fr_list + ch->target->mr_per_cmd;
1507 	state->sg = scat;
1508 
1509 	if (count == 0)
1510 		return 0;
1511 
1512 	while (count) {
1513 		int i, n;
1514 
1515 		n = srp_map_finish_fr(state, req, ch, count, &sg_offset);
1516 		if (unlikely(n < 0))
1517 			return n;
1518 
1519 		count -= n;
1520 		for (i = 0; i < n; i++)
1521 			state->sg = sg_next(state->sg);
1522 	}
1523 
1524 	return 0;
1525 }
1526 
1527 static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch,
1528 			  struct srp_request *req, struct scatterlist *scat,
1529 			  int count)
1530 {
1531 	struct srp_target_port *target = ch->target;
1532 	struct scatterlist *sg;
1533 	int i;
1534 
1535 	for_each_sg(scat, sg, count, i) {
1536 		srp_map_desc(state, sg_dma_address(sg), sg_dma_len(sg),
1537 			     target->global_rkey);
1538 	}
1539 
1540 	return 0;
1541 }
1542 
1543 /*
1544  * Register the indirect data buffer descriptor with the HCA.
1545  *
1546  * Note: since the indirect data buffer descriptor has been allocated with
1547  * kmalloc() it is guaranteed that this buffer is a physically contiguous
1548  * memory buffer.
1549  */
1550 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req,
1551 		       void **next_mr, void **end_mr, u32 idb_len,
1552 		       __be32 *idb_rkey)
1553 {
1554 	struct srp_target_port *target = ch->target;
1555 	struct srp_device *dev = target->srp_host->srp_dev;
1556 	struct srp_map_state state;
1557 	struct srp_direct_buf idb_desc;
1558 	struct scatterlist idb_sg[1];
1559 	int ret;
1560 
1561 	memset(&state, 0, sizeof(state));
1562 	memset(&idb_desc, 0, sizeof(idb_desc));
1563 	state.gen.next = next_mr;
1564 	state.gen.end = end_mr;
1565 	state.desc = &idb_desc;
1566 	state.base_dma_addr = req->indirect_dma_addr;
1567 	state.dma_len = idb_len;
1568 
1569 	if (dev->use_fast_reg) {
1570 		state.sg = idb_sg;
1571 		sg_init_one(idb_sg, req->indirect_desc, idb_len);
1572 		idb_sg->dma_address = req->indirect_dma_addr; /* hack! */
1573 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1574 		idb_sg->dma_length = idb_sg->length;	      /* hack^2 */
1575 #endif
1576 		ret = srp_map_finish_fr(&state, req, ch, 1, NULL);
1577 		if (ret < 0)
1578 			return ret;
1579 		WARN_ON_ONCE(ret < 1);
1580 	} else {
1581 		return -EINVAL;
1582 	}
1583 
1584 	*idb_rkey = idb_desc.key;
1585 
1586 	return 0;
1587 }
1588 
1589 static void srp_check_mapping(struct srp_map_state *state,
1590 			      struct srp_rdma_ch *ch, struct srp_request *req,
1591 			      struct scatterlist *scat, int count)
1592 {
1593 	struct srp_device *dev = ch->target->srp_host->srp_dev;
1594 	struct srp_fr_desc **pfr;
1595 	u64 desc_len = 0, mr_len = 0;
1596 	int i;
1597 
1598 	for (i = 0; i < state->ndesc; i++)
1599 		desc_len += be32_to_cpu(req->indirect_desc[i].len);
1600 	if (dev->use_fast_reg)
1601 		for (i = 0, pfr = req->fr_list; i < state->nmdesc; i++, pfr++)
1602 			mr_len += (*pfr)->mr->length;
1603 	if (desc_len != scsi_bufflen(req->scmnd) ||
1604 	    mr_len > scsi_bufflen(req->scmnd))
1605 		pr_err("Inconsistent: scsi len %d <> desc len %lld <> mr len %lld; ndesc %d; nmdesc = %d\n",
1606 		       scsi_bufflen(req->scmnd), desc_len, mr_len,
1607 		       state->ndesc, state->nmdesc);
1608 }
1609 
1610 /**
1611  * srp_map_data() - map SCSI data buffer onto an SRP request
1612  * @scmnd: SCSI command to map
1613  * @ch: SRP RDMA channel
1614  * @req: SRP request
1615  *
1616  * Returns the length in bytes of the SRP_CMD IU or a negative value if
1617  * mapping failed. The size of any immediate data is not included in the
1618  * return value.
1619  */
1620 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1621 			struct srp_request *req)
1622 {
1623 	struct srp_target_port *target = ch->target;
1624 	struct scatterlist *scat, *sg;
1625 	struct srp_cmd *cmd = req->cmd->buf;
1626 	int i, len, nents, count, ret;
1627 	struct srp_device *dev;
1628 	struct ib_device *ibdev;
1629 	struct srp_map_state state;
1630 	struct srp_indirect_buf *indirect_hdr;
1631 	u64 data_len;
1632 	u32 idb_len, table_len;
1633 	__be32 idb_rkey;
1634 	u8 fmt;
1635 
1636 	req->cmd->num_sge = 1;
1637 
1638 	if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1639 		return sizeof(struct srp_cmd) + cmd->add_cdb_len;
1640 
1641 	if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1642 	    scmnd->sc_data_direction != DMA_TO_DEVICE) {
1643 		shost_printk(KERN_WARNING, target->scsi_host,
1644 			     PFX "Unhandled data direction %d\n",
1645 			     scmnd->sc_data_direction);
1646 		return -EINVAL;
1647 	}
1648 
1649 	nents = scsi_sg_count(scmnd);
1650 	scat  = scsi_sglist(scmnd);
1651 	data_len = scsi_bufflen(scmnd);
1652 
1653 	dev = target->srp_host->srp_dev;
1654 	ibdev = dev->dev;
1655 
1656 	count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1657 	if (unlikely(count == 0))
1658 		return -EIO;
1659 
1660 	if (ch->use_imm_data &&
1661 	    count <= ch->max_imm_sge &&
1662 	    SRP_IMM_DATA_OFFSET + data_len <= ch->max_it_iu_len &&
1663 	    scmnd->sc_data_direction == DMA_TO_DEVICE) {
1664 		struct srp_imm_buf *buf;
1665 		struct ib_sge *sge = &req->cmd->sge[1];
1666 
1667 		fmt = SRP_DATA_DESC_IMM;
1668 		len = SRP_IMM_DATA_OFFSET;
1669 		req->nmdesc = 0;
1670 		buf = (void *)cmd->add_data + cmd->add_cdb_len;
1671 		buf->len = cpu_to_be32(data_len);
1672 		WARN_ON_ONCE((void *)(buf + 1) > (void *)cmd + len);
1673 		for_each_sg(scat, sg, count, i) {
1674 			sge[i].addr   = sg_dma_address(sg);
1675 			sge[i].length = sg_dma_len(sg);
1676 			sge[i].lkey   = target->lkey;
1677 		}
1678 		req->cmd->num_sge += count;
1679 		goto map_complete;
1680 	}
1681 
1682 	fmt = SRP_DATA_DESC_DIRECT;
1683 	len = sizeof(struct srp_cmd) + cmd->add_cdb_len +
1684 		sizeof(struct srp_direct_buf);
1685 
1686 	if (count == 1 && target->global_rkey) {
1687 		/*
1688 		 * The midlayer only generated a single gather/scatter
1689 		 * entry, or DMA mapping coalesced everything to a
1690 		 * single entry.  So a direct descriptor along with
1691 		 * the DMA MR suffices.
1692 		 */
1693 		struct srp_direct_buf *buf;
1694 
1695 		buf = (void *)cmd->add_data + cmd->add_cdb_len;
1696 		buf->va  = cpu_to_be64(sg_dma_address(scat));
1697 		buf->key = cpu_to_be32(target->global_rkey);
1698 		buf->len = cpu_to_be32(sg_dma_len(scat));
1699 
1700 		req->nmdesc = 0;
1701 		goto map_complete;
1702 	}
1703 
1704 	/*
1705 	 * We have more than one scatter/gather entry, so build our indirect
1706 	 * descriptor table, trying to merge as many entries as we can.
1707 	 */
1708 	indirect_hdr = (void *)cmd->add_data + cmd->add_cdb_len;
1709 
1710 	ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1711 				   target->indirect_size, DMA_TO_DEVICE);
1712 
1713 	memset(&state, 0, sizeof(state));
1714 	state.desc = req->indirect_desc;
1715 	if (dev->use_fast_reg)
1716 		ret = srp_map_sg_fr(&state, ch, req, scat, count);
1717 	else
1718 		ret = srp_map_sg_dma(&state, ch, req, scat, count);
1719 	req->nmdesc = state.nmdesc;
1720 	if (ret < 0)
1721 		goto unmap;
1722 
1723 	{
1724 		DEFINE_DYNAMIC_DEBUG_METADATA(ddm,
1725 			"Memory mapping consistency check");
1726 		if (DYNAMIC_DEBUG_BRANCH(ddm))
1727 			srp_check_mapping(&state, ch, req, scat, count);
1728 	}
1729 
1730 	/* We've mapped the request, now pull as much of the indirect
1731 	 * descriptor table as we can into the command buffer. If this
1732 	 * target is not using an external indirect table, we are
1733 	 * guaranteed to fit into the command, as the SCSI layer won't
1734 	 * give us more S/G entries than we allow.
1735 	 */
1736 	if (state.ndesc == 1) {
1737 		/*
1738 		 * Memory registration collapsed the sg-list into one entry,
1739 		 * so use a direct descriptor.
1740 		 */
1741 		struct srp_direct_buf *buf;
1742 
1743 		buf = (void *)cmd->add_data + cmd->add_cdb_len;
1744 		*buf = req->indirect_desc[0];
1745 		goto map_complete;
1746 	}
1747 
1748 	if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1749 						!target->allow_ext_sg)) {
1750 		shost_printk(KERN_ERR, target->scsi_host,
1751 			     "Could not fit S/G list into SRP_CMD\n");
1752 		ret = -EIO;
1753 		goto unmap;
1754 	}
1755 
1756 	count = min(state.ndesc, target->cmd_sg_cnt);
1757 	table_len = state.ndesc * sizeof (struct srp_direct_buf);
1758 	idb_len = sizeof(struct srp_indirect_buf) + table_len;
1759 
1760 	fmt = SRP_DATA_DESC_INDIRECT;
1761 	len = sizeof(struct srp_cmd) + cmd->add_cdb_len +
1762 		sizeof(struct srp_indirect_buf);
1763 	len += count * sizeof (struct srp_direct_buf);
1764 
1765 	memcpy(indirect_hdr->desc_list, req->indirect_desc,
1766 	       count * sizeof (struct srp_direct_buf));
1767 
1768 	if (!target->global_rkey) {
1769 		ret = srp_map_idb(ch, req, state.gen.next, state.gen.end,
1770 				  idb_len, &idb_rkey);
1771 		if (ret < 0)
1772 			goto unmap;
1773 		req->nmdesc++;
1774 	} else {
1775 		idb_rkey = cpu_to_be32(target->global_rkey);
1776 	}
1777 
1778 	indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1779 	indirect_hdr->table_desc.key = idb_rkey;
1780 	indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1781 	indirect_hdr->len = cpu_to_be32(state.total_len);
1782 
1783 	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1784 		cmd->data_out_desc_cnt = count;
1785 	else
1786 		cmd->data_in_desc_cnt = count;
1787 
1788 	ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1789 				      DMA_TO_DEVICE);
1790 
1791 map_complete:
1792 	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1793 		cmd->buf_fmt = fmt << 4;
1794 	else
1795 		cmd->buf_fmt = fmt;
1796 
1797 	return len;
1798 
1799 unmap:
1800 	srp_unmap_data(scmnd, ch, req);
1801 	if (ret == -ENOMEM && req->nmdesc >= target->mr_pool_size)
1802 		ret = -E2BIG;
1803 	return ret;
1804 }
1805 
1806 /*
1807  * Return an IU and possible credit to the free pool
1808  */
1809 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1810 			  enum srp_iu_type iu_type)
1811 {
1812 	unsigned long flags;
1813 
1814 	spin_lock_irqsave(&ch->lock, flags);
1815 	list_add(&iu->list, &ch->free_tx);
1816 	if (iu_type != SRP_IU_RSP)
1817 		++ch->req_lim;
1818 	spin_unlock_irqrestore(&ch->lock, flags);
1819 }
1820 
1821 /*
1822  * Must be called with ch->lock held to protect req_lim and free_tx.
1823  * If IU is not sent, it must be returned using srp_put_tx_iu().
1824  *
1825  * Note:
1826  * An upper limit for the number of allocated information units for each
1827  * request type is:
1828  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1829  *   more than Scsi_Host.can_queue requests.
