1 /* 2 * Copyright (c) 2005 Cisco Systems. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/string.h> 40 #include <linux/parser.h> 41 #include <linux/random.h> 42 #include <linux/jiffies.h> 43 44 #include <linux/atomic.h> 45 46 #include <scsi/scsi.h> 47 #include <scsi/scsi_device.h> 48 #include <scsi/scsi_dbg.h> 49 #include <scsi/scsi_tcq.h> 50 #include <scsi/srp.h> 51 #include <scsi/scsi_transport_srp.h> 52 53 #include "ib_srp.h" 54 55 #define DRV_NAME "ib_srp" 56 #define PFX DRV_NAME ": " 57 #define DRV_VERSION "1.0" 58 #define DRV_RELDATE "July 1, 2013" 59 60 MODULE_AUTHOR("Roland Dreier"); 61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator " 62 "v" DRV_VERSION " (" DRV_RELDATE ")"); 63 MODULE_LICENSE("Dual BSD/GPL"); 64 65 static unsigned int srp_sg_tablesize; 66 static unsigned int cmd_sg_entries; 67 static unsigned int indirect_sg_entries; 68 static bool allow_ext_sg; 69 static bool prefer_fr; 70 static bool register_always; 71 static int topspin_workarounds = 1; 72 73 module_param(srp_sg_tablesize, uint, 0444); 74 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries"); 75 76 module_param(cmd_sg_entries, uint, 0444); 77 MODULE_PARM_DESC(cmd_sg_entries, 78 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)"); 79 80 module_param(indirect_sg_entries, uint, 0444); 81 MODULE_PARM_DESC(indirect_sg_entries, 82 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")"); 83 84 module_param(allow_ext_sg, bool, 0444); 85 MODULE_PARM_DESC(allow_ext_sg, 86 "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)"); 87 88 module_param(topspin_workarounds, int, 0444); 89 MODULE_PARM_DESC(topspin_workarounds, 90 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0"); 91 92 module_param(prefer_fr, bool, 0444); 93 MODULE_PARM_DESC(prefer_fr, 94 "Whether to use fast registration if both FMR and fast registration are supported"); 95 96 module_param(register_always, bool, 0444); 97 MODULE_PARM_DESC(register_always, 98 "Use memory registration even for contiguous memory regions"); 99 100 static struct kernel_param_ops srp_tmo_ops; 101 102 static int srp_reconnect_delay = 10; 103 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay, 104 S_IRUGO | S_IWUSR); 105 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts"); 106 107 static int srp_fast_io_fail_tmo = 15; 108 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo, 109 S_IRUGO | S_IWUSR); 110 MODULE_PARM_DESC(fast_io_fail_tmo, 111 "Number of seconds between the observation of a transport" 112 " layer error and failing all I/O. \"off\" means that this" 113 " functionality is disabled."); 114 115 static int srp_dev_loss_tmo = 600; 116 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo, 117 S_IRUGO | S_IWUSR); 118 MODULE_PARM_DESC(dev_loss_tmo, 119 "Maximum number of seconds that the SRP transport should" 120 " insulate transport layer errors. After this time has been" 121 " exceeded the SCSI host is removed. Should be" 122 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT) 123 " if fast_io_fail_tmo has not been set. \"off\" means that" 124 " this functionality is disabled."); 125 126 static void srp_add_one(struct ib_device *device); 127 static void srp_remove_one(struct ib_device *device); 128 static void srp_recv_completion(struct ib_cq *cq, void *target_ptr); 129 static void srp_send_completion(struct ib_cq *cq, void *target_ptr); 130 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event); 131 132 static struct scsi_transport_template *ib_srp_transport_template; 133 134 static struct ib_client srp_client = { 135 .name = "srp", 136 .add = srp_add_one, 137 .remove = srp_remove_one 138 }; 139 140 static struct ib_sa_client srp_sa_client; 141 142 static int srp_tmo_get(char *buffer, const struct kernel_param *kp) 143 { 144 int tmo = *(int *)kp->arg; 145 146 if (tmo >= 0) 147 return sprintf(buffer, "%d", tmo); 148 else 149 return sprintf(buffer, "off"); 150 } 151 152 static int srp_tmo_set(const char *val, const struct kernel_param *kp) 153 { 154 int tmo, res; 155 156 if (strncmp(val, "off", 3) != 0) { 157 res = kstrtoint(val, 0, &tmo); 158 if (res) 159 goto out; 160 } else { 161 tmo = -1; 162 } 163 if (kp->arg == &srp_reconnect_delay) 164 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo, 165 srp_dev_loss_tmo); 166 else if (kp->arg == &srp_fast_io_fail_tmo) 167 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo); 168 else 169 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo, 170 tmo); 171 if (res) 172 goto out; 173 *(int *)kp->arg = tmo; 174 175 out: 176 return res; 177 } 178 179 static struct kernel_param_ops srp_tmo_ops = { 180 .get = srp_tmo_get, 181 .set = srp_tmo_set, 182 }; 183 184 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host) 185 { 186 return (struct srp_target_port *) host->hostdata; 187 } 188 189 static const char *srp_target_info(struct Scsi_Host *host) 190 { 191 return host_to_target(host)->target_name; 192 } 193 194 static int srp_target_is_topspin(struct srp_target_port *target) 195 { 196 static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad }; 197 static const u8 cisco_oui[3] = { 0x00, 0x1b, 0x0d }; 198 199 return topspin_workarounds && 200 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) || 201 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui)); 202 } 203 204 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size, 205 gfp_t gfp_mask, 206 enum dma_data_direction direction) 207 { 208 struct srp_iu *iu; 209 210 iu = kmalloc(sizeof *iu, gfp_mask); 211 if (!iu) 212 goto out; 213 214 iu->buf = kzalloc(size, gfp_mask); 215 if (!iu->buf) 216 goto out_free_iu; 217 218 iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size, 219 direction); 220 if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma)) 221 goto out_free_buf; 222 223 iu->size = size; 224 iu->direction = direction; 225 226 return iu; 227 228 out_free_buf: 229 kfree(iu->buf); 230 out_free_iu: 231 kfree(iu); 232 out: 233 return NULL; 234 } 235 236 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu) 237 { 238 if (!iu) 239 return; 240 241 ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size, 242 iu->direction); 243 kfree(iu->buf); 244 kfree(iu); 245 } 246 247 static void srp_qp_event(struct ib_event *event, void *context) 248 { 249 pr_debug("QP event %d\n", event->event); 250 } 251 252 static int srp_init_qp(struct srp_target_port *target, 253 struct ib_qp *qp) 254 { 255 struct ib_qp_attr *attr; 256 int ret; 257 258 attr = kmalloc(sizeof *attr, GFP_KERNEL); 259 if (!attr) 260 return -ENOMEM; 261 262 ret = ib_find_pkey(target->srp_host->srp_dev->dev, 263 target->srp_host->port, 264 be16_to_cpu(target->path.pkey), 265 &attr->pkey_index); 266 if (ret) 267 goto out; 268 269 attr->qp_state = IB_QPS_INIT; 270 attr->qp_access_flags = (IB_ACCESS_REMOTE_READ | 271 IB_ACCESS_REMOTE_WRITE); 272 attr->port_num = target->srp_host->port; 273 274 ret = ib_modify_qp(qp, attr, 275 IB_QP_STATE | 276 IB_QP_PKEY_INDEX | 277 IB_QP_ACCESS_FLAGS | 278 IB_QP_PORT); 279 280 out: 281 kfree(attr); 282 return ret; 283 } 284 285 static int srp_new_cm_id(struct srp_target_port *target) 286 { 287 struct ib_cm_id *new_cm_id; 288 289 new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev, 290 srp_cm_handler, target); 291 if (IS_ERR(new_cm_id)) 292 return PTR_ERR(new_cm_id); 293 294 if (target->cm_id) 295 ib_destroy_cm_id(target->cm_id); 296 target->cm_id = new_cm_id; 297 298 return 0; 299 } 300 301 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target) 302 { 303 struct srp_device *dev = target->srp_host->srp_dev; 304 struct ib_fmr_pool_param fmr_param; 305 306 memset(&fmr_param, 0, sizeof(fmr_param)); 307 fmr_param.pool_size = target->scsi_host->can_queue; 308 fmr_param.dirty_watermark = fmr_param.pool_size / 4; 309 fmr_param.cache = 1; 310 fmr_param.max_pages_per_fmr = dev->max_pages_per_mr; 311 fmr_param.page_shift = ilog2(dev->mr_page_size); 312 fmr_param.access = (IB_ACCESS_LOCAL_WRITE | 313 IB_ACCESS_REMOTE_WRITE | 314 IB_ACCESS_REMOTE_READ); 315 316 return ib_create_fmr_pool(dev->pd, &fmr_param); 317 } 318 319 /** 320 * srp_destroy_fr_pool() - free the resources owned by a pool 321 * @pool: Fast registration pool to be destroyed. 322 */ 323 static void srp_destroy_fr_pool(struct srp_fr_pool *pool) 324 { 325 int i; 326 struct srp_fr_desc *d; 327 328 if (!pool) 329 return; 330 331 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) { 332 if (d->frpl) 333 ib_free_fast_reg_page_list(d->frpl); 334 if (d->mr) 335 ib_dereg_mr(d->mr); 336 } 337 kfree(pool); 338 } 339 340 /** 341 * srp_create_fr_pool() - allocate and initialize a pool for fast registration 342 * @device: IB device to allocate fast registration descriptors for. 343 * @pd: Protection domain associated with the FR descriptors. 344 * @pool_size: Number of descriptors to allocate. 345 * @max_page_list_len: Maximum fast registration work request page list length. 346 */ 347 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device, 348 struct ib_pd *pd, int pool_size, 349 int max_page_list_len) 350 { 351 struct srp_fr_pool *pool; 352 struct srp_fr_desc *d; 353 struct ib_mr *mr; 354 struct ib_fast_reg_page_list *frpl; 355 int i, ret = -EINVAL; 356 357 if (pool_size <= 0) 358 goto err; 359 ret = -ENOMEM; 360 pool = kzalloc(sizeof(struct srp_fr_pool) + 361 pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL); 362 if (!pool) 363 goto err; 364 pool->size = pool_size; 365 pool->max_page_list_len = max_page_list_len; 366 spin_lock_init(&pool->lock); 367 INIT_LIST_HEAD(&pool->free_list); 368 369 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) { 370 mr = ib_alloc_fast_reg_mr(pd, max_page_list_len); 371 if (IS_ERR(mr)) { 372 ret = PTR_ERR(mr); 373 goto destroy_pool; 374 } 375 d->mr = mr; 376 frpl = ib_alloc_fast_reg_page_list(device, max_page_list_len); 377 if (IS_ERR(frpl)) { 378 ret = PTR_ERR(frpl); 379 goto destroy_pool; 380 } 381 d->frpl = frpl; 382 list_add_tail(&d->entry, &pool->free_list); 383 } 384 385 out: 386 return pool; 387 388 destroy_pool: 389 srp_destroy_fr_pool(pool); 390 391 err: 392 pool = ERR_PTR(ret); 393 goto out; 394 } 395 396 /** 397 * srp_fr_pool_get() - obtain a descriptor suitable for fast registration 398 * @pool: Pool to obtain descriptor from. 399 */ 400 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool) 401 { 402 struct srp_fr_desc *d = NULL; 403 unsigned long flags; 404 405 spin_lock_irqsave(&pool->lock, flags); 406 if (!list_empty(&pool->free_list)) { 407 d = list_first_entry(&pool->free_list, typeof(*d), entry); 408 list_del(&d->entry); 409 } 410 spin_unlock_irqrestore(&pool->lock, flags); 411 412 return d; 413 } 414 415 /** 416 * srp_fr_pool_put() - put an FR descriptor back in the free list 417 * @pool: Pool the descriptor was allocated from. 418 * @desc: Pointer to an array of fast registration descriptor pointers. 419 * @n: Number of descriptors to put back. 420 * 421 * Note: The caller must already have queued an invalidation request for 422 * desc->mr->rkey before calling this function. 