1 /* 2 * Copyright (c) 2005 Cisco Systems. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/string.h> 40 #include <linux/parser.h> 41 #include <linux/random.h> 42 #include <linux/jiffies.h> 43 #include <linux/lockdep.h> 44 #include <rdma/ib_cache.h> 45 46 #include <linux/atomic.h> 47 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_device.h> 50 #include <scsi/scsi_dbg.h> 51 #include <scsi/scsi_tcq.h> 52 #include <scsi/srp.h> 53 #include <scsi/scsi_transport_srp.h> 54 55 #include "ib_srp.h" 56 57 #define DRV_NAME "ib_srp" 58 #define PFX DRV_NAME ": " 59 #define DRV_VERSION "2.0" 60 #define DRV_RELDATE "July 26, 2015" 61 62 MODULE_AUTHOR("Roland Dreier"); 63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator"); 64 MODULE_LICENSE("Dual BSD/GPL"); 65 MODULE_VERSION(DRV_VERSION); 66 MODULE_INFO(release_date, DRV_RELDATE); 67 68 #if !defined(CONFIG_DYNAMIC_DEBUG) 69 #define DEFINE_DYNAMIC_DEBUG_METADATA(name, fmt) 70 #define DYNAMIC_DEBUG_BRANCH(descriptor) false 71 #endif 72 73 static unsigned int srp_sg_tablesize; 74 static unsigned int cmd_sg_entries; 75 static unsigned int indirect_sg_entries; 76 static bool allow_ext_sg; 77 static bool prefer_fr = true; 78 static bool register_always = true; 79 static bool never_register; 80 static int topspin_workarounds = 1; 81 82 module_param(srp_sg_tablesize, uint, 0444); 83 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries"); 84 85 module_param(cmd_sg_entries, uint, 0444); 86 MODULE_PARM_DESC(cmd_sg_entries, 87 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)"); 88 89 module_param(indirect_sg_entries, uint, 0444); 90 MODULE_PARM_DESC(indirect_sg_entries, 91 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SG_MAX_SEGMENTS) ")"); 92 93 module_param(allow_ext_sg, bool, 0444); 94 MODULE_PARM_DESC(allow_ext_sg, 95 "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)"); 96 97 module_param(topspin_workarounds, int, 0444); 98 MODULE_PARM_DESC(topspin_workarounds, 99 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0"); 100 101 module_param(prefer_fr, bool, 0444); 102 MODULE_PARM_DESC(prefer_fr, 103 "Whether to use fast registration if both FMR and fast registration are supported"); 104 105 module_param(register_always, bool, 0444); 106 MODULE_PARM_DESC(register_always, 107 "Use memory registration even for contiguous memory regions"); 108 109 module_param(never_register, bool, 0444); 110 MODULE_PARM_DESC(never_register, "Never register memory"); 111 112 static const struct kernel_param_ops srp_tmo_ops; 113 114 static int srp_reconnect_delay = 10; 115 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay, 116 S_IRUGO | S_IWUSR); 117 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts"); 118 119 static int srp_fast_io_fail_tmo = 15; 120 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo, 121 S_IRUGO | S_IWUSR); 122 MODULE_PARM_DESC(fast_io_fail_tmo, 123 "Number of seconds between the observation of a transport" 124 " layer error and failing all I/O. \"off\" means that this" 125 " functionality is disabled."); 126 127 static int srp_dev_loss_tmo = 600; 128 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo, 129 S_IRUGO | S_IWUSR); 130 MODULE_PARM_DESC(dev_loss_tmo, 131 "Maximum number of seconds that the SRP transport should" 132 " insulate transport layer errors. After this time has been" 133 " exceeded the SCSI host is removed. Should be" 134 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT) 135 " if fast_io_fail_tmo has not been set. \"off\" means that" 136 " this functionality is disabled."); 137 138 static unsigned ch_count; 139 module_param(ch_count, uint, 0444); 140 MODULE_PARM_DESC(ch_count, 141 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA."); 142 143 static void srp_add_one(struct ib_device *device); 144 static void srp_remove_one(struct ib_device *device, void *client_data); 145 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc); 146 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc, 147 const char *opname); 148 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event); 149 150 static struct scsi_transport_template *ib_srp_transport_template; 151 static struct workqueue_struct *srp_remove_wq; 152 153 static struct ib_client srp_client = { 154 .name = "srp", 155 .add = srp_add_one, 156 .remove = srp_remove_one 157 }; 158 159 static struct ib_sa_client srp_sa_client; 160 161 static int srp_tmo_get(char *buffer, const struct kernel_param *kp) 162 { 163 int tmo = *(int *)kp->arg; 164 165 if (tmo >= 0) 166 return sprintf(buffer, "%d", tmo); 167 else 168 return sprintf(buffer, "off"); 169 } 170 171 static int srp_tmo_set(const char *val, const struct kernel_param *kp) 172 { 173 int tmo, res; 174 175 res = srp_parse_tmo(&tmo, val); 176 if (res) 177 goto out; 178 179 if (kp->arg == &srp_reconnect_delay) 180 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo, 181 srp_dev_loss_tmo); 182 else if (kp->arg == &srp_fast_io_fail_tmo) 183 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo); 184 else 185 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo, 186 tmo); 187 if (res) 188 goto out; 189 *(int *)kp->arg = tmo; 190 191 out: 192 return res; 193 } 194 195 static const struct kernel_param_ops srp_tmo_ops = { 196 .get = srp_tmo_get, 197 .set = srp_tmo_set, 198 }; 199 200 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host) 201 { 202 return (struct srp_target_port *) host->hostdata; 203 } 204 205 static const char *srp_target_info(struct Scsi_Host *host) 206 { 207 return host_to_target(host)->target_name; 208 } 209 210 static int srp_target_is_topspin(struct srp_target_port *target) 211 { 212 static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad }; 213 static const u8 cisco_oui[3] = { 0x00, 0x1b, 0x0d }; 214 215 return topspin_workarounds && 216 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) || 217 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui)); 218 } 219 220 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size, 221 gfp_t gfp_mask, 222 enum dma_data_direction direction) 223 { 224 struct srp_iu *iu; 225 226 iu = kmalloc(sizeof *iu, gfp_mask); 227 if (!iu) 228 goto out; 229 230 iu->buf = kzalloc(size, gfp_mask); 231 if (!iu->buf) 232 goto out_free_iu; 233 234 iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size, 235 direction); 236 if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma)) 237 goto out_free_buf; 238 239 iu->size = size; 240 iu->direction = direction; 241 242 return iu; 243 244 out_free_buf: 245 kfree(iu->buf); 246 out_free_iu: 247 kfree(iu); 248 out: 249 return NULL; 250 } 251 252 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu) 253 { 254 if (!iu) 255 return; 256 257 ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size, 258 iu->direction); 259 kfree(iu->buf); 260 kfree(iu); 261 } 262 263 static void srp_qp_event(struct ib_event *event, void *context) 264 { 265 pr_debug("QP event %s (%d)\n", 266 ib_event_msg(event->event), event->event); 267 } 268 269 static int srp_init_qp(struct srp_target_port *target, 270 struct ib_qp *qp) 271 { 272 struct ib_qp_attr *attr; 273 int ret; 274 275 attr = kmalloc(sizeof *attr, GFP_KERNEL); 276 if (!attr) 277 return -ENOMEM; 278 279 ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev, 280 target->srp_host->port, 281 be16_to_cpu(target->pkey), 282 &attr->pkey_index); 283 if (ret) 284 goto out; 285 286 attr->qp_state = IB_QPS_INIT; 287 attr->qp_access_flags = (IB_ACCESS_REMOTE_READ | 288 IB_ACCESS_REMOTE_WRITE); 289 attr->port_num = target->srp_host->port; 290 291 ret = ib_modify_qp(qp, attr, 292 IB_QP_STATE | 293 IB_QP_PKEY_INDEX | 294 IB_QP_ACCESS_FLAGS | 295 IB_QP_PORT); 296 297 out: 298 kfree(attr); 299 return ret; 300 } 301 302 static int srp_new_cm_id(struct srp_rdma_ch *ch) 303 { 304 struct srp_target_port *target = ch->target; 305 struct ib_cm_id *new_cm_id; 306 307 new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev, 308 srp_cm_handler, ch); 309 if (IS_ERR(new_cm_id)) 310 return PTR_ERR(new_cm_id); 311 312 if (ch->cm_id) 313 ib_destroy_cm_id(ch->cm_id); 314 ch->cm_id = new_cm_id; 315 ch->path.sgid = target->sgid; 316 ch->path.dgid = target->orig_dgid; 317 ch->path.pkey = target->pkey; 318 ch->path.service_id = target->service_id; 319 320 return 0; 321 } 322 323 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target) 324 { 325 struct srp_device *dev = target->srp_host->srp_dev; 326 struct ib_fmr_pool_param fmr_param; 327 328 memset(&fmr_param, 0, sizeof(fmr_param)); 329 fmr_param.pool_size = target->mr_pool_size; 330 fmr_param.dirty_watermark = fmr_param.pool_size / 4; 331 fmr_param.cache = 1; 332 fmr_param.max_pages_per_fmr = dev->max_pages_per_mr; 333 fmr_param.page_shift = ilog2(dev->mr_page_size); 334 fmr_param.access = (IB_ACCESS_LOCAL_WRITE | 335 IB_ACCESS_REMOTE_WRITE | 336 IB_ACCESS_REMOTE_READ); 337 338 return ib_create_fmr_pool(dev->pd, &fmr_param); 339 } 340 341 /** 342 * srp_destroy_fr_pool() - free the resources owned by a pool 343 * @pool: Fast registration pool to be destroyed. 344 */ 345 static void srp_destroy_fr_pool(struct srp_fr_pool *pool) 346 { 347 int i; 348 struct srp_fr_desc *d; 349 350 if (!pool) 351 return; 352 353 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) { 354 if (d->mr) 355 ib_dereg_mr(d->mr); 356 } 357 kfree(pool); 358 } 359 360 /** 361 * srp_create_fr_pool() - allocate and initialize a pool for fast registration 362 * @device: IB device to allocate fast registration descriptors for. 363 * @pd: Protection domain associated with the FR descriptors. 364 * @pool_size: Number of descriptors to allocate. 365 * @max_page_list_len: Maximum fast registration work request page list length. 366 */ 367 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device, 368 struct ib_pd *pd, int pool_size, 369 int max_page_list_len) 370 { 371 struct srp_fr_pool *pool; 372 struct srp_fr_desc *d; 373 struct ib_mr *mr; 374 int i, ret = -EINVAL; 375 376 if (pool_size <= 0) 377 goto err; 378 ret = -ENOMEM; 379 pool = kzalloc(sizeof(struct srp_fr_pool) + 380 pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL); 381 if (!pool) 382 goto err; 383 pool->size = pool_size; 384 pool->max_page_list_len = max_page_list_len; 385 spin_lock_init(&pool->lock); 386 INIT_LIST_HEAD(&pool->free_list); 387 388 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) { 389 mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, 390 max_page_list_len); 391 if (IS_ERR(mr)) { 392 ret = PTR_ERR(mr); 393 if (ret == -ENOMEM) 394 pr_info("%s: ib_alloc_mr() failed. Try to reduce max_cmd_per_lun, max_sect or ch_count\n", 395 dev_name(&device->dev)); 396 goto destroy_pool; 397 } 398 d->mr = mr; 399 list_add_tail(&d->entry, &pool->free_list); 400 } 401 402 out: 403 return pool; 404 405 destroy_pool: 406 srp_destroy_fr_pool(pool); 407 408 err: 409 pool = ERR_PTR(ret); 410 goto out; 411 } 412 413 /** 414 * srp_fr_pool_get() - obtain a descriptor suitable for fast registration 415 * @pool: Pool to obtain descriptor from. 416 */ 417 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool) 418 { 419 struct srp_fr_desc *d = NULL; 420 unsigned long flags; 421 422 spin_lock_irqsave(&pool->lock, flags); 423 if (!list_empty(&pool->free_list)) { 424 d = list_first_entry(&pool->free_list, typeof(*d), entry); 425 list_del(&d->entry); 426 } 427 spin_unlock_irqrestore(&pool->lock, flags); 428 429 return d; 430 } 431 432 /** 433 * srp_fr_pool_put() - put an FR descriptor back in the free list 434 * @pool: Pool the descriptor was allocated from. 435 * @desc: Pointer to an array of fast registration descriptor pointers. 436 * @n: Number of descriptors to put back. 437 * 438 * Note: The caller must already have queued an invalidation request for 439 * desc->mr->rkey before calling this function. 440 */ 441 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc, 442 int n) 443 { 444 unsigned long flags; 445 int i; 446 447 spin_lock_irqsave(&pool->lock, flags); 448 for (i = 0; i < n; i++) 449 list_add(&desc[i]->entry, &pool->free_list); 450 spin_unlock_irqrestore(&pool->lock, flags); 451 } 452 453 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target) 454 { 455 struct srp_device *dev = target->srp_host->srp_dev; 456 457 return srp_create_fr_pool(dev->dev, dev->pd, target->mr_pool_size, 458 dev->max_pages_per_mr); 459 } 460 461 /** 462 * srp_destroy_qp() - destroy an RDMA queue pair 463 * @qp: RDMA queue pair. 464 * 465 * Drain the qp before destroying it. This avoids that the receive 466 * completion handler can access the queue pair while it is 467 * being destroyed. 