1 /* 2 * Copyright (c) 2005 Cisco Systems. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/string.h> 40 #include <linux/parser.h> 41 #include <linux/random.h> 42 #include <linux/jiffies.h> 43 44 #include <linux/atomic.h> 45 46 #include <scsi/scsi.h> 47 #include <scsi/scsi_device.h> 48 #include <scsi/scsi_dbg.h> 49 #include <scsi/scsi_tcq.h> 50 #include <scsi/srp.h> 51 #include <scsi/scsi_transport_srp.h> 52 53 #include "ib_srp.h" 54 55 #define DRV_NAME "ib_srp" 56 #define PFX DRV_NAME ": " 57 #define DRV_VERSION "1.0" 58 #define DRV_RELDATE "July 1, 2013" 59 60 MODULE_AUTHOR("Roland Dreier"); 61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator " 62 "v" DRV_VERSION " (" DRV_RELDATE ")"); 63 MODULE_LICENSE("Dual BSD/GPL"); 64 65 static unsigned int srp_sg_tablesize; 66 static unsigned int cmd_sg_entries; 67 static unsigned int indirect_sg_entries; 68 static bool allow_ext_sg; 69 static bool prefer_fr; 70 static bool register_always; 71 static int topspin_workarounds = 1; 72 73 module_param(srp_sg_tablesize, uint, 0444); 74 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries"); 75 76 module_param(cmd_sg_entries, uint, 0444); 77 MODULE_PARM_DESC(cmd_sg_entries, 78 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)"); 79 80 module_param(indirect_sg_entries, uint, 0444); 81 MODULE_PARM_DESC(indirect_sg_entries, 82 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")"); 83 84 module_param(allow_ext_sg, bool, 0444); 85 MODULE_PARM_DESC(allow_ext_sg, 86 "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)"); 87 88 module_param(topspin_workarounds, int, 0444); 89 MODULE_PARM_DESC(topspin_workarounds, 90 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0"); 91 92 module_param(prefer_fr, bool, 0444); 93 MODULE_PARM_DESC(prefer_fr, 94 "Whether to use fast registration if both FMR and fast registration are supported"); 95 96 module_param(register_always, bool, 0444); 97 MODULE_PARM_DESC(register_always, 98 "Use memory registration even for contiguous memory regions"); 99 100 static struct kernel_param_ops srp_tmo_ops; 101 102 static int srp_reconnect_delay = 10; 103 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay, 104 S_IRUGO | S_IWUSR); 105 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts"); 106 107 static int srp_fast_io_fail_tmo = 15; 108 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo, 109 S_IRUGO | S_IWUSR); 110 MODULE_PARM_DESC(fast_io_fail_tmo, 111 "Number of seconds between the observation of a transport" 112 " layer error and failing all I/O. \"off\" means that this" 113 " functionality is disabled."); 114 115 static int srp_dev_loss_tmo = 600; 116 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo, 117 S_IRUGO | S_IWUSR); 118 MODULE_PARM_DESC(dev_loss_tmo, 119 "Maximum number of seconds that the SRP transport should" 120 " insulate transport layer errors. After this time has been" 121 " exceeded the SCSI host is removed. Should be" 122 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT) 123 " if fast_io_fail_tmo has not been set. \"off\" means that" 124 " this functionality is disabled."); 125 126 static void srp_add_one(struct ib_device *device); 127 static void srp_remove_one(struct ib_device *device); 128 static void srp_recv_completion(struct ib_cq *cq, void *target_ptr); 129 static void srp_send_completion(struct ib_cq *cq, void *target_ptr); 130 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event); 131 132 static struct scsi_transport_template *ib_srp_transport_template; 133 static struct workqueue_struct *srp_remove_wq; 134 135 static struct ib_client srp_client = { 136 .name = "srp", 137 .add = srp_add_one, 138 .remove = srp_remove_one 139 }; 140 141 static struct ib_sa_client srp_sa_client; 142 143 static int srp_tmo_get(char *buffer, const struct kernel_param *kp) 144 { 145 int tmo = *(int *)kp->arg; 146 147 if (tmo >= 0) 148 return sprintf(buffer, "%d", tmo); 149 else 150 return sprintf(buffer, "off"); 151 } 152 153 static int srp_tmo_set(const char *val, const struct kernel_param *kp) 154 { 155 int tmo, res; 156 157 if (strncmp(val, "off", 3) != 0) { 158 res = kstrtoint(val, 0, &tmo); 159 if (res) 160 goto out; 161 } else { 162 tmo = -1; 163 } 164 if (kp->arg == &srp_reconnect_delay) 165 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo, 166 srp_dev_loss_tmo); 167 else if (kp->arg == &srp_fast_io_fail_tmo) 168 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo); 169 else 170 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo, 171 tmo); 172 if (res) 173 goto out; 174 *(int *)kp->arg = tmo; 175 176 out: 177 return res; 178 } 179 180 static struct kernel_param_ops srp_tmo_ops = { 181 .get = srp_tmo_get, 182 .set = srp_tmo_set, 183 }; 184 185 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host) 186 { 187 return (struct srp_target_port *) host->hostdata; 188 } 189 190 static const char *srp_target_info(struct Scsi_Host *host) 191 { 192 return host_to_target(host)->target_name; 193 } 194 195 static int srp_target_is_topspin(struct srp_target_port *target) 196 { 197 static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad }; 198 static const u8 cisco_oui[3] = { 0x00, 0x1b, 0x0d }; 199 200 return topspin_workarounds && 201 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) || 202 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui)); 203 } 204 205 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size, 206 gfp_t gfp_mask, 207 enum dma_data_direction direction) 208 { 209 struct srp_iu *iu; 210 211 iu = kmalloc(sizeof *iu, gfp_mask); 212 if (!iu) 213 goto out; 214 215 iu->buf = kzalloc(size, gfp_mask); 216 if (!iu->buf) 217 goto out_free_iu; 218 219 iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size, 220 direction); 221 if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma)) 222 goto out_free_buf; 223 224 iu->size = size; 225 iu->direction = direction; 226 227 return iu; 228 229 out_free_buf: 230 kfree(iu->buf); 231 out_free_iu: 232 kfree(iu); 233 out: 234 return NULL; 235 } 236 237 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu) 238 { 239 if (!iu) 240 return; 241 242 ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size, 243 iu->direction); 244 kfree(iu->buf); 245 kfree(iu); 246 } 247 248 static void srp_qp_event(struct ib_event *event, void *context) 249 { 250 pr_debug("QP event %d\n", event->event); 251 } 252 253 static int srp_init_qp(struct srp_target_port *target, 254 struct ib_qp *qp) 255 { 256 struct ib_qp_attr *attr; 257 int ret; 258 259 attr = kmalloc(sizeof *attr, GFP_KERNEL); 260 if (!attr) 261 return -ENOMEM; 262 263 ret = ib_find_pkey(target->srp_host->srp_dev->dev, 264 target->srp_host->port, 265 be16_to_cpu(target->path.pkey), 266 &attr->pkey_index); 267 if (ret) 268 goto out; 269 270 attr->qp_state = IB_QPS_INIT; 271 attr->qp_access_flags = (IB_ACCESS_REMOTE_READ | 272 IB_ACCESS_REMOTE_WRITE); 273 attr->port_num = target->srp_host->port; 274 275 ret = ib_modify_qp(qp, attr, 276 IB_QP_STATE | 277 IB_QP_PKEY_INDEX | 278 IB_QP_ACCESS_FLAGS | 279 IB_QP_PORT); 280 281 out: 282 kfree(attr); 283 return ret; 284 } 285 286 static int srp_new_cm_id(struct srp_target_port *target) 287 { 288 struct ib_cm_id *new_cm_id; 289 290 new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev, 291 srp_cm_handler, target); 292 if (IS_ERR(new_cm_id)) 293 return PTR_ERR(new_cm_id); 294 295 if (target->cm_id) 296 ib_destroy_cm_id(target->cm_id); 297 target->cm_id = new_cm_id; 298 299 return 0; 300 } 301 302 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target) 303 { 304 struct srp_device *dev = target->srp_host->srp_dev; 305 struct ib_fmr_pool_param fmr_param; 306 307 memset(&fmr_param, 0, sizeof(fmr_param)); 308 fmr_param.pool_size = target->scsi_host->can_queue; 309 fmr_param.dirty_watermark = fmr_param.pool_size / 4; 310 fmr_param.cache = 1; 311 fmr_param.max_pages_per_fmr = dev->max_pages_per_mr; 312 fmr_param.page_shift = ilog2(dev->mr_page_size); 313 fmr_param.access = (IB_ACCESS_LOCAL_WRITE | 314 IB_ACCESS_REMOTE_WRITE | 315 IB_ACCESS_REMOTE_READ); 316 317 return ib_create_fmr_pool(dev->pd, &fmr_param); 318 } 319 320 /** 321 * srp_destroy_fr_pool() - free the resources owned by a pool 322 * @pool: Fast registration pool to be destroyed. 323 */ 324 static void srp_destroy_fr_pool(struct srp_fr_pool *pool) 325 { 326 int i; 327 struct srp_fr_desc *d; 328 329 if (!pool) 330 return; 331 332 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) { 333 if (d->frpl) 334 ib_free_fast_reg_page_list(d->frpl); 335 if (d->mr) 336 ib_dereg_mr(d->mr); 337 } 338 kfree(pool); 339 } 340 341 /** 342 * srp_create_fr_pool() - allocate and initialize a pool for fast registration 343 * @device: IB device to allocate fast registration descriptors for. 344 * @pd: Protection domain associated with the FR descriptors. 345 * @pool_size: Number of descriptors to allocate. 346 * @max_page_list_len: Maximum fast registration work request page list length. 347 */ 348 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device, 349 struct ib_pd *pd, int pool_size, 350 int max_page_list_len) 351 { 352 struct srp_fr_pool *pool; 353 struct srp_fr_desc *d; 354 struct ib_mr *mr; 355 struct ib_fast_reg_page_list *frpl; 356 int i, ret = -EINVAL; 357 358 if (pool_size <= 0) 359 goto err; 360 ret = -ENOMEM; 361 pool = kzalloc(sizeof(struct srp_fr_pool) + 362 pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL); 363 if (!pool) 364 goto err; 365 pool->size = pool_size; 366 pool->max_page_list_len = max_page_list_len; 367 spin_lock_init(&pool->lock); 368 INIT_LIST_HEAD(&pool->free_list); 369 370 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) { 371 mr = ib_alloc_fast_reg_mr(pd, max_page_list_len); 372 if (IS_ERR(mr)) { 373 ret = PTR_ERR(mr); 374 goto destroy_pool; 375 } 376 d->mr = mr; 377 frpl = ib_alloc_fast_reg_page_list(device, max_page_list_len); 378 if (IS_ERR(frpl)) { 379 ret = PTR_ERR(frpl); 380 goto destroy_pool; 381 } 382 d->frpl = frpl; 383 list_add_tail(&d->entry, &pool->free_list); 384 } 385 386 out: 387 return pool; 388 389 destroy_pool: 390 srp_destroy_fr_pool(pool); 391 392 err: 393 pool = ERR_PTR(ret); 394 goto out; 395 } 396 397 /** 398 * srp_fr_pool_get() - obtain a descriptor suitable for fast registration 399 * @pool: Pool to obtain descriptor from. 400 */ 401 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool) 402 { 403 struct srp_fr_desc *d = NULL; 404 unsigned long flags; 405 406 spin_lock_irqsave(&pool->lock, flags); 407 if (!list_empty(&pool->free_list)) { 408 d = list_first_entry(&pool->free_list, typeof(*d), entry); 409 list_del(&d->entry); 410 } 411 spin_unlock_irqrestore(&pool->lock, flags); 412 413 return d; 414 } 415 416 /** 417 * srp_fr_pool_put() - put an FR descriptor back in the free list 418 * @pool: Pool the descriptor was allocated from. 419 * @desc: Pointer to an array of fast registration descriptor pointers. 420 * @n: Number of descriptors to put back. 421 * 422 * Note: The caller must already have queued an invalidation request for 423 * desc->mr->rkey before calling this function. 