1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <linux/lockdep.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46 
47 #include <linux/atomic.h>
48 
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_dbg.h>
52 #include <scsi/scsi_tcq.h>
53 #include <scsi/srp.h>
54 #include <scsi/scsi_transport_srp.h>
55 
56 #include "ib_srp.h"
57 
58 #define DRV_NAME	"ib_srp"
59 #define PFX		DRV_NAME ": "
60 
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 
65 #if !defined(CONFIG_DYNAMIC_DEBUG)
66 #define DEFINE_DYNAMIC_DEBUG_METADATA(name, fmt)
67 #define DYNAMIC_DEBUG_BRANCH(descriptor) false
68 #endif
69 
70 static unsigned int srp_sg_tablesize;
71 static unsigned int cmd_sg_entries;
72 static unsigned int indirect_sg_entries;
73 static bool allow_ext_sg;
74 static bool register_always = true;
75 static bool never_register;
76 static int topspin_workarounds = 1;
77 
78 module_param(srp_sg_tablesize, uint, 0444);
79 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
80 
81 module_param(cmd_sg_entries, uint, 0444);
82 MODULE_PARM_DESC(cmd_sg_entries,
83 		 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
84 
85 module_param(indirect_sg_entries, uint, 0444);
86 MODULE_PARM_DESC(indirect_sg_entries,
87 		 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SG_MAX_SEGMENTS) ")");
88 
89 module_param(allow_ext_sg, bool, 0444);
90 MODULE_PARM_DESC(allow_ext_sg,
91 		  "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
92 
93 module_param(topspin_workarounds, int, 0444);
94 MODULE_PARM_DESC(topspin_workarounds,
95 		 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
96 
97 module_param(register_always, bool, 0444);
98 MODULE_PARM_DESC(register_always,
99 		 "Use memory registration even for contiguous memory regions");
100 
101 module_param(never_register, bool, 0444);
102 MODULE_PARM_DESC(never_register, "Never register memory");
103 
104 static const struct kernel_param_ops srp_tmo_ops;
105 
106 static int srp_reconnect_delay = 10;
107 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
108 		S_IRUGO | S_IWUSR);
109 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
110 
111 static int srp_fast_io_fail_tmo = 15;
112 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
113 		S_IRUGO | S_IWUSR);
114 MODULE_PARM_DESC(fast_io_fail_tmo,
115 		 "Number of seconds between the observation of a transport"
116 		 " layer error and failing all I/O. \"off\" means that this"
117 		 " functionality is disabled.");
118 
119 static int srp_dev_loss_tmo = 600;
120 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
121 		S_IRUGO | S_IWUSR);
122 MODULE_PARM_DESC(dev_loss_tmo,
123 		 "Maximum number of seconds that the SRP transport should"
124 		 " insulate transport layer errors. After this time has been"
125 		 " exceeded the SCSI host is removed. Should be"
126 		 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
127 		 " if fast_io_fail_tmo has not been set. \"off\" means that"
128 		 " this functionality is disabled.");
129 
130 static bool srp_use_imm_data = true;
131 module_param_named(use_imm_data, srp_use_imm_data, bool, 0644);
132 MODULE_PARM_DESC(use_imm_data,
133 		 "Whether or not to request permission to use immediate data during SRP login.");
134 
135 static unsigned int srp_max_imm_data = 8 * 1024;
136 module_param_named(max_imm_data, srp_max_imm_data, uint, 0644);
137 MODULE_PARM_DESC(max_imm_data, "Maximum immediate data size.");
138 
139 static unsigned ch_count;
140 module_param(ch_count, uint, 0444);
141 MODULE_PARM_DESC(ch_count,
142 		 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
143 
144 static int srp_add_one(struct ib_device *device);
145 static void srp_remove_one(struct ib_device *device, void *client_data);
146 static void srp_rename_dev(struct ib_device *device, void *client_data);
147 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc);
148 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
149 		const char *opname);
150 static int srp_ib_cm_handler(struct ib_cm_id *cm_id,
151 			     const struct ib_cm_event *event);
152 static int srp_rdma_cm_handler(struct rdma_cm_id *cm_id,
153 			       struct rdma_cm_event *event);
154 
155 static struct scsi_transport_template *ib_srp_transport_template;
156 static struct workqueue_struct *srp_remove_wq;
157 
158 static struct ib_client srp_client = {
159 	.name   = "srp",
160 	.add    = srp_add_one,
161 	.remove = srp_remove_one,
162 	.rename = srp_rename_dev
163 };
164 
165 static struct ib_sa_client srp_sa_client;
166 
167 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
168 {
169 	int tmo = *(int *)kp->arg;
170 
171 	if (tmo >= 0)
172 		return sysfs_emit(buffer, "%d\n", tmo);
173 	else
174 		return sysfs_emit(buffer, "off\n");
175 }
176 
177 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
178 {
179 	int tmo, res;
180 
181 	res = srp_parse_tmo(&tmo, val);
182 	if (res)
183 		goto out;
184 
185 	if (kp->arg == &srp_reconnect_delay)
186 		res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
187 				    srp_dev_loss_tmo);
188 	else if (kp->arg == &srp_fast_io_fail_tmo)
189 		res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
190 	else
191 		res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
192 				    tmo);
193 	if (res)
194 		goto out;
195 	*(int *)kp->arg = tmo;
196 
197 out:
198 	return res;
199 }
200 
201 static const struct kernel_param_ops srp_tmo_ops = {
202 	.get = srp_tmo_get,
203 	.set = srp_tmo_set,
204 };
205 
206 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
207 {
208 	return (struct srp_target_port *) host->hostdata;
209 }
210 
211 static const char *srp_target_info(struct Scsi_Host *host)
212 {
213 	return host_to_target(host)->target_name;
214 }
215 
216 static int srp_target_is_topspin(struct srp_target_port *target)
217 {
218 	static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
219 	static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
220 
221 	return topspin_workarounds &&
222 		(!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
223 		 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
224 }
225 
226 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
227 				   gfp_t gfp_mask,
228 				   enum dma_data_direction direction)
229 {
230 	struct srp_iu *iu;
231 
232 	iu = kmalloc(sizeof *iu, gfp_mask);
233 	if (!iu)
234 		goto out;
235 
236 	iu->buf = kzalloc(size, gfp_mask);
237 	if (!iu->buf)
238 		goto out_free_iu;
239 
240 	iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
241 				    direction);
242 	if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
243 		goto out_free_buf;
244 
245 	iu->size      = size;
246 	iu->direction = direction;
247 
248 	return iu;
249 
250 out_free_buf:
251 	kfree(iu->buf);
252 out_free_iu:
253 	kfree(iu);
254 out:
255 	return NULL;
256 }
257 
258 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
259 {
260 	if (!iu)
261 		return;
262 
263 	ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
264 			    iu->direction);
265 	kfree(iu->buf);
266 	kfree(iu);
267 }
268 
269 static void srp_qp_event(struct ib_event *event, void *context)
270 {
271 	pr_debug("QP event %s (%d)\n",
272 		 ib_event_msg(event->event), event->event);
273 }
274 
275 static int srp_init_ib_qp(struct srp_target_port *target,
276 			  struct ib_qp *qp)
277 {
278 	struct ib_qp_attr *attr;
279 	int ret;
280 
281 	attr = kmalloc(sizeof *attr, GFP_KERNEL);
282 	if (!attr)
283 		return -ENOMEM;
284 
285 	ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
286 				  target->srp_host->port,
287 				  be16_to_cpu(target->ib_cm.pkey),
288 				  &attr->pkey_index);
289 	if (ret)
290 		goto out;
291 
292 	attr->qp_state        = IB_QPS_INIT;
293 	attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
294 				    IB_ACCESS_REMOTE_WRITE);
295 	attr->port_num        = target->srp_host->port;
296 
297 	ret = ib_modify_qp(qp, attr,
298 			   IB_QP_STATE		|
299 			   IB_QP_PKEY_INDEX	|
300 			   IB_QP_ACCESS_FLAGS	|
301 			   IB_QP_PORT);
302 
303 out:
304 	kfree(attr);
305 	return ret;
306 }
307 
308 static int srp_new_ib_cm_id(struct srp_rdma_ch *ch)
309 {
310 	struct srp_target_port *target = ch->target;
311 	struct ib_cm_id *new_cm_id;
312 
313 	new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
314 				    srp_ib_cm_handler, ch);
315 	if (IS_ERR(new_cm_id))
316 		return PTR_ERR(new_cm_id);
317 
318 	if (ch->ib_cm.cm_id)
319 		ib_destroy_cm_id(ch->ib_cm.cm_id);
320 	ch->ib_cm.cm_id = new_cm_id;
321 	if (rdma_cap_opa_ah(target->srp_host->srp_dev->dev,
322 			    target->srp_host->port))
323 		ch->ib_cm.path.rec_type = SA_PATH_REC_TYPE_OPA;
324 	else
325 		ch->ib_cm.path.rec_type = SA_PATH_REC_TYPE_IB;
326 	ch->ib_cm.path.sgid = target->sgid;
327 	ch->ib_cm.path.dgid = target->ib_cm.orig_dgid;
328 	ch->ib_cm.path.pkey = target->ib_cm.pkey;
329 	ch->ib_cm.path.service_id = target->ib_cm.service_id;
330 
331 	return 0;
332 }
333 
334 static int srp_new_rdma_cm_id(struct srp_rdma_ch *ch)
335 {
336 	struct srp_target_port *target = ch->target;
337 	struct rdma_cm_id *new_cm_id;
338 	int ret;
339 
340 	new_cm_id = rdma_create_id(target->net, srp_rdma_cm_handler, ch,
341 				   RDMA_PS_TCP, IB_QPT_RC);
342 	if (IS_ERR(new_cm_id)) {
343 		ret = PTR_ERR(new_cm_id);
344 		new_cm_id = NULL;
345 		goto out;
346 	}
347 
348 	init_completion(&ch->done);
349 	ret = rdma_resolve_addr(new_cm_id, target->rdma_cm.src_specified ?
350 				&target->rdma_cm.src.sa : NULL,
351 				&target->rdma_cm.dst.sa,
352 				SRP_PATH_REC_TIMEOUT_MS);
353 	if (ret) {
354 		pr_err("No route available from %pISpsc to %pISpsc (%d)\n",
355 		       &target->rdma_cm.src, &target->rdma_cm.dst, ret);
356 		goto out;
357 	}
358 	ret = wait_for_completion_interruptible(&ch->done);
359 	if (ret < 0)
360 		goto out;
361 
362 	ret = ch->status;
363 	if (ret) {
364 		pr_err("Resolving address %pISpsc failed (%d)\n",
365 		       &target->rdma_cm.dst, ret);
366 		goto out;
367 	}
368 
369 	swap(ch->rdma_cm.cm_id, new_cm_id);
370 
371 out:
372 	if (new_cm_id)
373 		rdma_destroy_id(new_cm_id);
374 
375 	return ret;
376 }
377 
378 static int srp_new_cm_id(struct srp_rdma_ch *ch)
379 {
380 	struct srp_target_port *target = ch->target;
381 
382 	return target->using_rdma_cm ? srp_new_rdma_cm_id(ch) :
383 		srp_new_ib_cm_id(ch);
384 }
385 
386 /**
387  * srp_destroy_fr_pool() - free the resources owned by a pool
388  * @pool: Fast registration pool to be destroyed.
389  */
390 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
391 {
392 	int i;
393 	struct srp_fr_desc *d;
394 
395 	if (!pool)
396 		return;
397 
398 	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
399 		if (d->mr)
400 			ib_dereg_mr(d->mr);
401 	}
402 	kfree(pool);
403 }
404 
405 /**
406  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
407  * @device:            IB device to allocate fast registration descriptors for.
408  * @pd:                Protection domain associated with the FR descriptors.
409  * @pool_size:         Number of descriptors to allocate.
410  * @max_page_list_len: Maximum fast registration work request page list length.
411  */
412 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
413 					      struct ib_pd *pd, int pool_size,
414 					      int max_page_list_len)
415 {
416 	struct srp_fr_pool *pool;
417 	struct srp_fr_desc *d;
418 	struct ib_mr *mr;
419 	int i, ret = -EINVAL;
420 	enum ib_mr_type mr_type;
421 
422 	if (pool_size <= 0)
423 		goto err;
424 	ret = -ENOMEM;
425 	pool = kzalloc(struct_size(pool, desc, pool_size), GFP_KERNEL);
426 	if (!pool)
427 		goto err;
428 	pool->size = pool_size;
429 	pool->max_page_list_len = max_page_list_len;
430 	spin_lock_init(&pool->lock);
431 	INIT_LIST_HEAD(&pool->free_list);
432 
433 	if (device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
434 		mr_type = IB_MR_TYPE_SG_GAPS;
435 	else
436 		mr_type = IB_MR_TYPE_MEM_REG;
437 
438 	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
439 		mr = ib_alloc_mr(pd, mr_type, max_page_list_len);
440 		if (IS_ERR(mr)) {
441 			ret = PTR_ERR(mr);
442 			if (ret == -ENOMEM)
443 				pr_info("%s: ib_alloc_mr() failed. Try to reduce max_cmd_per_lun, max_sect or ch_count\n",
444 					dev_name(&device->dev));
445 			goto destroy_pool;
446 		}
447 		d->mr = mr;
448 		list_add_tail(&d->entry, &pool->free_list);
449 	}
450 
451 out:
452 	return pool;
453 
454 destroy_pool:
455 	srp_destroy_fr_pool(pool);
456 
457 err:
458 	pool = ERR_PTR(ret);
459 	goto out;
460 }
461 
462 /**
463  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
464  * @pool: Pool to obtain descriptor from.
465  */
466 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
467 {
468 	struct srp_fr_desc *d = NULL;
469 	unsigned long flags;
470 
471 	spin_lock_irqsave(&pool->lock, flags);
472 	if (!list_empty(&pool->free_list)) {
473 		d = list_first_entry(&pool->free_list, typeof(*d), entry);
474 		list_del(&d->entry);
475 	}
476 	spin_unlock_irqrestore(&pool->lock, flags);
477 
478 	return d;
479 }
480 
481 /**
482  * srp_fr_pool_put() - put an FR descriptor back in the free list
483  * @pool: Pool the descriptor was allocated from.
484  * @desc: Pointer to an array of fast registration descriptor pointers.
485  * @n:    Number of descriptors to put back.
486  *
487  * Note: The caller must already have queued an invalidation request for
488  * desc->mr->rkey before calling this function.
489  */
490 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
491 			    int n)
492 {
493 	unsigned long flags;
494 	int i;
495 
496 	spin_lock_irqsave(&pool->lock, flags);
497 	for (i = 0; i < n; i++)
498 		list_add(&desc[i]->entry, &pool->free_list);
499 	spin_unlock_irqrestore(&pool->lock, flags);
500 }
501 
502 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
503 {
504 	struct srp_device *dev = target->srp_host->srp_dev;
505 
506 	return srp_create_fr_pool(dev->dev, dev->pd, target->mr_pool_size,
507 				  dev->max_pages_per_mr);
508 }
509 
510 /**
511  * srp_destroy_qp() - destroy an RDMA queue pair
512  * @ch: SRP RDMA channel.
513  *
514  * Drain the qp before destroying it.  This avoids that the receive
515  * completion handler can access the queue pair while it is
516  * being destroyed.
517  */
518 static void srp_destroy_qp(struct srp_rdma_ch *ch)
519 {
520 	spin_lock_irq(&ch->lock);
521 	ib_process_cq_direct(ch->send_cq, -1);
522 	spin_unlock_irq(&ch->lock);
523 
524 	ib_drain_qp(ch->qp);
525 	ib_destroy_qp(ch->qp);
526 }
527 
528 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
529 {
530 	struct srp_target_port *target = ch->target;
531 	struct srp_device *dev = target->srp_host->srp_dev;
532 	const struct ib_device_attr *attr = &dev->dev->attrs;
533 	struct ib_qp_init_attr *init_attr;
534 	struct ib_cq *recv_cq, *send_cq;
535 	struct ib_qp *qp;
536 	struct srp_fr_pool *fr_pool = NULL;
537 	const int m = 1 + dev->use_fast_reg * target->mr_per_cmd * 2;
538 	int ret;
539 
540 	init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
541 	if (!init_attr)
542 		return -ENOMEM;
543 
544 	/* queue_size + 1 for ib_drain_rq() */
545 	recv_cq = ib_alloc_cq(dev->dev, ch, target->queue_size + 1,
546 				ch->comp_vector, IB_POLL_SOFTIRQ);
547 	if (IS_ERR(recv_cq)) {
548 		ret = PTR_ERR(recv_cq);
549 		goto err;
550 	}
551 
552 	send_cq = ib_alloc_cq(dev->dev, ch, m * target->queue_size,
553 				ch->comp_vector, IB_POLL_DIRECT);
554 	if (IS_ERR(send_cq)) {
555 		ret = PTR_ERR(send_cq);
556 		goto err_recv_cq;
557 	}
558 
559 	init_attr->event_handler       = srp_qp_event;
560 	init_attr->cap.max_send_wr     = m * target->queue_size;
561 	init_attr->cap.max_recv_wr     = target->queue_size + 1;
562 	init_attr->cap.max_recv_sge    = 1;
563 	init_attr->cap.max_send_sge    = min(SRP_MAX_SGE, attr->max_send_sge);
564 	init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
565 	init_attr->qp_type             = IB_QPT_RC;
566 	init_attr->send_cq             = send_cq;
567 	init_attr->recv_cq             = recv_cq;
568 
569 	ch->max_imm_sge = min(init_attr->cap.max_send_sge - 1U, 255U);
570 
571 	if (target->using_rdma_cm) {
572 		ret = rdma_create_qp(ch->rdma_cm.cm_id, dev->pd, init_attr);
573 		qp = ch->rdma_cm.cm_id->qp;
574 	} else {
575 		qp = ib_create_qp(dev->pd, init_attr);
576 		if (!IS_ERR(qp)) {
577 			ret = srp_init_ib_qp(target, qp);
578 			if (ret)
579 				ib_destroy_qp(qp);
580 		} else {
581 			ret = PTR_ERR(qp);
582 		}
583 	}
584 	if (ret) {
585 		pr_err("QP creation failed for dev %s: %d\n",
586 		       dev_name(&dev->dev->dev), ret);
587 		goto err_send_cq;
588 	}
589 
590 	if (dev->use_fast_reg) {
591 		fr_pool = srp_alloc_fr_pool(target);
592 		if (IS_ERR(fr_pool)) {
593 			ret = PTR_ERR(fr_pool);
594 			shost_printk(KERN_WARNING, target->scsi_host, PFX
595 				     "FR pool allocation failed (%d)\n", ret);
596 			goto err_qp;
597 		}
598 	}
599 
600 	if (ch->qp)
601 		srp_destroy_qp(ch);
602 	if (ch->recv_cq)
603 		ib_free_cq(ch->recv_cq);
604 	if (ch->send_cq)
605 		ib_free_cq(ch->send_cq);
606 
607 	ch->qp = qp;
608 	ch->recv_cq = recv_cq;
609 	ch->send_cq = send_cq;
610 
611 	if (dev->use_fast_reg) {
612 		if (ch->fr_pool)
613 			srp_destroy_fr_pool(ch->fr_pool);
614 		ch->fr_pool = fr_pool;
615 	}
616 
617 	kfree(init_attr);
618 	return 0;
619 
620 err_qp:
621 	if (target->using_rdma_cm)
622 		rdma_destroy_qp(ch->rdma_cm.cm_id);
623 	else
624 		ib_destroy_qp(qp);
625 
626 err_send_cq:
627 	ib_free_cq(send_cq);
628 
629 err_recv_cq:
630 	ib_free_cq(recv_cq);
631 
632 err:
633 	kfree(init_attr);
634 	return ret;
635 }
636 
637 /*
638  * Note: this function may be called without srp_alloc_iu_bufs() having been
639  * invoked. Hence the ch->[rt]x_ring checks.
