1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) PFX fmt
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 
44 #include <linux/atomic.h>
45 
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_dbg.h>
49 #include <scsi/scsi_tcq.h>
50 #include <scsi/srp.h>
51 #include <scsi/scsi_transport_srp.h>
52 
53 #include "ib_srp.h"
54 
55 #define DRV_NAME	"ib_srp"
56 #define PFX		DRV_NAME ": "
57 #define DRV_VERSION	"1.0"
58 #define DRV_RELDATE	"July 1, 2013"
59 
60 MODULE_AUTHOR("Roland Dreier");
61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator "
62 		   "v" DRV_VERSION " (" DRV_RELDATE ")");
63 MODULE_LICENSE("Dual BSD/GPL");
64 
65 static unsigned int srp_sg_tablesize;
66 static unsigned int cmd_sg_entries;
67 static unsigned int indirect_sg_entries;
68 static bool allow_ext_sg;
69 static int topspin_workarounds = 1;
70 
71 module_param(srp_sg_tablesize, uint, 0444);
72 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
73 
74 module_param(cmd_sg_entries, uint, 0444);
75 MODULE_PARM_DESC(cmd_sg_entries,
76 		 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
77 
78 module_param(indirect_sg_entries, uint, 0444);
79 MODULE_PARM_DESC(indirect_sg_entries,
80 		 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");
81 
82 module_param(allow_ext_sg, bool, 0444);
83 MODULE_PARM_DESC(allow_ext_sg,
84 		  "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
85 
86 module_param(topspin_workarounds, int, 0444);
87 MODULE_PARM_DESC(topspin_workarounds,
88 		 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
89 
90 static struct kernel_param_ops srp_tmo_ops;
91 
92 static int srp_reconnect_delay = 10;
93 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
94 		S_IRUGO | S_IWUSR);
95 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
96 
97 static int srp_fast_io_fail_tmo = 15;
98 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
99 		S_IRUGO | S_IWUSR);
100 MODULE_PARM_DESC(fast_io_fail_tmo,
101 		 "Number of seconds between the observation of a transport"
102 		 " layer error and failing all I/O. \"off\" means that this"
103 		 " functionality is disabled.");
104 
105 static int srp_dev_loss_tmo = 600;
106 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
107 		S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(dev_loss_tmo,
109 		 "Maximum number of seconds that the SRP transport should"
110 		 " insulate transport layer errors. After this time has been"
111 		 " exceeded the SCSI host is removed. Should be"
112 		 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
113 		 " if fast_io_fail_tmo has not been set. \"off\" means that"
114 		 " this functionality is disabled.");
115 
116 static void srp_add_one(struct ib_device *device);
117 static void srp_remove_one(struct ib_device *device);
118 static void srp_recv_completion(struct ib_cq *cq, void *target_ptr);
119 static void srp_send_completion(struct ib_cq *cq, void *target_ptr);
120 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
121 
122 static struct scsi_transport_template *ib_srp_transport_template;
123 
124 static struct ib_client srp_client = {
125 	.name   = "srp",
126 	.add    = srp_add_one,
127 	.remove = srp_remove_one
128 };
129 
130 static struct ib_sa_client srp_sa_client;
131 
132 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
133 {
134 	int tmo = *(int *)kp->arg;
135 
136 	if (tmo >= 0)
137 		return sprintf(buffer, "%d", tmo);
138 	else
139 		return sprintf(buffer, "off");
140 }
141 
142 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
143 {
144 	int tmo, res;
145 
146 	if (strncmp(val, "off", 3) != 0) {
147 		res = kstrtoint(val, 0, &tmo);
148 		if (res)
149 			goto out;
150 	} else {
151 		tmo = -1;
152 	}
153 	if (kp->arg == &srp_reconnect_delay)
154 		res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
155 				    srp_dev_loss_tmo);
156 	else if (kp->arg == &srp_fast_io_fail_tmo)
157 		res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
158 	else
159 		res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
160 				    tmo);
161 	if (res)
162 		goto out;
163 	*(int *)kp->arg = tmo;
164 
165 out:
166 	return res;
167 }
168 
169 static struct kernel_param_ops srp_tmo_ops = {
170 	.get = srp_tmo_get,
171 	.set = srp_tmo_set,
172 };
173 
174 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
175 {
176 	return (struct srp_target_port *) host->hostdata;
177 }
178 
179 static const char *srp_target_info(struct Scsi_Host *host)
180 {
181 	return host_to_target(host)->target_name;
182 }
183 
184 static int srp_target_is_topspin(struct srp_target_port *target)
185 {
186 	static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
187 	static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
188 
189 	return topspin_workarounds &&
190 		(!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
191 		 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
192 }
193 
194 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
195 				   gfp_t gfp_mask,
196 				   enum dma_data_direction direction)
197 {
198 	struct srp_iu *iu;
199 
200 	iu = kmalloc(sizeof *iu, gfp_mask);
201 	if (!iu)
202 		goto out;
203 
204 	iu->buf = kzalloc(size, gfp_mask);
205 	if (!iu->buf)
206 		goto out_free_iu;
207 
208 	iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
209 				    direction);
210 	if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
211 		goto out_free_buf;
212 
213 	iu->size      = size;
214 	iu->direction = direction;
215 
216 	return iu;
217 
218 out_free_buf:
219 	kfree(iu->buf);
220 out_free_iu:
221 	kfree(iu);
222 out:
223 	return NULL;
224 }
225 
226 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
227 {
228 	if (!iu)
229 		return;
230 
231 	ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
232 			    iu->direction);
233 	kfree(iu->buf);
234 	kfree(iu);
235 }
236 
237 static void srp_qp_event(struct ib_event *event, void *context)
238 {
239 	pr_debug("QP event %d\n", event->event);
240 }
241 
242 static int srp_init_qp(struct srp_target_port *target,
243 		       struct ib_qp *qp)
244 {
245 	struct ib_qp_attr *attr;
246 	int ret;
247 
248 	attr = kmalloc(sizeof *attr, GFP_KERNEL);
249 	if (!attr)
250 		return -ENOMEM;
251 
252 	ret = ib_find_pkey(target->srp_host->srp_dev->dev,
253 			   target->srp_host->port,
254 			   be16_to_cpu(target->path.pkey),
255 			   &attr->pkey_index);
256 	if (ret)
257 		goto out;
258 
259 	attr->qp_state        = IB_QPS_INIT;
260 	attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
261 				    IB_ACCESS_REMOTE_WRITE);
262 	attr->port_num        = target->srp_host->port;
263 
264 	ret = ib_modify_qp(qp, attr,
265 			   IB_QP_STATE		|
266 			   IB_QP_PKEY_INDEX	|
267 			   IB_QP_ACCESS_FLAGS	|
268 			   IB_QP_PORT);
269 
270 out:
271 	kfree(attr);
272 	return ret;
273 }
274 
275 static int srp_new_cm_id(struct srp_target_port *target)
276 {
277 	struct ib_cm_id *new_cm_id;
278 
279 	new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
280 				    srp_cm_handler, target);
281 	if (IS_ERR(new_cm_id))
282 		return PTR_ERR(new_cm_id);
283 
284 	if (target->cm_id)
285 		ib_destroy_cm_id(target->cm_id);
286 	target->cm_id = new_cm_id;
287 
288 	return 0;
289 }
290 
291 static int srp_create_target_ib(struct srp_target_port *target)
292 {
293 	struct ib_qp_init_attr *init_attr;
294 	struct ib_cq *recv_cq, *send_cq;
295 	struct ib_qp *qp;
296 	int ret;
297 
298 	init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
299 	if (!init_attr)
300 		return -ENOMEM;
301 
302 	recv_cq = ib_create_cq(target->srp_host->srp_dev->dev,
303 			       srp_recv_completion, NULL, target,
304 			       target->queue_size, target->comp_vector);
305 	if (IS_ERR(recv_cq)) {
306 		ret = PTR_ERR(recv_cq);
307 		goto err;
308 	}
309 
310 	send_cq = ib_create_cq(target->srp_host->srp_dev->dev,
311 			       srp_send_completion, NULL, target,
312 			       target->queue_size, target->comp_vector);
313 	if (IS_ERR(send_cq)) {
314 		ret = PTR_ERR(send_cq);
315 		goto err_recv_cq;
316 	}
317 
318 	ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP);
319 
320 	init_attr->event_handler       = srp_qp_event;
321 	init_attr->cap.max_send_wr     = target->queue_size;
322 	init_attr->cap.max_recv_wr     = target->queue_size;
323 	init_attr->cap.max_recv_sge    = 1;
324 	init_attr->cap.max_send_sge    = 1;
325 	init_attr->sq_sig_type         = IB_SIGNAL_ALL_WR;
326 	init_attr->qp_type             = IB_QPT_RC;
327 	init_attr->send_cq             = send_cq;
328 	init_attr->recv_cq             = recv_cq;
329 
330 	qp = ib_create_qp(target->srp_host->srp_dev->pd, init_attr);
331 	if (IS_ERR(qp)) {
332 		ret = PTR_ERR(qp);
333 		goto err_send_cq;
334 	}
335 
336 	ret = srp_init_qp(target, qp);
337 	if (ret)
338 		goto err_qp;
339 
340 	if (target->qp)
341 		ib_destroy_qp(target->qp);
342 	if (target->recv_cq)
343 		ib_destroy_cq(target->recv_cq);
344 	if (target->send_cq)
345 		ib_destroy_cq(target->send_cq);
346 
347 	target->qp = qp;
348 	target->recv_cq = recv_cq;
349 	target->send_cq = send_cq;
350 
351 	kfree(init_attr);
352 	return 0;
353 
354 err_qp:
355 	ib_destroy_qp(qp);
356 
357 err_send_cq:
358 	ib_destroy_cq(send_cq);
359 
360 err_recv_cq:
361 	ib_destroy_cq(recv_cq);
362 
363 err:
364 	kfree(init_attr);
365 	return ret;
366 }
367 
368 /*
369  * Note: this function may be called without srp_alloc_iu_bufs() having been
370  * invoked. Hence the target->[rt]x_ring checks.
371  */
372 static void srp_free_target_ib(struct srp_target_port *target)
373 {
374 	int i;
375 
376 	ib_destroy_qp(target->qp);
377 	ib_destroy_cq(target->send_cq);
378 	ib_destroy_cq(target->recv_cq);
379 
380 	target->qp = NULL;
381 	target->send_cq = target->recv_cq = NULL;
382 
383 	if (target->rx_ring) {
384 		for (i = 0; i < target->queue_size; ++i)
385 			srp_free_iu(target->srp_host, target->rx_ring[i]);
386 		kfree(target->rx_ring);
387 		target->rx_ring = NULL;
388 	}
389 	if (target->tx_ring) {
390 		for (i = 0; i < target->queue_size; ++i)
391 			srp_free_iu(target->srp_host, target->tx_ring[i]);
392 		kfree(target->tx_ring);
393 		target->tx_ring = NULL;
394 	}
395 }
396 
397 static void srp_path_rec_completion(int status,
398 				    struct ib_sa_path_rec *pathrec,
399 				    void *target_ptr)
400 {
401 	struct srp_target_port *target = target_ptr;
402 
403 	target->status = status;
404 	if (status)
405 		shost_printk(KERN_ERR, target->scsi_host,
406 			     PFX "Got failed path rec status %d\n", status);
407 	else
408 		target->path = *pathrec;
409 	complete(&target->done);
410 }
411 
412 static int srp_lookup_path(struct srp_target_port *target)
413 {
414 	target->path.numb_path = 1;
415 
416 	init_completion(&target->done);
417 
418 	target->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
419 						   target->srp_host->srp_dev->dev,
420 						   target->srp_host->port,
421 						   &target->path,
422 						   IB_SA_PATH_REC_SERVICE_ID	|
423 						   IB_SA_PATH_REC_DGID		|
424 						   IB_SA_PATH_REC_SGID		|
425 						   IB_SA_PATH_REC_NUMB_PATH	|
426 						   IB_SA_PATH_REC_PKEY,
427 						   SRP_PATH_REC_TIMEOUT_MS,
428 						   GFP_KERNEL,
429 						   srp_path_rec_completion,
430 						   target, &target->path_query);
431 	if (target->path_query_id < 0)
432 		return target->path_query_id;
433 
434 	wait_for_completion(&target->done);
435 
436 	if (target->status < 0)
437 		shost_printk(KERN_WARNING, target->scsi_host,
438 			     PFX "Path record query failed\n");
439 
440 	return target->status;
441 }
442 
443 static int srp_send_req(struct srp_target_port *target)
444 {
445 	struct {
446 		struct ib_cm_req_param param;
447 		struct srp_login_req   priv;
448 	} *req = NULL;
449 	int status;
450 
451 	req = kzalloc(sizeof *req, GFP_KERNEL);
452 	if (!req)
453 		return -ENOMEM;
454 
455 	req->param.primary_path 	      = &target->path;
456 	req->param.alternate_path 	      = NULL;
457 	req->param.service_id 		      = target->service_id;
458 	req->param.qp_num 		      = target->qp->qp_num;
459 	req->param.qp_type 		      = target->qp->qp_type;
460 	req->param.private_data 	      = &req->priv;
461 	req->param.private_data_len 	      = sizeof req->priv;
462 	req->param.flow_control 	      = 1;
463 
464 	get_random_bytes(&req->param.starting_psn, 4);
465 	req->param.starting_psn 	     &= 0xffffff;
466 
467 	/*
468 	 * Pick some arbitrary defaults here; we could make these
469 	 * module parameters if anyone cared about setting them.