1830  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1831  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1832  *   one unanswered SRP request to an initiator.
1833  */
1834 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1835 				      enum srp_iu_type iu_type)
1836 {
1837 	struct srp_target_port *target = ch->target;
1838 	s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1839 	struct srp_iu *iu;
1840 
1841 	lockdep_assert_held(&ch->lock);
1842 
1843 	ib_process_cq_direct(ch->send_cq, -1);
1844 
1845 	if (list_empty(&ch->free_tx))
1846 		return NULL;
1847 
1848 	/* Initiator responses to target requests do not consume credits */
1849 	if (iu_type != SRP_IU_RSP) {
1850 		if (ch->req_lim <= rsv) {
1851 			++target->zero_req_lim;
1852 			return NULL;
1853 		}
1854 
1855 		--ch->req_lim;
1856 	}
1857 
1858 	iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1859 	list_del(&iu->list);
1860 	return iu;
1861 }
1862 
1863 /*
1864  * Note: if this function is called from inside ib_drain_sq() then it will
1865  * be called without ch->lock being held. If ib_drain_sq() dequeues a WQE
1866  * with status IB_WC_SUCCESS then that's a bug.
1867  */
1868 static void srp_send_done(struct ib_cq *cq, struct ib_wc *wc)
1869 {
1870 	struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
1871 	struct srp_rdma_ch *ch = cq->cq_context;
1872 
1873 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1874 		srp_handle_qp_err(cq, wc, "SEND");
1875 		return;
1876 	}
1877 
1878 	lockdep_assert_held(&ch->lock);
1879 
1880 	list_add(&iu->list, &ch->free_tx);
1881 }
1882 
1883 /**
1884  * srp_post_send() - send an SRP information unit
1885  * @ch: RDMA channel over which to send the information unit.
1886  * @iu: Information unit to send.
1887  * @len: Length of the information unit excluding immediate data.
1888  */
1889 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1890 {
1891 	struct srp_target_port *target = ch->target;
1892 	struct ib_send_wr wr;
1893 
1894 	if (WARN_ON_ONCE(iu->num_sge > SRP_MAX_SGE))
1895 		return -EINVAL;
1896 
1897 	iu->sge[0].addr   = iu->dma;
1898 	iu->sge[0].length = len;
1899 	iu->sge[0].lkey   = target->lkey;
1900 
1901 	iu->cqe.done = srp_send_done;
1902 
1903 	wr.next       = NULL;
1904 	wr.wr_cqe     = &iu->cqe;
1905 	wr.sg_list    = &iu->sge[0];
1906 	wr.num_sge    = iu->num_sge;
1907 	wr.opcode     = IB_WR_SEND;
1908 	wr.send_flags = IB_SEND_SIGNALED;
1909 
1910 	return ib_post_send(ch->qp, &wr, NULL);
1911 }
1912 
1913 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1914 {
1915 	struct srp_target_port *target = ch->target;
1916 	struct ib_recv_wr wr;
1917 	struct ib_sge list;
1918 
1919 	list.addr   = iu->dma;
1920 	list.length = iu->size;
1921 	list.lkey   = target->lkey;
1922 
1923 	iu->cqe.done = srp_recv_done;
1924 
1925 	wr.next     = NULL;
1926 	wr.wr_cqe   = &iu->cqe;
1927 	wr.sg_list  = &list;
1928 	wr.num_sge  = 1;
1929 
1930 	return ib_post_recv(ch->qp, &wr, NULL);
1931 }
1932 
1933 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1934 {
1935 	struct srp_target_port *target = ch->target;
1936 	struct srp_request *req;
1937 	struct scsi_cmnd *scmnd;
1938 	unsigned long flags;
1939 
1940 	if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1941 		spin_lock_irqsave(&ch->lock, flags);
1942 		ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1943 		if (rsp->tag == ch->tsk_mgmt_tag) {
1944 			ch->tsk_mgmt_status = -1;
1945 			if (be32_to_cpu(rsp->resp_data_len) >= 4)
1946 				ch->tsk_mgmt_status = rsp->data[3];
1947 			complete(&ch->tsk_mgmt_done);
1948 		} else {
1949 			shost_printk(KERN_ERR, target->scsi_host,
1950 				     "Received tsk mgmt response too late for tag %#llx\n",
1951 				     rsp->tag);
1952 		}
1953 		spin_unlock_irqrestore(&ch->lock, flags);
1954 	} else {
1955 		scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1956 		if (scmnd) {
1957 			req = scsi_cmd_priv(scmnd);
1958 			scmnd = srp_claim_req(ch, req, NULL, scmnd);
1959 		}
1960 		if (!scmnd) {
1961 			shost_printk(KERN_ERR, target->scsi_host,
1962 				     "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1963 				     rsp->tag, ch - target->ch, ch->qp->qp_num);
1964 
1965 			spin_lock_irqsave(&ch->lock, flags);
1966 			ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1967 			spin_unlock_irqrestore(&ch->lock, flags);
1968 
1969 			return;
1970 		}
1971 		scmnd->result = rsp->status;
1972 
1973 		if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1974 			memcpy(scmnd->sense_buffer, rsp->data +
1975 			       be32_to_cpu(rsp->resp_data_len),
1976 			       min_t(int, be32_to_cpu(rsp->sense_data_len),
1977 				     SCSI_SENSE_BUFFERSIZE));
1978 		}
1979 
1980 		if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1981 			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1982 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1983 			scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1984 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1985 			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1986 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1987 			scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1988 
1989 		srp_free_req(ch, req, scmnd,
1990 			     be32_to_cpu(rsp->req_lim_delta));
1991 
1992 		scsi_done(scmnd);
1993 	}
1994 }
1995 
1996 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1997 			       void *rsp, int len)
1998 {
1999 	struct srp_target_port *target = ch->target;
2000 	struct ib_device *dev = target->srp_host->srp_dev->dev;
2001 	unsigned long flags;
2002 	struct srp_iu *iu;
2003 	int err;
2004 
2005 	spin_lock_irqsave(&ch->lock, flags);
2006 	ch->req_lim += req_delta;
2007 	iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
2008 	spin_unlock_irqrestore(&ch->lock, flags);
2009 
2010 	if (!iu) {
2011 		shost_printk(KERN_ERR, target->scsi_host, PFX
2012 			     "no IU available to send response\n");
2013 		return 1;
2014 	}
2015 
2016 	iu->num_sge = 1;
2017 	ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
2018 	memcpy(iu->buf, rsp, len);
2019 	ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
2020 
2021 	err = srp_post_send(ch, iu, len);
2022 	if (err) {
2023 		shost_printk(KERN_ERR, target->scsi_host, PFX
2024 			     "unable to post response: %d\n", err);
2025 		srp_put_tx_iu(ch, iu, SRP_IU_RSP);
2026 	}
2027 
2028 	return err;
2029 }
2030 
2031 static void srp_process_cred_req(struct srp_rdma_ch *ch,
2032 				 struct srp_cred_req *req)
2033 {
2034 	struct srp_cred_rsp rsp = {
2035 		.opcode = SRP_CRED_RSP,
2036 		.tag = req->tag,
2037 	};
2038 	s32 delta = be32_to_cpu(req->req_lim_delta);
2039 
2040 	if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
2041 		shost_printk(KERN_ERR, ch->target->scsi_host, PFX
2042 			     "problems processing SRP_CRED_REQ\n");
2043 }
2044 
2045 static void srp_process_aer_req(struct srp_rdma_ch *ch,
2046 				struct srp_aer_req *req)
2047 {
2048 	struct srp_target_port *target = ch->target;
2049 	struct srp_aer_rsp rsp = {
2050 		.opcode = SRP_AER_RSP,
2051 		.tag = req->tag,
2052 	};
2053 	s32 delta = be32_to_cpu(req->req_lim_delta);
2054 
2055 	shost_printk(KERN_ERR, target->scsi_host, PFX
2056 		     "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
2057 
2058 	if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
2059 		shost_printk(KERN_ERR, target->scsi_host, PFX
2060 			     "problems processing SRP_AER_REQ\n");
2061 }
2062 
2063 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc)
2064 {
2065 	struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
2066 	struct srp_rdma_ch *ch = cq->cq_context;
2067 	struct srp_target_port *target = ch->target;
2068 	struct ib_device *dev = target->srp_host->srp_dev->dev;
2069 	int res;
2070 	u8 opcode;
2071 
2072 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
2073 		srp_handle_qp_err(cq, wc, "RECV");
2074 		return;
2075 	}
2076 
2077 	ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
2078 				   DMA_FROM_DEVICE);
2079 
2080 	opcode = *(u8 *) iu->buf;
2081 
2082 	if (0) {
2083 		shost_printk(KERN_ERR, target->scsi_host,
2084 			     PFX "recv completion, opcode 0x%02x\n", opcode);
2085 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
2086 			       iu->buf, wc->byte_len, true);
2087 	}
2088 
2089 	switch (opcode) {
2090 	case SRP_RSP:
2091 		srp_process_rsp(ch, iu->buf);
2092 		break;
2093 
2094 	case SRP_CRED_REQ:
2095 		srp_process_cred_req(ch, iu->buf);
2096 		break;
2097 
2098 	case SRP_AER_REQ:
2099 		srp_process_aer_req(ch, iu->buf);
2100 		break;
2101 
2102 	case SRP_T_LOGOUT:
2103 		/* XXX Handle target logout */
2104 		shost_printk(KERN_WARNING, target->scsi_host,
2105 			     PFX "Got target logout request\n");
2106 		break;
2107 
2108 	default:
2109 		shost_printk(KERN_WARNING, target->scsi_host,
2110 			     PFX "Unhandled SRP opcode 0x%02x\n", opcode);
2111 		break;
2112 	}
2113 
2114 	ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
2115 				      DMA_FROM_DEVICE);
2116 
2117 	res = srp_post_recv(ch, iu);
2118 	if (res != 0)
2119 		shost_printk(KERN_ERR, target->scsi_host,
2120 			     PFX "Recv failed with error code %d\n", res);
2121 }
2122 
2123 /**
2124  * srp_tl_err_work() - handle a transport layer error
2125  * @work: Work structure embedded in an SRP target port.
2126  *
2127  * Note: This function may get invoked before the rport has been created,
2128  * hence the target->rport test.
2129  */
2130 static void srp_tl_err_work(struct work_struct *work)
2131 {
2132 	struct srp_target_port *target;
2133 
2134 	target = container_of(work, struct srp_target_port, tl_err_work);
2135 	if (target->rport)
2136 		srp_start_tl_fail_timers(target->rport);
2137 }
2138 
2139 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
2140 		const char *opname)
2141 {
2142 	struct srp_rdma_ch *ch = cq->cq_context;
2143 	struct srp_target_port *target = ch->target;
2144 
2145 	if (ch->connected && !target->qp_in_error) {
2146 		shost_printk(KERN_ERR, target->scsi_host,
2147 			     PFX "failed %s status %s (%d) for CQE %p\n",
2148 			     opname, ib_wc_status_msg(wc->status), wc->status,
2149 			     wc->wr_cqe);
2150 		queue_work(system_long_wq, &target->tl_err_work);
2151 	}
2152 	target->qp_in_error = true;
2153 }
2154 
2155 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
2156 {
2157 	struct request *rq = scsi_cmd_to_rq(scmnd);
2158 	struct srp_target_port *target = host_to_target(shost);
2159 	struct srp_rdma_ch *ch;
2160 	struct srp_request *req = scsi_cmd_priv(scmnd);
2161 	struct srp_iu *iu;
2162 	struct srp_cmd *cmd;
2163 	struct ib_device *dev;
2164 	unsigned long flags;
2165 	u32 tag;
2166 	int len, ret;
2167 
2168 	scmnd->result = srp_chkready(target->rport);
2169 	if (unlikely(scmnd->result))
2170 		goto err;
2171 
2172 	WARN_ON_ONCE(rq->tag < 0);
2173 	tag = blk_mq_unique_tag(rq);
2174 	ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2175 
2176 	spin_lock_irqsave(&ch->lock, flags);
2177 	iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2178 	spin_unlock_irqrestore(&ch->lock, flags);
2179 
2180 	if (!iu)
2181 		goto err;
2182 
2183 	dev = target->srp_host->srp_dev->dev;
2184 	ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_it_iu_len,
2185 				   DMA_TO_DEVICE);
2186 
2187 	cmd = iu->buf;
2188 	memset(cmd, 0, sizeof *cmd);
2189 
2190 	cmd->opcode = SRP_CMD;
2191 	int_to_scsilun(scmnd->device->lun, &cmd->lun);
2192 	cmd->tag    = tag;
2193 	memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2194 	if (unlikely(scmnd->cmd_len > sizeof(cmd->cdb))) {
2195 		cmd->add_cdb_len = round_up(scmnd->cmd_len - sizeof(cmd->cdb),
2196 					    4);
2197 		if (WARN_ON_ONCE(cmd->add_cdb_len > SRP_MAX_ADD_CDB_LEN))
2198 			goto err_iu;
2199 	}
2200 
2201 	req->scmnd    = scmnd;
2202 	req->cmd      = iu;
2203 
2204 	len = srp_map_data(scmnd, ch, req);
2205 	if (len < 0) {
2206 		shost_printk(KERN_ERR, target->scsi_host,
2207 			     PFX "Failed to map data (%d)\n", len);
2208 		/*
2209 		 * If we ran out of memory descriptors (-ENOMEM) because an
2210 		 * application is queuing many requests with more than
2211 		 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2212 		 * to reduce queue depth temporarily.