640  */
641 static void srp_free_ch_ib(struct srp_target_port *target,
642 			   struct srp_rdma_ch *ch)
643 {
644 	struct srp_device *dev = target->srp_host->srp_dev;
645 	int i;
646 
647 	if (!ch->target)
648 		return;
649 
650 	if (target->using_rdma_cm) {
651 		if (ch->rdma_cm.cm_id) {
652 			rdma_destroy_id(ch->rdma_cm.cm_id);
653 			ch->rdma_cm.cm_id = NULL;
654 		}
655 	} else {
656 		if (ch->ib_cm.cm_id) {
657 			ib_destroy_cm_id(ch->ib_cm.cm_id);
658 			ch->ib_cm.cm_id = NULL;
659 		}
660 	}
661 
662 	/* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
663 	if (!ch->qp)
664 		return;
665 
666 	if (dev->use_fast_reg) {
667 		if (ch->fr_pool)
668 			srp_destroy_fr_pool(ch->fr_pool);
669 	}
670 
671 	srp_destroy_qp(ch);
672 	ib_free_cq(ch->send_cq);
673 	ib_free_cq(ch->recv_cq);
674 
675 	/*
676 	 * Avoid that the SCSI error handler tries to use this channel after
677 	 * it has been freed. The SCSI error handler can namely continue
678 	 * trying to perform recovery actions after scsi_remove_host()
679 	 * returned.
680 	 */
681 	ch->target = NULL;
682 
683 	ch->qp = NULL;
684 	ch->send_cq = ch->recv_cq = NULL;
685 
686 	if (ch->rx_ring) {
687 		for (i = 0; i < target->queue_size; ++i)
688 			srp_free_iu(target->srp_host, ch->rx_ring[i]);
689 		kfree(ch->rx_ring);
690 		ch->rx_ring = NULL;
691 	}
692 	if (ch->tx_ring) {
693 		for (i = 0; i < target->queue_size; ++i)
694 			srp_free_iu(target->srp_host, ch->tx_ring[i]);
695 		kfree(ch->tx_ring);
696 		ch->tx_ring = NULL;
697 	}
698 }
699 
700 static void srp_path_rec_completion(int status,
701 				    struct sa_path_rec *pathrec,
702 				    void *ch_ptr)
703 {
704 	struct srp_rdma_ch *ch = ch_ptr;
705 	struct srp_target_port *target = ch->target;
706 
707 	ch->status = status;
708 	if (status)
709 		shost_printk(KERN_ERR, target->scsi_host,
710 			     PFX "Got failed path rec status %d\n", status);
711 	else
712 		ch->ib_cm.path = *pathrec;
713 	complete(&ch->done);
714 }
715 
716 static int srp_ib_lookup_path(struct srp_rdma_ch *ch)
717 {
718 	struct srp_target_port *target = ch->target;
719 	int ret;
720 
721 	ch->ib_cm.path.numb_path = 1;
722 
723 	init_completion(&ch->done);
724 
725 	ch->ib_cm.path_query_id = ib_sa_path_rec_get(&srp_sa_client,
726 					       target->srp_host->srp_dev->dev,
727 					       target->srp_host->port,
728 					       &ch->ib_cm.path,
729 					       IB_SA_PATH_REC_SERVICE_ID |
730 					       IB_SA_PATH_REC_DGID	 |
731 					       IB_SA_PATH_REC_SGID	 |
732 					       IB_SA_PATH_REC_NUMB_PATH	 |
733 					       IB_SA_PATH_REC_PKEY,
734 					       SRP_PATH_REC_TIMEOUT_MS,
735 					       GFP_KERNEL,
736 					       srp_path_rec_completion,
737 					       ch, &ch->ib_cm.path_query);
738 	if (ch->ib_cm.path_query_id < 0)
739 		return ch->ib_cm.path_query_id;
740 
741 	ret = wait_for_completion_interruptible(&ch->done);
742 	if (ret < 0)
743 		return ret;
744 
745 	if (ch->status < 0)
746 		shost_printk(KERN_WARNING, target->scsi_host,
747 			     PFX "Path record query failed: sgid %pI6, dgid %pI6, pkey %#04x, service_id %#16llx\n",
748 			     ch->ib_cm.path.sgid.raw, ch->ib_cm.path.dgid.raw,
749 			     be16_to_cpu(target->ib_cm.pkey),
750 			     be64_to_cpu(target->ib_cm.service_id));
751 
752 	return ch->status;
753 }
754 
755 static int srp_rdma_lookup_path(struct srp_rdma_ch *ch)
756 {
757 	struct srp_target_port *target = ch->target;
758 	int ret;
759 
760 	init_completion(&ch->done);
761 
762 	ret = rdma_resolve_route(ch->rdma_cm.cm_id, SRP_PATH_REC_TIMEOUT_MS);
763 	if (ret)
764 		return ret;
765 
766 	wait_for_completion_interruptible(&ch->done);
767 
768 	if (ch->status != 0)
769 		shost_printk(KERN_WARNING, target->scsi_host,
770 			     PFX "Path resolution failed\n");
771 
772 	return ch->status;
773 }
774 
775 static int srp_lookup_path(struct srp_rdma_ch *ch)
776 {
777 	struct srp_target_port *target = ch->target;
778 
779 	return target->using_rdma_cm ? srp_rdma_lookup_path(ch) :
780 		srp_ib_lookup_path(ch);
781 }
782 
783 static u8 srp_get_subnet_timeout(struct srp_host *host)
784 {
785 	struct ib_port_attr attr;
786 	int ret;
787 	u8 subnet_timeout = 18;
788 
789 	ret = ib_query_port(host->srp_dev->dev, host->port, &attr);
790 	if (ret == 0)
791 		subnet_timeout = attr.subnet_timeout;
792 
793 	if (unlikely(subnet_timeout < 15))
794 		pr_warn("%s: subnet timeout %d may cause SRP login to fail.\n",
795 			dev_name(&host->srp_dev->dev->dev), subnet_timeout);
796 
797 	return subnet_timeout;
798 }
799 
800 static int srp_send_req(struct srp_rdma_ch *ch, uint32_t max_iu_len,
801 			bool multich)
802 {
803 	struct srp_target_port *target = ch->target;
804 	struct {
805 		struct rdma_conn_param	  rdma_param;
806 		struct srp_login_req_rdma rdma_req;
807 		struct ib_cm_req_param	  ib_param;
808 		struct srp_login_req	  ib_req;
809 	} *req = NULL;
810 	char *ipi, *tpi;
811 	int status;
812 
813 	req = kzalloc(sizeof *req, GFP_KERNEL);
814 	if (!req)
815 		return -ENOMEM;
816 
817 	req->ib_param.flow_control = 1;
818 	req->ib_param.retry_count = target->tl_retry_count;
819 
820 	/*
821 	 * Pick some arbitrary defaults here; we could make these
822 	 * module parameters if anyone cared about setting them.
823 	 */
824 	req->ib_param.responder_resources = 4;
825 	req->ib_param.rnr_retry_count = 7;
826 	req->ib_param.max_cm_retries = 15;
827 
828 	req->ib_req.opcode = SRP_LOGIN_REQ;
829 	req->ib_req.tag = 0;
830 	req->ib_req.req_it_iu_len = cpu_to_be32(max_iu_len);
831 	req->ib_req.req_buf_fmt	= cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
832 					      SRP_BUF_FORMAT_INDIRECT);
833 	req->ib_req.req_flags = (multich ? SRP_MULTICHAN_MULTI :
834 				 SRP_MULTICHAN_SINGLE);
835 	if (srp_use_imm_data) {
836 		req->ib_req.req_flags |= SRP_IMMED_REQUESTED;
837 		req->ib_req.imm_data_offset = cpu_to_be16(SRP_IMM_DATA_OFFSET);
838 	}
839 
840 	if (target->using_rdma_cm) {
841 		req->rdma_param.flow_control = req->ib_param.flow_control;
842 		req->rdma_param.responder_resources =
843 			req->ib_param.responder_resources;
844 		req->rdma_param.initiator_depth = req->ib_param.initiator_depth;
845 		req->rdma_param.retry_count = req->ib_param.retry_count;
846 		req->rdma_param.rnr_retry_count = req->ib_param.rnr_retry_count;
847 		req->rdma_param.private_data = &req->rdma_req;
848 		req->rdma_param.private_data_len = sizeof(req->rdma_req);
849 
850 		req->rdma_req.opcode = req->ib_req.opcode;
851 		req->rdma_req.tag = req->ib_req.tag;
852 		req->rdma_req.req_it_iu_len = req->ib_req.req_it_iu_len;
853 		req->rdma_req.req_buf_fmt = req->ib_req.req_buf_fmt;
854 		req->rdma_req.req_flags	= req->ib_req.req_flags;
855 		req->rdma_req.imm_data_offset = req->ib_req.imm_data_offset;
856 
857 		ipi = req->rdma_req.initiator_port_id;
858 		tpi = req->rdma_req.target_port_id;
859 	} else {
860 		u8 subnet_timeout;
861 
862 		subnet_timeout = srp_get_subnet_timeout(target->srp_host);
863 
864 		req->ib_param.primary_path = &ch->ib_cm.path;
865 		req->ib_param.alternate_path = NULL;
866 		req->ib_param.service_id = target->ib_cm.service_id;
867 		get_random_bytes(&req->ib_param.starting_psn, 4);
868 		req->ib_param.starting_psn &= 0xffffff;
869 		req->ib_param.qp_num = ch->qp->qp_num;
870 		req->ib_param.qp_type = ch->qp->qp_type;
871 		req->ib_param.local_cm_response_timeout = subnet_timeout + 2;
872 		req->ib_param.remote_cm_response_timeout = subnet_timeout + 2;
873 		req->ib_param.private_data = &req->ib_req;
874 		req->ib_param.private_data_len = sizeof(req->ib_req);
875 
876 		ipi = req->ib_req.initiator_port_id;
877 		tpi = req->ib_req.target_port_id;
878 	}
879 
880 	/*
881 	 * In the published SRP specification (draft rev. 16a), the
882 	 * port identifier format is 8 bytes of ID extension followed
883 	 * by 8 bytes of GUID.  Older drafts put the two halves in the
884 	 * opposite order, so that the GUID comes first.
885 	 *
886 	 * Targets conforming to these obsolete drafts can be
887 	 * recognized by the I/O Class they report.
888 	 */
889 	if (target->io_class == SRP_REV10_IB_IO_CLASS) {
890 		memcpy(ipi,     &target->sgid.global.interface_id, 8);
891 		memcpy(ipi + 8, &target->initiator_ext, 8);
892 		memcpy(tpi,     &target->ioc_guid, 8);
893 		memcpy(tpi + 8, &target->id_ext, 8);
894 	} else {
895 		memcpy(ipi,     &target->initiator_ext, 8);
896 		memcpy(ipi + 8, &target->sgid.global.interface_id, 8);
897 		memcpy(tpi,     &target->id_ext, 8);
898 		memcpy(tpi + 8, &target->ioc_guid, 8);
899 	}
900 
901 	/*
902 	 * Topspin/Cisco SRP targets will reject our login unless we
903 	 * zero out the first 8 bytes of our initiator port ID and set
904 	 * the second 8 bytes to the local node GUID.
905 	 */
906 	if (srp_target_is_topspin(target)) {
907 		shost_printk(KERN_DEBUG, target->scsi_host,
908 			     PFX "Topspin/Cisco initiator port ID workaround "
909 			     "activated for target GUID %016llx\n",
910 			     be64_to_cpu(target->ioc_guid));
911 		memset(ipi, 0, 8);
912 		memcpy(ipi + 8, &target->srp_host->srp_dev->dev->node_guid, 8);
913 	}
914 
915 	if (target->using_rdma_cm)
916 		status = rdma_connect(ch->rdma_cm.cm_id, &req->rdma_param);
917 	else
918 		status = ib_send_cm_req(ch->ib_cm.cm_id, &req->ib_param);
919 
920 	kfree(req);
921 
922 	return status;
923 }
924 
925 static bool srp_queue_remove_work(struct srp_target_port *target)
926 {
927 	bool changed = false;
928 
929 	spin_lock_irq(&target->lock);
930 	if (target->state != SRP_TARGET_REMOVED) {
931 		target->state = SRP_TARGET_REMOVED;
932 		changed = true;
933 	}
934 	spin_unlock_irq(&target->lock);
935 
936 	if (changed)
937 		queue_work(srp_remove_wq, &target->remove_work);
938 
939 	return changed;
940 }
941 
942 static void srp_disconnect_target(struct srp_target_port *target)
943 {
944 	struct srp_rdma_ch *ch;
945 	int i, ret;
946 
947 	/* XXX should send SRP_I_LOGOUT request */
948 
949 	for (i = 0; i < target->ch_count; i++) {
950 		ch = &target->ch[i];
951 		ch->connected = false;
952 		ret = 0;
953 		if (target->using_rdma_cm) {
954 			if (ch->rdma_cm.cm_id)
955 				rdma_disconnect(ch->rdma_cm.cm_id);
956 		} else {
957 			if (ch->ib_cm.cm_id)
958 				ret = ib_send_cm_dreq(ch->ib_cm.cm_id,
959 						      NULL, 0);
960 		}
961 		if (ret < 0) {
962 			shost_printk(KERN_DEBUG, target->scsi_host,
963 				     PFX "Sending CM DREQ failed\n");
964 		}
965 	}
966 }
967 
968 static int srp_exit_cmd_priv(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
969 {
970 	struct srp_target_port *target = host_to_target(shost);
971 	struct srp_device *dev = target->srp_host->srp_dev;
972 	struct ib_device *ibdev = dev->dev;
973 	struct srp_request *req = scsi_cmd_priv(cmd);
974 
975 	kfree(req->fr_list);
976 	if (req->indirect_dma_addr) {
977 		ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
978 				    target->indirect_size,
979 				    DMA_TO_DEVICE);
980 	}
981 	kfree(req->indirect_desc);
982 
983 	return 0;
984 }
985 
986 static int srp_init_cmd_priv(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
987 {
988 	struct srp_target_port *target = host_to_target(shost);
989 	struct srp_device *srp_dev = target->srp_host->srp_dev;
990 	struct ib_device *ibdev = srp_dev->dev;
991 	struct srp_request *req = scsi_cmd_priv(cmd);
992 	dma_addr_t dma_addr;
993 	int ret = -ENOMEM;
994 
995 	if (srp_dev->use_fast_reg) {
996 		req->fr_list = kmalloc_array(target->mr_per_cmd, sizeof(void *),
997 					GFP_KERNEL);
998 		if (!req->fr_list)
999 			goto out;
1000 	}
1001 	req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
1002 	if (!req->indirect_desc)
1003 		goto out;
1004 
1005 	dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
1006 				     target->indirect_size,
1007 				     DMA_TO_DEVICE);
1008 	if (ib_dma_mapping_error(ibdev, dma_addr)) {
1009 		srp_exit_cmd_priv(shost, cmd);
1010 		goto out;
1011 	}
1012 
1013 	req->indirect_dma_addr = dma_addr;
1014 	ret = 0;
1015 
1016 out:
1017 	return ret;
1018 }
1019 
1020 /**
1021  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
1022  * @shost: SCSI host whose attributes to remove from sysfs.
1023  *
1024  * Note: Any attributes defined in the host template and that did not exist
1025  * before invocation of this function will be ignored.
1026  */
1027 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
1028 {
1029 	struct device_attribute **attr;
1030 
1031 	for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
1032 		device_remove_file(&shost->shost_dev, *attr);
1033 }
1034 
1035 static void srp_remove_target(struct srp_target_port *target)
1036 {
1037 	struct srp_rdma_ch *ch;
1038 	int i;
1039 
1040 	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
1041 
1042 	srp_del_scsi_host_attr(target->scsi_host);
1043 	srp_rport_get(target->rport);
1044 	srp_remove_host(target->scsi_host);
1045 	scsi_remove_host(target->scsi_host);
1046 	srp_stop_rport_timers(target->rport);
1047 	srp_disconnect_target(target);
1048 	kobj_ns_drop(KOBJ_NS_TYPE_NET, target->net);
1049 	for (i = 0; i < target->ch_count; i++) {
1050 		ch = &target->ch[i];
1051 		srp_free_ch_ib(target, ch);
1052 	}
1053 	cancel_work_sync(&target->tl_err_work);
1054 	srp_rport_put(target->rport);
1055 	kfree(target->ch);
1056 	target->ch = NULL;
1057 
1058 	spin_lock(&target->srp_host->target_lock);
1059 	list_del(&target->list);
1060 	spin_unlock(&target->srp_host->target_lock);
1061 
1062 	scsi_host_put(target->scsi_host);
1063 }
1064 
1065 static void srp_remove_work(struct work_struct *work)
1066 {
1067 	struct srp_target_port *target =
1068 		container_of(work, struct srp_target_port, remove_work);
1069 
1070 	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
1071 
1072 	srp_remove_target(target);
1073 }
1074 
1075 static void srp_rport_delete(struct srp_rport *rport)
1076 {
1077 	struct srp_target_port *target = rport->lld_data;
1078 
1079 	srp_queue_remove_work(target);
1080 }
1081 
1082 /**
1083  * srp_connected_ch() - number of connected channels
1084  * @target: SRP target port.
1085  */
1086 static int srp_connected_ch(struct srp_target_port *target)
1087 {
1088 	int i, c = 0;
1089 
1090 	for (i = 0; i < target->ch_count; i++)
1091 		c += target->ch[i].connected;
1092 
1093 	return c;
1094 }
1095 
1096 static int srp_connect_ch(struct srp_rdma_ch *ch, uint32_t max_iu_len,
1097 			  bool multich)
1098 {
1099 	struct srp_target_port *target = ch->target;
1100 	int ret;
1101 
1102 	WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
1103 
1104 	ret = srp_lookup_path(ch);
1105 	if (ret)
1106 		goto out;
1107 
1108 	while (1) {
1109 		init_completion(&ch->done);
1110 		ret = srp_send_req(ch, max_iu_len, multich);
1111 		if (ret)
1112 			goto out;
1113 		ret = wait_for_completion_interruptible(&ch->done);
1114 		if (ret < 0)
1115 			goto out;
1116 
1117 		/*
1118 		 * The CM event handling code will set status to
1119 		 * SRP_PORT_REDIRECT if we get a port redirect REJ
1120 		 * back, or SRP_DLID_REDIRECT if we get a lid/qp
1121 		 * redirect REJ back.