470 	 */
471 	req->param.responder_resources	      = 4;
472 	req->param.remote_cm_response_timeout = 20;
473 	req->param.local_cm_response_timeout  = 20;
474 	req->param.retry_count                = target->tl_retry_count;
475 	req->param.rnr_retry_count 	      = 7;
476 	req->param.max_cm_retries 	      = 15;
477 
478 	req->priv.opcode     	= SRP_LOGIN_REQ;
479 	req->priv.tag        	= 0;
480 	req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
481 	req->priv.req_buf_fmt 	= cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
482 					      SRP_BUF_FORMAT_INDIRECT);
483 	/*
484 	 * In the published SRP specification (draft rev. 16a), the
485 	 * port identifier format is 8 bytes of ID extension followed
486 	 * by 8 bytes of GUID.  Older drafts put the two halves in the
487 	 * opposite order, so that the GUID comes first.
488 	 *
489 	 * Targets conforming to these obsolete drafts can be
490 	 * recognized by the I/O Class they report.
491 	 */
492 	if (target->io_class == SRP_REV10_IB_IO_CLASS) {
493 		memcpy(req->priv.initiator_port_id,
494 		       &target->path.sgid.global.interface_id, 8);
495 		memcpy(req->priv.initiator_port_id + 8,
496 		       &target->initiator_ext, 8);
497 		memcpy(req->priv.target_port_id,     &target->ioc_guid, 8);
498 		memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
499 	} else {
500 		memcpy(req->priv.initiator_port_id,
501 		       &target->initiator_ext, 8);
502 		memcpy(req->priv.initiator_port_id + 8,
503 		       &target->path.sgid.global.interface_id, 8);
504 		memcpy(req->priv.target_port_id,     &target->id_ext, 8);
505 		memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
506 	}
507 
508 	/*
509 	 * Topspin/Cisco SRP targets will reject our login unless we
510 	 * zero out the first 8 bytes of our initiator port ID and set
511 	 * the second 8 bytes to the local node GUID.
512 	 */
513 	if (srp_target_is_topspin(target)) {
514 		shost_printk(KERN_DEBUG, target->scsi_host,
515 			     PFX "Topspin/Cisco initiator port ID workaround "
516 			     "activated for target GUID %016llx\n",
517 			     (unsigned long long) be64_to_cpu(target->ioc_guid));
518 		memset(req->priv.initiator_port_id, 0, 8);
519 		memcpy(req->priv.initiator_port_id + 8,
520 		       &target->srp_host->srp_dev->dev->node_guid, 8);
521 	}
522 
523 	status = ib_send_cm_req(target->cm_id, &req->param);
524 
525 	kfree(req);
526 
527 	return status;
528 }
529 
530 static bool srp_queue_remove_work(struct srp_target_port *target)
531 {
532 	bool changed = false;
533 
534 	spin_lock_irq(&target->lock);
535 	if (target->state != SRP_TARGET_REMOVED) {
536 		target->state = SRP_TARGET_REMOVED;
537 		changed = true;
538 	}
539 	spin_unlock_irq(&target->lock);
540 
541 	if (changed)
542 		queue_work(system_long_wq, &target->remove_work);
543 
544 	return changed;
545 }
546 
547 static bool srp_change_conn_state(struct srp_target_port *target,
548 				  bool connected)
549 {
550 	bool changed = false;
551 
552 	spin_lock_irq(&target->lock);
553 	if (target->connected != connected) {
554 		target->connected = connected;
555 		changed = true;
556 	}
557 	spin_unlock_irq(&target->lock);
558 
559 	return changed;
560 }
561 
562 static void srp_disconnect_target(struct srp_target_port *target)
563 {
564 	if (srp_change_conn_state(target, false)) {
565 		/* XXX should send SRP_I_LOGOUT request */
566 
567 		if (ib_send_cm_dreq(target->cm_id, NULL, 0)) {
568 			shost_printk(KERN_DEBUG, target->scsi_host,
569 				     PFX "Sending CM DREQ failed\n");
570 		}
571 	}
572 }
573 
574 static void srp_free_req_data(struct srp_target_port *target)
575 {
576 	struct ib_device *ibdev = target->srp_host->srp_dev->dev;
577 	struct srp_request *req;
578 	int i;
579 
580 	if (!target->req_ring)
581 		return;
582 
583 	for (i = 0; i < target->req_ring_size; ++i) {
584 		req = &target->req_ring[i];
585 		kfree(req->fmr_list);
586 		kfree(req->map_page);
587 		if (req->indirect_dma_addr) {
588 			ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
589 					    target->indirect_size,
590 					    DMA_TO_DEVICE);
591 		}
592 		kfree(req->indirect_desc);
593 	}
594 
595 	kfree(target->req_ring);
596 	target->req_ring = NULL;
597 }
598 
599 static int srp_alloc_req_data(struct srp_target_port *target)
600 {
601 	struct srp_device *srp_dev = target->srp_host->srp_dev;
602 	struct ib_device *ibdev = srp_dev->dev;
603 	struct srp_request *req;
604 	dma_addr_t dma_addr;
605 	int i, ret = -ENOMEM;
606 
607 	INIT_LIST_HEAD(&target->free_reqs);
608 
609 	target->req_ring = kzalloc(target->req_ring_size *
610 				   sizeof(*target->req_ring), GFP_KERNEL);
611 	if (!target->req_ring)
612 		goto out;
613 
614 	for (i = 0; i < target->req_ring_size; ++i) {
615 		req = &target->req_ring[i];
616 		req->fmr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
617 					GFP_KERNEL);
618 		req->map_page = kmalloc(SRP_FMR_SIZE * sizeof(void *),
619 					GFP_KERNEL);
620 		req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
621 		if (!req->fmr_list || !req->map_page || !req->indirect_desc)
622 			goto out;
623 
624 		dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
625 					     target->indirect_size,
626 					     DMA_TO_DEVICE);
627 		if (ib_dma_mapping_error(ibdev, dma_addr))
628 			goto out;
629 
630 		req->indirect_dma_addr = dma_addr;
631 		req->index = i;
632 		list_add_tail(&req->list, &target->free_reqs);
633 	}
634 	ret = 0;
635 
636 out:
637 	return ret;
638 }
639 
640 /**
641  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
642  * @shost: SCSI host whose attributes to remove from sysfs.
643  *
644  * Note: Any attributes defined in the host template and that did not exist
645  * before invocation of this function will be ignored.
646  */
647 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
648 {
649 	struct device_attribute **attr;
650 
651 	for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
652 		device_remove_file(&shost->shost_dev, *attr);
653 }
654 
655 static void srp_remove_target(struct srp_target_port *target)
656 {
657 	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
658 
659 	srp_del_scsi_host_attr(target->scsi_host);
660 	srp_rport_get(target->rport);
661 	srp_remove_host(target->scsi_host);
662 	scsi_remove_host(target->scsi_host);
663 	srp_stop_rport_timers(target->rport);
664 	srp_disconnect_target(target);
665 	ib_destroy_cm_id(target->cm_id);
666 	srp_free_target_ib(target);
667 	cancel_work_sync(&target->tl_err_work);
668 	srp_rport_put(target->rport);
669 	srp_free_req_data(target);
670 
671 	spin_lock(&target->srp_host->target_lock);
672 	list_del(&target->list);
673 	spin_unlock(&target->srp_host->target_lock);
674 
675 	scsi_host_put(target->scsi_host);
676 }
677 
678 static void srp_remove_work(struct work_struct *work)
679 {
680 	struct srp_target_port *target =
681 		container_of(work, struct srp_target_port, remove_work);
682 
683 	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
684 
685 	srp_remove_target(target);
686 }
687 
688 static void srp_rport_delete(struct srp_rport *rport)
689 {
690 	struct srp_target_port *target = rport->lld_data;
691 
692 	srp_queue_remove_work(target);
693 }
694 
695 static int srp_connect_target(struct srp_target_port *target)
696 {
697 	int retries = 3;
698 	int ret;
699 
700 	WARN_ON_ONCE(target->connected);
701 
702 	target->qp_in_error = false;
703 
704 	ret = srp_lookup_path(target);
705 	if (ret)
706 		return ret;
707 
708 	while (1) {
709 		init_completion(&target->done);
710 		ret = srp_send_req(target);
711 		if (ret)
712 			return ret;
713 		wait_for_completion(&target->done);
714 
715 		/*
716 		 * The CM event handling code will set status to
717 		 * SRP_PORT_REDIRECT if we get a port redirect REJ
718 		 * back, or SRP_DLID_REDIRECT if we get a lid/qp
719 		 * redirect REJ back.
720 		 */
721 		switch (target->status) {
722 		case 0:
723 			srp_change_conn_state(target, true);
724 			return 0;
725 
726 		case SRP_PORT_REDIRECT:
727 			ret = srp_lookup_path(target);
728 			if (ret)
729 				return ret;
730 			break;
731 
732 		case SRP_DLID_REDIRECT:
733 			break;
734 
735 		case SRP_STALE_CONN:
736 			/* Our current CM id was stale, and is now in timewait.
737 			 * Try to reconnect with a new one.
738 			 */
739 			if (!retries-- || srp_new_cm_id(target)) {
740 				shost_printk(KERN_ERR, target->scsi_host, PFX
741 					     "giving up on stale connection\n");
742 				target->status = -ECONNRESET;
743 				return target->status;
744 			}
745 
746 			shost_printk(KERN_ERR, target->scsi_host, PFX
747 				     "retrying stale connection\n");
748 			break;
749 
750 		default:
751 			return target->status;
752 		}
753 	}
754 }
755 
756 static void srp_unmap_data(struct scsi_cmnd *scmnd,
757 			   struct srp_target_port *target,
758 			   struct srp_request *req)
759 {
760 	struct ib_device *ibdev = target->srp_host->srp_dev->dev;
761 	struct ib_pool_fmr **pfmr;
762 
763 	if (!scsi_sglist(scmnd) ||
764 	    (scmnd->sc_data_direction != DMA_TO_DEVICE &&
765 	     scmnd->sc_data_direction != DMA_FROM_DEVICE))
766 		return;
767 
768 	pfmr = req->fmr_list;
769 	while (req->nfmr--)
770 		ib_fmr_pool_unmap(*pfmr++);
771 
772 	ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
773 			scmnd->sc_data_direction);
774 }
775 
776 /**
777  * srp_claim_req - Take ownership of the scmnd associated with a request.
778  * @target: SRP target port.
779  * @req: SRP request.
780  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
781  *         ownership of @req->scmnd if it equals @scmnd.
782  *
783  * Return value:
784  * Either NULL or a pointer to the SCSI command the caller became owner of.
785  */
786 static struct scsi_cmnd *srp_claim_req(struct srp_target_port *target,
787 				       struct srp_request *req,
788 				       struct scsi_cmnd *scmnd)
789 {
790 	unsigned long flags;
791 
792 	spin_lock_irqsave(&target->lock, flags);
793 	if (!scmnd) {
794 		scmnd = req->scmnd;
795 		req->scmnd = NULL;
796 	} else if (req->scmnd == scmnd) {
797 		req->scmnd = NULL;
798 	} else {
799 		scmnd = NULL;
800 	}
801 	spin_unlock_irqrestore(&target->lock, flags);
802 
803 	return scmnd;
804 }
805 
806 /**
807  * srp_free_req() - Unmap data and add request to the free request list.
808  */
809 static void srp_free_req(struct srp_target_port *target,
810 			 struct srp_request *req, struct scsi_cmnd *scmnd,
811 			 s32 req_lim_delta)
812 {
813 	unsigned long flags;
814 
815 	srp_unmap_data(scmnd, target, req);
816 
817 	spin_lock_irqsave(&target->lock, flags);
818 	target->req_lim += req_lim_delta;
819 	list_add_tail(&req->list, &target->free_reqs);
820 	spin_unlock_irqrestore(&target->lock, flags);
821 }
822 
823 static void srp_finish_req(struct srp_target_port *target,
824 			   struct srp_request *req, int result)
825 {
826 	struct scsi_cmnd *scmnd = srp_claim_req(target, req, NULL);
827 
828 	if (scmnd) {
829 		srp_free_req(target, req, scmnd, 0);
830 		scmnd->result = result;
831 		scmnd->scsi_done(scmnd);
832 	}
833 }
834 
835 static void srp_terminate_io(struct srp_rport *rport)
836 {
837 	struct srp_target_port *target = rport->lld_data;
838 	int i;
839 
840 	for (i = 0; i < target->req_ring_size; ++i) {
841 		struct srp_request *req = &target->req_ring[i];
842 		srp_finish_req(target, req, DID_TRANSPORT_FAILFAST << 16);
843 	}
844 }
845 
846 /*
847  * It is up to the caller to ensure that srp_rport_reconnect() calls are
848  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
849  * srp_reset_device() or srp_reset_host() calls will occur while this function
850  * is in progress. One way to realize that is not to call this function
851  * directly but to call srp_reconnect_rport() instead since that last function
852  * serializes calls of this function via rport->mutex and also blocks
853  * srp_queuecommand() calls before invoking this function.
