1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <linux/lockdep.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46 
47 #include <linux/atomic.h>
48 
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_dbg.h>
52 #include <scsi/scsi_tcq.h>
53 #include <scsi/srp.h>
54 #include <scsi/scsi_transport_srp.h>
55 
56 #include "ib_srp.h"
57 
58 #define DRV_NAME	"ib_srp"
59 #define PFX		DRV_NAME ": "
60 
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 
65 #if !defined(CONFIG_DYNAMIC_DEBUG)
66 #define DEFINE_DYNAMIC_DEBUG_METADATA(name, fmt)
67 #define DYNAMIC_DEBUG_BRANCH(descriptor) false
68 #endif
69 
70 static unsigned int srp_sg_tablesize;
71 static unsigned int cmd_sg_entries;
72 static unsigned int indirect_sg_entries;
73 static bool allow_ext_sg;
74 static bool register_always = true;
75 static bool never_register;
76 static int topspin_workarounds = 1;
77 
78 module_param(srp_sg_tablesize, uint, 0444);
79 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
80 
81 module_param(cmd_sg_entries, uint, 0444);
82 MODULE_PARM_DESC(cmd_sg_entries,
83 		 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
84 
85 module_param(indirect_sg_entries, uint, 0444);
86 MODULE_PARM_DESC(indirect_sg_entries,
87 		 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SG_MAX_SEGMENTS) ")");
88 
89 module_param(allow_ext_sg, bool, 0444);
90 MODULE_PARM_DESC(allow_ext_sg,
91 		  "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
92 
93 module_param(topspin_workarounds, int, 0444);
94 MODULE_PARM_DESC(topspin_workarounds,
95 		 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
96 
97 module_param(register_always, bool, 0444);
98 MODULE_PARM_DESC(register_always,
99 		 "Use memory registration even for contiguous memory regions");
100 
101 module_param(never_register, bool, 0444);
102 MODULE_PARM_DESC(never_register, "Never register memory");
103 
104 static const struct kernel_param_ops srp_tmo_ops;
105 
106 static int srp_reconnect_delay = 10;
107 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
108 		S_IRUGO | S_IWUSR);
109 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
110 
111 static int srp_fast_io_fail_tmo = 15;
112 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
113 		S_IRUGO | S_IWUSR);
114 MODULE_PARM_DESC(fast_io_fail_tmo,
115 		 "Number of seconds between the observation of a transport"
116 		 " layer error and failing all I/O. \"off\" means that this"
117 		 " functionality is disabled.");
118 
119 static int srp_dev_loss_tmo = 600;
120 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
121 		S_IRUGO | S_IWUSR);
122 MODULE_PARM_DESC(dev_loss_tmo,
123 		 "Maximum number of seconds that the SRP transport should"
124 		 " insulate transport layer errors. After this time has been"
125 		 " exceeded the SCSI host is removed. Should be"
126 		 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
127 		 " if fast_io_fail_tmo has not been set. \"off\" means that"
128 		 " this functionality is disabled.");
129 
130 static bool srp_use_imm_data = true;
131 module_param_named(use_imm_data, srp_use_imm_data, bool, 0644);
132 MODULE_PARM_DESC(use_imm_data,
133 		 "Whether or not to request permission to use immediate data during SRP login.");
134 
135 static unsigned int srp_max_imm_data = 8 * 1024;
136 module_param_named(max_imm_data, srp_max_imm_data, uint, 0644);
137 MODULE_PARM_DESC(max_imm_data, "Maximum immediate data size.");
138 
139 static unsigned ch_count;
140 module_param(ch_count, uint, 0444);
141 MODULE_PARM_DESC(ch_count,
142 		 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
143 
144 static int srp_add_one(struct ib_device *device);
145 static void srp_remove_one(struct ib_device *device, void *client_data);
146 static void srp_rename_dev(struct ib_device *device, void *client_data);
147 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc);
148 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
149 		const char *opname);
150 static int srp_ib_cm_handler(struct ib_cm_id *cm_id,
151 			     const struct ib_cm_event *event);
152 static int srp_rdma_cm_handler(struct rdma_cm_id *cm_id,
153 			       struct rdma_cm_event *event);
154 
155 static struct scsi_transport_template *ib_srp_transport_template;
156 static struct workqueue_struct *srp_remove_wq;
157 
158 static struct ib_client srp_client = {
159 	.name   = "srp",
160 	.add    = srp_add_one,
161 	.remove = srp_remove_one,
162 	.rename = srp_rename_dev
163 };
164 
165 static struct ib_sa_client srp_sa_client;
166 
167 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
168 {
169 	int tmo = *(int *)kp->arg;
170 
171 	if (tmo >= 0)
172 		return sysfs_emit(buffer, "%d\n", tmo);
173 	else
174 		return sysfs_emit(buffer, "off\n");
175 }
176 
177 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
178 {
179 	int tmo, res;
180 
181 	res = srp_parse_tmo(&tmo, val);
182 	if (res)
183 		goto out;
184 
185 	if (kp->arg == &srp_reconnect_delay)
186 		res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
187 				    srp_dev_loss_tmo);
188 	else if (kp->arg == &srp_fast_io_fail_tmo)
189 		res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
190 	else
191 		res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
192 				    tmo);
193 	if (res)
194 		goto out;
195 	*(int *)kp->arg = tmo;
196 
197 out:
198 	return res;
199 }
200 
201 static const struct kernel_param_ops srp_tmo_ops = {
202 	.get = srp_tmo_get,
203 	.set = srp_tmo_set,
204 };
205 
206 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
207 {
208 	return (struct srp_target_port *) host->hostdata;
209 }
210 
211 static const char *srp_target_info(struct Scsi_Host *host)
212 {
213 	return host_to_target(host)->target_name;
214 }
215 
216 static int srp_target_is_topspin(struct srp_target_port *target)
217 {
218 	static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
219 	static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
220 
221 	return topspin_workarounds &&
222 		(!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
223 		 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
224 }
225 
226 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
227 				   gfp_t gfp_mask,
228 				   enum dma_data_direction direction)
229 {
230 	struct srp_iu *iu;
231 
232 	iu = kmalloc(sizeof *iu, gfp_mask);
233 	if (!iu)
234 		goto out;
235 
236 	iu->buf = kzalloc(size, gfp_mask);
237 	if (!iu->buf)
238 		goto out_free_iu;
239 
240 	iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
241 				    direction);
242 	if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
243 		goto out_free_buf;
244 
245 	iu->size      = size;
246 	iu->direction = direction;
247 
248 	return iu;
249 
250 out_free_buf:
251 	kfree(iu->buf);
252 out_free_iu:
253 	kfree(iu);
254 out:
255 	return NULL;
256 }
257 
258 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
259 {
260 	if (!iu)
261 		return;
262 
263 	ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
264 			    iu->direction);
265 	kfree(iu->buf);
266 	kfree(iu);
267 }
268 
269 static void srp_qp_event(struct ib_event *event, void *context)
270 {
271 	pr_debug("QP event %s (%d)\n",
272 		 ib_event_msg(event->event), event->event);
273 }
274 
275 static int srp_init_ib_qp(struct srp_target_port *target,
276 			  struct ib_qp *qp)
277 {
278 	struct ib_qp_attr *attr;
279 	int ret;
280 
281 	attr = kmalloc(sizeof *attr, GFP_KERNEL);
282 	if (!attr)
283 		return -ENOMEM;
284 
285 	ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
286 				  target->srp_host->port,
287 				  be16_to_cpu(target->ib_cm.pkey),
288 				  &attr->pkey_index);
289 	if (ret)
290 		goto out;
291 
292 	attr->qp_state        = IB_QPS_INIT;
293 	attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
294 				    IB_ACCESS_REMOTE_WRITE);
295 	attr->port_num        = target->srp_host->port;
296 
297 	ret = ib_modify_qp(qp, attr,
298 			   IB_QP_STATE		|
299 			   IB_QP_PKEY_INDEX	|
300 			   IB_QP_ACCESS_FLAGS	|
301 			   IB_QP_PORT);
302 
303 out:
304 	kfree(attr);
305 	return ret;
306 }
307 
308 static int srp_new_ib_cm_id(struct srp_rdma_ch *ch)
309 {
310 	struct srp_target_port *target = ch->target;
311 	struct ib_cm_id *new_cm_id;
312 
313 	new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
314 				    srp_ib_cm_handler, ch);
315 	if (IS_ERR(new_cm_id))
316 		return PTR_ERR(new_cm_id);
317 
318 	if (ch->ib_cm.cm_id)
319 		ib_destroy_cm_id(ch->ib_cm.cm_id);
320 	ch->ib_cm.cm_id = new_cm_id;
321 	if (rdma_cap_opa_ah(target->srp_host->srp_dev->dev,
322 			    target->srp_host->port))
323 		ch->ib_cm.path.rec_type = SA_PATH_REC_TYPE_OPA;
324 	else
325 		ch->ib_cm.path.rec_type = SA_PATH_REC_TYPE_IB;
326 	ch->ib_cm.path.sgid = target->sgid;
327 	ch->ib_cm.path.dgid = target->ib_cm.orig_dgid;
328 	ch->ib_cm.path.pkey = target->ib_cm.pkey;
329 	ch->ib_cm.path.service_id = target->ib_cm.service_id;
330 
331 	return 0;
332 }
333 
334 static int srp_new_rdma_cm_id(struct srp_rdma_ch *ch)
335 {
336 	struct srp_target_port *target = ch->target;
337 	struct rdma_cm_id *new_cm_id;
338 	int ret;
339 
340 	new_cm_id = rdma_create_id(target->net, srp_rdma_cm_handler, ch,
341 				   RDMA_PS_TCP, IB_QPT_RC);
342 	if (IS_ERR(new_cm_id)) {
343 		ret = PTR_ERR(new_cm_id);
344 		new_cm_id = NULL;
345 		goto out;
346 	}
347 
348 	init_completion(&ch->done);
349 	ret = rdma_resolve_addr(new_cm_id, target->rdma_cm.src_specified ?
350 				&target->rdma_cm.src.sa : NULL,
351 				&target->rdma_cm.dst.sa,
352 				SRP_PATH_REC_TIMEOUT_MS);
353 	if (ret) {
354 		pr_err("No route available from %pISpsc to %pISpsc (%d)\n",
355 		       &target->rdma_cm.src, &target->rdma_cm.dst, ret);
356 		goto out;
357 	}
358 	ret = wait_for_completion_interruptible(&ch->done);
359 	if (ret < 0)
360 		goto out;
361 
362 	ret = ch->status;
363 	if (ret) {
364 		pr_err("Resolving address %pISpsc failed (%d)\n",
365 		       &target->rdma_cm.dst, ret);
366 		goto out;
367 	}
368 
369 	swap(ch->rdma_cm.cm_id, new_cm_id);
370 
371 out:
372 	if (new_cm_id)
373 		rdma_destroy_id(new_cm_id);
374 
375 	return ret;
376 }
377 
378 static int srp_new_cm_id(struct srp_rdma_ch *ch)
379 {
380 	struct srp_target_port *target = ch->target;
381 
382 	return target->using_rdma_cm ? srp_new_rdma_cm_id(ch) :
383 		srp_new_ib_cm_id(ch);
384 }
385 
386 /**
387  * srp_destroy_fr_pool() - free the resources owned by a pool
388  * @pool: Fast registration pool to be destroyed.