1122 		 */
1123 		ret = ch->status;
1124 		switch (ret) {
1125 		case 0:
1126 			ch->connected = true;
1127 			goto out;
1128 
1129 		case SRP_PORT_REDIRECT:
1130 			ret = srp_lookup_path(ch);
1131 			if (ret)
1132 				goto out;
1133 			break;
1134 
1135 		case SRP_DLID_REDIRECT:
1136 			break;
1137 
1138 		case SRP_STALE_CONN:
1139 			shost_printk(KERN_ERR, target->scsi_host, PFX
1140 				     "giving up on stale connection\n");
1141 			ret = -ECONNRESET;
1142 			goto out;
1143 
1144 		default:
1145 			goto out;
1146 		}
1147 	}
1148 
1149 out:
1150 	return ret <= 0 ? ret : -ENODEV;
1151 }
1152 
1153 static void srp_inv_rkey_err_done(struct ib_cq *cq, struct ib_wc *wc)
1154 {
1155 	srp_handle_qp_err(cq, wc, "INV RKEY");
1156 }
1157 
1158 static int srp_inv_rkey(struct srp_request *req, struct srp_rdma_ch *ch,
1159 		u32 rkey)
1160 {
1161 	struct ib_send_wr wr = {
1162 		.opcode		    = IB_WR_LOCAL_INV,
1163 		.next		    = NULL,
1164 		.num_sge	    = 0,
1165 		.send_flags	    = 0,
1166 		.ex.invalidate_rkey = rkey,
1167 	};
1168 
1169 	wr.wr_cqe = &req->reg_cqe;
1170 	req->reg_cqe.done = srp_inv_rkey_err_done;
1171 	return ib_post_send(ch->qp, &wr, NULL);
1172 }
1173 
1174 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1175 			   struct srp_rdma_ch *ch,
1176 			   struct srp_request *req)
1177 {
1178 	struct srp_target_port *target = ch->target;
1179 	struct srp_device *dev = target->srp_host->srp_dev;
1180 	struct ib_device *ibdev = dev->dev;
1181 	int i, res;
1182 
1183 	if (!scsi_sglist(scmnd) ||
1184 	    (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1185 	     scmnd->sc_data_direction != DMA_FROM_DEVICE))
1186 		return;
1187 
1188 	if (dev->use_fast_reg) {
1189 		struct srp_fr_desc **pfr;
1190 
1191 		for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1192 			res = srp_inv_rkey(req, ch, (*pfr)->mr->rkey);
1193 			if (res < 0) {
1194 				shost_printk(KERN_ERR, target->scsi_host, PFX
1195 				  "Queueing INV WR for rkey %#x failed (%d)\n",
1196 				  (*pfr)->mr->rkey, res);
1197 				queue_work(system_long_wq,
1198 					   &target->tl_err_work);
1199 			}
1200 		}
1201 		if (req->nmdesc)
1202 			srp_fr_pool_put(ch->fr_pool, req->fr_list,
1203 					req->nmdesc);
1204 	}
1205 
1206 	ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1207 			scmnd->sc_data_direction);
1208 }
1209 
1210 /**
1211  * srp_claim_req - Take ownership of the scmnd associated with a request.
1212  * @ch: SRP RDMA channel.
1213  * @req: SRP request.
1214  * @sdev: If not NULL, only take ownership for this SCSI device.
1215  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1216  *         ownership of @req->scmnd if it equals @scmnd.
1217  *
1218  * Return value:
1219  * Either NULL or a pointer to the SCSI command the caller became owner of.
1220  */
1221 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1222 				       struct srp_request *req,
1223 				       struct scsi_device *sdev,
1224 				       struct scsi_cmnd *scmnd)
1225 {
1226 	unsigned long flags;
1227 
1228 	spin_lock_irqsave(&ch->lock, flags);
1229 	if (req->scmnd &&
1230 	    (!sdev || req->scmnd->device == sdev) &&
1231 	    (!scmnd || req->scmnd == scmnd)) {
1232 		scmnd = req->scmnd;
1233 		req->scmnd = NULL;
1234 	} else {
1235 		scmnd = NULL;
1236 	}
1237 	spin_unlock_irqrestore(&ch->lock, flags);
1238 
1239 	return scmnd;
1240 }
1241 
1242 /**
1243  * srp_free_req() - Unmap data and adjust ch->req_lim.
1244  * @ch:     SRP RDMA channel.
1245  * @req:    Request to be freed.
1246  * @scmnd:  SCSI command associated with @req.
1247  * @req_lim_delta: Amount to be added to @target->req_lim.
1248  */
1249 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1250 			 struct scsi_cmnd *scmnd, s32 req_lim_delta)
1251 {
1252 	unsigned long flags;
1253 
1254 	srp_unmap_data(scmnd, ch, req);
1255 
1256 	spin_lock_irqsave(&ch->lock, flags);
1257 	ch->req_lim += req_lim_delta;
1258 	spin_unlock_irqrestore(&ch->lock, flags);
1259 }
1260 
1261 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1262 			   struct scsi_device *sdev, int result)
1263 {
1264 	struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1265 
1266 	if (scmnd) {
1267 		srp_free_req(ch, req, scmnd, 0);
1268 		scmnd->result = result;
1269 		scmnd->scsi_done(scmnd);
1270 	}
1271 }
1272 
1273 struct srp_terminate_context {
1274 	struct srp_target_port *srp_target;
1275 	int scsi_result;
1276 };
1277 
1278 static bool srp_terminate_cmd(struct scsi_cmnd *scmnd, void *context_ptr,
1279 			      bool reserved)
1280 {
1281 	struct srp_terminate_context *context = context_ptr;
1282 	struct srp_target_port *target = context->srp_target;
1283 	u32 tag = blk_mq_unique_tag(scmnd->request);
1284 	struct srp_rdma_ch *ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
1285 	struct srp_request *req = scsi_cmd_priv(scmnd);
1286 
1287 	srp_finish_req(ch, req, NULL, context->scsi_result);
1288 
1289 	return true;
1290 }
1291 
1292 static void srp_terminate_io(struct srp_rport *rport)
1293 {
1294 	struct srp_target_port *target = rport->lld_data;
1295 	struct srp_terminate_context context = { .srp_target = target,
1296 		.scsi_result = DID_TRANSPORT_FAILFAST << 16 };
1297 
1298 	scsi_host_busy_iter(target->scsi_host, srp_terminate_cmd, &context);
1299 }
1300 
1301 /* Calculate maximum initiator to target information unit length. */
1302 static uint32_t srp_max_it_iu_len(int cmd_sg_cnt, bool use_imm_data,
1303 				  uint32_t max_it_iu_size)
1304 {
1305 	uint32_t max_iu_len = sizeof(struct srp_cmd) + SRP_MAX_ADD_CDB_LEN +
1306 		sizeof(struct srp_indirect_buf) +
1307 		cmd_sg_cnt * sizeof(struct srp_direct_buf);
1308 
1309 	if (use_imm_data)
1310 		max_iu_len = max(max_iu_len, SRP_IMM_DATA_OFFSET +
1311 				 srp_max_imm_data);
1312 
1313 	if (max_it_iu_size)
1314 		max_iu_len = min(max_iu_len, max_it_iu_size);
1315 
1316 	pr_debug("max_iu_len = %d\n", max_iu_len);
1317 
1318 	return max_iu_len;
1319 }
1320 
1321 /*
1322  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1323  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1324  * srp_reset_device() or srp_reset_host() calls will occur while this function
1325  * is in progress. One way to realize that is not to call this function
1326  * directly but to call srp_reconnect_rport() instead since that last function
1327  * serializes calls of this function via rport->mutex and also blocks
1328  * srp_queuecommand() calls before invoking this function.
1329  */
1330 static int srp_rport_reconnect(struct srp_rport *rport)
1331 {
1332 	struct srp_target_port *target = rport->lld_data;
1333 	struct srp_rdma_ch *ch;
1334 	uint32_t max_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
1335 						srp_use_imm_data,
1336 						target->max_it_iu_size);
1337 	int i, j, ret = 0;
1338 	bool multich = false;
1339 
1340 	srp_disconnect_target(target);
1341 
1342 	if (target->state == SRP_TARGET_SCANNING)
1343 		return -ENODEV;
1344 
1345 	/*
1346 	 * Now get a new local CM ID so that we avoid confusing the target in
1347 	 * case things are really fouled up. Doing so also ensures that all CM
1348 	 * callbacks will have finished before a new QP is allocated.
1349 	 */
1350 	for (i = 0; i < target->ch_count; i++) {
1351 		ch = &target->ch[i];
1352 		ret += srp_new_cm_id(ch);
1353 	}
1354 	{
1355 		struct srp_terminate_context context = {
1356 			.srp_target = target, .scsi_result = DID_RESET << 16};
1357 
1358 		scsi_host_busy_iter(target->scsi_host, srp_terminate_cmd,
1359 				    &context);
1360 	}
1361 	for (i = 0; i < target->ch_count; i++) {
1362 		ch = &target->ch[i];
1363 		/*
1364 		 * Whether or not creating a new CM ID succeeded, create a new
1365 		 * QP. This guarantees that all completion callback function
1366 		 * invocations have finished before request resetting starts.
1367 		 */
1368 		ret += srp_create_ch_ib(ch);
1369 
1370 		INIT_LIST_HEAD(&ch->free_tx);
1371 		for (j = 0; j < target->queue_size; ++j)
1372 			list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1373 	}
1374 
1375 	target->qp_in_error = false;
1376 
1377 	for (i = 0; i < target->ch_count; i++) {
1378 		ch = &target->ch[i];
1379 		if (ret)
1380 			break;
1381 		ret = srp_connect_ch(ch, max_iu_len, multich);
1382 		multich = true;
1383 	}
1384 
1385 	if (ret == 0)
1386 		shost_printk(KERN_INFO, target->scsi_host,
1387 			     PFX "reconnect succeeded\n");
1388 
1389 	return ret;
1390 }
1391 
1392 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1393 			 unsigned int dma_len, u32 rkey)
1394 {
1395 	struct srp_direct_buf *desc = state->desc;
1396 
1397 	WARN_ON_ONCE(!dma_len);
1398 
1399 	desc->va = cpu_to_be64(dma_addr);
1400 	desc->key = cpu_to_be32(rkey);
1401 	desc->len = cpu_to_be32(dma_len);
1402 
1403 	state->total_len += dma_len;
1404 	state->desc++;
1405 	state->ndesc++;
1406 }
1407 
1408 static void srp_reg_mr_err_done(struct ib_cq *cq, struct ib_wc *wc)
1409 {
1410 	srp_handle_qp_err(cq, wc, "FAST REG");
1411 }
1412 
1413 /*
1414  * Map up to sg_nents elements of state->sg where *sg_offset_p is the offset
1415  * where to start in the first element. If sg_offset_p != NULL then
1416  * *sg_offset_p is updated to the offset in state->sg[retval] of the first
1417  * byte that has not yet been mapped.
1418  */
1419 static int srp_map_finish_fr(struct srp_map_state *state,
1420 			     struct srp_request *req,
1421 			     struct srp_rdma_ch *ch, int sg_nents,
1422 			     unsigned int *sg_offset_p)
1423 {
1424 	struct srp_target_port *target = ch->target;
1425 	struct srp_device *dev = target->srp_host->srp_dev;
1426 	struct ib_reg_wr wr;
1427 	struct srp_fr_desc *desc;
1428 	u32 rkey;
1429 	int n, err;
1430 
1431 	if (state->fr.next >= state->fr.end) {
1432 		shost_printk(KERN_ERR, ch->target->scsi_host,
1433 			     PFX "Out of MRs (mr_per_cmd = %d)\n",
1434 			     ch->target->mr_per_cmd);
1435 		return -ENOMEM;
1436 	}
1437 
1438 	WARN_ON_ONCE(!dev->use_fast_reg);
1439 
1440 	if (sg_nents == 1 && target->global_rkey) {
1441 		unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1442 
1443 		srp_map_desc(state, sg_dma_address(state->sg) + sg_offset,
1444 			     sg_dma_len(state->sg) - sg_offset,
1445 			     target->global_rkey);
1446 		if (sg_offset_p)
1447 			*sg_offset_p = 0;
1448 		return 1;
1449 	}
1450 
1451 	desc = srp_fr_pool_get(ch->fr_pool);
1452 	if (!desc)
1453 		return -ENOMEM;
1454 
1455 	rkey = ib_inc_rkey(desc->mr->rkey);
1456 	ib_update_fast_reg_key(desc->mr, rkey);
1457 
1458 	n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, sg_offset_p,
1459 			 dev->mr_page_size);
1460 	if (unlikely(n < 0)) {
1461 		srp_fr_pool_put(ch->fr_pool, &desc, 1);
1462 		pr_debug("%s: ib_map_mr_sg(%d, %d) returned %d.\n",
1463 			 dev_name(&req->scmnd->device->sdev_gendev), sg_nents,
1464 			 sg_offset_p ? *sg_offset_p : -1, n);
1465 		return n;
1466 	}
1467 
1468 	WARN_ON_ONCE(desc->mr->length == 0);
1469 
1470 	req->reg_cqe.done = srp_reg_mr_err_done;
1471 
1472 	wr.wr.next = NULL;
1473 	wr.wr.opcode = IB_WR_REG_MR;
1474 	wr.wr.wr_cqe = &req->reg_cqe;
1475 	wr.wr.num_sge = 0;
1476 	wr.wr.send_flags = 0;
1477 	wr.mr = desc->mr;
1478 	wr.key = desc->mr->rkey;
1479 	wr.access = (IB_ACCESS_LOCAL_WRITE |
1480 		     IB_ACCESS_REMOTE_READ |
1481 		     IB_ACCESS_REMOTE_WRITE);
1482 
1483 	*state->fr.next++ = desc;
1484 	state->nmdesc++;
1485 
1486 	srp_map_desc(state, desc->mr->iova,
1487 		     desc->mr->length, desc->mr->rkey);
1488 
1489 	err = ib_post_send(ch->qp, &wr.wr, NULL);
1490 	if (unlikely(err)) {
1491 		WARN_ON_ONCE(err == -ENOMEM);
1492 		return err;
1493 	}
1494 
1495 	return n;
1496 }
1497 
1498 static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1499 			 struct srp_request *req, struct scatterlist *scat,
1500 			 int count)
1501 {
1502 	unsigned int sg_offset = 0;
1503 
1504 	state->fr.next = req->fr_list;
1505 	state->fr.end = req->fr_list + ch->target->mr_per_cmd;
1506 	state->sg = scat;
1507 
1508 	if (count == 0)
1509 		return 0;
1510 
1511 	while (count) {
1512 		int i, n;
1513 
1514 		n = srp_map_finish_fr(state, req, ch, count, &sg_offset);
1515 		if (unlikely(n < 0))
1516 			return n;
1517 
1518 		count -= n;
1519 		for (i = 0; i < n; i++)
1520 			state->sg = sg_next(state->sg);
1521 	}
1522 
1523 	return 0;
1524 }
1525 
1526 static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch,
1527 			  struct srp_request *req, struct scatterlist *scat,
1528 			  int count)
1529 {
1530 	struct srp_target_port *target = ch->target;
1531 	struct scatterlist *sg;
1532 	int i;
1533 
1534 	for_each_sg(scat, sg, count, i) {
1535 		srp_map_desc(state, sg_dma_address(sg), sg_dma_len(sg),
1536 			     target->global_rkey);
1537 	}
1538 
1539 	return 0;
1540 }
1541 
1542 /*
1543  * Register the indirect data buffer descriptor with the HCA.
1544  *
1545  * Note: since the indirect data buffer descriptor has been allocated with
1546  * kmalloc() it is guaranteed that this buffer is a physically contiguous
1547  * memory buffer.
1548  */
1549 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req,
1550 		       void **next_mr, void **end_mr, u32 idb_len,
1551 		       __be32 *idb_rkey)
1552 {
1553 	struct srp_target_port *target = ch->target;
1554 	struct srp_device *dev = target->srp_host->srp_dev;
1555 	struct srp_map_state state;
1556 	struct srp_direct_buf idb_desc;
1557 	struct scatterlist idb_sg[1];
1558 	int ret;
1559 
1560 	memset(&state, 0, sizeof(state));
1561 	memset(&idb_desc, 0, sizeof(idb_desc));
1562 	state.gen.next = next_mr;
1563 	state.gen.end = end_mr;
1564 	state.desc = &idb_desc;
1565 	state.base_dma_addr = req->indirect_dma_addr;
1566 	state.dma_len = idb_len;
1567 
1568 	if (dev->use_fast_reg) {
1569 		state.sg = idb_sg;
1570 		sg_init_one(idb_sg, req->indirect_desc, idb_len);
1571 		idb_sg->dma_address = req->indirect_dma_addr; /* hack! */
1572 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1573 		idb_sg->dma_length = idb_sg->length;	      /* hack^2 */
1574 #endif
1575 		ret = srp_map_finish_fr(&state, req, ch, 1, NULL);
1576 		if (ret < 0)
1577 			return ret;
1578 		WARN_ON_ONCE(ret < 1);
1579 	} else {
1580 		return -EINVAL;
1581 	}
1582 
1583 	*idb_rkey = idb_desc.key;
1584 
1585 	return 0;
1586 }
1587 
1588 static void srp_check_mapping(struct srp_map_state *state,
1589 			      struct srp_rdma_ch *ch, struct srp_request *req,
1590 			      struct scatterlist *scat, int count)
1591 {
1592 	struct srp_device *dev = ch->target->srp_host->srp_dev;
1593 	struct srp_fr_desc **pfr;
1594 	u64 desc_len = 0, mr_len = 0;
1595 	int i;
1596 
1597 	for (i = 0; i < state->ndesc; i++)
1598 		desc_len += be32_to_cpu(req->indirect_desc[i].len);
1599 	if (dev->use_fast_reg)
1600 		for (i = 0, pfr = req->fr_list; i < state->nmdesc; i++, pfr++)
1601 			mr_len += (*pfr)->mr->length;
1602 	if (desc_len != scsi_bufflen(req->scmnd) ||
1603 	    mr_len > scsi_bufflen(req->scmnd))
1604 		pr_err("Inconsistent: scsi len %d <> desc len %lld <> mr len %lld; ndesc %d; nmdesc = %d\n",
1605 		       scsi_bufflen(req->scmnd), desc_len, mr_len,
1606 		       state->ndesc, state->nmdesc);
1607 }
1608 
1609 /**
1610  * srp_map_data() - map SCSI data buffer onto an SRP request
1611  * @scmnd: SCSI command to map
1612  * @ch: SRP RDMA channel
1613  * @req: SRP request
1614  *
1615  * Returns the length in bytes of the SRP_CMD IU or a negative value if
1616  * mapping failed. The size of any immediate data is not included in the
1617  * return value.