423 */ 424 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc, 425 int n) 426 { 427 unsigned long flags; 428 int i; 429 430 spin_lock_irqsave(&pool->lock, flags); 431 for (i = 0; i < n; i++) 432 list_add(&desc[i]->entry, &pool->free_list); 433 spin_unlock_irqrestore(&pool->lock, flags); 434 } 435 436 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target) 437 { 438 struct srp_device *dev = target->srp_host->srp_dev; 439 440 return srp_create_fr_pool(dev->dev, dev->pd, 441 target->scsi_host->can_queue, 442 dev->max_pages_per_mr); 443 } 444 445 static int srp_create_target_ib(struct srp_target_port *target) 446 { 447 struct srp_device *dev = target->srp_host->srp_dev; 448 struct ib_qp_init_attr *init_attr; 449 struct ib_cq *recv_cq, *send_cq; 450 struct ib_qp *qp; 451 struct ib_fmr_pool *fmr_pool = NULL; 452 struct srp_fr_pool *fr_pool = NULL; 453 const int m = 1 + dev->use_fast_reg; 454 int ret; 455 456 init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL); 457 if (!init_attr) 458 return -ENOMEM; 459 460 recv_cq = ib_create_cq(dev->dev, srp_recv_completion, NULL, target, 461 target->queue_size, target->comp_vector); 462 if (IS_ERR(recv_cq)) { 463 ret = PTR_ERR(recv_cq); 464 goto err; 465 } 466 467 send_cq = ib_create_cq(dev->dev, srp_send_completion, NULL, target, 468 m * target->queue_size, target->comp_vector); 469 if (IS_ERR(send_cq)) { 470 ret = PTR_ERR(send_cq); 471 goto err_recv_cq; 472 } 473 474 ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP); 475 476 init_attr->event_handler = srp_qp_event; 477 init_attr->cap.max_send_wr = m * target->queue_size; 478 init_attr->cap.max_recv_wr = target->queue_size; 479 init_attr->cap.max_recv_sge = 1; 480 init_attr->cap.max_send_sge = 1; 481 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 482 init_attr->qp_type = IB_QPT_RC; 483 init_attr->send_cq = send_cq; 484 init_attr->recv_cq = recv_cq; 485 486 qp = ib_create_qp(dev->pd, init_attr); 487 if (IS_ERR(qp)) { 488 ret = PTR_ERR(qp); 489 goto err_send_cq; 490 } 491 492 ret = srp_init_qp(target, qp); 493 if (ret) 494 goto err_qp; 495 496 if (dev->use_fast_reg && dev->has_fr) { 497 fr_pool = srp_alloc_fr_pool(target); 498 if (IS_ERR(fr_pool)) { 499 ret = PTR_ERR(fr_pool); 500 shost_printk(KERN_WARNING, target->scsi_host, PFX 501 "FR pool allocation failed (%d)\n", ret); 502 goto err_qp; 503 } 504 if (target->fr_pool) 505 srp_destroy_fr_pool(target->fr_pool); 506 target->fr_pool = fr_pool; 507 } else if (!dev->use_fast_reg && dev->has_fmr) { 508 fmr_pool = srp_alloc_fmr_pool(target); 509 if (IS_ERR(fmr_pool)) { 510 ret = PTR_ERR(fmr_pool); 511 shost_printk(KERN_WARNING, target->scsi_host, PFX 512 "FMR pool allocation failed (%d)\n", ret); 513 goto err_qp; 514 } 515 if (target->fmr_pool) 516 ib_destroy_fmr_pool(target->fmr_pool); 517 target->fmr_pool = fmr_pool; 518 } 519 520 if (target->qp) 521 ib_destroy_qp(target->qp); 522 if (target->recv_cq) 523 ib_destroy_cq(target->recv_cq); 524 if (target->send_cq) 525 ib_destroy_cq(target->send_cq); 526 527 target->qp = qp; 528 target->recv_cq = recv_cq; 529 target->send_cq = send_cq; 530 531 kfree(init_attr); 532 return 0; 533 534 err_qp: 535 ib_destroy_qp(qp); 536 537 err_send_cq: 538 ib_destroy_cq(send_cq); 539 540 err_recv_cq: 541 ib_destroy_cq(recv_cq); 542 543 err: 544 kfree(init_attr); 545 return ret; 546 } 547 548 /* 549 * Note: this function may be called without srp_alloc_iu_bufs() having been 550 * invoked. Hence the target->[rt]x_ring checks. 551 */ 552 static void srp_free_target_ib(struct srp_target_port *target) 553 { 554 struct srp_device *dev = target->srp_host->srp_dev; 555 int i; 556 557 if (dev->use_fast_reg) { 558 if (target->fr_pool) 559 srp_destroy_fr_pool(target->fr_pool); 560 } else { 561 if (target->fmr_pool) 562 ib_destroy_fmr_pool(target->fmr_pool); 563 } 564 ib_destroy_qp(target->qp); 565 ib_destroy_cq(target->send_cq); 566 ib_destroy_cq(target->recv_cq); 567 568 target->qp = NULL; 569 target->send_cq = target->recv_cq = NULL; 570 571 if (target->rx_ring) { 572 for (i = 0; i < target->queue_size; ++i) 573 srp_free_iu(target->srp_host, target->rx_ring[i]); 574 kfree(target->rx_ring); 575 target->rx_ring = NULL; 576 } 577 if (target->tx_ring) { 578 for (i = 0; i < target->queue_size; ++i) 579 srp_free_iu(target->srp_host, target->tx_ring[i]); 580 kfree(target->tx_ring); 581 target->tx_ring = NULL; 582 } 583 } 584 585 static void srp_path_rec_completion(int status, 586 struct ib_sa_path_rec *pathrec, 587 void *target_ptr) 588 { 589 struct srp_target_port *target = target_ptr; 590 591 target->status = status; 592 if (status) 593 shost_printk(KERN_ERR, target->scsi_host, 594 PFX "Got failed path rec status %d\n", status); 595 else 596 target->path = *pathrec; 597 complete(&target->done); 598 } 599 600 static int srp_lookup_path(struct srp_target_port *target) 601 { 602 int ret; 603 604 target->path.numb_path = 1; 605 606 init_completion(&target->done); 607 608 target->path_query_id = ib_sa_path_rec_get(&srp_sa_client, 609 target->srp_host->srp_dev->dev, 610 target->srp_host->port, 611 &target->path, 612 IB_SA_PATH_REC_SERVICE_ID | 613 IB_SA_PATH_REC_DGID | 614 IB_SA_PATH_REC_SGID | 615 IB_SA_PATH_REC_NUMB_PATH | 616 IB_SA_PATH_REC_PKEY, 617 SRP_PATH_REC_TIMEOUT_MS, 618 GFP_KERNEL, 619 srp_path_rec_completion, 620 target, &target->path_query); 621 if (target->path_query_id < 0) 622 return target->path_query_id; 623 624 ret = wait_for_completion_interruptible(&target->done); 625 if (ret < 0) 626 return ret; 627 628 if (target->status < 0) 629 shost_printk(KERN_WARNING, target->scsi_host, 630 PFX "Path record query failed\n"); 631 632 return target->status; 633 } 634 635 static int srp_send_req(struct srp_target_port *target) 636 { 637 struct { 638 struct ib_cm_req_param param; 639 struct srp_login_req priv; 640 } *req = NULL; 641 int status; 642 643 req = kzalloc(sizeof *req, GFP_KERNEL); 644 if (!req) 645 return -ENOMEM; 646 647 req->param.primary_path = &target->path; 648 req->param.alternate_path = NULL; 649 req->param.service_id = target->service_id; 650 req->param.qp_num = target->qp->qp_num; 651 req->param.qp_type = target->qp->qp_type; 652 req->param.private_data = &req->priv; 653 req->param.private_data_len = sizeof req->priv; 654 req->param.flow_control = 1; 655 656 get_random_bytes(&req->param.starting_psn, 4); 657 req->param.starting_psn &= 0xffffff; 658 659 /* 660 * Pick some arbitrary defaults here; we could make these 661 * module parameters if anyone cared about setting them. 662 */ 663 req->param.responder_resources = 4; 664 req->param.remote_cm_response_timeout = 20; 665 req->param.local_cm_response_timeout = 20; 666 req->param.retry_count = target->tl_retry_count; 667 req->param.rnr_retry_count = 7; 668 req->param.max_cm_retries = 15; 669 670 req->priv.opcode = SRP_LOGIN_REQ; 671 req->priv.tag = 0; 672 req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len); 673 req->priv.req_buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 674 SRP_BUF_FORMAT_INDIRECT); 675 /* 676 * In the published SRP specification (draft rev. 16a), the 677 * port identifier format is 8 bytes of ID extension followed 678 * by 8 bytes of GUID. Older drafts put the two halves in the 679 * opposite order, so that the GUID comes first. 680 * 681 * Targets conforming to these obsolete drafts can be 682 * recognized by the I/O Class they report. 683 */ 684 if (target->io_class == SRP_REV10_IB_IO_CLASS) { 685 memcpy(req->priv.initiator_port_id, 686 &target->path.sgid.global.interface_id, 8); 687 memcpy(req->priv.initiator_port_id + 8, 688 &target->initiator_ext, 8); 689 memcpy(req->priv.target_port_id, &target->ioc_guid, 8); 690 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8); 691 } else { 692 memcpy(req->priv.initiator_port_id, 693 &target->initiator_ext, 8); 694 memcpy(req->priv.initiator_port_id + 8, 695 &target->path.sgid.global.interface_id, 8); 696 memcpy(req->priv.target_port_id, &target->id_ext, 8); 697 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8); 698 } 699 700 /* 701 * Topspin/Cisco SRP targets will reject our login unless we 702 * zero out the first 8 bytes of our initiator port ID and set 703 * the second 8 bytes to the local node GUID. 704 */ 705 if (srp_target_is_topspin(target)) { 706 shost_printk(KERN_DEBUG, target->scsi_host, 707 PFX "Topspin/Cisco initiator port ID workaround " 708 "activated for target GUID %016llx\n", 709 (unsigned long long) be64_to_cpu(target->ioc_guid)); 710 memset(req->priv.initiator_port_id, 0, 8); 711 memcpy(req->priv.initiator_port_id + 8, 712 &target->srp_host->srp_dev->dev->node_guid, 8); 713 } 714 715 status = ib_send_cm_req(target->cm_id, &req->param); 716 717 kfree(req); 718 719 return status; 720 } 721 722 static bool srp_queue_remove_work(struct srp_target_port *target) 723 { 724 bool changed = false; 725 726 spin_lock_irq(&target->lock); 727 if (target->state != SRP_TARGET_REMOVED) { 728 target->state = SRP_TARGET_REMOVED; 729 changed = true; 730 } 731 spin_unlock_irq(&target->lock); 732 733 if (changed) 734 queue_work(system_long_wq, &target->remove_work); 735 736 return changed; 737 } 738 739 static bool srp_change_conn_state(struct srp_target_port *target, 740 bool connected) 741 { 742 bool changed = false; 743 744 spin_lock_irq(&target->lock); 745 if (target->connected != connected) { 746 target->connected = connected; 747 changed = true; 748 } 749 spin_unlock_irq(&target->lock); 750 751 return changed; 752 } 753 754 static void srp_disconnect_target(struct srp_target_port *target) 755 { 756 if (srp_change_conn_state(target, false)) { 757 /* XXX should send SRP_I_LOGOUT request */ 758 759 if (ib_send_cm_dreq(target->cm_id, NULL, 0)) { 760 shost_printk(KERN_DEBUG, target->scsi_host, 761 PFX "Sending CM DREQ failed\n"); 762 } 763 } 764 } 765 766 static void srp_free_req_data(struct srp_target_port *target) 767 { 768 struct srp_device *dev = target->srp_host->srp_dev; 769 struct ib_device *ibdev = dev->dev; 770 struct srp_request *req; 771 int i; 772 773 if (!target->req_ring) 774 return; 775 776 for (i = 0; i < target->req_ring_size; ++i) { 777 req = &target->req_ring[i]; 778 if (dev->use_fast_reg) 779 kfree(req->fr_list); 780 else 781 kfree(req->fmr_list); 782 kfree(req->map_page); 783 if (req->indirect_dma_addr) { 784 ib_dma_unmap_single(ibdev, req->indirect_dma_addr, 785 target->indirect_size, 786 DMA_TO_DEVICE); 787 } 788 kfree(req->indirect_desc); 789 } 790 791 kfree(target->req_ring); 792 target->req_ring = NULL; 793 } 794 795 static int srp_alloc_req_data(struct srp_target_port *target) 796 { 797 struct srp_device *srp_dev = target->srp_host->srp_dev; 798 struct ib_device *ibdev = srp_dev->dev; 799 struct srp_request *req; 800 void *mr_list; 801 dma_addr_t dma_addr; 802 int i, ret = -ENOMEM; 803 804 INIT_LIST_HEAD(&target->free_reqs); 805 806 target->req_ring = kzalloc(target->req_ring_size * 807 sizeof(*target->req_ring), GFP_KERNEL); 808 if (!target->req_ring) 809 goto out; 810 811 for (i = 0; i < target->req_ring_size; ++i) { 812 req = &target->req_ring[i]; 813 mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *), 814 GFP_KERNEL); 815 if (!mr_list) 816 goto out; 817 if (srp_dev->use_fast_reg) 818 req->fr_list = mr_list; 819 else 820 req->fmr_list = mr_list; 821 req->map_page = kmalloc(srp_dev->max_pages_per_mr * 822 sizeof(void *), GFP_KERNEL); 823 if (!req->map_page) 824 goto out; 825 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL); 826 if (!req->indirect_desc) 827 goto out; 828 829 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc, 830 target->indirect_size, 831 DMA_TO_DEVICE); 832 if (ib_dma_mapping_error(ibdev, dma_addr)) 833 goto out; 834 835 req->indirect_dma_addr = dma_addr; 836 req->index = i; 837 list_add_tail(&req->list, &target->free_reqs); 838 } 839 ret = 0; 840 841 out: 842 return ret; 843 } 844 845 /** 846 * srp_del_scsi_host_attr() - Remove attributes defined in the host template. 847 * @shost: SCSI host whose attributes to remove from sysfs. 848 * 849 * Note: Any attributes defined in the host template and that did not exist 850 * before invocation of this function will be ignored. 