424 */ 425 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc, 426 int n) 427 { 428 unsigned long flags; 429 int i; 430 431 spin_lock_irqsave(&pool->lock, flags); 432 for (i = 0; i < n; i++) 433 list_add(&desc[i]->entry, &pool->free_list); 434 spin_unlock_irqrestore(&pool->lock, flags); 435 } 436 437 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target) 438 { 439 struct srp_device *dev = target->srp_host->srp_dev; 440 441 return srp_create_fr_pool(dev->dev, dev->pd, 442 target->scsi_host->can_queue, 443 dev->max_pages_per_mr); 444 } 445 446 static int srp_create_target_ib(struct srp_target_port *target) 447 { 448 struct srp_device *dev = target->srp_host->srp_dev; 449 struct ib_qp_init_attr *init_attr; 450 struct ib_cq *recv_cq, *send_cq; 451 struct ib_qp *qp; 452 struct ib_fmr_pool *fmr_pool = NULL; 453 struct srp_fr_pool *fr_pool = NULL; 454 const int m = 1 + dev->use_fast_reg; 455 int ret; 456 457 init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL); 458 if (!init_attr) 459 return -ENOMEM; 460 461 recv_cq = ib_create_cq(dev->dev, srp_recv_completion, NULL, target, 462 target->queue_size, target->comp_vector); 463 if (IS_ERR(recv_cq)) { 464 ret = PTR_ERR(recv_cq); 465 goto err; 466 } 467 468 send_cq = ib_create_cq(dev->dev, srp_send_completion, NULL, target, 469 m * target->queue_size, target->comp_vector); 470 if (IS_ERR(send_cq)) { 471 ret = PTR_ERR(send_cq); 472 goto err_recv_cq; 473 } 474 475 ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP); 476 477 init_attr->event_handler = srp_qp_event; 478 init_attr->cap.max_send_wr = m * target->queue_size; 479 init_attr->cap.max_recv_wr = target->queue_size; 480 init_attr->cap.max_recv_sge = 1; 481 init_attr->cap.max_send_sge = 1; 482 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 483 init_attr->qp_type = IB_QPT_RC; 484 init_attr->send_cq = send_cq; 485 init_attr->recv_cq = recv_cq; 486 487 qp = ib_create_qp(dev->pd, init_attr); 488 if (IS_ERR(qp)) { 489 ret = PTR_ERR(qp); 490 goto err_send_cq; 491 } 492 493 ret = srp_init_qp(target, qp); 494 if (ret) 495 goto err_qp; 496 497 if (dev->use_fast_reg && dev->has_fr) { 498 fr_pool = srp_alloc_fr_pool(target); 499 if (IS_ERR(fr_pool)) { 500 ret = PTR_ERR(fr_pool); 501 shost_printk(KERN_WARNING, target->scsi_host, PFX 502 "FR pool allocation failed (%d)\n", ret); 503 goto err_qp; 504 } 505 if (target->fr_pool) 506 srp_destroy_fr_pool(target->fr_pool); 507 target->fr_pool = fr_pool; 508 } else if (!dev->use_fast_reg && dev->has_fmr) { 509 fmr_pool = srp_alloc_fmr_pool(target); 510 if (IS_ERR(fmr_pool)) { 511 ret = PTR_ERR(fmr_pool); 512 shost_printk(KERN_WARNING, target->scsi_host, PFX 513 "FMR pool allocation failed (%d)\n", ret); 514 goto err_qp; 515 } 516 if (target->fmr_pool) 517 ib_destroy_fmr_pool(target->fmr_pool); 518 target->fmr_pool = fmr_pool; 519 } 520 521 if (target->qp) 522 ib_destroy_qp(target->qp); 523 if (target->recv_cq) 524 ib_destroy_cq(target->recv_cq); 525 if (target->send_cq) 526 ib_destroy_cq(target->send_cq); 527 528 target->qp = qp; 529 target->recv_cq = recv_cq; 530 target->send_cq = send_cq; 531 532 kfree(init_attr); 533 return 0; 534 535 err_qp: 536 ib_destroy_qp(qp); 537 538 err_send_cq: 539 ib_destroy_cq(send_cq); 540 541 err_recv_cq: 542 ib_destroy_cq(recv_cq); 543 544 err: 545 kfree(init_attr); 546 return ret; 547 } 548 549 /* 550 * Note: this function may be called without srp_alloc_iu_bufs() having been 551 * invoked. Hence the target->[rt]x_ring checks. 552 */ 553 static void srp_free_target_ib(struct srp_target_port *target) 554 { 555 struct srp_device *dev = target->srp_host->srp_dev; 556 int i; 557 558 if (dev->use_fast_reg) { 559 if (target->fr_pool) 560 srp_destroy_fr_pool(target->fr_pool); 561 } else { 562 if (target->fmr_pool) 563 ib_destroy_fmr_pool(target->fmr_pool); 564 } 565 ib_destroy_qp(target->qp); 566 ib_destroy_cq(target->send_cq); 567 ib_destroy_cq(target->recv_cq); 568 569 target->qp = NULL; 570 target->send_cq = target->recv_cq = NULL; 571 572 if (target->rx_ring) { 573 for (i = 0; i < target->queue_size; ++i) 574 srp_free_iu(target->srp_host, target->rx_ring[i]); 575 kfree(target->rx_ring); 576 target->rx_ring = NULL; 577 } 578 if (target->tx_ring) { 579 for (i = 0; i < target->queue_size; ++i) 580 srp_free_iu(target->srp_host, target->tx_ring[i]); 581 kfree(target->tx_ring); 582 target->tx_ring = NULL; 583 } 584 } 585 586 static void srp_path_rec_completion(int status, 587 struct ib_sa_path_rec *pathrec, 588 void *target_ptr) 589 { 590 struct srp_target_port *target = target_ptr; 591 592 target->status = status; 593 if (status) 594 shost_printk(KERN_ERR, target->scsi_host, 595 PFX "Got failed path rec status %d\n", status); 596 else 597 target->path = *pathrec; 598 complete(&target->done); 599 } 600 601 static int srp_lookup_path(struct srp_target_port *target) 602 { 603 int ret; 604 605 target->path.numb_path = 1; 606 607 init_completion(&target->done); 608 609 target->path_query_id = ib_sa_path_rec_get(&srp_sa_client, 610 target->srp_host->srp_dev->dev, 611 target->srp_host->port, 612 &target->path, 613 IB_SA_PATH_REC_SERVICE_ID | 614 IB_SA_PATH_REC_DGID | 615 IB_SA_PATH_REC_SGID | 616 IB_SA_PATH_REC_NUMB_PATH | 617 IB_SA_PATH_REC_PKEY, 618 SRP_PATH_REC_TIMEOUT_MS, 619 GFP_KERNEL, 620 srp_path_rec_completion, 621 target, &target->path_query); 622 if (target->path_query_id < 0) 623 return target->path_query_id; 624 625 ret = wait_for_completion_interruptible(&target->done); 626 if (ret < 0) 627 return ret; 628 629 if (target->status < 0) 630 shost_printk(KERN_WARNING, target->scsi_host, 631 PFX "Path record query failed\n"); 632 633 return target->status; 634 } 635 636 static int srp_send_req(struct srp_target_port *target) 637 { 638 struct { 639 struct ib_cm_req_param param; 640 struct srp_login_req priv; 641 } *req = NULL; 642 int status; 643 644 req = kzalloc(sizeof *req, GFP_KERNEL); 645 if (!req) 646 return -ENOMEM; 647 648 req->param.primary_path = &target->path; 649 req->param.alternate_path = NULL; 650 req->param.service_id = target->service_id; 651 req->param.qp_num = target->qp->qp_num; 652 req->param.qp_type = target->qp->qp_type; 653 req->param.private_data = &req->priv; 654 req->param.private_data_len = sizeof req->priv; 655 req->param.flow_control = 1; 656 657 get_random_bytes(&req->param.starting_psn, 4); 658 req->param.starting_psn &= 0xffffff; 659 660 /* 661 * Pick some arbitrary defaults here; we could make these 662 * module parameters if anyone cared about setting them. 663 */ 664 req->param.responder_resources = 4; 665 req->param.remote_cm_response_timeout = 20; 666 req->param.local_cm_response_timeout = 20; 667 req->param.retry_count = target->tl_retry_count; 668 req->param.rnr_retry_count = 7; 669 req->param.max_cm_retries = 15; 670 671 req->priv.opcode = SRP_LOGIN_REQ; 672 req->priv.tag = 0; 673 req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len); 674 req->priv.req_buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 675 SRP_BUF_FORMAT_INDIRECT); 676 /* 677 * In the published SRP specification (draft rev. 16a), the 678 * port identifier format is 8 bytes of ID extension followed 679 * by 8 bytes of GUID. Older drafts put the two halves in the 680 * opposite order, so that the GUID comes first. 681 * 682 * Targets conforming to these obsolete drafts can be 683 * recognized by the I/O Class they report. 684 */ 685 if (target->io_class == SRP_REV10_IB_IO_CLASS) { 686 memcpy(req->priv.initiator_port_id, 687 &target->path.sgid.global.interface_id, 8); 688 memcpy(req->priv.initiator_port_id + 8, 689 &target->initiator_ext, 8); 690 memcpy(req->priv.target_port_id, &target->ioc_guid, 8); 691 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8); 692 } else { 693 memcpy(req->priv.initiator_port_id, 694 &target->initiator_ext, 8); 695 memcpy(req->priv.initiator_port_id + 8, 696 &target->path.sgid.global.interface_id, 8); 697 memcpy(req->priv.target_port_id, &target->id_ext, 8); 698 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8); 699 } 700 701 /* 702 * Topspin/Cisco SRP targets will reject our login unless we 703 * zero out the first 8 bytes of our initiator port ID and set 704 * the second 8 bytes to the local node GUID. 705 */ 706 if (srp_target_is_topspin(target)) { 707 shost_printk(KERN_DEBUG, target->scsi_host, 708 PFX "Topspin/Cisco initiator port ID workaround " 709 "activated for target GUID %016llx\n", 710 (unsigned long long) be64_to_cpu(target->ioc_guid)); 711 memset(req->priv.initiator_port_id, 0, 8); 712 memcpy(req->priv.initiator_port_id + 8, 713 &target->srp_host->srp_dev->dev->node_guid, 8); 714 } 715 716 status = ib_send_cm_req(target->cm_id, &req->param); 717 718 kfree(req); 719 720 return status; 721 } 722 723 static bool srp_queue_remove_work(struct srp_target_port *target) 724 { 725 bool changed = false; 726 727 spin_lock_irq(&target->lock); 728 if (target->state != SRP_TARGET_REMOVED) { 729 target->state = SRP_TARGET_REMOVED; 730 changed = true; 731 } 732 spin_unlock_irq(&target->lock); 733 734 if (changed) 735 queue_work(srp_remove_wq, &target->remove_work); 736 737 return changed; 738 } 739 740 static bool srp_change_conn_state(struct srp_target_port *target, 741 bool connected) 742 { 743 bool changed = false; 744 745 spin_lock_irq(&target->lock); 746 if (target->connected != connected) { 747 target->connected = connected; 748 changed = true; 749 } 750 spin_unlock_irq(&target->lock); 751 752 return changed; 753 } 754 755 static void srp_disconnect_target(struct srp_target_port *target) 756 { 757 if (srp_change_conn_state(target, false)) { 758 /* XXX should send SRP_I_LOGOUT request */ 759 760 if (ib_send_cm_dreq(target->cm_id, NULL, 0)) { 761 shost_printk(KERN_DEBUG, target->scsi_host, 762 PFX "Sending CM DREQ failed\n"); 763 } 764 } 765 } 766 767 static void srp_free_req_data(struct srp_target_port *target) 768 { 769 struct srp_device *dev = target->srp_host->srp_dev; 770 struct ib_device *ibdev = dev->dev; 771 struct srp_request *req; 772 int i; 773 774 if (!target->req_ring) 775 return; 776 777 for (i = 0; i < target->req_ring_size; ++i) { 778 req = &target->req_ring[i]; 779 if (dev->use_fast_reg) 780 kfree(req->fr_list); 781 else 782 kfree(req->fmr_list); 783 kfree(req->map_page); 784 if (req->indirect_dma_addr) { 785 ib_dma_unmap_single(ibdev, req->indirect_dma_addr, 786 target->indirect_size, 787 DMA_TO_DEVICE); 788 } 789 kfree(req->indirect_desc); 790 } 791 792 kfree(target->req_ring); 793 target->req_ring = NULL; 794 } 795 796 static int srp_alloc_req_data(struct srp_target_port *target) 797 { 798 struct srp_device *srp_dev = target->srp_host->srp_dev; 799 struct ib_device *ibdev = srp_dev->dev; 800 struct srp_request *req; 801 void *mr_list; 802 dma_addr_t dma_addr; 803 int i, ret = -ENOMEM; 804 805 INIT_LIST_HEAD(&target->free_reqs); 806 807 target->req_ring = kzalloc(target->req_ring_size * 808 sizeof(*target->req_ring), GFP_KERNEL); 809 if (!target->req_ring) 810 goto out; 811 812 for (i = 0; i < target->req_ring_size; ++i) { 813 req = &target->req_ring[i]; 814 mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *), 815 GFP_KERNEL); 816 if (!mr_list) 817 goto out; 818 if (srp_dev->use_fast_reg) 819 req->fr_list = mr_list; 820 else 821 req->fmr_list = mr_list; 822 req->map_page = kmalloc(srp_dev->max_pages_per_mr * 823 sizeof(void *), GFP_KERNEL); 824 if (!req->map_page) 825 goto out; 826 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL); 827 if (!req->indirect_desc) 828 goto out; 829 830 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc, 831 target->indirect_size, 832 DMA_TO_DEVICE); 833 if (ib_dma_mapping_error(ibdev, dma_addr)) 834 goto out; 835 836 req->indirect_dma_addr = dma_addr; 837 req->index = i; 838 list_add_tail(&req->list, &target->free_reqs); 839 } 840 ret = 0; 841 842 out: 843 return ret; 844 } 845 846 /** 847 * srp_del_scsi_host_attr() - Remove attributes defined in the host template. 848 * @shost: SCSI host whose attributes to remove from sysfs. 849 * 850 * Note: Any attributes defined in the host template and that did not exist 851 * before invocation of this function will be ignored. 