854  */
855 static int srp_rport_reconnect(struct srp_rport *rport)
856 {
857 	struct srp_target_port *target = rport->lld_data;
858 	int i, ret;
859 
860 	srp_disconnect_target(target);
861 	/*
862 	 * Now get a new local CM ID so that we avoid confusing the target in
863 	 * case things are really fouled up. Doing so also ensures that all CM
864 	 * callbacks will have finished before a new QP is allocated.
865 	 */
866 	ret = srp_new_cm_id(target);
867 	/*
868 	 * Whether or not creating a new CM ID succeeded, create a new
869 	 * QP. This guarantees that all completion callback function
870 	 * invocations have finished before request resetting starts.
871 	 */
872 	if (ret == 0)
873 		ret = srp_create_target_ib(target);
874 	else
875 		srp_create_target_ib(target);
876 
877 	for (i = 0; i < target->req_ring_size; ++i) {
878 		struct srp_request *req = &target->req_ring[i];
879 		srp_finish_req(target, req, DID_RESET << 16);
880 	}
881 
882 	INIT_LIST_HEAD(&target->free_tx);
883 	for (i = 0; i < target->queue_size; ++i)
884 		list_add(&target->tx_ring[i]->list, &target->free_tx);
885 
886 	if (ret == 0)
887 		ret = srp_connect_target(target);
888 
889 	if (ret == 0)
890 		shost_printk(KERN_INFO, target->scsi_host,
891 			     PFX "reconnect succeeded\n");
892 
893 	return ret;
894 }
895 
896 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
897 			 unsigned int dma_len, u32 rkey)
898 {
899 	struct srp_direct_buf *desc = state->desc;
900 
901 	desc->va = cpu_to_be64(dma_addr);
902 	desc->key = cpu_to_be32(rkey);
903 	desc->len = cpu_to_be32(dma_len);
904 
905 	state->total_len += dma_len;
906 	state->desc++;
907 	state->ndesc++;
908 }
909 
910 static int srp_map_finish_fmr(struct srp_map_state *state,
911 			      struct srp_target_port *target)
912 {
913 	struct srp_device *dev = target->srp_host->srp_dev;
914 	struct ib_pool_fmr *fmr;
915 	u64 io_addr = 0;
916 
917 	if (!state->npages)
918 		return 0;
919 
920 	if (state->npages == 1) {
921 		srp_map_desc(state, state->base_dma_addr, state->fmr_len,
922 			     target->rkey);
923 		state->npages = state->fmr_len = 0;
924 		return 0;
925 	}
926 
927 	fmr = ib_fmr_pool_map_phys(dev->fmr_pool, state->pages,
928 				   state->npages, io_addr);
929 	if (IS_ERR(fmr))
930 		return PTR_ERR(fmr);
931 
932 	*state->next_fmr++ = fmr;
933 	state->nfmr++;
934 
935 	srp_map_desc(state, 0, state->fmr_len, fmr->fmr->rkey);
936 	state->npages = state->fmr_len = 0;
937 	return 0;
938 }
939 
940 static void srp_map_update_start(struct srp_map_state *state,
941 				 struct scatterlist *sg, int sg_index,
942 				 dma_addr_t dma_addr)
943 {
944 	state->unmapped_sg = sg;
945 	state->unmapped_index = sg_index;
946 	state->unmapped_addr = dma_addr;
947 }
948 
949 static int srp_map_sg_entry(struct srp_map_state *state,
950 			    struct srp_target_port *target,
951 			    struct scatterlist *sg, int sg_index,
952 			    int use_fmr)
953 {
954 	struct srp_device *dev = target->srp_host->srp_dev;
955 	struct ib_device *ibdev = dev->dev;
956 	dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
957 	unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
958 	unsigned int len;
959 	int ret;
960 
961 	if (!dma_len)
962 		return 0;
963 
964 	if (use_fmr == SRP_MAP_NO_FMR) {
965 		/* Once we're in direct map mode for a request, we don't
966 		 * go back to FMR mode, so no need to update anything
967 		 * other than the descriptor.
968 		 */
969 		srp_map_desc(state, dma_addr, dma_len, target->rkey);
970 		return 0;
971 	}
972 
973 	/* If we start at an offset into the FMR page, don't merge into
974 	 * the current FMR. Finish it out, and use the kernel's MR for this
975 	 * sg entry. This is to avoid potential bugs on some SRP targets
976 	 * that were never quite defined, but went away when the initiator
977 	 * avoided using FMR on such page fragments.
978 	 */
979 	if (dma_addr & ~dev->fmr_page_mask || dma_len > dev->fmr_max_size) {
980 		ret = srp_map_finish_fmr(state, target);
981 		if (ret)
982 			return ret;
983 
984 		srp_map_desc(state, dma_addr, dma_len, target->rkey);
985 		srp_map_update_start(state, NULL, 0, 0);
986 		return 0;
987 	}
988 
989 	/* If this is the first sg to go into the FMR, save our position.
990 	 * We need to know the first unmapped entry, its index, and the
991 	 * first unmapped address within that entry to be able to restart
992 	 * mapping after an error.
993 	 */
994 	if (!state->unmapped_sg)
995 		srp_map_update_start(state, sg, sg_index, dma_addr);
996 
997 	while (dma_len) {
998 		if (state->npages == SRP_FMR_SIZE) {
999 			ret = srp_map_finish_fmr(state, target);
1000 			if (ret)
1001 				return ret;
1002 
1003 			srp_map_update_start(state, sg, sg_index, dma_addr);
1004 		}
1005 
1006 		len = min_t(unsigned int, dma_len, dev->fmr_page_size);
1007 
1008 		if (!state->npages)
1009 			state->base_dma_addr = dma_addr;
1010 		state->pages[state->npages++] = dma_addr;
1011 		state->fmr_len += len;
1012 		dma_addr += len;
1013 		dma_len -= len;
1014 	}
1015 
1016 	/* If the last entry of the FMR wasn't a full page, then we need to
1017 	 * close it out and start a new one -- we can only merge at page
1018 	 * boundries.
1019 	 */
1020 	ret = 0;
1021 	if (len != dev->fmr_page_size) {
1022 		ret = srp_map_finish_fmr(state, target);
1023 		if (!ret)
1024 			srp_map_update_start(state, NULL, 0, 0);
1025 	}
1026 	return ret;
1027 }
1028 
1029 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_target_port *target,
1030 			struct srp_request *req)
1031 {
1032 	struct scatterlist *scat, *sg;
1033 	struct srp_cmd *cmd = req->cmd->buf;
1034 	int i, len, nents, count, use_fmr;
1035 	struct srp_device *dev;
1036 	struct ib_device *ibdev;
1037 	struct srp_map_state state;
1038 	struct srp_indirect_buf *indirect_hdr;
1039 	u32 table_len;
1040 	u8 fmt;
1041 
1042 	if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1043 		return sizeof (struct srp_cmd);
1044 
1045 	if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1046 	    scmnd->sc_data_direction != DMA_TO_DEVICE) {
1047 		shost_printk(KERN_WARNING, target->scsi_host,
1048 			     PFX "Unhandled data direction %d\n",
1049 			     scmnd->sc_data_direction);
1050 		return -EINVAL;
1051 	}
1052 
1053 	nents = scsi_sg_count(scmnd);
1054 	scat  = scsi_sglist(scmnd);
1055 
1056 	dev = target->srp_host->srp_dev;
1057 	ibdev = dev->dev;
1058 
1059 	count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1060 	if (unlikely(count == 0))
1061 		return -EIO;
1062 
1063 	fmt = SRP_DATA_DESC_DIRECT;
1064 	len = sizeof (struct srp_cmd) +	sizeof (struct srp_direct_buf);
1065 
1066 	if (count == 1) {
1067 		/*
1068 		 * The midlayer only generated a single gather/scatter
1069 		 * entry, or DMA mapping coalesced everything to a
1070 		 * single entry.  So a direct descriptor along with
1071 		 * the DMA MR suffices.
1072 		 */
1073 		struct srp_direct_buf *buf = (void *) cmd->add_data;
1074 
1075 		buf->va  = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1076 		buf->key = cpu_to_be32(target->rkey);
1077 		buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1078 
1079 		req->nfmr = 0;
1080 		goto map_complete;
1081 	}
1082 
1083 	/* We have more than one scatter/gather entry, so build our indirect
1084 	 * descriptor table, trying to merge as many entries with FMR as we
1085 	 * can.
1086 	 */
1087 	indirect_hdr = (void *) cmd->add_data;
1088 
1089 	ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1090 				   target->indirect_size, DMA_TO_DEVICE);
1091 
1092 	memset(&state, 0, sizeof(state));
1093 	state.desc	= req->indirect_desc;
1094 	state.pages	= req->map_page;
1095 	state.next_fmr	= req->fmr_list;
1096 
1097 	use_fmr = dev->fmr_pool ? SRP_MAP_ALLOW_FMR : SRP_MAP_NO_FMR;
1098 
1099 	for_each_sg(scat, sg, count, i) {
1100 		if (srp_map_sg_entry(&state, target, sg, i, use_fmr)) {
1101 			/* FMR mapping failed, so backtrack to the first
1102 			 * unmapped entry and continue on without using FMR.
1103 			 */
1104 			dma_addr_t dma_addr;
1105 			unsigned int dma_len;
1106 
1107 backtrack:
1108 			sg = state.unmapped_sg;
1109 			i = state.unmapped_index;
1110 
1111 			dma_addr = ib_sg_dma_address(ibdev, sg);
1112 			dma_len = ib_sg_dma_len(ibdev, sg);
1113 			dma_len -= (state.unmapped_addr - dma_addr);
1114 			dma_addr = state.unmapped_addr;
1115 			use_fmr = SRP_MAP_NO_FMR;
1116 			srp_map_desc(&state, dma_addr, dma_len, target->rkey);
1117 		}
1118 	}
1119 
1120 	if (use_fmr == SRP_MAP_ALLOW_FMR && srp_map_finish_fmr(&state, target))
1121 		goto backtrack;
1122 
1123 	/* We've mapped the request, now pull as much of the indirect
1124 	 * descriptor table as we can into the command buffer. If this
1125 	 * target is not using an external indirect table, we are
1126 	 * guaranteed to fit into the command, as the SCSI layer won't
1127 	 * give us more S/G entries than we allow.
1128 	 */
1129 	req->nfmr = state.nfmr;
1130 	if (state.ndesc == 1) {
1131 		/* FMR mapping was able to collapse this to one entry,
1132 		 * so use a direct descriptor.
1133 		 */
1134 		struct srp_direct_buf *buf = (void *) cmd->add_data;
1135 
1136 		*buf = req->indirect_desc[0];
1137 		goto map_complete;
1138 	}
1139 
1140 	if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1141 						!target->allow_ext_sg)) {
1142 		shost_printk(KERN_ERR, target->scsi_host,
1143 			     "Could not fit S/G list into SRP_CMD\n");
1144 		return -EIO;
1145 	}
1146 
1147 	count = min(state.ndesc, target->cmd_sg_cnt);
1148 	table_len = state.ndesc * sizeof (struct srp_direct_buf);
1149 
1150 	fmt = SRP_DATA_DESC_INDIRECT;
1151 	len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1152 	len += count * sizeof (struct srp_direct_buf);
1153 
1154 	memcpy(indirect_hdr->desc_list, req->indirect_desc,
1155 	       count * sizeof (struct srp_direct_buf));
1156 
1157 	indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1158 	indirect_hdr->table_desc.key = cpu_to_be32(target->rkey);
1159 	indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1160 	indirect_hdr->len = cpu_to_be32(state.total_len);
1161 
1162 	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1163 		cmd->data_out_desc_cnt = count;
1164 	else
1165 		cmd->data_in_desc_cnt = count;
1166 
1167 	ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1168 				      DMA_TO_DEVICE);
1169 
1170 map_complete:
1171 	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1172 		cmd->buf_fmt = fmt << 4;
1173 	else
1174 		cmd->buf_fmt = fmt;
1175 
1176 	return len;
1177 }
1178 
1179 /*
1180  * Return an IU and possible credit to the free pool
1181  */
1182 static void srp_put_tx_iu(struct srp_target_port *target, struct srp_iu *iu,
1183 			  enum srp_iu_type iu_type)
1184 {
1185 	unsigned long flags;
1186 
1187 	spin_lock_irqsave(&target->lock, flags);
1188 	list_add(&iu->list, &target->free_tx);
1189 	if (iu_type != SRP_IU_RSP)
1190 		++target->req_lim;
1191 	spin_unlock_irqrestore(&target->lock, flags);
1192 }
1193 
1194 /*
1195  * Must be called with target->lock held to protect req_lim and free_tx.