389  */
390 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
391 {
392 	int i;
393 	struct srp_fr_desc *d;
394 
395 	if (!pool)
396 		return;
397 
398 	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
399 		if (d->mr)
400 			ib_dereg_mr(d->mr);
401 	}
402 	kfree(pool);
403 }
404 
405 /**
406  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
407  * @device:            IB device to allocate fast registration descriptors for.
408  * @pd:                Protection domain associated with the FR descriptors.
409  * @pool_size:         Number of descriptors to allocate.
410  * @max_page_list_len: Maximum fast registration work request page list length.
411  */
412 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
413 					      struct ib_pd *pd, int pool_size,
414 					      int max_page_list_len)
415 {
416 	struct srp_fr_pool *pool;
417 	struct srp_fr_desc *d;
418 	struct ib_mr *mr;
419 	int i, ret = -EINVAL;
420 	enum ib_mr_type mr_type;
421 
422 	if (pool_size <= 0)
423 		goto err;
424 	ret = -ENOMEM;
425 	pool = kzalloc(struct_size(pool, desc, pool_size), GFP_KERNEL);
426 	if (!pool)
427 		goto err;
428 	pool->size = pool_size;
429 	pool->max_page_list_len = max_page_list_len;
430 	spin_lock_init(&pool->lock);
431 	INIT_LIST_HEAD(&pool->free_list);
432 
433 	if (device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
434 		mr_type = IB_MR_TYPE_SG_GAPS;
435 	else
436 		mr_type = IB_MR_TYPE_MEM_REG;
437 
438 	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
439 		mr = ib_alloc_mr(pd, mr_type, max_page_list_len);
440 		if (IS_ERR(mr)) {
441 			ret = PTR_ERR(mr);
442 			if (ret == -ENOMEM)
443 				pr_info("%s: ib_alloc_mr() failed. Try to reduce max_cmd_per_lun, max_sect or ch_count\n",
444 					dev_name(&device->dev));
445 			goto destroy_pool;
446 		}
447 		d->mr = mr;
448 		list_add_tail(&d->entry, &pool->free_list);
449 	}
450 
451 out:
452 	return pool;
453 
454 destroy_pool:
455 	srp_destroy_fr_pool(pool);
456 
457 err:
458 	pool = ERR_PTR(ret);
459 	goto out;
460 }
461 
462 /**
463  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
464  * @pool: Pool to obtain descriptor from.
465  */
466 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
467 {
468 	struct srp_fr_desc *d = NULL;
469 	unsigned long flags;
470 
471 	spin_lock_irqsave(&pool->lock, flags);
472 	if (!list_empty(&pool->free_list)) {
473 		d = list_first_entry(&pool->free_list, typeof(*d), entry);
474 		list_del(&d->entry);
475 	}
476 	spin_unlock_irqrestore(&pool->lock, flags);
477 
478 	return d;
479 }
480 
481 /**
482  * srp_fr_pool_put() - put an FR descriptor back in the free list
483  * @pool: Pool the descriptor was allocated from.
484  * @desc: Pointer to an array of fast registration descriptor pointers.
485  * @n:    Number of descriptors to put back.
486  *
487  * Note: The caller must already have queued an invalidation request for
488  * desc->mr->rkey before calling this function.
489  */
490 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
491 			    int n)
492 {
493 	unsigned long flags;
494 	int i;
495 
496 	spin_lock_irqsave(&pool->lock, flags);
497 	for (i = 0; i < n; i++)
498 		list_add(&desc[i]->entry, &pool->free_list);
499 	spin_unlock_irqrestore(&pool->lock, flags);
500 }
501 
502 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
503 {
504 	struct srp_device *dev = target->srp_host->srp_dev;
505 
506 	return srp_create_fr_pool(dev->dev, dev->pd, target->mr_pool_size,
507 				  dev->max_pages_per_mr);
508 }
509 
510 /**
511  * srp_destroy_qp() - destroy an RDMA queue pair
512  * @ch: SRP RDMA channel.
513  *
514  * Drain the qp before destroying it.  This avoids that the receive
515  * completion handler can access the queue pair while it is
516  * being destroyed.
517  */
518 static void srp_destroy_qp(struct srp_rdma_ch *ch)
519 {
520 	spin_lock_irq(&ch->lock);
521 	ib_process_cq_direct(ch->send_cq, -1);
522 	spin_unlock_irq(&ch->lock);
523 
524 	ib_drain_qp(ch->qp);
525 	ib_destroy_qp(ch->qp);
526 }
527 
528 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
529 {
530 	struct srp_target_port *target = ch->target;
531 	struct srp_device *dev = target->srp_host->srp_dev;
532 	const struct ib_device_attr *attr = &dev->dev->attrs;
533 	struct ib_qp_init_attr *init_attr;
534 	struct ib_cq *recv_cq, *send_cq;
535 	struct ib_qp *qp;
536 	struct srp_fr_pool *fr_pool = NULL;
537 	const int m = 1 + dev->use_fast_reg * target->mr_per_cmd * 2;
538 	int ret;
539 
540 	init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
541 	if (!init_attr)
542 		return -ENOMEM;
543 
544 	/* queue_size + 1 for ib_drain_rq() */
545 	recv_cq = ib_alloc_cq(dev->dev, ch, target->queue_size + 1,
546 				ch->comp_vector, IB_POLL_SOFTIRQ);
547 	if (IS_ERR(recv_cq)) {
548 		ret = PTR_ERR(recv_cq);
549 		goto err;
550 	}
551 
552 	send_cq = ib_alloc_cq(dev->dev, ch, m * target->queue_size,
553 				ch->comp_vector, IB_POLL_DIRECT);
554 	if (IS_ERR(send_cq)) {
555 		ret = PTR_ERR(send_cq);
556 		goto err_recv_cq;
557 	}
558 
559 	init_attr->event_handler       = srp_qp_event;
560 	init_attr->cap.max_send_wr     = m * target->queue_size;
561 	init_attr->cap.max_recv_wr     = target->queue_size + 1;
562 	init_attr->cap.max_recv_sge    = 1;
563 	init_attr->cap.max_send_sge    = min(SRP_MAX_SGE, attr->max_send_sge);
564 	init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
565 	init_attr->qp_type             = IB_QPT_RC;
566 	init_attr->send_cq             = send_cq;
567 	init_attr->recv_cq             = recv_cq;
568 
569 	ch->max_imm_sge = min(init_attr->cap.max_send_sge - 1U, 255U);
570 
571 	if (target->using_rdma_cm) {
572 		ret = rdma_create_qp(ch->rdma_cm.cm_id, dev->pd, init_attr);
573 		qp = ch->rdma_cm.cm_id->qp;
574 	} else {
575 		qp = ib_create_qp(dev->pd, init_attr);
576 		if (!IS_ERR(qp)) {
577 			ret = srp_init_ib_qp(target, qp);
578 			if (ret)
579 				ib_destroy_qp(qp);
580 		} else {
581 			ret = PTR_ERR(qp);
582 		}
583 	}
584 	if (ret) {
585 		pr_err("QP creation failed for dev %s: %d\n",
586 		       dev_name(&dev->dev->dev), ret);
587 		goto err_send_cq;
588 	}
589 
590 	if (dev->use_fast_reg) {
591 		fr_pool = srp_alloc_fr_pool(target);
592 		if (IS_ERR(fr_pool)) {
593 			ret = PTR_ERR(fr_pool);
594 			shost_printk(KERN_WARNING, target->scsi_host, PFX
595 				     "FR pool allocation failed (%d)\n", ret);
596 			goto err_qp;
597 		}
598 	}
599 
600 	if (ch->qp)
601 		srp_destroy_qp(ch);
602 	if (ch->recv_cq)
603 		ib_free_cq(ch->recv_cq);
604 	if (ch->send_cq)
605 		ib_free_cq(ch->send_cq);
606 
607 	ch->qp = qp;
608 	ch->recv_cq = recv_cq;
609 	ch->send_cq = send_cq;
610 
611 	if (dev->use_fast_reg) {
612 		if (ch->fr_pool)
613 			srp_destroy_fr_pool(ch->fr_pool);
614 		ch->fr_pool = fr_pool;
615 	}
616 
617 	kfree(init_attr);
618 	return 0;
619 
620 err_qp:
621 	if (target->using_rdma_cm)
622 		rdma_destroy_qp(ch->rdma_cm.cm_id);
623 	else
624 		ib_destroy_qp(qp);
625 
626 err_send_cq:
627 	ib_free_cq(send_cq);
628 
629 err_recv_cq:
630 	ib_free_cq(recv_cq);
631 
632 err:
633 	kfree(init_attr);
634 	return ret;
635 }
636 
637 /*
638  * Note: this function may be called without srp_alloc_iu_bufs() having been
639  * invoked. Hence the ch->[rt]x_ring checks.
640  */
641 static void srp_free_ch_ib(struct srp_target_port *target,
642 			   struct srp_rdma_ch *ch)
643 {
644 	struct srp_device *dev = target->srp_host->srp_dev;
645 	int i;
646 
647 	if (!ch->target)
648 		return;
649 
650 	if (target->using_rdma_cm) {
651 		if (ch->rdma_cm.cm_id) {
652 			rdma_destroy_id(ch->rdma_cm.cm_id);
653 			ch->rdma_cm.cm_id = NULL;
654 		}
655 	} else {
656 		if (ch->ib_cm.cm_id) {
657 			ib_destroy_cm_id(ch->ib_cm.cm_id);
658 			ch->ib_cm.cm_id = NULL;
659 		}
660 	}
661 
662 	/* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
663 	if (!ch->qp)
664 		return;
665 
666 	if (dev->use_fast_reg) {
667 		if (ch->fr_pool)
668 			srp_destroy_fr_pool(ch->fr_pool);
669 	}
670 
671 	srp_destroy_qp(ch);
672 	ib_free_cq(ch->send_cq);
673 	ib_free_cq(ch->recv_cq);
674 
675 	/*
676 	 * Avoid that the SCSI error handler tries to use this channel after
677 	 * it has been freed. The SCSI error handler can namely continue
678 	 * trying to perform recovery actions after scsi_remove_host()
679 	 * returned.