2213 		 */
2214 		scmnd->result = len == -ENOMEM ?
2215 			DID_OK << 16 | SAM_STAT_TASK_SET_FULL : DID_ERROR << 16;
2216 		goto err_iu;
2217 	}
2218 
2219 	ib_dma_sync_single_for_device(dev, iu->dma, ch->max_it_iu_len,
2220 				      DMA_TO_DEVICE);
2221 
2222 	if (srp_post_send(ch, iu, len)) {
2223 		shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2224 		scmnd->result = DID_ERROR << 16;
2225 		goto err_unmap;
2226 	}
2227 
2228 	return 0;
2229 
2230 err_unmap:
2231 	srp_unmap_data(scmnd, ch, req);
2232 
2233 err_iu:
2234 	srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2235 
2236 	/*
2237 	 * Avoid that the loops that iterate over the request ring can
2238 	 * encounter a dangling SCSI command pointer.
2239 	 */
2240 	req->scmnd = NULL;
2241 
2242 err:
2243 	if (scmnd->result) {
2244 		scsi_done(scmnd);
2245 		ret = 0;
2246 	} else {
2247 		ret = SCSI_MLQUEUE_HOST_BUSY;
2248 	}
2249 
2250 	return ret;
2251 }
2252 
2253 /*
2254  * Note: the resources allocated in this function are freed in
2255  * srp_free_ch_ib().
2256  */
2257 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2258 {
2259 	struct srp_target_port *target = ch->target;
2260 	int i;
2261 
2262 	ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2263 			      GFP_KERNEL);
2264 	if (!ch->rx_ring)
2265 		goto err_no_ring;
2266 	ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2267 			      GFP_KERNEL);
2268 	if (!ch->tx_ring)
2269 		goto err_no_ring;
2270 
2271 	for (i = 0; i < target->queue_size; ++i) {
2272 		ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2273 					      ch->max_ti_iu_len,
2274 					      GFP_KERNEL, DMA_FROM_DEVICE);
2275 		if (!ch->rx_ring[i])
2276 			goto err;
2277 	}
2278 
2279 	for (i = 0; i < target->queue_size; ++i) {
2280 		ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2281 					      ch->max_it_iu_len,
2282 					      GFP_KERNEL, DMA_TO_DEVICE);
2283 		if (!ch->tx_ring[i])
2284 			goto err;
2285 
2286 		list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2287 	}
2288 
2289 	return 0;
2290 
2291 err:
2292 	for (i = 0; i < target->queue_size; ++i) {
2293 		srp_free_iu(target->srp_host, ch->rx_ring[i]);
2294 		srp_free_iu(target->srp_host, ch->tx_ring[i]);
2295 	}
2296 
2297 
2298 err_no_ring:
2299 	kfree(ch->tx_ring);
2300 	ch->tx_ring = NULL;
2301 	kfree(ch->rx_ring);
2302 	ch->rx_ring = NULL;
2303 
2304 	return -ENOMEM;
2305 }
2306 
2307 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2308 {
2309 	uint64_t T_tr_ns, max_compl_time_ms;
2310 	uint32_t rq_tmo_jiffies;
2311 
2312 	/*
2313 	 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2314 	 * table 91), both the QP timeout and the retry count have to be set
2315 	 * for RC QP's during the RTR to RTS transition.
2316 	 */
2317 	WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2318 		     (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2319 
2320 	/*
2321 	 * Set target->rq_tmo_jiffies to one second more than the largest time
2322 	 * it can take before an error completion is generated. See also
2323 	 * C9-140..142 in the IBTA spec for more information about how to
2324 	 * convert the QP Local ACK Timeout value to nanoseconds.
2325 	 */
2326 	T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2327 	max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2328 	do_div(max_compl_time_ms, NSEC_PER_MSEC);
2329 	rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2330 
2331 	return rq_tmo_jiffies;
2332 }
2333 
2334 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2335 			       const struct srp_login_rsp *lrsp,
2336 			       struct srp_rdma_ch *ch)
2337 {
2338 	struct srp_target_port *target = ch->target;
2339 	struct ib_qp_attr *qp_attr = NULL;
2340 	int attr_mask = 0;
2341 	int ret = 0;
2342 	int i;
2343 
2344 	if (lrsp->opcode == SRP_LOGIN_RSP) {
2345 		ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2346 		ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2347 		ch->use_imm_data  = srp_use_imm_data &&
2348 			(lrsp->rsp_flags & SRP_LOGIN_RSP_IMMED_SUPP);
2349 		ch->max_it_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
2350 						      ch->use_imm_data,
2351 						      target->max_it_iu_size);
2352 		WARN_ON_ONCE(ch->max_it_iu_len >
2353 			     be32_to_cpu(lrsp->max_it_iu_len));
2354 
2355 		if (ch->use_imm_data)
2356 			shost_printk(KERN_DEBUG, target->scsi_host,
2357 				     PFX "using immediate data\n");
2358 
2359 		/*
2360 		 * Reserve credits for task management so we don't
2361 		 * bounce requests back to the SCSI mid-layer.
2362 		 */
2363 		target->scsi_host->can_queue
2364 			= min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2365 			      target->scsi_host->can_queue);
2366 		target->scsi_host->cmd_per_lun
2367 			= min_t(int, target->scsi_host->can_queue,
2368 				target->scsi_host->cmd_per_lun);
2369 	} else {
2370 		shost_printk(KERN_WARNING, target->scsi_host,
2371 			     PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2372 		ret = -ECONNRESET;
2373 		goto error;
2374 	}
2375 
2376 	if (!ch->rx_ring) {
2377 		ret = srp_alloc_iu_bufs(ch);
2378 		if (ret)
2379 			goto error;
2380 	}
2381 
2382 	for (i = 0; i < target->queue_size; i++) {
2383 		struct srp_iu *iu = ch->rx_ring[i];
2384 
2385 		ret = srp_post_recv(ch, iu);
2386 		if (ret)
2387 			goto error;
2388 	}
2389 
2390 	if (!target->using_rdma_cm) {
2391 		ret = -ENOMEM;
2392 		qp_attr = kmalloc(sizeof(*qp_attr), GFP_KERNEL);
2393 		if (!qp_attr)
2394 			goto error;
2395 
2396 		qp_attr->qp_state = IB_QPS_RTR;
2397 		ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2398 		if (ret)
2399 			goto error_free;
2400 
2401 		ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2402 		if (ret)
2403 			goto error_free;
2404 
2405 		qp_attr->qp_state = IB_QPS_RTS;
2406 		ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2407 		if (ret)
2408 			goto error_free;
2409 
2410 		target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2411 
2412 		ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2413 		if (ret)
2414 			goto error_free;
2415 
2416 		ret = ib_send_cm_rtu(cm_id, NULL, 0);
2417 	}
2418 
2419 error_free:
2420 	kfree(qp_attr);
2421 
2422 error:
2423 	ch->status = ret;
2424 }
2425 
2426 static void srp_ib_cm_rej_handler(struct ib_cm_id *cm_id,
2427 				  const struct ib_cm_event *event,
2428 				  struct srp_rdma_ch *ch)
2429 {
2430 	struct srp_target_port *target = ch->target;
2431 	struct Scsi_Host *shost = target->scsi_host;
2432 	struct ib_class_port_info *cpi;
2433 	int opcode;
2434 	u16 dlid;
2435 
2436 	switch (event->param.rej_rcvd.reason) {
2437 	case IB_CM_REJ_PORT_CM_REDIRECT:
2438 		cpi = event->param.rej_rcvd.ari;
2439 		dlid = be16_to_cpu(cpi->redirect_lid);
2440 		sa_path_set_dlid(&ch->ib_cm.path, dlid);
2441 		ch->ib_cm.path.pkey = cpi->redirect_pkey;
2442 		cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2443 		memcpy(ch->ib_cm.path.dgid.raw, cpi->redirect_gid, 16);
2444 
2445 		ch->status = dlid ? SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2446 		break;
2447 
2448 	case IB_CM_REJ_PORT_REDIRECT:
2449 		if (srp_target_is_topspin(target)) {
2450 			union ib_gid *dgid = &ch->ib_cm.path.dgid;
2451 
2452 			/*
2453 			 * Topspin/Cisco SRP gateways incorrectly send
2454 			 * reject reason code 25 when they mean 24
2455 			 * (port redirect).