468 */ 469 static void srp_destroy_qp(struct srp_rdma_ch *ch, struct ib_qp *qp) 470 { 471 spin_lock_irq(&ch->lock); 472 ib_process_cq_direct(ch->send_cq, -1); 473 spin_unlock_irq(&ch->lock); 474 475 ib_drain_qp(qp); 476 ib_destroy_qp(qp); 477 } 478 479 static int srp_create_ch_ib(struct srp_rdma_ch *ch) 480 { 481 struct srp_target_port *target = ch->target; 482 struct srp_device *dev = target->srp_host->srp_dev; 483 struct ib_qp_init_attr *init_attr; 484 struct ib_cq *recv_cq, *send_cq; 485 struct ib_qp *qp; 486 struct ib_fmr_pool *fmr_pool = NULL; 487 struct srp_fr_pool *fr_pool = NULL; 488 const int m = 1 + dev->use_fast_reg * target->mr_per_cmd * 2; 489 int ret; 490 491 init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL); 492 if (!init_attr) 493 return -ENOMEM; 494 495 /* queue_size + 1 for ib_drain_rq() */ 496 recv_cq = ib_alloc_cq(dev->dev, ch, target->queue_size + 1, 497 ch->comp_vector, IB_POLL_SOFTIRQ); 498 if (IS_ERR(recv_cq)) { 499 ret = PTR_ERR(recv_cq); 500 goto err; 501 } 502 503 send_cq = ib_alloc_cq(dev->dev, ch, m * target->queue_size, 504 ch->comp_vector, IB_POLL_DIRECT); 505 if (IS_ERR(send_cq)) { 506 ret = PTR_ERR(send_cq); 507 goto err_recv_cq; 508 } 509 510 init_attr->event_handler = srp_qp_event; 511 init_attr->cap.max_send_wr = m * target->queue_size; 512 init_attr->cap.max_recv_wr = target->queue_size + 1; 513 init_attr->cap.max_recv_sge = 1; 514 init_attr->cap.max_send_sge = 1; 515 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 516 init_attr->qp_type = IB_QPT_RC; 517 init_attr->send_cq = send_cq; 518 init_attr->recv_cq = recv_cq; 519 520 qp = ib_create_qp(dev->pd, init_attr); 521 if (IS_ERR(qp)) { 522 ret = PTR_ERR(qp); 523 goto err_send_cq; 524 } 525 526 ret = srp_init_qp(target, qp); 527 if (ret) 528 goto err_qp; 529 530 if (dev->use_fast_reg) { 531 fr_pool = srp_alloc_fr_pool(target); 532 if (IS_ERR(fr_pool)) { 533 ret = PTR_ERR(fr_pool); 534 shost_printk(KERN_WARNING, target->scsi_host, PFX 535 "FR pool allocation failed (%d)\n", ret); 536 goto err_qp; 537 } 538 } else if (dev->use_fmr) { 539 fmr_pool = srp_alloc_fmr_pool(target); 540 if (IS_ERR(fmr_pool)) { 541 ret = PTR_ERR(fmr_pool); 542 shost_printk(KERN_WARNING, target->scsi_host, PFX 543 "FMR pool allocation failed (%d)\n", ret); 544 goto err_qp; 545 } 546 } 547 548 if (ch->qp) 549 srp_destroy_qp(ch, ch->qp); 550 if (ch->recv_cq) 551 ib_free_cq(ch->recv_cq); 552 if (ch->send_cq) 553 ib_free_cq(ch->send_cq); 554 555 ch->qp = qp; 556 ch->recv_cq = recv_cq; 557 ch->send_cq = send_cq; 558 559 if (dev->use_fast_reg) { 560 if (ch->fr_pool) 561 srp_destroy_fr_pool(ch->fr_pool); 562 ch->fr_pool = fr_pool; 563 } else if (dev->use_fmr) { 564 if (ch->fmr_pool) 565 ib_destroy_fmr_pool(ch->fmr_pool); 566 ch->fmr_pool = fmr_pool; 567 } 568 569 kfree(init_attr); 570 return 0; 571 572 err_qp: 573 srp_destroy_qp(ch, qp); 574 575 err_send_cq: 576 ib_free_cq(send_cq); 577 578 err_recv_cq: 579 ib_free_cq(recv_cq); 580 581 err: 582 kfree(init_attr); 583 return ret; 584 } 585 586 /* 587 * Note: this function may be called without srp_alloc_iu_bufs() having been 588 * invoked. Hence the ch->[rt]x_ring checks. 589 */ 590 static void srp_free_ch_ib(struct srp_target_port *target, 591 struct srp_rdma_ch *ch) 592 { 593 struct srp_device *dev = target->srp_host->srp_dev; 594 int i; 595 596 if (!ch->target) 597 return; 598 599 if (ch->cm_id) { 600 ib_destroy_cm_id(ch->cm_id); 601 ch->cm_id = NULL; 602 } 603 604 /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */ 605 if (!ch->qp) 606 return; 607 608 if (dev->use_fast_reg) { 609 if (ch->fr_pool) 610 srp_destroy_fr_pool(ch->fr_pool); 611 } else if (dev->use_fmr) { 612 if (ch->fmr_pool) 613 ib_destroy_fmr_pool(ch->fmr_pool); 614 } 615 616 srp_destroy_qp(ch, ch->qp); 617 ib_free_cq(ch->send_cq); 618 ib_free_cq(ch->recv_cq); 619 620 /* 621 * Avoid that the SCSI error handler tries to use this channel after 622 * it has been freed. The SCSI error handler can namely continue 623 * trying to perform recovery actions after scsi_remove_host() 624 * returned. 625 */ 626 ch->target = NULL; 627 628 ch->qp = NULL; 629 ch->send_cq = ch->recv_cq = NULL; 630 631 if (ch->rx_ring) { 632 for (i = 0; i < target->queue_size; ++i) 633 srp_free_iu(target->srp_host, ch->rx_ring[i]); 634 kfree(ch->rx_ring); 635 ch->rx_ring = NULL; 636 } 637 if (ch->tx_ring) { 638 for (i = 0; i < target->queue_size; ++i) 639 srp_free_iu(target->srp_host, ch->tx_ring[i]); 640 kfree(ch->tx_ring); 641 ch->tx_ring = NULL; 642 } 643 } 644 645 static void srp_path_rec_completion(int status, 646 struct ib_sa_path_rec *pathrec, 647 void *ch_ptr) 648 { 649 struct srp_rdma_ch *ch = ch_ptr; 650 struct srp_target_port *target = ch->target; 651 652 ch->status = status; 653 if (status) 654 shost_printk(KERN_ERR, target->scsi_host, 655 PFX "Got failed path rec status %d\n", status); 656 else 657 ch->path = *pathrec; 658 complete(&ch->done); 659 } 660 661 static int srp_lookup_path(struct srp_rdma_ch *ch) 662 { 663 struct srp_target_port *target = ch->target; 664 int ret; 665 666 ch->path.numb_path = 1; 667 668 init_completion(&ch->done); 669 670 ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client, 671 target->srp_host->srp_dev->dev, 672 target->srp_host->port, 673 &ch->path, 674 IB_SA_PATH_REC_SERVICE_ID | 675 IB_SA_PATH_REC_DGID | 676 IB_SA_PATH_REC_SGID | 677 IB_SA_PATH_REC_NUMB_PATH | 678 IB_SA_PATH_REC_PKEY, 679 SRP_PATH_REC_TIMEOUT_MS, 680 GFP_KERNEL, 681 srp_path_rec_completion, 682 ch, &ch->path_query); 683 if (ch->path_query_id < 0) 684 return ch->path_query_id; 685 686 ret = wait_for_completion_interruptible(&ch->done); 687 if (ret < 0) 688 return ret; 689 690 if (ch->status < 0) 691 shost_printk(KERN_WARNING, target->scsi_host, 692 PFX "Path record query failed\n"); 693 694 return ch->status; 695 } 696 697 static int srp_send_req(struct srp_rdma_ch *ch, bool multich) 698 { 699 struct srp_target_port *target = ch->target; 700 struct { 701 struct ib_cm_req_param param; 702 struct srp_login_req priv; 703 } *req = NULL; 704 int status; 705 706 req = kzalloc(sizeof *req, GFP_KERNEL); 707 if (!req) 708 return -ENOMEM; 709 710 req->param.primary_path = &ch->path; 711 req->param.alternate_path = NULL; 712 req->param.service_id = target->service_id; 713 req->param.qp_num = ch->qp->qp_num; 714 req->param.qp_type = ch->qp->qp_type; 715 req->param.private_data = &req->priv; 716 req->param.private_data_len = sizeof req->priv; 717 req->param.flow_control = 1; 718 719 get_random_bytes(&req->param.starting_psn, 4); 720 req->param.starting_psn &= 0xffffff; 721 722 /* 723 * Pick some arbitrary defaults here; we could make these 724 * module parameters if anyone cared about setting them. 725 */ 726 req->param.responder_resources = 4; 727 req->param.remote_cm_response_timeout = 20; 728 req->param.local_cm_response_timeout = 20; 729 req->param.retry_count = target->tl_retry_count; 730 req->param.rnr_retry_count = 7; 731 req->param.max_cm_retries = 15; 732 733 req->priv.opcode = SRP_LOGIN_REQ; 734 req->priv.tag = 0; 735 req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len); 736 req->priv.req_buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 737 SRP_BUF_FORMAT_INDIRECT); 738 req->priv.req_flags = (multich ? SRP_MULTICHAN_MULTI : 739 SRP_MULTICHAN_SINGLE); 740 /* 741 * In the published SRP specification (draft rev. 16a), the 742 * port identifier format is 8 bytes of ID extension followed 743 * by 8 bytes of GUID. Older drafts put the two halves in the 744 * opposite order, so that the GUID comes first. 745 * 746 * Targets conforming to these obsolete drafts can be 747 * recognized by the I/O Class they report. 748 */ 749 if (target->io_class == SRP_REV10_IB_IO_CLASS) { 750 memcpy(req->priv.initiator_port_id, 751 &target->sgid.global.interface_id, 8); 752 memcpy(req->priv.initiator_port_id + 8, 753 &target->initiator_ext, 8); 754 memcpy(req->priv.target_port_id, &target->ioc_guid, 8); 755 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8); 756 } else { 757 memcpy(req->priv.initiator_port_id, 758 &target->initiator_ext, 8); 759 memcpy(req->priv.initiator_port_id + 8, 760 &target->sgid.global.interface_id, 8); 761 memcpy(req->priv.target_port_id, &target->id_ext, 8); 762 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8); 763 } 764 765 /* 766 * Topspin/Cisco SRP targets will reject our login unless we 767 * zero out the first 8 bytes of our initiator port ID and set 768 * the second 8 bytes to the local node GUID. 769 */ 770 if (srp_target_is_topspin(target)) { 771 shost_printk(KERN_DEBUG, target->scsi_host, 772 PFX "Topspin/Cisco initiator port ID workaround " 773 "activated for target GUID %016llx\n", 774 be64_to_cpu(target->ioc_guid)); 775 memset(req->priv.initiator_port_id, 0, 8); 776 memcpy(req->priv.initiator_port_id + 8, 777 &target->srp_host->srp_dev->dev->node_guid, 8); 778 } 779 780 status = ib_send_cm_req(ch->cm_id, &req->param); 781 782 kfree(req); 783 784 return status; 785 } 786 787 static bool srp_queue_remove_work(struct srp_target_port *target) 788 { 789 bool changed = false; 790 791 spin_lock_irq(&target->lock); 792 if (target->state != SRP_TARGET_REMOVED) { 793 target->state = SRP_TARGET_REMOVED; 794 changed = true; 795 } 796 spin_unlock_irq(&target->lock); 797 798 if (changed) 799 queue_work(srp_remove_wq, &target->remove_work); 800 801 return changed; 802 } 803 804 static void srp_disconnect_target(struct srp_target_port *target) 805 { 806 struct srp_rdma_ch *ch; 807 int i; 808 809 /* XXX should send SRP_I_LOGOUT request */ 810 811 for (i = 0; i < target->ch_count; i++) { 812 ch = &target->ch[i]; 813 ch->connected = false; 814 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) { 815 shost_printk(KERN_DEBUG, target->scsi_host, 816 PFX "Sending CM DREQ failed\n"); 817 } 818 } 819 } 820 821 static void srp_free_req_data(struct srp_target_port *target, 822 struct srp_rdma_ch *ch) 823 { 824 struct srp_device *dev = target->srp_host->srp_dev; 825 struct ib_device *ibdev = dev->dev; 826 struct srp_request *req; 827 int i; 828 829 if (!ch->req_ring) 830 return; 831 832 for (i = 0; i < target->req_ring_size; ++i) { 833 req = &ch->req_ring[i]; 834 if (dev->use_fast_reg) { 835 kfree(req->fr_list); 836 } else { 837 kfree(req->fmr_list); 838 kfree(req->map_page); 839 } 840 if (req->indirect_dma_addr) { 841 ib_dma_unmap_single(ibdev, req->indirect_dma_addr, 842 target->indirect_size, 843 DMA_TO_DEVICE); 844 } 845 kfree(req->indirect_desc); 846 } 847 848 kfree(ch->req_ring); 849 ch->req_ring = NULL; 850 } 851 852 static int srp_alloc_req_data(struct srp_rdma_ch *ch) 853 { 854 struct srp_target_port *target = ch->target; 855 struct srp_device *srp_dev = target->srp_host->srp_dev; 856 struct ib_device *ibdev = srp_dev->dev; 857 struct srp_request *req; 858 void *mr_list; 859 dma_addr_t dma_addr; 860 int i, ret = -ENOMEM; 861 862 ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring), 863 GFP_KERNEL); 864 if (!ch->req_ring) 865 goto out; 866 867 for (i = 0; i < target->req_ring_size; ++i) { 868 req = &ch->req_ring[i]; 869 mr_list = kmalloc(target->mr_per_cmd * sizeof(void *), 870 GFP_KERNEL); 871 if (!mr_list) 872 goto out; 873 if (srp_dev->use_fast_reg) { 874 req->fr_list = mr_list; 875 } else { 876 req->fmr_list = mr_list; 877 req->map_page = kmalloc(srp_dev->max_pages_per_mr * 878 sizeof(void *), GFP_KERNEL); 879 if (!req->map_page) 880 goto out; 881 } 882 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL); 883 if (!req->indirect_desc) 884 goto out; 885 886 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc, 887 target->indirect_size, 888 DMA_TO_DEVICE); 889 if (ib_dma_mapping_error(ibdev, dma_addr)) 890 goto out; 891 892 req->indirect_dma_addr = dma_addr; 893 } 894 ret = 0; 895 896 out: 897 return ret; 898 } 899 900 /** 901 * srp_del_scsi_host_attr() - Remove attributes defined in the host template. 902 * @shost: SCSI host whose attributes to remove from sysfs. 903 * 904 * Note: Any attributes defined in the host template and that did not exist 905 * before invocation of this function will be ignored. 906 */ 907 static void srp_del_scsi_host_attr(struct Scsi_Host *shost) 908 { 909 struct device_attribute **attr; 910 911 for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr) 912 device_remove_file(&shost->shost_dev, *attr); 913 } 914 915 static void srp_remove_target(struct srp_target_port *target) 916 { 917 struct srp_rdma_ch *ch; 918 int i; 919 920 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED); 921 922 srp_del_scsi_host_attr(target->scsi_host); 923 srp_rport_get(target->rport); 924 srp_remove_host(target->scsi_host); 925 scsi_remove_host(target->scsi_host); 926 srp_stop_rport_timers(target->rport); 927 srp_disconnect_target(target); 928 for (i = 0; i < target->ch_count; i++) { 929 ch = &target->ch[i]; 930 srp_free_ch_ib(target, ch); 931 } 932 cancel_work_sync(&target->tl_err_work); 933 srp_rport_put(target->rport); 934 for (i = 0; i < target->ch_count; i++) { 935 ch = &target->ch[i]; 936 srp_free_req_data(target, ch); 937 } 938 kfree(target->ch); 939 target->ch = NULL; 940 941 spin_lock(&target->srp_host->target_lock); 942 list_del(&target->list); 943 spin_unlock(&target->srp_host->target_lock); 944 945 scsi_host_put(target->scsi_host); 946 } 947 948 static void srp_remove_work(struct work_struct *work) 949 { 950 struct srp_target_port *target = 951 container_of(work, struct srp_target_port, remove_work); 952 953 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED); 954 955 srp_remove_target(target); 956 } 957 958 static void srp_rport_delete(struct srp_rport *rport) 959 { 960 struct srp_target_port *target = rport->lld_data; 961 962 srp_queue_remove_work(target); 963 } 964 965 /** 966 * srp_connected_ch() - number of connected channels 967 * @target: SRP target port. 968 */ 969 static int srp_connected_ch(struct srp_target_port *target) 970 { 971 int i, c = 0; 972 973 for (i = 0; i < target->ch_count; i++) 974 c += target->ch[i].connected; 975 976 return c; 977 } 978 979 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich) 980 { 981 struct srp_target_port *target = ch->target; 982 int ret; 983 984 WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0); 985 986 ret = srp_lookup_path(ch); 987 if (ret) 988 goto out; 989 990 while (1) { 991 init_completion(&ch->done); 992 ret = srp_send_req(ch, multich); 993 if (ret) 994 goto out; 995 ret = wait_for_completion_interruptible(&ch->done); 996 if (ret < 0) 997 goto out; 998 999 /* 1000 * The CM event handling code will set status to 1001 * SRP_PORT_REDIRECT if we get a port redirect REJ 1002 * back, or SRP_DLID_REDIRECT if we get a lid/qp 1003 * redirect REJ back. 1004 */ 1005 ret = ch->status; 1006 switch (ret) { 1007 case 0: 1008 ch->connected = true; 1009 goto out; 1010 1011 case SRP_PORT_REDIRECT: 1012 ret = srp_lookup_path(ch); 1013 if (ret) 1014 goto out; 1015 break; 1016 1017 case SRP_DLID_REDIRECT: 1018 break; 1019 1020 case SRP_STALE_CONN: 1021 shost_printk(KERN_ERR, target->scsi_host, PFX 1022 "giving up on stale connection\n"); 1023 ret = -ECONNRESET; 1024 goto out; 1025 1026 default: 1027 goto out; 1028 } 1029 } 1030 1031 out: 1032 return ret <= 0 ? ret : -ENODEV; 1033 } 1034 1035 static void srp_inv_rkey_err_done(struct ib_cq *cq, struct ib_wc *wc) 1036 { 1037 srp_handle_qp_err(cq, wc, "INV RKEY"); 1038 } 1039 1040 static int srp_inv_rkey(struct srp_request *req, struct srp_rdma_ch *ch, 1041 u32 rkey) 1042 { 1043 struct ib_send_wr *bad_wr; 1044 struct ib_send_wr wr = { 1045 .opcode = IB_WR_LOCAL_INV, 1046 .next = NULL, 1047 .num_sge = 0, 1048 .send_flags = 0, 1049 .ex.invalidate_rkey = rkey, 1050 }; 1051 1052 wr.wr_cqe = &req->reg_cqe; 1053 req->reg_cqe.done = srp_inv_rkey_err_done; 1054 return ib_post_send(ch->qp, &wr, &bad_wr); 1055 } 1056 1057 static void srp_unmap_data(struct scsi_cmnd *scmnd, 1058 struct srp_rdma_ch *ch, 1059 struct srp_request *req) 1060 { 1061 struct srp_target_port *target = ch->target; 1062 struct srp_device *dev = target->srp_host->srp_dev; 1063 struct ib_device *ibdev = dev->dev; 1064 int i, res; 1065 1066 if (!scsi_sglist(scmnd) || 1067 (scmnd->sc_data_direction != DMA_TO_DEVICE && 1068 scmnd->sc_data_direction != DMA_FROM_DEVICE)) 1069 return; 1070 1071 if (dev->use_fast_reg) { 1072 struct srp_fr_desc **pfr; 1073 1074 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) { 1075 res = srp_inv_rkey(req, ch, (*pfr)->mr->rkey); 1076 if (res < 0) { 1077 shost_printk(KERN_ERR, target->scsi_host, PFX 1078 "Queueing INV WR for rkey %#x failed (%d)\n", 1079 (*pfr)->mr->rkey, res); 1080 queue_work(system_long_wq, 1081 &target->tl_err_work); 1082 } 1083 } 1084 if (req->nmdesc) 1085 srp_fr_pool_put(ch->fr_pool, req->fr_list, 1086 req->nmdesc); 1087 } else if (dev->use_fmr) { 1088 struct ib_pool_fmr **pfmr; 1089 1090 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++) 1091 ib_fmr_pool_unmap(*pfmr); 1092 } 1093 1094 ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd), 1095 scmnd->sc_data_direction); 1096 } 1097 1098 /** 1099 * srp_claim_req - Take ownership of the scmnd associated with a request. 1100 * @ch: SRP RDMA channel. 1101 * @req: SRP request. 1102 * @sdev: If not NULL, only take ownership for this SCSI device. 1103 * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take 1104 * ownership of @req->scmnd if it equals @scmnd. 1105 * 1106 * Return value: 1107 * Either NULL or a pointer to the SCSI command the caller became owner of. 1108 */ 1109 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch, 1110 struct srp_request *req, 1111 struct scsi_device *sdev, 1112 struct scsi_cmnd *scmnd) 1113 { 1114 unsigned long flags; 1115 1116 spin_lock_irqsave(&ch->lock, flags); 1117 if (req->scmnd && 1118 (!sdev || req->scmnd->device == sdev) && 1119 (!scmnd || req->scmnd == scmnd)) { 1120 scmnd = req->scmnd; 1121 req->scmnd = NULL; 1122 } else { 1123 scmnd = NULL; 1124 } 1125 spin_unlock_irqrestore(&ch->lock, flags); 1126 1127 return scmnd; 1128 } 1129 1130 /** 1131 * srp_free_req() - Unmap data and adjust ch->req_lim. 1132 * @ch: SRP RDMA channel. 1133 * @req: Request to be freed. 1134 * @scmnd: SCSI command associated with @req. 1135 * @req_lim_delta: Amount to be added to @target->req_lim. 1136 */ 1137 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req, 1138 struct scsi_cmnd *scmnd, s32 req_lim_delta) 1139 { 1140 unsigned long flags; 1141 1142 srp_unmap_data(scmnd, ch, req); 1143 1144 spin_lock_irqsave(&ch->lock, flags); 1145 ch->req_lim += req_lim_delta; 1146 spin_unlock_irqrestore(&ch->lock, flags); 1147 } 1148 1149 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req, 1150 struct scsi_device *sdev, int result) 1151 { 1152 struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL); 1153 1154 if (scmnd) { 1155 srp_free_req(ch, req, scmnd, 0); 1156 scmnd->result = result; 1157 scmnd->scsi_done(scmnd); 1158 } 1159 } 1160 1161 static void srp_terminate_io(struct srp_rport *rport) 1162 { 1163 struct srp_target_port *target = rport->lld_data; 1164 struct srp_rdma_ch *ch; 1165 struct Scsi_Host *shost = target->scsi_host; 1166 struct scsi_device *sdev; 1167 int i, j; 1168 1169 /* 1170 * Invoking srp_terminate_io() while srp_queuecommand() is running 1171 * is not safe. Hence the warning statement below. 1172 */ 1173 shost_for_each_device(sdev, shost) 1174 WARN_ON_ONCE(sdev->request_queue->request_fn_active); 1175 1176 for (i = 0; i < target->ch_count; i++) { 1177 ch = &target->ch[i]; 1178 1179 for (j = 0; j < target->req_ring_size; ++j) { 1180 struct srp_request *req = &ch->req_ring[j]; 1181 1182 srp_finish_req(ch, req, NULL, 1183 DID_TRANSPORT_FAILFAST << 16); 1184 } 1185 } 1186 } 1187 1188 /* 1189 * It is up to the caller to ensure that srp_rport_reconnect() calls are 1190 * serialized and that no concurrent srp_queuecommand(), srp_abort(), 1191 * srp_reset_device() or srp_reset_host() calls will occur while this function 1192 * is in progress. One way to realize that is not to call this function 1193 * directly but to call srp_reconnect_rport() instead since that last function 1194 * serializes calls of this function via rport->mutex and also blocks 1195 * srp_queuecommand() calls before invoking this function. 1196 */ 1197 static int srp_rport_reconnect(struct srp_rport *rport) 1198 { 1199 struct srp_target_port *target = rport->lld_data; 1200 struct srp_rdma_ch *ch; 1201 int i, j, ret = 0; 1202 bool multich = false; 1203 1204 srp_disconnect_target(target); 1205 1206 if (target->state == SRP_TARGET_SCANNING) 1207 return -ENODEV; 1208 1209 /* 1210 * Now get a new local CM ID so that we avoid confusing the target in 1211 * case things are really fouled up. Doing so also ensures that all CM 1212 * callbacks will have finished before a new QP is allocated. 1213 */ 1214 for (i = 0; i < target->ch_count; i++) { 1215 ch = &target->ch[i]; 1216 ret += srp_new_cm_id(ch); 1217 } 1218 for (i = 0; i < target->ch_count; i++) { 1219 ch = &target->ch[i]; 1220 for (j = 0; j < target->req_ring_size; ++j) { 1221 struct srp_request *req = &ch->req_ring[j]; 1222 1223 srp_finish_req(ch, req, NULL, DID_RESET << 16); 1224 } 1225 } 1226 for (i = 0; i < target->ch_count; i++) { 1227 ch = &target->ch[i]; 1228 /* 1229 * Whether or not creating a new CM ID succeeded, create a new 1230 * QP. This guarantees that all completion callback function 1231 * invocations have finished before request resetting starts. 1232 */ 1233 ret += srp_create_ch_ib(ch); 1234 1235 INIT_LIST_HEAD(&ch->free_tx); 1236 for (j = 0; j < target->queue_size; ++j) 1237 list_add(&ch->tx_ring[j]->list, &ch->free_tx); 1238 } 1239 1240 target->qp_in_error = false; 1241 1242 for (i = 0; i < target->ch_count; i++) { 1243 ch = &target->ch[i]; 1244 if (ret) 1245 break; 1246 ret = srp_connect_ch(ch, multich); 1247 multich = true; 1248 } 1249 1250 if (ret == 0) 1251 shost_printk(KERN_INFO, target->scsi_host, 1252 PFX "reconnect succeeded\n"); 1253 1254 return ret; 1255 } 1256 1257 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr, 1258 unsigned int dma_len, u32 rkey) 1259 { 1260 struct srp_direct_buf *desc = state->desc; 1261 1262 WARN_ON_ONCE(!dma_len); 1263 1264 desc->va = cpu_to_be64(dma_addr); 1265 desc->key = cpu_to_be32(rkey); 1266 desc->len = cpu_to_be32(dma_len); 1267 1268 state->total_len += dma_len; 1269 state->desc++; 1270 state->ndesc++; 1271 } 1272 1273 static int srp_map_finish_fmr(struct srp_map_state *state, 1274 struct srp_rdma_ch *ch) 1275 { 1276 struct srp_target_port *target = ch->target; 1277 struct srp_device *dev = target->srp_host->srp_dev; 1278 struct ib_pd *pd = target->pd; 1279 struct ib_pool_fmr *fmr; 1280 u64 io_addr = 0; 1281 1282 if (state->fmr.next >= state->fmr.end) { 1283 shost_printk(KERN_ERR, ch->target->scsi_host, 1284 PFX "Out of MRs (mr_per_cmd = %d)\n", 1285 ch->target->mr_per_cmd); 1286 return -ENOMEM; 1287 } 1288 1289 WARN_ON_ONCE(!dev->use_fmr); 1290 1291 if (state->npages == 0) 1292 return 0; 1293 1294 if (state->npages == 1 && (pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) { 1295 srp_map_desc(state, state->base_dma_addr, state->dma_len, 1296 pd->unsafe_global_rkey); 1297 goto reset_state; 1298 } 1299 1300 fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages, 1301 state->npages, io_addr); 1302 if (IS_ERR(fmr)) 1303 return PTR_ERR(fmr); 1304 1305 *state->fmr.next++ = fmr; 1306 state->nmdesc++; 1307 1308 srp_map_desc(state, state->base_dma_addr & ~dev->mr_page_mask, 1309 state->dma_len, fmr->fmr->rkey); 1310 1311 reset_state: 1312 state->npages = 0; 1313 state->dma_len = 0; 1314 1315 return 0; 1316 } 1317 1318 static void srp_reg_mr_err_done(struct ib_cq *cq, struct ib_wc *wc) 1319 { 1320 srp_handle_qp_err(cq, wc, "FAST REG"); 1321 } 1322 1323 /* 1324 * Map up to sg_nents elements of state->sg where *sg_offset_p is the offset 1325 * where to start in the first element. If sg_offset_p != NULL then 1326 * *sg_offset_p is updated to the offset in state->sg[retval] of the first 1327 * byte that has not yet been mapped. 1328 */ 1329 static int srp_map_finish_fr(struct srp_map_state *state, 1330 struct srp_request *req, 1331 struct srp_rdma_ch *ch, int sg_nents, 1332 unsigned int *sg_offset_p) 1333 { 1334 struct srp_target_port *target = ch->target; 1335 struct srp_device *dev = target->srp_host->srp_dev; 1336 struct ib_pd *pd = target->pd; 1337 struct ib_send_wr *bad_wr; 1338 struct ib_reg_wr wr; 1339 struct srp_fr_desc *desc; 1340 u32 rkey; 1341 int n, err; 1342 1343 if (state->fr.next >= state->fr.end) { 1344 shost_printk(KERN_ERR, ch->target->scsi_host, 1345 PFX "Out of MRs (mr_per_cmd = %d)\n", 1346 ch->target->mr_per_cmd); 1347 return -ENOMEM; 1348 } 1349 1350 WARN_ON_ONCE(!dev->use_fast_reg); 1351 1352 if (sg_nents == 1 && (pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) { 1353 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 1354 1355 srp_map_desc(state, sg_dma_address(state->sg) + sg_offset, 1356 sg_dma_len(state->sg) - sg_offset, 1357 pd->unsafe_global_rkey); 1358 if (sg_offset_p) 1359 *sg_offset_p = 0; 1360 return 1; 1361 } 1362 1363 desc = srp_fr_pool_get(ch->fr_pool); 1364 if (!desc) 1365 return -ENOMEM; 1366 1367 rkey = ib_inc_rkey(desc->mr->rkey); 1368 ib_update_fast_reg_key(desc->mr, rkey); 1369 1370 n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, sg_offset_p, 1371 dev->mr_page_size); 1372 if (unlikely(n < 0)) { 1373 srp_fr_pool_put(ch->fr_pool, &desc, 1); 1374 pr_debug("%s: ib_map_mr_sg(%d, %d) returned %d.\n", 1375 dev_name(&req->scmnd->device->sdev_gendev), sg_nents, 1376 sg_offset_p ? *sg_offset_p : -1, n); 1377 return n; 1378 } 1379 1380 WARN_ON_ONCE(desc->mr->length == 0); 1381 1382 req->reg_cqe.done = srp_reg_mr_err_done; 1383 1384 wr.wr.next = NULL; 1385 wr.wr.opcode = IB_WR_REG_MR; 1386 wr.wr.wr_cqe = &req->reg_cqe; 1387 wr.wr.num_sge = 0; 1388 wr.wr.send_flags = 0; 1389 wr.mr = desc->mr; 1390 wr.key = desc->mr->rkey; 1391 wr.access = (IB_ACCESS_LOCAL_WRITE | 1392 IB_ACCESS_REMOTE_READ | 1393 IB_ACCESS_REMOTE_WRITE); 1394 1395 *state->fr.next++ = desc; 1396 state->nmdesc++; 1397 1398 srp_map_desc(state, desc->mr->iova, 1399 desc->mr->length, desc->mr->rkey); 1400 1401 err = ib_post_send(ch->qp, &wr.wr, &bad_wr); 1402 if (unlikely(err)) { 1403 WARN_ON_ONCE(err == -ENOMEM); 1404 return err; 1405 } 1406 1407 return n; 1408 } 1409 1410 static int srp_map_sg_entry(struct srp_map_state *state, 1411 struct srp_rdma_ch *ch, 1412 struct scatterlist *sg) 1413 { 1414 struct srp_target_port *target = ch->target; 1415 struct srp_device *dev = target->srp_host->srp_dev; 1416 struct ib_device *ibdev = dev->dev; 1417 dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg); 1418 unsigned int dma_len = ib_sg_dma_len(ibdev, sg); 1419 unsigned int len = 0; 1420 int ret; 1421 1422 WARN_ON_ONCE(!dma_len); 1423 1424 while (dma_len) { 1425 unsigned offset = dma_addr & ~dev->mr_page_mask; 1426 1427 if (state->npages == dev->max_pages_per_mr || 1428 (state->npages > 0 && offset != 0)) { 1429 ret = srp_map_finish_fmr(state, ch); 1430 if (ret) 1431 return ret; 1432 } 1433 1434 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset); 1435 1436 if (!state->npages) 1437 state->base_dma_addr = dma_addr; 1438 state->pages[state->npages++] = dma_addr & dev->mr_page_mask; 1439 state->dma_len += len; 1440 dma_addr += len; 1441 dma_len -= len; 1442 } 1443 1444 /* 1445 * If the end of the MR is not on a page boundary then we need to 1446 * close it out and start a new one -- we can only merge at page 1447 * boundaries. 