680 	 */
681 	ch->target = NULL;
682 
683 	ch->qp = NULL;
684 	ch->send_cq = ch->recv_cq = NULL;
685 
686 	if (ch->rx_ring) {
687 		for (i = 0; i < target->queue_size; ++i)
688 			srp_free_iu(target->srp_host, ch->rx_ring[i]);
689 		kfree(ch->rx_ring);
690 		ch->rx_ring = NULL;
691 	}
692 	if (ch->tx_ring) {
693 		for (i = 0; i < target->queue_size; ++i)
694 			srp_free_iu(target->srp_host, ch->tx_ring[i]);
695 		kfree(ch->tx_ring);
696 		ch->tx_ring = NULL;
697 	}
698 }
699 
700 static void srp_path_rec_completion(int status,
701 				    struct sa_path_rec *pathrec,
702 				    void *ch_ptr)
703 {
704 	struct srp_rdma_ch *ch = ch_ptr;
705 	struct srp_target_port *target = ch->target;
706 
707 	ch->status = status;
708 	if (status)
709 		shost_printk(KERN_ERR, target->scsi_host,
710 			     PFX "Got failed path rec status %d\n", status);
711 	else
712 		ch->ib_cm.path = *pathrec;
713 	complete(&ch->done);
714 }
715 
716 static int srp_ib_lookup_path(struct srp_rdma_ch *ch)
717 {
718 	struct srp_target_port *target = ch->target;
719 	int ret;
720 
721 	ch->ib_cm.path.numb_path = 1;
722 
723 	init_completion(&ch->done);
724 
725 	ch->ib_cm.path_query_id = ib_sa_path_rec_get(&srp_sa_client,
726 					       target->srp_host->srp_dev->dev,
727 					       target->srp_host->port,
728 					       &ch->ib_cm.path,
729 					       IB_SA_PATH_REC_SERVICE_ID |
730 					       IB_SA_PATH_REC_DGID	 |
731 					       IB_SA_PATH_REC_SGID	 |
732 					       IB_SA_PATH_REC_NUMB_PATH	 |
733 					       IB_SA_PATH_REC_PKEY,
734 					       SRP_PATH_REC_TIMEOUT_MS,
735 					       GFP_KERNEL,
736 					       srp_path_rec_completion,
737 					       ch, &ch->ib_cm.path_query);
738 	if (ch->ib_cm.path_query_id < 0)
739 		return ch->ib_cm.path_query_id;
740 
741 	ret = wait_for_completion_interruptible(&ch->done);
742 	if (ret < 0)
743 		return ret;
744 
745 	if (ch->status < 0)
746 		shost_printk(KERN_WARNING, target->scsi_host,
747 			     PFX "Path record query failed: sgid %pI6, dgid %pI6, pkey %#04x, service_id %#16llx\n",
748 			     ch->ib_cm.path.sgid.raw, ch->ib_cm.path.dgid.raw,
749 			     be16_to_cpu(target->ib_cm.pkey),
750 			     be64_to_cpu(target->ib_cm.service_id));
751 
752 	return ch->status;
753 }
754 
755 static int srp_rdma_lookup_path(struct srp_rdma_ch *ch)
756 {
757 	struct srp_target_port *target = ch->target;
758 	int ret;
759 
760 	init_completion(&ch->done);
761 
762 	ret = rdma_resolve_route(ch->rdma_cm.cm_id, SRP_PATH_REC_TIMEOUT_MS);
763 	if (ret)
764 		return ret;
765 
766 	wait_for_completion_interruptible(&ch->done);
767 
768 	if (ch->status != 0)
769 		shost_printk(KERN_WARNING, target->scsi_host,
770 			     PFX "Path resolution failed\n");
771 
772 	return ch->status;
773 }
774 
775 static int srp_lookup_path(struct srp_rdma_ch *ch)
776 {
777 	struct srp_target_port *target = ch->target;
778 
779 	return target->using_rdma_cm ? srp_rdma_lookup_path(ch) :
780 		srp_ib_lookup_path(ch);
781 }
782 
783 static u8 srp_get_subnet_timeout(struct srp_host *host)
784 {
785 	struct ib_port_attr attr;
786 	int ret;
787 	u8 subnet_timeout = 18;
788 
789 	ret = ib_query_port(host->srp_dev->dev, host->port, &attr);
790 	if (ret == 0)
791 		subnet_timeout = attr.subnet_timeout;
792 
793 	if (unlikely(subnet_timeout < 15))
794 		pr_warn("%s: subnet timeout %d may cause SRP login to fail.\n",
795 			dev_name(&host->srp_dev->dev->dev), subnet_timeout);
796 
797 	return subnet_timeout;
798 }
799 
800 static int srp_send_req(struct srp_rdma_ch *ch, uint32_t max_iu_len,
801 			bool multich)
802 {
803 	struct srp_target_port *target = ch->target;
804 	struct {
805 		struct rdma_conn_param	  rdma_param;
806 		struct srp_login_req_rdma rdma_req;
807 		struct ib_cm_req_param	  ib_param;
808 		struct srp_login_req	  ib_req;
809 	} *req = NULL;
810 	char *ipi, *tpi;
811 	int status;
812 
813 	req = kzalloc(sizeof *req, GFP_KERNEL);
814 	if (!req)
815 		return -ENOMEM;
816 
817 	req->ib_param.flow_control = 1;
818 	req->ib_param.retry_count = target->tl_retry_count;
819 
820 	/*
821 	 * Pick some arbitrary defaults here; we could make these
822 	 * module parameters if anyone cared about setting them.
823 	 */
824 	req->ib_param.responder_resources = 4;
825 	req->ib_param.rnr_retry_count = 7;
826 	req->ib_param.max_cm_retries = 15;
827 
828 	req->ib_req.opcode = SRP_LOGIN_REQ;
829 	req->ib_req.tag = 0;
830 	req->ib_req.req_it_iu_len = cpu_to_be32(max_iu_len);
831 	req->ib_req.req_buf_fmt	= cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
832 					      SRP_BUF_FORMAT_INDIRECT);
833 	req->ib_req.req_flags = (multich ? SRP_MULTICHAN_MULTI :
834 				 SRP_MULTICHAN_SINGLE);
835 	if (srp_use_imm_data) {
836 		req->ib_req.req_flags |= SRP_IMMED_REQUESTED;
837 		req->ib_req.imm_data_offset = cpu_to_be16(SRP_IMM_DATA_OFFSET);
838 	}
839 
840 	if (target->using_rdma_cm) {
841 		req->rdma_param.flow_control = req->ib_param.flow_control;
842 		req->rdma_param.responder_resources =
843 			req->ib_param.responder_resources;
844 		req->rdma_param.initiator_depth = req->ib_param.initiator_depth;
845 		req->rdma_param.retry_count = req->ib_param.retry_count;
846 		req->rdma_param.rnr_retry_count = req->ib_param.rnr_retry_count;
847 		req->rdma_param.private_data = &req->rdma_req;
848 		req->rdma_param.private_data_len = sizeof(req->rdma_req);
849 
850 		req->rdma_req.opcode = req->ib_req.opcode;
851 		req->rdma_req.tag = req->ib_req.tag;
852 		req->rdma_req.req_it_iu_len = req->ib_req.req_it_iu_len;
853 		req->rdma_req.req_buf_fmt = req->ib_req.req_buf_fmt;
854 		req->rdma_req.req_flags	= req->ib_req.req_flags;
855 		req->rdma_req.imm_data_offset = req->ib_req.imm_data_offset;
856 
857 		ipi = req->rdma_req.initiator_port_id;
858 		tpi = req->rdma_req.target_port_id;
859 	} else {
860 		u8 subnet_timeout;
861 
862 		subnet_timeout = srp_get_subnet_timeout(target->srp_host);
863 
864 		req->ib_param.primary_path = &ch->ib_cm.path;
865 		req->ib_param.alternate_path = NULL;
866 		req->ib_param.service_id = target->ib_cm.service_id;
867 		get_random_bytes(&req->ib_param.starting_psn, 4);
868 		req->ib_param.starting_psn &= 0xffffff;
869 		req->ib_param.qp_num = ch->qp->qp_num;
870 		req->ib_param.qp_type = ch->qp->qp_type;
871 		req->ib_param.local_cm_response_timeout = subnet_timeout + 2;
872 		req->ib_param.remote_cm_response_timeout = subnet_timeout + 2;
873 		req->ib_param.private_data = &req->ib_req;
874 		req->ib_param.private_data_len = sizeof(req->ib_req);
875 
876 		ipi = req->ib_req.initiator_port_id;
877 		tpi = req->ib_req.target_port_id;
878 	}
879 
880 	/*
881 	 * In the published SRP specification (draft rev. 16a), the
882 	 * port identifier format is 8 bytes of ID extension followed
883 	 * by 8 bytes of GUID.  Older drafts put the two halves in the
884 	 * opposite order, so that the GUID comes first.
885 	 *
886 	 * Targets conforming to these obsolete drafts can be
887 	 * recognized by the I/O Class they report.
888 	 */
889 	if (target->io_class == SRP_REV10_IB_IO_CLASS) {
890 		memcpy(ipi,     &target->sgid.global.interface_id, 8);
891 		memcpy(ipi + 8, &target->initiator_ext, 8);
892 		memcpy(tpi,     &target->ioc_guid, 8);
893 		memcpy(tpi + 8, &target->id_ext, 8);
894 	} else {
895 		memcpy(ipi,     &target->initiator_ext, 8);
896 		memcpy(ipi + 8, &target->sgid.global.interface_id, 8);
897 		memcpy(tpi,     &target->id_ext, 8);
898 		memcpy(tpi + 8, &target->ioc_guid, 8);
899 	}
900 
901 	/*
902 	 * Topspin/Cisco SRP targets will reject our login unless we
903 	 * zero out the first 8 bytes of our initiator port ID and set
904 	 * the second 8 bytes to the local node GUID.