2456 			 */
2457 			memcpy(dgid->raw, event->param.rej_rcvd.ari, 16);
2458 
2459 			shost_printk(KERN_DEBUG, shost,
2460 				     PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2461 				     be64_to_cpu(dgid->global.subnet_prefix),
2462 				     be64_to_cpu(dgid->global.interface_id));
2463 
2464 			ch->status = SRP_PORT_REDIRECT;
2465 		} else {
2466 			shost_printk(KERN_WARNING, shost,
2467 				     "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2468 			ch->status = -ECONNRESET;
2469 		}
2470 		break;
2471 
2472 	case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2473 		shost_printk(KERN_WARNING, shost,
2474 			    "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2475 		ch->status = -ECONNRESET;
2476 		break;
2477 
2478 	case IB_CM_REJ_CONSUMER_DEFINED:
2479 		opcode = *(u8 *) event->private_data;
2480 		if (opcode == SRP_LOGIN_REJ) {
2481 			struct srp_login_rej *rej = event->private_data;
2482 			u32 reason = be32_to_cpu(rej->reason);
2483 
2484 			if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2485 				shost_printk(KERN_WARNING, shost,
2486 					     PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2487 			else
2488 				shost_printk(KERN_WARNING, shost, PFX
2489 					     "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2490 					     target->sgid.raw,
2491 					     target->ib_cm.orig_dgid.raw,
2492 					     reason);
2493 		} else
2494 			shost_printk(KERN_WARNING, shost,
2495 				     "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2496 				     " opcode 0x%02x\n", opcode);
2497 		ch->status = -ECONNRESET;
2498 		break;
2499 
2500 	case IB_CM_REJ_STALE_CONN:
2501 		shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2502 		ch->status = SRP_STALE_CONN;
2503 		break;
2504 
2505 	default:
2506 		shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2507 			     event->param.rej_rcvd.reason);
2508 		ch->status = -ECONNRESET;
2509 	}
2510 }
2511 
2512 static int srp_ib_cm_handler(struct ib_cm_id *cm_id,
2513 			     const struct ib_cm_event *event)
2514 {
2515 	struct srp_rdma_ch *ch = cm_id->context;
2516 	struct srp_target_port *target = ch->target;
2517 	int comp = 0;
2518 
2519 	switch (event->event) {
2520 	case IB_CM_REQ_ERROR:
2521 		shost_printk(KERN_DEBUG, target->scsi_host,
2522 			     PFX "Sending CM REQ failed\n");
2523 		comp = 1;
2524 		ch->status = -ECONNRESET;
2525 		break;
2526 
2527 	case IB_CM_REP_RECEIVED:
2528 		comp = 1;
2529 		srp_cm_rep_handler(cm_id, event->private_data, ch);
2530 		break;
2531 
2532 	case IB_CM_REJ_RECEIVED:
2533 		shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2534 		comp = 1;
2535 
2536 		srp_ib_cm_rej_handler(cm_id, event, ch);
2537 		break;
2538 
2539 	case IB_CM_DREQ_RECEIVED:
2540 		shost_printk(KERN_WARNING, target->scsi_host,
2541 			     PFX "DREQ received - connection closed\n");
2542 		ch->connected = false;
2543 		if (ib_send_cm_drep(cm_id, NULL, 0))
2544 			shost_printk(KERN_ERR, target->scsi_host,
2545 				     PFX "Sending CM DREP failed\n");
2546 		queue_work(system_long_wq, &target->tl_err_work);
2547 		break;
2548 
2549 	case IB_CM_TIMEWAIT_EXIT:
2550 		shost_printk(KERN_ERR, target->scsi_host,
2551 			     PFX "connection closed\n");
2552 		comp = 1;
2553 
2554 		ch->status = 0;
2555 		break;
2556 
2557 	case IB_CM_MRA_RECEIVED:
2558 	case IB_CM_DREQ_ERROR:
2559 	case IB_CM_DREP_RECEIVED:
2560 		break;
2561 
2562 	default:
2563 		shost_printk(KERN_WARNING, target->scsi_host,
2564 			     PFX "Unhandled CM event %d\n", event->event);
2565 		break;
2566 	}
2567 
2568 	if (comp)
2569 		complete(&ch->done);
2570 
2571 	return 0;
2572 }
2573 
2574 static void srp_rdma_cm_rej_handler(struct srp_rdma_ch *ch,
2575 				    struct rdma_cm_event *event)
2576 {
2577 	struct srp_target_port *target = ch->target;
2578 	struct Scsi_Host *shost = target->scsi_host;
2579 	int opcode;
2580 
2581 	switch (event->status) {
2582 	case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2583 		shost_printk(KERN_WARNING, shost,
2584 			    "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2585 		ch->status = -ECONNRESET;
2586 		break;
2587 
2588 	case IB_CM_REJ_CONSUMER_DEFINED:
2589 		opcode = *(u8 *) event->param.conn.private_data;
2590 		if (opcode == SRP_LOGIN_REJ) {
2591 			struct srp_login_rej *rej =
2592 				(struct srp_login_rej *)
2593 				event->param.conn.private_data;
2594 			u32 reason = be32_to_cpu(rej->reason);
2595 
2596 			if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2597 				shost_printk(KERN_WARNING, shost,
2598 					     PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2599 			else
2600 				shost_printk(KERN_WARNING, shost,
2601 					    PFX "SRP LOGIN REJECTED, reason 0x%08x\n", reason);
2602 		} else {
2603 			shost_printk(KERN_WARNING, shost,
2604 				     "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED, opcode 0x%02x\n",
2605 				     opcode);
2606 		}
2607 		ch->status = -ECONNRESET;
2608 		break;
2609 
2610 	case IB_CM_REJ_STALE_CONN:
2611 		shost_printk(KERN_WARNING, shost,
2612 			     "  REJ reason: stale connection\n");
2613 		ch->status = SRP_STALE_CONN;
2614 		break;
2615 
2616 	default:
2617 		shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2618 			     event->status);
2619 		ch->status = -ECONNRESET;
2620 		break;
2621 	}
2622 }
2623 
2624 static int srp_rdma_cm_handler(struct rdma_cm_id *cm_id,
2625 			       struct rdma_cm_event *event)
2626 {
2627 	struct srp_rdma_ch *ch = cm_id->context;
2628 	struct srp_target_port *target = ch->target;
2629 	int comp = 0;
2630 
2631 	switch (event->event) {
2632 	case RDMA_CM_EVENT_ADDR_RESOLVED:
2633 		ch->status = 0;
2634 		comp = 1;
2635 		break;
2636 
2637 	case RDMA_CM_EVENT_ADDR_ERROR:
2638 		ch->status = -ENXIO;
2639 		comp = 1;
2640 		break;
2641 
2642 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
2643 		ch->status = 0;
2644 		comp = 1;
2645 		break;
2646 
2647 	case RDMA_CM_EVENT_ROUTE_ERROR:
2648 	case RDMA_CM_EVENT_UNREACHABLE:
2649 		ch->status = -EHOSTUNREACH;
2650 		comp = 1;
2651 		break;
2652 
2653 	case RDMA_CM_EVENT_CONNECT_ERROR:
2654 		shost_printk(KERN_DEBUG, target->scsi_host,
2655 			     PFX "Sending CM REQ failed\n");
2656 		comp = 1;
2657 		ch->status = -ECONNRESET;
2658 		break;
2659 
2660 	case RDMA_CM_EVENT_ESTABLISHED:
2661 		comp = 1;
2662 		srp_cm_rep_handler(NULL, event->param.conn.private_data, ch);
2663 		break;
2664 
2665 	case RDMA_CM_EVENT_REJECTED:
2666 		shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2667 		comp = 1;
2668 
2669 		srp_rdma_cm_rej_handler(ch, event);
2670 		break;
2671 
2672 	case RDMA_CM_EVENT_DISCONNECTED:
2673 		if (ch->connected) {
2674 			shost_printk(KERN_WARNING, target->scsi_host,
2675 				     PFX "received DREQ\n");
2676 			rdma_disconnect(ch->rdma_cm.cm_id);
2677 			comp = 1;
2678 			ch->status = 0;
2679 			queue_work(system_long_wq, &target->tl_err_work);
2680 		}
2681 		break;
2682 
2683 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2684 		shost_printk(KERN_ERR, target->scsi_host,
2685 			     PFX "connection closed\n");
2686 
2687 		comp = 1;
2688 		ch->status = 0;
2689 		break;
2690 
2691 	default:
2692 		shost_printk(KERN_WARNING, target->scsi_host,
2693 			     PFX "Unhandled CM event %d\n", event->event);
2694 		break;
2695 	}
2696 
2697 	if (comp)
2698 		complete(&ch->done);
2699 
2700 	return 0;
2701 }
2702 
2703 /**
2704  * srp_change_queue_depth - setting device queue depth
2705  * @sdev: scsi device struct
2706  * @qdepth: requested queue depth
2707  *
2708  * Returns queue depth.
2709  */
2710 static int
2711 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2712 {
2713 	if (!sdev->tagged_supported)
2714 		qdepth = 1;
2715 	return scsi_change_queue_depth(sdev, qdepth);
2716 }
2717 
2718 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2719 			     u8 func, u8 *status)
2720 {
2721 	struct srp_target_port *target = ch->target;
2722 	struct srp_rport *rport = target->rport;
2723 	struct ib_device *dev = target->srp_host->srp_dev->dev;
2724 	struct srp_iu *iu;
2725 	struct srp_tsk_mgmt *tsk_mgmt;
2726 	int res;
2727 
2728 	if (!ch->connected || target->qp_in_error)
2729 		return -1;
2730 
2731 	/*
2732 	 * Lock the rport mutex to avoid that srp_create_ch_ib() is
2733 	 * invoked while a task management function is being sent.
2734 	 */
2735 	mutex_lock(&rport->mutex);
2736 	spin_lock_irq(&ch->lock);
2737 	iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2738 	spin_unlock_irq(&ch->lock);
2739 
2740 	if (!iu) {
2741 		mutex_unlock(&rport->mutex);
2742 
2743 		return -1;
2744 	}
2745 
2746 	iu->num_sge = 1;
2747 
2748 	ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2749 				   DMA_TO_DEVICE);
2750 	tsk_mgmt = iu->buf;
2751 	memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2752 
2753 	tsk_mgmt->opcode 	= SRP_TSK_MGMT;
2754 	int_to_scsilun(lun, &tsk_mgmt->lun);
2755 	tsk_mgmt->tsk_mgmt_func = func;
2756 	tsk_mgmt->task_tag	= req_tag;
2757 
2758 	spin_lock_irq(&ch->lock);
2759 	ch->tsk_mgmt_tag = (ch->tsk_mgmt_tag + 1) | SRP_TAG_TSK_MGMT;
2760 	tsk_mgmt->tag = ch->tsk_mgmt_tag;
2761 	spin_unlock_irq(&ch->lock);
2762 
2763 	init_completion(&ch->tsk_mgmt_done);
2764 
2765 	ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2766 				      DMA_TO_DEVICE);
2767 	if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2768 		srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2769 		mutex_unlock(&rport->mutex);
2770 
2771 		return -1;
2772 	}
2773 	res = wait_for_completion_timeout(&ch->tsk_mgmt_done,
2774 					msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS));
2775 	if (res > 0 && status)
2776 		*status = ch->tsk_mgmt_status;
2777 	mutex_unlock(&rport->mutex);
2778 
2779 	WARN_ON_ONCE(res < 0);
2780 
2781 	return res > 0 ? 0 : -1;
2782 }
2783 
2784 static int srp_abort(struct scsi_cmnd *scmnd)
2785 {
2786 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2787 	struct srp_request *req = scsi_cmd_priv(scmnd);
2788 	u32 tag;
2789 	u16 ch_idx;
2790 	struct srp_rdma_ch *ch;
2791 	int ret;
2792 
2793 	shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2794 
2795 	tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmnd));
2796 	ch_idx = blk_mq_unique_tag_to_hwq(tag);
2797 	if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2798 		return SUCCESS;
2799 	ch = &target->ch[ch_idx];
2800 	if (!srp_claim_req(ch, req, NULL, scmnd))
2801 		return SUCCESS;
2802 	shost_printk(KERN_ERR, target->scsi_host,
2803 		     "Sending SRP abort for tag %#x\n", tag);
2804 	if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2805 			      SRP_TSK_ABORT_TASK, NULL) == 0)
2806 		ret = SUCCESS;
2807 	else if (target->rport->state == SRP_RPORT_LOST)
2808 		ret = FAST_IO_FAIL;
2809 	else
2810 		ret = FAILED;
2811 	if (ret == SUCCESS) {
2812 		srp_free_req(ch, req, scmnd, 0);
2813 		scmnd->result = DID_ABORT << 16;
2814 		scsi_done(scmnd);
2815 	}
2816 
2817 	return ret;
2818 }
2819 
2820 static int srp_reset_device(struct scsi_cmnd *scmnd)
2821 {
2822 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2823 	struct srp_rdma_ch *ch;
2824 	u8 status;
2825 
2826 	shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2827 
2828 	ch = &target->ch[0];
2829 	if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2830 			      SRP_TSK_LUN_RESET, &status))
2831 		return FAILED;
2832 	if (status)
2833 		return FAILED;
2834 
2835 	return SUCCESS;
2836 }
2837 
2838 static int srp_reset_host(struct scsi_cmnd *scmnd)
2839 {
2840 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2841 
2842 	shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2843 