852 */ 853 static void srp_del_scsi_host_attr(struct Scsi_Host *shost) 854 { 855 struct device_attribute **attr; 856 857 for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr) 858 device_remove_file(&shost->shost_dev, *attr); 859 } 860 861 static void srp_remove_target(struct srp_target_port *target) 862 { 863 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED); 864 865 srp_del_scsi_host_attr(target->scsi_host); 866 srp_rport_get(target->rport); 867 srp_remove_host(target->scsi_host); 868 scsi_remove_host(target->scsi_host); 869 srp_stop_rport_timers(target->rport); 870 srp_disconnect_target(target); 871 ib_destroy_cm_id(target->cm_id); 872 srp_free_target_ib(target); 873 cancel_work_sync(&target->tl_err_work); 874 srp_rport_put(target->rport); 875 srp_free_req_data(target); 876 877 spin_lock(&target->srp_host->target_lock); 878 list_del(&target->list); 879 spin_unlock(&target->srp_host->target_lock); 880 881 scsi_host_put(target->scsi_host); 882 } 883 884 static void srp_remove_work(struct work_struct *work) 885 { 886 struct srp_target_port *target = 887 container_of(work, struct srp_target_port, remove_work); 888 889 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED); 890 891 srp_remove_target(target); 892 } 893 894 static void srp_rport_delete(struct srp_rport *rport) 895 { 896 struct srp_target_port *target = rport->lld_data; 897 898 srp_queue_remove_work(target); 899 } 900 901 static int srp_connect_target(struct srp_target_port *target) 902 { 903 int retries = 3; 904 int ret; 905 906 WARN_ON_ONCE(target->connected); 907 908 target->qp_in_error = false; 909 910 ret = srp_lookup_path(target); 911 if (ret) 912 return ret; 913 914 while (1) { 915 init_completion(&target->done); 916 ret = srp_send_req(target); 917 if (ret) 918 return ret; 919 ret = wait_for_completion_interruptible(&target->done); 920 if (ret < 0) 921 return ret; 922 923 /* 924 * The CM event handling code will set status to 925 * SRP_PORT_REDIRECT if we get a port redirect REJ 926 * back, or SRP_DLID_REDIRECT if we get a lid/qp 927 * redirect REJ back. 928 */ 929 switch (target->status) { 930 case 0: 931 srp_change_conn_state(target, true); 932 return 0; 933 934 case SRP_PORT_REDIRECT: 935 ret = srp_lookup_path(target); 936 if (ret) 937 return ret; 938 break; 939 940 case SRP_DLID_REDIRECT: 941 break; 942 943 case SRP_STALE_CONN: 944 /* Our current CM id was stale, and is now in timewait. 945 * Try to reconnect with a new one. 946 */ 947 if (!retries-- || srp_new_cm_id(target)) { 948 shost_printk(KERN_ERR, target->scsi_host, PFX 949 "giving up on stale connection\n"); 950 target->status = -ECONNRESET; 951 return target->status; 952 } 953 954 shost_printk(KERN_ERR, target->scsi_host, PFX 955 "retrying stale connection\n"); 956 break; 957 958 default: 959 return target->status; 960 } 961 } 962 } 963 964 static int srp_inv_rkey(struct srp_target_port *target, u32 rkey) 965 { 966 struct ib_send_wr *bad_wr; 967 struct ib_send_wr wr = { 968 .opcode = IB_WR_LOCAL_INV, 969 .wr_id = LOCAL_INV_WR_ID_MASK, 970 .next = NULL, 971 .num_sge = 0, 972 .send_flags = 0, 973 .ex.invalidate_rkey = rkey, 974 }; 975 976 return ib_post_send(target->qp, &wr, &bad_wr); 977 } 978 979 static void srp_unmap_data(struct scsi_cmnd *scmnd, 980 struct srp_target_port *target, 981 struct srp_request *req) 982 { 983 struct srp_device *dev = target->srp_host->srp_dev; 984 struct ib_device *ibdev = dev->dev; 985 int i, res; 986 987 if (!scsi_sglist(scmnd) || 988 (scmnd->sc_data_direction != DMA_TO_DEVICE && 989 scmnd->sc_data_direction != DMA_FROM_DEVICE)) 990 return; 991 992 if (dev->use_fast_reg) { 993 struct srp_fr_desc **pfr; 994 995 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) { 996 res = srp_inv_rkey(target, (*pfr)->mr->rkey); 997 if (res < 0) { 998 shost_printk(KERN_ERR, target->scsi_host, PFX 999 "Queueing INV WR for rkey %#x failed (%d)\n", 1000 (*pfr)->mr->rkey, res); 1001 queue_work(system_long_wq, 1002 &target->tl_err_work); 1003 } 1004 } 1005 if (req->nmdesc) 1006 srp_fr_pool_put(target->fr_pool, req->fr_list, 1007 req->nmdesc); 1008 } else { 1009 struct ib_pool_fmr **pfmr; 1010 1011 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++) 1012 ib_fmr_pool_unmap(*pfmr); 1013 } 1014 1015 ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd), 1016 scmnd->sc_data_direction); 1017 } 1018 1019 /** 1020 * srp_claim_req - Take ownership of the scmnd associated with a request. 1021 * @target: SRP target port. 1022 * @req: SRP request. 1023 * @sdev: If not NULL, only take ownership for this SCSI device. 1024 * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take 1025 * ownership of @req->scmnd if it equals @scmnd. 1026 * 1027 * Return value: 1028 * Either NULL or a pointer to the SCSI command the caller became owner of. 1029 */ 1030 static struct scsi_cmnd *srp_claim_req(struct srp_target_port *target, 1031 struct srp_request *req, 1032 struct scsi_device *sdev, 1033 struct scsi_cmnd *scmnd) 1034 { 1035 unsigned long flags; 1036 1037 spin_lock_irqsave(&target->lock, flags); 1038 if (req->scmnd && 1039 (!sdev || req->scmnd->device == sdev) && 1040 (!scmnd || req->scmnd == scmnd)) { 1041 scmnd = req->scmnd; 1042 req->scmnd = NULL; 1043 } else { 1044 scmnd = NULL; 1045 } 1046 spin_unlock_irqrestore(&target->lock, flags); 1047 1048 return scmnd; 1049 } 1050 1051 /** 1052 * srp_free_req() - Unmap data and add request to the free request list. 1053 * @target: SRP target port. 1054 * @req: Request to be freed. 1055 * @scmnd: SCSI command associated with @req. 1056 * @req_lim_delta: Amount to be added to @target->req_lim. 1057 */ 1058 static void srp_free_req(struct srp_target_port *target, 1059 struct srp_request *req, struct scsi_cmnd *scmnd, 1060 s32 req_lim_delta) 1061 { 1062 unsigned long flags; 1063 1064 srp_unmap_data(scmnd, target, req); 1065 1066 spin_lock_irqsave(&target->lock, flags); 1067 target->req_lim += req_lim_delta; 1068 list_add_tail(&req->list, &target->free_reqs); 1069 spin_unlock_irqrestore(&target->lock, flags); 1070 } 1071 1072 static void srp_finish_req(struct srp_target_port *target, 1073 struct srp_request *req, struct scsi_device *sdev, 1074 int result) 1075 { 1076 struct scsi_cmnd *scmnd = srp_claim_req(target, req, sdev, NULL); 1077 1078 if (scmnd) { 1079 srp_free_req(target, req, scmnd, 0); 1080 scmnd->result = result; 1081 scmnd->scsi_done(scmnd); 1082 } 1083 } 1084 1085 static void srp_terminate_io(struct srp_rport *rport) 1086 { 1087 struct srp_target_port *target = rport->lld_data; 1088 struct Scsi_Host *shost = target->scsi_host; 1089 struct scsi_device *sdev; 1090 int i; 1091 1092 /* 1093 * Invoking srp_terminate_io() while srp_queuecommand() is running 1094 * is not safe. Hence the warning statement below. 1095 */ 1096 shost_for_each_device(sdev, shost) 1097 WARN_ON_ONCE(sdev->request_queue->request_fn_active); 1098 1099 for (i = 0; i < target->req_ring_size; ++i) { 1100 struct srp_request *req = &target->req_ring[i]; 1101 srp_finish_req(target, req, NULL, DID_TRANSPORT_FAILFAST << 16); 1102 } 1103 } 1104 1105 /* 1106 * It is up to the caller to ensure that srp_rport_reconnect() calls are 1107 * serialized and that no concurrent srp_queuecommand(), srp_abort(), 1108 * srp_reset_device() or srp_reset_host() calls will occur while this function 1109 * is in progress. One way to realize that is not to call this function 1110 * directly but to call srp_reconnect_rport() instead since that last function 1111 * serializes calls of this function via rport->mutex and also blocks 1112 * srp_queuecommand() calls before invoking this function. 1113 */ 1114 static int srp_rport_reconnect(struct srp_rport *rport) 1115 { 1116 struct srp_target_port *target = rport->lld_data; 1117 int i, ret; 1118 1119 srp_disconnect_target(target); 1120 /* 1121 * Now get a new local CM ID so that we avoid confusing the target in 1122 * case things are really fouled up. Doing so also ensures that all CM 1123 * callbacks will have finished before a new QP is allocated. 1124 */ 1125 ret = srp_new_cm_id(target); 1126 1127 for (i = 0; i < target->req_ring_size; ++i) { 1128 struct srp_request *req = &target->req_ring[i]; 1129 srp_finish_req(target, req, NULL, DID_RESET << 16); 1130 } 1131 1132 /* 1133 * Whether or not creating a new CM ID succeeded, create a new 1134 * QP. This guarantees that all callback functions for the old QP have 1135 * finished before any send requests are posted on the new QP. 1136 */ 1137 ret += srp_create_target_ib(target); 1138 1139 INIT_LIST_HEAD(&target->free_tx); 1140 for (i = 0; i < target->queue_size; ++i) 1141 list_add(&target->tx_ring[i]->list, &target->free_tx); 1142 1143 if (ret == 0) 1144 ret = srp_connect_target(target); 1145 1146 if (ret == 0) 1147 shost_printk(KERN_INFO, target->scsi_host, 1148 PFX "reconnect succeeded\n"); 1149 1150 return ret; 1151 } 1152 1153 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr, 1154 unsigned int dma_len, u32 rkey) 1155 { 1156 struct srp_direct_buf *desc = state->desc; 1157 1158 desc->va = cpu_to_be64(dma_addr); 1159 desc->key = cpu_to_be32(rkey); 1160 desc->len = cpu_to_be32(dma_len); 1161 1162 state->total_len += dma_len; 1163 state->desc++; 1164 state->ndesc++; 1165 } 1166 1167 static int srp_map_finish_fmr(struct srp_map_state *state, 1168 struct srp_target_port *target) 1169 { 1170 struct ib_pool_fmr *fmr; 1171 u64 io_addr = 0; 1172 1173 fmr = ib_fmr_pool_map_phys(target->fmr_pool, state->pages, 1174 state->npages, io_addr); 1175 if (IS_ERR(fmr)) 1176 return PTR_ERR(fmr); 1177 1178 *state->next_fmr++ = fmr; 1179 state->nmdesc++; 1180 1181 srp_map_desc(state, 0, state->dma_len, fmr->fmr->rkey); 1182 1183 return 0; 1184 } 1185 1186 static int srp_map_finish_fr(struct srp_map_state *state, 1187 struct srp_target_port *target) 1188 { 1189 struct srp_device *dev = target->srp_host->srp_dev; 1190 struct ib_send_wr *bad_wr; 1191 struct ib_send_wr wr; 1192 struct srp_fr_desc *desc; 1193 u32 rkey; 1194 1195 desc = srp_fr_pool_get(target->fr_pool); 1196 if (!desc) 1197 return -ENOMEM; 1198 1199 rkey = ib_inc_rkey(desc->mr->rkey); 1200 ib_update_fast_reg_key(desc->mr, rkey); 1201 1202 memcpy(desc->frpl->page_list, state->pages, 1203 sizeof(state->pages[0]) * state->npages); 1204 1205 memset(&wr, 0, sizeof(wr)); 1206 wr.opcode = IB_WR_FAST_REG_MR; 1207 wr.wr_id = FAST_REG_WR_ID_MASK; 1208 wr.wr.fast_reg.iova_start = state->base_dma_addr; 1209 wr.wr.fast_reg.page_list = desc->frpl; 1210 wr.wr.fast_reg.page_list_len = state->npages; 1211 wr.wr.fast_reg.page_shift = ilog2(dev->mr_page_size); 1212 wr.wr.fast_reg.length = state->dma_len; 1213 wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE | 1214 IB_ACCESS_REMOTE_READ | 1215 IB_ACCESS_REMOTE_WRITE); 1216 wr.wr.fast_reg.rkey = desc->mr->lkey; 1217 1218 *state->next_fr++ = desc; 1219 state->nmdesc++; 1220 1221 srp_map_desc(state, state->base_dma_addr, state->dma_len, 1222 desc->mr->rkey); 1223 1224 return ib_post_send(target->qp, &wr, &bad_wr); 1225 } 1226 1227 static int srp_finish_mapping(struct srp_map_state *state, 1228 struct srp_target_port *target) 1229 { 1230 int ret = 0; 1231 1232 if (state->npages == 0) 1233 return 0; 1234 1235 if (state->npages == 1 && !register_always) 1236 srp_map_desc(state, state->base_dma_addr, state->dma_len, 1237 target->rkey); 1238 else 1239 ret = target->srp_host->srp_dev->use_fast_reg ? 1240 srp_map_finish_fr(state, target) : 1241 srp_map_finish_fmr(state, target); 1242 1243 if (ret == 0) { 1244 state->npages = 0; 1245 state->dma_len = 0; 1246 } 1247 1248 return ret; 1249 } 1250 1251 static void srp_map_update_start(struct srp_map_state *state, 1252 struct scatterlist *sg, int sg_index, 1253 dma_addr_t dma_addr) 1254 { 1255 state->unmapped_sg = sg; 1256 state->unmapped_index = sg_index; 1257 state->unmapped_addr = dma_addr; 1258 } 1259 1260 static int srp_map_sg_entry(struct srp_map_state *state, 1261 struct srp_target_port *target, 1262 struct scatterlist *sg, int sg_index, 1263 bool use_mr) 1264 { 1265 struct srp_device *dev = target->srp_host->srp_dev; 1266 struct ib_device *ibdev = dev->dev; 1267 dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg); 1268 unsigned int dma_len = ib_sg_dma_len(ibdev, sg); 1269 unsigned int len; 1270 int ret; 1271 1272 if (!dma_len) 1273 return 0; 1274 1275 if (!use_mr) { 1276 /* 1277 * Once we're in direct map mode for a request, we don't 1278 * go back to FMR or FR mode, so no need to update anything 1279 * other than the descriptor. 1280 */ 1281 srp_map_desc(state, dma_addr, dma_len, target->rkey); 1282 return 0; 1283 } 1284 1285 /* 1286 * Since not all RDMA HW drivers support non-zero page offsets for 1287 * FMR, if we start at an offset into a page, don't merge into the 1288 * current FMR mapping. Finish it out, and use the kernel's MR for 1289 * this sg entry. 1290 */ 1291 if ((!dev->use_fast_reg && dma_addr & ~dev->mr_page_mask) || 1292 dma_len > dev->mr_max_size) { 1293 ret = srp_finish_mapping(state, target); 1294 if (ret) 1295 return ret; 1296 1297 srp_map_desc(state, dma_addr, dma_len, target->rkey); 1298 srp_map_update_start(state, NULL, 0, 0); 1299 return 0; 1300 } 1301 1302 /* 1303 * If this is the first sg that will be mapped via FMR or via FR, save 1304 * our position. We need to know the first unmapped entry, its index, 1305 * and the first unmapped address within that entry to be able to 1306 * restart mapping after an error. 