1196  * If IU is not sent, it must be returned using srp_put_tx_iu().
1197  *
1198  * Note:
1199  * An upper limit for the number of allocated information units for each
1200  * request type is:
1201  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1202  *   more than Scsi_Host.can_queue requests.
1203  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1204  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1205  *   one unanswered SRP request to an initiator.
1206  */
1207 static struct srp_iu *__srp_get_tx_iu(struct srp_target_port *target,
1208 				      enum srp_iu_type iu_type)
1209 {
1210 	s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1211 	struct srp_iu *iu;
1212 
1213 	srp_send_completion(target->send_cq, target);
1214 
1215 	if (list_empty(&target->free_tx))
1216 		return NULL;
1217 
1218 	/* Initiator responses to target requests do not consume credits */
1219 	if (iu_type != SRP_IU_RSP) {
1220 		if (target->req_lim <= rsv) {
1221 			++target->zero_req_lim;
1222 			return NULL;
1223 		}
1224 
1225 		--target->req_lim;
1226 	}
1227 
1228 	iu = list_first_entry(&target->free_tx, struct srp_iu, list);
1229 	list_del(&iu->list);
1230 	return iu;
1231 }
1232 
1233 static int srp_post_send(struct srp_target_port *target,
1234 			 struct srp_iu *iu, int len)
1235 {
1236 	struct ib_sge list;
1237 	struct ib_send_wr wr, *bad_wr;
1238 
1239 	list.addr   = iu->dma;
1240 	list.length = len;
1241 	list.lkey   = target->lkey;
1242 
1243 	wr.next       = NULL;
1244 	wr.wr_id      = (uintptr_t) iu;
1245 	wr.sg_list    = &list;
1246 	wr.num_sge    = 1;
1247 	wr.opcode     = IB_WR_SEND;
1248 	wr.send_flags = IB_SEND_SIGNALED;
1249 
1250 	return ib_post_send(target->qp, &wr, &bad_wr);
1251 }
1252 
1253 static int srp_post_recv(struct srp_target_port *target, struct srp_iu *iu)
1254 {
1255 	struct ib_recv_wr wr, *bad_wr;
1256 	struct ib_sge list;
1257 
1258 	list.addr   = iu->dma;
1259 	list.length = iu->size;
1260 	list.lkey   = target->lkey;
1261 
1262 	wr.next     = NULL;
1263 	wr.wr_id    = (uintptr_t) iu;
1264 	wr.sg_list  = &list;
1265 	wr.num_sge  = 1;
1266 
1267 	return ib_post_recv(target->qp, &wr, &bad_wr);
1268 }
1269 
1270 static void srp_process_rsp(struct srp_target_port *target, struct srp_rsp *rsp)
1271 {
1272 	struct srp_request *req;
1273 	struct scsi_cmnd *scmnd;
1274 	unsigned long flags;
1275 
1276 	if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1277 		spin_lock_irqsave(&target->lock, flags);
1278 		target->req_lim += be32_to_cpu(rsp->req_lim_delta);
1279 		spin_unlock_irqrestore(&target->lock, flags);
1280 
1281 		target->tsk_mgmt_status = -1;
1282 		if (be32_to_cpu(rsp->resp_data_len) >= 4)
1283 			target->tsk_mgmt_status = rsp->data[3];
1284 		complete(&target->tsk_mgmt_done);
1285 	} else {
1286 		req = &target->req_ring[rsp->tag];
1287 		scmnd = srp_claim_req(target, req, NULL);
1288 		if (!scmnd) {
1289 			shost_printk(KERN_ERR, target->scsi_host,
1290 				     "Null scmnd for RSP w/tag %016llx\n",
1291 				     (unsigned long long) rsp->tag);
1292 
1293 			spin_lock_irqsave(&target->lock, flags);
1294 			target->req_lim += be32_to_cpu(rsp->req_lim_delta);
1295 			spin_unlock_irqrestore(&target->lock, flags);
1296 
1297 			return;
1298 		}
1299 		scmnd->result = rsp->status;
1300 
1301 		if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1302 			memcpy(scmnd->sense_buffer, rsp->data +
1303 			       be32_to_cpu(rsp->resp_data_len),
1304 			       min_t(int, be32_to_cpu(rsp->sense_data_len),
1305 				     SCSI_SENSE_BUFFERSIZE));
1306 		}
1307 
1308 		if (rsp->flags & (SRP_RSP_FLAG_DOOVER | SRP_RSP_FLAG_DOUNDER))
1309 			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1310 		else if (rsp->flags & (SRP_RSP_FLAG_DIOVER | SRP_RSP_FLAG_DIUNDER))
1311 			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1312 
1313 		srp_free_req(target, req, scmnd,
1314 			     be32_to_cpu(rsp->req_lim_delta));
1315 
1316 		scmnd->host_scribble = NULL;
1317 		scmnd->scsi_done(scmnd);
1318 	}
1319 }
1320 
1321 static int srp_response_common(struct srp_target_port *target, s32 req_delta,
1322 			       void *rsp, int len)
1323 {
1324 	struct ib_device *dev = target->srp_host->srp_dev->dev;
1325 	unsigned long flags;
1326 	struct srp_iu *iu;
1327 	int err;
1328 
1329 	spin_lock_irqsave(&target->lock, flags);
1330 	target->req_lim += req_delta;
1331 	iu = __srp_get_tx_iu(target, SRP_IU_RSP);
1332 	spin_unlock_irqrestore(&target->lock, flags);
1333 
1334 	if (!iu) {
1335 		shost_printk(KERN_ERR, target->scsi_host, PFX
1336 			     "no IU available to send response\n");
1337 		return 1;
1338 	}
1339 
1340 	ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1341 	memcpy(iu->buf, rsp, len);
1342 	ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1343 
1344 	err = srp_post_send(target, iu, len);
1345 	if (err) {
1346 		shost_printk(KERN_ERR, target->scsi_host, PFX
1347 			     "unable to post response: %d\n", err);
1348 		srp_put_tx_iu(target, iu, SRP_IU_RSP);
1349 	}
1350 
1351 	return err;
1352 }
1353 
1354 static void srp_process_cred_req(struct srp_target_port *target,
1355 				 struct srp_cred_req *req)
1356 {
1357 	struct srp_cred_rsp rsp = {
1358 		.opcode = SRP_CRED_RSP,
1359 		.tag = req->tag,
1360 	};
1361 	s32 delta = be32_to_cpu(req->req_lim_delta);
1362 
1363 	if (srp_response_common(target, delta, &rsp, sizeof rsp))
1364 		shost_printk(KERN_ERR, target->scsi_host, PFX
1365 			     "problems processing SRP_CRED_REQ\n");
1366 }
1367 
1368 static void srp_process_aer_req(struct srp_target_port *target,
1369 				struct srp_aer_req *req)
1370 {
1371 	struct srp_aer_rsp rsp = {
1372 		.opcode = SRP_AER_RSP,
1373 		.tag = req->tag,
1374 	};
1375 	s32 delta = be32_to_cpu(req->req_lim_delta);
1376 
1377 	shost_printk(KERN_ERR, target->scsi_host, PFX
1378 		     "ignoring AER for LUN %llu\n", be64_to_cpu(req->lun));
1379 
1380 	if (srp_response_common(target, delta, &rsp, sizeof rsp))
1381 		shost_printk(KERN_ERR, target->scsi_host, PFX
1382 			     "problems processing SRP_AER_REQ\n");
1383 }
1384 
1385 static void srp_handle_recv(struct srp_target_port *target, struct ib_wc *wc)
1386 {
1387 	struct ib_device *dev = target->srp_host->srp_dev->dev;
1388 	struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id;
1389 	int res;
1390 	u8 opcode;
1391 
1392 	ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_ti_iu_len,
1393 				   DMA_FROM_DEVICE);
1394 
1395 	opcode = *(u8 *) iu->buf;
1396 
1397 	if (0) {
1398 		shost_printk(KERN_ERR, target->scsi_host,
1399 			     PFX "recv completion, opcode 0x%02x\n", opcode);
1400 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
1401 			       iu->buf, wc->byte_len, true);
1402 	}
1403 
1404 	switch (opcode) {
1405 	case SRP_RSP:
1406 		srp_process_rsp(target, iu->buf);
1407 		break;
1408 
1409 	case SRP_CRED_REQ:
1410 		srp_process_cred_req(target, iu->buf);
1411 		break;
1412 
1413 	case SRP_AER_REQ:
1414 		srp_process_aer_req(target, iu->buf);
1415 		break;
1416 
1417 	case SRP_T_LOGOUT:
1418 		/* XXX Handle target logout */
1419 		shost_printk(KERN_WARNING, target->scsi_host,
1420 			     PFX "Got target logout request\n");
1421 		break;
1422 
1423 	default:
1424 		shost_printk(KERN_WARNING, target->scsi_host,
1425 			     PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1426 		break;
1427 	}
1428 
1429 	ib_dma_sync_single_for_device(dev, iu->dma, target->max_ti_iu_len,
1430 				      DMA_FROM_DEVICE);
1431 
1432 	res = srp_post_recv(target, iu);
1433 	if (res != 0)
1434 		shost_printk(KERN_ERR, target->scsi_host,
1435 			     PFX "Recv failed with error code %d\n", res);
1436 }
1437 
1438 /**
1439  * srp_tl_err_work() - handle a transport layer error
1440  *
1441  * Note: This function may get invoked before the rport has been created,
1442  * hence the target->rport test.
1443  */
1444 static void srp_tl_err_work(struct work_struct *work)
1445 {
1446 	struct srp_target_port *target;
1447 
1448 	target = container_of(work, struct srp_target_port, tl_err_work);
1449 	if (target->rport)
1450 		srp_start_tl_fail_timers(target->rport);
1451 }
1452 
1453 static void srp_handle_qp_err(enum ib_wc_status wc_status, bool send_err,
1454 			      struct srp_target_port *target)
1455 {
1456 	if (target->connected && !target->qp_in_error) {
1457 		shost_printk(KERN_ERR, target->scsi_host,
1458 			     PFX "failed %s status %d\n",
1459 			     send_err ? "send" : "receive",
1460 			     wc_status);
1461 		queue_work(system_long_wq, &target->tl_err_work);
1462 	}
1463 	target->qp_in_error = true;
1464 }
1465 
1466 static void srp_recv_completion(struct ib_cq *cq, void *target_ptr)
1467 {
1468 	struct srp_target_port *target = target_ptr;
1469 	struct ib_wc wc;
1470 
1471 	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1472 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1473 		if (likely(wc.status == IB_WC_SUCCESS)) {
1474 			srp_handle_recv(target, &wc);
1475 		} else {
1476 			srp_handle_qp_err(wc.status, false, target);
1477 		}
1478 	}
1479 }
1480 
1481 static void srp_send_completion(struct ib_cq *cq, void *target_ptr)
1482 {
1483 	struct srp_target_port *target = target_ptr;
1484 	struct ib_wc wc;
1485 	struct srp_iu *iu;
1486 
1487 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1488 		if (likely(wc.status == IB_WC_SUCCESS)) {
1489 			iu = (struct srp_iu *) (uintptr_t) wc.wr_id;
1490 			list_add(&iu->list, &target->free_tx);
1491 		} else {
1492 			srp_handle_qp_err(wc.status, true, target);
1493 		}
1494 	}
1495 }
1496 
1497 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
1498 {
1499 	struct srp_target_port *target = host_to_target(shost);
1500 	struct srp_rport *rport = target->rport;
1501 	struct srp_request *req;
1502 	struct srp_iu *iu;
1503 	struct srp_cmd *cmd;
1504 	struct ib_device *dev;
1505 	unsigned long flags;
1506 	int len, result;
1507 	const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
1508 
1509 	/*
1510 	 * The SCSI EH thread is the only context from which srp_queuecommand()
1511 	 * can get invoked for blocked devices (SDEV_BLOCK /
1512 	 * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
1513 	 * locking the rport mutex if invoked from inside the SCSI EH.