851 */ 852 static void srp_del_scsi_host_attr(struct Scsi_Host *shost) 853 { 854 struct device_attribute **attr; 855 856 for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr) 857 device_remove_file(&shost->shost_dev, *attr); 858 } 859 860 static void srp_remove_target(struct srp_target_port *target) 861 { 862 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED); 863 864 srp_del_scsi_host_attr(target->scsi_host); 865 srp_rport_get(target->rport); 866 srp_remove_host(target->scsi_host); 867 scsi_remove_host(target->scsi_host); 868 srp_stop_rport_timers(target->rport); 869 srp_disconnect_target(target); 870 ib_destroy_cm_id(target->cm_id); 871 srp_free_target_ib(target); 872 cancel_work_sync(&target->tl_err_work); 873 srp_rport_put(target->rport); 874 srp_free_req_data(target); 875 876 spin_lock(&target->srp_host->target_lock); 877 list_del(&target->list); 878 spin_unlock(&target->srp_host->target_lock); 879 880 scsi_host_put(target->scsi_host); 881 } 882 883 static void srp_remove_work(struct work_struct *work) 884 { 885 struct srp_target_port *target = 886 container_of(work, struct srp_target_port, remove_work); 887 888 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED); 889 890 srp_remove_target(target); 891 } 892 893 static void srp_rport_delete(struct srp_rport *rport) 894 { 895 struct srp_target_port *target = rport->lld_data; 896 897 srp_queue_remove_work(target); 898 } 899 900 static int srp_connect_target(struct srp_target_port *target) 901 { 902 int retries = 3; 903 int ret; 904 905 WARN_ON_ONCE(target->connected); 906 907 target->qp_in_error = false; 908 909 ret = srp_lookup_path(target); 910 if (ret) 911 return ret; 912 913 while (1) { 914 init_completion(&target->done); 915 ret = srp_send_req(target); 916 if (ret) 917 return ret; 918 ret = wait_for_completion_interruptible(&target->done); 919 if (ret < 0) 920 return ret; 921 922 /* 923 * The CM event handling code will set status to 924 * SRP_PORT_REDIRECT if we get a port redirect REJ 925 * back, or SRP_DLID_REDIRECT if we get a lid/qp 926 * redirect REJ back. 927 */ 928 switch (target->status) { 929 case 0: 930 srp_change_conn_state(target, true); 931 return 0; 932 933 case SRP_PORT_REDIRECT: 934 ret = srp_lookup_path(target); 935 if (ret) 936 return ret; 937 break; 938 939 case SRP_DLID_REDIRECT: 940 break; 941 942 case SRP_STALE_CONN: 943 /* Our current CM id was stale, and is now in timewait. 944 * Try to reconnect with a new one. 945 */ 946 if (!retries-- || srp_new_cm_id(target)) { 947 shost_printk(KERN_ERR, target->scsi_host, PFX 948 "giving up on stale connection\n"); 949 target->status = -ECONNRESET; 950 return target->status; 951 } 952 953 shost_printk(KERN_ERR, target->scsi_host, PFX 954 "retrying stale connection\n"); 955 break; 956 957 default: 958 return target->status; 959 } 960 } 961 } 962 963 static int srp_inv_rkey(struct srp_target_port *target, u32 rkey) 964 { 965 struct ib_send_wr *bad_wr; 966 struct ib_send_wr wr = { 967 .opcode = IB_WR_LOCAL_INV, 968 .wr_id = LOCAL_INV_WR_ID_MASK, 969 .next = NULL, 970 .num_sge = 0, 971 .send_flags = 0, 972 .ex.invalidate_rkey = rkey, 973 }; 974 975 return ib_post_send(target->qp, &wr, &bad_wr); 976 } 977 978 static void srp_unmap_data(struct scsi_cmnd *scmnd, 979 struct srp_target_port *target, 980 struct srp_request *req) 981 { 982 struct srp_device *dev = target->srp_host->srp_dev; 983 struct ib_device *ibdev = dev->dev; 984 int i, res; 985 986 if (!scsi_sglist(scmnd) || 987 (scmnd->sc_data_direction != DMA_TO_DEVICE && 988 scmnd->sc_data_direction != DMA_FROM_DEVICE)) 989 return; 990 991 if (dev->use_fast_reg) { 992 struct srp_fr_desc **pfr; 993 994 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) { 995 res = srp_inv_rkey(target, (*pfr)->mr->rkey); 996 if (res < 0) { 997 shost_printk(KERN_ERR, target->scsi_host, PFX 998 "Queueing INV WR for rkey %#x failed (%d)\n", 999 (*pfr)->mr->rkey, res); 1000 queue_work(system_long_wq, 1001 &target->tl_err_work); 1002 } 1003 } 1004 if (req->nmdesc) 1005 srp_fr_pool_put(target->fr_pool, req->fr_list, 1006 req->nmdesc); 1007 } else { 1008 struct ib_pool_fmr **pfmr; 1009 1010 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++) 1011 ib_fmr_pool_unmap(*pfmr); 1012 } 1013 1014 ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd), 1015 scmnd->sc_data_direction); 1016 } 1017 1018 /** 1019 * srp_claim_req - Take ownership of the scmnd associated with a request. 1020 * @target: SRP target port. 1021 * @req: SRP request. 1022 * @sdev: If not NULL, only take ownership for this SCSI device. 1023 * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take 1024 * ownership of @req->scmnd if it equals @scmnd. 1025 * 1026 * Return value: 1027 * Either NULL or a pointer to the SCSI command the caller became owner of. 1028 */ 1029 static struct scsi_cmnd *srp_claim_req(struct srp_target_port *target, 1030 struct srp_request *req, 1031 struct scsi_device *sdev, 1032 struct scsi_cmnd *scmnd) 1033 { 1034 unsigned long flags; 1035 1036 spin_lock_irqsave(&target->lock, flags); 1037 if (req->scmnd && 1038 (!sdev || req->scmnd->device == sdev) && 1039 (!scmnd || req->scmnd == scmnd)) { 1040 scmnd = req->scmnd; 1041 req->scmnd = NULL; 1042 } else { 1043 scmnd = NULL; 1044 } 1045 spin_unlock_irqrestore(&target->lock, flags); 1046 1047 return scmnd; 1048 } 1049 1050 /** 1051 * srp_free_req() - Unmap data and add request to the free request list. 1052 * @target: SRP target port. 1053 * @req: Request to be freed. 1054 * @scmnd: SCSI command associated with @req. 1055 * @req_lim_delta: Amount to be added to @target->req_lim. 1056 */ 1057 static void srp_free_req(struct srp_target_port *target, 1058 struct srp_request *req, struct scsi_cmnd *scmnd, 1059 s32 req_lim_delta) 1060 { 1061 unsigned long flags; 1062 1063 srp_unmap_data(scmnd, target, req); 1064 1065 spin_lock_irqsave(&target->lock, flags); 1066 target->req_lim += req_lim_delta; 1067 list_add_tail(&req->list, &target->free_reqs); 1068 spin_unlock_irqrestore(&target->lock, flags); 1069 } 1070 1071 static void srp_finish_req(struct srp_target_port *target, 1072 struct srp_request *req, struct scsi_device *sdev, 1073 int result) 1074 { 1075 struct scsi_cmnd *scmnd = srp_claim_req(target, req, sdev, NULL); 1076 1077 if (scmnd) { 1078 srp_free_req(target, req, scmnd, 0); 1079 scmnd->result = result; 1080 scmnd->scsi_done(scmnd); 1081 } 1082 } 1083 1084 static void srp_terminate_io(struct srp_rport *rport) 1085 { 1086 struct srp_target_port *target = rport->lld_data; 1087 struct Scsi_Host *shost = target->scsi_host; 1088 struct scsi_device *sdev; 1089 int i; 1090 1091 /* 1092 * Invoking srp_terminate_io() while srp_queuecommand() is running 1093 * is not safe. Hence the warning statement below. 1094 */ 1095 shost_for_each_device(sdev, shost) 1096 WARN_ON_ONCE(sdev->request_queue->request_fn_active); 1097 1098 for (i = 0; i < target->req_ring_size; ++i) { 1099 struct srp_request *req = &target->req_ring[i]; 1100 srp_finish_req(target, req, NULL, DID_TRANSPORT_FAILFAST << 16); 1101 } 1102 } 1103 1104 /* 1105 * It is up to the caller to ensure that srp_rport_reconnect() calls are 1106 * serialized and that no concurrent srp_queuecommand(), srp_abort(), 1107 * srp_reset_device() or srp_reset_host() calls will occur while this function 1108 * is in progress. One way to realize that is not to call this function 1109 * directly but to call srp_reconnect_rport() instead since that last function 1110 * serializes calls of this function via rport->mutex and also blocks 1111 * srp_queuecommand() calls before invoking this function. 1112 */ 1113 static int srp_rport_reconnect(struct srp_rport *rport) 1114 { 1115 struct srp_target_port *target = rport->lld_data; 1116 int i, ret; 1117 1118 srp_disconnect_target(target); 1119 /* 1120 * Now get a new local CM ID so that we avoid confusing the target in 1121 * case things are really fouled up. Doing so also ensures that all CM 1122 * callbacks will have finished before a new QP is allocated. 1123 */ 1124 ret = srp_new_cm_id(target); 1125 1126 for (i = 0; i < target->req_ring_size; ++i) { 1127 struct srp_request *req = &target->req_ring[i]; 1128 srp_finish_req(target, req, NULL, DID_RESET << 16); 1129 } 1130 1131 /* 1132 * Whether or not creating a new CM ID succeeded, create a new 1133 * QP. This guarantees that all callback functions for the old QP have 1134 * finished before any send requests are posted on the new QP. 1135 */ 1136 ret += srp_create_target_ib(target); 1137 1138 INIT_LIST_HEAD(&target->free_tx); 1139 for (i = 0; i < target->queue_size; ++i) 1140 list_add(&target->tx_ring[i]->list, &target->free_tx); 1141 1142 if (ret == 0) 1143 ret = srp_connect_target(target); 1144 1145 if (ret == 0) 1146 shost_printk(KERN_INFO, target->scsi_host, 1147 PFX "reconnect succeeded\n"); 1148 1149 return ret; 1150 } 1151 1152 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr, 1153 unsigned int dma_len, u32 rkey) 1154 { 1155 struct srp_direct_buf *desc = state->desc; 1156 1157 desc->va = cpu_to_be64(dma_addr); 1158 desc->key = cpu_to_be32(rkey); 1159 desc->len = cpu_to_be32(dma_len); 1160 1161 state->total_len += dma_len; 1162 state->desc++; 1163 state->ndesc++; 1164 } 1165 1166 static int srp_map_finish_fmr(struct srp_map_state *state, 1167 struct srp_target_port *target) 1168 { 1169 struct ib_pool_fmr *fmr; 1170 u64 io_addr = 0; 1171 1172 fmr = ib_fmr_pool_map_phys(target->fmr_pool, state->pages, 1173 state->npages, io_addr); 1174 if (IS_ERR(fmr)) 1175 return PTR_ERR(fmr); 1176 1177 *state->next_fmr++ = fmr; 1178 state->nmdesc++; 1179 1180 srp_map_desc(state, 0, state->dma_len, fmr->fmr->rkey); 1181 1182 return 0; 1183 } 1184 1185 static int srp_map_finish_fr(struct srp_map_state *state, 1186 struct srp_target_port *target) 1187 { 1188 struct srp_device *dev = target->srp_host->srp_dev; 1189 struct ib_send_wr *bad_wr; 1190 struct ib_send_wr wr; 1191 struct srp_fr_desc *desc; 1192 u32 rkey; 1193 1194 desc = srp_fr_pool_get(target->fr_pool); 1195 if (!desc) 1196 return -ENOMEM; 1197 1198 rkey = ib_inc_rkey(desc->mr->rkey); 1199 ib_update_fast_reg_key(desc->mr, rkey); 1200 1201 memcpy(desc->frpl->page_list, state->pages, 1202 sizeof(state->pages[0]) * state->npages); 1203 1204 memset(&wr, 0, sizeof(wr)); 1205 wr.opcode = IB_WR_FAST_REG_MR; 1206 wr.wr_id = FAST_REG_WR_ID_MASK; 1207 wr.wr.fast_reg.iova_start = state->base_dma_addr; 1208 wr.wr.fast_reg.page_list = desc->frpl; 1209 wr.wr.fast_reg.page_list_len = state->npages; 1210 wr.wr.fast_reg.page_shift = ilog2(dev->mr_page_size); 1211 wr.wr.fast_reg.length = state->dma_len; 1212 wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE | 1213 IB_ACCESS_REMOTE_READ | 1214 IB_ACCESS_REMOTE_WRITE); 1215 wr.wr.fast_reg.rkey = desc->mr->lkey; 1216 1217 *state->next_fr++ = desc; 1218 state->nmdesc++; 1219 1220 srp_map_desc(state, state->base_dma_addr, state->dma_len, 1221 desc->mr->rkey); 1222 1223 return ib_post_send(target->qp, &wr, &bad_wr); 1224 } 1225 1226 static int srp_finish_mapping(struct srp_map_state *state, 1227 struct srp_target_port *target) 1228 { 1229 int ret = 0; 1230 1231 if (state->npages == 0) 1232 return 0; 1233 1234 if (state->npages == 1 && !register_always) 1235 srp_map_desc(state, state->base_dma_addr, state->dma_len, 1236 target->rkey); 1237 else 1238 ret = target->srp_host->srp_dev->use_fast_reg ? 1239 srp_map_finish_fr(state, target) : 1240 srp_map_finish_fmr(state, target); 1241 1242 if (ret == 0) { 1243 state->npages = 0; 1244 state->dma_len = 0; 1245 } 1246 1247 return ret; 1248 } 1249 1250 static void srp_map_update_start(struct srp_map_state *state, 1251 struct scatterlist *sg, int sg_index, 1252 dma_addr_t dma_addr) 1253 { 1254 state->unmapped_sg = sg; 1255 state->unmapped_index = sg_index; 1256 state->unmapped_addr = dma_addr; 1257 } 1258 1259 static int srp_map_sg_entry(struct srp_map_state *state, 1260 struct srp_target_port *target, 1261 struct scatterlist *sg, int sg_index, 1262 bool use_mr) 1263 { 1264 struct srp_device *dev = target->srp_host->srp_dev; 1265 struct ib_device *ibdev = dev->dev; 1266 dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg); 1267 unsigned int dma_len = ib_sg_dma_len(ibdev, sg); 1268 unsigned int len; 1269 int ret; 1270 1271 if (!dma_len) 1272 return 0; 1273 1274 if (!use_mr) { 1275 /* 1276 * Once we're in direct map mode for a request, we don't 1277 * go back to FMR or FR mode, so no need to update anything 1278 * other than the descriptor. 1279 */ 1280 srp_map_desc(state, dma_addr, dma_len, target->rkey); 1281 return 0; 1282 } 1283 1284 /* 1285 * Since not all RDMA HW drivers support non-zero page offsets for 1286 * FMR, if we start at an offset into a page, don't merge into the 1287 * current FMR mapping. Finish it out, and use the kernel's MR for 1288 * this sg entry. 1289 */ 1290 if ((!dev->use_fast_reg && dma_addr & ~dev->mr_page_mask) || 1291 dma_len > dev->mr_max_size) { 1292 ret = srp_finish_mapping(state, target); 1293 if (ret) 1294 return ret; 1295 1296 srp_map_desc(state, dma_addr, dma_len, target->rkey); 1297 srp_map_update_start(state, NULL, 0, 0); 1298 return 0; 1299 } 1300 1301 /* 1302 * If this is the first sg that will be mapped via FMR or via FR, save 1303 * our position. We need to know the first unmapped entry, its index, 1304 * and the first unmapped address within that entry to be able to 1305 * restart mapping after an error. 