1307 */ 1308 if (!state->unmapped_sg) 1309 srp_map_update_start(state, sg, sg_index, dma_addr); 1310 1311 while (dma_len) { 1312 unsigned offset = dma_addr & ~dev->mr_page_mask; 1313 if (state->npages == dev->max_pages_per_mr || offset != 0) { 1314 ret = srp_finish_mapping(state, target); 1315 if (ret) 1316 return ret; 1317 1318 srp_map_update_start(state, sg, sg_index, dma_addr); 1319 } 1320 1321 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset); 1322 1323 if (!state->npages) 1324 state->base_dma_addr = dma_addr; 1325 state->pages[state->npages++] = dma_addr & dev->mr_page_mask; 1326 state->dma_len += len; 1327 dma_addr += len; 1328 dma_len -= len; 1329 } 1330 1331 /* 1332 * If the last entry of the MR wasn't a full page, then we need to 1333 * close it out and start a new one -- we can only merge at page 1334 * boundries. 1335 */ 1336 ret = 0; 1337 if (len != dev->mr_page_size) { 1338 ret = srp_finish_mapping(state, target); 1339 if (!ret) 1340 srp_map_update_start(state, NULL, 0, 0); 1341 } 1342 return ret; 1343 } 1344 1345 static int srp_map_sg(struct srp_map_state *state, 1346 struct srp_target_port *target, struct srp_request *req, 1347 struct scatterlist *scat, int count) 1348 { 1349 struct srp_device *dev = target->srp_host->srp_dev; 1350 struct ib_device *ibdev = dev->dev; 1351 struct scatterlist *sg; 1352 int i; 1353 bool use_mr; 1354 1355 state->desc = req->indirect_desc; 1356 state->pages = req->map_page; 1357 if (dev->use_fast_reg) { 1358 state->next_fr = req->fr_list; 1359 use_mr = !!target->fr_pool; 1360 } else { 1361 state->next_fmr = req->fmr_list; 1362 use_mr = !!target->fmr_pool; 1363 } 1364 1365 for_each_sg(scat, sg, count, i) { 1366 if (srp_map_sg_entry(state, target, sg, i, use_mr)) { 1367 /* 1368 * Memory registration failed, so backtrack to the 1369 * first unmapped entry and continue on without using 1370 * memory registration. 1371 */ 1372 dma_addr_t dma_addr; 1373 unsigned int dma_len; 1374 1375 backtrack: 1376 sg = state->unmapped_sg; 1377 i = state->unmapped_index; 1378 1379 dma_addr = ib_sg_dma_address(ibdev, sg); 1380 dma_len = ib_sg_dma_len(ibdev, sg); 1381 dma_len -= (state->unmapped_addr - dma_addr); 1382 dma_addr = state->unmapped_addr; 1383 use_mr = false; 1384 srp_map_desc(state, dma_addr, dma_len, target->rkey); 1385 } 1386 } 1387 1388 if (use_mr && srp_finish_mapping(state, target)) 1389 goto backtrack; 1390 1391 req->nmdesc = state->nmdesc; 1392 1393 return 0; 1394 } 1395 1396 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_target_port *target, 1397 struct srp_request *req) 1398 { 1399 struct scatterlist *scat; 1400 struct srp_cmd *cmd = req->cmd->buf; 1401 int len, nents, count; 1402 struct srp_device *dev; 1403 struct ib_device *ibdev; 1404 struct srp_map_state state; 1405 struct srp_indirect_buf *indirect_hdr; 1406 u32 table_len; 1407 u8 fmt; 1408 1409 if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE) 1410 return sizeof (struct srp_cmd); 1411 1412 if (scmnd->sc_data_direction != DMA_FROM_DEVICE && 1413 scmnd->sc_data_direction != DMA_TO_DEVICE) { 1414 shost_printk(KERN_WARNING, target->scsi_host, 1415 PFX "Unhandled data direction %d\n", 1416 scmnd->sc_data_direction); 1417 return -EINVAL; 1418 } 1419 1420 nents = scsi_sg_count(scmnd); 1421 scat = scsi_sglist(scmnd); 1422 1423 dev = target->srp_host->srp_dev; 1424 ibdev = dev->dev; 1425 1426 count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction); 1427 if (unlikely(count == 0)) 1428 return -EIO; 1429 1430 fmt = SRP_DATA_DESC_DIRECT; 1431 len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf); 1432 1433 if (count == 1 && !register_always) { 1434 /* 1435 * The midlayer only generated a single gather/scatter 1436 * entry, or DMA mapping coalesced everything to a 1437 * single entry. So a direct descriptor along with 1438 * the DMA MR suffices. 1439 */ 1440 struct srp_direct_buf *buf = (void *) cmd->add_data; 1441 1442 buf->va = cpu_to_be64(ib_sg_dma_address(ibdev, scat)); 1443 buf->key = cpu_to_be32(target->rkey); 1444 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat)); 1445 1446 req->nmdesc = 0; 1447 goto map_complete; 1448 } 1449 1450 /* 1451 * We have more than one scatter/gather entry, so build our indirect 1452 * descriptor table, trying to merge as many entries as we can. 1453 */ 1454 indirect_hdr = (void *) cmd->add_data; 1455 1456 ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr, 1457 target->indirect_size, DMA_TO_DEVICE); 1458 1459 memset(&state, 0, sizeof(state)); 1460 srp_map_sg(&state, target, req, scat, count); 1461 1462 /* We've mapped the request, now pull as much of the indirect 1463 * descriptor table as we can into the command buffer. If this 1464 * target is not using an external indirect table, we are 1465 * guaranteed to fit into the command, as the SCSI layer won't 1466 * give us more S/G entries than we allow. 1467 */ 1468 if (state.ndesc == 1) { 1469 /* 1470 * Memory registration collapsed the sg-list into one entry, 1471 * so use a direct descriptor. 1472 */ 1473 struct srp_direct_buf *buf = (void *) cmd->add_data; 1474 1475 *buf = req->indirect_desc[0]; 1476 goto map_complete; 1477 } 1478 1479 if (unlikely(target->cmd_sg_cnt < state.ndesc && 1480 !target->allow_ext_sg)) { 1481 shost_printk(KERN_ERR, target->scsi_host, 1482 "Could not fit S/G list into SRP_CMD\n"); 1483 return -EIO; 1484 } 1485 1486 count = min(state.ndesc, target->cmd_sg_cnt); 1487 table_len = state.ndesc * sizeof (struct srp_direct_buf); 1488 1489 fmt = SRP_DATA_DESC_INDIRECT; 1490 len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf); 1491 len += count * sizeof (struct srp_direct_buf); 1492 1493 memcpy(indirect_hdr->desc_list, req->indirect_desc, 1494 count * sizeof (struct srp_direct_buf)); 1495 1496 indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr); 1497 indirect_hdr->table_desc.key = cpu_to_be32(target->rkey); 1498 indirect_hdr->table_desc.len = cpu_to_be32(table_len); 1499 indirect_hdr->len = cpu_to_be32(state.total_len); 1500 1501 if (scmnd->sc_data_direction == DMA_TO_DEVICE) 1502 cmd->data_out_desc_cnt = count; 1503 else 1504 cmd->data_in_desc_cnt = count; 1505 1506 ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len, 1507 DMA_TO_DEVICE); 1508 1509 map_complete: 1510 if (scmnd->sc_data_direction == DMA_TO_DEVICE) 1511 cmd->buf_fmt = fmt << 4; 1512 else 1513 cmd->buf_fmt = fmt; 1514 1515 return len; 1516 } 1517 1518 /* 1519 * Return an IU and possible credit to the free pool 1520 */ 1521 static void srp_put_tx_iu(struct srp_target_port *target, struct srp_iu *iu, 1522 enum srp_iu_type iu_type) 1523 { 1524 unsigned long flags; 1525 1526 spin_lock_irqsave(&target->lock, flags); 1527 list_add(&iu->list, &target->free_tx); 1528 if (iu_type != SRP_IU_RSP) 1529 ++target->req_lim; 1530 spin_unlock_irqrestore(&target->lock, flags); 1531 } 1532 1533 /* 1534 * Must be called with target->lock held to protect req_lim and free_tx. 1535 * If IU is not sent, it must be returned using srp_put_tx_iu(). 1536 * 1537 * Note: 1538 * An upper limit for the number of allocated information units for each 1539 * request type is: 1540 * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues 1541 * more than Scsi_Host.can_queue requests. 1542 * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE. 1543 * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than 1544 * one unanswered SRP request to an initiator. 1545 */ 1546 static struct srp_iu *__srp_get_tx_iu(struct srp_target_port *target, 1547 enum srp_iu_type iu_type) 1548 { 1549 s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE; 1550 struct srp_iu *iu; 1551 1552 srp_send_completion(target->send_cq, target); 1553 1554 if (list_empty(&target->free_tx)) 1555 return NULL; 1556 1557 /* Initiator responses to target requests do not consume credits */ 1558 if (iu_type != SRP_IU_RSP) { 1559 if (target->req_lim <= rsv) { 1560 ++target->zero_req_lim; 1561 return NULL; 1562 } 1563 1564 --target->req_lim; 1565 } 1566 1567 iu = list_first_entry(&target->free_tx, struct srp_iu, list); 1568 list_del(&iu->list); 1569 return iu; 1570 } 1571 1572 static int srp_post_send(struct srp_target_port *target, 1573 struct srp_iu *iu, int len) 1574 { 1575 struct ib_sge list; 1576 struct ib_send_wr wr, *bad_wr; 1577 1578 list.addr = iu->dma; 1579 list.length = len; 1580 list.lkey = target->lkey; 1581 1582 wr.next = NULL; 1583 wr.wr_id = (uintptr_t) iu; 1584 wr.sg_list = &list; 1585 wr.num_sge = 1; 1586 wr.opcode = IB_WR_SEND; 1587 wr.send_flags = IB_SEND_SIGNALED; 1588 1589 return ib_post_send(target->qp, &wr, &bad_wr); 1590 } 1591 1592 static int srp_post_recv(struct srp_target_port *target, struct srp_iu *iu) 1593 { 1594 struct ib_recv_wr wr, *bad_wr; 1595 struct ib_sge list; 1596 1597 list.addr = iu->dma; 1598 list.length = iu->size; 1599 list.lkey = target->lkey; 1600 1601 wr.next = NULL; 1602 wr.wr_id = (uintptr_t) iu; 1603 wr.sg_list = &list; 1604 wr.num_sge = 1; 1605 1606 return ib_post_recv(target->qp, &wr, &bad_wr); 1607 } 1608 1609 static void srp_process_rsp(struct srp_target_port *target, struct srp_rsp *rsp) 1610 { 1611 struct srp_request *req; 1612 struct scsi_cmnd *scmnd; 1613 unsigned long flags; 1614 1615 if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) { 1616 spin_lock_irqsave(&target->lock, flags); 1617 target->req_lim += be32_to_cpu(rsp->req_lim_delta); 1618 spin_unlock_irqrestore(&target->lock, flags); 1619 1620 target->tsk_mgmt_status = -1; 1621 if (be32_to_cpu(rsp->resp_data_len) >= 4) 1622 target->tsk_mgmt_status = rsp->data[3]; 1623 complete(&target->tsk_mgmt_done); 1624 } else { 1625 req = &target->req_ring[rsp->tag]; 1626 scmnd = srp_claim_req(target, req, NULL, NULL); 1627 if (!scmnd) { 1628 shost_printk(KERN_ERR, target->scsi_host, 1629 "Null scmnd for RSP w/tag %016llx\n", 1630 (unsigned long long) rsp->tag); 1631 1632 spin_lock_irqsave(&target->lock, flags); 1633 target->req_lim += be32_to_cpu(rsp->req_lim_delta); 1634 spin_unlock_irqrestore(&target->lock, flags); 1635 1636 return; 1637 } 1638 scmnd->result = rsp->status; 1639 1640 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) { 1641 memcpy(scmnd->sense_buffer, rsp->data + 1642 be32_to_cpu(rsp->resp_data_len), 1643 min_t(int, be32_to_cpu(rsp->sense_data_len), 1644 SCSI_SENSE_BUFFERSIZE)); 1645 } 1646 1647 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER)) 1648 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt)); 1649 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER)) 1650 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt)); 1651 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER)) 1652 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt)); 1653 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER)) 1654 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt)); 1655 1656 srp_free_req(target, req, scmnd, 1657 be32_to_cpu(rsp->req_lim_delta)); 1658 1659 scmnd->host_scribble = NULL; 1660 scmnd->scsi_done(scmnd); 1661 } 1662 } 1663 1664 static int srp_response_common(struct srp_target_port *target, s32 req_delta, 1665 void *rsp, int len) 1666 { 1667 struct ib_device *dev = target->srp_host->srp_dev->dev; 1668 unsigned long flags; 1669 struct srp_iu *iu; 1670 int err; 1671 1672 spin_lock_irqsave(&target->lock, flags); 1673 target->req_lim += req_delta; 1674 iu = __srp_get_tx_iu(target, SRP_IU_RSP); 1675 spin_unlock_irqrestore(&target->lock, flags); 1676 1677 if (!iu) { 1678 shost_printk(KERN_ERR, target->scsi_host, PFX 1679 "no IU available to send response\n"); 1680 return 1; 1681 } 1682 1683 ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE); 1684 memcpy(iu->buf, rsp, len); 1685 ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE); 1686 1687 err = srp_post_send(target, iu, len); 1688 if (err) { 1689 shost_printk(KERN_ERR, target->scsi_host, PFX 1690 "unable to post response: %d\n", err); 1691 srp_put_tx_iu(target, iu, SRP_IU_RSP); 1692 } 1693 1694 return err; 1695 } 1696 1697 static void srp_process_cred_req(struct srp_target_port *target, 1698 struct srp_cred_req *req) 1699 { 1700 struct srp_cred_rsp rsp = { 1701 .opcode = SRP_CRED_RSP, 1702 .tag = req->tag, 