1514 	 */
1515 	if (in_scsi_eh)
1516 		mutex_lock(&rport->mutex);
1517 
1518 	result = srp_chkready(target->rport);
1519 	if (unlikely(result)) {
1520 		scmnd->result = result;
1521 		scmnd->scsi_done(scmnd);
1522 		goto unlock_rport;
1523 	}
1524 
1525 	spin_lock_irqsave(&target->lock, flags);
1526 	iu = __srp_get_tx_iu(target, SRP_IU_CMD);
1527 	if (!iu)
1528 		goto err_unlock;
1529 
1530 	req = list_first_entry(&target->free_reqs, struct srp_request, list);
1531 	list_del(&req->list);
1532 	spin_unlock_irqrestore(&target->lock, flags);
1533 
1534 	dev = target->srp_host->srp_dev->dev;
1535 	ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
1536 				   DMA_TO_DEVICE);
1537 
1538 	scmnd->result        = 0;
1539 	scmnd->host_scribble = (void *) req;
1540 
1541 	cmd = iu->buf;
1542 	memset(cmd, 0, sizeof *cmd);
1543 
1544 	cmd->opcode = SRP_CMD;
1545 	cmd->lun    = cpu_to_be64((u64) scmnd->device->lun << 48);
1546 	cmd->tag    = req->index;
1547 	memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
1548 
1549 	req->scmnd    = scmnd;
1550 	req->cmd      = iu;
1551 
1552 	len = srp_map_data(scmnd, target, req);
1553 	if (len < 0) {
1554 		shost_printk(KERN_ERR, target->scsi_host,
1555 			     PFX "Failed to map data\n");
1556 		goto err_iu;
1557 	}
1558 
1559 	ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
1560 				      DMA_TO_DEVICE);
1561 
1562 	if (srp_post_send(target, iu, len)) {
1563 		shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
1564 		goto err_unmap;
1565 	}
1566 
1567 unlock_rport:
1568 	if (in_scsi_eh)
1569 		mutex_unlock(&rport->mutex);
1570 
1571 	return 0;
1572 
1573 err_unmap:
1574 	srp_unmap_data(scmnd, target, req);
1575 
1576 err_iu:
1577 	srp_put_tx_iu(target, iu, SRP_IU_CMD);
1578 
1579 	spin_lock_irqsave(&target->lock, flags);
1580 	list_add(&req->list, &target->free_reqs);
1581 
1582 err_unlock:
1583 	spin_unlock_irqrestore(&target->lock, flags);
1584 
1585 	if (in_scsi_eh)
1586 		mutex_unlock(&rport->mutex);
1587 
1588 	return SCSI_MLQUEUE_HOST_BUSY;
1589 }
1590 
1591 /*
1592  * Note: the resources allocated in this function are freed in
1593  * srp_free_target_ib().
1594  */
1595 static int srp_alloc_iu_bufs(struct srp_target_port *target)
1596 {
1597 	int i;
1598 
1599 	target->rx_ring = kzalloc(target->queue_size * sizeof(*target->rx_ring),
1600 				  GFP_KERNEL);
1601 	if (!target->rx_ring)
1602 		goto err_no_ring;
1603 	target->tx_ring = kzalloc(target->queue_size * sizeof(*target->tx_ring),
1604 				  GFP_KERNEL);
1605 	if (!target->tx_ring)
1606 		goto err_no_ring;
1607 
1608 	for (i = 0; i < target->queue_size; ++i) {
1609 		target->rx_ring[i] = srp_alloc_iu(target->srp_host,
1610 						  target->max_ti_iu_len,
1611 						  GFP_KERNEL, DMA_FROM_DEVICE);
1612 		if (!target->rx_ring[i])
1613 			goto err;
1614 	}
1615 
1616 	for (i = 0; i < target->queue_size; ++i) {
1617 		target->tx_ring[i] = srp_alloc_iu(target->srp_host,
1618 						  target->max_iu_len,
1619 						  GFP_KERNEL, DMA_TO_DEVICE);
1620 		if (!target->tx_ring[i])
1621 			goto err;
1622 
1623 		list_add(&target->tx_ring[i]->list, &target->free_tx);
1624 	}
1625 
1626 	return 0;
1627 
1628 err:
1629 	for (i = 0; i < target->queue_size; ++i) {
1630 		srp_free_iu(target->srp_host, target->rx_ring[i]);
1631 		srp_free_iu(target->srp_host, target->tx_ring[i]);
1632 	}
1633 
1634 
1635 err_no_ring:
1636 	kfree(target->tx_ring);
1637 	target->tx_ring = NULL;
1638 	kfree(target->rx_ring);
1639 	target->rx_ring = NULL;
1640 
1641 	return -ENOMEM;
1642 }
1643 
1644 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
1645 {
1646 	uint64_t T_tr_ns, max_compl_time_ms;
1647 	uint32_t rq_tmo_jiffies;
1648 
1649 	/*
1650 	 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
1651 	 * table 91), both the QP timeout and the retry count have to be set
1652 	 * for RC QP's during the RTR to RTS transition.
1653 	 */
1654 	WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
1655 		     (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
1656 
1657 	/*
1658 	 * Set target->rq_tmo_jiffies to one second more than the largest time
1659 	 * it can take before an error completion is generated. See also
1660 	 * C9-140..142 in the IBTA spec for more information about how to
1661 	 * convert the QP Local ACK Timeout value to nanoseconds.
1662 	 */
1663 	T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
1664 	max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
1665 	do_div(max_compl_time_ms, NSEC_PER_MSEC);
1666 	rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
1667 
1668 	return rq_tmo_jiffies;
1669 }
1670 
1671 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
1672 			       struct srp_login_rsp *lrsp,
1673 			       struct srp_target_port *target)
1674 {
1675 	struct ib_qp_attr *qp_attr = NULL;
1676 	int attr_mask = 0;
1677 	int ret;
1678 	int i;
1679 
1680 	if (lrsp->opcode == SRP_LOGIN_RSP) {
1681 		target->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
1682 		target->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
1683 
1684 		/*
1685 		 * Reserve credits for task management so we don't
1686 		 * bounce requests back to the SCSI mid-layer.
1687 		 */
1688 		target->scsi_host->can_queue
1689 			= min(target->req_lim - SRP_TSK_MGMT_SQ_SIZE,
1690 			      target->scsi_host->can_queue);
1691 		target->scsi_host->cmd_per_lun
1692 			= min_t(int, target->scsi_host->can_queue,
1693 				target->scsi_host->cmd_per_lun);
1694 	} else {
1695 		shost_printk(KERN_WARNING, target->scsi_host,
1696 			     PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
1697 		ret = -ECONNRESET;
1698 		goto error;
1699 	}
1700 
1701 	if (!target->rx_ring) {
1702 		ret = srp_alloc_iu_bufs(target);
1703 		if (ret)
1704 			goto error;
1705 	}
1706 
1707 	ret = -ENOMEM;
1708 	qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
1709 	if (!qp_attr)
1710 		goto error;
1711 
1712 	qp_attr->qp_state = IB_QPS_RTR;
1713 	ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
1714 	if (ret)
1715 		goto error_free;
1716 
1717 	ret = ib_modify_qp(target->qp, qp_attr, attr_mask);
1718 	if (ret)
1719 		goto error_free;
1720 
1721 	for (i = 0; i < target->queue_size; i++) {
1722 		struct srp_iu *iu = target->rx_ring[i];
1723 		ret = srp_post_recv(target, iu);
1724 		if (ret)
1725 			goto error_free;
1726 	}
1727 
1728 	qp_attr->qp_state = IB_QPS_RTS;
1729 	ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
1730 	if (ret)
1731 		goto error_free;
1732 
1733 	target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
1734 
1735 	ret = ib_modify_qp(target->qp, qp_attr, attr_mask);
1736 	if (ret)
1737 		goto error_free;
1738 
1739 	ret = ib_send_cm_rtu(cm_id, NULL, 0);
1740 
1741 error_free:
1742 	kfree(qp_attr);
1743 
1744 error:
1745 	target->status = ret;
1746 }
1747 
1748 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
1749 			       struct ib_cm_event *event,
1750 			       struct srp_target_port *target)
1751 {
1752 	struct Scsi_Host *shost = target->scsi_host;
1753 	struct ib_class_port_info *cpi;
1754 	int opcode;
1755 
1756 	switch (event->param.rej_rcvd.reason) {
1757 	case IB_CM_REJ_PORT_CM_REDIRECT:
1758 		cpi = event->param.rej_rcvd.ari;
1759 		target->path.dlid = cpi->redirect_lid;
1760 		target->path.pkey = cpi->redirect_pkey;
1761 		cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
1762 		memcpy(target->path.dgid.raw, cpi->redirect_gid, 16);
1763 
1764 		target->status = target->path.dlid ?
1765 			SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
1766 		break;
1767 
1768 	case IB_CM_REJ_PORT_REDIRECT:
1769 		if (srp_target_is_topspin(target)) {
1770 			/*
1771 			 * Topspin/Cisco SRP gateways incorrectly send
1772 			 * reject reason code 25 when they mean 24
1773 			 * (port redirect).
1774 			 */
1775 			memcpy(target->path.dgid.raw,
1776 			       event->param.rej_rcvd.ari, 16);
1777 
1778 			shost_printk(KERN_DEBUG, shost,
1779 				     PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
1780 				     (unsigned long long) be64_to_cpu(target->path.dgid.global.subnet_prefix),
1781 				     (unsigned long long) be64_to_cpu(target->path.dgid.global.interface_id));
1782 
1783 			target->status = SRP_PORT_REDIRECT;
1784 		} else {
1785 			shost_printk(KERN_WARNING, shost,
1786 				     "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
1787 			target->status = -ECONNRESET;
1788 		}
1789 		break;
1790 
1791 	case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
1792 		shost_printk(KERN_WARNING, shost,
1793 			    "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
1794 		target->status = -ECONNRESET;
1795 		break;
1796 
1797 	case IB_CM_REJ_CONSUMER_DEFINED:
1798 		opcode = *(u8 *) event->private_data;
1799 		if (opcode == SRP_LOGIN_REJ) {
1800 			struct srp_login_rej *rej = event->private_data;
1801 			u32 reason = be32_to_cpu(rej->reason);
1802 
1803 			if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
1804 				shost_printk(KERN_WARNING, shost,
1805 					     PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
1806 			else
1807 				shost_printk(KERN_WARNING, shost,
1808 					    PFX "SRP LOGIN REJECTED, reason 0x%08x\n", reason);
1809 		} else
1810 			shost_printk(KERN_WARNING, shost,
1811 				     "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
1812 				     " opcode 0x%02x\n", opcode);
1813 		target->status = -ECONNRESET;
1814 		break;
1815 
1816 	case IB_CM_REJ_STALE_CONN:
1817 		shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
1818 		target->status = SRP_STALE_CONN;
1819 		break;
1820 
1821 	default:
1822 		shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
1823 			     event->param.rej_rcvd.reason);
1824 		target->status = -ECONNRESET;
1825 	}
1826 }
1827 
1828 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
1829 {
1830 	struct srp_target_port *target = cm_id->context;
1831 	int comp = 0;
1832 
1833 	switch (event->event) {
1834 	case IB_CM_REQ_ERROR:
1835 		shost_printk(KERN_DEBUG, target->scsi_host,
1836 			     PFX "Sending CM REQ failed\n");
1837 		comp = 1;
1838 		target->status = -ECONNRESET;
1839 		break;
1840 
1841 	case IB_CM_REP_RECEIVED:
1842 		comp = 1;
1843 		srp_cm_rep_handler(cm_id, event->private_data, target);
1844 		break;
1845 
1846 	case IB_CM_REJ_RECEIVED:
1847 		shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
1848 		comp = 1;
1849 
1850 		srp_cm_rej_handler(cm_id, event, target);
1851 		break;
1852 
1853 	case IB_CM_DREQ_RECEIVED:
1854 		shost_printk(KERN_WARNING, target->scsi_host,
1855 			     PFX "DREQ received - connection closed\n");
1856 		srp_change_conn_state(target, false);
1857 		if (ib_send_cm_drep(cm_id, NULL, 0))
1858 			shost_printk(KERN_ERR, target->scsi_host,
1859 				     PFX "Sending CM DREP failed\n");
1860 		queue_work(system_long_wq, &target->tl_err_work);
1861 		break;
1862 
1863 	case IB_CM_TIMEWAIT_EXIT:
1864 		shost_printk(KERN_ERR, target->scsi_host,
1865 			     PFX "connection closed\n");
1866 
1867 		target->status = 0;
1868 		break;
1869 
1870 	case IB_CM_MRA_RECEIVED:
1871 	case IB_CM_DREQ_ERROR:
1872 	case IB_CM_DREP_RECEIVED:
1873 		break;
1874 
1875 	default:
1876 		shost_printk(KERN_WARNING, target->scsi_host,
1877 			     PFX "Unhandled CM event %d\n", event->event);
1878 		break;
1879 	}
1880 
1881 	if (comp)
1882 		complete(&target->done);
1883 
1884 	return 0;
1885 }
1886 
1887 /**
1888  * srp_change_queue_type - changing device queue tag type
1889  * @sdev: scsi device struct
1890  * @tag_type: requested tag type
1891  *
1892  * Returns queue tag type.
1893  */
1894 static int
1895 srp_change_queue_type(struct scsi_device *sdev, int tag_type)
1896 {
1897 	if (sdev->tagged_supported) {
1898 		scsi_set_tag_type(sdev, tag_type);
1899 		if (tag_type)
1900 			scsi_activate_tcq(sdev, sdev->queue_depth);
1901 		else
1902 			scsi_deactivate_tcq(sdev, sdev->queue_depth);
1903 	} else
1904 		tag_type = 0;
1905 
1906 	return tag_type;
1907 }
1908 
1909 /**
1910  * srp_change_queue_depth - setting device queue depth
1911  * @sdev: scsi device struct
1912  * @qdepth: requested queue depth
1913  * @reason: SCSI_QDEPTH_DEFAULT/SCSI_QDEPTH_QFULL/SCSI_QDEPTH_RAMP_UP
1914  * (see include/scsi/scsi_host.h for definition)
1915  *
1916  * Returns queue depth.