905 	 */
906 	if (srp_target_is_topspin(target)) {
907 		shost_printk(KERN_DEBUG, target->scsi_host,
908 			     PFX "Topspin/Cisco initiator port ID workaround "
909 			     "activated for target GUID %016llx\n",
910 			     be64_to_cpu(target->ioc_guid));
911 		memset(ipi, 0, 8);
912 		memcpy(ipi + 8, &target->srp_host->srp_dev->dev->node_guid, 8);
913 	}
914 
915 	if (target->using_rdma_cm)
916 		status = rdma_connect(ch->rdma_cm.cm_id, &req->rdma_param);
917 	else
918 		status = ib_send_cm_req(ch->ib_cm.cm_id, &req->ib_param);
919 
920 	kfree(req);
921 
922 	return status;
923 }
924 
925 static bool srp_queue_remove_work(struct srp_target_port *target)
926 {
927 	bool changed = false;
928 
929 	spin_lock_irq(&target->lock);
930 	if (target->state != SRP_TARGET_REMOVED) {
931 		target->state = SRP_TARGET_REMOVED;
932 		changed = true;
933 	}
934 	spin_unlock_irq(&target->lock);
935 
936 	if (changed)
937 		queue_work(srp_remove_wq, &target->remove_work);
938 
939 	return changed;
940 }
941 
942 static void srp_disconnect_target(struct srp_target_port *target)
943 {
944 	struct srp_rdma_ch *ch;
945 	int i, ret;
946 
947 	/* XXX should send SRP_I_LOGOUT request */
948 
949 	for (i = 0; i < target->ch_count; i++) {
950 		ch = &target->ch[i];
951 		ch->connected = false;
952 		ret = 0;
953 		if (target->using_rdma_cm) {
954 			if (ch->rdma_cm.cm_id)
955 				rdma_disconnect(ch->rdma_cm.cm_id);
956 		} else {
957 			if (ch->ib_cm.cm_id)
958 				ret = ib_send_cm_dreq(ch->ib_cm.cm_id,
959 						      NULL, 0);
960 		}
961 		if (ret < 0) {
962 			shost_printk(KERN_DEBUG, target->scsi_host,
963 				     PFX "Sending CM DREQ failed\n");
964 		}
965 	}
966 }
967 
968 static int srp_exit_cmd_priv(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
969 {
970 	struct srp_target_port *target = host_to_target(shost);
971 	struct srp_device *dev = target->srp_host->srp_dev;
972 	struct ib_device *ibdev = dev->dev;
973 	struct srp_request *req = scsi_cmd_priv(cmd);
974 
975 	kfree(req->fr_list);
976 	if (req->indirect_dma_addr) {
977 		ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
978 				    target->indirect_size,
979 				    DMA_TO_DEVICE);
980 	}
981 	kfree(req->indirect_desc);
982 
983 	return 0;
984 }
985 
986 static int srp_init_cmd_priv(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
987 {
988 	struct srp_target_port *target = host_to_target(shost);
989 	struct srp_device *srp_dev = target->srp_host->srp_dev;
990 	struct ib_device *ibdev = srp_dev->dev;
991 	struct srp_request *req = scsi_cmd_priv(cmd);
992 	dma_addr_t dma_addr;
993 	int ret = -ENOMEM;
994 
995 	if (srp_dev->use_fast_reg) {
996 		req->fr_list = kmalloc_array(target->mr_per_cmd, sizeof(void *),
997 					GFP_KERNEL);
998 		if (!req->fr_list)
999 			goto out;
1000 	}
1001 	req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
1002 	if (!req->indirect_desc)
1003 		goto out;
1004 
1005 	dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
1006 				     target->indirect_size,
1007 				     DMA_TO_DEVICE);
1008 	if (ib_dma_mapping_error(ibdev, dma_addr)) {
1009 		srp_exit_cmd_priv(shost, cmd);
1010 		goto out;
1011 	}
1012 
1013 	req->indirect_dma_addr = dma_addr;
1014 	ret = 0;
1015 
1016 out:
1017 	return ret;
1018 }
1019 
1020 /**
1021  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
1022  * @shost: SCSI host whose attributes to remove from sysfs.
1023  *
1024  * Note: Any attributes defined in the host template and that did not exist
1025  * before invocation of this function will be ignored.
1026  */
1027 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
1028 {
1029 	struct device_attribute **attr;
1030 
1031 	for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
1032 		device_remove_file(&shost->shost_dev, *attr);
1033 }
1034 
1035 static void srp_remove_target(struct srp_target_port *target)
1036 {
1037 	struct srp_rdma_ch *ch;
1038 	int i;
1039 
1040 	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
1041 
1042 	srp_del_scsi_host_attr(target->scsi_host);
1043 	srp_rport_get(target->rport);
1044 	srp_remove_host(target->scsi_host);
1045 	scsi_remove_host(target->scsi_host);
1046 	srp_stop_rport_timers(target->rport);
1047 	srp_disconnect_target(target);
1048 	kobj_ns_drop(KOBJ_NS_TYPE_NET, target->net);
1049 	for (i = 0; i < target->ch_count; i++) {
1050 		ch = &target->ch[i];
1051 		srp_free_ch_ib(target, ch);
1052 	}
1053 	cancel_work_sync(&target->tl_err_work);
1054 	srp_rport_put(target->rport);
1055 	kfree(target->ch);
1056 	target->ch = NULL;
1057 
1058 	spin_lock(&target->srp_host->target_lock);
1059 	list_del(&target->list);
1060 	spin_unlock(&target->srp_host->target_lock);
1061 
1062 	scsi_host_put(target->scsi_host);
1063 }
1064 
1065 static void srp_remove_work(struct work_struct *work)
1066 {
1067 	struct srp_target_port *target =
1068 		container_of(work, struct srp_target_port, remove_work);
1069 
1070 	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
1071 
1072 	srp_remove_target(target);
1073 }
1074 
1075 static void srp_rport_delete(struct srp_rport *rport)
1076 {
1077 	struct srp_target_port *target = rport->lld_data;
1078 
1079 	srp_queue_remove_work(target);
1080 }
1081 
1082 /**
1083  * srp_connected_ch() - number of connected channels
1084  * @target: SRP target port.
1085  */
1086 static int srp_connected_ch(struct srp_target_port *target)
1087 {
1088 	int i, c = 0;
1089 
1090 	for (i = 0; i < target->ch_count; i++)
1091 		c += target->ch[i].connected;
1092 
1093 	return c;
1094 }
1095 
1096 static int srp_connect_ch(struct srp_rdma_ch *ch, uint32_t max_iu_len,
1097 			  bool multich)
1098 {
1099 	struct srp_target_port *target = ch->target;
1100 	int ret;
1101 
1102 	WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
1103 
1104 	ret = srp_lookup_path(ch);
1105 	if (ret)
1106 		goto out;
1107 
1108 	while (1) {
1109 		init_completion(&ch->done);
1110 		ret = srp_send_req(ch, max_iu_len, multich);
1111 		if (ret)
1112 			goto out;
1113 		ret = wait_for_completion_interruptible(&ch->done);
1114 		if (ret < 0)
1115 			goto out;
1116 
1117 		/*
1118 		 * The CM event handling code will set status to
1119 		 * SRP_PORT_REDIRECT if we get a port redirect REJ
1120 		 * back, or SRP_DLID_REDIRECT if we get a lid/qp
1121 		 * redirect REJ back.
1122 		 */
1123 		ret = ch->status;
1124 		switch (ret) {
1125 		case 0:
1126 			ch->connected = true;
1127 			goto out;
1128 
1129 		case SRP_PORT_REDIRECT:
1130 			ret = srp_lookup_path(ch);
1131 			if (ret)
1132 				goto out;
1133 			break;
1134 
1135 		case SRP_DLID_REDIRECT:
1136 			break;
1137 
1138 		case SRP_STALE_CONN:
1139 			shost_printk(KERN_ERR, target->scsi_host, PFX
1140 				     "giving up on stale connection\n");
1141 			ret = -ECONNRESET;
1142 			goto out;
1143 
1144 		default:
1145 			goto out;
1146 		}
1147 	}
1148 
1149 out:
1150 	return ret <= 0 ? ret : -ENODEV;
1151 }
1152 
1153 static void srp_inv_rkey_err_done(struct ib_cq *cq, struct ib_wc *wc)
1154 {
1155 	srp_handle_qp_err(cq, wc, "INV RKEY");
1156 }
1157 
1158 static int srp_inv_rkey(struct srp_request *req, struct srp_rdma_ch *ch,
1159 		u32 rkey)
1160 {
1161 	struct ib_send_wr wr = {
1162 		.opcode		    = IB_WR_LOCAL_INV,
1163 		.next		    = NULL,
1164 		.num_sge	    = 0,
1165 		.send_flags	    = 0,
1166 		.ex.invalidate_rkey = rkey,
1167 	};
1168 
1169 	wr.wr_cqe = &req->reg_cqe;
1170 	req->reg_cqe.done = srp_inv_rkey_err_done;
1171 	return ib_post_send(ch->qp, &wr, NULL);
1172 }
1173 
1174 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1175 			   struct srp_rdma_ch *ch,
1176 			   struct srp_request *req)
1177 {
1178 	struct srp_target_port *target = ch->target;
1179 	struct srp_device *dev = target->srp_host->srp_dev;
1180 	struct ib_device *ibdev = dev->dev;
1181 	int i, res;
1182 
1183 	if (!scsi_sglist(scmnd) ||
1184 	    (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1185 	     scmnd->sc_data_direction != DMA_FROM_DEVICE))
1186 		return;
1187 
1188 	if (dev->use_fast_reg) {
1189 		struct srp_fr_desc **pfr;
1190 
1191 		for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1192 			res = srp_inv_rkey(req, ch, (*pfr)->mr->rkey);
1193 			if (res < 0) {
1194 				shost_printk(KERN_ERR, target->scsi_host, PFX
1195 				  "Queueing INV WR for rkey %#x failed (%d)\n",
1196 				  (*pfr)->mr->rkey, res);
1197 				queue_work(system_long_wq,
1198 					   &target->tl_err_work);
1199 			}
1200 		}
1201 		if (req->nmdesc)
1202 			srp_fr_pool_put(ch->fr_pool, req->fr_list,
1203 					req->nmdesc);
1204 	}
1205 
1206 	ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1207 			scmnd->sc_data_direction);
1208 }
1209 
1210 /**
1211  * srp_claim_req - Take ownership of the scmnd associated with a request.
1212  * @ch: SRP RDMA channel.
1213  * @req: SRP request.
1214  * @sdev: If not NULL, only take ownership for this SCSI device.
1215  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1216  *         ownership of @req->scmnd if it equals @scmnd.
1217  *
1218  * Return value:
1219  * Either NULL or a pointer to the SCSI command the caller became owner of.
1220  */
1221 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1222 				       struct srp_request *req,
1223 				       struct scsi_device *sdev,
1224 				       struct scsi_cmnd *scmnd)
1225 {
1226 	unsigned long flags;
1227 
1228 	spin_lock_irqsave(&ch->lock, flags);
1229 	if (req->scmnd &&
1230 	    (!sdev || req->scmnd->device == sdev) &&
1231 	    (!scmnd || req->scmnd == scmnd)) {
1232 		scmnd = req->scmnd;
1233 		req->scmnd = NULL;
1234 	} else {
1235 		scmnd = NULL;
1236 	}
1237 	spin_unlock_irqrestore(&ch->lock, flags);
1238 
1239 	return scmnd;
1240 }
1241 
1242 /**
1243  * srp_free_req() - Unmap data and adjust ch->req_lim.
1244  * @ch:     SRP RDMA channel.
1245  * @req:    Request to be freed.