1448 */ 1449 ret = 0; 1450 if ((dma_addr & ~dev->mr_page_mask) != 0) 1451 ret = srp_map_finish_fmr(state, ch); 1452 return ret; 1453 } 1454 1455 static int srp_map_sg_fmr(struct srp_map_state *state, struct srp_rdma_ch *ch, 1456 struct srp_request *req, struct scatterlist *scat, 1457 int count) 1458 { 1459 struct scatterlist *sg; 1460 int i, ret; 1461 1462 state->pages = req->map_page; 1463 state->fmr.next = req->fmr_list; 1464 state->fmr.end = req->fmr_list + ch->target->mr_per_cmd; 1465 1466 for_each_sg(scat, sg, count, i) { 1467 ret = srp_map_sg_entry(state, ch, sg); 1468 if (ret) 1469 return ret; 1470 } 1471 1472 ret = srp_map_finish_fmr(state, ch); 1473 if (ret) 1474 return ret; 1475 1476 return 0; 1477 } 1478 1479 static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch, 1480 struct srp_request *req, struct scatterlist *scat, 1481 int count) 1482 { 1483 unsigned int sg_offset = 0; 1484 1485 state->fr.next = req->fr_list; 1486 state->fr.end = req->fr_list + ch->target->mr_per_cmd; 1487 state->sg = scat; 1488 1489 if (count == 0) 1490 return 0; 1491 1492 while (count) { 1493 int i, n; 1494 1495 n = srp_map_finish_fr(state, req, ch, count, &sg_offset); 1496 if (unlikely(n < 0)) 1497 return n; 1498 1499 count -= n; 1500 for (i = 0; i < n; i++) 1501 state->sg = sg_next(state->sg); 1502 } 1503 1504 return 0; 1505 } 1506 1507 static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch, 1508 struct srp_request *req, struct scatterlist *scat, 1509 int count) 1510 { 1511 struct srp_target_port *target = ch->target; 1512 struct srp_device *dev = target->srp_host->srp_dev; 1513 struct scatterlist *sg; 1514 int i; 1515 1516 for_each_sg(scat, sg, count, i) { 1517 srp_map_desc(state, ib_sg_dma_address(dev->dev, sg), 1518 ib_sg_dma_len(dev->dev, sg), 1519 target->pd->unsafe_global_rkey); 1520 } 1521 1522 return 0; 1523 } 1524 1525 /* 1526 * Register the indirect data buffer descriptor with the HCA. 1527 * 1528 * Note: since the indirect data buffer descriptor has been allocated with 1529 * kmalloc() it is guaranteed that this buffer is a physically contiguous 1530 * memory buffer. 1531 */ 1532 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req, 1533 void **next_mr, void **end_mr, u32 idb_len, 1534 __be32 *idb_rkey) 1535 { 1536 struct srp_target_port *target = ch->target; 1537 struct srp_device *dev = target->srp_host->srp_dev; 1538 struct srp_map_state state; 1539 struct srp_direct_buf idb_desc; 1540 u64 idb_pages[1]; 1541 struct scatterlist idb_sg[1]; 1542 int ret; 1543 1544 memset(&state, 0, sizeof(state)); 1545 memset(&idb_desc, 0, sizeof(idb_desc)); 1546 state.gen.next = next_mr; 1547 state.gen.end = end_mr; 1548 state.desc = &idb_desc; 1549 state.base_dma_addr = req->indirect_dma_addr; 1550 state.dma_len = idb_len; 1551 1552 if (dev->use_fast_reg) { 1553 state.sg = idb_sg; 1554 sg_init_one(idb_sg, req->indirect_desc, idb_len); 1555 idb_sg->dma_address = req->indirect_dma_addr; /* hack! */ 1556 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1557 idb_sg->dma_length = idb_sg->length; /* hack^2 */ 1558 #endif 1559 ret = srp_map_finish_fr(&state, req, ch, 1, NULL); 1560 if (ret < 0) 1561 return ret; 1562 WARN_ON_ONCE(ret < 1); 1563 } else if (dev->use_fmr) { 1564 state.pages = idb_pages; 1565 state.pages[0] = (req->indirect_dma_addr & 1566 dev->mr_page_mask); 1567 state.npages = 1; 1568 ret = srp_map_finish_fmr(&state, ch); 1569 if (ret < 0) 1570 return ret; 1571 } else { 1572 return -EINVAL; 1573 } 1574 1575 *idb_rkey = idb_desc.key; 1576 1577 return 0; 1578 } 1579 1580 static void srp_check_mapping(struct srp_map_state *state, 1581 struct srp_rdma_ch *ch, struct srp_request *req, 1582 struct scatterlist *scat, int count) 1583 { 1584 struct srp_device *dev = ch->target->srp_host->srp_dev; 1585 struct srp_fr_desc **pfr; 1586 u64 desc_len = 0, mr_len = 0; 1587 int i; 1588 1589 for (i = 0; i < state->ndesc; i++) 1590 desc_len += be32_to_cpu(req->indirect_desc[i].len); 1591 if (dev->use_fast_reg) 1592 for (i = 0, pfr = req->fr_list; i < state->nmdesc; i++, pfr++) 1593 mr_len += (*pfr)->mr->length; 1594 else if (dev->use_fmr) 1595 for (i = 0; i < state->nmdesc; i++) 1596 mr_len += be32_to_cpu(req->indirect_desc[i].len); 1597 if (desc_len != scsi_bufflen(req->scmnd) || 1598 mr_len > scsi_bufflen(req->scmnd)) 1599 pr_err("Inconsistent: scsi len %d <> desc len %lld <> mr len %lld; ndesc %d; nmdesc = %d\n", 1600 scsi_bufflen(req->scmnd), desc_len, mr_len, 1601 state->ndesc, state->nmdesc); 1602 } 1603 1604 /** 1605 * srp_map_data() - map SCSI data buffer onto an SRP request 1606 * @scmnd: SCSI command to map 1607 * @ch: SRP RDMA channel 1608 * @req: SRP request 1609 * 1610 * Returns the length in bytes of the SRP_CMD IU or a negative value if 1611 * mapping failed. 1612 */ 1613 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch, 1614 struct srp_request *req) 1615 { 1616 struct srp_target_port *target = ch->target; 1617 struct ib_pd *pd = target->pd; 1618 struct scatterlist *scat; 1619 struct srp_cmd *cmd = req->cmd->buf; 1620 int len, nents, count, ret; 1621 struct srp_device *dev; 1622 struct ib_device *ibdev; 1623 struct srp_map_state state; 1624 struct srp_indirect_buf *indirect_hdr; 1625 u32 idb_len, table_len; 1626 __be32 idb_rkey; 1627 u8 fmt; 1628 1629 if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE) 1630 return sizeof (struct srp_cmd); 1631 1632 if (scmnd->sc_data_direction != DMA_FROM_DEVICE && 1633 scmnd->sc_data_direction != DMA_TO_DEVICE) { 1634 shost_printk(KERN_WARNING, target->scsi_host, 1635 PFX "Unhandled data direction %d\n", 1636 scmnd->sc_data_direction); 1637 return -EINVAL; 1638 } 1639 1640 nents = scsi_sg_count(scmnd); 1641 scat = scsi_sglist(scmnd); 1642 1643 dev = target->srp_host->srp_dev; 1644 ibdev = dev->dev; 1645 1646 count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction); 1647 if (unlikely(count == 0)) 1648 return -EIO; 1649 1650 fmt = SRP_DATA_DESC_DIRECT; 1651 len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf); 1652 1653 if (count == 1 && (pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) { 1654 /* 1655 * The midlayer only generated a single gather/scatter 1656 * entry, or DMA mapping coalesced everything to a 1657 * single entry. So a direct descriptor along with 1658 * the DMA MR suffices. 1659 */ 1660 struct srp_direct_buf *buf = (void *) cmd->add_data; 1661 1662 buf->va = cpu_to_be64(ib_sg_dma_address(ibdev, scat)); 1663 buf->key = cpu_to_be32(pd->unsafe_global_rkey); 1664 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat)); 1665 1666 req->nmdesc = 0; 1667 goto map_complete; 1668 } 1669 1670 /* 1671 * We have more than one scatter/gather entry, so build our indirect 1672 * descriptor table, trying to merge as many entries as we can. 1673 */ 1674 indirect_hdr = (void *) cmd->add_data; 1675 1676 ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr, 1677 target->indirect_size, DMA_TO_DEVICE); 1678 1679 memset(&state, 0, sizeof(state)); 1680 state.desc = req->indirect_desc; 1681 if (dev->use_fast_reg) 1682 ret = srp_map_sg_fr(&state, ch, req, scat, count); 1683 else if (dev->use_fmr) 1684 ret = srp_map_sg_fmr(&state, ch, req, scat, count); 1685 else 1686 ret = srp_map_sg_dma(&state, ch, req, scat, count); 1687 req->nmdesc = state.nmdesc; 1688 if (ret < 0) 1689 goto unmap; 1690 1691 { 1692 DEFINE_DYNAMIC_DEBUG_METADATA(ddm, 1693 "Memory mapping consistency check"); 1694 if (DYNAMIC_DEBUG_BRANCH(ddm)) 1695 srp_check_mapping(&state, ch, req, scat, count); 1696 } 1697 1698 /* We've mapped the request, now pull as much of the indirect 1699 * descriptor table as we can into the command buffer. If this 1700 * target is not using an external indirect table, we are 1701 * guaranteed to fit into the command, as the SCSI layer won't 1702 * give us more S/G entries than we allow. 1703 */ 1704 if (state.ndesc == 1) { 1705 /* 1706 * Memory registration collapsed the sg-list into one entry, 1707 * so use a direct descriptor. 1708 */ 1709 struct srp_direct_buf *buf = (void *) cmd->add_data; 1710 1711 *buf = req->indirect_desc[0]; 1712 goto map_complete; 1713 } 1714 1715 if (unlikely(target->cmd_sg_cnt < state.ndesc && 1716 !target->allow_ext_sg)) { 1717 shost_printk(KERN_ERR, target->scsi_host, 1718 "Could not fit S/G list into SRP_CMD\n"); 1719 ret = -EIO; 1720 goto unmap; 1721 } 1722 1723 count = min(state.ndesc, target->cmd_sg_cnt); 1724 table_len = state.ndesc * sizeof (struct srp_direct_buf); 1725 idb_len = sizeof(struct srp_indirect_buf) + table_len; 1726 1727 fmt = SRP_DATA_DESC_INDIRECT; 1728 len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf); 1729 len += count * sizeof (struct srp_direct_buf); 1730 1731 memcpy(indirect_hdr->desc_list, req->indirect_desc, 1732 count * sizeof (struct srp_direct_buf)); 1733 1734 if (!(pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) { 1735 ret = srp_map_idb(ch, req, state.gen.next, state.gen.end, 1736 idb_len, &idb_rkey); 1737 if (ret < 0) 1738 goto unmap; 1739 req->nmdesc++; 1740 } else { 1741 idb_rkey = cpu_to_be32(pd->unsafe_global_rkey); 1742 } 1743 1744 indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr); 1745 indirect_hdr->table_desc.key = idb_rkey; 1746 indirect_hdr->table_desc.len = cpu_to_be32(table_len); 1747 indirect_hdr->len = cpu_to_be32(state.total_len); 1748 1749 if (scmnd->sc_data_direction == DMA_TO_DEVICE) 1750 cmd->data_out_desc_cnt = count; 1751 else 1752 cmd->data_in_desc_cnt = count; 1753 1754 ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len, 1755 DMA_TO_DEVICE); 1756 1757 map_complete: 1758 if (scmnd->sc_data_direction == DMA_TO_DEVICE) 1759 cmd->buf_fmt = fmt << 4; 1760 else 1761 cmd->buf_fmt = fmt; 1762 1763 return len; 1764 1765 unmap: 1766 srp_unmap_data(scmnd, ch, req); 1767 if (ret == -ENOMEM && req->nmdesc >= target->mr_pool_size) 1768 ret = -E2BIG; 1769 return ret; 1770 } 1771 1772 /* 1773 * Return an IU and possible credit to the free pool 1774 */ 1775 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu, 1776 enum srp_iu_type iu_type) 1777 { 1778 unsigned long flags; 1779 1780 spin_lock_irqsave(&ch->lock, flags); 1781 list_add(&iu->list, &ch->free_tx); 1782 if (iu_type != SRP_IU_RSP) 1783 ++ch->req_lim; 1784 spin_unlock_irqrestore(&ch->lock, flags); 1785 } 1786 1787 /* 1788 * Must be called with ch->lock held to protect req_lim and free_tx. 1789 * If IU is not sent, it must be returned using srp_put_tx_iu(). 1790 * 1791 * Note: 1792 * An upper limit for the number of allocated information units for each 1793 * request type is: 1794 * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues 1795 * more than Scsi_Host.can_queue requests. 1796 * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE. 1797 * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than 1798 * one unanswered SRP request to an initiator. 1799 */ 1800 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch, 1801 enum srp_iu_type iu_type) 1802 { 1803 struct srp_target_port *target = ch->target; 1804 s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE; 1805 struct srp_iu *iu; 1806 1807 lockdep_assert_held(&ch->lock); 1808 1809 ib_process_cq_direct(ch->send_cq, -1); 1810 1811 if (list_empty(&ch->free_tx)) 1812 return NULL; 1813 1814 /* Initiator responses to target requests do not consume credits */ 1815 if (iu_type != SRP_IU_RSP) { 1816 if (ch->req_lim <= rsv) { 1817 ++target->zero_req_lim; 1818 return NULL; 1819 } 1820 1821 --ch->req_lim; 1822 } 1823 1824 iu = list_first_entry(&ch->free_tx, struct srp_iu, list); 1825 list_del(&iu->list); 1826 return iu; 1827 } 1828 1829 /* 1830 * Note: if this function is called from inside ib_drain_sq() then it will 1831 * be called without ch->lock being held. If ib_drain_sq() dequeues a WQE 1832 * with status IB_WC_SUCCESS then that's a bug. 1833 */ 1834 static void srp_send_done(struct ib_cq *cq, struct ib_wc *wc) 1835 { 1836 struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe); 1837 struct srp_rdma_ch *ch = cq->cq_context; 1838 1839 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1840 srp_handle_qp_err(cq, wc, "SEND"); 1841 return; 1842 } 1843 1844 lockdep_assert_held(&ch->lock); 1845 1846 list_add(&iu->list, &ch->free_tx); 1847 } 1848 1849 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len) 1850 { 1851 struct srp_target_port *target = ch->target; 1852 struct ib_sge list; 1853 struct ib_send_wr wr, *bad_wr; 1854 1855 list.addr = iu->dma; 1856 list.length = len; 1857 list.lkey = target->lkey; 1858 1859 iu->cqe.done = srp_send_done; 1860 1861 wr.next = NULL; 1862 wr.wr_cqe = &iu->cqe; 1863 wr.sg_list = &list; 1864 wr.num_sge = 1; 1865 wr.opcode = IB_WR_SEND; 1866 wr.send_flags = IB_SEND_SIGNALED; 1867 1868 return ib_post_send(ch->qp, &wr, &bad_wr); 1869 } 1870 1871 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu) 1872 { 1873 struct srp_target_port *target = ch->target; 1874 struct ib_recv_wr wr, *bad_wr; 1875 struct ib_sge list; 1876 1877 list.addr = iu->dma; 1878 list.length = iu->size; 1879 list.lkey = target->lkey; 1880 1881 iu->cqe.done = srp_recv_done; 1882 1883 wr.next = NULL; 1884 wr.wr_cqe = &iu->cqe; 1885 wr.sg_list = &list; 1886 wr.num_sge = 1; 1887 1888 return ib_post_recv(ch->qp, &wr, &bad_wr); 1889 } 1890 1891 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp) 1892 { 1893 struct srp_target_port *target = ch->target; 1894 struct srp_request *req; 1895 struct scsi_cmnd *scmnd; 1896 unsigned long flags; 1897 1898 if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) { 1899 spin_lock_irqsave(&ch->lock, flags); 1900 ch->req_lim += be32_to_cpu(rsp->req_lim_delta); 1901 if (rsp->tag == ch->tsk_mgmt_tag) { 1902 ch->tsk_mgmt_status = -1; 1903 if (be32_to_cpu(rsp->resp_data_len) >= 4) 1904 ch->tsk_mgmt_status = rsp->data[3]; 1905 complete(&ch->tsk_mgmt_done); 1906 } else { 1907 shost_printk(KERN_ERR, target->scsi_host, 1908 "Received tsk mgmt response too late for tag %#llx\n", 1909 rsp->tag); 1910 } 1911 spin_unlock_irqrestore(&ch->lock, flags); 1912 } else { 1913 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag); 1914 if (scmnd && scmnd->host_scribble) { 1915 req = (void *)scmnd->host_scribble; 1916 scmnd = srp_claim_req(ch, req, NULL, scmnd); 1917 } else { 1918 scmnd = NULL; 1919 } 1920 if (!scmnd) { 1921 shost_printk(KERN_ERR, target->scsi_host, 1922 "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n", 1923 rsp->tag, ch - target->ch, ch->qp->qp_num); 1924 1925 spin_lock_irqsave(&ch->lock, flags); 1926 ch->req_lim += be32_to_cpu(rsp->req_lim_delta); 1927 spin_unlock_irqrestore(&ch->lock, flags); 1928 1929 return; 1930 } 1931 scmnd->result = rsp->status; 