1917  */
1918 static int
1919 srp_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason)
1920 {
1921 	struct Scsi_Host *shost = sdev->host;
1922 	int max_depth;
1923 	if (reason == SCSI_QDEPTH_DEFAULT || reason == SCSI_QDEPTH_RAMP_UP) {
1924 		max_depth = shost->can_queue;
1925 		if (!sdev->tagged_supported)
1926 			max_depth = 1;
1927 		if (qdepth > max_depth)
1928 			qdepth = max_depth;
1929 		scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
1930 	} else if (reason == SCSI_QDEPTH_QFULL)
1931 		scsi_track_queue_full(sdev, qdepth);
1932 	else
1933 		return -EOPNOTSUPP;
1934 
1935 	return sdev->queue_depth;
1936 }
1937 
1938 static int srp_send_tsk_mgmt(struct srp_target_port *target,
1939 			     u64 req_tag, unsigned int lun, u8 func)
1940 {
1941 	struct srp_rport *rport = target->rport;
1942 	struct ib_device *dev = target->srp_host->srp_dev->dev;
1943 	struct srp_iu *iu;
1944 	struct srp_tsk_mgmt *tsk_mgmt;
1945 
1946 	if (!target->connected || target->qp_in_error)
1947 		return -1;
1948 
1949 	init_completion(&target->tsk_mgmt_done);
1950 
1951 	/*
1952 	 * Lock the rport mutex to avoid that srp_create_target_ib() is
1953 	 * invoked while a task management function is being sent.
1954 	 */
1955 	mutex_lock(&rport->mutex);
1956 	spin_lock_irq(&target->lock);
1957 	iu = __srp_get_tx_iu(target, SRP_IU_TSK_MGMT);
1958 	spin_unlock_irq(&target->lock);
1959 
1960 	if (!iu) {
1961 		mutex_unlock(&rport->mutex);
1962 
1963 		return -1;
1964 	}
1965 
1966 	ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
1967 				   DMA_TO_DEVICE);
1968 	tsk_mgmt = iu->buf;
1969 	memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
1970 
1971 	tsk_mgmt->opcode 	= SRP_TSK_MGMT;
1972 	tsk_mgmt->lun		= cpu_to_be64((u64) lun << 48);
1973 	tsk_mgmt->tag		= req_tag | SRP_TAG_TSK_MGMT;
1974 	tsk_mgmt->tsk_mgmt_func = func;
1975 	tsk_mgmt->task_tag	= req_tag;
1976 
1977 	ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
1978 				      DMA_TO_DEVICE);
1979 	if (srp_post_send(target, iu, sizeof *tsk_mgmt)) {
1980 		srp_put_tx_iu(target, iu, SRP_IU_TSK_MGMT);
1981 		mutex_unlock(&rport->mutex);
1982 
1983 		return -1;
1984 	}
1985 	mutex_unlock(&rport->mutex);
1986 
1987 	if (!wait_for_completion_timeout(&target->tsk_mgmt_done,
1988 					 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
1989 		return -1;
1990 
1991 	return 0;
1992 }
1993 
1994 static int srp_abort(struct scsi_cmnd *scmnd)
1995 {
1996 	struct srp_target_port *target = host_to_target(scmnd->device->host);
1997 	struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
1998 	int ret;
1999 
2000 	shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2001 
2002 	if (!req || !srp_claim_req(target, req, scmnd))
2003 		return SUCCESS;
2004 	if (srp_send_tsk_mgmt(target, req->index, scmnd->device->lun,
2005 			      SRP_TSK_ABORT_TASK) == 0)
2006 		ret = SUCCESS;
2007 	else if (target->rport->state == SRP_RPORT_LOST)
2008 		ret = FAST_IO_FAIL;
2009 	else
2010 		ret = FAILED;
2011 	srp_free_req(target, req, scmnd, 0);
2012 	scmnd->result = DID_ABORT << 16;
2013 	scmnd->scsi_done(scmnd);
2014 
2015 	return ret;
2016 }
2017 
2018 static int srp_reset_device(struct scsi_cmnd *scmnd)
2019 {
2020 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2021 	int i;
2022 
2023 	shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2024 
2025 	if (srp_send_tsk_mgmt(target, SRP_TAG_NO_REQ, scmnd->device->lun,
2026 			      SRP_TSK_LUN_RESET))
2027 		return FAILED;
2028 	if (target->tsk_mgmt_status)
2029 		return FAILED;
2030 
2031 	for (i = 0; i < target->req_ring_size; ++i) {
2032 		struct srp_request *req = &target->req_ring[i];
2033 		if (req->scmnd && req->scmnd->device == scmnd->device)
2034 			srp_finish_req(target, req, DID_RESET << 16);
2035 	}
2036 
2037 	return SUCCESS;
2038 }
2039 
2040 static int srp_reset_host(struct scsi_cmnd *scmnd)
2041 {
2042 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2043 
2044 	shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2045 
2046 	return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2047 }
2048 
2049 static int srp_slave_configure(struct scsi_device *sdev)
2050 {
2051 	struct Scsi_Host *shost = sdev->host;
2052 	struct srp_target_port *target = host_to_target(shost);
2053 	struct request_queue *q = sdev->request_queue;
2054 	unsigned long timeout;
2055 
2056 	if (sdev->type == TYPE_DISK) {
2057 		timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2058 		blk_queue_rq_timeout(q, timeout);
2059 	}
2060 
2061 	return 0;
2062 }
2063 
2064 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2065 			   char *buf)
2066 {
2067 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2068 
2069 	return sprintf(buf, "0x%016llx\n",
2070 		       (unsigned long long) be64_to_cpu(target->id_ext));
2071 }
2072 
2073 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2074 			     char *buf)
2075 {
2076 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2077 
2078 	return sprintf(buf, "0x%016llx\n",
2079 		       (unsigned long long) be64_to_cpu(target->ioc_guid));
2080 }
2081 
2082 static ssize_t show_service_id(struct device *dev,
2083 			       struct device_attribute *attr, char *buf)
2084 {
2085 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2086 
2087 	return sprintf(buf, "0x%016llx\n",
2088 		       (unsigned long long) be64_to_cpu(target->service_id));
2089 }
2090 
2091 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2092 			 char *buf)
2093 {
2094 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2095 
2096 	return sprintf(buf, "0x%04x\n", be16_to_cpu(target->path.pkey));
2097 }
2098 
2099 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2100 			 char *buf)
2101 {
2102 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2103 
2104 	return sprintf(buf, "%pI6\n", target->path.sgid.raw);
2105 }
2106 
2107 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2108 			 char *buf)
2109 {
2110 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2111 
2112 	return sprintf(buf, "%pI6\n", target->path.dgid.raw);
2113 }
2114 
2115 static ssize_t show_orig_dgid(struct device *dev,
2116 			      struct device_attribute *attr, char *buf)
2117 {
2118 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2119 
2120 	return sprintf(buf, "%pI6\n", target->orig_dgid);
2121 }
2122 
2123 static ssize_t show_req_lim(struct device *dev,
2124 			    struct device_attribute *attr, char *buf)
2125 {
2126 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2127 
2128 	return sprintf(buf, "%d\n", target->req_lim);
2129 }
2130 
2131 static ssize_t show_zero_req_lim(struct device *dev,
2132 				 struct device_attribute *attr, char *buf)
2133 {
2134 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2135 
2136 	return sprintf(buf, "%d\n", target->zero_req_lim);
2137 }
2138 
2139 static ssize_t show_local_ib_port(struct device *dev,
2140 				  struct device_attribute *attr, char *buf)
2141 {
2142 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2143 
2144 	return sprintf(buf, "%d\n", target->srp_host->port);
2145 }
2146 
2147 static ssize_t show_local_ib_device(struct device *dev,
2148 				    struct device_attribute *attr, char *buf)
2149 {
2150 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2151 
2152 	return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2153 }
2154 
2155 static ssize_t show_comp_vector(struct device *dev,
2156 				struct device_attribute *attr, char *buf)
2157 {
2158 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2159 
2160 	return sprintf(buf, "%d\n", target->comp_vector);
2161 }
2162 
2163 static ssize_t show_tl_retry_count(struct device *dev,
2164 				   struct device_attribute *attr, char *buf)
2165 {
2166 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2167 
2168 	return sprintf(buf, "%d\n", target->tl_retry_count);
2169 }
2170 
2171 static ssize_t show_cmd_sg_entries(struct device *dev,
2172 				   struct device_attribute *attr, char *buf)
2173 {
2174 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2175 
2176 	return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2177 }
2178 
2179 static ssize_t show_allow_ext_sg(struct device *dev,
2180 				 struct device_attribute *attr, char *buf)
2181 {
2182 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2183 
2184 	return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2185 }
2186 
2187 static DEVICE_ATTR(id_ext,	    S_IRUGO, show_id_ext,	   NULL);
2188 static DEVICE_ATTR(ioc_guid,	    S_IRUGO, show_ioc_guid,	   NULL);
2189 static DEVICE_ATTR(service_id,	    S_IRUGO, show_service_id,	   NULL);
2190 static DEVICE_ATTR(pkey,	    S_IRUGO, show_pkey,		   NULL);
2191 static DEVICE_ATTR(sgid,	    S_IRUGO, show_sgid,		   NULL);
2192 static DEVICE_ATTR(dgid,	    S_IRUGO, show_dgid,		   NULL);
2193 static DEVICE_ATTR(orig_dgid,	    S_IRUGO, show_orig_dgid,	   NULL);
2194 static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
2195 static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,	   NULL);
2196 static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
2197 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2198 static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
2199 static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
2200 static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
2201 static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
2202 
2203 static struct device_attribute *srp_host_attrs[] = {
2204 	&dev_attr_id_ext,
2205 	&dev_attr_ioc_guid,
2206 	&dev_attr_service_id,
2207 	&dev_attr_pkey,
2208 	&dev_attr_sgid,
2209 	&dev_attr_dgid,
2210 	&dev_attr_orig_dgid,
2211 	&dev_attr_req_lim,
2212 	&dev_attr_zero_req_lim,
2213 	&dev_attr_local_ib_port,
2214 	&dev_attr_local_ib_device,
2215 	&dev_attr_comp_vector,
2216 	&dev_attr_tl_retry_count,
2217 	&dev_attr_cmd_sg_entries,
2218 	&dev_attr_allow_ext_sg,
2219 	NULL
2220 };
2221 
2222 static struct scsi_host_template srp_template = {
2223 	.module				= THIS_MODULE,
2224 	.name				= "InfiniBand SRP initiator",
2225 	.proc_name			= DRV_NAME,
2226 	.slave_configure		= srp_slave_configure,
2227 	.info				= srp_target_info,
2228 	.queuecommand			= srp_queuecommand,
2229 	.change_queue_depth             = srp_change_queue_depth,
2230 	.change_queue_type              = srp_change_queue_type,
2231 	.eh_abort_handler		= srp_abort,
2232 	.eh_device_reset_handler	= srp_reset_device,
2233 	.eh_host_reset_handler		= srp_reset_host,
2234 	.skip_settle_delay		= true,
2235 	.sg_tablesize			= SRP_DEF_SG_TABLESIZE,
2236 	.can_queue			= SRP_DEFAULT_CMD_SQ_SIZE,
2237 	.this_id			= -1,
2238 	.cmd_per_lun			= SRP_DEFAULT_CMD_SQ_SIZE,
2239 	.use_clustering			= ENABLE_CLUSTERING,
2240 	.shost_attrs			= srp_host_attrs
2241 };
2242 
2243 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2244 {
2245 	struct srp_rport_identifiers ids;
2246 	struct srp_rport *rport;
2247 
2248 	sprintf(target->target_name, "SRP.T10:%016llX",
2249 		 (unsigned long long) be64_to_cpu(target->id_ext));
2250 
2251 	if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2252 		return -ENODEV;
2253 
2254 	memcpy(ids.port_id, &target->id_ext, 8);
2255 	memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2256 	ids.roles = SRP_RPORT_ROLE_TARGET;
2257 	rport = srp_rport_add(target->scsi_host, &ids);
2258 	if (IS_ERR(rport)) {
2259 		scsi_remove_host(target->scsi_host);
2260 		return PTR_ERR(rport);
2261 	}
2262 
2263 	rport->lld_data = target;
2264 	target->rport = rport;
2265 
2266 	spin_lock(&host->target_lock);
2267 	list_add_tail(&target->list, &host->target_list);
2268 	spin_unlock(&host->target_lock);
2269 
2270 	target->state = SRP_TARGET_LIVE;
2271 
2272 	scsi_scan_target(&target->scsi_host->shost_gendev,
2273 			 0, target->scsi_id, SCAN_WILD_CARD, 0);
2274 
2275 	return 0;
2276 }
2277 
2278 static void srp_release_dev(struct device *dev)
2279 {
2280 	struct srp_host *host =
2281 		container_of(dev, struct srp_host, dev);
2282 
2283 	complete(&host->released);
2284 }
2285 
2286 static struct class srp_class = {
2287 	.name    = "infiniband_srp",
2288 	.dev_release = srp_release_dev
2289 };
2290 
2291 /**
2292  * srp_conn_unique() - check whether the connection to a target is unique
2293  */
2294 static bool srp_conn_unique(struct srp_host *host,
2295 			    struct srp_target_port *target)
2296 {
2297 	struct srp_target_port *t;
2298 	bool ret = false;
2299 
2300 	if (target->state == SRP_TARGET_REMOVED)
2301 		goto out;
2302 
2303 	ret = true;
2304 
2305 	spin_lock(&host->target_lock);
2306 	list_for_each_entry(t, &host->target_list, list) {
2307 		if (t != target &&
2308 		    target->id_ext == t->id_ext &&
2309 		    target->ioc_guid == t->ioc_guid &&
2310 		    target->initiator_ext == t->initiator_ext) {
2311 			ret = false;
2312 			break;
2313 		}
2314 	}
2315 	spin_unlock(&host->target_lock);
2316 
2317 out:
2318 	return ret;
2319 }
2320 
2321 /*
2322  * Target ports are added by writing
2323  *
2324  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
2325  *     pkey=<P_Key>,service_id=<service ID>
2326  *
2327  * to the add_target sysfs attribute.