1246  * @scmnd:  SCSI command associated with @req.
1247  * @req_lim_delta: Amount to be added to @target->req_lim.
1248  */
1249 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1250 			 struct scsi_cmnd *scmnd, s32 req_lim_delta)
1251 {
1252 	unsigned long flags;
1253 
1254 	srp_unmap_data(scmnd, ch, req);
1255 
1256 	spin_lock_irqsave(&ch->lock, flags);
1257 	ch->req_lim += req_lim_delta;
1258 	spin_unlock_irqrestore(&ch->lock, flags);
1259 }
1260 
1261 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1262 			   struct scsi_device *sdev, int result)
1263 {
1264 	struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1265 
1266 	if (scmnd) {
1267 		srp_free_req(ch, req, scmnd, 0);
1268 		scmnd->result = result;
1269 		scmnd->scsi_done(scmnd);
1270 	}
1271 }
1272 
1273 struct srp_terminate_context {
1274 	struct srp_target_port *srp_target;
1275 	int scsi_result;
1276 };
1277 
1278 static bool srp_terminate_cmd(struct scsi_cmnd *scmnd, void *context_ptr,
1279 			      bool reserved)
1280 {
1281 	struct srp_terminate_context *context = context_ptr;
1282 	struct srp_target_port *target = context->srp_target;
1283 	u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmnd));
1284 	struct srp_rdma_ch *ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
1285 	struct srp_request *req = scsi_cmd_priv(scmnd);
1286 
1287 	srp_finish_req(ch, req, NULL, context->scsi_result);
1288 
1289 	return true;
1290 }
1291 
1292 static void srp_terminate_io(struct srp_rport *rport)
1293 {
1294 	struct srp_target_port *target = rport->lld_data;
1295 	struct srp_terminate_context context = { .srp_target = target,
1296 		.scsi_result = DID_TRANSPORT_FAILFAST << 16 };
1297 
1298 	scsi_host_busy_iter(target->scsi_host, srp_terminate_cmd, &context);
1299 }
1300 
1301 /* Calculate maximum initiator to target information unit length. */
1302 static uint32_t srp_max_it_iu_len(int cmd_sg_cnt, bool use_imm_data,
1303 				  uint32_t max_it_iu_size)
1304 {
1305 	uint32_t max_iu_len = sizeof(struct srp_cmd) + SRP_MAX_ADD_CDB_LEN +
1306 		sizeof(struct srp_indirect_buf) +
1307 		cmd_sg_cnt * sizeof(struct srp_direct_buf);
1308 
1309 	if (use_imm_data)
1310 		max_iu_len = max(max_iu_len, SRP_IMM_DATA_OFFSET +
1311 				 srp_max_imm_data);
1312 
1313 	if (max_it_iu_size)
1314 		max_iu_len = min(max_iu_len, max_it_iu_size);
1315 
1316 	pr_debug("max_iu_len = %d\n", max_iu_len);
1317 
1318 	return max_iu_len;
1319 }
1320 
1321 /*
1322  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1323  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1324  * srp_reset_device() or srp_reset_host() calls will occur while this function
1325  * is in progress. One way to realize that is not to call this function
1326  * directly but to call srp_reconnect_rport() instead since that last function
1327  * serializes calls of this function via rport->mutex and also blocks
1328  * srp_queuecommand() calls before invoking this function.
1329  */
1330 static int srp_rport_reconnect(struct srp_rport *rport)
1331 {
1332 	struct srp_target_port *target = rport->lld_data;
1333 	struct srp_rdma_ch *ch;
1334 	uint32_t max_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
1335 						srp_use_imm_data,
1336 						target->max_it_iu_size);
1337 	int i, j, ret = 0;
1338 	bool multich = false;
1339 
1340 	srp_disconnect_target(target);
1341 
1342 	if (target->state == SRP_TARGET_SCANNING)
1343 		return -ENODEV;
1344 
1345 	/*
1346 	 * Now get a new local CM ID so that we avoid confusing the target in
1347 	 * case things are really fouled up. Doing so also ensures that all CM
1348 	 * callbacks will have finished before a new QP is allocated.
1349 	 */
1350 	for (i = 0; i < target->ch_count; i++) {
1351 		ch = &target->ch[i];
1352 		ret += srp_new_cm_id(ch);
1353 	}
1354 	{
1355 		struct srp_terminate_context context = {
1356 			.srp_target = target, .scsi_result = DID_RESET << 16};
1357 
1358 		scsi_host_busy_iter(target->scsi_host, srp_terminate_cmd,
1359 				    &context);
1360 	}
1361 	for (i = 0; i < target->ch_count; i++) {
1362 		ch = &target->ch[i];
1363 		/*
1364 		 * Whether or not creating a new CM ID succeeded, create a new
1365 		 * QP. This guarantees that all completion callback function
1366 		 * invocations have finished before request resetting starts.
1367 		 */
1368 		ret += srp_create_ch_ib(ch);
1369 
1370 		INIT_LIST_HEAD(&ch->free_tx);
1371 		for (j = 0; j < target->queue_size; ++j)
1372 			list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1373 	}
1374 
1375 	target->qp_in_error = false;
1376 
1377 	for (i = 0; i < target->ch_count; i++) {
1378 		ch = &target->ch[i];
1379 		if (ret)
1380 			break;
1381 		ret = srp_connect_ch(ch, max_iu_len, multich);
1382 		multich = true;
1383 	}
1384 
1385 	if (ret == 0)
1386 		shost_printk(KERN_INFO, target->scsi_host,
1387 			     PFX "reconnect succeeded\n");
1388 
1389 	return ret;
1390 }
1391 
1392 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1393 			 unsigned int dma_len, u32 rkey)
1394 {
1395 	struct srp_direct_buf *desc = state->desc;
1396 
1397 	WARN_ON_ONCE(!dma_len);
1398 
1399 	desc->va = cpu_to_be64(dma_addr);
1400 	desc->key = cpu_to_be32(rkey);
1401 	desc->len = cpu_to_be32(dma_len);
1402 
1403 	state->total_len += dma_len;
1404 	state->desc++;
1405 	state->ndesc++;
1406 }
1407 
1408 static void srp_reg_mr_err_done(struct ib_cq *cq, struct ib_wc *wc)
1409 {
1410 	srp_handle_qp_err(cq, wc, "FAST REG");
1411 }
1412 
1413 /*
1414  * Map up to sg_nents elements of state->sg where *sg_offset_p is the offset
1415  * where to start in the first element. If sg_offset_p != NULL then
1416  * *sg_offset_p is updated to the offset in state->sg[retval] of the first
1417  * byte that has not yet been mapped.
1418  */
1419 static int srp_map_finish_fr(struct srp_map_state *state,
1420 			     struct srp_request *req,
1421 			     struct srp_rdma_ch *ch, int sg_nents,
1422 			     unsigned int *sg_offset_p)
1423 {
1424 	struct srp_target_port *target = ch->target;
1425 	struct srp_device *dev = target->srp_host->srp_dev;
1426 	struct ib_reg_wr wr;
1427 	struct srp_fr_desc *desc;
1428 	u32 rkey;
1429 	int n, err;
1430 
1431 	if (state->fr.next >= state->fr.end) {
1432 		shost_printk(KERN_ERR, ch->target->scsi_host,
1433 			     PFX "Out of MRs (mr_per_cmd = %d)\n",
1434 			     ch->target->mr_per_cmd);
1435 		return -ENOMEM;
1436 	}
1437 
1438 	WARN_ON_ONCE(!dev->use_fast_reg);
1439 
1440 	if (sg_nents == 1 && target->global_rkey) {
1441 		unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1442 
1443 		srp_map_desc(state, sg_dma_address(state->sg) + sg_offset,
1444 			     sg_dma_len(state->sg) - sg_offset,
1445 			     target->global_rkey);
1446 		if (sg_offset_p)
1447 			*sg_offset_p = 0;
1448 		return 1;
1449 	}
1450 
1451 	desc = srp_fr_pool_get(ch->fr_pool);
1452 	if (!desc)
1453 		return -ENOMEM;
1454 
1455 	rkey = ib_inc_rkey(desc->mr->rkey);
1456 	ib_update_fast_reg_key(desc->mr, rkey);
1457 
1458 	n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, sg_offset_p,
1459 			 dev->mr_page_size);
1460 	if (unlikely(n < 0)) {
1461 		srp_fr_pool_put(ch->fr_pool, &desc, 1);
1462 		pr_debug("%s: ib_map_mr_sg(%d, %d) returned %d.\n",
1463 			 dev_name(&req->scmnd->device->sdev_gendev), sg_nents,
1464 			 sg_offset_p ? *sg_offset_p : -1, n);
1465 		return n;
1466 	}
1467 
1468 	WARN_ON_ONCE(desc->mr->length == 0);
1469 
1470 	req->reg_cqe.done = srp_reg_mr_err_done;
1471 
1472 	wr.wr.next = NULL;
1473 	wr.wr.opcode = IB_WR_REG_MR;
1474 	wr.wr.wr_cqe = &req->reg_cqe;
1475 	wr.wr.num_sge = 0;
1476 	wr.wr.send_flags = 0;
1477 	wr.mr = desc->mr;
1478 	wr.key = desc->mr->rkey;
1479 	wr.access = (IB_ACCESS_LOCAL_WRITE |
1480 		     IB_ACCESS_REMOTE_READ |
1481 		     IB_ACCESS_REMOTE_WRITE);
1482 
1483 	*state->fr.next++ = desc;
1484 	state->nmdesc++;
1485 
1486 	srp_map_desc(state, desc->mr->iova,
1487 		     desc->mr->length, desc->mr->rkey);
1488 
1489 	err = ib_post_send(ch->qp, &wr.wr, NULL);
1490 	if (unlikely(err)) {
1491 		WARN_ON_ONCE(err == -ENOMEM);
1492 		return err;
1493 	}
1494 
1495 	return n;
1496 }
1497 
1498 static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1499 			 struct srp_request *req, struct scatterlist *scat,
1500 			 int count)
1501 {
1502 	unsigned int sg_offset = 0;
1503 
1504 	state->fr.next = req->fr_list;
1505 	state->fr.end = req->fr_list + ch->target->mr_per_cmd;
1506 	state->sg = scat;
1507 
1508 	if (count == 0)
1509 		return 0;
1510 
1511 	while (count) {
1512 		int i, n;
1513 
1514 		n = srp_map_finish_fr(state, req, ch, count, &sg_offset);
1515 		if (unlikely(n < 0))
1516 			return n;
1517 
1518 		count -= n;
1519 		for (i = 0; i < n; i++)
1520 			state->sg = sg_next(state->sg);
1521 	}
1522 
1523 	return 0;
1524 }
1525 
1526 static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch,
1527 			  struct srp_request *req, struct scatterlist *scat,
1528 			  int count)
1529 {
1530 	struct srp_target_port *target = ch->target;
1531 	struct scatterlist *sg;
1532 	int i;
1533 
1534 	for_each_sg(scat, sg, count, i) {
1535 		srp_map_desc(state, sg_dma_address(sg), sg_dma_len(sg),
1536 			     target->global_rkey);
1537 	}
1538 
1539 	return 0;
1540 }
1541 
1542 /*
1543  * Register the indirect data buffer descriptor with the HCA.