1618  */
1619 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1620 			struct srp_request *req)
1621 {
1622 	struct srp_target_port *target = ch->target;
1623 	struct scatterlist *scat, *sg;
1624 	struct srp_cmd *cmd = req->cmd->buf;
1625 	int i, len, nents, count, ret;
1626 	struct srp_device *dev;
1627 	struct ib_device *ibdev;
1628 	struct srp_map_state state;
1629 	struct srp_indirect_buf *indirect_hdr;
1630 	u64 data_len;
1631 	u32 idb_len, table_len;
1632 	__be32 idb_rkey;
1633 	u8 fmt;
1634 
1635 	req->cmd->num_sge = 1;
1636 
1637 	if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1638 		return sizeof(struct srp_cmd) + cmd->add_cdb_len;
1639 
1640 	if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1641 	    scmnd->sc_data_direction != DMA_TO_DEVICE) {
1642 		shost_printk(KERN_WARNING, target->scsi_host,
1643 			     PFX "Unhandled data direction %d\n",
1644 			     scmnd->sc_data_direction);
1645 		return -EINVAL;
1646 	}
1647 
1648 	nents = scsi_sg_count(scmnd);
1649 	scat  = scsi_sglist(scmnd);
1650 	data_len = scsi_bufflen(scmnd);
1651 
1652 	dev = target->srp_host->srp_dev;
1653 	ibdev = dev->dev;
1654 
1655 	count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1656 	if (unlikely(count == 0))
1657 		return -EIO;
1658 
1659 	if (ch->use_imm_data &&
1660 	    count <= ch->max_imm_sge &&
1661 	    SRP_IMM_DATA_OFFSET + data_len <= ch->max_it_iu_len &&
1662 	    scmnd->sc_data_direction == DMA_TO_DEVICE) {
1663 		struct srp_imm_buf *buf;
1664 		struct ib_sge *sge = &req->cmd->sge[1];
1665 
1666 		fmt = SRP_DATA_DESC_IMM;
1667 		len = SRP_IMM_DATA_OFFSET;
1668 		req->nmdesc = 0;
1669 		buf = (void *)cmd->add_data + cmd->add_cdb_len;
1670 		buf->len = cpu_to_be32(data_len);
1671 		WARN_ON_ONCE((void *)(buf + 1) > (void *)cmd + len);
1672 		for_each_sg(scat, sg, count, i) {
1673 			sge[i].addr   = sg_dma_address(sg);
1674 			sge[i].length = sg_dma_len(sg);
1675 			sge[i].lkey   = target->lkey;
1676 		}
1677 		req->cmd->num_sge += count;
1678 		goto map_complete;
1679 	}
1680 
1681 	fmt = SRP_DATA_DESC_DIRECT;
1682 	len = sizeof(struct srp_cmd) + cmd->add_cdb_len +
1683 		sizeof(struct srp_direct_buf);
1684 
1685 	if (count == 1 && target->global_rkey) {
1686 		/*
1687 		 * The midlayer only generated a single gather/scatter
1688 		 * entry, or DMA mapping coalesced everything to a
1689 		 * single entry.  So a direct descriptor along with
1690 		 * the DMA MR suffices.
1691 		 */
1692 		struct srp_direct_buf *buf;
1693 
1694 		buf = (void *)cmd->add_data + cmd->add_cdb_len;
1695 		buf->va  = cpu_to_be64(sg_dma_address(scat));
1696 		buf->key = cpu_to_be32(target->global_rkey);
1697 		buf->len = cpu_to_be32(sg_dma_len(scat));
1698 
1699 		req->nmdesc = 0;
1700 		goto map_complete;
1701 	}
1702 
1703 	/*
1704 	 * We have more than one scatter/gather entry, so build our indirect
1705 	 * descriptor table, trying to merge as many entries as we can.
1706 	 */
1707 	indirect_hdr = (void *)cmd->add_data + cmd->add_cdb_len;
1708 
1709 	ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1710 				   target->indirect_size, DMA_TO_DEVICE);
1711 
1712 	memset(&state, 0, sizeof(state));
1713 	state.desc = req->indirect_desc;
1714 	if (dev->use_fast_reg)
1715 		ret = srp_map_sg_fr(&state, ch, req, scat, count);
1716 	else
1717 		ret = srp_map_sg_dma(&state, ch, req, scat, count);
1718 	req->nmdesc = state.nmdesc;
1719 	if (ret < 0)
1720 		goto unmap;
1721 
1722 	{
1723 		DEFINE_DYNAMIC_DEBUG_METADATA(ddm,
1724 			"Memory mapping consistency check");
1725 		if (DYNAMIC_DEBUG_BRANCH(ddm))
1726 			srp_check_mapping(&state, ch, req, scat, count);
1727 	}
1728 
1729 	/* We've mapped the request, now pull as much of the indirect
1730 	 * descriptor table as we can into the command buffer. If this
1731 	 * target is not using an external indirect table, we are
1732 	 * guaranteed to fit into the command, as the SCSI layer won't
1733 	 * give us more S/G entries than we allow.
1734 	 */
1735 	if (state.ndesc == 1) {
1736 		/*
1737 		 * Memory registration collapsed the sg-list into one entry,
1738 		 * so use a direct descriptor.
1739 		 */
1740 		struct srp_direct_buf *buf;
1741 
1742 		buf = (void *)cmd->add_data + cmd->add_cdb_len;
1743 		*buf = req->indirect_desc[0];
1744 		goto map_complete;
1745 	}
1746 
1747 	if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1748 						!target->allow_ext_sg)) {
1749 		shost_printk(KERN_ERR, target->scsi_host,
1750 			     "Could not fit S/G list into SRP_CMD\n");
1751 		ret = -EIO;
1752 		goto unmap;
1753 	}
1754 
1755 	count = min(state.ndesc, target->cmd_sg_cnt);
1756 	table_len = state.ndesc * sizeof (struct srp_direct_buf);
1757 	idb_len = sizeof(struct srp_indirect_buf) + table_len;
1758 
1759 	fmt = SRP_DATA_DESC_INDIRECT;
1760 	len = sizeof(struct srp_cmd) + cmd->add_cdb_len +
1761 		sizeof(struct srp_indirect_buf);
1762 	len += count * sizeof (struct srp_direct_buf);
1763 
1764 	memcpy(indirect_hdr->desc_list, req->indirect_desc,
1765 	       count * sizeof (struct srp_direct_buf));
1766 
1767 	if (!target->global_rkey) {
1768 		ret = srp_map_idb(ch, req, state.gen.next, state.gen.end,
1769 				  idb_len, &idb_rkey);
1770 		if (ret < 0)
1771 			goto unmap;
1772 		req->nmdesc++;
1773 	} else {
1774 		idb_rkey = cpu_to_be32(target->global_rkey);
1775 	}
1776 
1777 	indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1778 	indirect_hdr->table_desc.key = idb_rkey;
1779 	indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1780 	indirect_hdr->len = cpu_to_be32(state.total_len);
1781 
1782 	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1783 		cmd->data_out_desc_cnt = count;
1784 	else
1785 		cmd->data_in_desc_cnt = count;
1786 
1787 	ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1788 				      DMA_TO_DEVICE);
1789 
1790 map_complete:
1791 	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1792 		cmd->buf_fmt = fmt << 4;
1793 	else
1794 		cmd->buf_fmt = fmt;
1795 
1796 	return len;
1797 
1798 unmap:
1799 	srp_unmap_data(scmnd, ch, req);
1800 	if (ret == -ENOMEM && req->nmdesc >= target->mr_pool_size)
1801 		ret = -E2BIG;
1802 	return ret;
1803 }
1804 
1805 /*
1806  * Return an IU and possible credit to the free pool
1807  */
1808 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1809 			  enum srp_iu_type iu_type)
1810 {
1811 	unsigned long flags;
1812 
1813 	spin_lock_irqsave(&ch->lock, flags);
1814 	list_add(&iu->list, &ch->free_tx);
1815 	if (iu_type != SRP_IU_RSP)
1816 		++ch->req_lim;
1817 	spin_unlock_irqrestore(&ch->lock, flags);
1818 }
1819 
1820 /*
1821  * Must be called with ch->lock held to protect req_lim and free_tx.
1822  * If IU is not sent, it must be returned using srp_put_tx_iu().
1823  *
1824  * Note:
1825  * An upper limit for the number of allocated information units for each
1826  * request type is:
1827  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1828  *   more than Scsi_Host.can_queue requests.
1829  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1830  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1831  *   one unanswered SRP request to an initiator.
1832  */
1833 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1834 				      enum srp_iu_type iu_type)
1835 {
1836 	struct srp_target_port *target = ch->target;
1837 	s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1838 	struct srp_iu *iu;
1839 
1840 	lockdep_assert_held(&ch->lock);
1841 
1842 	ib_process_cq_direct(ch->send_cq, -1);
1843 
1844 	if (list_empty(&ch->free_tx))
1845 		return NULL;
1846 
1847 	/* Initiator responses to target requests do not consume credits */
1848 	if (iu_type != SRP_IU_RSP) {
1849 		if (ch->req_lim <= rsv) {
1850 			++target->zero_req_lim;
1851 			return NULL;
1852 		}
1853 
1854 		--ch->req_lim;
1855 	}
1856 
1857 	iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1858 	list_del(&iu->list);
1859 	return iu;
1860 }
1861 
1862 /*
1863  * Note: if this function is called from inside ib_drain_sq() then it will
1864  * be called without ch->lock being held. If ib_drain_sq() dequeues a WQE
1865  * with status IB_WC_SUCCESS then that's a bug.
1866  */
1867 static void srp_send_done(struct ib_cq *cq, struct ib_wc *wc)
1868 {
1869 	struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
1870 	struct srp_rdma_ch *ch = cq->cq_context;
1871 
1872 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1873 		srp_handle_qp_err(cq, wc, "SEND");
1874 		return;
1875 	}
1876 
1877 	lockdep_assert_held(&ch->lock);
1878 
1879 	list_add(&iu->list, &ch->free_tx);
1880 }
1881 
1882 /**
1883  * srp_post_send() - send an SRP information unit
1884  * @ch: RDMA channel over which to send the information unit.
1885  * @iu: Information unit to send.
1886  * @len: Length of the information unit excluding immediate data.
1887  */
1888 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1889 {
1890 	struct srp_target_port *target = ch->target;
1891 	struct ib_send_wr wr;
1892 
1893 	if (WARN_ON_ONCE(iu->num_sge > SRP_MAX_SGE))
1894 		return -EINVAL;
1895 
1896 	iu->sge[0].addr   = iu->dma;
1897 	iu->sge[0].length = len;
1898 	iu->sge[0].lkey   = target->lkey;
1899 
1900 	iu->cqe.done = srp_send_done;
1901 
1902 	wr.next       = NULL;
1903 	wr.wr_cqe     = &iu->cqe;
1904 	wr.sg_list    = &iu->sge[0];
1905 	wr.num_sge    = iu->num_sge;
1906 	wr.opcode     = IB_WR_SEND;
1907 	wr.send_flags = IB_SEND_SIGNALED;
1908 
1909 	return ib_post_send(ch->qp, &wr, NULL);
1910 }
1911 
1912 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1913 {
1914 	struct srp_target_port *target = ch->target;
1915 	struct ib_recv_wr wr;
1916 	struct ib_sge list;
1917 
1918 	list.addr   = iu->dma;
1919 	list.length = iu->size;
1920 	list.lkey   = target->lkey;
1921 
1922 	iu->cqe.done = srp_recv_done;
1923 
1924 	wr.next     = NULL;
1925 	wr.wr_cqe   = &iu->cqe;
1926 	wr.sg_list  = &list;
1927 	wr.num_sge  = 1;
1928 
1929 	return ib_post_recv(ch->qp, &wr, NULL);
1930 }
1931 
1932 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1933 {
1934 	struct srp_target_port *target = ch->target;
1935 	struct srp_request *req;
1936 	struct scsi_cmnd *scmnd;
1937 	unsigned long flags;
1938 
1939 	if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1940 		spin_lock_irqsave(&ch->lock, flags);
1941 		ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1942 		if (rsp->tag == ch->tsk_mgmt_tag) {
1943 			ch->tsk_mgmt_status = -1;
1944 			if (be32_to_cpu(rsp->resp_data_len) >= 4)
1945 				ch->tsk_mgmt_status = rsp->data[3];
1946 			complete(&ch->tsk_mgmt_done);
1947 		} else {
1948 			shost_printk(KERN_ERR, target->scsi_host,
1949 				     "Received tsk mgmt response too late for tag %#llx\n",
1950 				     rsp->tag);
1951 		}
1952 		spin_unlock_irqrestore(&ch->lock, flags);
1953 	} else {
1954 		scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1955 		if (scmnd) {
1956 			req = scsi_cmd_priv(scmnd);
1957 			scmnd = srp_claim_req(ch, req, NULL, scmnd);
1958 		} else {
1959 			shost_printk(KERN_ERR, target->scsi_host,
1960 				     "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1961 				     rsp->tag, ch - target->ch, ch->qp->qp_num);
1962 
1963 			spin_lock_irqsave(&ch->lock, flags);
1964 			ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1965 			spin_unlock_irqrestore(&ch->lock, flags);
1966 
1967 			return;
1968 		}
1969 		scmnd->result = rsp->status;
1970 
1971 		if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1972 			memcpy(scmnd->sense_buffer, rsp->data +
1973 			       be32_to_cpu(rsp->resp_data_len),
1974 			       min_t(int, be32_to_cpu(rsp->sense_data_len),
1975 				     SCSI_SENSE_BUFFERSIZE));
1976 		}
1977 
1978 		if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1979 			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1980 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1981 			scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1982 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1983 			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1984 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1985 			scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1986 
1987 		srp_free_req(ch, req, scmnd,
1988 			     be32_to_cpu(rsp->req_lim_delta));
1989 
1990 		scmnd->scsi_done(scmnd);
1991 	}
1992 }
1993 
1994 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1995 			       void *rsp, int len)
1996 {
1997 	struct srp_target_port *target = ch->target;
1998 	struct ib_device *dev = target->srp_host->srp_dev->dev;
1999 	unsigned long flags;
2000 	struct srp_iu *iu;
2001 	int err;
2002 
2003 	spin_lock_irqsave(&ch->lock, flags);
2004 	ch->req_lim += req_delta;
2005 	iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
2006 	spin_unlock_irqrestore(&ch->lock, flags);
2007 
2008 	if (!iu) {
2009 		shost_printk(KERN_ERR, target->scsi_host, PFX
2010 			     "no IU available to send response\n");
2011 		return 1;
2012 	}
2013 
2014 	iu->num_sge = 1;
2015 	ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
2016 	memcpy(iu->buf, rsp, len);
2017 	ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
2018 
2019 	err = srp_post_send(ch, iu, len);
2020 	if (err) {
2021 		shost_printk(KERN_ERR, target->scsi_host, PFX
2022 			     "unable to post response: %d\n", err);
2023 		srp_put_tx_iu(ch, iu, SRP_IU_RSP);
2024 	}
2025 
2026 	return err;
2027 }
2028 
2029 static void srp_process_cred_req(struct srp_rdma_ch *ch,
2030 				 struct srp_cred_req *req)
2031 {
2032 	struct srp_cred_rsp rsp = {
2033 		.opcode = SRP_CRED_RSP,
2034 		.tag = req->tag,
2035 	};
2036 	s32 delta = be32_to_cpu(req->req_lim_delta);
2037 
2038 	if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
2039 		shost_printk(KERN_ERR, ch->target->scsi_host, PFX
2040 			     "problems processing SRP_CRED_REQ\n");
2041 }
2042 
2043 static void srp_process_aer_req(struct srp_rdma_ch *ch,
2044 				struct srp_aer_req *req)
2045 {
2046 	struct srp_target_port *target = ch->target;
2047 	struct srp_aer_rsp rsp = {
2048 		.opcode = SRP_AER_RSP,
2049 		.tag = req->tag,
2050 	};
2051 	s32 delta = be32_to_cpu(req->req_lim_delta);
2052 
2053 	shost_printk(KERN_ERR, target->scsi_host, PFX
2054 		     "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
2055 
2056 	if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
2057 		shost_printk(KERN_ERR, target->scsi_host, PFX
2058 			     "problems processing SRP_AER_REQ\n");
2059 }
2060 
2061 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc)
2062 {
2063 	struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
2064 	struct srp_rdma_ch *ch = cq->cq_context;
2065 	struct srp_target_port *target = ch->target;
2066 	struct ib_device *dev = target->srp_host->srp_dev->dev;
2067 	int res;
2068 	u8 opcode;
2069 
2070 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
2071 		srp_handle_qp_err(cq, wc, "RECV");
2072 		return;
2073 	}
2074 
2075 	ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
2076 				   DMA_FROM_DEVICE);
2077 
2078 	opcode = *(u8 *) iu->buf;
2079 
2080 	if (0) {
2081 		shost_printk(KERN_ERR, target->scsi_host,
2082 			     PFX "recv completion, opcode 0x%02x\n", opcode);
2083 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
2084 			       iu->buf, wc->byte_len, true);
2085 	}
2086 
2087 	switch (opcode) {
2088 	case SRP_RSP:
2089 		srp_process_rsp(ch, iu->buf);
2090 		break;
2091 
2092 	case SRP_CRED_REQ:
2093 		srp_process_cred_req(ch, iu->buf);
2094 		break;
2095 
2096 	case SRP_AER_REQ:
2097 		srp_process_aer_req(ch, iu->buf);
2098 		break;
2099 
2100 	case SRP_T_LOGOUT:
2101 		/* XXX Handle target logout */
2102 		shost_printk(KERN_WARNING, target->scsi_host,
2103 			     PFX "Got target logout request\n");
2104 		break;
2105 
2106 	default:
2107 		shost_printk(KERN_WARNING, target->scsi_host,
2108 			     PFX "Unhandled SRP opcode 0x%02x\n", opcode);
2109 		break;
2110 	}
2111 
2112 	ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
2113 				      DMA_FROM_DEVICE);
2114 
2115 	res = srp_post_recv(ch, iu);
2116 	if (res != 0)
2117 		shost_printk(KERN_ERR, target->scsi_host,
2118 			     PFX "Recv failed with error code %d\n", res);
2119 }
2120 
2121 /**
2122  * srp_tl_err_work() - handle a transport layer error
2123  * @work: Work structure embedded in an SRP target port.
2124  *
2125  * Note: This function may get invoked before the rport has been created,
2126  * hence the target->rport test.