2328  */
2329 enum {
2330 	SRP_OPT_ERR		= 0,
2331 	SRP_OPT_ID_EXT		= 1 << 0,
2332 	SRP_OPT_IOC_GUID	= 1 << 1,
2333 	SRP_OPT_DGID		= 1 << 2,
2334 	SRP_OPT_PKEY		= 1 << 3,
2335 	SRP_OPT_SERVICE_ID	= 1 << 4,
2336 	SRP_OPT_MAX_SECT	= 1 << 5,
2337 	SRP_OPT_MAX_CMD_PER_LUN	= 1 << 6,
2338 	SRP_OPT_IO_CLASS	= 1 << 7,
2339 	SRP_OPT_INITIATOR_EXT	= 1 << 8,
2340 	SRP_OPT_CMD_SG_ENTRIES	= 1 << 9,
2341 	SRP_OPT_ALLOW_EXT_SG	= 1 << 10,
2342 	SRP_OPT_SG_TABLESIZE	= 1 << 11,
2343 	SRP_OPT_COMP_VECTOR	= 1 << 12,
2344 	SRP_OPT_TL_RETRY_COUNT	= 1 << 13,
2345 	SRP_OPT_QUEUE_SIZE	= 1 << 14,
2346 	SRP_OPT_ALL		= (SRP_OPT_ID_EXT	|
2347 				   SRP_OPT_IOC_GUID	|
2348 				   SRP_OPT_DGID		|
2349 				   SRP_OPT_PKEY		|
2350 				   SRP_OPT_SERVICE_ID),
2351 };
2352 
2353 static const match_table_t srp_opt_tokens = {
2354 	{ SRP_OPT_ID_EXT,		"id_ext=%s" 		},
2355 	{ SRP_OPT_IOC_GUID,		"ioc_guid=%s" 		},
2356 	{ SRP_OPT_DGID,			"dgid=%s" 		},
2357 	{ SRP_OPT_PKEY,			"pkey=%x" 		},
2358 	{ SRP_OPT_SERVICE_ID,		"service_id=%s"		},
2359 	{ SRP_OPT_MAX_SECT,		"max_sect=%d" 		},
2360 	{ SRP_OPT_MAX_CMD_PER_LUN,	"max_cmd_per_lun=%d" 	},
2361 	{ SRP_OPT_IO_CLASS,		"io_class=%x"		},
2362 	{ SRP_OPT_INITIATOR_EXT,	"initiator_ext=%s"	},
2363 	{ SRP_OPT_CMD_SG_ENTRIES,	"cmd_sg_entries=%u"	},
2364 	{ SRP_OPT_ALLOW_EXT_SG,		"allow_ext_sg=%u"	},
2365 	{ SRP_OPT_SG_TABLESIZE,		"sg_tablesize=%u"	},
2366 	{ SRP_OPT_COMP_VECTOR,		"comp_vector=%u"	},
2367 	{ SRP_OPT_TL_RETRY_COUNT,	"tl_retry_count=%u"	},
2368 	{ SRP_OPT_QUEUE_SIZE,		"queue_size=%d"		},
2369 	{ SRP_OPT_ERR,			NULL 			}
2370 };
2371 
2372 static int srp_parse_options(const char *buf, struct srp_target_port *target)
2373 {
2374 	char *options, *sep_opt;
2375 	char *p;
2376 	char dgid[3];
2377 	substring_t args[MAX_OPT_ARGS];
2378 	int opt_mask = 0;
2379 	int token;
2380 	int ret = -EINVAL;
2381 	int i;
2382 
2383 	options = kstrdup(buf, GFP_KERNEL);
2384 	if (!options)
2385 		return -ENOMEM;
2386 
2387 	sep_opt = options;
2388 	while ((p = strsep(&sep_opt, ",")) != NULL) {
2389 		if (!*p)
2390 			continue;
2391 
2392 		token = match_token(p, srp_opt_tokens, args);
2393 		opt_mask |= token;
2394 
2395 		switch (token) {
2396 		case SRP_OPT_ID_EXT:
2397 			p = match_strdup(args);
2398 			if (!p) {
2399 				ret = -ENOMEM;
2400 				goto out;
2401 			}
2402 			target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
2403 			kfree(p);
2404 			break;
2405 
2406 		case SRP_OPT_IOC_GUID:
2407 			p = match_strdup(args);
2408 			if (!p) {
2409 				ret = -ENOMEM;
2410 				goto out;
2411 			}
2412 			target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
2413 			kfree(p);
2414 			break;
2415 
2416 		case SRP_OPT_DGID:
2417 			p = match_strdup(args);
2418 			if (!p) {
2419 				ret = -ENOMEM;
2420 				goto out;
2421 			}
2422 			if (strlen(p) != 32) {
2423 				pr_warn("bad dest GID parameter '%s'\n", p);
2424 				kfree(p);
2425 				goto out;
2426 			}
2427 
2428 			for (i = 0; i < 16; ++i) {
2429 				strlcpy(dgid, p + i * 2, 3);
2430 				target->path.dgid.raw[i] = simple_strtoul(dgid, NULL, 16);
2431 			}
2432 			kfree(p);
2433 			memcpy(target->orig_dgid, target->path.dgid.raw, 16);
2434 			break;
2435 
2436 		case SRP_OPT_PKEY:
2437 			if (match_hex(args, &token)) {
2438 				pr_warn("bad P_Key parameter '%s'\n", p);
2439 				goto out;
2440 			}
2441 			target->path.pkey = cpu_to_be16(token);
2442 			break;
2443 
2444 		case SRP_OPT_SERVICE_ID:
2445 			p = match_strdup(args);
2446 			if (!p) {
2447 				ret = -ENOMEM;
2448 				goto out;
2449 			}
2450 			target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
2451 			target->path.service_id = target->service_id;
2452 			kfree(p);
2453 			break;
2454 
2455 		case SRP_OPT_MAX_SECT:
2456 			if (match_int(args, &token)) {
2457 				pr_warn("bad max sect parameter '%s'\n", p);
2458 				goto out;
2459 			}
2460 			target->scsi_host->max_sectors = token;
2461 			break;
2462 
2463 		case SRP_OPT_QUEUE_SIZE:
2464 			if (match_int(args, &token) || token < 1) {
2465 				pr_warn("bad queue_size parameter '%s'\n", p);
2466 				goto out;
2467 			}
2468 			target->scsi_host->can_queue = token;
2469 			target->queue_size = token + SRP_RSP_SQ_SIZE +
2470 					     SRP_TSK_MGMT_SQ_SIZE;
2471 			if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
2472 				target->scsi_host->cmd_per_lun = token;
2473 			break;
2474 
2475 		case SRP_OPT_MAX_CMD_PER_LUN:
2476 			if (match_int(args, &token) || token < 1) {
2477 				pr_warn("bad max cmd_per_lun parameter '%s'\n",
2478 					p);
2479 				goto out;
2480 			}
2481 			target->scsi_host->cmd_per_lun = token;
2482 			break;
2483 
2484 		case SRP_OPT_IO_CLASS:
2485 			if (match_hex(args, &token)) {
2486 				pr_warn("bad IO class parameter '%s'\n", p);
2487 				goto out;
2488 			}
2489 			if (token != SRP_REV10_IB_IO_CLASS &&
2490 			    token != SRP_REV16A_IB_IO_CLASS) {
2491 				pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
2492 					token, SRP_REV10_IB_IO_CLASS,
2493 					SRP_REV16A_IB_IO_CLASS);
2494 				goto out;
2495 			}
2496 			target->io_class = token;
2497 			break;
2498 
2499 		case SRP_OPT_INITIATOR_EXT:
2500 			p = match_strdup(args);
2501 			if (!p) {
2502 				ret = -ENOMEM;
2503 				goto out;
2504 			}
2505 			target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
2506 			kfree(p);
2507 			break;
2508 
2509 		case SRP_OPT_CMD_SG_ENTRIES:
2510 			if (match_int(args, &token) || token < 1 || token > 255) {
2511 				pr_warn("bad max cmd_sg_entries parameter '%s'\n",
2512 					p);
2513 				goto out;
2514 			}
2515 			target->cmd_sg_cnt = token;
2516 			break;
2517 
2518 		case SRP_OPT_ALLOW_EXT_SG:
2519 			if (match_int(args, &token)) {
2520 				pr_warn("bad allow_ext_sg parameter '%s'\n", p);
2521 				goto out;
2522 			}
2523 			target->allow_ext_sg = !!token;
2524 			break;
2525 
2526 		case SRP_OPT_SG_TABLESIZE:
2527 			if (match_int(args, &token) || token < 1 ||
2528 					token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
2529 				pr_warn("bad max sg_tablesize parameter '%s'\n",
2530 					p);
2531 				goto out;
2532 			}
2533 			target->sg_tablesize = token;
2534 			break;
2535 
2536 		case SRP_OPT_COMP_VECTOR:
2537 			if (match_int(args, &token) || token < 0) {
2538 				pr_warn("bad comp_vector parameter '%s'\n", p);
2539 				goto out;
2540 			}
2541 			target->comp_vector = token;
2542 			break;
2543 
2544 		case SRP_OPT_TL_RETRY_COUNT:
2545 			if (match_int(args, &token) || token < 2 || token > 7) {
2546 				pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
2547 					p);
2548 				goto out;
2549 			}
2550 			target->tl_retry_count = token;
2551 			break;
2552 
2553 		default:
2554 			pr_warn("unknown parameter or missing value '%s' in target creation request\n",
2555 				p);
2556 			goto out;
2557 		}
2558 	}
2559 
2560 	if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
2561 		ret = 0;
2562 	else
2563 		for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
2564 			if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
2565 			    !(srp_opt_tokens[i].token & opt_mask))
2566 				pr_warn("target creation request is missing parameter '%s'\n",
2567 					srp_opt_tokens[i].pattern);
2568 
2569 	if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
2570 	    && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
2571 		pr_warn("cmd_per_lun = %d > queue_size = %d\n",
2572 			target->scsi_host->cmd_per_lun,
2573 			target->scsi_host->can_queue);
2574 
2575 out:
2576 	kfree(options);
2577 	return ret;
2578 }
2579 
2580 static ssize_t srp_create_target(struct device *dev,
2581 				 struct device_attribute *attr,
2582 				 const char *buf, size_t count)
2583 {
2584 	struct srp_host *host =
2585 		container_of(dev, struct srp_host, dev);
2586 	struct Scsi_Host *target_host;
2587 	struct srp_target_port *target;
2588 	struct ib_device *ibdev = host->srp_dev->dev;
2589 	int ret;
2590 
2591 	target_host = scsi_host_alloc(&srp_template,
2592 				      sizeof (struct srp_target_port));
2593 	if (!target_host)
2594 		return -ENOMEM;
2595 
2596 	target_host->transportt  = ib_srp_transport_template;
2597 	target_host->max_channel = 0;
2598 	target_host->max_id      = 1;
2599 	target_host->max_lun     = SRP_MAX_LUN;
2600 	target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
2601 
2602 	target = host_to_target(target_host);
2603 
2604 	target->io_class	= SRP_REV16A_IB_IO_CLASS;
2605 	target->scsi_host	= target_host;
2606 	target->srp_host	= host;
2607 	target->lkey		= host->srp_dev->mr->lkey;
2608 	target->rkey		= host->srp_dev->mr->rkey;
2609 	target->cmd_sg_cnt	= cmd_sg_entries;
2610 	target->sg_tablesize	= indirect_sg_entries ? : cmd_sg_entries;
2611 	target->allow_ext_sg	= allow_ext_sg;
2612 	target->tl_retry_count	= 7;
2613 	target->queue_size	= SRP_DEFAULT_QUEUE_SIZE;
2614 
2615 	ret = srp_parse_options(buf, target);
2616 	if (ret)
2617 		goto err;
2618 
2619 	target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
2620 
2621 	if (!srp_conn_unique(target->srp_host, target)) {
2622 		shost_printk(KERN_INFO, target->scsi_host,
2623 			     PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
2624 			     be64_to_cpu(target->id_ext),
2625 			     be64_to_cpu(target->ioc_guid),
2626 			     be64_to_cpu(target->initiator_ext));
2627 		ret = -EEXIST;
2628 		goto err;
2629 	}
2630 
2631 	if (!host->srp_dev->fmr_pool && !target->allow_ext_sg &&
2632 				target->cmd_sg_cnt < target->sg_tablesize) {
2633 		pr_warn("No FMR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
2634 		target->sg_tablesize = target->cmd_sg_cnt;
2635 	}
2636 
2637 	target_host->sg_tablesize = target->sg_tablesize;
2638 	target->indirect_size = target->sg_tablesize *
2639 				sizeof (struct srp_direct_buf);