1703 }; 1704 s32 delta = be32_to_cpu(req->req_lim_delta); 1705 1706 if (srp_response_common(target, delta, &rsp, sizeof rsp)) 1707 shost_printk(KERN_ERR, target->scsi_host, PFX 1708 "problems processing SRP_CRED_REQ\n"); 1709 } 1710 1711 static void srp_process_aer_req(struct srp_target_port *target, 1712 struct srp_aer_req *req) 1713 { 1714 struct srp_aer_rsp rsp = { 1715 .opcode = SRP_AER_RSP, 1716 .tag = req->tag, 1717 }; 1718 s32 delta = be32_to_cpu(req->req_lim_delta); 1719 1720 shost_printk(KERN_ERR, target->scsi_host, PFX 1721 "ignoring AER for LUN %llu\n", be64_to_cpu(req->lun)); 1722 1723 if (srp_response_common(target, delta, &rsp, sizeof rsp)) 1724 shost_printk(KERN_ERR, target->scsi_host, PFX 1725 "problems processing SRP_AER_REQ\n"); 1726 } 1727 1728 static void srp_handle_recv(struct srp_target_port *target, struct ib_wc *wc) 1729 { 1730 struct ib_device *dev = target->srp_host->srp_dev->dev; 1731 struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id; 1732 int res; 1733 u8 opcode; 1734 1735 ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_ti_iu_len, 1736 DMA_FROM_DEVICE); 1737 1738 opcode = *(u8 *) iu->buf; 1739 1740 if (0) { 1741 shost_printk(KERN_ERR, target->scsi_host, 1742 PFX "recv completion, opcode 0x%02x\n", opcode); 1743 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1, 1744 iu->buf, wc->byte_len, true); 1745 } 1746 1747 switch (opcode) { 1748 case SRP_RSP: 1749 srp_process_rsp(target, iu->buf); 1750 break; 1751 1752 case SRP_CRED_REQ: 1753 srp_process_cred_req(target, iu->buf); 1754 break; 1755 1756 case SRP_AER_REQ: 1757 srp_process_aer_req(target, iu->buf); 1758 break; 1759 1760 case SRP_T_LOGOUT: 1761 /* XXX Handle target logout */ 1762 shost_printk(KERN_WARNING, target->scsi_host, 1763 PFX "Got target logout request\n"); 1764 break; 1765 1766 default: 1767 shost_printk(KERN_WARNING, target->scsi_host, 1768 PFX "Unhandled SRP opcode 0x%02x\n", opcode); 1769 break; 1770 } 1771 1772 ib_dma_sync_single_for_device(dev, iu->dma, target->max_ti_iu_len, 1773 DMA_FROM_DEVICE); 1774 1775 res = srp_post_recv(target, iu); 1776 if (res != 0) 1777 shost_printk(KERN_ERR, target->scsi_host, 1778 PFX "Recv failed with error code %d\n", res); 1779 } 1780 1781 /** 1782 * srp_tl_err_work() - handle a transport layer error 1783 * @work: Work structure embedded in an SRP target port. 1784 * 1785 * Note: This function may get invoked before the rport has been created, 1786 * hence the target->rport test. 1787 */ 1788 static void srp_tl_err_work(struct work_struct *work) 1789 { 1790 struct srp_target_port *target; 1791 1792 target = container_of(work, struct srp_target_port, tl_err_work); 1793 if (target->rport) 1794 srp_start_tl_fail_timers(target->rport); 1795 } 1796 1797 static void srp_handle_qp_err(u64 wr_id, enum ib_wc_status wc_status, 1798 bool send_err, struct srp_target_port *target) 1799 { 1800 if (target->connected && !target->qp_in_error) { 1801 if (wr_id & LOCAL_INV_WR_ID_MASK) { 1802 shost_printk(KERN_ERR, target->scsi_host, PFX 1803 "LOCAL_INV failed with status %d\n", 1804 wc_status); 1805 } else if (wr_id & FAST_REG_WR_ID_MASK) { 1806 shost_printk(KERN_ERR, target->scsi_host, PFX 1807 "FAST_REG_MR failed status %d\n", 1808 wc_status); 1809 } else { 1810 shost_printk(KERN_ERR, target->scsi_host, 1811 PFX "failed %s status %d for iu %p\n", 1812 send_err ? "send" : "receive", 1813 wc_status, (void *)(uintptr_t)wr_id); 1814 } 1815 queue_work(system_long_wq, &target->tl_err_work); 1816 } 1817 target->qp_in_error = true; 1818 } 1819 1820 static void srp_recv_completion(struct ib_cq *cq, void *target_ptr) 1821 { 1822 struct srp_target_port *target = target_ptr; 1823 struct ib_wc wc; 1824 1825 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1826 while (ib_poll_cq(cq, 1, &wc) > 0) { 1827 if (likely(wc.status == IB_WC_SUCCESS)) { 1828 srp_handle_recv(target, &wc); 1829 } else { 1830 srp_handle_qp_err(wc.wr_id, wc.status, false, target); 1831 } 1832 } 1833 } 1834 1835 static void srp_send_completion(struct ib_cq *cq, void *target_ptr) 1836 { 1837 struct srp_target_port *target = target_ptr; 1838 struct ib_wc wc; 1839 struct srp_iu *iu; 1840 1841 while (ib_poll_cq(cq, 1, &wc) > 0) { 1842 if (likely(wc.status == IB_WC_SUCCESS)) { 1843 iu = (struct srp_iu *) (uintptr_t) wc.wr_id; 1844 list_add(&iu->list, &target->free_tx); 1845 } else { 1846 srp_handle_qp_err(wc.wr_id, wc.status, true, target); 1847 } 1848 } 1849 } 1850 1851 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd) 1852 { 1853 struct srp_target_port *target = host_to_target(shost); 1854 struct srp_rport *rport = target->rport; 1855 struct srp_request *req; 1856 struct srp_iu *iu; 1857 struct srp_cmd *cmd; 1858 struct ib_device *dev; 1859 unsigned long flags; 1860 int len, ret; 1861 const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler; 1862 1863 /* 1864 * The SCSI EH thread is the only context from which srp_queuecommand() 1865 * can get invoked for blocked devices (SDEV_BLOCK / 1866 * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by 1867 * locking the rport mutex if invoked from inside the SCSI EH. 1868 */ 1869 if (in_scsi_eh) 1870 mutex_lock(&rport->mutex); 1871 1872 scmnd->result = srp_chkready(target->rport); 1873 if (unlikely(scmnd->result)) 1874 goto err; 1875 1876 spin_lock_irqsave(&target->lock, flags); 1877 iu = __srp_get_tx_iu(target, SRP_IU_CMD); 1878 if (!iu) 1879 goto err_unlock; 1880 1881 req = list_first_entry(&target->free_reqs, struct srp_request, list); 1882 list_del(&req->list); 1883 spin_unlock_irqrestore(&target->lock, flags); 1884 1885 dev = target->srp_host->srp_dev->dev; 1886 ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len, 1887 DMA_TO_DEVICE); 1888 1889 scmnd->host_scribble = (void *) req; 1890 1891 cmd = iu->buf; 1892 memset(cmd, 0, sizeof *cmd); 1893 1894 cmd->opcode = SRP_CMD; 1895 cmd->lun = cpu_to_be64((u64) scmnd->device->lun << 48); 1896 cmd->tag = req->index; 1897 memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len); 1898 1899 req->scmnd = scmnd; 1900 req->cmd = iu; 1901 1902 len = srp_map_data(scmnd, target, req); 1903 if (len < 0) { 1904 shost_printk(KERN_ERR, target->scsi_host, 1905 PFX "Failed to map data (%d)\n", len); 1906 /* 1907 * If we ran out of memory descriptors (-ENOMEM) because an 1908 * application is queuing many requests with more than 1909 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer 1910 * to reduce queue depth temporarily. 1911 */ 1912 scmnd->result = len == -ENOMEM ? 1913 DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16; 1914 goto err_iu; 1915 } 1916 1917 ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len, 1918 DMA_TO_DEVICE); 1919 1920 if (srp_post_send(target, iu, len)) { 1921 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n"); 1922 goto err_unmap; 1923 } 1924 1925 ret = 0; 1926 1927 unlock_rport: 1928 if (in_scsi_eh) 1929 mutex_unlock(&rport->mutex); 1930 1931 return ret; 1932 1933 err_unmap: 1934 srp_unmap_data(scmnd, target, req); 1935 1936 err_iu: 1937 srp_put_tx_iu(target, iu, SRP_IU_CMD); 1938 1939 /* 1940 * Avoid that the loops that iterate over the request ring can 1941 * encounter a dangling SCSI command pointer. 1942 */ 1943 req->scmnd = NULL; 1944 1945 spin_lock_irqsave(&target->lock, flags); 1946 list_add(&req->list, &target->free_reqs); 1947 1948 err_unlock: 1949 spin_unlock_irqrestore(&target->lock, flags); 1950 1951 err: 1952 if (scmnd->result) { 1953 scmnd->scsi_done(scmnd); 1954 ret = 0; 1955 } else { 1956 ret = SCSI_MLQUEUE_HOST_BUSY; 1957 } 1958 1959 goto unlock_rport; 1960 } 1961 1962 /* 1963 * Note: the resources allocated in this function are freed in 1964 * srp_free_target_ib(). 1965 */ 1966 static int srp_alloc_iu_bufs(struct srp_target_port *target) 1967 { 1968 int i; 1969 1970 target->rx_ring = kzalloc(target->queue_size * sizeof(*target->rx_ring), 1971 GFP_KERNEL); 1972 if (!target->rx_ring) 1973 goto err_no_ring; 1974 target->tx_ring = kzalloc(target->queue_size * sizeof(*target->tx_ring), 1975 GFP_KERNEL); 1976 if (!target->tx_ring) 1977 goto err_no_ring; 1978 1979 for (i = 0; i < target->queue_size; ++i) { 1980 target->rx_ring[i] = srp_alloc_iu(target->srp_host, 1981 target->max_ti_iu_len, 1982 GFP_KERNEL, DMA_FROM_DEVICE); 1983 if (!target->rx_ring[i]) 1984 goto err; 1985 } 1986 1987 for (i = 0; i < target->queue_size; ++i) { 1988 target->tx_ring[i] = srp_alloc_iu(target->srp_host, 1989 target->max_iu_len, 1990 GFP_KERNEL, DMA_TO_DEVICE); 1991 if (!target->tx_ring[i]) 1992 goto err; 1993 1994 list_add(&target->tx_ring[i]->list, &target->free_tx); 1995 } 1996 1997 return 0; 1998 1999 err: 2000 for (i = 0; i < target->queue_size; ++i) { 2001 srp_free_iu(target->srp_host, target->rx_ring[i]); 2002 srp_free_iu(target->srp_host, target->tx_ring[i]); 2003 } 2004 2005 2006 err_no_ring: 2007 kfree(target->tx_ring); 2008 target->tx_ring = NULL; 2009 kfree(target->rx_ring); 2010 target->rx_ring = NULL; 2011 2012 return -ENOMEM; 2013 } 2014 2015 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask) 2016 { 2017 uint64_t T_tr_ns, max_compl_time_ms; 2018 uint32_t rq_tmo_jiffies; 2019 2020 /* 2021 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair, 2022 * table 91), both the QP timeout and the retry count have to be set 2023 * for RC QP's during the RTR to RTS transition. 2024 */ 2025 WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) != 2026 (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)); 2027 2028 /* 2029 * Set target->rq_tmo_jiffies to one second more than the largest time 2030 * it can take before an error completion is generated. See also 2031 * C9-140..142 in the IBTA spec for more information about how to 2032 * convert the QP Local ACK Timeout value to nanoseconds. 2033 */ 2034 T_tr_ns = 4096 * (1ULL << qp_attr->timeout); 2035 max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns; 2036 do_div(max_compl_time_ms, NSEC_PER_MSEC); 2037 rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000); 2038 2039 return rq_tmo_jiffies; 2040 } 2041 2042 static void srp_cm_rep_handler(struct ib_cm_id *cm_id, 2043 struct srp_login_rsp *lrsp, 2044 struct srp_target_port *target) 2045 { 2046 struct ib_qp_attr *qp_attr = NULL; 2047 int attr_mask = 0; 2048 int ret; 2049 int i; 2050 2051 if (lrsp->opcode == SRP_LOGIN_RSP) { 2052 target->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len); 2053 target->req_lim = be32_to_cpu(lrsp->req_lim_delta); 2054 2055 /* 2056 * Reserve credits for task management so we don't 2057 * bounce requests back to the SCSI mid-layer. 2058 */ 2059 target->scsi_host->can_queue 2060 = min(target->req_lim - SRP_TSK_MGMT_SQ_SIZE, 2061 target->scsi_host->can_queue); 2062 target->scsi_host->cmd_per_lun 2063 = min_t(int, target->scsi_host->can_queue, 2064 target->scsi_host->cmd_per_lun); 2065 } else { 2066 shost_printk(KERN_WARNING, target->scsi_host, 2067 PFX "Unhandled RSP opcode %#x\n", lrsp->opcode); 2068 ret = -ECONNRESET; 2069 goto error; 2070 } 2071 2072 if (!target->rx_ring) { 2073 ret = srp_alloc_iu_bufs(target); 2074 if (ret) 2075 goto error; 2076 } 2077 2078 ret = -ENOMEM; 2079 qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL); 2080 if (!qp_attr) 2081 goto error; 2082 2083 qp_attr->qp_state = IB_QPS_RTR; 2084 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask); 2085 if (ret) 2086 goto error_free; 2087 2088 ret = ib_modify_qp(target->qp, qp_attr, attr_mask); 2089 if (ret) 2090 goto error_free; 2091 2092 for (i = 0; i < target->queue_size; i++) { 2093 struct srp_iu *iu = target->rx_ring[i]; 2094 ret = srp_post_recv(target, iu); 2095 if (ret) 2096 goto error_free; 2097 } 2098 2099 qp_attr->qp_state = IB_QPS_RTS; 2100 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask); 2101 if (ret) 2102 goto error_free; 2103 2104 target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask); 2105 2106 ret = ib_modify_qp(target->qp, qp_attr, attr_mask); 2107 if (ret) 2108 goto error_free; 2109 2110 ret = ib_send_cm_rtu(cm_id, NULL, 0); 2111 2112 error_free: 2113 kfree(qp_attr); 2114 2115 error: 2116 target->status = ret; 2117 } 2118 2119 static void srp_cm_rej_handler(struct ib_cm_id *cm_id, 2120 struct ib_cm_event *event, 2121 struct srp_target_port *target) 2122 { 2123 struct Scsi_Host *shost = target->scsi_host; 2124 struct ib_class_port_info *cpi; 2125 int opcode; 2126 2127 switch (event->param.rej_rcvd.reason) { 2128 case IB_CM_REJ_PORT_CM_REDIRECT: 2129 cpi = event->param.rej_rcvd.ari; 2130 target->path.dlid = cpi->redirect_lid; 2131 target->path.pkey = cpi->redirect_pkey; 2132 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff; 2133 memcpy(target->path.dgid.raw, cpi->redirect_gid, 16); 2134 2135 target->status = target->path.dlid ? 