2844 	return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2845 }
2846 
2847 static int srp_target_alloc(struct scsi_target *starget)
2848 {
2849 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2850 	struct srp_target_port *target = host_to_target(shost);
2851 
2852 	if (target->target_can_queue)
2853 		starget->can_queue = target->target_can_queue;
2854 	return 0;
2855 }
2856 
2857 static int srp_slave_configure(struct scsi_device *sdev)
2858 {
2859 	struct Scsi_Host *shost = sdev->host;
2860 	struct srp_target_port *target = host_to_target(shost);
2861 	struct request_queue *q = sdev->request_queue;
2862 	unsigned long timeout;
2863 
2864 	if (sdev->type == TYPE_DISK) {
2865 		timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2866 		blk_queue_rq_timeout(q, timeout);
2867 	}
2868 
2869 	return 0;
2870 }
2871 
2872 static ssize_t id_ext_show(struct device *dev, struct device_attribute *attr,
2873 			   char *buf)
2874 {
2875 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2876 
2877 	return sysfs_emit(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2878 }
2879 
2880 static DEVICE_ATTR_RO(id_ext);
2881 
2882 static ssize_t ioc_guid_show(struct device *dev, struct device_attribute *attr,
2883 			     char *buf)
2884 {
2885 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2886 
2887 	return sysfs_emit(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2888 }
2889 
2890 static DEVICE_ATTR_RO(ioc_guid);
2891 
2892 static ssize_t service_id_show(struct device *dev,
2893 			       struct device_attribute *attr, char *buf)
2894 {
2895 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2896 
2897 	if (target->using_rdma_cm)
2898 		return -ENOENT;
2899 	return sysfs_emit(buf, "0x%016llx\n",
2900 			  be64_to_cpu(target->ib_cm.service_id));
2901 }
2902 
2903 static DEVICE_ATTR_RO(service_id);
2904 
2905 static ssize_t pkey_show(struct device *dev, struct device_attribute *attr,
2906 			 char *buf)
2907 {
2908 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2909 
2910 	if (target->using_rdma_cm)
2911 		return -ENOENT;
2912 
2913 	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(target->ib_cm.pkey));
2914 }
2915 
2916 static DEVICE_ATTR_RO(pkey);
2917 
2918 static ssize_t sgid_show(struct device *dev, struct device_attribute *attr,
2919 			 char *buf)
2920 {
2921 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2922 
2923 	return sysfs_emit(buf, "%pI6\n", target->sgid.raw);
2924 }
2925 
2926 static DEVICE_ATTR_RO(sgid);
2927 
2928 static ssize_t dgid_show(struct device *dev, struct device_attribute *attr,
2929 			 char *buf)
2930 {
2931 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2932 	struct srp_rdma_ch *ch = &target->ch[0];
2933 
2934 	if (target->using_rdma_cm)
2935 		return -ENOENT;
2936 
2937 	return sysfs_emit(buf, "%pI6\n", ch->ib_cm.path.dgid.raw);
2938 }
2939 
2940 static DEVICE_ATTR_RO(dgid);
2941 
2942 static ssize_t orig_dgid_show(struct device *dev, struct device_attribute *attr,
2943 			      char *buf)
2944 {
2945 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2946 
2947 	if (target->using_rdma_cm)
2948 		return -ENOENT;
2949 
2950 	return sysfs_emit(buf, "%pI6\n", target->ib_cm.orig_dgid.raw);
2951 }
2952 
2953 static DEVICE_ATTR_RO(orig_dgid);
2954 
2955 static ssize_t req_lim_show(struct device *dev, struct device_attribute *attr,
2956 			    char *buf)
2957 {
2958 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2959 	struct srp_rdma_ch *ch;
2960 	int i, req_lim = INT_MAX;
2961 
2962 	for (i = 0; i < target->ch_count; i++) {
2963 		ch = &target->ch[i];
2964 		req_lim = min(req_lim, ch->req_lim);
2965 	}
2966 
2967 	return sysfs_emit(buf, "%d\n", req_lim);
2968 }
2969 
2970 static DEVICE_ATTR_RO(req_lim);
2971 
2972 static ssize_t zero_req_lim_show(struct device *dev,
2973 				 struct device_attribute *attr, char *buf)
2974 {
2975 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2976 
2977 	return sysfs_emit(buf, "%d\n", target->zero_req_lim);
2978 }
2979 
2980 static DEVICE_ATTR_RO(zero_req_lim);
2981 
2982 static ssize_t local_ib_port_show(struct device *dev,
2983 				  struct device_attribute *attr, char *buf)
2984 {
2985 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2986 
2987 	return sysfs_emit(buf, "%u\n", target->srp_host->port);
2988 }
2989 
2990 static DEVICE_ATTR_RO(local_ib_port);
2991 
2992 static ssize_t local_ib_device_show(struct device *dev,
2993 				    struct device_attribute *attr, char *buf)
2994 {
2995 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2996 
2997 	return sysfs_emit(buf, "%s\n",
2998 			  dev_name(&target->srp_host->srp_dev->dev->dev));
2999 }
3000 
3001 static DEVICE_ATTR_RO(local_ib_device);
3002 
3003 static ssize_t ch_count_show(struct device *dev, struct device_attribute *attr,
3004 			     char *buf)
3005 {
3006 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
3007 
3008 	return sysfs_emit(buf, "%d\n", target->ch_count);
3009 }
3010 
3011 static DEVICE_ATTR_RO(ch_count);
3012 
3013 static ssize_t comp_vector_show(struct device *dev,
3014 				struct device_attribute *attr, char *buf)
3015 {
3016 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
3017 
3018 	return sysfs_emit(buf, "%d\n", target->comp_vector);
3019 }
3020 
3021 static DEVICE_ATTR_RO(comp_vector);
3022 
3023 static ssize_t tl_retry_count_show(struct device *dev,
3024 				   struct device_attribute *attr, char *buf)
3025 {
3026 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
3027 
3028 	return sysfs_emit(buf, "%d\n", target->tl_retry_count);
3029 }
3030 
3031 static DEVICE_ATTR_RO(tl_retry_count);
3032 
3033 static ssize_t cmd_sg_entries_show(struct device *dev,
3034 				   struct device_attribute *attr, char *buf)
3035 {
3036 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
3037 
3038 	return sysfs_emit(buf, "%u\n", target->cmd_sg_cnt);
3039 }
3040 
3041 static DEVICE_ATTR_RO(cmd_sg_entries);
3042 
3043 static ssize_t allow_ext_sg_show(struct device *dev,
3044 				 struct device_attribute *attr, char *buf)
3045 {
3046 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
3047 
3048 	return sysfs_emit(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
3049 }
3050 
3051 static DEVICE_ATTR_RO(allow_ext_sg);
3052 
3053 static struct attribute *srp_host_attrs[] = {
3054 	&dev_attr_id_ext.attr,
3055 	&dev_attr_ioc_guid.attr,
3056 	&dev_attr_service_id.attr,
3057 	&dev_attr_pkey.attr,
3058 	&dev_attr_sgid.attr,
3059 	&dev_attr_dgid.attr,
3060 	&dev_attr_orig_dgid.attr,
3061 	&dev_attr_req_lim.attr,
3062 	&dev_attr_zero_req_lim.attr,
3063 	&dev_attr_local_ib_port.attr,
3064 	&dev_attr_local_ib_device.attr,
3065 	&dev_attr_ch_count.attr,
3066 	&dev_attr_comp_vector.attr,
3067 	&dev_attr_tl_retry_count.attr,
3068 	&dev_attr_cmd_sg_entries.attr,
3069 	&dev_attr_allow_ext_sg.attr,
3070 	NULL
3071 };
3072 
3073 ATTRIBUTE_GROUPS(srp_host);
3074 
3075 static struct scsi_host_template srp_template = {
3076 	.module				= THIS_MODULE,
3077 	.name				= "InfiniBand SRP initiator",
3078 	.proc_name			= DRV_NAME,
3079 	.target_alloc			= srp_target_alloc,
3080 	.slave_configure		= srp_slave_configure,
3081 	.info				= srp_target_info,
3082 	.init_cmd_priv			= srp_init_cmd_priv,
3083 	.exit_cmd_priv			= srp_exit_cmd_priv,
3084 	.queuecommand			= srp_queuecommand,
3085 	.change_queue_depth             = srp_change_queue_depth,
3086 	.eh_timed_out			= srp_timed_out,
3087 	.eh_abort_handler		= srp_abort,
3088 	.eh_device_reset_handler	= srp_reset_device,
3089 	.eh_host_reset_handler		= srp_reset_host,
3090 	.skip_settle_delay		= true,
3091 	.sg_tablesize			= SRP_DEF_SG_TABLESIZE,
3092 	.can_queue			= SRP_DEFAULT_CMD_SQ_SIZE,
3093 	.this_id			= -1,
3094 	.cmd_per_lun			= SRP_DEFAULT_CMD_SQ_SIZE,
3095 	.shost_groups			= srp_host_groups,
3096 	.track_queue_depth		= 1,
3097 	.cmd_size			= sizeof(struct srp_request),
3098 };
3099 
3100 static int srp_sdev_count(struct Scsi_Host *host)
3101 {
3102 	struct scsi_device *sdev;
3103 	int c = 0;
3104 
3105 	shost_for_each_device(sdev, host)
3106 		c++;
3107 
3108 	return c;
3109 }
3110 
3111 /*
3112  * Return values:
3113  * < 0 upon failure. Caller is responsible for SRP target port cleanup.
3114  * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
3115  *    removal has been scheduled.
3116  * 0 and target->state != SRP_TARGET_REMOVED upon success.
3117  */
3118 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
3119 {
3120 	struct srp_rport_identifiers ids;
3121 	struct srp_rport *rport;
3122 
3123 	target->state = SRP_TARGET_SCANNING;
3124 	sprintf(target->target_name, "SRP.T10:%016llX",
3125 		be64_to_cpu(target->id_ext));
3126 
3127 	if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dev.parent))
3128 		return -ENODEV;
3129 
3130 	memcpy(ids.port_id, &target->id_ext, 8);
3131 	memcpy(ids.port_id + 8, &target->ioc_guid, 8);
3132 	ids.roles = SRP_RPORT_ROLE_TARGET;
3133 	rport = srp_rport_add(target->scsi_host, &ids);
3134 	if (IS_ERR(rport)) {
3135 		scsi_remove_host(target->scsi_host);
3136 		return PTR_ERR(rport);
3137 	}
3138 
3139 	rport->lld_data = target;
3140 	target->rport = rport;
3141 
3142 	spin_lock(&host->target_lock);
3143 	list_add_tail(&target->list, &host->target_list);
3144 	spin_unlock(&host->target_lock);
3145 
3146 	scsi_scan_target(&target->scsi_host->shost_gendev,
3147 			 0, target->scsi_id, SCAN_WILD_CARD, SCSI_SCAN_INITIAL);
3148 
3149 	if (srp_connected_ch(target) < target->ch_count ||
3150 	    target->qp_in_error) {
3151 		shost_printk(KERN_INFO, target->scsi_host,
3152 			     PFX "SCSI scan failed - removing SCSI host\n");
3153 		srp_queue_remove_work(target);
3154 		goto out;
3155 	}
3156 
3157 	pr_debug("%s: SCSI scan succeeded - detected %d LUNs\n",
3158 		 dev_name(&target->scsi_host->shost_gendev),
3159 		 srp_sdev_count(target->scsi_host));
3160 
3161 	spin_lock_irq(&target->lock);
3162 	if (target->state == SRP_TARGET_SCANNING)
3163 		target->state = SRP_TARGET_LIVE;
3164 	spin_unlock_irq(&target->lock);
3165 
3166 out:
3167 	return 0;
3168 }
3169 
3170 static void srp_release_dev(struct device *dev)
3171 {
3172 	struct srp_host *host =
3173 		container_of(dev, struct srp_host, dev);
3174 
3175 	kfree(host);
3176 }
3177 
3178 static struct attribute *srp_class_attrs[];
3179 
3180 ATTRIBUTE_GROUPS(srp_class);
3181 
3182 static struct class srp_class = {
3183 	.name    = "infiniband_srp",
3184 	.dev_groups = srp_class_groups,
3185 	.dev_release = srp_release_dev
3186 };
3187 
3188 /**
3189  * srp_conn_unique() - check whether the connection to a target is unique
3190  * @host:   SRP host.
3191  * @target: SRP target port.
3192  */
3193 static bool srp_conn_unique(struct srp_host *host,
3194 			    struct srp_target_port *target)
3195 {
3196 	struct srp_target_port *t;
3197 	bool ret = false;
3198 
3199 	if (target->state == SRP_TARGET_REMOVED)
3200 		goto out;
3201 
3202 	ret = true;
3203 
3204 	spin_lock(&host->target_lock);
3205 	list_for_each_entry(t, &host->target_list, list) {
3206 		if (t != target &&
3207 		    target->id_ext == t->id_ext &&
3208 		    target->ioc_guid == t->ioc_guid &&
3209 		    target->initiator_ext == t->initiator_ext) {
3210 			ret = false;
3211 			break;
3212 		}
3213 	}
3214 	spin_unlock(&host->target_lock);
3215 
3216 out:
3217 	return ret;
3218 }
3219 
3220 /*
3221  * Target ports are added by writing
3222  *
3223  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
3224  *     pkey=<P_Key>,service_id=<service ID>
3225  * or
3226  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,
3227  *     [src=<IPv4 address>,]dest=<IPv4 address>:<port number>
3228  *
3229  * to the add_target sysfs attribute.