2640 	target->max_iu_len = sizeof (struct srp_cmd) +
2641 			     sizeof (struct srp_indirect_buf) +
2642 			     target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
2643 
2644 	INIT_WORK(&target->tl_err_work, srp_tl_err_work);
2645 	INIT_WORK(&target->remove_work, srp_remove_work);
2646 	spin_lock_init(&target->lock);
2647 	INIT_LIST_HEAD(&target->free_tx);
2648 	ret = srp_alloc_req_data(target);
2649 	if (ret)
2650 		goto err_free_mem;
2651 
2652 	ib_query_gid(ibdev, host->port, 0, &target->path.sgid);
2653 
2654 	shost_printk(KERN_DEBUG, target->scsi_host, PFX
2655 		     "new target: id_ext %016llx ioc_guid %016llx pkey %04x "
2656 		     "service_id %016llx dgid %pI6\n",
2657 	       (unsigned long long) be64_to_cpu(target->id_ext),
2658 	       (unsigned long long) be64_to_cpu(target->ioc_guid),
2659 	       be16_to_cpu(target->path.pkey),
2660 	       (unsigned long long) be64_to_cpu(target->service_id),
2661 	       target->path.dgid.raw);
2662 
2663 	ret = srp_create_target_ib(target);
2664 	if (ret)
2665 		goto err_free_mem;
2666 
2667 	ret = srp_new_cm_id(target);
2668 	if (ret)
2669 		goto err_free_ib;
2670 
2671 	ret = srp_connect_target(target);
2672 	if (ret) {
2673 		shost_printk(KERN_ERR, target->scsi_host,
2674 			     PFX "Connection failed\n");
2675 		goto err_cm_id;
2676 	}
2677 
2678 	ret = srp_add_target(host, target);
2679 	if (ret)
2680 		goto err_disconnect;
2681 
2682 	return count;
2683 
2684 err_disconnect:
2685 	srp_disconnect_target(target);
2686 
2687 err_cm_id:
2688 	ib_destroy_cm_id(target->cm_id);
2689 
2690 err_free_ib:
2691 	srp_free_target_ib(target);
2692 
2693 err_free_mem:
2694 	srp_free_req_data(target);
2695 
2696 err:
2697 	scsi_host_put(target_host);
2698 
2699 	return ret;
2700 }
2701 
2702 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
2703 
2704 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
2705 			  char *buf)
2706 {
2707 	struct srp_host *host = container_of(dev, struct srp_host, dev);
2708 
2709 	return sprintf(buf, "%s\n", host->srp_dev->dev->name);
2710 }
2711 
2712 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
2713 
2714 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
2715 			 char *buf)
2716 {
2717 	struct srp_host *host = container_of(dev, struct srp_host, dev);
2718 
2719 	return sprintf(buf, "%d\n", host->port);
2720 }
2721 
2722 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
2723 
2724 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
2725 {
2726 	struct srp_host *host;
2727 
2728 	host = kzalloc(sizeof *host, GFP_KERNEL);
2729 	if (!host)
2730 		return NULL;
2731 
2732 	INIT_LIST_HEAD(&host->target_list);
2733 	spin_lock_init(&host->target_lock);
2734 	init_completion(&host->released);
2735 	host->srp_dev = device;
2736 	host->port = port;
2737 
2738 	host->dev.class = &srp_class;
2739 	host->dev.parent = device->dev->dma_device;
2740 	dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
2741 
2742 	if (device_register(&host->dev))
2743 		goto free_host;
2744 	if (device_create_file(&host->dev, &dev_attr_add_target))
2745 		goto err_class;
2746 	if (device_create_file(&host->dev, &dev_attr_ibdev))
2747 		goto err_class;
2748 	if (device_create_file(&host->dev, &dev_attr_port))
2749 		goto err_class;
2750 
2751 	return host;
2752 
2753 err_class:
2754 	device_unregister(&host->dev);
2755 
2756 free_host:
2757 	kfree(host);
2758 
2759 	return NULL;
2760 }
2761 
2762 static void srp_add_one(struct ib_device *device)
2763 {
2764 	struct srp_device *srp_dev;
2765 	struct ib_device_attr *dev_attr;
2766 	struct ib_fmr_pool_param fmr_param;
2767 	struct srp_host *host;
2768 	int max_pages_per_fmr, fmr_page_shift, s, e, p;
2769 
2770 	dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL);
2771 	if (!dev_attr)
2772 		return;
2773 
2774 	if (ib_query_device(device, dev_attr)) {
2775 		pr_warn("Query device failed for %s\n", device->name);
2776 		goto free_attr;
2777 	}
2778 
2779 	srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
2780 	if (!srp_dev)
2781 		goto free_attr;
2782 
2783 	/*
2784 	 * Use the smallest page size supported by the HCA, down to a
2785 	 * minimum of 4096 bytes. We're unlikely to build large sglists
2786 	 * out of smaller entries.
2787 	 */
2788 	fmr_page_shift		= max(12, ffs(dev_attr->page_size_cap) - 1);
2789 	srp_dev->fmr_page_size	= 1 << fmr_page_shift;
2790 	srp_dev->fmr_page_mask	= ~((u64) srp_dev->fmr_page_size - 1);
2791 	srp_dev->fmr_max_size	= srp_dev->fmr_page_size * SRP_FMR_SIZE;
2792 
2793 	INIT_LIST_HEAD(&srp_dev->dev_list);
2794 
2795 	srp_dev->dev = device;
2796 	srp_dev->pd  = ib_alloc_pd(device);
2797 	if (IS_ERR(srp_dev->pd))
2798 		goto free_dev;
2799 
2800 	srp_dev->mr = ib_get_dma_mr(srp_dev->pd,
2801 				    IB_ACCESS_LOCAL_WRITE |
2802 				    IB_ACCESS_REMOTE_READ |
2803 				    IB_ACCESS_REMOTE_WRITE);
2804 	if (IS_ERR(srp_dev->mr))
2805 		goto err_pd;
2806 
2807 	for (max_pages_per_fmr = SRP_FMR_SIZE;
2808 			max_pages_per_fmr >= SRP_FMR_MIN_SIZE;
2809 			max_pages_per_fmr /= 2, srp_dev->fmr_max_size /= 2) {
2810 		memset(&fmr_param, 0, sizeof fmr_param);
2811 		fmr_param.pool_size	    = SRP_FMR_POOL_SIZE;
2812 		fmr_param.dirty_watermark   = SRP_FMR_DIRTY_SIZE;
2813 		fmr_param.cache		    = 1;
2814 		fmr_param.max_pages_per_fmr = max_pages_per_fmr;
2815 		fmr_param.page_shift	    = fmr_page_shift;
2816 		fmr_param.access	    = (IB_ACCESS_LOCAL_WRITE |
2817 					       IB_ACCESS_REMOTE_WRITE |
2818 					       IB_ACCESS_REMOTE_READ);
2819 
2820 		srp_dev->fmr_pool = ib_create_fmr_pool(srp_dev->pd, &fmr_param);
2821 		if (!IS_ERR(srp_dev->fmr_pool))
2822 			break;
2823 	}
2824 
2825 	if (IS_ERR(srp_dev->fmr_pool))
2826 		srp_dev->fmr_pool = NULL;
2827 
2828 	if (device->node_type == RDMA_NODE_IB_SWITCH) {
2829 		s = 0;
2830 		e = 0;
2831 	} else {
2832 		s = 1;
2833 		e = device->phys_port_cnt;
2834 	}
2835 
2836 	for (p = s; p <= e; ++p) {
2837 		host = srp_add_port(srp_dev, p);
2838 		if (host)
2839 			list_add_tail(&host->list, &srp_dev->dev_list);
2840 	}
2841 
2842 	ib_set_client_data(device, &srp_client, srp_dev);
2843 
2844 	goto free_attr;
2845 
2846 err_pd:
2847 	ib_dealloc_pd(srp_dev->pd);
2848 
2849 free_dev:
2850 	kfree(srp_dev);
2851 
2852 free_attr:
2853 	kfree(dev_attr);
2854 }
2855 
2856 static void srp_remove_one(struct ib_device *device)
2857 {
2858 	struct srp_device *srp_dev;
2859 	struct srp_host *host, *tmp_host;
2860 	struct srp_target_port *target;
2861 
2862 	srp_dev = ib_get_client_data(device, &srp_client);
2863 	if (!srp_dev)
2864 		return;
2865 
2866 	list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
2867 		device_unregister(&host->dev);
2868 		/*
2869 		 * Wait for the sysfs entry to go away, so that no new
2870 		 * target ports can be created.
2871 		 */
2872 		wait_for_completion(&host->released);
2873 
2874 		/*
2875 		 * Remove all target ports.
2876 		 */
2877 		spin_lock(&host->target_lock);
2878 		list_for_each_entry(target, &host->target_list, list)
2879 			srp_queue_remove_work(target);
2880 		spin_unlock(&host->target_lock);
2881 
2882 		/*
2883 		 * Wait for target port removal tasks.
2884 		 */
2885 		flush_workqueue(system_long_wq);
2886 
2887 		kfree(host);
2888 	}
2889 
2890 	if (srp_dev->fmr_pool)
2891 		ib_destroy_fmr_pool(srp_dev->fmr_pool);
2892 	ib_dereg_mr(srp_dev->mr);
2893 	ib_dealloc_pd(srp_dev->pd);
2894 
2895 	kfree(srp_dev);
2896 }
2897 
2898 static struct srp_function_template ib_srp_transport_functions = {
2899 	.has_rport_state	 = true,
2900 	.reset_timer_if_blocked	 = true,
2901 	.reconnect_delay	 = &srp_reconnect_delay,
2902 	.fast_io_fail_tmo	 = &srp_fast_io_fail_tmo,
2903 	.dev_loss_tmo		 = &srp_dev_loss_tmo,
2904 	.reconnect		 = srp_rport_reconnect,
2905 	.rport_delete		 = srp_rport_delete,
2906 	.terminate_rport_io	 = srp_terminate_io,
2907 };
2908 
2909 static int __init srp_init_module(void)
2910 {
2911 	int ret;
2912 
2913 	BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *));
2914 
2915 	if (srp_sg_tablesize) {
2916 		pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
2917 		if (!cmd_sg_entries)
2918 			cmd_sg_entries = srp_sg_tablesize;
2919 	}
2920 
2921 	if (!cmd_sg_entries)
2922 		cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
2923 
2924 	if (cmd_sg_entries > 255) {
2925 		pr_warn("Clamping cmd_sg_entries to 255\n");
2926 		cmd_sg_entries = 255;
2927 	}
2928 
2929 	if (!indirect_sg_entries)
2930 		indirect_sg_entries = cmd_sg_entries;
2931 	else if (indirect_sg_entries < cmd_sg_entries) {
2932 		pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
2933 			cmd_sg_entries);
2934 		indirect_sg_entries = cmd_sg_entries;
2935 	}
2936 
2937 	ib_srp_transport_template =
2938 		srp_attach_transport(&ib_srp_transport_functions);
2939 	if (!ib_srp_transport_template)
2940 		return -ENOMEM;
2941 
2942 	ret = class_register(&srp_class);
2943 	if (ret) {
2944 		pr_err("couldn't register class infiniband_srp\n");
2945 		srp_release_transport(ib_srp_transport_template);
2946 		return ret;
2947 	}
2948 
2949 	ib_sa_register_client(&srp_sa_client);
2950 
2951 	ret = ib_register_client(&srp_client);
2952 	if (ret) {
2953 		pr_err("couldn't register IB client\n");
2954 		srp_release_transport(ib_srp_transport_template);
2955 		ib_sa_unregister_client(&srp_sa_client);
2956 		class_unregister(&srp_class);
2957 		return ret;
2958 	}
2959 
2960 	return 0;
2961 }
2962 
2963 static void __exit srp_cleanup_module(void)
2964 {
2965 	ib_unregister_client(&srp_client);
2966 	ib_sa_unregister_client(&srp_sa_client);
2967 	class_unregister(&srp_class);
2968 	srp_release_transport(ib_srp_transport_template);
2969 }
2970 
2971 module_init(srp_init_module);
2972 module_exit(srp_cleanup_module);
2973