2136 SRP_DLID_REDIRECT : SRP_PORT_REDIRECT; 2137 break; 2138 2139 case IB_CM_REJ_PORT_REDIRECT: 2140 if (srp_target_is_topspin(target)) { 2141 /* 2142 * Topspin/Cisco SRP gateways incorrectly send 2143 * reject reason code 25 when they mean 24 2144 * (port redirect). 2145 */ 2146 memcpy(target->path.dgid.raw, 2147 event->param.rej_rcvd.ari, 16); 2148 2149 shost_printk(KERN_DEBUG, shost, 2150 PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n", 2151 (unsigned long long) be64_to_cpu(target->path.dgid.global.subnet_prefix), 2152 (unsigned long long) be64_to_cpu(target->path.dgid.global.interface_id)); 2153 2154 target->status = SRP_PORT_REDIRECT; 2155 } else { 2156 shost_printk(KERN_WARNING, shost, 2157 " REJ reason: IB_CM_REJ_PORT_REDIRECT\n"); 2158 target->status = -ECONNRESET; 2159 } 2160 break; 2161 2162 case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID: 2163 shost_printk(KERN_WARNING, shost, 2164 " REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n"); 2165 target->status = -ECONNRESET; 2166 break; 2167 2168 case IB_CM_REJ_CONSUMER_DEFINED: 2169 opcode = *(u8 *) event->private_data; 2170 if (opcode == SRP_LOGIN_REJ) { 2171 struct srp_login_rej *rej = event->private_data; 2172 u32 reason = be32_to_cpu(rej->reason); 2173 2174 if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE) 2175 shost_printk(KERN_WARNING, shost, 2176 PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n"); 2177 else 2178 shost_printk(KERN_WARNING, shost, PFX 2179 "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n", 2180 target->path.sgid.raw, 2181 target->orig_dgid, reason); 2182 } else 2183 shost_printk(KERN_WARNING, shost, 2184 " REJ reason: IB_CM_REJ_CONSUMER_DEFINED," 2185 " opcode 0x%02x\n", opcode); 2186 target->status = -ECONNRESET; 2187 break; 2188 2189 case IB_CM_REJ_STALE_CONN: 2190 shost_printk(KERN_WARNING, shost, " REJ reason: stale connection\n"); 2191 target->status = SRP_STALE_CONN; 2192 break; 2193 2194 default: 2195 shost_printk(KERN_WARNING, shost, " REJ reason 0x%x\n", 2196 event->param.rej_rcvd.reason); 2197 target->status = -ECONNRESET; 2198 } 2199 } 2200 2201 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2202 { 2203 struct srp_target_port *target = cm_id->context; 2204 int comp = 0; 2205 2206 switch (event->event) { 2207 case IB_CM_REQ_ERROR: 2208 shost_printk(KERN_DEBUG, target->scsi_host, 2209 PFX "Sending CM REQ failed\n"); 2210 comp = 1; 2211 target->status = -ECONNRESET; 2212 break; 2213 2214 case IB_CM_REP_RECEIVED: 2215 comp = 1; 2216 srp_cm_rep_handler(cm_id, event->private_data, target); 2217 break; 2218 2219 case IB_CM_REJ_RECEIVED: 2220 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n"); 2221 comp = 1; 2222 2223 srp_cm_rej_handler(cm_id, event, target); 2224 break; 2225 2226 case IB_CM_DREQ_RECEIVED: 2227 shost_printk(KERN_WARNING, target->scsi_host, 2228 PFX "DREQ received - connection closed\n"); 2229 srp_change_conn_state(target, false); 2230 if (ib_send_cm_drep(cm_id, NULL, 0)) 2231 shost_printk(KERN_ERR, target->scsi_host, 2232 PFX "Sending CM DREP failed\n"); 2233 queue_work(system_long_wq, &target->tl_err_work); 2234 break; 2235 2236 case IB_CM_TIMEWAIT_EXIT: 2237 shost_printk(KERN_ERR, target->scsi_host, 2238 PFX "connection closed\n"); 2239 comp = 1; 2240 2241 target->status = 0; 2242 break; 2243 2244 case IB_CM_MRA_RECEIVED: 2245 case IB_CM_DREQ_ERROR: 2246 case IB_CM_DREP_RECEIVED: 2247 break; 2248 2249 default: 2250 shost_printk(KERN_WARNING, target->scsi_host, 2251 PFX "Unhandled CM event %d\n", event->event); 2252 break; 2253 } 2254 2255 if (comp) 2256 complete(&target->done); 2257 2258 return 0; 2259 } 2260 2261 /** 2262 * srp_change_queue_type - changing device queue tag type 2263 * @sdev: scsi device struct 2264 * @tag_type: requested tag type 2265 * 2266 * Returns queue tag type. 2267 */ 2268 static int 2269 srp_change_queue_type(struct scsi_device *sdev, int tag_type) 2270 { 2271 if (sdev->tagged_supported) { 2272 scsi_set_tag_type(sdev, tag_type); 2273 if (tag_type) 2274 scsi_activate_tcq(sdev, sdev->queue_depth); 2275 else 2276 scsi_deactivate_tcq(sdev, sdev->queue_depth); 2277 } else 2278 tag_type = 0; 2279 2280 return tag_type; 2281 } 2282 2283 /** 2284 * srp_change_queue_depth - setting device queue depth 2285 * @sdev: scsi device struct 2286 * @qdepth: requested queue depth 2287 * @reason: SCSI_QDEPTH_DEFAULT/SCSI_QDEPTH_QFULL/SCSI_QDEPTH_RAMP_UP 2288 * (see include/scsi/scsi_host.h for definition) 2289 * 2290 * Returns queue depth. 2291 */ 2292 static int 2293 srp_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason) 2294 { 2295 struct Scsi_Host *shost = sdev->host; 2296 int max_depth; 2297 if (reason == SCSI_QDEPTH_DEFAULT || reason == SCSI_QDEPTH_RAMP_UP) { 2298 max_depth = shost->can_queue; 2299 if (!sdev->tagged_supported) 2300 max_depth = 1; 2301 if (qdepth > max_depth) 2302 qdepth = max_depth; 2303 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); 2304 } else if (reason == SCSI_QDEPTH_QFULL) 2305 scsi_track_queue_full(sdev, qdepth); 2306 else 2307 return -EOPNOTSUPP; 2308 2309 return sdev->queue_depth; 2310 } 2311 2312 static int srp_send_tsk_mgmt(struct srp_target_port *target, 2313 u64 req_tag, unsigned int lun, u8 func) 2314 { 2315 struct srp_rport *rport = target->rport; 2316 struct ib_device *dev = target->srp_host->srp_dev->dev; 2317 struct srp_iu *iu; 2318 struct srp_tsk_mgmt *tsk_mgmt; 2319 2320 if (!target->connected || target->qp_in_error) 2321 return -1; 2322 2323 init_completion(&target->tsk_mgmt_done); 2324 2325 /* 2326 * Lock the rport mutex to avoid that srp_create_target_ib() is 2327 * invoked while a task management function is being sent. 2328 */ 2329 mutex_lock(&rport->mutex); 2330 spin_lock_irq(&target->lock); 2331 iu = __srp_get_tx_iu(target, SRP_IU_TSK_MGMT); 2332 spin_unlock_irq(&target->lock); 2333 2334 if (!iu) { 2335 mutex_unlock(&rport->mutex); 2336 2337 return -1; 2338 } 2339 2340 ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt, 2341 DMA_TO_DEVICE); 2342 tsk_mgmt = iu->buf; 2343 memset(tsk_mgmt, 0, sizeof *tsk_mgmt); 2344 2345 tsk_mgmt->opcode = SRP_TSK_MGMT; 2346 tsk_mgmt->lun = cpu_to_be64((u64) lun << 48); 2347 tsk_mgmt->tag = req_tag | SRP_TAG_TSK_MGMT; 2348 tsk_mgmt->tsk_mgmt_func = func; 2349 tsk_mgmt->task_tag = req_tag; 2350 2351 ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt, 2352 DMA_TO_DEVICE); 2353 if (srp_post_send(target, iu, sizeof *tsk_mgmt)) { 2354 srp_put_tx_iu(target, iu, SRP_IU_TSK_MGMT); 2355 mutex_unlock(&rport->mutex); 2356 2357 return -1; 2358 } 2359 mutex_unlock(&rport->mutex); 2360 2361 if (!wait_for_completion_timeout(&target->tsk_mgmt_done, 2362 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS))) 2363 return -1; 2364 2365 return 0; 2366 } 2367 2368 static int srp_abort(struct scsi_cmnd *scmnd) 2369 { 2370 struct srp_target_port *target = host_to_target(scmnd->device->host); 2371 struct srp_request *req = (struct srp_request *) scmnd->host_scribble; 2372 int ret; 2373 2374 shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n"); 2375 2376 if (!req || !srp_claim_req(target, req, NULL, scmnd)) 2377 return SUCCESS; 2378 if (srp_send_tsk_mgmt(target, req->index, scmnd->device->lun, 2379 SRP_TSK_ABORT_TASK) == 0) 2380 ret = SUCCESS; 2381 else if (target->rport->state == SRP_RPORT_LOST) 2382 ret = FAST_IO_FAIL; 2383 else 2384 ret = FAILED; 2385 srp_free_req(target, req, scmnd, 0); 2386 scmnd->result = DID_ABORT << 16; 2387 scmnd->scsi_done(scmnd); 2388 2389 return ret; 2390 } 2391 2392 static int srp_reset_device(struct scsi_cmnd *scmnd) 2393 { 2394 struct srp_target_port *target = host_to_target(scmnd->device->host); 2395 int i; 2396 2397 shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n"); 2398 2399 if (srp_send_tsk_mgmt(target, SRP_TAG_NO_REQ, scmnd->device->lun, 2400 SRP_TSK_LUN_RESET)) 2401 return FAILED; 2402 if (target->tsk_mgmt_status) 2403 return FAILED; 2404 2405 for (i = 0; i < target->req_ring_size; ++i) { 2406 struct srp_request *req = &target->req_ring[i]; 2407 srp_finish_req(target, req, scmnd->device, DID_RESET << 16); 2408 } 2409 2410 return SUCCESS; 2411 } 2412 2413 static int srp_reset_host(struct scsi_cmnd *scmnd) 2414 { 2415 struct srp_target_port *target = host_to_target(scmnd->device->host); 2416 2417 shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n"); 2418 2419 return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED; 2420 } 2421 2422 static int srp_slave_configure(struct scsi_device *sdev) 2423 { 2424 struct Scsi_Host *shost = sdev->host; 2425 struct srp_target_port *target = host_to_target(shost); 2426 struct request_queue *q = sdev->request_queue; 2427 unsigned long timeout; 2428 2429 if (sdev->type == TYPE_DISK) { 2430 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies); 2431 blk_queue_rq_timeout(q, timeout); 2432 } 2433 2434 return 0; 2435 } 2436 2437 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr, 2438 char *buf) 2439 { 2440 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2441 2442 return sprintf(buf, "0x%016llx\n", 2443 (unsigned long long) be64_to_cpu(target->id_ext)); 2444 } 2445 2446 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr, 2447 char *buf) 2448 { 2449 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2450 2451 return sprintf(buf, "0x%016llx\n", 2452 (unsigned long long) be64_to_cpu(target->ioc_guid)); 2453 } 2454 2455 static ssize_t show_service_id(struct device *dev, 2456 struct device_attribute *attr, char *buf) 2457 { 2458 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2459 2460 return sprintf(buf, "0x%016llx\n", 2461 (unsigned long long) be64_to_cpu(target->service_id)); 2462 } 2463 2464 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr, 2465 char *buf) 2466 { 2467 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2468 2469 return sprintf(buf, "0x%04x\n", be16_to_cpu(target->path.pkey)); 2470 } 2471 2472 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr, 2473 char *buf) 2474 { 2475 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2476 2477 return sprintf(buf, "%pI6\n", target->path.sgid.raw); 2478 } 2479 2480 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr, 2481 char *buf) 2482 { 2483 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2484 2485 return sprintf(buf, "%pI6\n", target->path.dgid.raw); 2486 } 2487 2488 static ssize_t show_orig_dgid(struct device *dev, 2489 struct device_attribute *attr, char *buf) 2490 { 2491 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2492 2493 return sprintf(buf, "%pI6\n", target->orig_dgid); 2494 } 2495 2496 static ssize_t show_req_lim(struct device *dev, 2497 struct device_attribute *attr, char *buf) 2498 { 2499 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2500 2501 return sprintf(buf, "%d\n", target->req_lim); 2502 } 2503 2504 static ssize_t show_zero_req_lim(struct device *dev, 2505 struct device_attribute *attr, char *buf) 2506 { 2507 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2508 2509 return sprintf(buf, "%d\n", target->zero_req_lim); 2510 } 2511 2512 static ssize_t show_local_ib_port(struct device *dev, 2513 struct device_attribute *attr, char *buf) 2514 { 2515 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2516 2517 return sprintf(buf, "%d\n", target->srp_host->port); 2518 } 2519 2520 static ssize_t show_local_ib_device(struct device *dev, 2521 struct device_attribute *attr, char *buf) 2522 { 2523 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2524 2525 return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name); 2526 } 2527 2528 static ssize_t show_comp_vector(struct device *dev, 2529 struct device_attribute *attr, char *buf) 2530 { 