1932 1933 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) { 1934 memcpy(scmnd->sense_buffer, rsp->data + 1935 be32_to_cpu(rsp->resp_data_len), 1936 min_t(int, be32_to_cpu(rsp->sense_data_len), 1937 SCSI_SENSE_BUFFERSIZE)); 1938 } 1939 1940 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER)) 1941 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt)); 1942 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER)) 1943 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt)); 1944 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER)) 1945 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt)); 1946 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER)) 1947 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt)); 1948 1949 srp_free_req(ch, req, scmnd, 1950 be32_to_cpu(rsp->req_lim_delta)); 1951 1952 scmnd->host_scribble = NULL; 1953 scmnd->scsi_done(scmnd); 1954 } 1955 } 1956 1957 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta, 1958 void *rsp, int len) 1959 { 1960 struct srp_target_port *target = ch->target; 1961 struct ib_device *dev = target->srp_host->srp_dev->dev; 1962 unsigned long flags; 1963 struct srp_iu *iu; 1964 int err; 1965 1966 spin_lock_irqsave(&ch->lock, flags); 1967 ch->req_lim += req_delta; 1968 iu = __srp_get_tx_iu(ch, SRP_IU_RSP); 1969 spin_unlock_irqrestore(&ch->lock, flags); 1970 1971 if (!iu) { 1972 shost_printk(KERN_ERR, target->scsi_host, PFX 1973 "no IU available to send response\n"); 1974 return 1; 1975 } 1976 1977 ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE); 1978 memcpy(iu->buf, rsp, len); 1979 ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE); 1980 1981 err = srp_post_send(ch, iu, len); 1982 if (err) { 1983 shost_printk(KERN_ERR, target->scsi_host, PFX 1984 "unable to post response: %d\n", err); 1985 srp_put_tx_iu(ch, iu, SRP_IU_RSP); 1986 } 1987 1988 return err; 1989 } 1990 1991 static void srp_process_cred_req(struct srp_rdma_ch *ch, 1992 struct srp_cred_req *req) 1993 { 1994 struct srp_cred_rsp rsp = { 1995 .opcode = SRP_CRED_RSP, 1996 .tag = req->tag, 1997 }; 1998 s32 delta = be32_to_cpu(req->req_lim_delta); 1999 2000 if (srp_response_common(ch, delta, &rsp, sizeof(rsp))) 2001 shost_printk(KERN_ERR, ch->target->scsi_host, PFX 2002 "problems processing SRP_CRED_REQ\n"); 2003 } 2004 2005 static void srp_process_aer_req(struct srp_rdma_ch *ch, 2006 struct srp_aer_req *req) 2007 { 2008 struct srp_target_port *target = ch->target; 2009 struct srp_aer_rsp rsp = { 2010 .opcode = SRP_AER_RSP, 2011 .tag = req->tag, 2012 }; 2013 s32 delta = be32_to_cpu(req->req_lim_delta); 2014 2015 shost_printk(KERN_ERR, target->scsi_host, PFX 2016 "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun)); 2017 2018 if (srp_response_common(ch, delta, &rsp, sizeof(rsp))) 2019 shost_printk(KERN_ERR, target->scsi_host, PFX 2020 "problems processing SRP_AER_REQ\n"); 2021 } 2022 2023 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc) 2024 { 2025 struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe); 2026 struct srp_rdma_ch *ch = cq->cq_context; 2027 struct srp_target_port *target = ch->target; 2028 struct ib_device *dev = target->srp_host->srp_dev->dev; 2029 int res; 2030 u8 opcode; 2031 2032 if (unlikely(wc->status != IB_WC_SUCCESS)) { 2033 srp_handle_qp_err(cq, wc, "RECV"); 2034 return; 2035 } 2036 2037 ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len, 2038 DMA_FROM_DEVICE); 2039 2040 opcode = *(u8 *) iu->buf; 2041 2042 if (0) { 2043 shost_printk(KERN_ERR, target->scsi_host, 2044 PFX "recv completion, opcode 0x%02x\n", opcode); 2045 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1, 2046 iu->buf, wc->byte_len, true); 2047 } 2048 2049 switch (opcode) { 2050 case SRP_RSP: 2051 srp_process_rsp(ch, iu->buf); 2052 break; 2053 2054 case SRP_CRED_REQ: 2055 srp_process_cred_req(ch, iu->buf); 2056 break; 2057 2058 case SRP_AER_REQ: 2059 srp_process_aer_req(ch, iu->buf); 2060 break; 2061 2062 case SRP_T_LOGOUT: 2063 /* XXX Handle target logout */ 2064 shost_printk(KERN_WARNING, target->scsi_host, 2065 PFX "Got target logout request\n"); 2066 break; 2067 2068 default: 2069 shost_printk(KERN_WARNING, target->scsi_host, 2070 PFX "Unhandled SRP opcode 0x%02x\n", opcode); 2071 break; 2072 } 2073 2074 ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len, 2075 DMA_FROM_DEVICE); 2076 2077 res = srp_post_recv(ch, iu); 2078 if (res != 0) 2079 shost_printk(KERN_ERR, target->scsi_host, 2080 PFX "Recv failed with error code %d\n", res); 2081 } 2082 2083 /** 2084 * srp_tl_err_work() - handle a transport layer error 2085 * @work: Work structure embedded in an SRP target port. 2086 * 2087 * Note: This function may get invoked before the rport has been created, 2088 * hence the target->rport test. 2089 */ 2090 static void srp_tl_err_work(struct work_struct *work) 2091 { 2092 struct srp_target_port *target; 2093 2094 target = container_of(work, struct srp_target_port, tl_err_work); 2095 if (target->rport) 2096 srp_start_tl_fail_timers(target->rport); 2097 } 2098 2099 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc, 2100 const char *opname) 2101 { 2102 struct srp_rdma_ch *ch = cq->cq_context; 2103 struct srp_target_port *target = ch->target; 2104 2105 if (ch->connected && !target->qp_in_error) { 2106 shost_printk(KERN_ERR, target->scsi_host, 2107 PFX "failed %s status %s (%d) for CQE %p\n", 2108 opname, ib_wc_status_msg(wc->status), wc->status, 2109 wc->wr_cqe); 2110 queue_work(system_long_wq, &target->tl_err_work); 2111 } 2112 target->qp_in_error = true; 2113 } 2114 2115 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd) 2116 { 2117 struct srp_target_port *target = host_to_target(shost); 2118 struct srp_rport *rport = target->rport; 2119 struct srp_rdma_ch *ch; 2120 struct srp_request *req; 2121 struct srp_iu *iu; 2122 struct srp_cmd *cmd; 2123 struct ib_device *dev; 2124 unsigned long flags; 2125 u32 tag; 2126 u16 idx; 2127 int len, ret; 2128 const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler; 2129 2130 /* 2131 * The SCSI EH thread is the only context from which srp_queuecommand() 2132 * can get invoked for blocked devices (SDEV_BLOCK / 2133 * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by 2134 * locking the rport mutex if invoked from inside the SCSI EH. 2135 */ 2136 if (in_scsi_eh) 2137 mutex_lock(&rport->mutex); 2138 2139 scmnd->result = srp_chkready(target->rport); 2140 if (unlikely(scmnd->result)) 2141 goto err; 2142 2143 WARN_ON_ONCE(scmnd->request->tag < 0); 2144 tag = blk_mq_unique_tag(scmnd->request); 2145 ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)]; 2146 idx = blk_mq_unique_tag_to_tag(tag); 2147 WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n", 2148 dev_name(&shost->shost_gendev), tag, idx, 2149 target->req_ring_size); 2150 2151 spin_lock_irqsave(&ch->lock, flags); 2152 iu = __srp_get_tx_iu(ch, SRP_IU_CMD); 2153 spin_unlock_irqrestore(&ch->lock, flags); 2154 2155 if (!iu) 2156 goto err; 2157 2158 req = &ch->req_ring[idx]; 2159 dev = target->srp_host->srp_dev->dev; 2160 ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len, 2161 DMA_TO_DEVICE); 2162 2163 scmnd->host_scribble = (void *) req; 2164 2165 cmd = iu->buf; 2166 memset(cmd, 0, sizeof *cmd); 2167 2168 cmd->opcode = SRP_CMD; 2169 int_to_scsilun(scmnd->device->lun, &cmd->lun); 2170 cmd->tag = tag; 2171 memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len); 2172 2173 req->scmnd = scmnd; 2174 req->cmd = iu; 2175 2176 len = srp_map_data(scmnd, ch, req); 2177 if (len < 0) { 2178 shost_printk(KERN_ERR, target->scsi_host, 2179 PFX "Failed to map data (%d)\n", len); 2180 /* 2181 * If we ran out of memory descriptors (-ENOMEM) because an 2182 * application is queuing many requests with more than 2183 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer 2184 * to reduce queue depth temporarily. 2185 */ 2186 scmnd->result = len == -ENOMEM ? 2187 DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16; 2188 goto err_iu; 2189 } 2190 2191 ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len, 2192 DMA_TO_DEVICE); 2193 2194 if (srp_post_send(ch, iu, len)) { 2195 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n"); 2196 goto err_unmap; 2197 } 2198 2199 ret = 0; 2200 2201 unlock_rport: 2202 if (in_scsi_eh) 2203 mutex_unlock(&rport->mutex); 2204 2205 return ret; 2206 2207 err_unmap: 2208 srp_unmap_data(scmnd, ch, req); 2209 2210 err_iu: 2211 srp_put_tx_iu(ch, iu, SRP_IU_CMD); 2212 2213 /* 2214 * Avoid that the loops that iterate over the request ring can 2215 * encounter a dangling SCSI command pointer. 2216 */ 2217 req->scmnd = NULL; 2218 2219 err: 2220 if (scmnd->result) { 2221 scmnd->scsi_done(scmnd); 2222 ret = 0; 2223 } else { 2224 ret = SCSI_MLQUEUE_HOST_BUSY; 2225 } 2226 2227 goto unlock_rport; 2228 } 2229 2230 /* 2231 * Note: the resources allocated in this function are freed in 2232 * srp_free_ch_ib(). 2233 */ 2234 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch) 2235 { 2236 struct srp_target_port *target = ch->target; 2237 int i; 2238 2239 ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring), 2240 GFP_KERNEL); 2241 if (!ch->rx_ring) 2242 goto err_no_ring; 2243 ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring), 2244 GFP_KERNEL); 2245 if (!ch->tx_ring) 2246 goto err_no_ring; 2247 2248 for (i = 0; i < target->queue_size; ++i) { 2249 ch->rx_ring[i] = srp_alloc_iu(target->srp_host, 2250 ch->max_ti_iu_len, 2251 GFP_KERNEL, DMA_FROM_DEVICE); 2252 if (!ch->rx_ring[i]) 2253 goto err; 2254 } 2255 2256 for (i = 0; i < target->queue_size; ++i) { 2257 ch->tx_ring[i] = srp_alloc_iu(target->srp_host, 2258 target->max_iu_len, 2259 GFP_KERNEL, DMA_TO_DEVICE); 2260 if (!ch->tx_ring[i]) 2261 goto err; 2262 2263 list_add(&ch->tx_ring[i]->list, &ch->free_tx); 2264 } 2265 2266 return 0; 2267 2268 err: 2269 for (i = 0; i < target->queue_size; ++i) { 2270 srp_free_iu(target->srp_host, ch->rx_ring[i]); 2271 srp_free_iu(target->srp_host, ch->tx_ring[i]); 2272 } 2273 2274 2275 err_no_ring: 2276 kfree(ch->tx_ring); 2277 ch->tx_ring = NULL; 2278 kfree(ch->rx_ring); 2279 ch->rx_ring = NULL; 2280 2281 return -ENOMEM; 2282 } 2283 2284 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask) 2285 { 2286 uint64_t T_tr_ns, max_compl_time_ms; 2287 uint32_t rq_tmo_jiffies; 2288 2289 /* 2290 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair, 2291 * table 91), both the QP timeout and the retry count have to be set 2292 * for RC QP's during the RTR to RTS transition. 2293 */ 2294 WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) != 2295 (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)); 2296 2297 /* 2298 * Set target->rq_tmo_jiffies to one second more than the largest time 2299 * it can take before an error completion is generated. See also 2300 * C9-140..142 in the IBTA spec for more information about how to 2301 * convert the QP Local ACK Timeout value to nanoseconds. 2302 */ 2303 T_tr_ns = 4096 * (1ULL << qp_attr->timeout); 2304 max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns; 2305 do_div(max_compl_time_ms, NSEC_PER_MSEC); 2306 rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000); 2307 2308 return rq_tmo_jiffies; 2309 } 2310 2311 static void srp_cm_rep_handler(struct ib_cm_id *cm_id, 2312 const struct srp_login_rsp *lrsp, 2313 struct srp_rdma_ch *ch) 2314 { 2315 struct srp_target_port *target = ch->target; 2316 struct ib_qp_attr *qp_attr = NULL; 2317 int attr_mask = 0; 2318 int ret; 2319 int i; 2320 2321 if (lrsp->opcode == SRP_LOGIN_RSP) { 2322 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len); 2323 ch->req_lim = be32_to_cpu(lrsp->req_lim_delta); 2324 2325 /* 2326 * Reserve credits for task management so we don't 2327 * bounce requests back to the SCSI mid-layer. 2328 */ 2329 target->scsi_host->can_queue 2330 = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE, 2331 target->scsi_host->can_queue); 2332 target->scsi_host->cmd_per_lun 2333 = min_t(int, target->scsi_host->can_queue, 2334 target->scsi_host->cmd_per_lun); 2335 } else { 2336 shost_printk(KERN_WARNING, target->scsi_host, 2337 PFX "Unhandled RSP opcode %#x\n", lrsp->opcode); 2338 ret = -ECONNRESET; 2339 goto error; 2340 } 2341 2342 if (!ch->rx_ring) { 2343 ret = srp_alloc_iu_bufs(ch); 2344 if (ret) 2345 goto error; 2346 } 2347 2348 ret = -ENOMEM; 2349 qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL); 2350 if (!qp_attr) 2351 goto error; 2352 2353 qp_attr->qp_state = IB_QPS_RTR; 2354 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask); 2355 if (ret) 2356 goto error_free; 2357 2358 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask); 2359 if (ret) 2360 goto error_free; 2361 2362 for (i = 0; i < target->queue_size; i++) { 2363 struct srp_iu *iu = ch->rx_ring[i]; 2364 2365 ret = srp_post_recv(ch, iu); 2366 if (ret) 2367 goto error_free; 2368 } 2369 2370 qp_attr->qp_state = IB_QPS_RTS; 2371 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask); 2372 if (ret) 2373 goto error_free; 2374 2375 target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask); 2376 2377 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask); 2378 if (ret) 2379 goto error_free; 2380 2381 ret = ib_send_cm_rtu(cm_id, NULL, 0); 2382 2383 error_free: 2384 kfree(qp_attr); 2385 2386 error: 2387 ch->status = ret; 2388 } 2389 2390 static void srp_cm_rej_handler(struct ib_cm_id *cm_id, 2391 struct ib_cm_event *event, 2392 struct srp_rdma_ch *ch) 2393 { 2394 struct srp_target_port *target = ch->target; 2395 struct Scsi_Host *shost = target->scsi_host; 2396 struct ib_class_port_info *cpi; 2397 int opcode; 2398 2399 switch (event->param.rej_rcvd.reason) { 2400 case IB_CM_REJ_PORT_CM_REDIRECT: 2401 cpi = event->param.rej_rcvd.ari; 2402 ch->path.dlid = cpi->redirect_lid; 2403 ch->path.pkey = cpi->redirect_pkey; 2404 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff; 2405 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16); 2406 2407 ch->status = ch->path.dlid ? 