1544  *
1545  * Note: since the indirect data buffer descriptor has been allocated with
1546  * kmalloc() it is guaranteed that this buffer is a physically contiguous
1547  * memory buffer.
1548  */
1549 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req,
1550 		       void **next_mr, void **end_mr, u32 idb_len,
1551 		       __be32 *idb_rkey)
1552 {
1553 	struct srp_target_port *target = ch->target;
1554 	struct srp_device *dev = target->srp_host->srp_dev;
1555 	struct srp_map_state state;
1556 	struct srp_direct_buf idb_desc;
1557 	struct scatterlist idb_sg[1];
1558 	int ret;
1559 
1560 	memset(&state, 0, sizeof(state));
1561 	memset(&idb_desc, 0, sizeof(idb_desc));
1562 	state.gen.next = next_mr;
1563 	state.gen.end = end_mr;
1564 	state.desc = &idb_desc;
1565 	state.base_dma_addr = req->indirect_dma_addr;
1566 	state.dma_len = idb_len;
1567 
1568 	if (dev->use_fast_reg) {
1569 		state.sg = idb_sg;
1570 		sg_init_one(idb_sg, req->indirect_desc, idb_len);
1571 		idb_sg->dma_address = req->indirect_dma_addr; /* hack! */
1572 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1573 		idb_sg->dma_length = idb_sg->length;	      /* hack^2 */
1574 #endif
1575 		ret = srp_map_finish_fr(&state, req, ch, 1, NULL);
1576 		if (ret < 0)
1577 			return ret;
1578 		WARN_ON_ONCE(ret < 1);
1579 	} else {
1580 		return -EINVAL;
1581 	}
1582 
1583 	*idb_rkey = idb_desc.key;
1584 
1585 	return 0;
1586 }
1587 
1588 static void srp_check_mapping(struct srp_map_state *state,
1589 			      struct srp_rdma_ch *ch, struct srp_request *req,
1590 			      struct scatterlist *scat, int count)
1591 {
1592 	struct srp_device *dev = ch->target->srp_host->srp_dev;
1593 	struct srp_fr_desc **pfr;
1594 	u64 desc_len = 0, mr_len = 0;
1595 	int i;
1596 
1597 	for (i = 0; i < state->ndesc; i++)
1598 		desc_len += be32_to_cpu(req->indirect_desc[i].len);
1599 	if (dev->use_fast_reg)
1600 		for (i = 0, pfr = req->fr_list; i < state->nmdesc; i++, pfr++)
1601 			mr_len += (*pfr)->mr->length;
1602 	if (desc_len != scsi_bufflen(req->scmnd) ||
1603 	    mr_len > scsi_bufflen(req->scmnd))
1604 		pr_err("Inconsistent: scsi len %d <> desc len %lld <> mr len %lld; ndesc %d; nmdesc = %d\n",
1605 		       scsi_bufflen(req->scmnd), desc_len, mr_len,
1606 		       state->ndesc, state->nmdesc);
1607 }
1608 
1609 /**
1610  * srp_map_data() - map SCSI data buffer onto an SRP request
1611  * @scmnd: SCSI command to map
1612  * @ch: SRP RDMA channel
1613  * @req: SRP request
1614  *
1615  * Returns the length in bytes of the SRP_CMD IU or a negative value if
1616  * mapping failed. The size of any immediate data is not included in the
1617  * return value.
1618  */
1619 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1620 			struct srp_request *req)
1621 {
1622 	struct srp_target_port *target = ch->target;
1623 	struct scatterlist *scat, *sg;
1624 	struct srp_cmd *cmd = req->cmd->buf;
1625 	int i, len, nents, count, ret;
1626 	struct srp_device *dev;
1627 	struct ib_device *ibdev;
1628 	struct srp_map_state state;
1629 	struct srp_indirect_buf *indirect_hdr;
1630 	u64 data_len;
1631 	u32 idb_len, table_len;
1632 	__be32 idb_rkey;
1633 	u8 fmt;
1634 
1635 	req->cmd->num_sge = 1;
1636 
1637 	if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1638 		return sizeof(struct srp_cmd) + cmd->add_cdb_len;
1639 
1640 	if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1641 	    scmnd->sc_data_direction != DMA_TO_DEVICE) {
1642 		shost_printk(KERN_WARNING, target->scsi_host,
1643 			     PFX "Unhandled data direction %d\n",
1644 			     scmnd->sc_data_direction);
1645 		return -EINVAL;
1646 	}
1647 
1648 	nents = scsi_sg_count(scmnd);
1649 	scat  = scsi_sglist(scmnd);
1650 	data_len = scsi_bufflen(scmnd);
1651 
1652 	dev = target->srp_host->srp_dev;
1653 	ibdev = dev->dev;
1654 
1655 	count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1656 	if (unlikely(count == 0))
1657 		return -EIO;
1658 
1659 	if (ch->use_imm_data &&
1660 	    count <= ch->max_imm_sge &&
1661 	    SRP_IMM_DATA_OFFSET + data_len <= ch->max_it_iu_len &&
1662 	    scmnd->sc_data_direction == DMA_TO_DEVICE) {
1663 		struct srp_imm_buf *buf;
1664 		struct ib_sge *sge = &req->cmd->sge[1];
1665 
1666 		fmt = SRP_DATA_DESC_IMM;
1667 		len = SRP_IMM_DATA_OFFSET;
1668 		req->nmdesc = 0;
1669 		buf = (void *)cmd->add_data + cmd->add_cdb_len;
1670 		buf->len = cpu_to_be32(data_len);
1671 		WARN_ON_ONCE((void *)(buf + 1) > (void *)cmd + len);
1672 		for_each_sg(scat, sg, count, i) {
1673 			sge[i].addr   = sg_dma_address(sg);
1674 			sge[i].length = sg_dma_len(sg);
1675 			sge[i].lkey   = target->lkey;
1676 		}
1677 		req->cmd->num_sge += count;
1678 		goto map_complete;
1679 	}
1680 
1681 	fmt = SRP_DATA_DESC_DIRECT;
1682 	len = sizeof(struct srp_cmd) + cmd->add_cdb_len +
1683 		sizeof(struct srp_direct_buf);
1684 
1685 	if (count == 1 && target->global_rkey) {
1686 		/*
1687 		 * The midlayer only generated a single gather/scatter
1688 		 * entry, or DMA mapping coalesced everything to a
1689 		 * single entry.  So a direct descriptor along with
1690 		 * the DMA MR suffices.
1691 		 */
1692 		struct srp_direct_buf *buf;
1693 
1694 		buf = (void *)cmd->add_data + cmd->add_cdb_len;
1695 		buf->va  = cpu_to_be64(sg_dma_address(scat));
1696 		buf->key = cpu_to_be32(target->global_rkey);
1697 		buf->len = cpu_to_be32(sg_dma_len(scat));
1698 
1699 		req->nmdesc = 0;
1700 		goto map_complete;
1701 	}
1702 
1703 	/*
1704 	 * We have more than one scatter/gather entry, so build our indirect
1705 	 * descriptor table, trying to merge as many entries as we can.
1706 	 */
1707 	indirect_hdr = (void *)cmd->add_data + cmd->add_cdb_len;
1708 
1709 	ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1710 				   target->indirect_size, DMA_TO_DEVICE);
1711 
1712 	memset(&state, 0, sizeof(state));
1713 	state.desc = req->indirect_desc;
1714 	if (dev->use_fast_reg)
1715 		ret = srp_map_sg_fr(&state, ch, req, scat, count);
1716 	else
1717 		ret = srp_map_sg_dma(&state, ch, req, scat, count);
1718 	req->nmdesc = state.nmdesc;
1719 	if (ret < 0)
1720 		goto unmap;
1721 
1722 	{
1723 		DEFINE_DYNAMIC_DEBUG_METADATA(ddm,
1724 			"Memory mapping consistency check");
1725 		if (DYNAMIC_DEBUG_BRANCH(ddm))
1726 			srp_check_mapping(&state, ch, req, scat, count);
1727 	}
1728 
1729 	/* We've mapped the request, now pull as much of the indirect
1730 	 * descriptor table as we can into the command buffer. If this
1731 	 * target is not using an external indirect table, we are
1732 	 * guaranteed to fit into the command, as the SCSI layer won't
1733 	 * give us more S/G entries than we allow.
1734 	 */
1735 	if (state.ndesc == 1) {
1736 		/*
1737 		 * Memory registration collapsed the sg-list into one entry,
1738 		 * so use a direct descriptor.
1739 		 */
1740 		struct srp_direct_buf *buf;
1741 
1742 		buf = (void *)cmd->add_data + cmd->add_cdb_len;
1743 		*buf = req->indirect_desc[0];
1744 		goto map_complete;
1745 	}
1746 
1747 	if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1748 						!target->allow_ext_sg)) {
1749 		shost_printk(KERN_ERR, target->scsi_host,
1750 			     "Could not fit S/G list into SRP_CMD\n");
1751 		ret = -EIO;
1752 		goto unmap;
1753 	}
1754 
1755 	count = min(state.ndesc, target->cmd_sg_cnt);
1756 	table_len = state.ndesc * sizeof (struct srp_direct_buf);
1757 	idb_len = sizeof(struct srp_indirect_buf) + table_len;
1758 
1759 	fmt = SRP_DATA_DESC_INDIRECT;
1760 	len = sizeof(struct srp_cmd) + cmd->add_cdb_len +
1761 		sizeof(struct srp_indirect_buf);
1762 	len += count * sizeof (struct srp_direct_buf);
1763 
1764 	memcpy(indirect_hdr->desc_list, req->indirect_desc,
1765 	       count * sizeof (struct srp_direct_buf));
1766 
1767 	if (!target->global_rkey) {
1768 		ret = srp_map_idb(ch, req, state.gen.next, state.gen.end,
1769 				  idb_len, &idb_rkey);
1770 		if (ret < 0)
1771 			goto unmap;
1772 		req->nmdesc++;
1773 	} else {
1774 		idb_rkey = cpu_to_be32(target->global_rkey);
1775 	}
1776 
1777 	indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1778 	indirect_hdr->table_desc.key = idb_rkey;
1779 	indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1780 	indirect_hdr->len = cpu_to_be32(state.total_len);
1781 
1782 	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1783 		cmd->data_out_desc_cnt = count;
1784 	else
1785 		cmd->data_in_desc_cnt = count;
1786 
1787 	ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1788 				      DMA_TO_DEVICE);
1789 
1790 map_complete:
1791 	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1792 		cmd->buf_fmt = fmt << 4;
1793 	else
1794 		cmd->buf_fmt = fmt;
1795 
1796 	return len;
1797 
1798 unmap:
1799 	srp_unmap_data(scmnd, ch, req);
1800 	if (ret == -ENOMEM && req->nmdesc >= target->mr_pool_size)
1801 		ret = -E2BIG;
1802 	return ret;
1803 }
1804 
1805 /*
1806  * Return an IU and possible credit to the free pool
1807  */
1808 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1809 			  enum srp_iu_type iu_type)
1810 {
1811 	unsigned long flags;
1812 
1813 	spin_lock_irqsave(&ch->lock, flags);
1814 	list_add(&iu->list, &ch->free_tx);
1815 	if (iu_type != SRP_IU_RSP)
1816 		++ch->req_lim;
1817 	spin_unlock_irqrestore(&ch->lock, flags);
1818 }
1819 
1820 /*
1821  * Must be called with ch->lock held to protect req_lim and free_tx.