2531 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2532 2533 return sprintf(buf, "%d\n", target->comp_vector); 2534 } 2535 2536 static ssize_t show_tl_retry_count(struct device *dev, 2537 struct device_attribute *attr, char *buf) 2538 { 2539 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2540 2541 return sprintf(buf, "%d\n", target->tl_retry_count); 2542 } 2543 2544 static ssize_t show_cmd_sg_entries(struct device *dev, 2545 struct device_attribute *attr, char *buf) 2546 { 2547 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2548 2549 return sprintf(buf, "%u\n", target->cmd_sg_cnt); 2550 } 2551 2552 static ssize_t show_allow_ext_sg(struct device *dev, 2553 struct device_attribute *attr, char *buf) 2554 { 2555 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2556 2557 return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false"); 2558 } 2559 2560 static DEVICE_ATTR(id_ext, S_IRUGO, show_id_ext, NULL); 2561 static DEVICE_ATTR(ioc_guid, S_IRUGO, show_ioc_guid, NULL); 2562 static DEVICE_ATTR(service_id, S_IRUGO, show_service_id, NULL); 2563 static DEVICE_ATTR(pkey, S_IRUGO, show_pkey, NULL); 2564 static DEVICE_ATTR(sgid, S_IRUGO, show_sgid, NULL); 2565 static DEVICE_ATTR(dgid, S_IRUGO, show_dgid, NULL); 2566 static DEVICE_ATTR(orig_dgid, S_IRUGO, show_orig_dgid, NULL); 2567 static DEVICE_ATTR(req_lim, S_IRUGO, show_req_lim, NULL); 2568 static DEVICE_ATTR(zero_req_lim, S_IRUGO, show_zero_req_lim, NULL); 2569 static DEVICE_ATTR(local_ib_port, S_IRUGO, show_local_ib_port, NULL); 2570 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL); 2571 static DEVICE_ATTR(comp_vector, S_IRUGO, show_comp_vector, NULL); 2572 static DEVICE_ATTR(tl_retry_count, S_IRUGO, show_tl_retry_count, NULL); 2573 static DEVICE_ATTR(cmd_sg_entries, S_IRUGO, show_cmd_sg_entries, NULL); 2574 static DEVICE_ATTR(allow_ext_sg, S_IRUGO, show_allow_ext_sg, NULL); 2575 2576 static struct device_attribute *srp_host_attrs[] = { 2577 &dev_attr_id_ext, 2578 &dev_attr_ioc_guid, 2579 &dev_attr_service_id, 2580 &dev_attr_pkey, 2581 &dev_attr_sgid, 2582 &dev_attr_dgid, 2583 &dev_attr_orig_dgid, 2584 &dev_attr_req_lim, 2585 &dev_attr_zero_req_lim, 2586 &dev_attr_local_ib_port, 2587 &dev_attr_local_ib_device, 2588 &dev_attr_comp_vector, 2589 &dev_attr_tl_retry_count, 2590 &dev_attr_cmd_sg_entries, 2591 &dev_attr_allow_ext_sg, 2592 NULL 2593 }; 2594 2595 static struct scsi_host_template srp_template = { 2596 .module = THIS_MODULE, 2597 .name = "InfiniBand SRP initiator", 2598 .proc_name = DRV_NAME, 2599 .slave_configure = srp_slave_configure, 2600 .info = srp_target_info, 2601 .queuecommand = srp_queuecommand, 2602 .change_queue_depth = srp_change_queue_depth, 2603 .change_queue_type = srp_change_queue_type, 2604 .eh_abort_handler = srp_abort, 2605 .eh_device_reset_handler = srp_reset_device, 2606 .eh_host_reset_handler = srp_reset_host, 2607 .skip_settle_delay = true, 2608 .sg_tablesize = SRP_DEF_SG_TABLESIZE, 2609 .can_queue = SRP_DEFAULT_CMD_SQ_SIZE, 2610 .this_id = -1, 2611 .cmd_per_lun = SRP_DEFAULT_CMD_SQ_SIZE, 2612 .use_clustering = ENABLE_CLUSTERING, 2613 .shost_attrs = srp_host_attrs 2614 }; 2615 2616 static int srp_add_target(struct srp_host *host, struct srp_target_port *target) 2617 { 2618 struct srp_rport_identifiers ids; 2619 struct srp_rport *rport; 2620 2621 sprintf(target->target_name, "SRP.T10:%016llX", 2622 (unsigned long long) be64_to_cpu(target->id_ext)); 2623 2624 if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device)) 2625 return -ENODEV; 2626 2627 memcpy(ids.port_id, &target->id_ext, 8); 2628 memcpy(ids.port_id + 8, &target->ioc_guid, 8); 2629 ids.roles = SRP_RPORT_ROLE_TARGET; 2630 rport = srp_rport_add(target->scsi_host, &ids); 2631 if (IS_ERR(rport)) { 2632 scsi_remove_host(target->scsi_host); 2633 return PTR_ERR(rport); 2634 } 2635 2636 rport->lld_data = target; 2637 target->rport = rport; 2638 2639 spin_lock(&host->target_lock); 2640 list_add_tail(&target->list, &host->target_list); 2641 spin_unlock(&host->target_lock); 2642 2643 target->state = SRP_TARGET_LIVE; 2644 2645 scsi_scan_target(&target->scsi_host->shost_gendev, 2646 0, target->scsi_id, SCAN_WILD_CARD, 0); 2647 2648 return 0; 2649 } 2650 2651 static void srp_release_dev(struct device *dev) 2652 { 2653 struct srp_host *host = 2654 container_of(dev, struct srp_host, dev); 2655 2656 complete(&host->released); 2657 } 2658 2659 static struct class srp_class = { 2660 .name = "infiniband_srp", 2661 .dev_release = srp_release_dev 2662 }; 2663 2664 /** 2665 * srp_conn_unique() - check whether the connection to a target is unique 2666 * @host: SRP host. 2667 * @target: SRP target port. 2668 */ 2669 static bool srp_conn_unique(struct srp_host *host, 2670 struct srp_target_port *target) 2671 { 2672 struct srp_target_port *t; 2673 bool ret = false; 2674 2675 if (target->state == SRP_TARGET_REMOVED) 2676 goto out; 2677 2678 ret = true; 2679 2680 spin_lock(&host->target_lock); 2681 list_for_each_entry(t, &host->target_list, list) { 2682 if (t != target && 2683 target->id_ext == t->id_ext && 2684 target->ioc_guid == t->ioc_guid && 2685 target->initiator_ext == t->initiator_ext) { 2686 ret = false; 2687 break; 2688 } 2689 } 2690 spin_unlock(&host->target_lock); 2691 2692 out: 2693 return ret; 2694 } 2695 2696 /* 2697 * Target ports are added by writing 2698 * 2699 * id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>, 2700 * pkey=<P_Key>,service_id=<service ID> 2701 * 2702 * to the add_target sysfs attribute. 2703 */ 2704 enum { 2705 SRP_OPT_ERR = 0, 2706 SRP_OPT_ID_EXT = 1 << 0, 2707 SRP_OPT_IOC_GUID = 1 << 1, 2708 SRP_OPT_DGID = 1 << 2, 2709 SRP_OPT_PKEY = 1 << 3, 2710 SRP_OPT_SERVICE_ID = 1 << 4, 2711 SRP_OPT_MAX_SECT = 1 << 5, 2712 SRP_OPT_MAX_CMD_PER_LUN = 1 << 6, 2713 SRP_OPT_IO_CLASS = 1 << 7, 2714 SRP_OPT_INITIATOR_EXT = 1 << 8, 2715 SRP_OPT_CMD_SG_ENTRIES = 1 << 9, 2716 SRP_OPT_ALLOW_EXT_SG = 1 << 10, 2717 SRP_OPT_SG_TABLESIZE = 1 << 11, 2718 SRP_OPT_COMP_VECTOR = 1 << 12, 2719 SRP_OPT_TL_RETRY_COUNT = 1 << 13, 2720 SRP_OPT_QUEUE_SIZE = 1 << 14, 2721 SRP_OPT_ALL = (SRP_OPT_ID_EXT | 2722 SRP_OPT_IOC_GUID | 2723 SRP_OPT_DGID | 2724 SRP_OPT_PKEY | 2725 SRP_OPT_SERVICE_ID), 2726 }; 2727 2728 static const match_table_t srp_opt_tokens = { 2729 { SRP_OPT_ID_EXT, "id_ext=%s" }, 2730 { SRP_OPT_IOC_GUID, "ioc_guid=%s" }, 2731 { SRP_OPT_DGID, "dgid=%s" }, 2732 { SRP_OPT_PKEY, "pkey=%x" }, 2733 { SRP_OPT_SERVICE_ID, "service_id=%s" }, 2734 { SRP_OPT_MAX_SECT, "max_sect=%d" }, 2735 { SRP_OPT_MAX_CMD_PER_LUN, "max_cmd_per_lun=%d" }, 2736 { SRP_OPT_IO_CLASS, "io_class=%x" }, 2737 { SRP_OPT_INITIATOR_EXT, "initiator_ext=%s" }, 2738 { SRP_OPT_CMD_SG_ENTRIES, "cmd_sg_entries=%u" }, 2739 { SRP_OPT_ALLOW_EXT_SG, "allow_ext_sg=%u" }, 2740 { SRP_OPT_SG_TABLESIZE, "sg_tablesize=%u" }, 2741 { SRP_OPT_COMP_VECTOR, "comp_vector=%u" }, 2742 { SRP_OPT_TL_RETRY_COUNT, "tl_retry_count=%u" }, 2743 { SRP_OPT_QUEUE_SIZE, "queue_size=%d" }, 2744 { SRP_OPT_ERR, NULL } 2745 }; 2746 2747 static int srp_parse_options(const char *buf, struct srp_target_port *target) 2748 { 2749 char *options, *sep_opt; 2750 char *p; 2751 char dgid[3]; 2752 substring_t args[MAX_OPT_ARGS]; 2753 int opt_mask = 0; 2754 int token; 2755 int ret = -EINVAL; 2756 int i; 2757 2758 options = kstrdup(buf, GFP_KERNEL); 2759 if (!options) 2760 return -ENOMEM; 2761 2762 sep_opt = options; 2763 while ((p = strsep(&sep_opt, ",")) != NULL) { 2764 if (!*p) 2765 continue; 2766 2767 token = match_token(p, srp_opt_tokens, args); 2768 opt_mask |= token; 2769 2770 switch (token) { 2771 case SRP_OPT_ID_EXT: 2772 p = match_strdup(args); 2773 if (!p) { 2774 ret = -ENOMEM; 2775 goto out; 2776 } 2777 target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16)); 2778 kfree(p); 2779 break; 2780 2781 case SRP_OPT_IOC_GUID: 2782 p = match_strdup(args); 2783 if (!p) { 2784 ret = -ENOMEM; 2785 goto out; 2786 } 2787 target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16)); 2788 kfree(p); 2789 break; 2790 2791 case SRP_OPT_DGID: 2792 p = match_strdup(args); 2793 if (!p) { 2794 ret = -ENOMEM; 2795 goto out; 2796 } 2797 if (strlen(p) != 32) { 2798 pr_warn("bad dest GID parameter '%s'\n", p); 2799 kfree(p); 2800 goto out; 2801 } 2802 2803 for (i = 0; i < 16; ++i) { 2804 strlcpy(dgid, p + i * 2, 3); 2805 target->path.dgid.raw[i] = simple_strtoul(dgid, NULL, 16); 2806 } 2807 kfree(p); 2808 memcpy(target->orig_dgid, target->path.dgid.raw, 16); 2809 break; 2810 2811 case SRP_OPT_PKEY: 2812 if (match_hex(args, &token)) { 2813 pr_warn("bad P_Key parameter '%s'\n", p); 2814 goto out; 2815 } 2816 target->path.pkey = cpu_to_be16(token); 2817 break; 2818 2819 case SRP_OPT_SERVICE_ID: 2820 p = match_strdup(args); 2821 if (!p) { 2822 ret = -ENOMEM; 2823 goto out; 2824 } 2825 target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16)); 2826 target->path.service_id = target->service_id; 2827 kfree(p); 2828 break; 2829 2830 case SRP_OPT_MAX_SECT: 2831 if (match_int(args, &token)) { 2832 pr_warn("bad max sect parameter '%s'\n", p); 2833 goto out; 2834 } 2835 target->scsi_host->max_sectors = token; 2836 break; 2837 2838 case SRP_OPT_QUEUE_SIZE: 2839 if (match_int(args, &token) || token < 1) { 2840 pr_warn("bad queue_size parameter '%s'\n", p); 2841 goto out; 2842 } 2843 target->scsi_host->can_queue = token; 2844 target->queue_size = token + SRP_RSP_SQ_SIZE + 2845 SRP_TSK_MGMT_SQ_SIZE; 2846 if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN)) 2847 target->scsi_host->cmd_per_lun = token; 2848 break; 2849 2850 case SRP_OPT_MAX_CMD_PER_LUN: 2851 if (match_int(args, &token) || token < 1) { 2852 pr_warn("bad max cmd_per_lun parameter '%s'\n", 2853 p); 2854 goto out; 2855 } 2856 target->scsi_host->cmd_per_lun = token; 2857 break; 2858 2859 case SRP_OPT_IO_CLASS: 2860 if (match_hex(args, &token)) { 2861 pr_warn("bad IO class parameter '%s'\n", p); 2862 goto out; 2863 } 2864 if (token != SRP_REV10_IB_IO_CLASS && 2865 token != SRP_REV16A_IB_IO_CLASS) { 2866 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n", 2867 token, SRP_REV10_IB_IO_CLASS, 2868 SRP_REV16A_IB_IO_CLASS); 2869 goto out; 2870 } 2871 target->io_class = token; 2872 break; 2873 2874 case SRP_OPT_INITIATOR_EXT: 2875 p = match_strdup(args); 2876 if (!p) { 2877 ret = -ENOMEM; 2878 goto out; 2879 } 2880 target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16)); 2881 kfree(p); 2882 break; 2883 2884 case SRP_OPT_CMD_SG_ENTRIES: 2885 if (match_int(args, &token) || token < 1 || token > 255) { 2886 pr_warn("bad max cmd_sg_entries parameter '%s'\n", 2887 p); 2888 goto out; 2889 } 2890 target->cmd_sg_cnt = token; 2891 break; 2892 2893 case SRP_OPT_ALLOW_EXT_SG: 2894 if (match_int(args, &token)) { 2895 pr_warn("bad allow_ext_sg parameter '%s'\n", p); 2896 goto out; 2897 } 2898 target->allow_ext_sg = !!token; 2899 break; 2900 2901 case SRP_OPT_SG_TABLESIZE: 2902 if (match_int(args, &token) || token < 1 || 2903 token > SCSI_MAX_SG_CHAIN_SEGMENTS) { 2904 pr_warn("bad max sg_tablesize parameter '%s'\n", 2905 p); 2906 goto out; 2907 } 2908 target->sg_tablesize = token; 2909 break; 2910 2911 case SRP_OPT_COMP_VECTOR: 2912 if (match_int(args, &token) || token < 0) { 2913 pr_warn("bad comp_vector parameter '%s'\n", p); 2914 goto out; 2915 } 2916 target->comp_vector = token; 2917 break; 2918 2919 case SRP_OPT_TL_RETRY_COUNT: 2920 if (match_int(args, &token) || token < 2 || token > 7) { 2921 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n", 2922 p); 2923 goto out; 2924 } 2925 target->tl_retry_count = token; 2926 break; 2927 2928 default: 2929 pr_warn("unknown parameter or missing value '%s' in target creation request\n", 2930 p); 2931 goto out; 2932 } 2933 } 2934 2935 if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL) 2936 ret = 0; 2937 else 2938 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i) 2939 if ((srp_opt_tokens[i].token & SRP_OPT_ALL) && 2940 !