2408 SRP_DLID_REDIRECT : SRP_PORT_REDIRECT; 2409 break; 2410 2411 case IB_CM_REJ_PORT_REDIRECT: 2412 if (srp_target_is_topspin(target)) { 2413 /* 2414 * Topspin/Cisco SRP gateways incorrectly send 2415 * reject reason code 25 when they mean 24 2416 * (port redirect). 2417 */ 2418 memcpy(ch->path.dgid.raw, 2419 event->param.rej_rcvd.ari, 16); 2420 2421 shost_printk(KERN_DEBUG, shost, 2422 PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n", 2423 be64_to_cpu(ch->path.dgid.global.subnet_prefix), 2424 be64_to_cpu(ch->path.dgid.global.interface_id)); 2425 2426 ch->status = SRP_PORT_REDIRECT; 2427 } else { 2428 shost_printk(KERN_WARNING, shost, 2429 " REJ reason: IB_CM_REJ_PORT_REDIRECT\n"); 2430 ch->status = -ECONNRESET; 2431 } 2432 break; 2433 2434 case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID: 2435 shost_printk(KERN_WARNING, shost, 2436 " REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n"); 2437 ch->status = -ECONNRESET; 2438 break; 2439 2440 case IB_CM_REJ_CONSUMER_DEFINED: 2441 opcode = *(u8 *) event->private_data; 2442 if (opcode == SRP_LOGIN_REJ) { 2443 struct srp_login_rej *rej = event->private_data; 2444 u32 reason = be32_to_cpu(rej->reason); 2445 2446 if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE) 2447 shost_printk(KERN_WARNING, shost, 2448 PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n"); 2449 else 2450 shost_printk(KERN_WARNING, shost, PFX 2451 "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n", 2452 target->sgid.raw, 2453 target->orig_dgid.raw, reason); 2454 } else 2455 shost_printk(KERN_WARNING, shost, 2456 " REJ reason: IB_CM_REJ_CONSUMER_DEFINED," 2457 " opcode 0x%02x\n", opcode); 2458 ch->status = -ECONNRESET; 2459 break; 2460 2461 case IB_CM_REJ_STALE_CONN: 2462 shost_printk(KERN_WARNING, shost, " REJ reason: stale connection\n"); 2463 ch->status = SRP_STALE_CONN; 2464 break; 2465 2466 default: 2467 shost_printk(KERN_WARNING, shost, " REJ reason 0x%x\n", 2468 event->param.rej_rcvd.reason); 2469 ch->status = -ECONNRESET; 2470 } 2471 } 2472 2473 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2474 { 2475 struct srp_rdma_ch *ch = cm_id->context; 2476 struct srp_target_port *target = ch->target; 2477 int comp = 0; 2478 2479 switch (event->event) { 2480 case IB_CM_REQ_ERROR: 2481 shost_printk(KERN_DEBUG, target->scsi_host, 2482 PFX "Sending CM REQ failed\n"); 2483 comp = 1; 2484 ch->status = -ECONNRESET; 2485 break; 2486 2487 case IB_CM_REP_RECEIVED: 2488 comp = 1; 2489 srp_cm_rep_handler(cm_id, event->private_data, ch); 2490 break; 2491 2492 case IB_CM_REJ_RECEIVED: 2493 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n"); 2494 comp = 1; 2495 2496 srp_cm_rej_handler(cm_id, event, ch); 2497 break; 2498 2499 case IB_CM_DREQ_RECEIVED: 2500 shost_printk(KERN_WARNING, target->scsi_host, 2501 PFX "DREQ received - connection closed\n"); 2502 ch->connected = false; 2503 if (ib_send_cm_drep(cm_id, NULL, 0)) 2504 shost_printk(KERN_ERR, target->scsi_host, 2505 PFX "Sending CM DREP failed\n"); 2506 queue_work(system_long_wq, &target->tl_err_work); 2507 break; 2508 2509 case IB_CM_TIMEWAIT_EXIT: 2510 shost_printk(KERN_ERR, target->scsi_host, 2511 PFX "connection closed\n"); 2512 comp = 1; 2513 2514 ch->status = 0; 2515 break; 2516 2517 case IB_CM_MRA_RECEIVED: 2518 case IB_CM_DREQ_ERROR: 2519 case IB_CM_DREP_RECEIVED: 2520 break; 2521 2522 default: 2523 shost_printk(KERN_WARNING, target->scsi_host, 2524 PFX "Unhandled CM event %d\n", event->event); 2525 break; 2526 } 2527 2528 if (comp) 2529 complete(&ch->done); 2530 2531 return 0; 2532 } 2533 2534 /** 2535 * srp_change_queue_depth - setting device queue depth 2536 * @sdev: scsi device struct 2537 * @qdepth: requested queue depth 2538 * 2539 * Returns queue depth. 2540 */ 2541 static int 2542 srp_change_queue_depth(struct scsi_device *sdev, int qdepth) 2543 { 2544 if (!sdev->tagged_supported) 2545 qdepth = 1; 2546 return scsi_change_queue_depth(sdev, qdepth); 2547 } 2548 2549 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun, 2550 u8 func, u8 *status) 2551 { 2552 struct srp_target_port *target = ch->target; 2553 struct srp_rport *rport = target->rport; 2554 struct ib_device *dev = target->srp_host->srp_dev->dev; 2555 struct srp_iu *iu; 2556 struct srp_tsk_mgmt *tsk_mgmt; 2557 int res; 2558 2559 if (!ch->connected || target->qp_in_error) 2560 return -1; 2561 2562 /* 2563 * Lock the rport mutex to avoid that srp_create_ch_ib() is 2564 * invoked while a task management function is being sent. 2565 */ 2566 mutex_lock(&rport->mutex); 2567 spin_lock_irq(&ch->lock); 2568 iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT); 2569 spin_unlock_irq(&ch->lock); 2570 2571 if (!iu) { 2572 mutex_unlock(&rport->mutex); 2573 2574 return -1; 2575 } 2576 2577 ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt, 2578 DMA_TO_DEVICE); 2579 tsk_mgmt = iu->buf; 2580 memset(tsk_mgmt, 0, sizeof *tsk_mgmt); 2581 2582 tsk_mgmt->opcode = SRP_TSK_MGMT; 2583 int_to_scsilun(lun, &tsk_mgmt->lun); 2584 tsk_mgmt->tsk_mgmt_func = func; 2585 tsk_mgmt->task_tag = req_tag; 2586 2587 spin_lock_irq(&ch->lock); 2588 ch->tsk_mgmt_tag = (ch->tsk_mgmt_tag + 1) | SRP_TAG_TSK_MGMT; 2589 tsk_mgmt->tag = ch->tsk_mgmt_tag; 2590 spin_unlock_irq(&ch->lock); 2591 2592 init_completion(&ch->tsk_mgmt_done); 2593 2594 ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt, 2595 DMA_TO_DEVICE); 2596 if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) { 2597 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT); 2598 mutex_unlock(&rport->mutex); 2599 2600 return -1; 2601 } 2602 res = wait_for_completion_timeout(&ch->tsk_mgmt_done, 2603 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)); 2604 if (res > 0 && status) 2605 *status = ch->tsk_mgmt_status; 2606 mutex_unlock(&rport->mutex); 2607 2608 WARN_ON_ONCE(res < 0); 2609 2610 return res > 0 ? 0 : -1; 2611 } 2612 2613 static int srp_abort(struct scsi_cmnd *scmnd) 2614 { 2615 struct srp_target_port *target = host_to_target(scmnd->device->host); 2616 struct srp_request *req = (struct srp_request *) scmnd->host_scribble; 2617 u32 tag; 2618 u16 ch_idx; 2619 struct srp_rdma_ch *ch; 2620 int ret; 2621 2622 shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n"); 2623 2624 if (!req) 2625 return SUCCESS; 2626 tag = blk_mq_unique_tag(scmnd->request); 2627 ch_idx = blk_mq_unique_tag_to_hwq(tag); 2628 if (WARN_ON_ONCE(ch_idx >= target->ch_count)) 2629 return SUCCESS; 2630 ch = &target->ch[ch_idx]; 2631 if (!srp_claim_req(ch, req, NULL, scmnd)) 2632 return SUCCESS; 2633 shost_printk(KERN_ERR, target->scsi_host, 2634 "Sending SRP abort for tag %#x\n", tag); 2635 if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun, 2636 SRP_TSK_ABORT_TASK, NULL) == 0) 2637 ret = SUCCESS; 2638 else if (target->rport->state == SRP_RPORT_LOST) 2639 ret = FAST_IO_FAIL; 2640 else 2641 ret = FAILED; 2642 srp_free_req(ch, req, scmnd, 0); 2643 scmnd->result = DID_ABORT << 16; 2644 scmnd->scsi_done(scmnd); 2645 2646 return ret; 2647 } 2648 2649 static int srp_reset_device(struct scsi_cmnd *scmnd) 2650 { 2651 struct srp_target_port *target = host_to_target(scmnd->device->host); 2652 struct srp_rdma_ch *ch; 2653 int i; 2654 u8 status; 2655 2656 shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n"); 2657 2658 ch = &target->ch[0]; 2659 if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun, 2660 SRP_TSK_LUN_RESET, &status)) 2661 return FAILED; 2662 if (status) 2663 return FAILED; 2664 2665 for (i = 0; i < target->ch_count; i++) { 2666 ch = &target->ch[i]; 2667 for (i = 0; i < target->req_ring_size; ++i) { 2668 struct srp_request *req = &ch->req_ring[i]; 2669 2670 srp_finish_req(ch, req, scmnd->device, DID_RESET << 16); 2671 } 2672 } 2673 2674 return SUCCESS; 2675 } 2676 2677 static int srp_reset_host(struct scsi_cmnd *scmnd) 2678 { 2679 struct srp_target_port *target = host_to_target(scmnd->device->host); 2680 2681 shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n"); 2682 2683 return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED; 2684 } 2685 2686 static int srp_slave_alloc(struct scsi_device *sdev) 2687 { 2688 struct Scsi_Host *shost = sdev->host; 2689 struct srp_target_port *target = host_to_target(shost); 2690 struct srp_device *srp_dev = target->srp_host->srp_dev; 2691 2692 if (true) 2693 blk_queue_virt_boundary(sdev->request_queue, 2694 ~srp_dev->mr_page_mask); 2695 2696 return 0; 2697 } 2698 2699 static int srp_slave_configure(struct scsi_device *sdev) 2700 { 2701 struct Scsi_Host *shost = sdev->host; 2702 struct srp_target_port *target = host_to_target(shost); 2703 struct request_queue *q = sdev->request_queue; 2704 unsigned long timeout; 2705 2706 if (sdev->type == TYPE_DISK) { 2707 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies); 2708 blk_queue_rq_timeout(q, timeout); 2709 } 2710 2711 return 0; 2712 } 2713 2714 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr, 2715 char *buf) 2716 { 2717 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2718 2719 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext)); 2720 } 2721 2722 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr, 2723 char *buf) 2724 { 2725 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2726 2727 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid)); 2728 } 2729 2730 static ssize_t show_service_id(struct device *dev, 2731 struct device_attribute *attr, char *buf) 2732 { 2733 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2734 2735 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id)); 2736 } 2737 2738 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr, 2739 char *buf) 2740 { 2741 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2742 2743 return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey)); 2744 } 2745 2746 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr, 2747 char *buf) 2748 { 2749 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2750 2751 return sprintf(buf, "%pI6\n", target->sgid.raw); 2752 } 2753 2754 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr, 2755 char *buf) 2756 { 2757 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2758 struct srp_rdma_ch *ch = &target->ch[0]; 2759 2760 return sprintf(buf, "%pI6\n", ch->path.dgid.raw); 2761 } 2762 2763 static ssize_t show_orig_dgid(struct device *dev, 2764 struct device_attribute *attr, char *buf) 2765 { 2766 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2767 2768 return sprintf(buf, "%pI6\n", target->orig_dgid.raw); 2769 } 2770 2771 static ssize_t show_req_lim(struct device *dev, 2772 struct device_attribute *attr, char *buf) 2773 { 2774 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2775 struct srp_rdma_ch *ch; 2776 int i, req_lim = INT_MAX; 2777 2778 for (i = 0; i < target->ch_count; i++) { 2779 ch = &target->ch[i]; 2780 req_lim = min(req_lim, ch->req_lim); 2781 } 2782 return sprintf(buf, "%d\n", req_lim); 2783 } 2784 2785 static ssize_t show_zero_req_lim(struct device *dev, 2786 struct device_attribute *attr, char *buf) 2787 { 2788 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2789 2790 return sprintf(buf, "%d\n", target->zero_req_lim); 2791 } 2792 2793 static ssize_t show_local_ib_port(struct device *dev, 2794 struct device_attribute *attr, char *buf) 2795 { 2796 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2797 2798 return sprintf(buf, "%d\n", target->srp_host->port); 2799 } 2800 2801 static ssize_t show_local_ib_device(struct device *dev, 2802 struct device_attribute *attr, char *buf) 2803 { 2804 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2805 2806 return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name); 2807 } 2808 2809 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr, 2810 char *buf) 2811 { 2812 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2813 2814 return sprintf(buf, "%d\n", target->ch_count); 2815 } 2816 2817 static ssize_t show_comp_vector(struct device *dev, 2818 struct device_attribute *attr, char *buf) 2819 { 2820 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2821 2822 return sprintf(buf, "%d\n", target->comp_vector); 2823 } 2824 2825 static ssize_t show_tl_retry_count(struct device *dev, 2826 struct device_attribute *attr, char *buf) 2827 { 2828 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2829 2830 return sprintf(buf, "%d\n", target->tl_retry_count); 2831 } 2832 2833 static ssize_t show_cmd_sg_entries(struct device *dev, 2834 struct device_attribute *attr, char *buf) 2835 { 2836 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2837 2838 return sprintf(buf, "%u\n", target->cmd_sg_cnt); 2839 } 2840 2841 static ssize_t show_allow_ext_sg(struct device *dev, 2842 struct device_attribute *attr, char *buf) 2843 { 2844 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2845 2846 return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false"); 2847 } 2848 2849 static DEVICE_ATTR(id_ext, S_IRUGO, show_id_ext, NULL); 2850 static DEVICE_ATTR(ioc_guid, S_IRUGO, show_ioc_guid, NULL); 2851 static DEVICE_ATTR(service_id, S_IRUGO, show_service_id, NULL); 2852 static DEVICE_ATTR(pkey, S_IRUGO, show_pkey, NULL); 2853 static DEVICE_ATTR(sgid, S_IRUGO, show_sgid, NULL); 2854 static DEVICE_ATTR(dgid, S_IRUGO, show_dgid, NULL); 2855 static DEVICE_ATTR(orig_dgid, S_IRUGO, show_orig_dgid, NULL); 2856 static DEVICE_ATTR(req_lim, S_IRUGO, show_req_lim, NULL); 2857 static