3230  */
3231 enum {
3232 	SRP_OPT_ERR		= 0,
3233 	SRP_OPT_ID_EXT		= 1 << 0,
3234 	SRP_OPT_IOC_GUID	= 1 << 1,
3235 	SRP_OPT_DGID		= 1 << 2,
3236 	SRP_OPT_PKEY		= 1 << 3,
3237 	SRP_OPT_SERVICE_ID	= 1 << 4,
3238 	SRP_OPT_MAX_SECT	= 1 << 5,
3239 	SRP_OPT_MAX_CMD_PER_LUN	= 1 << 6,
3240 	SRP_OPT_IO_CLASS	= 1 << 7,
3241 	SRP_OPT_INITIATOR_EXT	= 1 << 8,
3242 	SRP_OPT_CMD_SG_ENTRIES	= 1 << 9,
3243 	SRP_OPT_ALLOW_EXT_SG	= 1 << 10,
3244 	SRP_OPT_SG_TABLESIZE	= 1 << 11,
3245 	SRP_OPT_COMP_VECTOR	= 1 << 12,
3246 	SRP_OPT_TL_RETRY_COUNT	= 1 << 13,
3247 	SRP_OPT_QUEUE_SIZE	= 1 << 14,
3248 	SRP_OPT_IP_SRC		= 1 << 15,
3249 	SRP_OPT_IP_DEST		= 1 << 16,
3250 	SRP_OPT_TARGET_CAN_QUEUE= 1 << 17,
3251 	SRP_OPT_MAX_IT_IU_SIZE  = 1 << 18,
3252 	SRP_OPT_CH_COUNT	= 1 << 19,
3253 };
3254 
3255 static unsigned int srp_opt_mandatory[] = {
3256 	SRP_OPT_ID_EXT		|
3257 	SRP_OPT_IOC_GUID	|
3258 	SRP_OPT_DGID		|
3259 	SRP_OPT_PKEY		|
3260 	SRP_OPT_SERVICE_ID,
3261 	SRP_OPT_ID_EXT		|
3262 	SRP_OPT_IOC_GUID	|
3263 	SRP_OPT_IP_DEST,
3264 };
3265 
3266 static const match_table_t srp_opt_tokens = {
3267 	{ SRP_OPT_ID_EXT,		"id_ext=%s" 		},
3268 	{ SRP_OPT_IOC_GUID,		"ioc_guid=%s" 		},
3269 	{ SRP_OPT_DGID,			"dgid=%s" 		},
3270 	{ SRP_OPT_PKEY,			"pkey=%x" 		},
3271 	{ SRP_OPT_SERVICE_ID,		"service_id=%s"		},
3272 	{ SRP_OPT_MAX_SECT,		"max_sect=%d" 		},
3273 	{ SRP_OPT_MAX_CMD_PER_LUN,	"max_cmd_per_lun=%d" 	},
3274 	{ SRP_OPT_TARGET_CAN_QUEUE,	"target_can_queue=%d"	},
3275 	{ SRP_OPT_IO_CLASS,		"io_class=%x"		},
3276 	{ SRP_OPT_INITIATOR_EXT,	"initiator_ext=%s"	},
3277 	{ SRP_OPT_CMD_SG_ENTRIES,	"cmd_sg_entries=%u"	},
3278 	{ SRP_OPT_ALLOW_EXT_SG,		"allow_ext_sg=%u"	},
3279 	{ SRP_OPT_SG_TABLESIZE,		"sg_tablesize=%u"	},
3280 	{ SRP_OPT_COMP_VECTOR,		"comp_vector=%u"	},
3281 	{ SRP_OPT_TL_RETRY_COUNT,	"tl_retry_count=%u"	},
3282 	{ SRP_OPT_QUEUE_SIZE,		"queue_size=%d"		},
3283 	{ SRP_OPT_IP_SRC,		"src=%s"		},
3284 	{ SRP_OPT_IP_DEST,		"dest=%s"		},
3285 	{ SRP_OPT_MAX_IT_IU_SIZE,	"max_it_iu_size=%d"	},
3286 	{ SRP_OPT_CH_COUNT,		"ch_count=%u",		},
3287 	{ SRP_OPT_ERR,			NULL 			}
3288 };
3289 
3290 /**
3291  * srp_parse_in - parse an IP address and port number combination
3292  * @net:	   [in]  Network namespace.
3293  * @sa:		   [out] Address family, IP address and port number.
3294  * @addr_port_str: [in]  IP address and port number.
3295  * @has_port:	   [out] Whether or not @addr_port_str includes a port number.
3296  *
3297  * Parse the following address formats:
3298  * - IPv4: <ip_address>:<port>, e.g. 1.2.3.4:5.
3299  * - IPv6: \[<ipv6_address>\]:<port>, e.g. [1::2:3%4]:5.
3300  */
3301 static int srp_parse_in(struct net *net, struct sockaddr_storage *sa,
3302 			const char *addr_port_str, bool *has_port)
3303 {
3304 	char *addr_end, *addr = kstrdup(addr_port_str, GFP_KERNEL);
3305 	char *port_str;
3306 	int ret;
3307 
3308 	if (!addr)
3309 		return -ENOMEM;
3310 	port_str = strrchr(addr, ':');
3311 	if (port_str && strchr(port_str, ']'))
3312 		port_str = NULL;
3313 	if (port_str)
3314 		*port_str++ = '\0';
3315 	if (has_port)
3316 		*has_port = port_str != NULL;
3317 	ret = inet_pton_with_scope(net, AF_INET, addr, port_str, sa);
3318 	if (ret && addr[0]) {
3319 		addr_end = addr + strlen(addr) - 1;
3320 		if (addr[0] == '[' && *addr_end == ']') {
3321 			*addr_end = '\0';
3322 			ret = inet_pton_with_scope(net, AF_INET6, addr + 1,
3323 						   port_str, sa);
3324 		}
3325 	}
3326 	kfree(addr);
3327 	pr_debug("%s -> %pISpfsc\n", addr_port_str, sa);
3328 	return ret;
3329 }
3330 
3331 static int srp_parse_options(struct net *net, const char *buf,
3332 			     struct srp_target_port *target)
3333 {
3334 	char *options, *sep_opt;
3335 	char *p;
3336 	substring_t args[MAX_OPT_ARGS];
3337 	unsigned long long ull;
3338 	bool has_port;
3339 	int opt_mask = 0;
3340 	int token;
3341 	int ret = -EINVAL;
3342 	int i;
3343 
3344 	options = kstrdup(buf, GFP_KERNEL);
3345 	if (!options)
3346 		return -ENOMEM;
3347 
3348 	sep_opt = options;
3349 	while ((p = strsep(&sep_opt, ",\n")) != NULL) {
3350 		if (!*p)
3351 			continue;
3352 
3353 		token = match_token(p, srp_opt_tokens, args);
3354 		opt_mask |= token;
3355 
3356 		switch (token) {
3357 		case SRP_OPT_ID_EXT:
3358 			p = match_strdup(args);
3359 			if (!p) {
3360 				ret = -ENOMEM;
3361 				goto out;
3362 			}
3363 			ret = kstrtoull(p, 16, &ull);
3364 			if (ret) {
3365 				pr_warn("invalid id_ext parameter '%s'\n", p);
3366 				kfree(p);
3367 				goto out;
3368 			}
3369 			target->id_ext = cpu_to_be64(ull);
3370 			kfree(p);
3371 			break;
3372 
3373 		case SRP_OPT_IOC_GUID:
3374 			p = match_strdup(args);
3375 			if (!p) {
3376 				ret = -ENOMEM;
3377 				goto out;
3378 			}
3379 			ret = kstrtoull(p, 16, &ull);
3380 			if (ret) {
3381 				pr_warn("invalid ioc_guid parameter '%s'\n", p);
3382 				kfree(p);
3383 				goto out;
3384 			}
3385 			target->ioc_guid = cpu_to_be64(ull);
3386 			kfree(p);
3387 			break;
3388 
3389 		case SRP_OPT_DGID:
3390 			p = match_strdup(args);
3391 			if (!p) {
3392 				ret = -ENOMEM;
3393 				goto out;
3394 			}
3395 			if (strlen(p) != 32) {
3396 				pr_warn("bad dest GID parameter '%s'\n", p);
3397 				kfree(p);
3398 				goto out;
3399 			}
3400 
3401 			ret = hex2bin(target->ib_cm.orig_dgid.raw, p, 16);
3402 			kfree(p);
3403 			if (ret < 0)
3404 				goto out;
3405 			break;
3406 
3407 		case SRP_OPT_PKEY:
3408 			ret = match_hex(args, &token);
3409 			if (ret) {
3410 				pr_warn("bad P_Key parameter '%s'\n", p);
3411 				goto out;
3412 			}
3413 			target->ib_cm.pkey = cpu_to_be16(token);
3414 			break;
3415 
3416 		case SRP_OPT_SERVICE_ID:
3417 			p = match_strdup(args);
3418 			if (!p) {
3419 				ret = -ENOMEM;
3420 				goto out;
3421 			}
3422 			ret = kstrtoull(p, 16, &ull);
3423 			if (ret) {
3424 				pr_warn("bad service_id parameter '%s'\n", p);
3425 				kfree(p);
3426 				goto out;
3427 			}
3428 			target->ib_cm.service_id = cpu_to_be64(ull);
3429 			kfree(p);
3430 			break;
3431 
3432 		case SRP_OPT_IP_SRC:
3433 			p = match_strdup(args);
3434 			if (!p) {
3435 				ret = -ENOMEM;
3436 				goto out;
3437 			}
3438 			ret = srp_parse_in(net, &target->rdma_cm.src.ss, p,
3439 					   NULL);
3440 			if (ret < 0) {
3441 				pr_warn("bad source parameter '%s'\n", p);
3442 				kfree(p);
3443 				goto out;
3444 			}
3445 			target->rdma_cm.src_specified = true;
3446 			kfree(p);
3447 			break;
3448 
3449 		case SRP_OPT_IP_DEST:
3450 			p = match_strdup(args);
3451 			if (!p) {
3452 				ret = -ENOMEM;
3453 				goto out;
3454 			}
3455 			ret = srp_parse_in(net, &target->rdma_cm.dst.ss, p,
3456 					   &has_port);
3457 			if (!has_port)
3458 				ret = -EINVAL;
3459 			if (ret < 0) {
3460 				pr_warn("bad dest parameter '%s'\n", p);
3461 				kfree(p);
3462 				goto out;
3463 			}
3464 			target->using_rdma_cm = true;
3465 			kfree(p);
3466 			break;
3467 
3468 		case SRP_OPT_MAX_SECT:
3469 			ret = match_int(args, &token);
3470 			if (ret) {
3471 				pr_warn("bad max sect parameter '%s'\n", p);
3472 				goto out;
3473 			}
3474 			target->scsi_host->max_sectors = token;
3475 			break;
3476 
3477 		case SRP_OPT_QUEUE_SIZE:
3478 			ret = match_int(args, &token);
3479 			if (ret) {
3480 				pr_warn("match_int() failed for queue_size parameter '%s', Error %d\n",
3481 					p, ret);
3482 				goto out;
3483 			}
3484 			if (token < 1) {
3485 				pr_warn("bad queue_size parameter '%s'\n", p);
3486 				ret = -EINVAL;
3487 				goto out;
3488 			}
3489 			target->scsi_host->can_queue = token;
3490 			target->queue_size = token + SRP_RSP_SQ_SIZE +
3491 					     SRP_TSK_MGMT_SQ_SIZE;
3492 			if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3493 				target->scsi_host->cmd_per_lun = token;
3494 			break;
3495 
3496 		case SRP_OPT_MAX_CMD_PER_LUN:
3497 			ret = match_int(args, &token);
3498 			if (ret) {
3499 				pr_warn("match_int() failed for max cmd_per_lun parameter '%s', Error %d\n",
3500 					p, ret);
3501 				goto out;
3502 			}
3503 			if (token < 1) {
3504 				pr_warn("bad max cmd_per_lun parameter '%s'\n",
3505 					p);
3506 				ret = -EINVAL;
3507 				goto out;
3508 			}
3509 			target->scsi_host->cmd_per_lun = token;
3510 			break;
3511 
3512 		case SRP_OPT_TARGET_CAN_QUEUE:
3513 			ret = match_int(args, &token);
3514 			if (ret) {
3515 				pr_warn("match_int() failed for max target_can_queue parameter '%s', Error %d\n",
3516 					p, ret);
3517 				goto out;
3518 			}
3519 			if (token < 1) {
3520 				pr_warn("bad max target_can_queue parameter '%s'\n",
3521 					p);
3522 				ret = -EINVAL;
3523 				goto out;
3524 			}
3525 			target->target_can_queue = token;
3526 			break;
3527 
3528 		case SRP_OPT_IO_CLASS:
3529 			ret = match_hex(args, &token);
3530 			if (ret) {
3531 				pr_warn("bad IO class parameter '%s'\n", p);
3532 				goto out;
3533 			}
3534 			if (token != SRP_REV10_IB_IO_CLASS &&
3535 			    token != SRP_REV16A_IB_IO_CLASS) {
3536 				pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3537 					token, SRP_REV10_IB_IO_CLASS,
3538 					SRP_REV16A_IB_IO_CLASS);
3539 				ret = -EINVAL;
3540 				goto out;
3541 			}
3542 			target->io_class = token;
3543 			break;
3544 
3545 		case SRP_OPT_INITIATOR_EXT:
3546 			p = match_strdup(args);
3547 			if (!p) {
3548 				ret = -ENOMEM;
3549 				goto out;
3550 			}
3551 			ret = kstrtoull(p, 16, &ull);
3552 			if (ret) {
3553 				pr_warn("bad initiator_ext value '%s'\n", p);
3554 				kfree(p);
3555 				goto out;
3556 			}
3557 			target->initiator_ext = cpu_to_be64(ull);
3558 			kfree(p);
3559 			break;
3560 
3561 		case SRP_OPT_CMD_SG_ENTRIES:
3562 			ret = match_int(args, &token);
3563 			if (ret) {
3564 				pr_warn("match_int() failed for max cmd_sg_entries parameter '%s', Error %d\n",
3565 					p, ret);
3566 				goto out;
3567 			}
3568 			if (token < 1 || token > 255) {
3569 				pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3570 					p);
3571 				ret = -EINVAL;
3572 				goto out;
3573 			}
3574 			target->cmd_sg_cnt = token;
3575 			break;
3576 
3577 		case SRP_OPT_ALLOW_EXT_SG:
3578 			ret = match_int(args, &token);
3579 			if (ret) {
3580 				pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3581 				goto out;
3582 			}
3583 			target->allow_ext_sg = !!token;
3584 			break;
3585 
3586 		case SRP_OPT_SG_TABLESIZE:
3587 			ret = match_int(args, &token);
3588 			if (ret) {
3589 				pr_warn("match_int() failed for max sg_tablesize parameter '%s', Error %d\n",
3590 					p, ret);
3591 				goto out;
3592 			}
3593 			if (token < 1 || token > SG_MAX_SEGMENTS) {
3594 				pr_warn("bad max sg_tablesize parameter '%s'\n",