(srp_opt_tokens[i].token & opt_mask)) 2941 pr_warn("target creation request is missing parameter '%s'\n", 2942 srp_opt_tokens[i].pattern); 2943 2944 if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue 2945 && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN)) 2946 pr_warn("cmd_per_lun = %d > queue_size = %d\n", 2947 target->scsi_host->cmd_per_lun, 2948 target->scsi_host->can_queue); 2949 2950 out: 2951 kfree(options); 2952 return ret; 2953 } 2954 2955 static ssize_t srp_create_target(struct device *dev, 2956 struct device_attribute *attr, 2957 const char *buf, size_t count) 2958 { 2959 struct srp_host *host = 2960 container_of(dev, struct srp_host, dev); 2961 struct Scsi_Host *target_host; 2962 struct srp_target_port *target; 2963 struct srp_device *srp_dev = host->srp_dev; 2964 struct ib_device *ibdev = srp_dev->dev; 2965 int ret; 2966 2967 target_host = scsi_host_alloc(&srp_template, 2968 sizeof (struct srp_target_port)); 2969 if (!target_host) 2970 return -ENOMEM; 2971 2972 target_host->transportt = ib_srp_transport_template; 2973 target_host->max_channel = 0; 2974 target_host->max_id = 1; 2975 target_host->max_lun = SRP_MAX_LUN; 2976 target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb; 2977 2978 target = host_to_target(target_host); 2979 2980 target->io_class = SRP_REV16A_IB_IO_CLASS; 2981 target->scsi_host = target_host; 2982 target->srp_host = host; 2983 target->lkey = host->srp_dev->mr->lkey; 2984 target->rkey = host->srp_dev->mr->rkey; 2985 target->cmd_sg_cnt = cmd_sg_entries; 2986 target->sg_tablesize = indirect_sg_entries ? : cmd_sg_entries; 2987 target->allow_ext_sg = allow_ext_sg; 2988 target->tl_retry_count = 7; 2989 target->queue_size = SRP_DEFAULT_QUEUE_SIZE; 2990 2991 mutex_lock(&host->add_target_mutex); 2992 2993 ret = srp_parse_options(buf, target); 2994 if (ret) 2995 goto err; 2996 2997 target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE; 2998 2999 if (!srp_conn_unique(target->srp_host, target)) { 3000 shost_printk(KERN_INFO, target->scsi_host, 3001 PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n", 3002 be64_to_cpu(target->id_ext), 3003 be64_to_cpu(target->ioc_guid), 3004 be64_to_cpu(target->initiator_ext)); 3005 ret = -EEXIST; 3006 goto err; 3007 } 3008 3009 if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg && 3010 target->cmd_sg_cnt < target->sg_tablesize) { 3011 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n"); 3012 target->sg_tablesize = target->cmd_sg_cnt; 3013 } 3014 3015 target_host->sg_tablesize = target->sg_tablesize; 3016 target->indirect_size = target->sg_tablesize * 3017 sizeof (struct srp_direct_buf); 3018 target->max_iu_len = sizeof (struct srp_cmd) + 3019 sizeof (struct srp_indirect_buf) + 3020 target->cmd_sg_cnt * sizeof (struct srp_direct_buf); 3021 3022 INIT_WORK(&target->tl_err_work, srp_tl_err_work); 3023 INIT_WORK(&target->remove_work, srp_remove_work); 3024 spin_lock_init(&target->lock); 3025 INIT_LIST_HEAD(&target->free_tx); 3026 ret = srp_alloc_req_data(target); 3027 if (ret) 3028 goto err_free_mem; 3029 3030 ret = ib_query_gid(ibdev, host->port, 0, &target->path.sgid); 3031 if (ret) 3032 goto err_free_mem; 3033 3034 ret = srp_create_target_ib(target); 3035 if (ret) 3036 goto err_free_mem; 3037 3038 ret = srp_new_cm_id(target); 3039 if (ret) 3040 goto err_free_ib; 3041 3042 ret = srp_connect_target(target); 3043 if (ret) { 3044 shost_printk(KERN_ERR, target->scsi_host, 3045 PFX "Connection failed\n"); 3046 goto err_cm_id; 3047 } 3048 3049 ret = srp_add_target(host, target); 3050 if (ret) 3051 goto err_disconnect; 3052 3053 shost_printk(KERN_DEBUG, target->scsi_host, PFX 3054 "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n", 3055 be64_to_cpu(target->id_ext), 3056 be64_to_cpu(target->ioc_guid), 3057 be16_to_cpu(target->path.pkey), 3058 be64_to_cpu(target->service_id), 3059 target->path.sgid.raw, target->path.dgid.raw); 3060 3061 ret = count; 3062 3063 out: 3064 mutex_unlock(&host->add_target_mutex); 3065 return ret; 3066 3067 err_disconnect: 3068 srp_disconnect_target(target); 3069 3070 err_cm_id: 3071 ib_destroy_cm_id(target->cm_id); 3072 3073 err_free_ib: 3074 srp_free_target_ib(target); 3075 3076 err_free_mem: 3077 srp_free_req_data(target); 3078 3079 err: 3080 scsi_host_put(target_host); 3081 goto out; 3082 } 3083 3084 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target); 3085 3086 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr, 3087 char *buf) 3088 { 3089 struct srp_host *host = container_of(dev, struct srp_host, dev); 3090 3091 return sprintf(buf, "%s\n", host->srp_dev->dev->name); 3092 } 3093 3094 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL); 3095 3096 static ssize_t show_port(struct device *dev, struct device_attribute *attr, 3097 char *buf) 3098 { 3099 struct srp_host *host = container_of(dev, struct srp_host, dev); 3100 3101 return sprintf(buf, "%d\n", host->port); 3102 } 3103 3104 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL); 3105 3106 static struct srp_host *srp_add_port(struct srp_device *device, u8 port) 3107 { 3108 struct srp_host *host; 3109 3110 host = kzalloc(sizeof *host, GFP_KERNEL); 3111 if (!host) 3112 return NULL; 3113 3114 INIT_LIST_HEAD(&host->target_list); 3115 spin_lock_init(&host->target_lock); 3116 init_completion(&host->released); 3117 mutex_init(&host->add_target_mutex); 3118 host->srp_dev = device; 3119 host->port = port; 3120 3121 host->dev.class = &srp_class; 3122 host->dev.parent = device->dev->dma_device; 3123 dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port); 3124 3125 if (device_register(&host->dev)) 3126 goto free_host; 3127 if (device_create_file(&host->dev, &dev_attr_add_target)) 3128 goto err_class; 3129 if (device_create_file(&host->dev, &dev_attr_ibdev)) 3130 goto err_class; 3131 if (device_create_file(&host->dev, &dev_attr_port)) 3132 goto err_class; 3133 3134 return host; 3135 3136 err_class: 3137 device_unregister(&host->dev); 3138 3139 free_host: 3140 kfree(host); 3141 3142 return NULL; 3143 } 3144 3145 static void srp_add_one(struct ib_device *device) 3146 { 3147 struct srp_device *srp_dev; 3148 struct ib_device_attr *dev_attr; 3149 struct srp_host *host; 3150 int mr_page_shift, s, e, p; 3151 u64 max_pages_per_mr; 3152 3153 dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL); 3154 if (!dev_attr) 3155 return; 3156 3157 if (ib_query_device(device, dev_attr)) { 3158 pr_warn("Query device failed for %s\n", device->name); 3159 goto free_attr; 3160 } 3161 3162 srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL); 3163 if (!srp_dev) 3164 goto free_attr; 3165 3166 srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr && 3167 device->map_phys_fmr && device->unmap_fmr); 3168 srp_dev->has_fr = (dev_attr->device_cap_flags & 3169 IB_DEVICE_MEM_MGT_EXTENSIONS); 3170 if (!srp_dev->has_fmr && !srp_dev->has_fr) 3171 dev_warn(&device->dev, "neither FMR nor FR is supported\n"); 3172 3173 srp_dev->use_fast_reg = (srp_dev->has_fr && 3174 (!srp_dev->has_fmr || prefer_fr)); 3175 3176 /* 3177 * Use the smallest page size supported by the HCA, down to a 3178 * minimum of 4096 bytes. We're unlikely to build large sglists 3179 * out of smaller entries. 3180 */ 3181 mr_page_shift = max(12, ffs(dev_attr->page_size_cap) - 1); 3182 srp_dev->mr_page_size = 1 << mr_page_shift; 3183 srp_dev->mr_page_mask = ~((u64) srp_dev->mr_page_size - 1); 3184 max_pages_per_mr = dev_attr->max_mr_size; 3185 do_div(max_pages_per_mr, srp_dev->mr_page_size); 3186 srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR, 3187 max_pages_per_mr); 3188 if (srp_dev->use_fast_reg) { 3189 srp_dev->max_pages_per_mr = 3190 min_t(u32, srp_dev->max_pages_per_mr, 3191 dev_attr->max_fast_reg_page_list_len); 3192 } 3193 srp_dev->mr_max_size = srp_dev->mr_page_size * 3194 srp_dev->max_pages_per_mr; 3195 pr_debug("%s: mr_page_shift = %d, dev_attr->max_mr_size = %#llx, dev_attr->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n", 3196 device->name, mr_page_shift, dev_attr->max_mr_size, 3197 dev_attr->max_fast_reg_page_list_len, 3198 srp_dev->max_pages_per_mr, srp_dev->mr_max_size); 3199 3200 INIT_LIST_HEAD(&srp_dev->dev_list); 3201 3202 srp_dev->dev = device; 3203 srp_dev->pd = ib_alloc_pd(device); 3204 if (IS_ERR(srp_dev->pd)) 3205 goto free_dev; 3206 3207 srp_dev->mr = ib_get_dma_mr(srp_dev->pd, 3208 IB_ACCESS_LOCAL_WRITE | 3209 IB_ACCESS_REMOTE_READ | 3210 IB_ACCESS_REMOTE_WRITE); 3211 if (IS_ERR(srp_dev->mr)) 3212 goto err_pd; 3213 3214 if (device->node_type == RDMA_NODE_IB_SWITCH) { 3215 s = 0; 3216 e = 0; 3217 } else { 3218 s = 1; 3219 e = device->phys_port_cnt; 3220 } 3221 3222 for (p = s; p <= e; ++p) { 3223 host = srp_add_port(srp_dev, p); 3224 if (host) 3225 list_add_tail(&host->list, &srp_dev->dev_list); 3226 } 3227 3228 ib_set_client_data(device, &srp_client, srp_dev); 3229 3230 goto free_attr; 3231 3232 err_pd: 3233 ib_dealloc_pd(srp_dev->pd); 3234 3235 free_dev: 3236 kfree(srp_dev); 3237 3238 free_attr: 3239 kfree(dev_attr); 3240 } 3241 3242 static void srp_remove_one(struct ib_device *device) 3243 { 3244 struct srp_device *srp_dev; 3245 struct srp_host *host, *tmp_host; 3246 struct srp_target_port *target; 3247 3248 srp_dev = ib_get_client_data(device, &srp_client); 3249 if (!srp_dev) 3250 return; 3251 3252 list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) { 3253 device_unregister(&host->dev); 3254 /* 3255 * Wait for the sysfs entry to go away, so that no new 3256 * target ports can be created. 3257 */ 3258 wait_for_completion(&host->released); 3259 3260 /* 3261 * Remove all target ports. 3262 */ 3263 spin_lock(&host->target_lock); 3264 list_for_each_entry(target, &host->target_list, list) 3265 srp_queue_remove_work(target); 3266 spin_unlock(&host->target_lock); 3267 3268 /* 3269 * Wait for tl_err and target port removal tasks. 3270 */ 3271 flush_workqueue(system_long_wq); 3272 flush_workqueue(srp_remove_wq); 3273 3274 kfree(host); 3275 } 3276 3277 ib_dereg_mr(srp_dev->mr); 3278 ib_dealloc_pd(srp_dev->pd); 3279 3280 kfree(srp_dev); 3281 } 3282 3283 static struct srp_function_template ib_srp_transport_functions = { 3284 .has_rport_state = true, 3285 .reset_timer_if_blocked = true, 3286 .reconnect_delay = &srp_reconnect_delay, 3287 .fast_io_fail_tmo = &srp_fast_io_fail_tmo, 3288 .dev_loss_tmo = &srp_dev_loss_tmo, 3289 .reconnect = srp_rport_reconnect, 3290 .rport_delete = srp_rport_delete, 3291 .terminate_rport_io = srp_terminate_io, 3292 }; 3293 3294 static int __init srp_init_module(void) 3295 { 3296 int ret; 3297 3298 BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *)); 3299 3300 if (srp_sg_tablesize) { 3301 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n"); 3302 if (!cmd_sg_entries) 3303 cmd_sg_entries = srp_sg_tablesize; 3304 } 3305 3306 if (!cmd_sg_entries) 3307 cmd_sg_entries = SRP_DEF_SG_TABLESIZE; 3308 3309 if (cmd_sg_entries > 255) { 3310 pr_warn("Clamping cmd_sg_entries to 255\n"); 3311 cmd_sg_entries = 255; 3312 } 3313 3314 if (!indirect_sg_entries) 3315 indirect_sg_entries = cmd_sg_entries; 3316 else if (indirect_sg_entries < cmd_sg_entries) { 3317 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n", 3318 cmd_sg_entries); 3319 indirect_sg_entries = cmd_sg_entries; 3320 } 3321 3322 srp_remove_wq = create_workqueue("srp_remove"); 3323 if (!srp_remove_wq) { 3324 ret = -ENOMEM; 3325 goto out; 3326 } 3327 3328 ret = -ENOMEM; 3329 ib_srp_transport_template = 3330 srp_attach_transport(&ib_srp_transport_functions); 3331 if (!ib_srp_transport_template) 3332 goto destroy_wq; 3333 3334 ret = class_register(&srp_class); 3335 if (ret) { 3336 pr_err("couldn't register class infiniband_srp\n"); 3337 goto release_tr; 3338 } 3339 3340 ib_sa_register_client(&srp_sa_client); 3341 3342 ret = ib_register_client(&srp_client); 3343 if (ret) { 3344 pr_err("couldn't register IB client\n"); 3345 goto unreg_sa; 3346 } 3347 3348 out: 3349 return ret; 3350 3351 unreg_sa: 3352 ib_sa_unregister_client(&srp_sa_client); 3353 class_unregister(&srp_class); 3354 3355 release_tr: 3356 srp_release_transport(ib_srp_transport_template); 3357 3358 destroy_wq: 3359 destroy_workqueue(srp_remove_wq); 3360 goto out; 3361 } 3362 3363 static void __exit srp_cleanup_module(void) 3364 { 3365 ib_unregister_client(&srp_client); 3366 ib_sa_unregister_client(&srp_sa_client); 3367 class_unregister(&srp_class); 3368 srp_release_transport(ib_srp_transport_template); 3369 destroy_workqueue(srp_remove_wq); 3370 } 3371 3372 module_init(srp_init_module); 3373 module_exit(srp_cleanup_module); 3374