DEVICE_ATTR(zero_req_lim, S_IRUGO, show_zero_req_lim, NULL); 2858 static DEVICE_ATTR(local_ib_port, S_IRUGO, show_local_ib_port, NULL); 2859 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL); 2860 static DEVICE_ATTR(ch_count, S_IRUGO, show_ch_count, NULL); 2861 static DEVICE_ATTR(comp_vector, S_IRUGO, show_comp_vector, NULL); 2862 static DEVICE_ATTR(tl_retry_count, S_IRUGO, show_tl_retry_count, NULL); 2863 static DEVICE_ATTR(cmd_sg_entries, S_IRUGO, show_cmd_sg_entries, NULL); 2864 static DEVICE_ATTR(allow_ext_sg, S_IRUGO, show_allow_ext_sg, NULL); 2865 2866 static struct device_attribute *srp_host_attrs[] = { 2867 &dev_attr_id_ext, 2868 &dev_attr_ioc_guid, 2869 &dev_attr_service_id, 2870 &dev_attr_pkey, 2871 &dev_attr_sgid, 2872 &dev_attr_dgid, 2873 &dev_attr_orig_dgid, 2874 &dev_attr_req_lim, 2875 &dev_attr_zero_req_lim, 2876 &dev_attr_local_ib_port, 2877 &dev_attr_local_ib_device, 2878 &dev_attr_ch_count, 2879 &dev_attr_comp_vector, 2880 &dev_attr_tl_retry_count, 2881 &dev_attr_cmd_sg_entries, 2882 &dev_attr_allow_ext_sg, 2883 NULL 2884 }; 2885 2886 static struct scsi_host_template srp_template = { 2887 .module = THIS_MODULE, 2888 .name = "InfiniBand SRP initiator", 2889 .proc_name = DRV_NAME, 2890 .slave_alloc = srp_slave_alloc, 2891 .slave_configure = srp_slave_configure, 2892 .info = srp_target_info, 2893 .queuecommand = srp_queuecommand, 2894 .change_queue_depth = srp_change_queue_depth, 2895 .eh_timed_out = srp_timed_out, 2896 .eh_abort_handler = srp_abort, 2897 .eh_device_reset_handler = srp_reset_device, 2898 .eh_host_reset_handler = srp_reset_host, 2899 .skip_settle_delay = true, 2900 .sg_tablesize = SRP_DEF_SG_TABLESIZE, 2901 .can_queue = SRP_DEFAULT_CMD_SQ_SIZE, 2902 .this_id = -1, 2903 .cmd_per_lun = SRP_DEFAULT_CMD_SQ_SIZE, 2904 .use_clustering = ENABLE_CLUSTERING, 2905 .shost_attrs = srp_host_attrs, 2906 .track_queue_depth = 1, 2907 }; 2908 2909 static int srp_sdev_count(struct Scsi_Host *host) 2910 { 2911 struct scsi_device *sdev; 2912 int c = 0; 2913 2914 shost_for_each_device(sdev, host) 2915 c++; 2916 2917 return c; 2918 } 2919 2920 /* 2921 * Return values: 2922 * < 0 upon failure. Caller is responsible for SRP target port cleanup. 2923 * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port 2924 * removal has been scheduled. 2925 * 0 and target->state != SRP_TARGET_REMOVED upon success. 2926 */ 2927 static int srp_add_target(struct srp_host *host, struct srp_target_port *target) 2928 { 2929 struct srp_rport_identifiers ids; 2930 struct srp_rport *rport; 2931 2932 target->state = SRP_TARGET_SCANNING; 2933 sprintf(target->target_name, "SRP.T10:%016llX", 2934 be64_to_cpu(target->id_ext)); 2935 2936 if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device)) 2937 return -ENODEV; 2938 2939 memcpy(ids.port_id, &target->id_ext, 8); 2940 memcpy(ids.port_id + 8, &target->ioc_guid, 8); 2941 ids.roles = SRP_RPORT_ROLE_TARGET; 2942 rport = srp_rport_add(target->scsi_host, &ids); 2943 if (IS_ERR(rport)) { 2944 scsi_remove_host(target->scsi_host); 2945 return PTR_ERR(rport); 2946 } 2947 2948 rport->lld_data = target; 2949 target->rport = rport; 2950 2951 spin_lock(&host->target_lock); 2952 list_add_tail(&target->list, &host->target_list); 2953 spin_unlock(&host->target_lock); 2954 2955 scsi_scan_target(&target->scsi_host->shost_gendev, 2956 0, target->scsi_id, SCAN_WILD_CARD, SCSI_SCAN_INITIAL); 2957 2958 if (srp_connected_ch(target) < target->ch_count || 2959 target->qp_in_error) { 2960 shost_printk(KERN_INFO, target->scsi_host, 2961 PFX "SCSI scan failed - removing SCSI host\n"); 2962 srp_queue_remove_work(target); 2963 goto out; 2964 } 2965 2966 pr_debug("%s: SCSI scan succeeded - detected %d LUNs\n", 2967 dev_name(&target->scsi_host->shost_gendev), 2968 srp_sdev_count(target->scsi_host)); 2969 2970 spin_lock_irq(&target->lock); 2971 if (target->state == SRP_TARGET_SCANNING) 2972 target->state = SRP_TARGET_LIVE; 2973 spin_unlock_irq(&target->lock); 2974 2975 out: 2976 return 0; 2977 } 2978 2979 static void srp_release_dev(struct device *dev) 2980 { 2981 struct srp_host *host = 2982 container_of(dev, struct srp_host, dev); 2983 2984 complete(&host->released); 2985 } 2986 2987 static struct class srp_class = { 2988 .name = "infiniband_srp", 2989 .dev_release = srp_release_dev 2990 }; 2991 2992 /** 2993 * srp_conn_unique() - check whether the connection to a target is unique 2994 * @host: SRP host. 2995 * @target: SRP target port. 2996 */ 2997 static bool srp_conn_unique(struct srp_host *host, 2998 struct srp_target_port *target) 2999 { 3000 struct srp_target_port *t; 3001 bool ret = false; 3002 3003 if (target->state == SRP_TARGET_REMOVED) 3004 goto out; 3005 3006 ret = true; 3007 3008 spin_lock(&host->target_lock); 3009 list_for_each_entry(t, &host->target_list, list) { 3010 if (t != target && 3011 target->id_ext == t->id_ext && 3012 target->ioc_guid == t->ioc_guid && 3013 target->initiator_ext == t->initiator_ext) { 3014 ret = false; 3015 break; 3016 } 3017 } 3018 spin_unlock(&host->target_lock); 3019 3020 out: 3021 return ret; 3022 } 3023 3024 /* 3025 * Target ports are added by writing 3026 * 3027 * id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>, 3028 * pkey=<P_Key>,service_id=<service ID> 3029 * 3030 * to the add_target sysfs attribute. 3031 */ 3032 enum { 3033 SRP_OPT_ERR = 0, 3034 SRP_OPT_ID_EXT = 1 << 0, 3035 SRP_OPT_IOC_GUID = 1 << 1, 3036 SRP_OPT_DGID = 1 << 2, 3037 SRP_OPT_PKEY = 1 << 3, 3038 SRP_OPT_SERVICE_ID = 1 << 4, 3039 SRP_OPT_MAX_SECT = 1 << 5, 3040 SRP_OPT_MAX_CMD_PER_LUN = 1 << 6, 3041 SRP_OPT_IO_CLASS = 1 << 7, 3042 SRP_OPT_INITIATOR_EXT = 1 << 8, 3043 SRP_OPT_CMD_SG_ENTRIES = 1 << 9, 3044 SRP_OPT_ALLOW_EXT_SG = 1 << 10, 3045 SRP_OPT_SG_TABLESIZE = 1 << 11, 3046 SRP_OPT_COMP_VECTOR = 1 << 12, 3047 SRP_OPT_TL_RETRY_COUNT = 1 << 13, 3048 SRP_OPT_QUEUE_SIZE = 1 << 14, 3049 SRP_OPT_ALL = (SRP_OPT_ID_EXT | 3050 SRP_OPT_IOC_GUID | 3051 SRP_OPT_DGID | 3052 SRP_OPT_PKEY | 3053 SRP_OPT_SERVICE_ID), 3054 }; 3055 3056 static const match_table_t srp_opt_tokens = { 3057 { SRP_OPT_ID_EXT, "id_ext=%s" }, 3058 { SRP_OPT_IOC_GUID, "ioc_guid=%s" }, 3059 { SRP_OPT_DGID, "dgid=%s" }, 3060 { SRP_OPT_PKEY, "pkey=%x" }, 3061 { SRP_OPT_SERVICE_ID, "service_id=%s" }, 3062 { SRP_OPT_MAX_SECT, "max_sect=%d" }, 3063 { SRP_OPT_MAX_CMD_PER_LUN, "max_cmd_per_lun=%d" }, 3064 { SRP_OPT_IO_CLASS, "io_class=%x" }, 3065 { SRP_OPT_INITIATOR_EXT, "initiator_ext=%s" }, 3066 { SRP_OPT_CMD_SG_ENTRIES, "cmd_sg_entries=%u" }, 3067 { SRP_OPT_ALLOW_EXT_SG, "allow_ext_sg=%u" }, 3068 { SRP_OPT_SG_TABLESIZE, "sg_tablesize=%u" }, 3069 { SRP_OPT_COMP_VECTOR, "comp_vector=%u" }, 3070 { SRP_OPT_TL_RETRY_COUNT, "tl_retry_count=%u" }, 3071 { SRP_OPT_QUEUE_SIZE, "queue_size=%d" }, 3072 { SRP_OPT_ERR, NULL } 3073 }; 3074 3075 static int srp_parse_options(const char *buf, struct srp_target_port *target) 3076 { 3077 char *options, *sep_opt; 3078 char *p; 3079 char dgid[3]; 3080 substring_t args[MAX_OPT_ARGS]; 3081 int opt_mask = 0; 3082 int token; 3083 int ret = -EINVAL; 3084 int i; 3085 3086 options = kstrdup(buf, GFP_KERNEL); 3087 if (!options) 3088 return -ENOMEM; 3089 3090 sep_opt = options; 3091 while ((p = strsep(&sep_opt, ",\n")) != NULL) { 3092 if (!*p) 3093 continue; 3094 3095 token = match_token(p, srp_opt_tokens, args); 3096 opt_mask |= token; 3097 3098 switch (token) { 3099 case SRP_OPT_ID_EXT: 3100 p = match_strdup(args); 3101 if (!p) { 3102 ret = -ENOMEM; 3103 goto out; 3104 } 3105 target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16)); 3106 kfree(p); 3107 break; 3108 3109 case SRP_OPT_IOC_GUID: 3110 p = match_strdup(args); 3111 if (!p) { 3112 ret = -ENOMEM; 3113 goto out; 3114 } 3115 target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16)); 3116 kfree(p); 3117 break; 3118 3119 case SRP_OPT_DGID: 3120 p = match_strdup(args); 3121 if (!p) { 3122 ret = -ENOMEM; 3123 goto out; 3124 } 3125 if (strlen(p) != 32) { 3126 pr_warn("bad dest GID parameter '%s'\n", p); 3127 kfree(p); 3128 goto out; 3129 } 3130 3131 for (i = 0; i < 16; ++i) { 3132 strlcpy(dgid, p + i * 2, sizeof(dgid)); 3133 if (sscanf(dgid, "%hhx", 3134 &target->orig_dgid.raw[i]) < 1) { 3135 ret = -EINVAL; 3136 kfree(p); 3137 goto out; 3138 } 3139 } 3140 kfree(p); 3141 break; 3142 3143 case SRP_OPT_PKEY: 3144 if (match_hex(args, &token)) { 3145 pr_warn("bad P_Key parameter '%s'\n", p); 3146 goto out; 3147 } 3148 target->pkey = cpu_to_be16(token); 3149 break; 3150 3151 case SRP_OPT_SERVICE_ID: 3152 p = match_strdup(args); 3153 if (!p) { 3154 ret = -ENOMEM; 3155 goto out; 3156 } 3157 target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16)); 3158 kfree(p); 3159 break; 3160 3161 case SRP_OPT_MAX_SECT: 3162 if (match_int(args, &token)) { 3163 pr_warn("bad max sect parameter '%s'\n", p); 3164 goto out; 3165 } 3166 target->scsi_host->max_sectors = token; 3167 break; 3168 3169 case SRP_OPT_QUEUE_SIZE: 3170 if (match_int(args, &token) || token < 1) { 3171 pr_warn("bad queue_size parameter '%s'\n", p); 3172 goto out; 3173 } 3174 target->scsi_host->can_queue = token; 3175 target->queue_size = token + SRP_RSP_SQ_SIZE + 3176 SRP_TSK_MGMT_SQ_SIZE; 3177 if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN)) 3178 target->scsi_host->cmd_per_lun = token; 3179 break; 3180 3181 case SRP_OPT_MAX_CMD_PER_LUN: 3182 if (match_int(args, &token) || token < 1) { 3183 pr_warn("bad max cmd_per_lun parameter '%s'\n", 3184 p); 3185 goto out; 3186 } 3187 target->scsi_host->cmd_per_lun = token; 3188 break; 3189 3190 case SRP_OPT_IO_CLASS: 3191 if (match_hex(args, &token)) { 3192 pr_warn("bad IO class parameter '%s'\n", p); 3193 goto out; 3194 } 3195 if (token != SRP_REV10_IB_IO_CLASS && 3196 token != SRP_REV16A_IB_IO_CLASS) { 3197 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n", 3198 token, SRP_REV10_IB_IO_CLASS, 3199 SRP_REV16A_IB_IO_CLASS); 3200 goto out; 3201 } 3202 target->io_class = token; 3203 break; 3204 3205 case SRP_OPT_INITIATOR_EXT: 3206 p = match_strdup(args); 3207 if (!p) { 3208 ret = -ENOMEM; 3209 goto out; 3210 } 3211 target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16)); 3212 kfree(p); 3213 break; 3214 3215 case SRP_OPT_CMD_SG_ENTRIES: 3216 if (match_int(args, &token) || token < 1 || token > 255) { 3217 pr_warn("bad max cmd_sg_entries parameter '%s'\n", 3218 p); 3219 goto out; 3220 } 3221 target->cmd_sg_cnt = token; 3222 break; 3223 3224 case SRP_OPT_ALLOW_EXT_SG: 3225 if (match_int(args, &token)) { 3226 pr_warn("bad allow_ext_sg parameter '%s'\n", p); 3227 goto out; 3228 } 3229 target->allow_ext_sg = !!token; 3230 break; 3231 3232 case SRP_OPT_SG_TABLESIZE: 3233 if (match_int(args, &token) || token < 1 || 3234 token > SG_MAX_SEGMENTS) { 3235 pr_warn("bad max sg_tablesize parameter '%s'\n", 3236 p); 3237 goto out; 3238 } 3239 target->sg_tablesize = token; 3240 break; 3241 3242 case SRP_OPT_COMP_VECTOR: 3243 if (match_int(args, &token) || token < 0) { 3244 pr_warn("bad comp_vector parameter '%s'\n", p); 3245 goto out; 3246 } 3247 target->comp_vector = token; 3248 break; 3249 3250 case SRP_OPT_TL_RETRY_COUNT: 3251 if (match_int(args, &token) || token < 2 || token > 7) { 3252 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n", 3253 p); 3254 goto out; 3255 } 3256 target->tl_retry_count = token; 3257 break; 3258 3259 default: 3260 pr_warn("unknown parameter or missing value '%s' in target creation request\n", 3261 p); 3262 goto out; 3263 } 3264 } 3265 3266 if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL) 3267 ret = 0; 3268 else 3269 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i) 3270 if ((srp_opt_tokens[i].token & SRP_OPT_ALL) && 3271 !(srp_opt_tokens[i].token & opt_mask)) 3272 pr_warn("target creation request is missing parameter '%s'\n", 3273 srp_opt_tokens[i].pattern); 3274 3275 if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue 3276 && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN)) 3277 pr_warn("cmd_per_lun = %d > queue_size = %d\n", 3278 target->scsi_host->cmd_per_lun, 3279 target->scsi_host->can_queue); 3280 3281 out: 3282 kfree(options); 3283 return ret; 3284 } 3285 3286 static ssize_t srp_create_target(struct device *dev, 3287 struct device_attribute *attr, 3288 const char *buf, size_t count) 3289 { 3290 struct srp_host *host = 3291 container_of(dev, struct srp_host, dev); 3292 struct Scsi_Host *target_host; 3293 struct srp_target_port *target; 3294 struct srp_rdma_ch *ch; 3295 struct srp_device *srp_dev = host->srp_dev; 3296 struct ib_device *ibdev = srp_dev->dev; 3297 int ret, node_idx, node, cpu, i; 3298 unsigned int max_sectors_per_mr, mr_per_cmd = 0; 3299 bool multich = false; 3300 3301 target_host = scsi_host_alloc(&srp_template, 3302 sizeof (struct srp_target_port)); 3303 if (!target_host) 3304 return -ENOMEM; 3305 3306 target_host->transportt = ib_srp_transport_template; 3307 target_host->max_channel = 0; 3308 target_host->max_id = 1; 3309 target_host->max_lun = -1LL; 3310 target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb; 3311 3312 target = host_to_target(target_host); 3313 3314 target->io_class = SRP_REV16A_IB_IO_CLASS; 3315 target->scsi_host = target_host; 3316 target->srp_host = host; 3317 target->pd = host->srp_dev->pd; 3318 target->lkey = host->srp_dev->pd->local_dma_lkey; 3319 target->cmd_sg_cnt = cmd_sg_entries; 3320 target->sg_tablesize = indirect_sg_entries ? : cmd_sg_entries; 3321 target->allow_ext_sg = allow_ext_sg; 3322 target->tl_retry_count = 7; 3323 target->queue_size = SRP_DEFAULT_QUEUE_SIZE; 3324 3325 /* 3326 * Avoid that the SCSI host can be removed by srp_remove_target() 3327 * before this function returns. 