3595 					p);
3596 				ret = -EINVAL;
3597 				goto out;
3598 			}
3599 			target->sg_tablesize = token;
3600 			break;
3601 
3602 		case SRP_OPT_COMP_VECTOR:
3603 			ret = match_int(args, &token);
3604 			if (ret) {
3605 				pr_warn("match_int() failed for comp_vector parameter '%s', Error %d\n",
3606 					p, ret);
3607 				goto out;
3608 			}
3609 			if (token < 0) {
3610 				pr_warn("bad comp_vector parameter '%s'\n", p);
3611 				ret = -EINVAL;
3612 				goto out;
3613 			}
3614 			target->comp_vector = token;
3615 			break;
3616 
3617 		case SRP_OPT_TL_RETRY_COUNT:
3618 			ret = match_int(args, &token);
3619 			if (ret) {
3620 				pr_warn("match_int() failed for tl_retry_count parameter '%s', Error %d\n",
3621 					p, ret);
3622 				goto out;
3623 			}
3624 			if (token < 2 || token > 7) {
3625 				pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3626 					p);
3627 				ret = -EINVAL;
3628 				goto out;
3629 			}
3630 			target->tl_retry_count = token;
3631 			break;
3632 
3633 		case SRP_OPT_MAX_IT_IU_SIZE:
3634 			ret = match_int(args, &token);
3635 			if (ret) {
3636 				pr_warn("match_int() failed for max it_iu_size parameter '%s', Error %d\n",
3637 					p, ret);
3638 				goto out;
3639 			}
3640 			if (token < 0) {
3641 				pr_warn("bad maximum initiator to target IU size '%s'\n", p);
3642 				ret = -EINVAL;
3643 				goto out;
3644 			}
3645 			target->max_it_iu_size = token;
3646 			break;
3647 
3648 		case SRP_OPT_CH_COUNT:
3649 			ret = match_int(args, &token);
3650 			if (ret) {
3651 				pr_warn("match_int() failed for channel count parameter '%s', Error %d\n",
3652 					p, ret);
3653 				goto out;
3654 			}
3655 			if (token < 1) {
3656 				pr_warn("bad channel count %s\n", p);
3657 				ret = -EINVAL;
3658 				goto out;
3659 			}
3660 			target->ch_count = token;
3661 			break;
3662 
3663 		default:
3664 			pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3665 				p);
3666 			ret = -EINVAL;
3667 			goto out;
3668 		}
3669 	}
3670 
3671 	for (i = 0; i < ARRAY_SIZE(srp_opt_mandatory); i++) {
3672 		if ((opt_mask & srp_opt_mandatory[i]) == srp_opt_mandatory[i]) {
3673 			ret = 0;
3674 			break;
3675 		}
3676 	}
3677 	if (ret)
3678 		pr_warn("target creation request is missing one or more parameters\n");
3679 
3680 	if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3681 	    && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3682 		pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3683 			target->scsi_host->cmd_per_lun,
3684 			target->scsi_host->can_queue);
3685 
3686 out:
3687 	kfree(options);
3688 	return ret;
3689 }
3690 
3691 static ssize_t add_target_store(struct device *dev,
3692 				struct device_attribute *attr, const char *buf,
3693 				size_t count)
3694 {
3695 	struct srp_host *host =
3696 		container_of(dev, struct srp_host, dev);
3697 	struct Scsi_Host *target_host;
3698 	struct srp_target_port *target;
3699 	struct srp_rdma_ch *ch;
3700 	struct srp_device *srp_dev = host->srp_dev;
3701 	struct ib_device *ibdev = srp_dev->dev;
3702 	int ret, i, ch_idx;
3703 	unsigned int max_sectors_per_mr, mr_per_cmd = 0;
3704 	bool multich = false;
3705 	uint32_t max_iu_len;
3706 
3707 	target_host = scsi_host_alloc(&srp_template,
3708 				      sizeof (struct srp_target_port));
3709 	if (!target_host)
3710 		return -ENOMEM;
3711 
3712 	target_host->transportt  = ib_srp_transport_template;
3713 	target_host->max_channel = 0;
3714 	target_host->max_id      = 1;
3715 	target_host->max_lun     = -1LL;
3716 	target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3717 	target_host->max_segment_size = ib_dma_max_seg_size(ibdev);
3718 
3719 	if (!(ibdev->attrs.kernel_cap_flags & IBK_SG_GAPS_REG))
3720 		target_host->virt_boundary_mask = ~srp_dev->mr_page_mask;
3721 
3722 	target = host_to_target(target_host);
3723 
3724 	target->net		= kobj_ns_grab_current(KOBJ_NS_TYPE_NET);
3725 	target->io_class	= SRP_REV16A_IB_IO_CLASS;
3726 	target->scsi_host	= target_host;
3727 	target->srp_host	= host;
3728 	target->lkey		= host->srp_dev->pd->local_dma_lkey;
3729 	target->global_rkey	= host->srp_dev->global_rkey;
3730 	target->cmd_sg_cnt	= cmd_sg_entries;
3731 	target->sg_tablesize	= indirect_sg_entries ? : cmd_sg_entries;
3732 	target->allow_ext_sg	= allow_ext_sg;
3733 	target->tl_retry_count	= 7;
3734 	target->queue_size	= SRP_DEFAULT_QUEUE_SIZE;
3735 
3736 	/*
3737 	 * Avoid that the SCSI host can be removed by srp_remove_target()
3738 	 * before this function returns.
3739 	 */
3740 	scsi_host_get(target->scsi_host);
3741 
3742 	ret = mutex_lock_interruptible(&host->add_target_mutex);
3743 	if (ret < 0)
3744 		goto put;
3745 
3746 	ret = srp_parse_options(target->net, buf, target);
3747 	if (ret)
3748 		goto out;
3749 
3750 	if (!srp_conn_unique(target->srp_host, target)) {
3751 		if (target->using_rdma_cm) {
3752 			shost_printk(KERN_INFO, target->scsi_host,
3753 				     PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;dest=%pIS\n",
3754 				     be64_to_cpu(target->id_ext),
3755 				     be64_to_cpu(target->ioc_guid),
3756 				     &target->rdma_cm.dst);
3757 		} else {
3758 			shost_printk(KERN_INFO, target->scsi_host,
3759 				     PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3760 				     be64_to_cpu(target->id_ext),
3761 				     be64_to_cpu(target->ioc_guid),
3762 				     be64_to_cpu(target->initiator_ext));
3763 		}
3764 		ret = -EEXIST;
3765 		goto out;
3766 	}
3767 
3768 	if (!srp_dev->has_fr && !target->allow_ext_sg &&
3769 	    target->cmd_sg_cnt < target->sg_tablesize) {
3770 		pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3771 		target->sg_tablesize = target->cmd_sg_cnt;
3772 	}
3773 
3774 	if (srp_dev->use_fast_reg) {
3775 		bool gaps_reg = ibdev->attrs.kernel_cap_flags &
3776 				 IBK_SG_GAPS_REG;
3777 
3778 		max_sectors_per_mr = srp_dev->max_pages_per_mr <<
3779 				  (ilog2(srp_dev->mr_page_size) - 9);
3780 		if (!gaps_reg) {
3781 			/*
3782 			 * FR can only map one HCA page per entry. If the start
3783 			 * address is not aligned on a HCA page boundary two
3784 			 * entries will be used for the head and the tail
3785 			 * although these two entries combined contain at most
3786 			 * one HCA page of data. Hence the "+ 1" in the
3787 			 * calculation below.
3788 			 *
3789 			 * The indirect data buffer descriptor is contiguous
3790 			 * so the memory for that buffer will only be
3791 			 * registered if register_always is true. Hence add
3792 			 * one to mr_per_cmd if register_always has been set.
3793 			 */
3794 			mr_per_cmd = register_always +
3795 				(target->scsi_host->max_sectors + 1 +
3796 				 max_sectors_per_mr - 1) / max_sectors_per_mr;
3797 		} else {
3798 			mr_per_cmd = register_always +
3799 				(target->sg_tablesize +
3800 				 srp_dev->max_pages_per_mr - 1) /
3801 				srp_dev->max_pages_per_mr;
3802 		}
3803 		pr_debug("max_sectors = %u; max_pages_per_mr = %u; mr_page_size = %u; max_sectors_per_mr = %u; mr_per_cmd = %u\n",
3804 			 target->scsi_host->max_sectors, srp_dev->max_pages_per_mr, srp_dev->mr_page_size,
3805 			 max_sectors_per_mr, mr_per_cmd);
3806 	}
3807 
3808 	target_host->sg_tablesize = target->sg_tablesize;
3809 	target->mr_pool_size = target->scsi_host->can_queue * mr_per_cmd;
3810 	target->mr_per_cmd = mr_per_cmd;
3811 	target->indirect_size = target->sg_tablesize *
3812 				sizeof (struct srp_direct_buf);
3813 	max_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
3814 				       srp_use_imm_data,
3815 				       target->max_it_iu_size);
3816 
3817 	INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3818 	INIT_WORK(&target->remove_work, srp_remove_work);
3819 	spin_lock_init(&target->lock);
3820 	ret = rdma_query_gid(ibdev, host->port, 0, &target->sgid);
3821 	if (ret)
3822 		goto out;
3823 
3824 	ret = -ENOMEM;
3825 	if (target->ch_count == 0) {
3826 		target->ch_count =
3827 			min(ch_count ?:
3828 				max(4 * num_online_nodes(),
3829 				    ibdev->num_comp_vectors),
3830 				num_online_cpus());
3831 	}
3832 
3833 	target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3834 			     GFP_KERNEL);
3835 	if (!target->ch)
3836 		goto out;
3837 
3838 	for (ch_idx = 0; ch_idx < target->ch_count; ++ch_idx) {
3839 		ch = &target->ch[ch_idx];
3840 		ch->target = target;
3841 		ch->comp_vector = ch_idx % ibdev->num_comp_vectors;
3842 		spin_lock_init(&ch->lock);
3843 		INIT_LIST_HEAD(&ch->free_tx);
3844 		ret = srp_new_cm_id(ch);
3845 		if (ret)
3846 			goto err_disconnect;
3847 
3848 		ret = srp_create_ch_ib(ch);
3849 		if (ret)
3850 			goto err_disconnect;
3851 
3852 		ret = srp_connect_ch(ch, max_iu_len, multich);
3853 		if (ret) {
3854 			char dst[64];
3855 
3856 			if (target->using_rdma_cm)
3857 				snprintf(dst, sizeof(dst), "%pIS",
3858 					&target->rdma_cm.dst);
3859 			else
3860 				snprintf(dst, sizeof(dst), "%pI6",
3861 					target->ib_cm.orig_dgid.raw);
3862 			shost_printk(KERN_ERR, target->scsi_host,
3863 				PFX "Connection %d/%d to %s failed\n",
3864 				ch_idx,
3865 				target->ch_count, dst);
3866 			if (ch_idx == 0) {
3867 				goto free_ch;
3868 			} else {
3869 				srp_free_ch_ib(target, ch);
3870 				target->ch_count = ch - target->ch;
3871 				goto connected;
3872 			}
3873 		}
3874 		multich = true;
3875 	}
3876 
3877 connected:
3878 	target->scsi_host->nr_hw_queues = target->ch_count;
3879 
3880 	ret = srp_add_target(host, target);
3881 	if (ret)
3882 		goto err_disconnect;
3883 
3884 	if (target->state != SRP_TARGET_REMOVED) {
3885 		if (target->using_rdma_cm) {
3886 			shost_printk(KERN_DEBUG, target->scsi_host, PFX
3887 				     "new target: id_ext %016llx ioc_guid %016llx sgid %pI6 dest %pIS\n",
3888 				     be64_to_cpu(target->id_ext),
3889 				     be64_to_cpu(target->ioc_guid),
3890 				     target->sgid.raw, &target->rdma_cm.dst);
3891 		} else {
3892 			shost_printk(KERN_DEBUG, target->scsi_host, PFX
3893 				     "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3894 				     be64_to_cpu(target->id_ext),
3895 				     be64_to_cpu(target->ioc_guid),
3896 				     be16_to_cpu(target->ib_cm.pkey),
3897 				     be64_to_cpu(target->ib_cm.service_id),
3898 				     target->sgid.raw,
3899 				     target->ib_cm.orig_dgid.raw);
3900 		}
3901 	}
3902 
3903 	ret = count;
3904 
3905 out:
3906 	mutex_unlock(&host->add_target_mutex);
3907 
3908 put:
3909 	scsi_host_put(target->scsi_host);
3910 	if (ret < 0) {
3911 		/*
3912 		 * If a call to srp_remove_target() has not been scheduled,
3913 		 * drop the network namespace reference now that was obtained
3914 		 * earlier in this function.