1306 */ 1307 if (!state->unmapped_sg) 1308 srp_map_update_start(state, sg, sg_index, dma_addr); 1309 1310 while (dma_len) { 1311 unsigned offset = dma_addr & ~dev->mr_page_mask; 1312 if (state->npages == dev->max_pages_per_mr || offset != 0) { 1313 ret = srp_finish_mapping(state, target); 1314 if (ret) 1315 return ret; 1316 1317 srp_map_update_start(state, sg, sg_index, dma_addr); 1318 } 1319 1320 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset); 1321 1322 if (!state->npages) 1323 state->base_dma_addr = dma_addr; 1324 state->pages[state->npages++] = dma_addr & dev->mr_page_mask; 1325 state->dma_len += len; 1326 dma_addr += len; 1327 dma_len -= len; 1328 } 1329 1330 /* 1331 * If the last entry of the MR wasn't a full page, then we need to 1332 * close it out and start a new one -- we can only merge at page 1333 * boundries. 1334 */ 1335 ret = 0; 1336 if (len != dev->mr_page_size) { 1337 ret = srp_finish_mapping(state, target); 1338 if (!ret) 1339 srp_map_update_start(state, NULL, 0, 0); 1340 } 1341 return ret; 1342 } 1343 1344 static int srp_map_sg(struct srp_map_state *state, 1345 struct srp_target_port *target, struct srp_request *req, 1346 struct scatterlist *scat, int count) 1347 { 1348 struct srp_device *dev = target->srp_host->srp_dev; 1349 struct ib_device *ibdev = dev->dev; 1350 struct scatterlist *sg; 1351 int i; 1352 bool use_mr; 1353 1354 state->desc = req->indirect_desc; 1355 state->pages = req->map_page; 1356 if (dev->use_fast_reg) { 1357 state->next_fr = req->fr_list; 1358 use_mr = !!target->fr_pool; 1359 } else { 1360 state->next_fmr = req->fmr_list; 1361 use_mr = !!target->fmr_pool; 1362 } 1363 1364 for_each_sg(scat, sg, count, i) { 1365 if (srp_map_sg_entry(state, target, sg, i, use_mr)) { 1366 /* 1367 * Memory registration failed, so backtrack to the 1368 * first unmapped entry and continue on without using 1369 * memory registration. 1370 */ 1371 dma_addr_t dma_addr; 1372 unsigned int dma_len; 1373 1374 backtrack: 1375 sg = state->unmapped_sg; 1376 i = state->unmapped_index; 1377 1378 dma_addr = ib_sg_dma_address(ibdev, sg); 1379 dma_len = ib_sg_dma_len(ibdev, sg); 1380 dma_len -= (state->unmapped_addr - dma_addr); 1381 dma_addr = state->unmapped_addr; 1382 use_mr = false; 1383 srp_map_desc(state, dma_addr, dma_len, target->rkey); 1384 } 1385 } 1386 1387 if (use_mr && srp_finish_mapping(state, target)) 1388 goto backtrack; 1389 1390 req->nmdesc = state->nmdesc; 1391 1392 return 0; 1393 } 1394 1395 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_target_port *target, 1396 struct srp_request *req) 1397 { 1398 struct scatterlist *scat; 1399 struct srp_cmd *cmd = req->cmd->buf; 1400 int len, nents, count; 1401 struct srp_device *dev; 1402 struct ib_device *ibdev; 1403 struct srp_map_state state; 1404 struct srp_indirect_buf *indirect_hdr; 1405 u32 table_len; 1406 u8 fmt; 1407 1408 if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE) 1409 return sizeof (struct srp_cmd); 1410 1411 if (scmnd->sc_data_direction != DMA_FROM_DEVICE && 1412 scmnd->sc_data_direction != DMA_TO_DEVICE) { 1413 shost_printk(KERN_WARNING, target->scsi_host, 1414 PFX "Unhandled data direction %d\n", 1415 scmnd->sc_data_direction); 1416 return -EINVAL; 1417 } 1418 1419 nents = scsi_sg_count(scmnd); 1420 scat = scsi_sglist(scmnd); 1421 1422 dev = target->srp_host->srp_dev; 1423 ibdev = dev->dev; 1424 1425 count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction); 1426 if (unlikely(count == 0)) 1427 return -EIO; 1428 1429 fmt = SRP_DATA_DESC_DIRECT; 1430 len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf); 1431 1432 if (count == 1 && !register_always) { 1433 /* 1434 * The midlayer only generated a single gather/scatter 1435 * entry, or DMA mapping coalesced everything to a 1436 * single entry. So a direct descriptor along with 1437 * the DMA MR suffices. 1438 */ 1439 struct srp_direct_buf *buf = (void *) cmd->add_data; 1440 1441 buf->va = cpu_to_be64(ib_sg_dma_address(ibdev, scat)); 1442 buf->key = cpu_to_be32(target->rkey); 1443 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat)); 1444 1445 req->nmdesc = 0; 1446 goto map_complete; 1447 } 1448 1449 /* 1450 * We have more than one scatter/gather entry, so build our indirect 1451 * descriptor table, trying to merge as many entries as we can. 1452 */ 1453 indirect_hdr = (void *) cmd->add_data; 1454 1455 ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr, 1456 target->indirect_size, DMA_TO_DEVICE); 1457 1458 memset(&state, 0, sizeof(state)); 1459 srp_map_sg(&state, target, req, scat, count); 1460 1461 /* We've mapped the request, now pull as much of the indirect 1462 * descriptor table as we can into the command buffer. If this 1463 * target is not using an external indirect table, we are 1464 * guaranteed to fit into the command, as the SCSI layer won't 1465 * give us more S/G entries than we allow. 1466 */ 1467 if (state.ndesc == 1) { 1468 /* 1469 * Memory registration collapsed the sg-list into one entry, 1470 * so use a direct descriptor. 1471 */ 1472 struct srp_direct_buf *buf = (void *) cmd->add_data; 1473 1474 *buf = req->indirect_desc[0]; 1475 goto map_complete; 1476 } 1477 1478 if (unlikely(target->cmd_sg_cnt < state.ndesc && 1479 !target->allow_ext_sg)) { 1480 shost_printk(KERN_ERR, target->scsi_host, 1481 "Could not fit S/G list into SRP_CMD\n"); 1482 return -EIO; 1483 } 1484 1485 count = min(state.ndesc, target->cmd_sg_cnt); 1486 table_len = state.ndesc * sizeof (struct srp_direct_buf); 1487 1488 fmt = SRP_DATA_DESC_INDIRECT; 1489 len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf); 1490 len += count * sizeof (struct srp_direct_buf); 1491 1492 memcpy(indirect_hdr->desc_list, req->indirect_desc, 1493 count * sizeof (struct srp_direct_buf)); 1494 1495 indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr); 1496 indirect_hdr->table_desc.key = cpu_to_be32(target->rkey); 1497 indirect_hdr->table_desc.len = cpu_to_be32(table_len); 1498 indirect_hdr->len = cpu_to_be32(state.total_len); 1499 1500 if (scmnd->sc_data_direction == DMA_TO_DEVICE) 1501 cmd->data_out_desc_cnt = count; 1502 else 1503 cmd->data_in_desc_cnt = count; 1504 1505 ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len, 1506 DMA_TO_DEVICE); 1507 1508 map_complete: 1509 if (scmnd->sc_data_direction == DMA_TO_DEVICE) 1510 cmd->buf_fmt = fmt << 4; 1511 else 1512 cmd->buf_fmt = fmt; 1513 1514 return len; 1515 } 1516 1517 /* 1518 * Return an IU and possible credit to the free pool 1519 */ 1520 static void srp_put_tx_iu(struct srp_target_port *target, struct srp_iu *iu, 1521 enum srp_iu_type iu_type) 1522 { 1523 unsigned long flags; 1524 1525 spin_lock_irqsave(&target->lock, flags); 1526 list_add(&iu->list, &target->free_tx); 1527 if (iu_type != SRP_IU_RSP) 1528 ++target->req_lim; 1529 spin_unlock_irqrestore(&target->lock, flags); 1530 } 1531 1532 /* 1533 * Must be called with target->lock held to protect req_lim and free_tx. 1534 * If IU is not sent, it must be returned using srp_put_tx_iu(). 1535 * 1536 * Note: 1537 * An upper limit for the number of allocated information units for each 1538 * request type is: 1539 * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues 1540 * more than Scsi_Host.can_queue requests. 1541 * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE. 1542 * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than 1543 * one unanswered SRP request to an initiator. 1544 */ 1545 static struct srp_iu *__srp_get_tx_iu(struct srp_target_port *target, 1546 enum srp_iu_type iu_type) 1547 { 1548 s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE; 1549 struct srp_iu *iu; 1550 1551 srp_send_completion(target->send_cq, target); 1552 1553 if (list_empty(&target->free_tx)) 1554 return NULL; 1555 1556 /* Initiator responses to target requests do not consume credits */ 1557 if (iu_type != SRP_IU_RSP) { 1558 if (target->req_lim <= rsv) { 1559 ++target->zero_req_lim; 1560 return NULL; 1561 } 1562 1563 --target->req_lim; 1564 } 1565 1566 iu = list_first_entry(&target->free_tx, struct srp_iu, list); 1567 list_del(&iu->list); 1568 return iu; 1569 } 1570 1571 static int srp_post_send(struct srp_target_port *target, 1572 struct srp_iu *iu, int len) 1573 { 1574 struct ib_sge list; 1575 struct ib_send_wr wr, *bad_wr; 1576 1577 list.addr = iu->dma; 1578 list.length = len; 1579 list.lkey = target->lkey; 1580 1581 wr.next = NULL; 1582 wr.wr_id = (uintptr_t) iu; 1583 wr.sg_list = &list; 1584 wr.num_sge = 1; 1585 wr.opcode = IB_WR_SEND; 1586 wr.send_flags = IB_SEND_SIGNALED; 1587 1588 return ib_post_send(target->qp, &wr, &bad_wr); 1589 } 1590 1591 static int srp_post_recv(struct srp_target_port *target, struct srp_iu *iu) 1592 { 1593 struct ib_recv_wr wr, *bad_wr; 1594 struct ib_sge list; 1595 1596 list.addr = iu->dma; 1597 list.length = iu->size; 1598 list.lkey = target->lkey; 1599 1600 wr.next = NULL; 1601 wr.wr_id = (uintptr_t) iu; 1602 wr.sg_list = &list; 1603 wr.num_sge = 1; 1604 1605 return ib_post_recv(target->qp, &wr, &bad_wr); 1606 } 1607 1608 static void srp_process_rsp(struct srp_target_port *target, struct srp_rsp *rsp) 1609 { 1610 struct srp_request *req; 1611 struct scsi_cmnd *scmnd; 1612 unsigned long flags; 1613 1614 if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) { 1615 spin_lock_irqsave(&target->lock, flags); 1616 target->req_lim += be32_to_cpu(rsp->req_lim_delta); 1617 spin_unlock_irqrestore(&target->lock, flags); 1618 1619 target->tsk_mgmt_status = -1; 1620 if (be32_to_cpu(rsp->resp_data_len) >= 4) 1621 target->tsk_mgmt_status = rsp->data[3]; 1622 complete(&target->tsk_mgmt_done); 1623 } else { 1624 req = &target->req_ring[rsp->tag]; 1625 scmnd = srp_claim_req(target, req, NULL, NULL); 1626 if (!scmnd) { 1627 shost_printk(KERN_ERR, target->scsi_host, 1628 "Null scmnd for RSP w/tag %016llx\n", 1629 (unsigned long long) rsp->tag); 1630 1631 spin_lock_irqsave(&target->lock, flags); 1632 target->req_lim += be32_to_cpu(rsp->req_lim_delta); 1633 spin_unlock_irqrestore(&target->lock, flags); 1634 1635 return; 1636 } 1637 scmnd->result = rsp->status; 1638 1639 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) { 1640 memcpy(scmnd->sense_buffer, rsp->data + 1641 be32_to_cpu(rsp->resp_data_len), 1642 min_t(int, be32_to_cpu(rsp->sense_data_len), 1643 SCSI_SENSE_BUFFERSIZE)); 1644 } 1645 1646 if (rsp->flags & (SRP_RSP_FLAG_DOOVER | SRP_RSP_FLAG_DOUNDER)) 1647 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt)); 1648 else if (rsp->flags & (SRP_RSP_FLAG_DIOVER | SRP_RSP_FLAG_DIUNDER)) 1649 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt)); 1650 1651 srp_free_req(target, req, scmnd, 1652 be32_to_cpu(rsp->req_lim_delta)); 1653 1654 scmnd->host_scribble = NULL; 1655 scmnd->scsi_done(scmnd); 1656 } 1657 } 1658 1659 static int srp_response_common(struct srp_target_port *target, s32 req_delta, 1660 void *rsp, int len) 1661 { 1662 struct ib_device *dev = target->srp_host->srp_dev->dev; 1663 unsigned long flags; 1664 struct srp_iu *iu; 1665 int err; 1666 1667 spin_lock_irqsave(&target->lock, flags); 1668 target->req_lim += req_delta; 1669 iu = __srp_get_tx_iu(target, SRP_IU_RSP); 1670 spin_unlock_irqrestore(&target->lock, flags); 1671 1672 if (!iu) { 1673 shost_printk(KERN_ERR, target->scsi_host, PFX 1674 "no IU available to send response\n"); 1675 return 1; 1676 } 1677 1678 ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE); 1679 memcpy(iu->buf, rsp, len); 1680 ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE); 1681 1682 err = srp_post_send(target, iu, len); 1683 if (err) { 1684 shost_printk(KERN_ERR, target->scsi_host, PFX 1685 "unable to post response: %d\n", err); 1686 srp_put_tx_iu(target, iu, SRP_IU_RSP); 1687 } 1688 1689 return err; 1690 } 1691 1692 static void srp_process_cred_req(struct srp_target_port *target, 1693 struct srp_cred_req *req) 1694 { 1695 struct srp_cred_rsp rsp = { 1696 .opcode = SRP_CRED_RSP, 1697 .tag = req->tag, 1698 }; 1699 s32 delta = be32_to_cpu(req->req_lim_delta); 1700 1701 if (srp_response_common(target, delta, &rsp, sizeof rsp)) 1702 shost_printk(KERN_ERR, target->scsi_host, PFX 1703 "problems processing SRP_CRED_REQ\n"); 1704 } 1705 1706 static void srp_process_aer_req(struct srp_target_port *target, 1707 struct srp_aer_req *req) 1708 { 1709 struct srp_aer_rsp rsp = { 1710 .opcode = SRP_AER_RSP, 1711 .tag = req->tag, 1712 }; 1713 s32 delta = be32_to_cpu(req->req_lim_delta); 1714 1715 shost_printk(KERN_ERR, target->scsi_host, PFX 1716 "ignoring AER for LUN %llu\n", be64_to_cpu(req->lun)); 1717 1718 if (srp_response_common(target, delta, &rsp, sizeof rsp)) 1719 shost_printk(KERN_ERR, target->scsi_host, PFX 1720 "problems processing SRP_AER_REQ\n"); 1721 } 1722 1723 static void srp_handle_recv(struct srp_target_port *target, struct ib_wc *wc) 1724 { 1725 struct ib_device *dev = target->srp_host->srp_dev->dev; 1726 struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id; 1727 int res; 1728 u8 opcode; 1729 1730 ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_ti_iu_len, 1731 DMA_FROM_DEVICE); 1732 1733 opcode = *(u8 *) iu->buf; 1734 1735 if (0) { 1736 shost_printk(KERN_ERR, target->scsi_host, 1737 PFX "recv completion, opcode 0x%02x\n", opcode); 1738 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1, 1739 iu->buf, wc->byte_len, true); 1740 } 1741 1742 switch (opcode) { 1743 case SRP_RSP: 1744 srp_process_rsp(target, iu->buf); 1745 break; 1746 1747 case SRP_CRED_REQ: 1748 srp_process_cred_req(target, iu->buf); 1749 break; 1750 1751 case SRP_AER_REQ: 1752 srp_process_aer_req(target, iu->buf); 1753 break; 1754 1755 case SRP_T_LOGOUT: 1756 /* XXX Handle target logout */ 1757 shost_printk(KERN_WARNING, target->scsi_host, 1758 PFX "Got target logout request\n"); 1759 break; 1760 1761 default: 1762 shost_printk(KERN_WARNING, target->scsi_host, 1763 PFX "Unhandled SRP opcode 0x%02x\n", opcode); 1764 break; 1765 } 1766 1767 ib_dma_sync_single_for_device(dev, iu->dma, target->max_ti_iu_len, 1768 DMA_FROM_DEVICE); 1769 1770 res = srp_post_recv(target, iu); 1771 if (res != 0) 1772 shost_printk(KERN_ERR, target->scsi_host, 1773 PFX "Recv failed with error code %d\n", res); 1774 } 1775 1776 /** 1777 * srp_tl_err_work() - handle a transport layer error 1778 * @work: Work structure embedded in an SRP target port. 1779 * 1780 * Note: This function may get invoked before the rport has been created, 1781 * hence the target->rport test. 1782 */ 1783 static void srp_tl_err_work(struct work_struct *work) 1784 { 1785 struct srp_target_port *target; 1786 1787 target = container_of(work, struct srp_target_port, tl_err_work); 1788 if (target->rport) 1789 srp_start_tl_fail_timers(target->rport); 1790 } 1791 1792 static void srp_handle_qp_err(u64 wr_id, enum ib_wc_status wc_status, 1793 bool send_err, struct srp_target_port *target) 1794 { 1795 if (target->connected && !target->qp_in_error) { 1796 if (wr_id & LOCAL_INV_WR_ID_MASK) { 1797 shost_printk(KERN_ERR, target->scsi_host, PFX 1798 "LOCAL_INV failed with status %d\n", 1799 wc_status); 1800 } else if (wr_id & FAST_REG_WR_ID_MASK) { 1801 shost_printk(KERN_ERR, target->scsi_host, PFX 1802 "FAST_REG_MR failed status %d\n", 1803 wc_status); 1804 } else { 1805 shost_printk(KERN_ERR, target->scsi_host, 1806 PFX "failed %s status %d for iu %p\n", 1807 send_err ? "send" : "receive", 1808 wc_status, (void *)(uintptr_t)wr_id); 1809 } 1810 queue_work(system_long_wq, &target->tl_err_work); 1811 } 1812 target->qp_in_error = true; 1813 } 1814 1815 static void srp_recv_completion(struct ib_cq *cq, void *target_ptr) 1816 { 1817 struct srp_target_port *target = target_ptr; 1818 struct ib_wc wc; 1819 1820 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1821 while (ib_poll_cq(cq, 1, &wc) > 0) { 1822 if (likely(wc.status == IB_WC_SUCCESS)) { 1823 srp_handle_recv(target, &wc); 1824 } else { 1825 srp_handle_qp_err(wc.wr_id, wc.status, false, target); 1826 } 1827 } 1828 } 1829 1830 static void srp_send_completion(struct ib_cq *cq, void *target_ptr) 1831 { 1832 struct srp_target_port *target = target_ptr; 1833 struct ib_wc wc; 1834 struct srp_iu *iu; 1835 1836 while (ib_poll_cq(cq, 1, &wc) > 0) { 1837 if (likely(wc.status == IB_WC_SUCCESS)) { 1838 iu = (struct srp_iu *) (uintptr_t) wc.wr_id; 1839 list_add(&iu->list, &target->free_tx); 1840 } else { 1841 srp_handle_qp_err(wc.wr_id, wc.status, true, target); 1842 } 1843 } 1844 } 1845 1846 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd) 1847 { 1848 struct srp_target_port *target = host_to_target(shost); 1849 struct srp_rport *rport = target->rport; 1850 struct srp_request *req; 1851 struct srp_iu *iu; 1852 struct srp_cmd *cmd; 1853 struct ib_device *dev; 1854 unsigned long flags; 1855 int len, ret; 1856 const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler; 1857 1858 /* 1859 * The SCSI EH thread is the only context from which srp_queuecommand() 1860 * can get invoked for blocked devices (SDEV_BLOCK / 1861 * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by 1862 * locking the rport mutex if invoked from inside the SCSI EH. 1863 */ 1864 if (in_scsi_eh) 1865 mutex_lock(&rport->mutex); 1866 1867 scmnd->result = srp_chkready(target->rport); 1868 if (unlikely(scmnd->result)) 1869 goto err; 1870 1871 spin_lock_irqsave(&target->lock, flags); 1872 iu = __srp_get_tx_iu(target, SRP_IU_CMD); 1873 if (!iu) 1874 goto err_unlock; 1875 1876 req = list_first_entry(&target->free_reqs, struct srp_request, list); 1877 list_del(&req->list); 1878 spin_unlock_irqrestore(&target->lock, flags); 1879 1880 dev = target->srp_host->srp_dev->dev; 1881 ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len, 1882 DMA_TO_DEVICE); 1883 1884 scmnd->host_scribble = (void *) req; 1885 1886 cmd = iu->buf; 1887 memset(cmd, 0, sizeof *cmd); 1888 1889 cmd->opcode = SRP_CMD; 1890 cmd->lun = cpu_to_be64((u64) scmnd->device->lun << 48); 1891 cmd->tag = req->index; 1892 memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len); 1893 1894 req->scmnd = scmnd; 1895 req->cmd = iu; 1896 1897 len = srp_map_data(scmnd, target, req); 1898 if (len < 0) { 1899 shost_printk(KERN_ERR, target->scsi_host, 1900 PFX "Failed to map data (%d)\n", len); 1901 /* 1902 * If we ran out of memory descriptors (-ENOMEM) because an 1903 * application is queuing many requests with more than 1904 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer 1905 * to reduce queue depth temporarily. 1906 */ 1907 scmnd->result = len == -ENOMEM ? 1908 DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16; 1909 goto err_iu; 1910 } 1911 1912 ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len, 1913 DMA_TO_DEVICE); 1914 1915 if (srp_post_send(target, iu, len)) { 1916 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n"); 1917 goto err_unmap; 1918 } 1919 1920 ret = 0; 1921 1922 unlock_rport: 1923 if (in_scsi_eh) 1924 mutex_unlock(&rport->mutex); 1925 1926 return ret; 1927 1928 err_unmap: 1929 srp_unmap_data(scmnd, target, req); 1930 1931 err_iu: 1932 srp_put_tx_iu(target, iu, SRP_IU_CMD); 1933 1934 /* 1935 * Avoid that the loops that iterate over the request ring can 1936 * encounter a dangling SCSI command pointer. 1937 */ 1938 req->scmnd = NULL; 1939 1940 spin_lock_irqsave(&target->lock, flags); 1941 list_add(&req->list, &target->free_reqs); 1942 1943 err_unlock: 1944 spin_unlock_irqrestore(&target->lock, flags); 1945 1946 err: 1947 if (scmnd->result) { 1948 scmnd->scsi_done(scmnd); 1949 ret = 0; 1950 } else { 1951 ret = SCSI_MLQUEUE_HOST_BUSY; 1952 } 1953 1954 goto unlock_rport; 1955 } 1956 1957 /* 1958 * Note: the resources allocated in this function are freed in 1959 * srp_free_target_ib(). 1960 */ 1961 static int srp_alloc_iu_bufs(struct srp_target_port *target) 1962 { 1963 int i; 1964 1965 target->rx_ring = kzalloc(target->queue_size * sizeof(*target->rx_ring), 1966 GFP_KERNEL); 1967 if (!target->rx_ring) 1968 goto err_no_ring; 1969 target->tx_ring = kzalloc(target->queue_size * sizeof(*target->tx_ring), 1970 GFP_KERNEL); 1971 if (!target->tx_ring) 1972 goto err_no_ring; 1973 1974 for (i = 0; i < target->queue_size; ++i) { 1975 target->rx_ring[i] = srp_alloc_iu(target->srp_host, 1976 target->max_ti_iu_len, 1977 GFP_KERNEL, DMA_FROM_DEVICE); 1978 if (!target->rx_ring[i]) 1979 goto err; 1980 } 1981 1982 for (i = 0; i < target->queue_size; ++i) { 1983 target->tx_ring[i] = srp_alloc_iu(target->srp_host, 1984 target->max_iu_len, 1985 GFP_KERNEL, DMA_TO_DEVICE); 1986 if (!target->tx_ring[i]) 1987 goto err; 1988 1989 list_add(&target->tx_ring[i]->list, &target->free_tx); 1990 } 1991 1992 return 0; 1993 1994 err: 1995 for (i = 0; i < target->queue_size; ++i) { 1996 srp_free_iu(target->srp_host, target->rx_ring[i]); 1997 srp_free_iu(target->srp_host, target->tx_ring[i]); 1998 } 1999 2000 2001 err_no_ring: 2002 kfree(target->tx_ring); 2003 target->tx_ring = NULL; 2004 kfree(target->rx_ring); 2005 target->rx_ring = NULL; 2006 2007 return -ENOMEM; 2008 } 2009 2010 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask) 2011 { 2012 uint64_t T_tr_ns, max_compl_time_ms; 2013 uint32_t rq_tmo_jiffies; 2014 2015 /* 2016 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair, 2017 * table 91), both the QP timeout and the retry count have to be set 2018 * for RC QP's during the RTR to RTS transition. 2019 */ 2020 WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) != 2021 (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)); 2022 2023 /* 2024 * Set target->rq_tmo_jiffies to one second more than the largest time 2025 * it can take before an error completion is generated. See also 2026 * C9-140..142 in the IBTA spec for more information about how to 2027 * convert the QP Local ACK Timeout value to nanoseconds. 2028 */ 2029 T_tr_ns = 4096 * (1ULL << qp_attr->timeout); 2030 max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns; 2031 do_div(max_compl_time_ms, NSEC_PER_MSEC); 2032 rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000); 2033 2034 return rq_tmo_jiffies; 2035 } 2036 2037 static void srp_cm_rep_handler(struct ib_cm_id *cm_id, 2038 struct srp_login_rsp *lrsp, 2039 struct srp_target_port *target) 2040 { 2041 struct ib_qp_attr *qp_attr = NULL; 2042 int attr_mask = 0; 2043 int ret; 2044 int i; 2045 2046 if (lrsp->opcode == SRP_LOGIN_RSP) { 2047 target->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len); 2048 target->req_lim = be32_to_cpu(lrsp->req_lim_delta); 2049 2050 /* 2051 * Reserve credits for task management so we don't 2052 * bounce requests back to the SCSI mid-layer. 2053 */ 2054 target->scsi_host->can_queue 2055 = min(target->req_lim - SRP_TSK_MGMT_SQ_SIZE, 2056 target->scsi_host->can_queue); 2057 target->scsi_host->cmd_per_lun 2058 = min_t(int, target->scsi_host->can_queue, 2059 target->scsi_host->cmd_per_lun); 2060 } else { 2061 shost_printk(KERN_WARNING, target->scsi_host, 2062 PFX "Unhandled RSP opcode %#x\n", lrsp->opcode); 2063 ret = -ECONNRESET; 2064 goto error; 2065 } 2066 2067 if (!target->rx_ring) { 2068 ret = srp_alloc_iu_bufs(target); 2069 if (ret) 2070 goto error; 2071 } 2072 2073 ret = -ENOMEM; 2074 qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL); 2075 if (!qp_attr) 2076 goto error; 2077 2078 qp_attr->qp_state = IB_QPS_RTR; 2079 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask); 2080 if (ret) 2081 goto error_free; 2082 2083 ret = ib_modify_qp(target->qp, qp_attr, attr_mask); 2084 if (ret) 2085 goto error_free; 2086 2087 for (i = 0; i < target->queue_size; i++) { 2088 struct srp_iu *iu = target->rx_ring[i]; 2089 ret = srp_post_recv(target, iu); 2090 if (ret) 2091 goto error_free; 2092 } 2093 2094 qp_attr->qp_state = IB_QPS_RTS; 2095 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask); 2096 if (ret) 2097 goto error_free; 2098 2099 target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask); 2100 2101 ret = ib_modify_qp(target->qp, qp_attr, attr_mask); 2102 if (ret) 2103 goto error_free; 2104 2105 ret = ib_send_cm_rtu(cm_id, NULL, 0); 2106 2107 error_free: 2108 kfree(qp_attr); 2109 2110 error: 2111 target->status = ret; 2112 } 2113 2114 static void srp_cm_rej_handler(struct ib_cm_id *cm_id, 2115 struct ib_cm_event *event, 2116 struct srp_target_port *target) 2117 { 2118 struct Scsi_Host *shost = target->scsi_host; 2119 struct ib_class_port_info *cpi; 2120 int opcode; 2121 2122 switch (event->param.rej_rcvd.reason) { 2123 case IB_CM_REJ_PORT_CM_REDIRECT: 2124 cpi = event->param.rej_rcvd.ari; 2125 target->path.dlid = cpi->redirect_lid; 2126 target->path.pkey = cpi->redirect_pkey; 2127 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff; 2128 memcpy(target->path.dgid.raw, cpi->redirect_gid, 16); 2129 2130 target->status = target->path.dlid ? 