3328 */ 3329 scsi_host_get(target->scsi_host); 3330 3331 ret = mutex_lock_interruptible(&host->add_target_mutex); 3332 if (ret < 0) 3333 goto put; 3334 3335 ret = srp_parse_options(buf, target); 3336 if (ret) 3337 goto out; 3338 3339 target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE; 3340 3341 if (!srp_conn_unique(target->srp_host, target)) { 3342 shost_printk(KERN_INFO, target->scsi_host, 3343 PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n", 3344 be64_to_cpu(target->id_ext), 3345 be64_to_cpu(target->ioc_guid), 3346 be64_to_cpu(target->initiator_ext)); 3347 ret = -EEXIST; 3348 goto out; 3349 } 3350 3351 if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg && 3352 target->cmd_sg_cnt < target->sg_tablesize) { 3353 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n"); 3354 target->sg_tablesize = target->cmd_sg_cnt; 3355 } 3356 3357 if (srp_dev->use_fast_reg || srp_dev->use_fmr) { 3358 /* 3359 * FR and FMR can only map one HCA page per entry. If the 3360 * start address is not aligned on a HCA page boundary two 3361 * entries will be used for the head and the tail although 3362 * these two entries combined contain at most one HCA page of 3363 * data. Hence the "+ 1" in the calculation below. 3364 * 3365 * The indirect data buffer descriptor is contiguous so the 3366 * memory for that buffer will only be registered if 3367 * register_always is true. Hence add one to mr_per_cmd if 3368 * register_always has been set. 3369 */ 3370 max_sectors_per_mr = srp_dev->max_pages_per_mr << 3371 (ilog2(srp_dev->mr_page_size) - 9); 3372 mr_per_cmd = register_always + 3373 (target->scsi_host->max_sectors + 1 + 3374 max_sectors_per_mr - 1) / max_sectors_per_mr; 3375 pr_debug("max_sectors = %u; max_pages_per_mr = %u; mr_page_size = %u; max_sectors_per_mr = %u; mr_per_cmd = %u\n", 3376 target->scsi_host->max_sectors, 3377 srp_dev->max_pages_per_mr, srp_dev->mr_page_size, 3378 max_sectors_per_mr, mr_per_cmd); 3379 } 3380 3381 target_host->sg_tablesize = target->sg_tablesize; 3382 target->mr_pool_size = target->scsi_host->can_queue * mr_per_cmd; 3383 target->mr_per_cmd = mr_per_cmd; 3384 target->indirect_size = target->sg_tablesize * 3385 sizeof (struct srp_direct_buf); 3386 target->max_iu_len = sizeof (struct srp_cmd) + 3387 sizeof (struct srp_indirect_buf) + 3388 target->cmd_sg_cnt * sizeof (struct srp_direct_buf); 3389 3390 INIT_WORK(&target->tl_err_work, srp_tl_err_work); 3391 INIT_WORK(&target->remove_work, srp_remove_work); 3392 spin_lock_init(&target->lock); 3393 ret = ib_query_gid(ibdev, host->port, 0, &target->sgid, NULL); 3394 if (ret) 3395 goto out; 3396 3397 ret = -ENOMEM; 3398 target->ch_count = max_t(unsigned, num_online_nodes(), 3399 min(ch_count ? : 3400 min(4 * num_online_nodes(), 3401 ibdev->num_comp_vectors), 3402 num_online_cpus())); 3403 target->ch = kcalloc(target->ch_count, sizeof(*target->ch), 3404 GFP_KERNEL); 3405 if (!target->ch) 3406 goto out; 3407 3408 node_idx = 0; 3409 for_each_online_node(node) { 3410 const int ch_start = (node_idx * target->ch_count / 3411 num_online_nodes()); 3412 const int ch_end = ((node_idx + 1) * target->ch_count / 3413 num_online_nodes()); 3414 const int cv_start = (node_idx * ibdev->num_comp_vectors / 3415 num_online_nodes() + target->comp_vector) 3416 % ibdev->num_comp_vectors; 3417 const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors / 3418 num_online_nodes() + target->comp_vector) 3419 % ibdev->num_comp_vectors; 3420 int cpu_idx = 0; 3421 3422 for_each_online_cpu(cpu) { 3423 if (cpu_to_node(cpu) != node) 3424 continue; 3425 if (ch_start + cpu_idx >= ch_end) 3426 continue; 3427 ch = &target->ch[ch_start + cpu_idx]; 3428 ch->target = target; 3429 ch->comp_vector = cv_start == cv_end ? cv_start : 3430 cv_start + cpu_idx % (cv_end - cv_start); 3431 spin_lock_init(&ch->lock); 3432 INIT_LIST_HEAD(&ch->free_tx); 3433 ret = srp_new_cm_id(ch); 3434 if (ret) 3435 goto err_disconnect; 3436 3437 ret = srp_create_ch_ib(ch); 3438 if (ret) 3439 goto err_disconnect; 3440 3441 ret = srp_alloc_req_data(ch); 3442 if (ret) 3443 goto err_disconnect; 3444 3445 ret = srp_connect_ch(ch, multich); 3446 if (ret) { 3447 shost_printk(KERN_ERR, target->scsi_host, 3448 PFX "Connection %d/%d to %pI6 failed\n", 3449 ch_start + cpu_idx, 3450 target->ch_count, 3451 ch->target->orig_dgid.raw); 3452 if (node_idx == 0 && cpu_idx == 0) { 3453 goto free_ch; 3454 } else { 3455 srp_free_ch_ib(target, ch); 3456 srp_free_req_data(target, ch); 3457 target->ch_count = ch - target->ch; 3458 goto connected; 3459 } 3460 } 3461 3462 multich = true; 3463 cpu_idx++; 3464 } 3465 node_idx++; 3466 } 3467 3468 connected: 3469 target->scsi_host->nr_hw_queues = target->ch_count; 3470 3471 ret = srp_add_target(host, target); 3472 if (ret) 3473 goto err_disconnect; 3474 3475 if (target->state != SRP_TARGET_REMOVED) { 3476 shost_printk(KERN_DEBUG, target->scsi_host, PFX 3477 "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n", 3478 be64_to_cpu(target->id_ext), 3479 be64_to_cpu(target->ioc_guid), 3480 be16_to_cpu(target->pkey), 3481 be64_to_cpu(target->service_id), 3482 target->sgid.raw, target->orig_dgid.raw); 3483 } 3484 3485 ret = count; 3486 3487 out: 3488 mutex_unlock(&host->add_target_mutex); 3489 3490 put: 3491 scsi_host_put(target->scsi_host); 3492 if (ret < 0) 3493 scsi_host_put(target->scsi_host); 3494 3495 return ret; 3496 3497 err_disconnect: 3498 srp_disconnect_target(target); 3499 3500 free_ch: 3501 for (i = 0; i < target->ch_count; i++) { 3502 ch = &target->ch[i]; 3503 srp_free_ch_ib(target, ch); 3504 srp_free_req_data(target, ch); 3505 } 3506 3507 kfree(target->ch); 3508 goto out; 3509 } 3510 3511 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target); 3512 3513 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr, 3514 char *buf) 3515 { 3516 struct srp_host *host = container_of(dev, struct srp_host, dev); 3517 3518 return sprintf(buf, "%s\n", host->srp_dev->dev->name); 3519 } 3520 3521 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL); 3522 3523 static ssize_t show_port(struct device *dev, struct device_attribute *attr, 3524 char *buf) 3525 { 3526 struct srp_host *host = container_of(dev, struct srp_host, dev); 3527 3528 return sprintf(buf, "%d\n", host->port); 3529 } 3530 3531 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL); 3532 3533 static struct srp_host *srp_add_port(struct srp_device *device, u8 port) 3534 { 3535 struct srp_host *host; 3536 3537 host = kzalloc(sizeof *host, GFP_KERNEL); 3538 if (!host) 3539 return NULL; 3540 3541 INIT_LIST_HEAD(&host->target_list); 3542 spin_lock_init(&host->target_lock); 3543 init_completion(&host->released); 3544 mutex_init(&host->add_target_mutex); 3545 host->srp_dev = device; 3546 host->port = port; 3547 3548 host->dev.class = &srp_class; 3549 host->dev.parent = device->dev->dma_device; 3550 dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port); 3551 3552 if (device_register(&host->dev)) 3553 goto free_host; 3554 if (device_create_file(&host->dev, &dev_attr_add_target)) 3555 goto err_class; 3556 if (device_create_file(&host->dev, &dev_attr_ibdev)) 3557 goto err_class; 3558 if (device_create_file(&host->dev, &dev_attr_port)) 3559 goto err_class; 3560 3561 return host; 3562 3563 err_class: 3564 device_unregister(&host->dev); 3565 3566 free_host: 3567 kfree(host); 3568 3569 return NULL; 3570 } 3571 3572 static void srp_add_one(struct ib_device *device) 3573 { 3574 struct srp_device *srp_dev; 3575 struct ib_device_attr *attr = &device->attrs; 3576 struct srp_host *host; 3577 int mr_page_shift, p; 3578 u64 max_pages_per_mr; 3579 unsigned int flags = 0; 3580 3581 srp_dev = kzalloc(sizeof(*srp_dev), GFP_KERNEL); 3582 if (!srp_dev) 3583 return; 3584 3585 /* 3586 * Use the smallest page size supported by the HCA, down to a 3587 * minimum of 4096 bytes. We're unlikely to build large sglists 3588 * out of smaller entries. 3589 */ 3590 mr_page_shift = max(12, ffs(attr->page_size_cap) - 1); 3591 srp_dev->mr_page_size = 1 << mr_page_shift; 3592 srp_dev->mr_page_mask = ~((u64) srp_dev->mr_page_size - 1); 3593 max_pages_per_mr = attr->max_mr_size; 3594 do_div(max_pages_per_mr, srp_dev->mr_page_size); 3595 pr_debug("%s: %llu / %u = %llu <> %u\n", __func__, 3596 attr->max_mr_size, srp_dev->mr_page_size, 3597 max_pages_per_mr, SRP_MAX_PAGES_PER_MR); 3598 srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR, 3599 max_pages_per_mr); 3600 3601 srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr && 3602 device->map_phys_fmr && device->unmap_fmr); 3603 srp_dev->has_fr = (attr->device_cap_flags & 3604 IB_DEVICE_MEM_MGT_EXTENSIONS); 3605 if (!never_register && !srp_dev->has_fmr && !srp_dev->has_fr) { 3606 dev_warn(&device->dev, "neither FMR nor FR is supported\n"); 3607 } else if (!never_register && 3608 attr->max_mr_size >= 2 * srp_dev->mr_page_size) { 3609 srp_dev->use_fast_reg = (srp_dev->has_fr && 3610 (!srp_dev->has_fmr || prefer_fr)); 3611 srp_dev->use_fmr = !srp_dev->use_fast_reg && srp_dev->has_fmr; 3612 } 3613 3614 if (never_register || !register_always || 3615 (!srp_dev->has_fmr && !srp_dev->has_fr)) 3616 flags |= IB_PD_UNSAFE_GLOBAL_RKEY; 3617 3618 if (srp_dev->use_fast_reg) { 3619 srp_dev->max_pages_per_mr = 3620 min_t(u32, srp_dev->max_pages_per_mr, 3621 attr->max_fast_reg_page_list_len); 3622 } 3623 srp_dev->mr_max_size = srp_dev->mr_page_size * 3624 srp_dev->max_pages_per_mr; 3625 pr_debug("%s: mr_page_shift = %d, device->max_mr_size = %#llx, device->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n", 3626 device->name, mr_page_shift, attr->max_mr_size, 3627 attr->max_fast_reg_page_list_len, 3628 srp_dev->max_pages_per_mr, srp_dev->mr_max_size); 3629 3630 INIT_LIST_HEAD(&srp_dev->dev_list); 3631 3632 srp_dev->dev = device; 3633 srp_dev->pd = ib_alloc_pd(device, flags); 3634 if (IS_ERR(srp_dev->pd)) 3635 goto free_dev; 3636 3637 3638 for (p = rdma_start_port(device); p <= rdma_end_port(device); ++p) { 3639 host = srp_add_port(srp_dev, p); 3640 if (host) 3641 list_add_tail(&host->list, &srp_dev->dev_list); 3642 } 3643 3644 ib_set_client_data(device, &srp_client, srp_dev); 3645 return; 3646 3647 free_dev: 3648 kfree(srp_dev); 3649 } 3650 3651 static void srp_remove_one(struct ib_device *device, void *client_data) 3652 { 3653 struct srp_device *srp_dev; 3654 struct srp_host *host, *tmp_host; 3655 struct srp_target_port *target; 3656 3657 srp_dev = client_data; 3658 if (!srp_dev) 3659 return; 3660 3661 list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) { 3662 device_unregister(&host->dev); 3663 /* 3664 * Wait for the sysfs entry to go away, so that no new 3665 * target ports can be created. 3666 */ 3667 wait_for_completion(&host->released); 3668 3669 /* 3670 * Remove all target ports. 3671 */ 3672 spin_lock(&host->target_lock); 3673 list_for_each_entry(target, &host->target_list, list) 3674 srp_queue_remove_work(target); 3675 spin_unlock(&host->target_lock); 3676 3677 /* 3678 * Wait for tl_err and target port removal tasks. 3679 */ 3680 flush_workqueue(system_long_wq); 3681 flush_workqueue(srp_remove_wq); 3682 3683 kfree(host); 3684 } 3685 3686 ib_dealloc_pd(srp_dev->pd); 3687 3688 kfree(srp_dev); 3689 } 3690 3691 static struct srp_function_template ib_srp_transport_functions = { 3692 .has_rport_state = true, 3693 .reset_timer_if_blocked = true, 3694 .reconnect_delay = &srp_reconnect_delay, 3695 .fast_io_fail_tmo = &srp_fast_io_fail_tmo, 3696 .dev_loss_tmo = &srp_dev_loss_tmo, 3697 .reconnect = srp_rport_reconnect, 3698 .rport_delete = srp_rport_delete, 3699 .terminate_rport_io = srp_terminate_io, 3700 }; 3701 3702 static int __init srp_init_module(void) 3703 { 3704 int ret; 3705 3706 if (srp_sg_tablesize) { 3707 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n"); 3708 if (!cmd_sg_entries) 3709 cmd_sg_entries = srp_sg_tablesize; 3710 } 3711 3712 if (!cmd_sg_entries) 3713 cmd_sg_entries = SRP_DEF_SG_TABLESIZE; 3714 3715 if (cmd_sg_entries > 255) { 3716 pr_warn("Clamping cmd_sg_entries to 255\n"); 3717 cmd_sg_entries = 255; 3718 } 3719 3720 if (!indirect_sg_entries) 3721 indirect_sg_entries = cmd_sg_entries; 3722 else if (indirect_sg_entries < cmd_sg_entries) { 3723 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n", 3724 cmd_sg_entries); 3725 indirect_sg_entries = cmd_sg_entries; 3726 } 3727 3728 if (indirect_sg_entries > SG_MAX_SEGMENTS) { 3729 pr_warn("Clamping indirect_sg_entries to %u\n", 3730 SG_MAX_SEGMENTS); 3731 indirect_sg_entries = SG_MAX_SEGMENTS; 3732 } 3733 3734 srp_remove_wq = create_workqueue("srp_remove"); 3735 if (!srp_remove_wq) { 3736 ret = -ENOMEM; 3737 goto out; 3738 } 3739 3740 ret = -ENOMEM; 3741 ib_srp_transport_template = 3742 srp_attach_transport(&ib_srp_transport_functions); 3743 if (!ib_srp_transport_template) 3744 goto destroy_wq; 3745 3746 ret = class_register(&srp_class); 3747 if (ret) { 3748 pr_err("couldn't register class infiniband_srp\n"); 3749 goto release_tr; 3750 } 3751 3752 ib_sa_register_client(&srp_sa_client); 3753 3754 ret = ib_register_client(&srp_client); 3755 if (ret) { 3756 pr_err("couldn't register IB client\n"); 3757 goto unreg_sa; 3758 } 3759 3760 out: 3761 return ret; 3762 3763 unreg_sa: 3764 ib_sa_unregister_client(&srp_sa_client); 3765 class_unregister(&srp_class); 3766 3767 release_tr: 3768 srp_release_transport(ib_srp_transport_template); 3769 3770 destroy_wq: 3771 destroy_workqueue(srp_remove_wq); 3772 goto out; 3773 } 3774 3775 static void __exit srp_cleanup_module(void) 3776 { 3777 ib_unregister_client(&srp_client); 3778 ib_sa_unregister_client(&srp_sa_client); 3779 class_unregister(&srp_class); 3780 srp_release_transport(ib_srp_transport_template); 3781 destroy_workqueue(srp_remove_wq); 3782 } 3783 3784 module_init(srp_init_module); 3785 module_exit(srp_cleanup_module); 3786