3915 		 */
3916 		if (target->state != SRP_TARGET_REMOVED)
3917 			kobj_ns_drop(KOBJ_NS_TYPE_NET, target->net);
3918 		scsi_host_put(target->scsi_host);
3919 	}
3920 
3921 	return ret;
3922 
3923 err_disconnect:
3924 	srp_disconnect_target(target);
3925 
3926 free_ch:
3927 	for (i = 0; i < target->ch_count; i++) {
3928 		ch = &target->ch[i];
3929 		srp_free_ch_ib(target, ch);
3930 	}
3931 
3932 	kfree(target->ch);
3933 	goto out;
3934 }
3935 
3936 static DEVICE_ATTR_WO(add_target);
3937 
3938 static ssize_t ibdev_show(struct device *dev, struct device_attribute *attr,
3939 			  char *buf)
3940 {
3941 	struct srp_host *host = container_of(dev, struct srp_host, dev);
3942 
3943 	return sysfs_emit(buf, "%s\n", dev_name(&host->srp_dev->dev->dev));
3944 }
3945 
3946 static DEVICE_ATTR_RO(ibdev);
3947 
3948 static ssize_t port_show(struct device *dev, struct device_attribute *attr,
3949 			 char *buf)
3950 {
3951 	struct srp_host *host = container_of(dev, struct srp_host, dev);
3952 
3953 	return sysfs_emit(buf, "%u\n", host->port);
3954 }
3955 
3956 static DEVICE_ATTR_RO(port);
3957 
3958 static struct attribute *srp_class_attrs[] = {
3959 	&dev_attr_add_target.attr,
3960 	&dev_attr_ibdev.attr,
3961 	&dev_attr_port.attr,
3962 	NULL
3963 };
3964 
3965 static struct srp_host *srp_add_port(struct srp_device *device, u32 port)
3966 {
3967 	struct srp_host *host;
3968 
3969 	host = kzalloc(sizeof *host, GFP_KERNEL);
3970 	if (!host)
3971 		return NULL;
3972 
3973 	INIT_LIST_HEAD(&host->target_list);
3974 	spin_lock_init(&host->target_lock);
3975 	mutex_init(&host->add_target_mutex);
3976 	host->srp_dev = device;
3977 	host->port = port;
3978 
3979 	device_initialize(&host->dev);
3980 	host->dev.class = &srp_class;
3981 	host->dev.parent = device->dev->dev.parent;
3982 	if (dev_set_name(&host->dev, "srp-%s-%u", dev_name(&device->dev->dev),
3983 			 port))
3984 		goto put_host;
3985 	if (device_add(&host->dev))
3986 		goto put_host;
3987 
3988 	return host;
3989 
3990 put_host:
3991 	device_del(&host->dev);
3992 	put_device(&host->dev);
3993 	return NULL;
3994 }
3995 
3996 static void srp_rename_dev(struct ib_device *device, void *client_data)
3997 {
3998 	struct srp_device *srp_dev = client_data;
3999 	struct srp_host *host, *tmp_host;
4000 
4001 	list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
4002 		char name[IB_DEVICE_NAME_MAX + 8];
4003 
4004 		snprintf(name, sizeof(name), "srp-%s-%u",
4005 			 dev_name(&device->dev), host->port);
4006 		device_rename(&host->dev, name);
4007 	}
4008 }
4009 
4010 static int srp_add_one(struct ib_device *device)
4011 {
4012 	struct srp_device *srp_dev;
4013 	struct ib_device_attr *attr = &device->attrs;
4014 	struct srp_host *host;
4015 	int mr_page_shift;
4016 	u32 p;
4017 	u64 max_pages_per_mr;
4018 	unsigned int flags = 0;
4019 
4020 	srp_dev = kzalloc(sizeof(*srp_dev), GFP_KERNEL);
4021 	if (!srp_dev)
4022 		return -ENOMEM;
4023 
4024 	/*
4025 	 * Use the smallest page size supported by the HCA, down to a
4026 	 * minimum of 4096 bytes. We're unlikely to build large sglists
4027 	 * out of smaller entries.
4028 	 */
4029 	mr_page_shift		= max(12, ffs(attr->page_size_cap) - 1);
4030 	srp_dev->mr_page_size	= 1 << mr_page_shift;
4031 	srp_dev->mr_page_mask	= ~((u64) srp_dev->mr_page_size - 1);
4032 	max_pages_per_mr	= attr->max_mr_size;
4033 	do_div(max_pages_per_mr, srp_dev->mr_page_size);
4034 	pr_debug("%s: %llu / %u = %llu <> %u\n", __func__,
4035 		 attr->max_mr_size, srp_dev->mr_page_size,
4036 		 max_pages_per_mr, SRP_MAX_PAGES_PER_MR);
4037 	srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
4038 					  max_pages_per_mr);
4039 
4040 	srp_dev->has_fr = (attr->device_cap_flags &
4041 			   IB_DEVICE_MEM_MGT_EXTENSIONS);
4042 	if (!never_register && !srp_dev->has_fr)
4043 		dev_warn(&device->dev, "FR is not supported\n");
4044 	else if (!never_register &&
4045 		 attr->max_mr_size >= 2 * srp_dev->mr_page_size)
4046 		srp_dev->use_fast_reg = srp_dev->has_fr;
4047 
4048 	if (never_register || !register_always || !srp_dev->has_fr)
4049 		flags |= IB_PD_UNSAFE_GLOBAL_RKEY;
4050 
4051 	if (srp_dev->use_fast_reg) {
4052 		srp_dev->max_pages_per_mr =
4053 			min_t(u32, srp_dev->max_pages_per_mr,
4054 			      attr->max_fast_reg_page_list_len);
4055 	}
4056 	srp_dev->mr_max_size	= srp_dev->mr_page_size *
4057 				   srp_dev->max_pages_per_mr;
4058 	pr_debug("%s: mr_page_shift = %d, device->max_mr_size = %#llx, device->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
4059 		 dev_name(&device->dev), mr_page_shift, attr->max_mr_size,
4060 		 attr->max_fast_reg_page_list_len,
4061 		 srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
4062 
4063 	INIT_LIST_HEAD(&srp_dev->dev_list);
4064 
4065 	srp_dev->dev = device;
4066 	srp_dev->pd  = ib_alloc_pd(device, flags);
4067 	if (IS_ERR(srp_dev->pd)) {
4068 		int ret = PTR_ERR(srp_dev->pd);
4069 
4070 		kfree(srp_dev);
4071 		return ret;
4072 	}
4073 
4074 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
4075 		srp_dev->global_rkey = srp_dev->pd->unsafe_global_rkey;
4076 		WARN_ON_ONCE(srp_dev->global_rkey == 0);
4077 	}
4078 
4079 	rdma_for_each_port (device, p) {
4080 		host = srp_add_port(srp_dev, p);
4081 		if (host)
4082 			list_add_tail(&host->list, &srp_dev->dev_list);
4083 	}
4084 
4085 	ib_set_client_data(device, &srp_client, srp_dev);
4086 	return 0;
4087 }
4088 
4089 static void srp_remove_one(struct ib_device *device, void *client_data)
4090 {
4091 	struct srp_device *srp_dev;
4092 	struct srp_host *host, *tmp_host;
4093 	struct srp_target_port *target;
4094 
4095 	srp_dev = client_data;
4096 
4097 	list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
4098 		/*
4099 		 * Remove the add_target sysfs entry so that no new target ports
4100 		 * can be created.
4101 		 */
4102 		device_del(&host->dev);
4103 
4104 		/*
4105 		 * Remove all target ports.
4106 		 */
4107 		spin_lock(&host->target_lock);
4108 		list_for_each_entry(target, &host->target_list, list)
4109 			srp_queue_remove_work(target);
4110 		spin_unlock(&host->target_lock);
4111 
4112 		/*
4113 		 * srp_queue_remove_work() queues a call to
4114 		 * srp_remove_target(). The latter function cancels
4115 		 * target->tl_err_work so waiting for the remove works to
4116 		 * finish is sufficient.
4117 		 */
4118 		flush_workqueue(srp_remove_wq);
4119 
4120 		put_device(&host->dev);
4121 	}
4122 
4123 	ib_dealloc_pd(srp_dev->pd);
4124 
4125 	kfree(srp_dev);
4126 }
4127 
4128 static struct srp_function_template ib_srp_transport_functions = {
4129 	.has_rport_state	 = true,
4130 	.reset_timer_if_blocked	 = true,
4131 	.reconnect_delay	 = &srp_reconnect_delay,
4132 	.fast_io_fail_tmo	 = &srp_fast_io_fail_tmo,
4133 	.dev_loss_tmo		 = &srp_dev_loss_tmo,
4134 	.reconnect		 = srp_rport_reconnect,
4135 	.rport_delete		 = srp_rport_delete,
4136 	.terminate_rport_io	 = srp_terminate_io,
4137 };
4138 
4139 static int __init srp_init_module(void)
4140 {
4141 	int ret;
4142 
4143 	BUILD_BUG_ON(sizeof(struct srp_aer_req) != 36);
4144 	BUILD_BUG_ON(sizeof(struct srp_cmd) != 48);
4145 	BUILD_BUG_ON(sizeof(struct srp_imm_buf) != 4);
4146 	BUILD_BUG_ON(sizeof(struct srp_indirect_buf) != 20);
4147 	BUILD_BUG_ON(sizeof(struct srp_login_req) != 64);
4148 	BUILD_BUG_ON(sizeof(struct srp_login_req_rdma) != 56);
4149 	BUILD_BUG_ON(sizeof(struct srp_rsp) != 36);
4150 
4151 	if (srp_sg_tablesize) {
4152 		pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
4153 		if (!cmd_sg_entries)
4154 			cmd_sg_entries = srp_sg_tablesize;
4155 	}
4156 
4157 	if (!cmd_sg_entries)
4158 		cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
4159 
4160 	if (cmd_sg_entries > 255) {
4161 		pr_warn("Clamping cmd_sg_entries to 255\n");
4162 		cmd_sg_entries = 255;
4163 	}
4164 
4165 	if (!indirect_sg_entries)
4166 		indirect_sg_entries = cmd_sg_entries;
4167 	else if (indirect_sg_entries < cmd_sg_entries) {
4168 		pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
4169 			cmd_sg_entries);
4170 		indirect_sg_entries = cmd_sg_entries;
4171 	}
4172 
4173 	if (indirect_sg_entries > SG_MAX_SEGMENTS) {
4174 		pr_warn("Clamping indirect_sg_entries to %u\n",
4175 			SG_MAX_SEGMENTS);
4176 		indirect_sg_entries = SG_MAX_SEGMENTS;
4177 	}
4178 
4179 	srp_remove_wq = create_workqueue("srp_remove");
4180 	if (!srp_remove_wq) {
4181 		ret = -ENOMEM;
4182 		goto out;
4183 	}
4184 
4185 	ret = -ENOMEM;
4186 	ib_srp_transport_template =
4187 		srp_attach_transport(&ib_srp_transport_functions);
4188 	if (!ib_srp_transport_template)
4189 		goto destroy_wq;
4190 
4191 	ret = class_register(&srp_class);
4192 	if (ret) {
4193 		pr_err("couldn't register class infiniband_srp\n");
4194 		goto release_tr;
4195 	}
4196 
4197 	ib_sa_register_client(&srp_sa_client);
4198 
4199 	ret = ib_register_client(&srp_client);
4200 	if (ret) {
4201 		pr_err("couldn't register IB client\n");
4202 		goto unreg_sa;
4203 	}
4204 
4205 out:
4206 	return ret;
4207 
4208 unreg_sa:
4209 	ib_sa_unregister_client(&srp_sa_client);
4210 	class_unregister(&srp_class);
4211 
4212 release_tr:
4213 	srp_release_transport(ib_srp_transport_template);
4214 
4215 destroy_wq:
4216 	destroy_workqueue(srp_remove_wq);
4217 	goto out;
4218 }
4219 
4220 static void __exit srp_cleanup_module(void)
4221 {
4222 	ib_unregister_client(&srp_client);
4223 	ib_sa_unregister_client(&srp_sa_client);
4224 	class_unregister(&srp_class);
4225 	srp_release_transport(ib_srp_transport_template);
4226 	destroy_workqueue(srp_remove_wq);
4227 }
4228 
4229 module_init(srp_init_module);
4230 module_exit(srp_cleanup_module);
4231