2127  */
2128 static void srp_tl_err_work(struct work_struct *work)
2129 {
2130 	struct srp_target_port *target;
2131 
2132 	target = container_of(work, struct srp_target_port, tl_err_work);
2133 	if (target->rport)
2134 		srp_start_tl_fail_timers(target->rport);
2135 }
2136 
2137 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
2138 		const char *opname)
2139 {
2140 	struct srp_rdma_ch *ch = cq->cq_context;
2141 	struct srp_target_port *target = ch->target;
2142 
2143 	if (ch->connected && !target->qp_in_error) {
2144 		shost_printk(KERN_ERR, target->scsi_host,
2145 			     PFX "failed %s status %s (%d) for CQE %p\n",
2146 			     opname, ib_wc_status_msg(wc->status), wc->status,
2147 			     wc->wr_cqe);
2148 		queue_work(system_long_wq, &target->tl_err_work);
2149 	}
2150 	target->qp_in_error = true;
2151 }
2152 
2153 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
2154 {
2155 	struct srp_target_port *target = host_to_target(shost);
2156 	struct srp_rdma_ch *ch;
2157 	struct srp_request *req = scsi_cmd_priv(scmnd);
2158 	struct srp_iu *iu;
2159 	struct srp_cmd *cmd;
2160 	struct ib_device *dev;
2161 	unsigned long flags;
2162 	u32 tag;
2163 	int len, ret;
2164 
2165 	scmnd->result = srp_chkready(target->rport);
2166 	if (unlikely(scmnd->result))
2167 		goto err;
2168 
2169 	WARN_ON_ONCE(scmnd->request->tag < 0);
2170 	tag = blk_mq_unique_tag(scmnd->request);
2171 	ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2172 
2173 	spin_lock_irqsave(&ch->lock, flags);
2174 	iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2175 	spin_unlock_irqrestore(&ch->lock, flags);
2176 
2177 	if (!iu)
2178 		goto err;
2179 
2180 	dev = target->srp_host->srp_dev->dev;
2181 	ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_it_iu_len,
2182 				   DMA_TO_DEVICE);
2183 
2184 	cmd = iu->buf;
2185 	memset(cmd, 0, sizeof *cmd);
2186 
2187 	cmd->opcode = SRP_CMD;
2188 	int_to_scsilun(scmnd->device->lun, &cmd->lun);
2189 	cmd->tag    = tag;
2190 	memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2191 	if (unlikely(scmnd->cmd_len > sizeof(cmd->cdb))) {
2192 		cmd->add_cdb_len = round_up(scmnd->cmd_len - sizeof(cmd->cdb),
2193 					    4);
2194 		if (WARN_ON_ONCE(cmd->add_cdb_len > SRP_MAX_ADD_CDB_LEN))
2195 			goto err_iu;
2196 	}
2197 
2198 	req->scmnd    = scmnd;
2199 	req->cmd      = iu;
2200 
2201 	len = srp_map_data(scmnd, ch, req);
2202 	if (len < 0) {
2203 		shost_printk(KERN_ERR, target->scsi_host,
2204 			     PFX "Failed to map data (%d)\n", len);
2205 		/*
2206 		 * If we ran out of memory descriptors (-ENOMEM) because an
2207 		 * application is queuing many requests with more than
2208 		 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2209 		 * to reduce queue depth temporarily.
2210 		 */
2211 		scmnd->result = len == -ENOMEM ?
2212 			DID_OK << 16 | SAM_STAT_TASK_SET_FULL : DID_ERROR << 16;
2213 		goto err_iu;
2214 	}
2215 
2216 	ib_dma_sync_single_for_device(dev, iu->dma, ch->max_it_iu_len,
2217 				      DMA_TO_DEVICE);
2218 
2219 	if (srp_post_send(ch, iu, len)) {
2220 		shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2221 		scmnd->result = DID_ERROR << 16;
2222 		goto err_unmap;
2223 	}
2224 
2225 	return 0;
2226 
2227 err_unmap:
2228 	srp_unmap_data(scmnd, ch, req);
2229 
2230 err_iu:
2231 	srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2232 
2233 	/*
2234 	 * Avoid that the loops that iterate over the request ring can
2235 	 * encounter a dangling SCSI command pointer.
2236 	 */
2237 	req->scmnd = NULL;
2238 
2239 err:
2240 	if (scmnd->result) {
2241 		scmnd->scsi_done(scmnd);
2242 		ret = 0;
2243 	} else {
2244 		ret = SCSI_MLQUEUE_HOST_BUSY;
2245 	}
2246 
2247 	return ret;
2248 }
2249 
2250 /*
2251  * Note: the resources allocated in this function are freed in
2252  * srp_free_ch_ib().
2253  */
2254 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2255 {
2256 	struct srp_target_port *target = ch->target;
2257 	int i;
2258 
2259 	ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2260 			      GFP_KERNEL);
2261 	if (!ch->rx_ring)
2262 		goto err_no_ring;
2263 	ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2264 			      GFP_KERNEL);
2265 	if (!ch->tx_ring)
2266 		goto err_no_ring;
2267 
2268 	for (i = 0; i < target->queue_size; ++i) {
2269 		ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2270 					      ch->max_ti_iu_len,
2271 					      GFP_KERNEL, DMA_FROM_DEVICE);
2272 		if (!ch->rx_ring[i])
2273 			goto err;
2274 	}
2275 
2276 	for (i = 0; i < target->queue_size; ++i) {
2277 		ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2278 					      ch->max_it_iu_len,
2279 					      GFP_KERNEL, DMA_TO_DEVICE);
2280 		if (!ch->tx_ring[i])
2281 			goto err;
2282 
2283 		list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2284 	}
2285 
2286 	return 0;
2287 
2288 err:
2289 	for (i = 0; i < target->queue_size; ++i) {
2290 		srp_free_iu(target->srp_host, ch->rx_ring[i]);
2291 		srp_free_iu(target->srp_host, ch->tx_ring[i]);
2292 	}
2293 
2294 
2295 err_no_ring:
2296 	kfree(ch->tx_ring);
2297 	ch->tx_ring = NULL;
2298 	kfree(ch->rx_ring);
2299 	ch->rx_ring = NULL;
2300 
2301 	return -ENOMEM;
2302 }
2303 
2304 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2305 {
2306 	uint64_t T_tr_ns, max_compl_time_ms;
2307 	uint32_t rq_tmo_jiffies;
2308 
2309 	/*
2310 	 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2311 	 * table 91), both the QP timeout and the retry count have to be set
2312 	 * for RC QP's during the RTR to RTS transition.
2313 	 */
2314 	WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2315 		     (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2316 
2317 	/*
2318 	 * Set target->rq_tmo_jiffies to one second more than the largest time
2319 	 * it can take before an error completion is generated. See also
2320 	 * C9-140..142 in the IBTA spec for more information about how to
2321 	 * convert the QP Local ACK Timeout value to nanoseconds.
2322 	 */
2323 	T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2324 	max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2325 	do_div(max_compl_time_ms, NSEC_PER_MSEC);
2326 	rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2327 
2328 	return rq_tmo_jiffies;
2329 }
2330 
2331 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2332 			       const struct srp_login_rsp *lrsp,
2333 			       struct srp_rdma_ch *ch)
2334 {
2335 	struct srp_target_port *target = ch->target;
2336 	struct ib_qp_attr *qp_attr = NULL;
2337 	int attr_mask = 0;
2338 	int ret = 0;
2339 	int i;
2340 
2341 	if (lrsp->opcode == SRP_LOGIN_RSP) {
2342 		ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2343 		ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2344 		ch->use_imm_data  = srp_use_imm_data &&
2345 			(lrsp->rsp_flags & SRP_LOGIN_RSP_IMMED_SUPP);
2346 		ch->max_it_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
2347 						      ch->use_imm_data,
2348 						      target->max_it_iu_size);
2349 		WARN_ON_ONCE(ch->max_it_iu_len >
2350 			     be32_to_cpu(lrsp->max_it_iu_len));
2351 
2352 		if (ch->use_imm_data)
2353 			shost_printk(KERN_DEBUG, target->scsi_host,
2354 				     PFX "using immediate data\n");
2355 
2356 		/*
2357 		 * Reserve credits for task management so we don't
2358 		 * bounce requests back to the SCSI mid-layer.
2359 		 */
2360 		target->scsi_host->can_queue
2361 			= min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2362 			      target->scsi_host->can_queue);
2363 		target->scsi_host->cmd_per_lun
2364 			= min_t(int, target->scsi_host->can_queue,
2365 				target->scsi_host->cmd_per_lun);
2366 	} else {
2367 		shost_printk(KERN_WARNING, target->scsi_host,
2368 			     PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2369 		ret = -ECONNRESET;
2370 		goto error;
2371 	}
2372 
2373 	if (!ch->rx_ring) {
2374 		ret = srp_alloc_iu_bufs(ch);
2375 		if (ret)
2376 			goto error;
2377 	}
2378 
2379 	for (i = 0; i < target->queue_size; i++) {
2380 		struct srp_iu *iu = ch->rx_ring[i];
2381 
2382 		ret = srp_post_recv(ch, iu);
2383 		if (ret)
2384 			goto error;
2385 	}
2386 
2387 	if (!target->using_rdma_cm) {
2388 		ret = -ENOMEM;
2389 		qp_attr = kmalloc(sizeof(*qp_attr), GFP_KERNEL);
2390 		if (!qp_attr)
2391 			goto error;
2392 
2393 		qp_attr->qp_state = IB_QPS_RTR;
2394 		ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2395 		if (ret)
2396 			goto error_free;
2397 
2398 		ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2399 		if (ret)
2400 			goto error_free;
2401 
2402 		qp_attr->qp_state = IB_QPS_RTS;
2403 		ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2404 		if (ret)
2405 			goto error_free;
2406 
2407 		target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2408 
2409 		ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2410 		if (ret)
2411 			goto error_free;
2412 
2413 		ret = ib_send_cm_rtu(cm_id, NULL, 0);
2414 	}
2415 
2416 error_free:
2417 	kfree(qp_attr);
2418 
2419 error:
2420 	ch->status = ret;
2421 }
2422 
2423 static void srp_ib_cm_rej_handler(struct ib_cm_id *cm_id,
2424 				  const struct ib_cm_event *event,
2425 				  struct srp_rdma_ch *ch)
2426 {
2427 	struct srp_target_port *target = ch->target;
2428 	struct Scsi_Host *shost = target->scsi_host;
2429 	struct ib_class_port_info *cpi;
2430 	int opcode;
2431 	u16 dlid;
2432 
2433 	switch (event->param.rej_rcvd.reason) {
2434 	case IB_CM_REJ_PORT_CM_REDIRECT:
2435 		cpi = event->param.rej_rcvd.ari;
2436 		dlid = be16_to_cpu(cpi->redirect_lid);
2437 		sa_path_set_dlid(&ch->ib_cm.path, dlid);
2438 		ch->ib_cm.path.pkey = cpi->redirect_pkey;
2439 		cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2440 		memcpy(ch->ib_cm.path.dgid.raw, cpi->redirect_gid, 16);
2441 
2442 		ch->status = dlid ? SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2443 		break;
2444 
2445 	case IB_CM_REJ_PORT_REDIRECT:
2446 		if (srp_target_is_topspin(target)) {
2447 			union ib_gid *dgid = &ch->ib_cm.path.dgid;
2448 
2449 			/*
2450 			 * Topspin/Cisco SRP gateways incorrectly send
2451 			 * reject reason code 25 when they mean 24
2452 			 * (port redirect).
2453 			 */
2454 			memcpy(dgid->raw, event->param.rej_rcvd.ari, 16);
2455 
2456 			shost_printk(KERN_DEBUG, shost,
2457 				     PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2458 				     be64_to_cpu(dgid->global.subnet_prefix),
2459 				     be64_to_cpu(dgid->global.interface_id));
2460 
2461 			ch->status = SRP_PORT_REDIRECT;
2462 		} else {
2463 			shost_printk(KERN_WARNING, shost,
2464 				     "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2465 			ch->status = -ECONNRESET;
2466 		}
2467 		break;
2468 
2469 	case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2470 		shost_printk(KERN_WARNING, shost,
2471 			    "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2472 		ch->status = -ECONNRESET;
2473 		break;
2474 
2475 	case IB_CM_REJ_CONSUMER_DEFINED:
2476 		opcode = *(u8 *) event->private_data;
2477 		if (opcode == SRP_LOGIN_REJ) {
2478 			struct srp_login_rej *rej = event->private_data;
2479 			u32 reason = be32_to_cpu(rej->reason);
2480 
2481 			if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2482 				shost_printk(KERN_WARNING, shost,
2483 					     PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2484 			else
2485 				shost_printk(KERN_WARNING, shost, PFX
2486 					     "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2487 					     target->sgid.raw,
2488 					     target->ib_cm.orig_dgid.raw,
2489 					     reason);
2490 		} else
2491 			shost_printk(KERN_WARNING, shost,
2492 				     "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2493 				     " opcode 0x%02x\n", opcode);
2494 		ch->status = -ECONNRESET;
2495 		break;
2496 
2497 	case IB_CM_REJ_STALE_CONN:
2498 		shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2499 		ch->status = SRP_STALE_CONN;
2500 		break;
2501 
2502 	default:
2503 		shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2504 			     event->param.rej_rcvd.reason);
2505 		ch->status = -ECONNRESET;
2506 	}
2507 }
2508 
2509 static int srp_ib_cm_handler(struct ib_cm_id *cm_id,
2510 			     const struct ib_cm_event *event)
2511 {
2512 	struct srp_rdma_ch *ch = cm_id->context;
2513 	struct srp_target_port *target = ch->target;
2514 	int comp = 0;
2515 
2516 	switch (event->event) {
2517 	case IB_CM_REQ_ERROR:
2518 		shost_printk(KERN_DEBUG, target->scsi_host,
2519 			     PFX "Sending CM REQ failed\n");
2520 		comp = 1;
2521 		ch->status = -ECONNRESET;
2522 		break;
2523 
2524 	case IB_CM_REP_RECEIVED:
2525 		comp = 1;
2526 		srp_cm_rep_handler(cm_id, event->private_data, ch);
2527 		break;
2528 
2529 	case IB_CM_REJ_RECEIVED:
2530 		shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2531 		comp = 1;
2532 
2533 		srp_ib_cm_rej_handler(cm_id, event, ch);
2534 		break;
2535 
2536 	case IB_CM_DREQ_RECEIVED:
2537 		shost_printk(KERN_WARNING, target->scsi_host,
2538 			     PFX "DREQ received - connection closed\n");
2539 		ch->connected = false;
2540 		if (ib_send_cm_drep(cm_id, NULL, 0))
2541 			shost_printk(KERN_ERR, target->scsi_host,
2542 				     PFX "Sending CM DREP failed\n");
2543 		queue_work(system_long_wq, &target->tl_err_work);
2544 		break;
2545 
2546 	case IB_CM_TIMEWAIT_EXIT:
2547 		shost_printk(KERN_ERR, target->scsi_host,
2548 			     PFX "connection closed\n");
2549 		comp = 1;
2550 
2551 		ch->status = 0;
2552 		break;
2553 
2554 	case IB_CM_MRA_RECEIVED:
2555 	case IB_CM_DREQ_ERROR:
2556 	case IB_CM_DREP_RECEIVED:
2557 		break;
2558 
2559 	default:
2560 		shost_printk(KERN_WARNING, target->scsi_host,
2561 			     PFX "Unhandled CM event %d\n", event->event);
2562 		break;
2563 	}
2564 
2565 	if (comp)
2566 		complete(&ch->done);
2567 
2568 	return 0;
2569 }
2570 
2571 static void srp_rdma_cm_rej_handler(struct srp_rdma_ch *ch,
2572 				    struct rdma_cm_event *event)
2573 {
2574 	struct srp_target_port *target = ch->target;
2575 	struct Scsi_Host *shost = target->scsi_host;
2576 	int opcode;
2577 
2578 	switch (event->status) {
2579 	case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2580 		shost_printk(KERN_WARNING, shost,
2581 			    "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2582 		ch->status = -ECONNRESET;
2583 		break;
2584 
2585 	case IB_CM_REJ_CONSUMER_DEFINED:
2586 		opcode = *(u8 *) event->param.conn.private_data;
2587 		if (opcode == SRP_LOGIN_REJ) {
2588 			struct srp_login_rej *rej =
2589 				(struct srp_login_rej *)
2590 				event->param.conn.private_data;
2591 			u32 reason = be32_to_cpu(rej->reason);
2592 
2593 			if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2594 				shost_printk(KERN_WARNING, shost,
2595 					     PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2596 			else
2597 				shost_printk(KERN_WARNING, shost,
2598 					    PFX "SRP LOGIN REJECTED, reason 0x%08x\n", reason);
2599 		} else {
2600 			shost_printk(KERN_WARNING, shost,
2601 				     "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED, opcode 0x%02x\n",
2602 				     opcode);
2603 		}
2604 		ch->status = -ECONNRESET;
2605 		break;
2606 
2607 	case IB_CM_REJ_STALE_CONN:
2608 		shost_printk(KERN_WARNING, shost,
2609 			     "  REJ reason: stale connection\n");
2610 		ch->status = SRP_STALE_CONN;
2611 		break;
2612 
2613 	default:
2614 		shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2615 			     event->status);
2616 		ch->status = -ECONNRESET;
2617 		break;
2618 	}
2619 }
2620 
2621 static int srp_rdma_cm_handler(struct rdma_cm_id *cm_id,
2622 			       struct rdma_cm_event *event)
2623 {
2624 	struct srp_rdma_ch *ch = cm_id->context;
2625 	struct srp_target_port *target = ch->target;
2626 	int comp = 0;
2627 
2628 	switch (event->event) {
2629 	case RDMA_CM_EVENT_ADDR_RESOLVED:
2630 		ch->status = 0;
2631 		comp = 1;
2632 		break;
2633 
2634 	case RDMA_CM_EVENT_ADDR_ERROR:
2635 		ch->status = -ENXIO;
2636 		comp = 1;
2637 		break;
2638 
2639 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
2640 		ch->status = 0;
2641 		comp = 1;
2642 		break;
2643 
2644 	case RDMA_CM_EVENT_ROUTE_ERROR:
2645 	case RDMA_CM_EVENT_UNREACHABLE:
2646 		ch->status = -EHOSTUNREACH;
2647 		comp = 1;
2648 		break;
2649 
2650 	case RDMA_CM_EVENT_CONNECT_ERROR:
2651 		shost_printk(KERN_DEBUG, target->scsi_host,
2652 			     PFX "Sending CM REQ failed\n");
2653 		comp = 1;
2654 		ch->status = -ECONNRESET;
2655 		break;
2656 
2657 	case RDMA_CM_EVENT_ESTABLISHED:
2658 		comp = 1;
2659 		srp_cm_rep_handler(NULL, event->param.conn.private_data, ch);
2660 		break;
2661 
2662 	case RDMA_CM_EVENT_REJECTED:
2663 		shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2664 		comp = 1;
2665 
2666 		srp_rdma_cm_rej_handler(ch, event);
2667 		break;
2668 
2669 	case RDMA_CM_EVENT_DISCONNECTED:
2670 		if (ch->connected) {
2671 			shost_printk(KERN_WARNING, target->scsi_host,
2672 				     PFX "received DREQ\n");
2673 			rdma_disconnect(ch->rdma_cm.cm_id);
2674 			comp = 1;
2675 			ch->status = 0;
2676 			queue_work(system_long_wq, &target->tl_err_work);
2677 		}
2678 		break;
2679 
2680 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2681 		shost_printk(KERN_ERR, target->scsi_host,
2682 			     PFX "connection closed\n");
2683 
2684 		comp = 1;
2685 		ch->status = 0;
2686 		break;
2687 
2688 	default:
2689 		shost_printk(KERN_WARNING, target->scsi_host,
2690 			     PFX "Unhandled CM event %d\n", event->event);
2691 		break;
2692 	}
2693 
2694 	if (comp)
2695 		complete(&ch->done);
2696 
2697 	return 0;
2698 }
2699 
2700 /**
2701  * srp_change_queue_depth - setting device queue depth
2702  * @sdev: scsi device struct
2703  * @qdepth: requested queue depth
2704  *
2705  * Returns queue depth.