2131 SRP_DLID_REDIRECT : SRP_PORT_REDIRECT; 2132 break; 2133 2134 case IB_CM_REJ_PORT_REDIRECT: 2135 if (srp_target_is_topspin(target)) { 2136 /* 2137 * Topspin/Cisco SRP gateways incorrectly send 2138 * reject reason code 25 when they mean 24 2139 * (port redirect). 2140 */ 2141 memcpy(target->path.dgid.raw, 2142 event->param.rej_rcvd.ari, 16); 2143 2144 shost_printk(KERN_DEBUG, shost, 2145 PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n", 2146 (unsigned long long) be64_to_cpu(target->path.dgid.global.subnet_prefix), 2147 (unsigned long long) be64_to_cpu(target->path.dgid.global.interface_id)); 2148 2149 target->status = SRP_PORT_REDIRECT; 2150 } else { 2151 shost_printk(KERN_WARNING, shost, 2152 " REJ reason: IB_CM_REJ_PORT_REDIRECT\n"); 2153 target->status = -ECONNRESET; 2154 } 2155 break; 2156 2157 case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID: 2158 shost_printk(KERN_WARNING, shost, 2159 " REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n"); 2160 target->status = -ECONNRESET; 2161 break; 2162 2163 case IB_CM_REJ_CONSUMER_DEFINED: 2164 opcode = *(u8 *) event->private_data; 2165 if (opcode == SRP_LOGIN_REJ) { 2166 struct srp_login_rej *rej = event->private_data; 2167 u32 reason = be32_to_cpu(rej->reason); 2168 2169 if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE) 2170 shost_printk(KERN_WARNING, shost, 2171 PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n"); 2172 else 2173 shost_printk(KERN_WARNING, shost, PFX 2174 "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n", 2175 target->path.sgid.raw, 2176 target->orig_dgid, reason); 2177 } else 2178 shost_printk(KERN_WARNING, shost, 2179 " REJ reason: IB_CM_REJ_CONSUMER_DEFINED," 2180 " opcode 0x%02x\n", opcode); 2181 target->status = -ECONNRESET; 2182 break; 2183 2184 case IB_CM_REJ_STALE_CONN: 2185 shost_printk(KERN_WARNING, shost, " REJ reason: stale connection\n"); 2186 target->status = SRP_STALE_CONN; 2187 break; 2188 2189 default: 2190 shost_printk(KERN_WARNING, shost, " REJ reason 0x%x\n", 2191 event->param.rej_rcvd.reason); 2192 target->status = -ECONNRESET; 2193 } 2194 } 2195 2196 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2197 { 2198 struct srp_target_port *target = cm_id->context; 2199 int comp = 0; 2200 2201 switch (event->event) { 2202 case IB_CM_REQ_ERROR: 2203 shost_printk(KERN_DEBUG, target->scsi_host, 2204 PFX "Sending CM REQ failed\n"); 2205 comp = 1; 2206 target->status = -ECONNRESET; 2207 break; 2208 2209 case IB_CM_REP_RECEIVED: 2210 comp = 1; 2211 srp_cm_rep_handler(cm_id, event->private_data, target); 2212 break; 2213 2214 case IB_CM_REJ_RECEIVED: 2215 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n"); 2216 comp = 1; 2217 2218 srp_cm_rej_handler(cm_id, event, target); 2219 break; 2220 2221 case IB_CM_DREQ_RECEIVED: 2222 shost_printk(KERN_WARNING, target->scsi_host, 2223 PFX "DREQ received - connection closed\n"); 2224 srp_change_conn_state(target, false); 2225 if (ib_send_cm_drep(cm_id, NULL, 0)) 2226 shost_printk(KERN_ERR, target->scsi_host, 2227 PFX "Sending CM DREP failed\n"); 2228 queue_work(system_long_wq, &target->tl_err_work); 2229 break; 2230 2231 case IB_CM_TIMEWAIT_EXIT: 2232 shost_printk(KERN_ERR, target->scsi_host, 2233 PFX "connection closed\n"); 2234 comp = 1; 2235 2236 target->status = 0; 2237 break; 2238 2239 case IB_CM_MRA_RECEIVED: 2240 case IB_CM_DREQ_ERROR: 2241 case IB_CM_DREP_RECEIVED: 2242 break; 2243 2244 default: 2245 shost_printk(KERN_WARNING, target->scsi_host, 2246 PFX "Unhandled CM event %d\n", event->event); 2247 break; 2248 } 2249 2250 if (comp) 2251 complete(&target->done); 2252 2253 return 0; 2254 } 2255 2256 /** 2257 * srp_change_queue_type - changing device queue tag type 2258 * @sdev: scsi device struct 2259 * @tag_type: requested tag type 2260 * 2261 * Returns queue tag type. 2262 */ 2263 static int 2264 srp_change_queue_type(struct scsi_device *sdev, int tag_type) 2265 { 2266 if (sdev->tagged_supported) { 2267 scsi_set_tag_type(sdev, tag_type); 2268 if (tag_type) 2269 scsi_activate_tcq(sdev, sdev->queue_depth); 2270 else 2271 scsi_deactivate_tcq(sdev, sdev->queue_depth); 2272 } else 2273 tag_type = 0; 2274 2275 return tag_type; 2276 } 2277 2278 /** 2279 * srp_change_queue_depth - setting device queue depth 2280 * @sdev: scsi device struct 2281 * @qdepth: requested queue depth 2282 * @reason: SCSI_QDEPTH_DEFAULT/SCSI_QDEPTH_QFULL/SCSI_QDEPTH_RAMP_UP 2283 * (see include/scsi/scsi_host.h for definition) 2284 * 2285 * Returns queue depth. 2286 */ 2287 static int 2288 srp_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason) 2289 { 2290 struct Scsi_Host *shost = sdev->host; 2291 int max_depth; 2292 if (reason == SCSI_QDEPTH_DEFAULT || reason == SCSI_QDEPTH_RAMP_UP) { 2293 max_depth = shost->can_queue; 2294 if (!sdev->tagged_supported) 2295 max_depth = 1; 2296 if (qdepth > max_depth) 2297 qdepth = max_depth; 2298 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); 2299 } else if (reason == SCSI_QDEPTH_QFULL) 2300 scsi_track_queue_full(sdev, qdepth); 2301 else 2302 return -EOPNOTSUPP; 2303 2304 return sdev->queue_depth; 2305 } 2306 2307 static int srp_send_tsk_mgmt(struct srp_target_port *target, 2308 u64 req_tag, unsigned int lun, u8 func) 2309 { 2310 struct srp_rport *rport = target->rport; 2311 struct ib_device *dev = target->srp_host->srp_dev->dev; 2312 struct srp_iu *iu; 2313 struct srp_tsk_mgmt *tsk_mgmt; 2314 2315 if (!target->connected || target->qp_in_error) 2316 return -1; 2317 2318 init_completion(&target->tsk_mgmt_done); 2319 2320 /* 2321 * Lock the rport mutex to avoid that srp_create_target_ib() is 2322 * invoked while a task management function is being sent. 2323 */ 2324 mutex_lock(&rport->mutex); 2325 spin_lock_irq(&target->lock); 2326 iu = __srp_get_tx_iu(target, SRP_IU_TSK_MGMT); 2327 spin_unlock_irq(&target->lock); 2328 2329 if (!iu) { 2330 mutex_unlock(&rport->mutex); 2331 2332 return -1; 2333 } 2334 2335 ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt, 2336 DMA_TO_DEVICE); 2337 tsk_mgmt = iu->buf; 2338 memset(tsk_mgmt, 0, sizeof *tsk_mgmt); 2339 2340 tsk_mgmt->opcode = SRP_TSK_MGMT; 2341 tsk_mgmt->lun = cpu_to_be64((u64) lun << 48); 2342 tsk_mgmt->tag = req_tag | SRP_TAG_TSK_MGMT; 2343 tsk_mgmt->tsk_mgmt_func = func; 2344 tsk_mgmt->task_tag = req_tag; 2345 2346 ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt, 2347 DMA_TO_DEVICE); 2348 if (srp_post_send(target, iu, sizeof *tsk_mgmt)) { 2349 srp_put_tx_iu(target, iu, SRP_IU_TSK_MGMT); 2350 mutex_unlock(&rport->mutex); 2351 2352 return -1; 2353 } 2354 mutex_unlock(&rport->mutex); 2355 2356 if (!wait_for_completion_timeout(&target->tsk_mgmt_done, 2357 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS))) 2358 return -1; 2359 2360 return 0; 2361 } 2362 2363 static int srp_abort(struct scsi_cmnd *scmnd) 2364 { 2365 struct srp_target_port *target = host_to_target(scmnd->device->host); 2366 struct srp_request *req = (struct srp_request *) scmnd->host_scribble; 2367 int ret; 2368 2369 shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n"); 2370 2371 if (!req || !srp_claim_req(target, req, NULL, scmnd)) 2372 return SUCCESS; 2373 if (srp_send_tsk_mgmt(target, req->index, scmnd->device->lun, 2374 SRP_TSK_ABORT_TASK) == 0) 2375 ret = SUCCESS; 2376 else if (target->rport->state == SRP_RPORT_LOST) 2377 ret = FAST_IO_FAIL; 2378 else 2379 ret = FAILED; 2380 srp_free_req(target, req, scmnd, 0); 2381 scmnd->result = DID_ABORT << 16; 2382 scmnd->scsi_done(scmnd); 2383 2384 return ret; 2385 } 2386 2387 static int srp_reset_device(struct scsi_cmnd *scmnd) 2388 { 2389 struct srp_target_port *target = host_to_target(scmnd->device->host); 2390 int i; 2391 2392 shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n"); 2393 2394 if (srp_send_tsk_mgmt(target, SRP_TAG_NO_REQ, scmnd->device->lun, 2395 SRP_TSK_LUN_RESET)) 2396 return FAILED; 2397 if (target->tsk_mgmt_status) 2398 return FAILED; 2399 2400 for (i = 0; i < target->req_ring_size; ++i) { 2401 struct srp_request *req = &target->req_ring[i]; 2402 srp_finish_req(target, req, scmnd->device, DID_RESET << 16); 2403 } 2404 2405 return SUCCESS; 2406 } 2407 2408 static int srp_reset_host(struct scsi_cmnd *scmnd) 2409 { 2410 struct srp_target_port *target = host_to_target(scmnd->device->host); 2411 2412 shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n"); 2413 2414 return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED; 2415 } 2416 2417 static int srp_slave_configure(struct scsi_device *sdev) 2418 { 2419 struct Scsi_Host *shost = sdev->host; 2420 struct srp_target_port *target = host_to_target(shost); 2421 struct request_queue *q = sdev->request_queue; 2422 unsigned long timeout; 2423 2424 if (sdev->type == TYPE_DISK) { 2425 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies); 2426 blk_queue_rq_timeout(q, timeout); 2427 } 2428 2429 return 0; 2430 } 2431 2432 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr, 2433 char *buf) 2434 { 2435 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2436 2437 return sprintf(buf, "0x%016llx\n", 2438 (unsigned long long) be64_to_cpu(target->id_ext)); 2439 } 2440 2441 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr, 2442 char *buf) 2443 { 2444 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2445 2446 return sprintf(buf, "0x%016llx\n", 2447 (unsigned long long) be64_to_cpu(target->ioc_guid)); 2448 } 2449 2450 static ssize_t show_service_id(struct device *dev, 2451 struct device_attribute *attr, char *buf) 2452 { 2453 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2454 2455 return sprintf(buf, "0x%016llx\n", 2456 (unsigned long long) be64_to_cpu(target->service_id)); 2457 } 2458 2459 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr, 2460 char *buf) 2461 { 2462 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2463 2464 return sprintf(buf, "0x%04x\n", be16_to_cpu(target->path.pkey)); 2465 } 2466 2467 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr, 2468 char *buf) 2469 { 2470 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2471 2472 return sprintf(buf, "%pI6\n", target->path.sgid.raw); 2473 } 2474 2475 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr, 2476 char *buf) 2477 { 2478 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2479 2480 return sprintf(buf, "%pI6\n", target->path.dgid.raw); 2481 } 2482 2483 static ssize_t show_orig_dgid(struct device *dev, 2484 struct device_attribute *attr, char *buf) 2485 { 2486 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2487 2488 return sprintf(buf, "%pI6\n", target->orig_dgid); 2489 } 2490 2491 static ssize_t show_req_lim(struct device *dev, 2492 struct device_attribute *attr, char *buf) 2493 { 2494 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2495 2496 return sprintf(buf, "%d\n", target->req_lim); 2497 } 2498 2499 static ssize_t show_zero_req_lim(struct device *dev, 2500 struct device_attribute *attr, char *buf) 2501 { 2502 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2503 2504 return sprintf(buf, "%d\n", target->zero_req_lim); 2505 } 2506 2507 static ssize_t show_local_ib_port(struct device *dev, 2508 struct device_attribute *attr, char *buf) 2509 { 2510 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2511 2512 return sprintf(buf, "%d\n", target->srp_host->port); 2513 } 2514 2515 static ssize_t show_local_ib_device(struct device *dev, 2516 struct device_attribute *attr, char *buf) 2517 { 2518 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2519 2520 