1822  * If IU is not sent, it must be returned using srp_put_tx_iu().
1823  *
1824  * Note:
1825  * An upper limit for the number of allocated information units for each
1826  * request type is:
1827  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1828  *   more than Scsi_Host.can_queue requests.
1829  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1830  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1831  *   one unanswered SRP request to an initiator.
1832  */
1833 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1834 				      enum srp_iu_type iu_type)
1835 {
1836 	struct srp_target_port *target = ch->target;
1837 	s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1838 	struct srp_iu *iu;
1839 
1840 	lockdep_assert_held(&ch->lock);
1841 
1842 	ib_process_cq_direct(ch->send_cq, -1);
1843 
1844 	if (list_empty(&ch->free_tx))
1845 		return NULL;
1846 
1847 	/* Initiator responses to target requests do not consume credits */
1848 	if (iu_type != SRP_IU_RSP) {
1849 		if (ch->req_lim <= rsv) {
1850 			++target->zero_req_lim;
1851 			return NULL;
1852 		}
1853 
1854 		--ch->req_lim;
1855 	}
1856 
1857 	iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1858 	list_del(&iu->list);
1859 	return iu;
1860 }
1861 
1862 /*
1863  * Note: if this function is called from inside ib_drain_sq() then it will
1864  * be called without ch->lock being held. If ib_drain_sq() dequeues a WQE
1865  * with status IB_WC_SUCCESS then that's a bug.
1866  */
1867 static void srp_send_done(struct ib_cq *cq, struct ib_wc *wc)
1868 {
1869 	struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
1870 	struct srp_rdma_ch *ch = cq->cq_context;
1871 
1872 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1873 		srp_handle_qp_err(cq, wc, "SEND");
1874 		return;
1875 	}
1876 
1877 	lockdep_assert_held(&ch->lock);
1878 
1879 	list_add(&iu->list, &ch->free_tx);
1880 }
1881 
1882 /**
1883  * srp_post_send() - send an SRP information unit
1884  * @ch: RDMA channel over which to send the information unit.
1885  * @iu: Information unit to send.
1886  * @len: Length of the information unit excluding immediate data.
1887  */
1888 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1889 {
1890 	struct srp_target_port *target = ch->target;
1891 	struct ib_send_wr wr;
1892 
1893 	if (WARN_ON_ONCE(iu->num_sge > SRP_MAX_SGE))
1894 		return -EINVAL;
1895 
1896 	iu->sge[0].addr   = iu->dma;
1897 	iu->sge[0].length = len;
1898 	iu->sge[0].lkey   = target->lkey;
1899 
1900 	iu->cqe.done = srp_send_done;
1901 
1902 	wr.next       = NULL;
1903 	wr.wr_cqe     = &iu->cqe;
1904 	wr.sg_list    = &iu->sge[0];
1905 	wr.num_sge    = iu->num_sge;
1906 	wr.opcode     = IB_WR_SEND;
1907 	wr.send_flags = IB_SEND_SIGNALED;
1908 
1909 	return ib_post_send(ch->qp, &wr, NULL);
1910 }
1911 
1912 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1913 {
1914 	struct srp_target_port *target = ch->target;
1915 	struct ib_recv_wr wr;
1916 	struct ib_sge list;
1917 
1918 	list.addr   = iu->dma;
1919 	list.length = iu->size;
1920 	list.lkey   = target->lkey;
1921 
1922 	iu->cqe.done = srp_recv_done;
1923 
1924 	wr.next     = NULL;
1925 	wr.wr_cqe   = &iu->cqe;
1926 	wr.sg_list  = &list;
1927 	wr.num_sge  = 1;
1928 
1929 	return ib_post_recv(ch->qp, &wr, NULL);
1930 }
1931 
1932 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1933 {
1934 	struct srp_target_port *target = ch->target;
1935 	struct srp_request *req;
1936 	struct scsi_cmnd *scmnd;
1937 	unsigned long flags;
1938 
1939 	if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1940 		spin_lock_irqsave(&ch->lock, flags);
1941 		ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1942 		if (rsp->tag == ch->tsk_mgmt_tag) {
1943 			ch->tsk_mgmt_status = -1;
1944 			if (be32_to_cpu(rsp->resp_data_len) >= 4)
1945 				ch->tsk_mgmt_status = rsp->data[3];
1946 			complete(&ch->tsk_mgmt_done);
1947 		} else {
1948 			shost_printk(KERN_ERR, target->scsi_host,
1949 				     "Received tsk mgmt response too late for tag %#llx\n",
1950 				     rsp->tag);
1951 		}
1952 		spin_unlock_irqrestore(&ch->lock, flags);
1953 	} else {
1954 		scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1955 		if (scmnd) {
1956 			req = scsi_cmd_priv(scmnd);
1957 			scmnd = srp_claim_req(ch, req, NULL, scmnd);
1958 		} else {
1959 			shost_printk(KERN_ERR, target->scsi_host,
1960 				     "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1961 				     rsp->tag, ch - target->ch, ch->qp->qp_num);
1962 
1963 			spin_lock_irqsave(&ch->lock, flags);
1964 			ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1965 			spin_unlock_irqrestore(&ch->lock, flags);
1966 
1967 			return;
1968 		}
1969 		scmnd->result = rsp->status;
1970 
1971 		if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1972 			memcpy(scmnd->sense_buffer, rsp->data +
1973 			       be32_to_cpu(rsp->resp_data_len),
1974 			       min_t(int, be32_to_cpu(rsp->sense_data_len),
1975 				     SCSI_SENSE_BUFFERSIZE));
1976 		}
1977 
1978 		if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1979 			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1980 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1981 			scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1982 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1983 			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1984 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1985 			scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1986 
1987 		srp_free_req(ch, req, scmnd,
1988 			     be32_to_cpu(rsp->req_lim_delta));
1989 
1990 		scmnd->scsi_done(scmnd);
1991 	}
1992 }
1993 
1994 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1995 			       void *rsp, int len)
1996 {
1997 	struct srp_target_port *target = ch->target;
1998 	struct ib_device *dev = target->srp_host->srp_dev->dev;
1999 	unsigned long flags;
2000 	struct srp_iu *iu;
2001 	int err;
2002 
2003 	spin_lock_irqsave(&ch->lock, flags);
2004 	ch->req_lim += req_delta;
2005 	iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
2006 	spin_unlock_irqrestore(&ch->lock, flags);
2007 
2008 	if (!iu) {
2009 		shost_printk(KERN_ERR, target->scsi_host, PFX
2010 			     "no IU available to send response\n");
2011 		return 1;
2012 	}
2013 
2014 	iu->num_sge = 1;
2015 	ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
2016 	memcpy(iu->buf, rsp, len);
2017 	ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
2018 
2019 	err = srp_post_send(ch, iu, len);
2020 	if (err) {
2021 		shost_printk(KERN_ERR, target->scsi_host, PFX
2022 			     "unable to post response: %d\n", err);
2023 		srp_put_tx_iu(ch, iu, SRP_IU_RSP);
2024 	}
2025 
2026 	return err;
2027 }
2028 
2029 static void srp_process_cred_req(struct srp_rdma_ch *ch,
2030 				 struct srp_cred_req *req)
2031 {
2032 	struct srp_cred_rsp rsp = {
2033 		.opcode = SRP_CRED_RSP,
2034 		.tag = req->tag,
2035 	};
2036 	s32 delta = be32_to_cpu(req->req_lim_delta);
2037 
2038 	if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
2039 		shost_printk(KERN_ERR, ch->target->scsi_host, PFX
2040 			     "problems processing SRP_CRED_REQ\n");
2041 }
2042 
2043 static void srp_process_aer_req(struct srp_rdma_ch *ch,
2044 				struct srp_aer_req *req)
2045 {
2046 	struct srp_target_port *target = ch->target;
2047 	struct srp_aer_rsp rsp = {
2048 		.opcode = SRP_AER_RSP,
2049 		.tag = req->tag,
2050 	};
2051 	s32 delta = be32_to_cpu(req->req_lim_delta);
2052 
2053 	shost_printk(KERN_ERR, target->scsi_host, PFX
2054 		     "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
2055 
2056 	if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
2057 		shost_printk(KERN_ERR, target->scsi_host, PFX
2058 			     "problems processing SRP_AER_REQ\n");
2059 }
2060 
2061 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc)
2062 {
2063 	struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
2064 	struct srp_rdma_ch *ch = cq->cq_context;
2065 	struct srp_target_port *target = ch->target;
2066 	struct ib_device *dev = target->srp_host->srp_dev->dev;
2067 	int res;
2068 	u8 opcode;
2069 
2070 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
2071 		srp_handle_qp_err(cq, wc, "RECV");
2072 		return;
2073 	}
2074 
2075 	ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
2076 				   DMA_FROM_DEVICE);
2077 
2078 	opcode = *(u8 *) iu->buf;
2079 
2080 	if (0) {
2081 		shost_printk(KERN_ERR, target->scsi_host,
2082 			     PFX "recv completion, opcode 0x%02x\n", opcode);
2083 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
2084 			       iu->buf, wc->byte_len, true);
2085 	}
2086 
2087 	switch (opcode) {
2088 	case SRP_RSP:
2089 		srp_process_rsp(ch, iu->buf);
2090 		break;
2091 
2092 	case SRP_CRED_REQ:
2093 		srp_process_cred_req(ch, iu->buf);
2094 		break;
2095 
2096 	case SRP_AER_REQ:
2097 		srp_process_aer_req(ch, iu->buf);
2098 		break;
2099 
2100 	case SRP_T_LOGOUT:
2101 		/* XXX Handle target logout */
2102 		shost_printk(KERN_WARNING, target->scsi_host,
2103 			     PFX "Got target logout request\n");
2104 		break;
2105 
2106 	default:
2107 		shost_printk(KERN_WARNING, target->scsi_host,
2108 			     PFX "Unhandled SRP opcode 0x%02x\n", opcode);
2109 		break;
2110 	}
2111 
2112 	ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
2113 				      DMA_FROM_DEVICE);
2114 
2115 	res = srp_post_recv(ch, iu);
2116 	if (res != 0)
2117 		shost_printk(KERN_ERR, target->scsi_host,
2118 			     PFX "Recv failed with error code %d\n", res);
2119 }
2120 
2121 /**
2122  * srp_tl_err_work() - handle a transport layer error
2123  * @work: Work structure embedded in an SRP target port.