2706  */
2707 static int
2708 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2709 {
2710 	if (!sdev->tagged_supported)
2711 		qdepth = 1;
2712 	return scsi_change_queue_depth(sdev, qdepth);
2713 }
2714 
2715 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2716 			     u8 func, u8 *status)
2717 {
2718 	struct srp_target_port *target = ch->target;
2719 	struct srp_rport *rport = target->rport;
2720 	struct ib_device *dev = target->srp_host->srp_dev->dev;
2721 	struct srp_iu *iu;
2722 	struct srp_tsk_mgmt *tsk_mgmt;
2723 	int res;
2724 
2725 	if (!ch->connected || target->qp_in_error)
2726 		return -1;
2727 
2728 	/*
2729 	 * Lock the rport mutex to avoid that srp_create_ch_ib() is
2730 	 * invoked while a task management function is being sent.
2731 	 */
2732 	mutex_lock(&rport->mutex);
2733 	spin_lock_irq(&ch->lock);
2734 	iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2735 	spin_unlock_irq(&ch->lock);
2736 
2737 	if (!iu) {
2738 		mutex_unlock(&rport->mutex);
2739 
2740 		return -1;
2741 	}
2742 
2743 	iu->num_sge = 1;
2744 
2745 	ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2746 				   DMA_TO_DEVICE);
2747 	tsk_mgmt = iu->buf;
2748 	memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2749 
2750 	tsk_mgmt->opcode 	= SRP_TSK_MGMT;
2751 	int_to_scsilun(lun, &tsk_mgmt->lun);
2752 	tsk_mgmt->tsk_mgmt_func = func;
2753 	tsk_mgmt->task_tag	= req_tag;
2754 
2755 	spin_lock_irq(&ch->lock);
2756 	ch->tsk_mgmt_tag = (ch->tsk_mgmt_tag + 1) | SRP_TAG_TSK_MGMT;
2757 	tsk_mgmt->tag = ch->tsk_mgmt_tag;
2758 	spin_unlock_irq(&ch->lock);
2759 
2760 	init_completion(&ch->tsk_mgmt_done);
2761 
2762 	ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2763 				      DMA_TO_DEVICE);
2764 	if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2765 		srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2766 		mutex_unlock(&rport->mutex);
2767 
2768 		return -1;
2769 	}
2770 	res = wait_for_completion_timeout(&ch->tsk_mgmt_done,
2771 					msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS));
2772 	if (res > 0 && status)
2773 		*status = ch->tsk_mgmt_status;
2774 	mutex_unlock(&rport->mutex);
2775 
2776 	WARN_ON_ONCE(res < 0);
2777 
2778 	return res > 0 ? 0 : -1;
2779 }
2780 
2781 static int srp_abort(struct scsi_cmnd *scmnd)
2782 {
2783 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2784 	struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2785 	u32 tag;
2786 	u16 ch_idx;
2787 	struct srp_rdma_ch *ch;
2788 	int ret;
2789 
2790 	shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2791 
2792 	if (!req)
2793 		return SUCCESS;
2794 	tag = blk_mq_unique_tag(scmnd->request);
2795 	ch_idx = blk_mq_unique_tag_to_hwq(tag);
2796 	if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2797 		return SUCCESS;
2798 	ch = &target->ch[ch_idx];
2799 	if (!srp_claim_req(ch, req, NULL, scmnd))
2800 		return SUCCESS;
2801 	shost_printk(KERN_ERR, target->scsi_host,
2802 		     "Sending SRP abort for tag %#x\n", tag);
2803 	if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2804 			      SRP_TSK_ABORT_TASK, NULL) == 0)
2805 		ret = SUCCESS;
2806 	else if (target->rport->state == SRP_RPORT_LOST)
2807 		ret = FAST_IO_FAIL;
2808 	else
2809 		ret = FAILED;
2810 	if (ret == SUCCESS) {
2811 		srp_free_req(ch, req, scmnd, 0);
2812 		scmnd->result = DID_ABORT << 16;
2813 		scmnd->scsi_done(scmnd);
2814 	}
2815 
2816 	return ret;
2817 }
2818 
2819 static int srp_reset_device(struct scsi_cmnd *scmnd)
2820 {
2821 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2822 	struct srp_rdma_ch *ch;
2823 	u8 status;
2824 
2825 	shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2826 
2827 	ch = &target->ch[0];
2828 	if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2829 			      SRP_TSK_LUN_RESET, &status))
2830 		return FAILED;
2831 	if (status)
2832 		return FAILED;
2833 
2834 	return SUCCESS;
2835 }
2836 
2837 static int srp_reset_host(struct scsi_cmnd *scmnd)
2838 {
2839 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2840 
2841 	shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2842 
2843 	return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2844 }
2845 
2846 static int srp_target_alloc(struct scsi_target *starget)
2847 {
2848 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2849 	struct srp_target_port *target = host_to_target(shost);
2850 
2851 	if (target->target_can_queue)
2852 		starget->can_queue = target->target_can_queue;
2853 	return 0;
2854 }
2855 
2856 static int srp_slave_configure(struct scsi_device *sdev)
2857 {
2858 	struct Scsi_Host *shost = sdev->host;
2859 	struct srp_target_port *target = host_to_target(shost);
2860 	struct request_queue *q = sdev->request_queue;
2861 	unsigned long timeout;
2862 
2863 	if (sdev->type == TYPE_DISK) {
2864 		timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2865 		blk_queue_rq_timeout(q, timeout);
2866 	}
2867 
2868 	return 0;
2869 }
2870 
2871 static ssize_t id_ext_show(struct device *dev, struct device_attribute *attr,
2872 			   char *buf)
2873 {
2874 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2875 
2876 	return sysfs_emit(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2877 }
2878 
2879 static DEVICE_ATTR_RO(id_ext);
2880 
2881 static ssize_t ioc_guid_show(struct device *dev, struct device_attribute *attr,
2882 			     char *buf)
2883 {
2884 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2885 
2886 	return sysfs_emit(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2887 }
2888 
2889 static DEVICE_ATTR_RO(ioc_guid);
2890 
2891 static ssize_t service_id_show(struct device *dev,
2892 			       struct device_attribute *attr, char *buf)
2893 {
2894 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2895 
2896 	if (target->using_rdma_cm)
2897 		return -ENOENT;
2898 	return sysfs_emit(buf, "0x%016llx\n",
2899 			  be64_to_cpu(target->ib_cm.service_id));
2900 }
2901 
2902 static DEVICE_ATTR_RO(service_id);
2903 
2904 static ssize_t pkey_show(struct device *dev, struct device_attribute *attr,
2905 			 char *buf)
2906 {
2907 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2908 
2909 	if (target->using_rdma_cm)
2910 		return -ENOENT;
2911 
2912 	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(target->ib_cm.pkey));
2913 }
2914 
2915 static DEVICE_ATTR_RO(pkey);
2916 
2917 static ssize_t sgid_show(struct device *dev, struct device_attribute *attr,
2918 			 char *buf)
2919 {
2920 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2921 
2922 	return sysfs_emit(buf, "%pI6\n", target->sgid.raw);
2923 }
2924 
2925 static DEVICE_ATTR_RO(sgid);
2926 
2927 static ssize_t dgid_show(struct device *dev, struct device_attribute *attr,
2928 			 char *buf)
2929 {
2930 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2931 	struct srp_rdma_ch *ch = &target->ch[0];
2932 
2933 	if (target->using_rdma_cm)
2934 		return -ENOENT;
2935 
2936 	return sysfs_emit(buf, "%pI6\n", ch->ib_cm.path.dgid.raw);
2937 }
2938 
2939 static DEVICE_ATTR_RO(dgid);
2940 
2941 static ssize_t orig_dgid_show(struct device *dev, struct device_attribute *attr,
2942 			      char *buf)
2943 {
2944 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2945 
2946 	if (target->using_rdma_cm)
2947 		return -ENOENT;
2948 
2949 	return sysfs_emit(buf, "%pI6\n", target->ib_cm.orig_dgid.raw);
2950 }
2951 
2952 static DEVICE_ATTR_RO(orig_dgid);
2953 
2954 static ssize_t req_lim_show(struct device *dev, struct device_attribute *attr,
2955 			    char *buf)
2956 {
2957 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2958 	struct srp_rdma_ch *ch;
2959 	int i, req_lim = INT_MAX;
2960 
2961 	for (i = 0; i < target->ch_count; i++) {
2962 		ch = &target->ch[i];
2963 		req_lim = min(req_lim, ch->req_lim);
2964 	}
2965 
2966 	return sysfs_emit(buf, "%d\n", req_lim);
2967 }
2968 
2969 static DEVICE_ATTR_RO(req_lim);
2970 
2971 static ssize_t zero_req_lim_show(struct device *dev,
2972 				 struct device_attribute *attr, char *buf)
2973 {
2974 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2975 
2976 	return sysfs_emit(buf, "%d\n", target->zero_req_lim);
2977 }
2978 
2979 static DEVICE_ATTR_RO(zero_req_lim);
2980 
2981 static ssize_t local_ib_port_show(struct device *dev,
2982 				  struct device_attribute *attr, char *buf)
2983 {
2984 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2985 
2986 	return sysfs_emit(buf, "%d\n", target->srp_host->port);
2987 }
2988 
2989 static DEVICE_ATTR_RO(local_ib_port);
2990 
2991 static ssize_t local_ib_device_show(struct device *dev,
2992 				    struct device_attribute *attr, char *buf)
2993 {
2994 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2995 
2996 	return sysfs_emit(buf, "%s\n",
2997 			  dev_name(&target->srp_host->srp_dev->dev->dev));
2998 }
2999 
3000 static DEVICE_ATTR_RO(local_ib_device);
3001 
3002 static ssize_t ch_count_show(struct device *dev, struct device_attribute *attr,
3003 			     char *buf)
3004 {
3005 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
3006 
3007 	return sysfs_emit(buf, "%d\n", target->ch_count);
3008 }
3009 
3010 static DEVICE_ATTR_RO(ch_count);
3011 
3012 static ssize_t comp_vector_show(struct device *dev,
3013 				struct device_attribute *attr, char *buf)
3014 {
3015 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
3016 
3017 	return sysfs_emit(buf, "%d\n", target->comp_vector);
3018 }
3019 
3020 static DEVICE_ATTR_RO(comp_vector);
3021 
3022 static ssize_t tl_retry_count_show(struct device *dev,
3023 				   struct device_attribute *attr, char *buf)
3024 {
3025 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
3026 
3027 	return sysfs_emit(buf, "%d\n", target->tl_retry_count);
3028 }
3029 
3030 static DEVICE_ATTR_RO(tl_retry_count);
3031 
3032 static ssize_t cmd_sg_entries_show(struct device *dev,
3033 				   struct device_attribute *attr, char *buf)
3034 {
3035 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
3036 
3037 	return sysfs_emit(buf, "%u\n", target->cmd_sg_cnt);
3038 }
3039 
3040 static DEVICE_ATTR_RO(cmd_sg_entries);
3041 
3042 static ssize_t allow_ext_sg_show(struct device *dev,
3043 				 struct device_attribute *attr, char *buf)
3044 {
3045 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
3046 
3047 	return sysfs_emit(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
3048 }
3049 
3050 static DEVICE_ATTR_RO(allow_ext_sg);
3051 
3052 static struct device_attribute *srp_host_attrs[] = {
3053 	&dev_attr_id_ext,
3054 	&dev_attr_ioc_guid,
3055 	&dev_attr_service_id,
3056 	&dev_attr_pkey,
3057 	&dev_attr_sgid,
3058 	&dev_attr_dgid,
3059 	&dev_attr_orig_dgid,
3060 	&dev_attr_req_lim,
3061 	&dev_attr_zero_req_lim,
3062 	&dev_attr_local_ib_port,
3063 	&dev_attr_local_ib_device,
3064 	&dev_attr_ch_count,
3065 	&dev_attr_comp_vector,
3066 	&dev_attr_tl_retry_count,
3067 	&dev_attr_cmd_sg_entries,
3068 	&dev_attr_allow_ext_sg,
3069 	NULL
3070 };
3071 
3072 static struct scsi_host_template srp_template = {
3073 	.module				= THIS_MODULE,
3074 	.name				= "InfiniBand SRP initiator",
3075 	.proc_name			= DRV_NAME,
3076 	.target_alloc			= srp_target_alloc,
3077 	.slave_configure		= srp_slave_configure,
3078 	.info				= srp_target_info,
3079 	.init_cmd_priv			= srp_init_cmd_priv,
3080 	.exit_cmd_priv			= srp_exit_cmd_priv,
3081 	.queuecommand			= srp_queuecommand,
3082 	.change_queue_depth             = srp_change_queue_depth,
3083 	.eh_timed_out			= srp_timed_out,
3084 	.eh_abort_handler		= srp_abort,
3085 	.eh_device_reset_handler	= srp_reset_device,
3086 	.eh_host_reset_handler		= srp_reset_host,
3087 	.skip_settle_delay		= true,
3088 	.sg_tablesize			= SRP_DEF_SG_TABLESIZE,
3089 	.can_queue			= SRP_DEFAULT_CMD_SQ_SIZE,
3090 	.this_id			= -1,
3091 	.cmd_per_lun			= SRP_DEFAULT_CMD_SQ_SIZE,
3092 	.shost_attrs			= srp_host_attrs,
3093 	.track_queue_depth		= 1,
3094 	.cmd_size			= sizeof(struct srp_request),
3095 };
3096 
3097 static int srp_sdev_count(struct Scsi_Host *host)
3098 {
3099 	struct scsi_device *sdev;
3100 	int c = 0;
3101 
3102 	shost_for_each_device(sdev, host)
3103 		c++;
3104 
3105 	return c;
3106 }
3107 
3108 /*
3109  * Return values:
3110  * < 0 upon failure. Caller is responsible for SRP target port cleanup.
3111  * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
3112  *    removal has been scheduled.
3113  * 0 and target->state != SRP_TARGET_REMOVED upon success.
3114  */
3115 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
3116 {
3117 	struct srp_rport_identifiers ids;
3118 	struct srp_rport *rport;
3119 
3120 	target->state = SRP_TARGET_SCANNING;
3121 	sprintf(target->target_name, "SRP.T10:%016llX",
3122 		be64_to_cpu(target->id_ext));
3123 
3124 	if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dev.parent))
3125 		return -ENODEV;
3126 
3127 	memcpy(ids.port_id, &target->id_ext, 8);
3128 	memcpy(ids.port_id + 8, &target->ioc_guid, 8);
3129 	ids.roles = SRP_RPORT_ROLE_TARGET;
3130 	rport = srp_rport_add(target->scsi_host, &ids);
3131 	if (IS_ERR(rport)) {
3132 		scsi_remove_host(target->scsi_host);
3133 		return PTR_ERR(rport);
3134 	}
3135 
3136 	rport->lld_data = target;
3137 	target->rport = rport;
3138 
3139 	spin_lock(&host->target_lock);
3140 	list_add_tail(&target->list, &host->target_list);
3141 	spin_unlock(&host->target_lock);
3142 
3143 	scsi_scan_target(&target->scsi_host->shost_gendev,
3144 			 0, target->scsi_id, SCAN_WILD_CARD, SCSI_SCAN_INITIAL);
3145 
3146 	if (srp_connected_ch(target) < target->ch_count ||
3147 	    target->qp_in_error) {
3148 		shost_printk(KERN_INFO, target->scsi_host,
3149 			     PFX "SCSI scan failed - removing SCSI host\n");
3150 		srp_queue_remove_work(target);
3151 		goto out;
3152 	}
3153 
3154 	pr_debug("%s: SCSI scan succeeded - detected %d LUNs\n",
3155 		 dev_name(&target->scsi_host->shost_gendev),
3156 		 srp_sdev_count(target->scsi_host));
3157 
3158 	spin_lock_irq(&target->lock);
3159 	if (target->state == SRP_TARGET_SCANNING)
3160 		target->state = SRP_TARGET_LIVE;
3161 	spin_unlock_irq(&target->lock);
3162 
3163 out:
3164 	return 0;
3165 }
3166 
3167 static void srp_release_dev(struct device *dev)
3168 {
3169 	struct srp_host *host =
3170 		container_of(dev, struct srp_host, dev);
3171 
3172 	complete(&host->released);
3173 }
3174 
3175 static struct class srp_class = {
3176 	.name    = "infiniband_srp",
3177 	.dev_release = srp_release_dev
3178 };
3179 
3180 /**
3181  * srp_conn_unique() - check whether the connection to a target is unique
3182  * @host:   SRP host.
3183  * @target: SRP target port.
3184  */
3185 static bool srp_conn_unique(struct srp_host *host,
3186 			    struct srp_target_port *target)
3187 {
3188 	struct srp_target_port *t;
3189 	bool ret = false;
3190 
3191 	if (target->state == SRP_TARGET_REMOVED)
3192 		goto out;
3193 
3194 	ret = true;
3195 
3196 	spin_lock(&host->target_lock);
3197 	list_for_each_entry(t, &host->target_list, list) {
3198 		if (t != target &&
3199 		    target->id_ext == t->id_ext &&
3200 		    target->ioc_guid == t->ioc_guid &&
3201 		    target->initiator_ext == t->initiator_ext) {
3202 			ret = false;
3203 			break;
3204 		}
3205 	}
3206 	spin_unlock(&host->target_lock);
3207 
3208 out:
3209 	return ret;
3210 }
3211 
3212 /*
3213  * Target ports are added by writing
3214  *
3215  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
3216  *     pkey=<P_Key>,service_id=<service ID>
3217  * or
3218  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,
3219  *     [src=<IPv4 address>,]dest=<IPv4 address>:<port number>
3220  *
3221  * to the add_target sysfs attribute.