return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name); 2521 } 2522 2523 static ssize_t show_comp_vector(struct device *dev, 2524 struct device_attribute *attr, char *buf) 2525 { 2526 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2527 2528 return sprintf(buf, "%d\n", target->comp_vector); 2529 } 2530 2531 static ssize_t show_tl_retry_count(struct device *dev, 2532 struct device_attribute *attr, char *buf) 2533 { 2534 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2535 2536 return sprintf(buf, "%d\n", target->tl_retry_count); 2537 } 2538 2539 static ssize_t show_cmd_sg_entries(struct device *dev, 2540 struct device_attribute *attr, char *buf) 2541 { 2542 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2543 2544 return sprintf(buf, "%u\n", target->cmd_sg_cnt); 2545 } 2546 2547 static ssize_t show_allow_ext_sg(struct device *dev, 2548 struct device_attribute *attr, char *buf) 2549 { 2550 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2551 2552 return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false"); 2553 } 2554 2555 static DEVICE_ATTR(id_ext, S_IRUGO, show_id_ext, NULL); 2556 static DEVICE_ATTR(ioc_guid, S_IRUGO, show_ioc_guid, NULL); 2557 static DEVICE_ATTR(service_id, S_IRUGO, show_service_id, NULL); 2558 static DEVICE_ATTR(pkey, S_IRUGO, show_pkey, NULL); 2559 static DEVICE_ATTR(sgid, S_IRUGO, show_sgid, NULL); 2560 static DEVICE_ATTR(dgid, S_IRUGO, show_dgid, NULL); 2561 static DEVICE_ATTR(orig_dgid, S_IRUGO, show_orig_dgid, NULL); 2562 static DEVICE_ATTR(req_lim, S_IRUGO, show_req_lim, NULL); 2563 static DEVICE_ATTR(zero_req_lim, S_IRUGO, show_zero_req_lim, NULL); 2564 static DEVICE_ATTR(local_ib_port, S_IRUGO, show_local_ib_port, NULL); 2565 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL); 2566 static DEVICE_ATTR(comp_vector, S_IRUGO, show_comp_vector, NULL); 2567 static DEVICE_ATTR(tl_retry_count, S_IRUGO, show_tl_retry_count, NULL); 2568 static DEVICE_ATTR(cmd_sg_entries, S_IRUGO, show_cmd_sg_entries, NULL); 2569 static DEVICE_ATTR(allow_ext_sg, S_IRUGO, show_allow_ext_sg, NULL); 2570 2571 static struct device_attribute *srp_host_attrs[] = { 2572 &dev_attr_id_ext, 2573 &dev_attr_ioc_guid, 2574 &dev_attr_service_id, 2575 &dev_attr_pkey, 2576 &dev_attr_sgid, 2577 &dev_attr_dgid, 2578 &dev_attr_orig_dgid, 2579 &dev_attr_req_lim, 2580 &dev_attr_zero_req_lim, 2581 &dev_attr_local_ib_port, 2582 &dev_attr_local_ib_device, 2583 &dev_attr_comp_vector, 2584 &dev_attr_tl_retry_count, 2585 &dev_attr_cmd_sg_entries, 2586 &dev_attr_allow_ext_sg, 2587 NULL 2588 }; 2589 2590 static struct scsi_host_template srp_template = { 2591 .module = THIS_MODULE, 2592 .name = "InfiniBand SRP initiator", 2593 .proc_name = DRV_NAME, 2594 .slave_configure = srp_slave_configure, 2595 .info = srp_target_info, 2596 .queuecommand = srp_queuecommand, 2597 .change_queue_depth = srp_change_queue_depth, 2598 .change_queue_type = srp_change_queue_type, 2599 .eh_abort_handler = srp_abort, 2600 .eh_device_reset_handler = srp_reset_device, 2601 .eh_host_reset_handler = srp_reset_host, 2602 .skip_settle_delay = true, 2603 .sg_tablesize = SRP_DEF_SG_TABLESIZE, 2604 .can_queue = SRP_DEFAULT_CMD_SQ_SIZE, 2605 .this_id = -1, 2606 .cmd_per_lun = SRP_DEFAULT_CMD_SQ_SIZE, 2607 .use_clustering = ENABLE_CLUSTERING, 2608 .shost_attrs = srp_host_attrs 2609 }; 2610 2611 static int srp_add_target(struct srp_host *host, struct srp_target_port *target) 2612 { 2613 struct srp_rport_identifiers ids; 2614 struct srp_rport *rport; 2615 2616 sprintf(target->target_name, "SRP.T10:%016llX", 2617 (unsigned long long) be64_to_cpu(target->id_ext)); 2618 2619 if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device)) 2620 return -ENODEV; 2621 2622 memcpy(ids.port_id, &target->id_ext, 8); 2623 memcpy(ids.port_id + 8, &target->ioc_guid, 8); 2624 ids.roles = SRP_RPORT_ROLE_TARGET; 2625 rport = srp_rport_add(target->scsi_host, &ids); 2626 if (IS_ERR(rport)) { 2627 scsi_remove_host(target->scsi_host); 2628 return PTR_ERR(rport); 2629 } 2630 2631 rport->lld_data = target; 2632 target->rport = rport; 2633 2634 spin_lock(&host->target_lock); 2635 list_add_tail(&target->list, &host->target_list); 2636 spin_unlock(&host->target_lock); 2637 2638 target->state = SRP_TARGET_LIVE; 2639 2640 scsi_scan_target(&target->scsi_host->shost_gendev, 2641 0, target->scsi_id, SCAN_WILD_CARD, 0); 2642 2643 return 0; 2644 } 2645 2646 static void srp_release_dev(struct device *dev) 2647 { 2648 struct srp_host *host = 2649 container_of(dev, struct srp_host, dev); 2650 2651 complete(&host->released); 2652 } 2653 2654 static struct class srp_class = { 2655 .name = "infiniband_srp", 2656 .dev_release = srp_release_dev 2657 }; 2658 2659 /** 2660 * srp_conn_unique() - check whether the connection to a target is unique 2661 * @host: SRP host. 2662 * @target: SRP target port. 2663 */ 2664 static bool srp_conn_unique(struct srp_host *host, 2665 struct srp_target_port *target) 2666 { 2667 struct srp_target_port *t; 2668 bool ret = false; 2669 2670 if (target->state == SRP_TARGET_REMOVED) 2671 goto out; 2672 2673 ret = true; 2674 2675 spin_lock(&host->target_lock); 2676 list_for_each_entry(t, &host->target_list, list) { 2677 if (t != target && 2678 target->id_ext == t->id_ext && 2679 target->ioc_guid == t->ioc_guid && 2680 target->initiator_ext == t->initiator_ext) { 2681 ret = false; 2682 break; 2683 } 2684 } 2685 spin_unlock(&host->target_lock); 2686 2687 out: 2688 return ret; 2689 } 2690 2691 /* 2692 * Target ports are added by writing 2693 * 2694 * id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>, 2695 * pkey=<P_Key>,service_id=<service ID> 2696 * 2697 * to the add_target sysfs attribute. 2698 */ 2699 enum { 2700 SRP_OPT_ERR = 0, 2701 SRP_OPT_ID_EXT = 1 << 0, 2702 SRP_OPT_IOC_GUID = 1 << 1, 2703 SRP_OPT_DGID = 1 << 2, 2704 SRP_OPT_PKEY = 1 << 3, 2705 SRP_OPT_SERVICE_ID = 1 << 4, 2706 SRP_OPT_MAX_SECT = 1 << 5, 2707 SRP_OPT_MAX_CMD_PER_LUN = 1 << 6, 2708 SRP_OPT_IO_CLASS = 1 << 7, 2709 SRP_OPT_INITIATOR_EXT = 1 << 8, 2710 SRP_OPT_CMD_SG_ENTRIES = 1 << 9, 2711 SRP_OPT_ALLOW_EXT_SG = 1 << 10, 2712 SRP_OPT_SG_TABLESIZE = 1 << 11, 2713 SRP_OPT_COMP_VECTOR = 1 << 12, 2714 SRP_OPT_TL_RETRY_COUNT = 1 << 13, 2715 SRP_OPT_QUEUE_SIZE = 1 << 14, 2716 SRP_OPT_ALL = (SRP_OPT_ID_EXT | 2717 SRP_OPT_IOC_GUID | 2718 SRP_OPT_DGID | 2719 SRP_OPT_PKEY | 2720 SRP_OPT_SERVICE_ID), 2721 }; 2722 2723 static const match_table_t srp_opt_tokens = { 2724 { SRP_OPT_ID_EXT, "id_ext=%s" }, 2725 { SRP_OPT_IOC_GUID, "ioc_guid=%s" }, 2726 { SRP_OPT_DGID, "dgid=%s" }, 2727 { SRP_OPT_PKEY, "pkey=%x" }, 2728 { SRP_OPT_SERVICE_ID, "service_id=%s" }, 2729 { SRP_OPT_MAX_SECT, "max_sect=%d" }, 2730 { SRP_OPT_MAX_CMD_PER_LUN, "max_cmd_per_lun=%d" }, 2731 { SRP_OPT_IO_CLASS, "io_class=%x" }, 2732 { SRP_OPT_INITIATOR_EXT, "initiator_ext=%s" }, 2733 { SRP_OPT_CMD_SG_ENTRIES, "cmd_sg_entries=%u" }, 2734 { SRP_OPT_ALLOW_EXT_SG, "allow_ext_sg=%u" }, 2735 { SRP_OPT_SG_TABLESIZE, "sg_tablesize=%u" }, 2736 { SRP_OPT_COMP_VECTOR, "comp_vector=%u" }, 2737 { SRP_OPT_TL_RETRY_COUNT, "tl_retry_count=%u" }, 2738 { SRP_OPT_QUEUE_SIZE, "queue_size=%d" }, 2739 { SRP_OPT_ERR, NULL } 2740 }; 2741 2742 static int srp_parse_options(const char *buf, struct srp_target_port *target) 2743 { 2744 char *options, *sep_opt; 2745 char *p; 2746 char dgid[3]; 2747 substring_t args[MAX_OPT_ARGS]; 2748 int opt_mask = 0; 2749 int token; 2750 int ret = -EINVAL; 2751 int i; 2752 2753 options = kstrdup(buf, GFP_KERNEL); 2754 if (!options) 2755 return -ENOMEM; 2756 2757 sep_opt = options; 2758 while ((p = strsep(&sep_opt, ",")) != NULL) { 2759 if (!*p) 2760 continue; 2761 2762 token = match_token(p, srp_opt_tokens, args); 2763 opt_mask |= token; 2764 2765 switch (token) { 2766 case SRP_OPT_ID_EXT: 2767 p = match_strdup(args); 2768 if (!p) { 2769 ret = -ENOMEM; 2770 goto out; 2771 } 2772 target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16)); 2773 kfree(p); 2774 break; 2775 2776 case SRP_OPT_IOC_GUID: 2777 p = match_strdup(args); 2778 if (!p) { 2779 ret = -ENOMEM; 2780 goto out; 2781 } 2782 target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16)); 2783 kfree(p); 2784 break; 2785 2786 case SRP_OPT_DGID: 2787 p = match_strdup(args); 2788 if (!p) { 2789 ret = -ENOMEM; 2790 goto out; 2791 } 2792 if (strlen(p) != 32) { 2793 pr_warn("bad dest GID parameter '%s'\n", p); 2794 kfree(p); 2795 goto out; 2796 } 2797 2798 for (i = 0; i < 16; ++i) { 2799 strlcpy(dgid, p + i * 2, 3); 2800 target->path.dgid.raw[i] = simple_strtoul(dgid, NULL, 16); 2801 } 2802 kfree(p); 2803 memcpy(target->orig_dgid, target->path.dgid.raw, 16); 2804 break; 2805 2806 case SRP_OPT_PKEY: 2807 if (match_hex(args, &token)) { 2808 pr_warn("bad P_Key parameter '%s'\n", p); 2809 goto out; 2810 } 2811 target->path.pkey = cpu_to_be16(token); 2812 break; 2813 2814 case SRP_OPT_SERVICE_ID: 2815 p = match_strdup(args); 2816 if (!p) { 2817 ret = -ENOMEM; 2818 goto out; 2819 } 2820 target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16)); 2821 target->path.service_id = target->service_id; 2822 kfree(p); 2823 break; 2824 2825 case SRP_OPT_MAX_SECT: 2826 if (match_int(args, &token)) { 2827 pr_warn("bad max sect parameter '%s'\n", p); 2828 goto out; 2829 } 2830 target->scsi_host->max_sectors = token; 2831 break; 2832 2833 case SRP_OPT_QUEUE_SIZE: 2834 if (match_int(args, &token) || token < 1) { 2835 pr_warn("bad queue_size parameter '%s'\n", p); 2836 goto out; 2837 } 2838 target->scsi_host->can_queue = token; 2839 target->queue_size = token + SRP_RSP_SQ_SIZE + 2840 SRP_TSK_MGMT_SQ_SIZE; 2841 if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN)) 2842 target->scsi_host->cmd_per_lun = token; 2843 break; 2844 2845 case SRP_OPT_MAX_CMD_PER_LUN: 2846 if (match_int(args, &token) || token < 1) { 2847 pr_warn("bad max cmd_per_lun parameter '%s'\n", 2848 p); 2849 goto out; 2850 } 2851 target->scsi_host->cmd_per_lun = token; 2852 break; 2853 2854 case SRP_OPT_IO_CLASS: 2855 if (match_hex(args, &token)) { 2856 pr_warn("bad IO class parameter '%s'\n", p); 2857 goto out; 2858 } 2859 if (token != SRP_REV10_IB_IO_CLASS && 2860 token != SRP_REV16A_IB_IO_CLASS) { 2861 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n", 2862 token, SRP_REV10_IB_IO_CLASS, 2863 SRP_REV16A_IB_IO_CLASS); 2864 goto out; 2865 } 2866 target->io_class = token; 2867 break; 2868 2869 case SRP_OPT_INITIATOR_EXT: 2870 p = match_strdup(args); 2871 if (!p) { 2872 ret = -ENOMEM; 2873 goto out; 2874 } 2875 target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16)); 2876 kfree(p); 2877 break; 2878 2879 case SRP_OPT_CMD_SG_ENTRIES: 2880 if (match_int(args, &token) || token < 1 || token > 255) { 2881 pr_warn("bad max cmd_sg_entries parameter '%s'\n", 2882 p); 2883 goto out; 2884 } 2885 target->cmd_sg_cnt = token; 2886 break; 2887 2888 case SRP_OPT_ALLOW_EXT_SG: 2889 if (match_int(args, &token)) { 2890 pr_warn("bad allow_ext_sg parameter '%s'\n", p); 2891 goto out; 2892 } 2893 target->allow_ext_sg = !!token; 2894 break; 2895 2896 case SRP_OPT_SG_TABLESIZE: 2897 if (match_int(args, &token) || token < 1 || 2898 token > SCSI_MAX_SG_CHAIN_SEGMENTS) { 2899 pr_warn("bad max sg_tablesize parameter '%s'\n", 2900 p); 2901 goto out; 2902 } 2903 target->sg_tablesize = token; 2904 break; 2905 2906 case SRP_OPT_COMP_VECTOR: 2907 if (match_int(args, &token) || token < 0) { 2908 pr_warn("bad comp_vector parameter '%s'\n", p); 2909 goto out; 2910 } 2911 target->comp_vector = token; 2912 break; 2913 2914 case SRP_OPT_TL_RETRY_COUNT: 2915 if (match_int(args, &token) || token < 2 || token > 7) { 2916 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n", 2917 p); 2918 goto out; 2919 } 2920 target->tl_retry_count = token; 2921 break; 2922 2923 default: 2924 pr_warn("unknown parameter or missing value '%s' in target creation request\n", 2925 p); 2926 goto out; 2927 } 2928 } 2929 2930 if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL) 2931 ret = 0; 2932 else 2933 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i) 2934 if ((srp_opt_tokens[i].token & SRP_OPT_ALL) && 2935 !(srp_opt_tokens[i].token & opt_mask)) 2936 pr_warn("target creation request is missing parameter '%s'\n", 2937 srp_opt_tokens[i].pattern); 2938 2939 if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue 2940 && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN)) 2941 pr_warn("cmd_per_lun = %d > queue_size = %d\n", 2942 target->scsi_host->cmd_per_lun, 2943 target->scsi_host->can_queue); 2944 2945 out: 2946 kfree(options); 2947 return ret; 2948 } 2949 2950 static ssize_t srp_create_target(struct device *dev, 2951 struct device_attribute *attr, 2952 const char *buf, size_t count) 2953 { 2954 struct srp_host *host = 2955 container_of(dev, struct srp_host, dev); 2956 struct Scsi_Host *target_host; 2957 struct srp_target_port *target; 2958 struct srp_device *srp_dev = host->srp_dev; 2959 struct ib_device *ibdev = srp_dev->dev; 2960 int ret; 2961 2962 target_host = scsi_host_alloc(&srp_template, 2963 sizeof (struct srp_target_port)); 2964 if (!target_host) 2965 return -ENOMEM; 2966 2967 target_host->transportt = ib_srp_transport_template; 2968 target_host->max_channel = 0; 2969 target_host->max_id = 1; 2970 target_host->max_lun = SRP_MAX_LUN; 2971 target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb; 2972 2973 target = host_to_target(target_host); 2974 2975 target->io_class = SRP_REV16A_IB_IO_CLASS; 2976 target->scsi_host = target_host; 2977 target->srp_host = host; 2978 target->lkey = host->srp_dev->mr->lkey; 2979 target->rkey = host->srp_dev->mr->rkey; 2980 target->cmd_sg_cnt = cmd_sg_entries; 2981 target->sg_tablesize = indirect_sg_entries ? : cmd_sg_entries; 2982 target->allow_ext_sg = allow_ext_sg; 2983 target->tl_retry_count = 7; 2984 target->queue_size = SRP_DEFAULT_QUEUE_SIZE; 2985 2986 mutex_lock(&host->add_target_mutex); 2987 2988 ret = srp_parse_options(buf, target); 2989 if (ret) 2990 goto err; 2991 2992 target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE; 2993 2994 if (!srp_conn_unique(target->srp_host, target)) { 2995 shost_printk(KERN_INFO, target->scsi_host, 2996 PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n", 2997 be64_to_cpu(target->id_ext), 2998 be64_to_cpu(target->ioc_guid), 2999 be64_to_cpu(target->initiator_ext)); 3000 ret = -EEXIST; 3001 goto err; 3002 } 3003 3004 if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg && 3005 target->cmd_sg_cnt < target->sg_tablesize) { 3006 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n"); 3007 target->sg_tablesize = target->cmd_sg_cnt; 3008 } 3009 3010 target_host->sg_tablesize = target->sg_tablesize; 3011 target->indirect_size = target->sg_tablesize * 3012 sizeof (struct srp_direct_buf); 3013 target->max_iu_len = sizeof (struct srp_cmd) + 3014 sizeof (struct srp_indirect_buf) + 3015 target->cmd_sg_cnt * sizeof (struct srp_direct_buf); 3016 3017 INIT_WORK(&target->tl_err_work, srp_tl_err_work); 3018 INIT_WORK(&target->remove_work, srp_remove_work); 3019 spin_lock_init(&target->lock); 3020 INIT_LIST_HEAD(&target->free_tx); 3021 ret = srp_alloc_req_data(target); 3022 if (ret) 3023 goto err_free_mem; 3024 3025 ret = ib_query_gid(ibdev, host->port, 0, &target->path.sgid); 3026 if (ret) 3027 goto err_free_mem; 3028 3029 ret = srp_create_target_ib(target); 3030 if (ret) 3031 goto err_free_mem; 3032 3033 ret = srp_new_cm_id(target); 3034 if (ret) 3035 goto err_free_ib; 3036 3037 ret = srp_connect_target(target); 3038 if (ret) { 3039 shost_printk(KERN_ERR, target->scsi_host, 3040 PFX "Connection failed\n"); 3041 goto err_cm_id; 3042 } 3043 3044 ret = srp_add_target(host, target); 3045 if (ret) 3046 goto err_disconnect; 3047 3048 shost_printk(KERN_DEBUG, target->scsi_host, PFX 3049 "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n", 3050 be64_to_cpu(target->id_ext), 3051 be64_to_cpu(target->ioc_guid), 3052 be16_to_cpu(target->path.pkey), 3053 be64_to_cpu(target->service_id), 3054 target->path.sgid.raw, target->path.dgid.raw); 3055 3056 ret = count; 3057 3058 out: 3059 mutex_unlock(&host->add_target_mutex); 3060 return ret; 3061 3062 err_disconnect: 3063 srp_disconnect_target(target); 3064 3065 err_cm_id: 3066 ib_destroy_cm_id(target->cm_id); 3067 3068 err_free_ib: 3069 srp_free_target_ib(target); 3070 3071 err_free_mem: 3072 srp_free_req_data(target); 3073 3074 err: 3075 scsi_host_put(target_host); 3076 goto out; 3077 } 3078 3079 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target); 3080 3081 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr, 3082 char *buf) 3083 { 3084 struct srp_host *host = container_of(dev, struct srp_host, dev); 3085 3086 return sprintf(buf, "%s\n", host->srp_dev->dev->name); 3087 } 3088 3089 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL); 3090 3091 static ssize_t show_port(struct device *dev, struct device_attribute *attr, 3092 char *buf) 3093 { 3094 struct srp_host *host = container_of(dev, struct srp_host, dev); 3095 3096 return sprintf(buf, "%d\n", host->port); 3097 } 3098 3099 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL); 3100 3101 static struct srp_host *srp_add_port(struct srp_device *device, u8 port) 3102 { 3103 struct srp_host *host; 3104 3105 host = kzalloc(sizeof *host, GFP_KERNEL); 3106 if (!host) 3107 return NULL; 3108 3109 INIT_LIST_HEAD(&host->target_list); 3110 spin_lock_init(&host->target_lock); 3111 init_completion(&host->released); 3112 mutex_init(&host->add_target_mutex); 3113 host->srp_dev = device; 3114 host->port = port; 3115 3116 host->dev.class = &srp_class; 3117 host->dev.parent = device->dev->dma_device; 3118 dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port); 3119 3120 if (device_register(&host->dev)) 3121 goto free_host; 3122 if (device_create_file(&host->dev, &dev_attr_add_target)) 3123 goto err_class; 3124 if (device_create_file(&host->dev, &dev_attr_ibdev)) 3125 goto err_class; 3126 if (device_create_file(&host->dev, &dev_attr_port)) 3127 goto err_class; 3128 3129 return host; 3130 3131 err_class: 3132 device_unregister(&host->dev); 3133 3134 free_host: 3135 kfree(host); 3136 3137 return NULL; 3138 } 3139 3140 static void srp_add_one(struct ib_device *device) 3141 { 3142 struct srp_device *srp_dev; 3143 struct ib_device_attr *dev_attr; 3144 struct srp_host *host; 3145 int mr_page_shift, s, e, p; 3146 u64 max_pages_per_mr; 3147 3148 dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL); 3149 if (!dev_attr) 3150 return; 3151 3152 if (ib_query_device(device, dev_attr)) { 3153 pr_warn("Query device failed for %s\n", device->name); 3154 goto free_attr; 3155 } 3156 3157 srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL); 3158 if (!srp_dev) 3159 goto free_attr; 3160 3161 srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr && 3162 device->map_phys_fmr && device->unmap_fmr); 3163 srp_dev->has_fr = (dev_attr->device_cap_flags & 3164 IB_DEVICE_MEM_MGT_EXTENSIONS); 3165 if (!srp_dev->has_fmr && !srp_dev->has_fr) 3166 dev_warn(&device->dev, "neither FMR nor FR is supported\n"); 3167 3168 srp_dev->use_fast_reg = (srp_dev->has_fr && 3169 (!srp_dev->has_fmr || prefer_fr)); 3170 3171 /* 3172 * Use the smallest page size supported by the HCA, down to a 3173 * minimum of 4096 bytes. We're unlikely to build large sglists 3174 * out of smaller entries. 3175 */ 3176 mr_page_shift = max(12, ffs(dev_attr->page_size_cap) - 1); 3177 srp_dev->mr_page_size = 1 << mr_page_shift; 3178 srp_dev->mr_page_mask = ~((u64) srp_dev->mr_page_size - 1); 3179 max_pages_per_mr = dev_attr->max_mr_size; 3180 do_div(max_pages_per_mr, srp_dev->mr_page_size); 3181 srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR, 3182 max_pages_per_mr); 3183 if (srp_dev->use_fast_reg) { 3184 srp_dev->max_pages_per_mr = 3185 min_t(u32, srp_dev->max_pages_per_mr, 3186 dev_attr->max_fast_reg_page_list_len); 3187 } 3188 srp_dev->mr_max_size = srp_dev->mr_page_size * 3189 srp_dev->max_pages_per_mr; 3190 pr_debug("%s: mr_page_shift = %d, dev_attr->max_mr_size = %#llx, dev_attr->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n", 3191 device->name, mr_page_shift, dev_attr->max_mr_size, 3192 dev_attr->max_fast_reg_page_list_len, 3193 srp_dev->max_pages_per_mr, srp_dev->mr_max_size); 3194 3195 INIT_LIST_HEAD(&srp_dev->dev_list); 3196 3197 srp_dev->dev = device; 3198 srp_dev->pd = ib_alloc_pd(device); 3199 if (IS_ERR(srp_dev->pd)) 3200 goto free_dev; 3201 3202 srp_dev->mr = ib_get_dma_mr(srp_dev->pd, 3203 IB_ACCESS_LOCAL_WRITE | 3204 IB_ACCESS_REMOTE_READ | 3205 IB_ACCESS_REMOTE_WRITE); 3206 if (IS_ERR(srp_dev->mr)) 3207 goto err_pd; 3208 3209 if (device->node_type == RDMA_NODE_IB_SWITCH) { 3210 s = 0; 3211 e = 0; 3212 } else { 3213 s = 1; 3214 e = device->phys_port_cnt; 3215 } 3216 3217 for (p = s; p <= e; ++p) { 3218 host = srp_add_port(srp_dev, p); 3219 if (host) 3220 list_add_tail(&host->list, &srp_dev->dev_list); 3221 } 3222 3223 ib_set_client_data(device, &srp_client, srp_dev); 3224 3225 goto free_attr; 3226 3227 err_pd: 3228 ib_dealloc_pd(srp_dev->pd); 3229 3230 free_dev: 3231 kfree(srp_dev); 3232 3233 free_attr: 3234 kfree(dev_attr); 3235 } 3236 3237 static void srp_remove_one(struct ib_device *device) 3238 { 3239 struct srp_device *srp_dev; 3240 struct srp_host *host, *tmp_host; 3241 struct srp_target_port *target; 3242 3243 srp_dev = ib_get_client_data(device, &srp_client); 3244 if (!srp_dev) 3245 return; 3246 3247 list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) { 3248 device_unregister(&host->dev); 3249 /* 3250 * Wait for the sysfs entry to go away, so that no new 3251 * target ports can be created. 3252 */ 3253 wait_for_completion(&host->released); 3254 3255 /* 3256 * Remove all target ports. 3257 */ 3258 spin_lock(&host->target_lock); 3259 list_for_each_entry(target, &host->target_list, list) 3260 srp_queue_remove_work(target); 3261 spin_unlock(&host->target_lock); 3262 3263 /* 3264 * Wait for target port removal tasks. 3265 */ 3266 flush_workqueue(system_long_wq); 3267 3268 kfree(host); 3269 } 3270 3271 ib_dereg_mr(srp_dev->mr); 3272 ib_dealloc_pd(srp_dev->pd); 3273 3274 kfree(srp_dev); 3275 } 3276 3277 static struct srp_function_template ib_srp_transport_functions = { 3278 .has_rport_state = true, 3279 .reset_timer_if_blocked = true, 3280 .reconnect_delay = &srp_reconnect_delay, 3281 .fast_io_fail_tmo = &srp_fast_io_fail_tmo, 3282 .dev_loss_tmo = &srp_dev_loss_tmo, 3283 .reconnect = srp_rport_reconnect, 3284 .rport_delete = srp_rport_delete, 3285 .terminate_rport_io = srp_terminate_io, 3286 }; 3287 3288 static int __init srp_init_module(void) 3289 { 3290 int ret; 3291 3292 BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *)); 3293 3294 if (srp_sg_tablesize) { 3295 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n"); 3296 if (!cmd_sg_entries) 3297 cmd_sg_entries = srp_sg_tablesize; 3298 } 3299 3300 if (!cmd_sg_entries) 3301 cmd_sg_entries = SRP_DEF_SG_TABLESIZE; 3302 3303 if (cmd_sg_entries > 255) { 3304 pr_warn("Clamping cmd_sg_entries to 255\n"); 3305 cmd_sg_entries = 255; 3306 } 3307 3308 if (!indirect_sg_entries) 3309 indirect_sg_entries = cmd_sg_entries; 3310 else if (indirect_sg_entries < cmd_sg_entries) { 3311 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n", 3312 cmd_sg_entries); 3313 indirect_sg_entries = cmd_sg_entries; 3314 } 3315 3316 ib_srp_transport_template = 3317 srp_attach_transport(&ib_srp_transport_functions); 3318 if (!ib_srp_transport_template) 3319 return -ENOMEM; 3320 3321 ret = class_register(&srp_class); 3322 if (ret) { 3323 pr_err("couldn't register class infiniband_srp\n"); 3324 srp_release_transport(ib_srp_transport_template); 3325 return ret; 3326 } 3327 3328 ib_sa_register_client(&srp_sa_client); 3329 3330 ret = ib_register_client(&srp_client); 3331 if (ret) { 3332 pr_err("couldn't register IB client\n"); 3333 srp_release_transport(ib_srp_transport_template); 3334 ib_sa_unregister_client(&srp_sa_client); 3335 class_unregister(&srp_class); 3336 return ret; 3337 } 3338 3339 return 0; 3340 } 3341 3342 static void __exit srp_cleanup_module(void) 3343 { 3344 ib_unregister_client(&srp_client); 3345 ib_sa_unregister_client(&srp_sa_client); 3346 class_unregister(&srp_class); 3347 srp_release_transport(ib_srp_transport_template); 3348 } 3349 3350 module_init(srp_init_module); 3351 module_exit(srp_cleanup_module); 3352