3222  */
3223 enum {
3224 	SRP_OPT_ERR		= 0,
3225 	SRP_OPT_ID_EXT		= 1 << 0,
3226 	SRP_OPT_IOC_GUID	= 1 << 1,
3227 	SRP_OPT_DGID		= 1 << 2,
3228 	SRP_OPT_PKEY		= 1 << 3,
3229 	SRP_OPT_SERVICE_ID	= 1 << 4,
3230 	SRP_OPT_MAX_SECT	= 1 << 5,
3231 	SRP_OPT_MAX_CMD_PER_LUN	= 1 << 6,
3232 	SRP_OPT_IO_CLASS	= 1 << 7,
3233 	SRP_OPT_INITIATOR_EXT	= 1 << 8,
3234 	SRP_OPT_CMD_SG_ENTRIES	= 1 << 9,
3235 	SRP_OPT_ALLOW_EXT_SG	= 1 << 10,
3236 	SRP_OPT_SG_TABLESIZE	= 1 << 11,
3237 	SRP_OPT_COMP_VECTOR	= 1 << 12,
3238 	SRP_OPT_TL_RETRY_COUNT	= 1 << 13,
3239 	SRP_OPT_QUEUE_SIZE	= 1 << 14,
3240 	SRP_OPT_IP_SRC		= 1 << 15,
3241 	SRP_OPT_IP_DEST		= 1 << 16,
3242 	SRP_OPT_TARGET_CAN_QUEUE= 1 << 17,
3243 	SRP_OPT_MAX_IT_IU_SIZE  = 1 << 18,
3244 	SRP_OPT_CH_COUNT	= 1 << 19,
3245 };
3246 
3247 static unsigned int srp_opt_mandatory[] = {
3248 	SRP_OPT_ID_EXT		|
3249 	SRP_OPT_IOC_GUID	|
3250 	SRP_OPT_DGID		|
3251 	SRP_OPT_PKEY		|
3252 	SRP_OPT_SERVICE_ID,
3253 	SRP_OPT_ID_EXT		|
3254 	SRP_OPT_IOC_GUID	|
3255 	SRP_OPT_IP_DEST,
3256 };
3257 
3258 static const match_table_t srp_opt_tokens = {
3259 	{ SRP_OPT_ID_EXT,		"id_ext=%s" 		},
3260 	{ SRP_OPT_IOC_GUID,		"ioc_guid=%s" 		},
3261 	{ SRP_OPT_DGID,			"dgid=%s" 		},
3262 	{ SRP_OPT_PKEY,			"pkey=%x" 		},
3263 	{ SRP_OPT_SERVICE_ID,		"service_id=%s"		},
3264 	{ SRP_OPT_MAX_SECT,		"max_sect=%d" 		},
3265 	{ SRP_OPT_MAX_CMD_PER_LUN,	"max_cmd_per_lun=%d" 	},
3266 	{ SRP_OPT_TARGET_CAN_QUEUE,	"target_can_queue=%d"	},
3267 	{ SRP_OPT_IO_CLASS,		"io_class=%x"		},
3268 	{ SRP_OPT_INITIATOR_EXT,	"initiator_ext=%s"	},
3269 	{ SRP_OPT_CMD_SG_ENTRIES,	"cmd_sg_entries=%u"	},
3270 	{ SRP_OPT_ALLOW_EXT_SG,		"allow_ext_sg=%u"	},
3271 	{ SRP_OPT_SG_TABLESIZE,		"sg_tablesize=%u"	},
3272 	{ SRP_OPT_COMP_VECTOR,		"comp_vector=%u"	},
3273 	{ SRP_OPT_TL_RETRY_COUNT,	"tl_retry_count=%u"	},
3274 	{ SRP_OPT_QUEUE_SIZE,		"queue_size=%d"		},
3275 	{ SRP_OPT_IP_SRC,		"src=%s"		},
3276 	{ SRP_OPT_IP_DEST,		"dest=%s"		},
3277 	{ SRP_OPT_MAX_IT_IU_SIZE,	"max_it_iu_size=%d"	},
3278 	{ SRP_OPT_CH_COUNT,		"ch_count=%u",		},
3279 	{ SRP_OPT_ERR,			NULL 			}
3280 };
3281 
3282 /**
3283  * srp_parse_in - parse an IP address and port number combination
3284  * @net:	   [in]  Network namespace.
3285  * @sa:		   [out] Address family, IP address and port number.
3286  * @addr_port_str: [in]  IP address and port number.
3287  * @has_port:	   [out] Whether or not @addr_port_str includes a port number.
3288  *
3289  * Parse the following address formats:
3290  * - IPv4: <ip_address>:<port>, e.g. 1.2.3.4:5.
3291  * - IPv6: \[<ipv6_address>\]:<port>, e.g. [1::2:3%4]:5.
3292  */
3293 static int srp_parse_in(struct net *net, struct sockaddr_storage *sa,
3294 			const char *addr_port_str, bool *has_port)
3295 {
3296 	char *addr_end, *addr = kstrdup(addr_port_str, GFP_KERNEL);
3297 	char *port_str;
3298 	int ret;
3299 
3300 	if (!addr)
3301 		return -ENOMEM;
3302 	port_str = strrchr(addr, ':');
3303 	if (port_str && strchr(port_str, ']'))
3304 		port_str = NULL;
3305 	if (port_str)
3306 		*port_str++ = '\0';
3307 	if (has_port)
3308 		*has_port = port_str != NULL;
3309 	ret = inet_pton_with_scope(net, AF_INET, addr, port_str, sa);
3310 	if (ret && addr[0]) {
3311 		addr_end = addr + strlen(addr) - 1;
3312 		if (addr[0] == '[' && *addr_end == ']') {
3313 			*addr_end = '\0';
3314 			ret = inet_pton_with_scope(net, AF_INET6, addr + 1,
3315 						   port_str, sa);
3316 		}
3317 	}
3318 	kfree(addr);
3319 	pr_debug("%s -> %pISpfsc\n", addr_port_str, sa);
3320 	return ret;
3321 }
3322 
3323 static int srp_parse_options(struct net *net, const char *buf,
3324 			     struct srp_target_port *target)
3325 {
3326 	char *options, *sep_opt;
3327 	char *p;
3328 	substring_t args[MAX_OPT_ARGS];
3329 	unsigned long long ull;
3330 	bool has_port;
3331 	int opt_mask = 0;
3332 	int token;
3333 	int ret = -EINVAL;
3334 	int i;
3335 
3336 	options = kstrdup(buf, GFP_KERNEL);
3337 	if (!options)
3338 		return -ENOMEM;
3339 
3340 	sep_opt = options;
3341 	while ((p = strsep(&sep_opt, ",\n")) != NULL) {
3342 		if (!*p)
3343 			continue;
3344 
3345 		token = match_token(p, srp_opt_tokens, args);
3346 		opt_mask |= token;
3347 
3348 		switch (token) {
3349 		case SRP_OPT_ID_EXT:
3350 			p = match_strdup(args);
3351 			if (!p) {
3352 				ret = -ENOMEM;
3353 				goto out;
3354 			}
3355 			ret = kstrtoull(p, 16, &ull);
3356 			if (ret) {
3357 				pr_warn("invalid id_ext parameter '%s'\n", p);
3358 				kfree(p);
3359 				goto out;
3360 			}
3361 			target->id_ext = cpu_to_be64(ull);
3362 			kfree(p);
3363 			break;
3364 
3365 		case SRP_OPT_IOC_GUID:
3366 			p = match_strdup(args);
3367 			if (!p) {
3368 				ret = -ENOMEM;
3369 				goto out;
3370 			}
3371 			ret = kstrtoull(p, 16, &ull);
3372 			if (ret) {
3373 				pr_warn("invalid ioc_guid parameter '%s'\n", p);
3374 				kfree(p);
3375 				goto out;
3376 			}
3377 			target->ioc_guid = cpu_to_be64(ull);
3378 			kfree(p);
3379 			break;
3380 
3381 		case SRP_OPT_DGID:
3382 			p = match_strdup(args);
3383 			if (!p) {
3384 				ret = -ENOMEM;
3385 				goto out;
3386 			}
3387 			if (strlen(p) != 32) {
3388 				pr_warn("bad dest GID parameter '%s'\n", p);
3389 				kfree(p);
3390 				goto out;
3391 			}
3392 
3393 			ret = hex2bin(target->ib_cm.orig_dgid.raw, p, 16);
3394 			kfree(p);
3395 			if (ret < 0)
3396 				goto out;
3397 			break;
3398 
3399 		case SRP_OPT_PKEY:
3400 			if (match_hex(args, &token)) {
3401 				pr_warn("bad P_Key parameter '%s'\n", p);
3402 				goto out;
3403 			}
3404 			target->ib_cm.pkey = cpu_to_be16(token);
3405 			break;
3406 
3407 		case SRP_OPT_SERVICE_ID:
3408 			p = match_strdup(args);
3409 			if (!p) {
3410 				ret = -ENOMEM;
3411 				goto out;
3412 			}
3413 			ret = kstrtoull(p, 16, &ull);
3414 			if (ret) {
3415 				pr_warn("bad service_id parameter '%s'\n", p);
3416 				kfree(p);
3417 				goto out;
3418 			}
3419 			target->ib_cm.service_id = cpu_to_be64(ull);
3420 			kfree(p);
3421 			break;
3422 
3423 		case SRP_OPT_IP_SRC:
3424 			p = match_strdup(args);
3425 			if (!p) {
3426 				ret = -ENOMEM;
3427 				goto out;
3428 			}
3429 			ret = srp_parse_in(net, &target->rdma_cm.src.ss, p,
3430 					   NULL);
3431 			if (ret < 0) {
3432 				pr_warn("bad source parameter '%s'\n", p);
3433 				kfree(p);
3434 				goto out;
3435 			}
3436 			target->rdma_cm.src_specified = true;
3437 			kfree(p);
3438 			break;
3439 
3440 		case SRP_OPT_IP_DEST:
3441 			p = match_strdup(args);
3442 			if (!p) {
3443 				ret = -ENOMEM;
3444 				goto out;
3445 			}
3446 			ret = srp_parse_in(net, &target->rdma_cm.dst.ss, p,
3447 					   &has_port);
3448 			if (!has_port)
3449 				ret = -EINVAL;
3450 			if (ret < 0) {
3451 				pr_warn("bad dest parameter '%s'\n", p);
3452 				kfree(p);
3453 				goto out;
3454 			}
3455 			target->using_rdma_cm = true;
3456 			kfree(p);
3457 			break;
3458 
3459 		case SRP_OPT_MAX_SECT:
3460 			if (match_int(args, &token)) {
3461 				pr_warn("bad max sect parameter '%s'\n", p);
3462 				goto out;
3463 			}
3464 			target->scsi_host->max_sectors = token;
3465 			break;
3466 
3467 		case SRP_OPT_QUEUE_SIZE:
3468 			if (match_int(args, &token) || token < 1) {
3469 				pr_warn("bad queue_size parameter '%s'\n", p);
3470 				goto out;
3471 			}
3472 			target->scsi_host->can_queue = token;
3473 			target->queue_size = token + SRP_RSP_SQ_SIZE +
3474 					     SRP_TSK_MGMT_SQ_SIZE;
3475 			if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3476 				target->scsi_host->cmd_per_lun = token;
3477 			break;
3478 
3479 		case SRP_OPT_MAX_CMD_PER_LUN:
3480 			if (match_int(args, &token) || token < 1) {
3481 				pr_warn("bad max cmd_per_lun parameter '%s'\n",
3482 					p);
3483 				goto out;
3484 			}
3485 			target->scsi_host->cmd_per_lun = token;
3486 			break;
3487 
3488 		case SRP_OPT_TARGET_CAN_QUEUE:
3489 			if (match_int(args, &token) || token < 1) {
3490 				pr_warn("bad max target_can_queue parameter '%s'\n",
3491 					p);
3492 				goto out;
3493 			}
3494 			target->target_can_queue = token;
3495 			break;
3496 
3497 		case SRP_OPT_IO_CLASS:
3498 			if (match_hex(args, &token)) {
3499 				pr_warn("bad IO class parameter '%s'\n", p);
3500 				goto out;
3501 			}
3502 			if (token != SRP_REV10_IB_IO_CLASS &&
3503 			    token != SRP_REV16A_IB_IO_CLASS) {
3504 				pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3505 					token, SRP_REV10_IB_IO_CLASS,
3506 					SRP_REV16A_IB_IO_CLASS);
3507 				goto out;
3508 			}
3509 			target->io_class = token;
3510 			break;
3511 
3512 		case SRP_OPT_INITIATOR_EXT:
3513 			p = match_strdup(args);
3514 			if (!p) {
3515 				ret = -ENOMEM;
3516 				goto out;
3517 			}
3518 			ret = kstrtoull(p, 16, &ull);
3519 			if (ret) {
3520 				pr_warn("bad initiator_ext value '%s'\n", p);
3521 				kfree(p);
3522 				goto out;
3523 			}
3524 			target->initiator_ext = cpu_to_be64(ull);
3525 			kfree(p);
3526 			break;
3527 
3528 		case SRP_OPT_CMD_SG_ENTRIES:
3529 			if (match_int(args, &token) || token < 1 || token > 255) {
3530 				pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3531 					p);
3532 				goto out;
3533 			}
3534 			target->cmd_sg_cnt = token;
3535 			break;
3536 
3537 		case SRP_OPT_ALLOW_EXT_SG:
3538 			if (match_int(args, &token)) {
3539 				pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3540 				goto out;
3541 			}
3542 			target->allow_ext_sg = !!token;
3543 			break;
3544 
3545 		case SRP_OPT_SG_TABLESIZE:
3546 			if (match_int(args, &token) || token < 1 ||
3547 					token > SG_MAX_SEGMENTS) {
3548 				pr_warn("bad max sg_tablesize parameter '%s'\n",
3549 					p);
3550 				goto out;
3551 			}
3552 			target->sg_tablesize = token;
3553 			break;
3554 
3555 		case SRP_OPT_COMP_VECTOR:
3556 			if (match_int(args, &token) || token < 0) {
3557 				pr_warn("bad comp_vector parameter '%s'\n", p);
3558 				goto out;
3559 			}
3560 			target->comp_vector = token;
3561 			break;
3562 
3563 		case SRP_OPT_TL_RETRY_COUNT:
3564 			if (match_int(args, &token) || token < 2 || token > 7) {
3565 				pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3566 					p);
3567 				goto out;
3568 			}
3569 			target->tl_retry_count = token;
3570 			break;
3571 
3572 		case SRP_OPT_MAX_IT_IU_SIZE:
3573 			if (match_int(args, &token) || token < 0) {
3574 				pr_warn("bad maximum initiator to target IU size '%s'\n", p);
3575 				goto out;
3576 			}
3577 			target->max_it_iu_size = token;
3578 			break;
3579 
3580 		case SRP_OPT_CH_COUNT:
3581 			if (match_int(args, &token) || token < 1) {
3582 				pr_warn("bad channel count %s\n", p);
3583 				goto out;
3584 			}
3585 			target->ch_count = token;
3586 			break;
3587 
3588 		default:
3589 			pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3590 				p);
3591 			goto out;
3592 		}
3593 	}
3594 
3595 	for (i = 0; i < ARRAY_SIZE(srp_opt_mandatory); i++) {
3596 		if ((opt_mask & srp_opt_mandatory[i]) == srp_opt_mandatory[i]) {
3597 			ret = 0;
3598 			break;
3599 		}
3600 	}
3601 	if (ret)
3602 		pr_warn("target creation request is missing one or more parameters\n");
3603 
3604 	if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3605 	    && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3606 		pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3607 			target->scsi_host->cmd_per_lun,
3608 			target->scsi_host->can_queue);
3609 
3610 out:
3611 	kfree(options);
3612 	return ret;
3613 }
3614 
3615 static ssize_t add_target_store(struct device *dev,
3616 				struct device_attribute *attr, const char *buf,
3617 				size_t count)
3618 {
3619 	struct srp_host *host =
3620 		container_of(dev, struct srp_host, dev);
3621 	struct Scsi_Host *target_host;
3622 	struct srp_target_port *target;
3623 	struct srp_rdma_ch *ch;
3624 	struct srp_device *srp_dev = host->srp_dev;
3625 	struct ib_device *ibdev = srp_dev->dev;
3626 	int ret, i, ch_idx;
3627 	unsigned int max_sectors_per_mr, mr_per_cmd = 0;
3628 	bool multich = false;
3629 	uint32_t max_iu_len;
3630 
3631 	target_host = scsi_host_alloc(&srp_template,
3632 				      sizeof (struct srp_target_port));
3633 	if (!target_host)
3634 		return -ENOMEM;
3635 
3636 	target_host->transportt  = ib_srp_transport_template;
3637 	target_host->max_channel = 0;
3638 	target_host->max_id      = 1;
3639 	target_host->max_lun     = -1LL;
3640 	target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3641 	target_host->max_segment_size = ib_dma_max_seg_size(ibdev);
3642 
3643 	if (!(ibdev->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG))
3644 		target_host->virt_boundary_mask = ~srp_dev->mr_page_mask;
3645 
3646 	target = host_to_target(target_host);
3647 
3648 	target->net		= kobj_ns_grab_current(KOBJ_NS_TYPE_NET);
3649 	target->io_class	= SRP_REV16A_IB_IO_CLASS;
3650 	target->scsi_host	= target_host;
3651 	target->srp_host	= host;
3652 	target->lkey		= host->srp_dev->pd->local_dma_lkey;
3653 	target->global_rkey	= host->srp_dev->global_rkey;
3654 	target->cmd_sg_cnt	= cmd_sg_entries;
3655 	target->sg_tablesize	= indirect_sg_entries ? : cmd_sg_entries;
3656 	target->allow_ext_sg	= allow_ext_sg;
3657 	target->tl_retry_count	= 7;
3658 	target->queue_size	= SRP_DEFAULT_QUEUE_SIZE;
3659 
3660 	/*
3661 	 * Avoid that the SCSI host can be removed by srp_remove_target()
3662 	 * before this function returns.
3663 	 */
3664 	scsi_host_get(target->scsi_host);
3665 
3666 	ret = mutex_lock_interruptible(&host->add_target_mutex);
3667 	if (ret < 0)
3668 		goto put;
3669 
3670 	ret = srp_parse_options(target->net, buf, target);
3671 	if (ret)
3672 		goto out;
3673 
3674 	if (!srp_conn_unique(target->srp_host, target)) {
3675 		if (target->using_rdma_cm) {
3676 			shost_printk(KERN_INFO, target->scsi_host,
3677 				     PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;dest=%pIS\n",
3678 				     be64_to_cpu(target->id_ext),
3679 				     be64_to_cpu(target->ioc_guid),
3680 				     &target->rdma_cm.dst);
3681 		} else {
3682 			shost_printk(KERN_INFO, target->scsi_host,
3683 				     PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3684 				     be64_to_cpu(target->id_ext),
3685 				     be64_to_cpu(target->ioc_guid),
3686 				     be64_to_cpu(target->initiator_ext));
3687 		}
3688 		ret = -EEXIST;
3689 		goto out;
3690 	}
3691 
3692 	if (!srp_dev->has_fr && !target->allow_ext_sg &&
3693 	    target->cmd_sg_cnt < target->sg_tablesize) {
3694 		pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3695 		target->sg_tablesize = target->cmd_sg_cnt;
3696 	}
3697 
3698 	if (srp_dev->use_fast_reg) {
3699 		bool gaps_reg = (ibdev->attrs.device_cap_flags &
3700 				 IB_DEVICE_SG_GAPS_REG);
3701 
3702 		max_sectors_per_mr = srp_dev->max_pages_per_mr <<
3703 				  (ilog2(srp_dev->mr_page_size) - 9);
3704 		if (!gaps_reg) {
3705 			/*
3706 			 * FR can only map one HCA page per entry. If the start
3707 			 * address is not aligned on a HCA page boundary two
3708 			 * entries will be used for the head and the tail
3709 			 * although these two entries combined contain at most
3710 			 * one HCA page of data. Hence the "+ 1" in the
3711 			 * calculation below.
3712 			 *
3713 			 * The indirect data buffer descriptor is contiguous
3714 			 * so the memory for that buffer will only be
3715 			 * registered if register_always is true. Hence add
3716 			 * one to mr_per_cmd if register_always has been set.
3717 			 */
3718 			mr_per_cmd = register_always +
3719 				(target->scsi_host->max_sectors + 1 +
3720 				 max_sectors_per_mr - 1) / max_sectors_per_mr;
3721 		} else {
3722 			mr_per_cmd = register_always +
3723 				(target->sg_tablesize +
3724 				 srp_dev->max_pages_per_mr - 1) /
3725 				srp_dev->max_pages_per_mr;
3726 		}
3727 		pr_debug("max_sectors = %u; max_pages_per_mr = %u; mr_page_size = %u; max_sectors_per_mr = %u; mr_per_cmd = %u\n",
3728 			 target->scsi_host->max_sectors, srp_dev->max_pages_per_mr, srp_dev->mr_page_size,
3729 			 max_sectors_per_mr, mr_per_cmd);
3730 	}
3731 
3732 	target_host->sg_tablesize = target->sg_tablesize;
3733 	target->mr_pool_size = target->scsi_host->can_queue * mr_per_cmd;
3734 	target->mr_per_cmd = mr_per_cmd;
3735 	target->indirect_size = target->sg_tablesize *
3736 				sizeof (struct srp_direct_buf);
3737 	max_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
3738 				       srp_use_imm_data,
3739 				       target->max_it_iu_size);
3740 
3741 	INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3742 	INIT_WORK(&target->remove_work, srp_remove_work);
3743 	spin_lock_init(&target->lock);
3744 	ret = rdma_query_gid(ibdev, host->port, 0, &target->sgid);
3745 	if (ret)
3746 		goto out;
3747 
3748 	ret = -ENOMEM;
3749 	if (target->ch_count == 0) {
3750 		target->ch_count =
3751 			min(ch_count ?:
3752 				max(4 * num_online_nodes(),
3753 				    ibdev->num_comp_vectors),
3754 				num_online_cpus());
3755 	}
3756 
3757 	target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3758 			     GFP_KERNEL);
3759 	if (!target->ch)
3760 		goto out;
3761 
3762 	for (ch_idx = 0; ch_idx < target->ch_count; ++ch_idx) {
3763 		ch = &target->ch[ch_idx];
3764 		ch->target = target;
3765 		ch->comp_vector = ch_idx % ibdev->num_comp_vectors;
3766 		spin_lock_init(&ch->lock);
3767 		INIT_LIST_HEAD(&ch->free_tx);
3768 		ret = srp_new_cm_id(ch);
3769 		if (ret)
3770 			goto err_disconnect;
3771 
3772 		ret = srp_create_ch_ib(ch);
3773 		if (ret)
3774 			goto err_disconnect;
3775 
3776 		ret = srp_connect_ch(ch, max_iu_len, multich);
3777 		if (ret) {
3778 			char dst[64];
3779 
3780 			if (target->using_rdma_cm)
3781 				snprintf(dst, sizeof(dst), "%pIS",
3782 					&target->rdma_cm.dst);
3783 			else
3784 				snprintf(dst, sizeof(dst), "%pI6",
3785 					target->ib_cm.orig_dgid.raw);
3786 			shost_printk(KERN_ERR, target->scsi_host,
3787 				PFX "Connection %d/%d to %s failed\n",
3788 				ch_idx,
3789 				target->ch_count, dst);
3790 			if (ch_idx == 0) {
3791 				goto free_ch;
3792 			} else {
3793 				srp_free_ch_ib(target, ch);
3794 				target->ch_count = ch - target->ch;
3795 				goto connected;
3796 			}
3797 		}
3798 		multich = true;
3799 	}
3800 
3801 connected:
3802 	target->scsi_host->nr_hw_queues = target->ch_count;
3803 
3804 	ret = srp_add_target(host, target);
3805 	if (ret)
3806 		goto err_disconnect;
3807 
3808 	if (target->state != SRP_TARGET_REMOVED) {
3809 		if (target->using_rdma_cm) {
3810 			shost_printk(KERN_DEBUG, target->scsi_host, PFX
3811 				     "new target: id_ext %016llx ioc_guid %016llx sgid %pI6 dest %pIS\n",
3812 				     be64_to_cpu(target->id_ext),
3813 				     be64_to_cpu(target->ioc_guid),
3814 				     target->sgid.raw, &target->rdma_cm.dst);
3815 		} else {
3816 			shost_printk(KERN_DEBUG, target->scsi_host, PFX
3817 				     "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3818 				     be64_to_cpu(target->id_ext),
3819 				     be64_to_cpu(target->ioc_guid),
3820 				     be16_to_cpu(target->ib_cm.pkey),
3821 				     be64_to_cpu(target->ib_cm.service_id),
3822 				     target->sgid.raw,
3823 				     target->ib_cm.orig_dgid.raw);
3824 		}
3825 	}
3826 
3827 	ret = count;
3828 
3829 out:
3830 	mutex_unlock(&host->add_target_mutex);
3831 
3832 put:
3833 	scsi_host_put(target->scsi_host);
3834 	if (ret < 0) {
3835 		/*
3836 		 * If a call to srp_remove_target() has not been scheduled,
3837 		 * drop the network namespace reference now that was obtained
3838 		 * earlier in this function.
3839 		 */
3840 		if (target->state != SRP_TARGET_REMOVED)
3841 			kobj_ns_drop(KOBJ_NS_TYPE_NET, target->net);
3842 		scsi_host_put(target->scsi_host);
3843 	}
3844 
3845 	return ret;
3846 
3847 err_disconnect:
3848 	srp_disconnect_target(target);
3849 
3850 free_ch:
3851 	for (i = 0; i < target->ch_count; i++) {
3852 		ch = &target->ch[i];
3853 		srp_free_ch_ib(target, ch);
3854 	}
3855 
3856 	kfree(target->ch);
3857 	goto out;
3858 }
3859 
3860 static DEVICE_ATTR_WO(add_target);
3861 
3862 static ssize_t ibdev_show(struct device *dev, struct device_attribute *attr,
3863 			  char *buf)
3864 {
3865 	struct srp_host *host = container_of(dev, struct srp_host, dev);
3866 
3867 	return sysfs_emit(buf, "%s\n", dev_name(&host->srp_dev->dev->dev));
3868 }
3869 
3870 static DEVICE_ATTR_RO(ibdev);
3871 
3872 static ssize_t port_show(struct device *dev, struct device_attribute *attr,
3873 			 char *buf)
3874 {
3875 	struct srp_host *host = container_of(dev, struct srp_host, dev);
3876 
3877 	return sysfs_emit(buf, "%d\n", host->port);
3878 }
3879 
3880 static DEVICE_ATTR_RO(port);
3881 
3882 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3883 {
3884 	struct srp_host *host;
3885 
3886 	host = kzalloc(sizeof *host, GFP_KERNEL);
3887 	if (!host)
3888 		return NULL;
3889 
3890 	INIT_LIST_HEAD(&host->target_list);
3891 	spin_lock_init(&host->target_lock);
3892 	init_completion(&host->released);
3893 	mutex_init(&host->add_target_mutex);
3894 	host->srp_dev = device;
3895 	host->port = port;
3896 
3897 	host->dev.class = &srp_class;
3898 	host->dev.parent = device->dev->dev.parent;
3899 	dev_set_name(&host->dev, "srp-%s-%d", dev_name(&device->dev->dev),
3900 		     port);
3901 
3902 	if (device_register(&host->dev))
3903 		goto free_host;
3904 	if (device_create_file(&host->dev, &dev_attr_add_target))
3905 		goto err_class;
3906 	if (device_create_file(&host->dev, &dev_attr_ibdev))
3907 		goto err_class;
3908 	if (device_create_file(&host->dev, &dev_attr_port))
3909 		goto err_class;
3910 
3911 	return host;
3912 
3913 err_class:
3914 	device_unregister(&host->dev);
3915 
3916 free_host:
3917 	kfree(host);
3918 
3919 	return NULL;
3920 }
3921 
3922 static void srp_rename_dev(struct ib_device *device, void *client_data)
3923 {
3924 	struct srp_device *srp_dev = client_data;
3925 	struct srp_host *host, *tmp_host;
3926 
3927 	list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3928 		char name[IB_DEVICE_NAME_MAX + 8];
3929 
3930 		snprintf(name, sizeof(name), "srp-%s-%d",
3931 			 dev_name(&device->dev), host->port);
3932 		device_rename(&host->dev, name);
3933 	}
3934 }
3935 
3936 static int srp_add_one(struct ib_device *device)
3937 {
3938 	struct srp_device *srp_dev;
3939 	struct ib_device_attr *attr = &device->attrs;
3940 	struct srp_host *host;
3941 	int mr_page_shift;
3942 	unsigned int p;
3943 	u64 max_pages_per_mr;
3944 	unsigned int flags = 0;
3945 
3946 	srp_dev = kzalloc(sizeof(*srp_dev), GFP_KERNEL);
3947 	if (!srp_dev)
3948 		return -ENOMEM;
3949 
3950 	/*
3951 	 * Use the smallest page size supported by the HCA, down to a
3952 	 * minimum of 4096 bytes. We're unlikely to build large sglists
3953 	 * out of smaller entries.
3954 	 */
3955 	mr_page_shift		= max(12, ffs(attr->page_size_cap) - 1);
3956 	srp_dev->mr_page_size	= 1 << mr_page_shift;
3957 	srp_dev->mr_page_mask	= ~((u64) srp_dev->mr_page_size - 1);
3958 	max_pages_per_mr	= attr->max_mr_size;
3959 	do_div(max_pages_per_mr, srp_dev->mr_page_size);
3960 	pr_debug("%s: %llu / %u = %llu <> %u\n", __func__,
3961 		 attr->max_mr_size, srp_dev->mr_page_size,
3962 		 max_pages_per_mr, SRP_MAX_PAGES_PER_MR);
3963 	srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3964 					  max_pages_per_mr);
3965 
3966 	srp_dev->has_fr = (attr->device_cap_flags &
3967 			   IB_DEVICE_MEM_MGT_EXTENSIONS);
3968 	if (!never_register && !srp_dev->has_fr)
3969 		dev_warn(&device->dev, "FR is not supported\n");
3970 	else if (!never_register &&
3971 		 attr->max_mr_size >= 2 * srp_dev->mr_page_size)
3972 		srp_dev->use_fast_reg = srp_dev->has_fr;
3973 
3974 	if (never_register || !register_always || !srp_dev->has_fr)
3975 		flags |= IB_PD_UNSAFE_GLOBAL_RKEY;
3976 
3977 	if (srp_dev->use_fast_reg) {
3978 		srp_dev->max_pages_per_mr =
3979 			min_t(u32, srp_dev->max_pages_per_mr,
3980 			      attr->max_fast_reg_page_list_len);
3981 	}
3982 	srp_dev->mr_max_size	= srp_dev->mr_page_size *
3983 				   srp_dev->max_pages_per_mr;
3984 	pr_debug("%s: mr_page_shift = %d, device->max_mr_size = %#llx, device->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3985 		 dev_name(&device->dev), mr_page_shift, attr->max_mr_size,
3986 		 attr->max_fast_reg_page_list_len,
3987 		 srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3988 
3989 	INIT_LIST_HEAD(&srp_dev->dev_list);
3990 
3991 	srp_dev->dev = device;
3992 	srp_dev->pd  = ib_alloc_pd(device, flags);
3993 	if (IS_ERR(srp_dev->pd)) {
3994 		int ret = PTR_ERR(srp_dev->pd);
3995 
3996 		kfree(srp_dev);
3997 		return ret;
3998 	}
3999 
4000 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
4001 		srp_dev->global_rkey = srp_dev->pd->unsafe_global_rkey;
4002 		WARN_ON_ONCE(srp_dev->global_rkey == 0);
4003 	}
4004 
4005 	rdma_for_each_port (device, p) {
4006 		host = srp_add_port(srp_dev, p);
4007 		if (host)
4008 			list_add_tail(&host->list, &srp_dev->dev_list);
4009 	}
4010 
4011 	ib_set_client_data(device, &srp_client, srp_dev);
4012 	return 0;
4013 }
4014 
4015 static void srp_remove_one(struct ib_device *device, void *client_data)
4016 {
4017 	struct srp_device *srp_dev;
4018 	struct srp_host *host, *tmp_host;
4019 	struct srp_target_port *target;
4020 
4021 	srp_dev = client_data;
4022 
4023 	list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
4024 		device_unregister(&host->dev);
4025 		/*
4026 		 * Wait for the sysfs entry to go away, so that no new
4027 		 * target ports can be created.
4028 		 */
4029 		wait_for_completion(&host->released);
4030 
4031 		/*
4032 		 * Remove all target ports.
4033 		 */
4034 		spin_lock(&host->target_lock);
4035 		list_for_each_entry(target, &host->target_list, list)
4036 			srp_queue_remove_work(target);
4037 		spin_unlock(&host->target_lock);
4038 
4039 		/*
4040 		 * Wait for tl_err and target port removal tasks.
4041 		 */
4042 		flush_workqueue(system_long_wq);
4043 		flush_workqueue(srp_remove_wq);
4044 
4045 		kfree(host);
4046 	}
4047 
4048 	ib_dealloc_pd(srp_dev->pd);
4049 
4050 	kfree(srp_dev);
4051 }
4052 
4053 static struct srp_function_template ib_srp_transport_functions = {
4054 	.has_rport_state	 = true,
4055 	.reset_timer_if_blocked	 = true,
4056 	.reconnect_delay	 = &srp_reconnect_delay,
4057 	.fast_io_fail_tmo	 = &srp_fast_io_fail_tmo,
4058 	.dev_loss_tmo		 = &srp_dev_loss_tmo,
4059 	.reconnect		 = srp_rport_reconnect,
4060 	.rport_delete		 = srp_rport_delete,
4061 	.terminate_rport_io	 = srp_terminate_io,
4062 };
4063 
4064 static int __init srp_init_module(void)
4065 {
4066 	int ret;
4067 
4068 	BUILD_BUG_ON(sizeof(struct srp_aer_req) != 36);
4069 	BUILD_BUG_ON(sizeof(struct srp_cmd) != 48);
4070 	BUILD_BUG_ON(sizeof(struct srp_imm_buf) != 4);
4071 	BUILD_BUG_ON(sizeof(struct srp_indirect_buf) != 20);
4072 	BUILD_BUG_ON(sizeof(struct srp_login_req) != 64);
4073 	BUILD_BUG_ON(sizeof(struct srp_login_req_rdma) != 56);
4074 	BUILD_BUG_ON(sizeof(struct srp_rsp) != 36);
4075 
4076 	if (srp_sg_tablesize) {
4077 		pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
4078 		if (!cmd_sg_entries)
4079 			cmd_sg_entries = srp_sg_tablesize;
4080 	}
4081 
4082 	if (!cmd_sg_entries)
4083 		cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
4084 
4085 	if (cmd_sg_entries > 255) {
4086 		pr_warn("Clamping cmd_sg_entries to 255\n");
4087 		cmd_sg_entries = 255;
4088 	}
4089 
4090 	if (!indirect_sg_entries)
4091 		indirect_sg_entries = cmd_sg_entries;
4092 	else if (indirect_sg_entries < cmd_sg_entries) {
4093 		pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
4094 			cmd_sg_entries);
4095 		indirect_sg_entries = cmd_sg_entries;
4096 	}
4097 
4098 	if (indirect_sg_entries > SG_MAX_SEGMENTS) {
4099 		pr_warn("Clamping indirect_sg_entries to %u\n",
4100 			SG_MAX_SEGMENTS);
4101 		indirect_sg_entries = SG_MAX_SEGMENTS;
4102 	}
4103 
4104 	srp_remove_wq = create_workqueue("srp_remove");
4105 	if (!srp_remove_wq) {
4106 		ret = -ENOMEM;
4107 		goto out;
4108 	}
4109 
4110 	ret = -ENOMEM;
4111 	ib_srp_transport_template =
4112 		srp_attach_transport(&ib_srp_transport_functions);
4113 	if (!ib_srp_transport_template)
4114 		goto destroy_wq;
4115 
4116 	ret = class_register(&srp_class);
4117 	if (ret) {
4118 		pr_err("couldn't register class infiniband_srp\n");
4119 		goto release_tr;
4120 	}
4121 
4122 	ib_sa_register_client(&srp_sa_client);
4123 
4124 	ret = ib_register_client(&srp_client);
4125 	if (ret) {
4126 		pr_err("couldn't register IB client\n");
4127 		goto unreg_sa;
4128 	}
4129 
4130 out:
4131 	return ret;
4132 
4133 unreg_sa:
4134 	ib_sa_unregister_client(&srp_sa_client);
4135 	class_unregister(&srp_class);
4136 
4137 release_tr:
4138 	srp_release_transport(ib_srp_transport_template);
4139 
4140 destroy_wq:
4141 	destroy_workqueue(srp_remove_wq);
4142 	goto out;
4143 }
4144 
4145 static void __exit srp_cleanup_module(void)
4146 {
4147 	ib_unregister_client(&srp_client);
4148 	ib_sa_unregister_client(&srp_sa_client);
4149 	class_unregister(&srp_class);
4150 	srp_release_transport(ib_srp_transport_template);
4151 	destroy_workqueue(srp_remove_wq);
4152 }
4153 
4154 module_init(srp_init_module);
4155 module_exit(srp_cleanup_module);
4156