2124  *
2125  * Note: This function may get invoked before the rport has been created,
2126  * hence the target->rport test.
2127  */
2128 static void srp_tl_err_work(struct work_struct *work)
2129 {
2130 	struct srp_target_port *target;
2131 
2132 	target = container_of(work, struct srp_target_port, tl_err_work);
2133 	if (target->rport)
2134 		srp_start_tl_fail_timers(target->rport);
2135 }
2136 
2137 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
2138 		const char *opname)
2139 {
2140 	struct srp_rdma_ch *ch = cq->cq_context;
2141 	struct srp_target_port *target = ch->target;
2142 
2143 	if (ch->connected && !target->qp_in_error) {
2144 		shost_printk(KERN_ERR, target->scsi_host,
2145 			     PFX "failed %s status %s (%d) for CQE %p\n",
2146 			     opname, ib_wc_status_msg(wc->status), wc->status,
2147 			     wc->wr_cqe);
2148 		queue_work(system_long_wq, &target->tl_err_work);
2149 	}
2150 	target->qp_in_error = true;
2151 }
2152 
2153 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
2154 {
2155 	struct request *rq = scsi_cmd_to_rq(scmnd);
2156 	struct srp_target_port *target = host_to_target(shost);
2157 	struct srp_rdma_ch *ch;
2158 	struct srp_request *req = scsi_cmd_priv(scmnd);
2159 	struct srp_iu *iu;
2160 	struct srp_cmd *cmd;
2161 	struct ib_device *dev;
2162 	unsigned long flags;
2163 	u32 tag;
2164 	int len, ret;
2165 
2166 	scmnd->result = srp_chkready(target->rport);
2167 	if (unlikely(scmnd->result))
2168 		goto err;
2169 
2170 	WARN_ON_ONCE(rq->tag < 0);
2171 	tag = blk_mq_unique_tag(rq);
2172 	ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2173 
2174 	spin_lock_irqsave(&ch->lock, flags);
2175 	iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2176 	spin_unlock_irqrestore(&ch->lock, flags);
2177 
2178 	if (!iu)
2179 		goto err;
2180 
2181 	dev = target->srp_host->srp_dev->dev;
2182 	ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_it_iu_len,
2183 				   DMA_TO_DEVICE);
2184 
2185 	cmd = iu->buf;
2186 	memset(cmd, 0, sizeof *cmd);
2187 
2188 	cmd->opcode = SRP_CMD;
2189 	int_to_scsilun(scmnd->device->lun, &cmd->lun);
2190 	cmd->tag    = tag;
2191 	memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2192 	if (unlikely(scmnd->cmd_len > sizeof(cmd->cdb))) {
2193 		cmd->add_cdb_len = round_up(scmnd->cmd_len - sizeof(cmd->cdb),
2194 					    4);
2195 		if (WARN_ON_ONCE(cmd->add_cdb_len > SRP_MAX_ADD_CDB_LEN))
2196 			goto err_iu;
2197 	}
2198 
2199 	req->scmnd    = scmnd;
2200 	req->cmd      = iu;
2201 
2202 	len = srp_map_data(scmnd, ch, req);
2203 	if (len < 0) {
2204 		shost_printk(KERN_ERR, target->scsi_host,
2205 			     PFX "Failed to map data (%d)\n", len);
2206 		/*
2207 		 * If we ran out of memory descriptors (-ENOMEM) because an
2208 		 * application is queuing many requests with more than
2209 		 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2210 		 * to reduce queue depth temporarily.
2211 		 */
2212 		scmnd->result = len == -ENOMEM ?
2213 			DID_OK << 16 | SAM_STAT_TASK_SET_FULL : DID_ERROR << 16;
2214 		goto err_iu;
2215 	}
2216 
2217 	ib_dma_sync_single_for_device(dev, iu->dma, ch->max_it_iu_len,
2218 				      DMA_TO_DEVICE);
2219 
2220 	if (srp_post_send(ch, iu, len)) {
2221 		shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2222 		scmnd->result = DID_ERROR << 16;
2223 		goto err_unmap;
2224 	}
2225 
2226 	return 0;
2227 
2228 err_unmap:
2229 	srp_unmap_data(scmnd, ch, req);
2230 
2231 err_iu:
2232 	srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2233 
2234 	/*
2235 	 * Avoid that the loops that iterate over the request ring can
2236 	 * encounter a dangling SCSI command pointer.
2237 	 */
2238 	req->scmnd = NULL;
2239 
2240 err:
2241 	if (scmnd->result) {
2242 		scmnd->scsi_done(scmnd);
2243 		ret = 0;
2244 	} else {
2245 		ret = SCSI_MLQUEUE_HOST_BUSY;
2246 	}
2247 
2248 	return ret;
2249 }
2250 
2251 /*
2252  * Note: the resources allocated in this function are freed in
2253  * srp_free_ch_ib().
2254  */
2255 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2256 {
2257 	struct srp_target_port *target = ch->target;
2258 	int i;
2259 
2260 	ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2261 			      GFP_KERNEL);
2262 	if (!ch->rx_ring)
2263 		goto err_no_ring;
2264 	ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2265 			      GFP_KERNEL);
2266 	if (!ch->tx_ring)
2267 		goto err_no_ring;
2268 
2269 	for (i = 0; i < target->queue_size; ++i) {
2270 		ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2271 					      ch->max_ti_iu_len,
2272 					      GFP_KERNEL, DMA_FROM_DEVICE);
2273 		if (!ch->rx_ring[i])
2274 			goto err;
2275 	}
2276 
2277 	for (i = 0; i < target->queue_size; ++i) {
2278 		ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2279 					      ch->max_it_iu_len,
2280 					      GFP_KERNEL, DMA_TO_DEVICE);
2281 		if (!ch->tx_ring[i])
2282 			goto err;
2283 
2284 		list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2285 	}
2286 
2287 	return 0;
2288 
2289 err:
2290 	for (i = 0; i < target->queue_size; ++i) {
2291 		srp_free_iu(target->srp_host, ch->rx_ring[i]);
2292 		srp_free_iu(target->srp_host, ch->tx_ring[i]);
2293 	}
2294 
2295 
2296 err_no_ring:
2297 	kfree(ch->tx_ring);
2298 	ch->tx_ring = NULL;
2299 	kfree(ch->rx_ring);
2300 	ch->rx_ring = NULL;
2301 
2302 	return -ENOMEM;
2303 }
2304 
2305 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2306 {
2307 	uint64_t T_tr_ns, max_compl_time_ms;
2308 	uint32_t rq_tmo_jiffies;
2309 
2310 	/*
2311 	 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2312 	 * table 91), both the QP timeout and the retry count have to be set
2313 	 * for RC QP's during the RTR to RTS transition.
2314 	 */
2315 	WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2316 		     (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2317 
2318 	/*
2319 	 * Set target->rq_tmo_jiffies to one second more than the largest time
2320 	 * it can take before an error completion is generated. See also
2321 	 * C9-140..142 in the IBTA spec for more information about how to
2322 	 * convert the QP Local ACK Timeout value to nanoseconds.
2323 	 */
2324 	T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2325 	max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2326 	do_div(max_compl_time_ms, NSEC_PER_MSEC);
2327 	rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2328 
2329 	return rq_tmo_jiffies;
2330 }
2331 
2332 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2333 			       const struct srp_login_rsp *lrsp,
2334 			       struct srp_rdma_ch *ch)
2335 {
2336 	struct srp_target_port *target = ch->target;
2337 	struct ib_qp_attr *qp_attr = NULL;
2338 	int attr_mask = 0;
2339 	int ret = 0;
2340 	int i;
2341 
2342 	if (lrsp->opcode == SRP_LOGIN_RSP) {
2343 		ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2344 		ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2345 		ch->use_imm_data  = srp_use_imm_data &&
2346 			(lrsp->rsp_flags & SRP_LOGIN_RSP_IMMED_SUPP);
2347 		ch->max_it_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
2348 						      ch->use_imm_data,
2349 						      target->max_it_iu_size);
2350 		WARN_ON_ONCE(ch->max_it_iu_len >
2351 			     be32_to_cpu(lrsp->max_it_iu_len));
2352 
2353 		if (ch->use_imm_data)
2354 			shost_printk(KERN_DEBUG, target->scsi_host,
2355 				     PFX "using immediate data\n");
2356 
2357 		/*
2358 		 * Reserve credits for task management so we don't
2359 		 * bounce requests back to the SCSI mid-layer.
2360 		 */
2361 		target->scsi_host->can_queue
2362 			= min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2363 			      target->scsi_host->can_queue);
2364 		target->scsi_host->cmd_per_lun
2365 			= min_t(int, target->scsi_host->can_queue,
2366 				target->scsi_host->cmd_per_lun);
2367 	} else {
2368 		shost_printk(KERN_WARNING, target->scsi_host,
2369 			     PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2370 		ret = -ECONNRESET;
2371 		goto error;
2372 	}
2373 
2374 	if (!ch->rx_ring) {
2375 		ret = srp_alloc_iu_bufs(ch);
2376 		if (ret)
2377 			goto error;
2378 	}
2379 
2380 	for (i = 0; i < target->queue_size; i++) {
2381 		struct srp_iu *iu = ch->rx_ring[i];
2382 
2383 		ret = srp_post_recv(ch, iu);
2384 		if (ret)
2385 			goto error;
2386 	}
2387 
2388 	if (!target->using_rdma_cm) {
2389 		ret = -ENOMEM;
2390 		qp_attr = kmalloc(sizeof(*qp_attr), GFP_KERNEL);
2391 		if (!qp_attr)
2392 			goto error;
2393 
2394 		qp_attr->qp_state = IB_QPS_RTR;
2395 		ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2396 		if (ret)
2397 			goto error_free;
2398 
2399 		ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2400 		if (ret)
2401 			goto error_free;
2402 
2403 		qp_attr->qp_state = IB_QPS_RTS;
2404 		ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2405 		if (ret)
2406 			goto error_free;
2407 
2408 		target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2409 
2410 		ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2411 		if (ret)
2412 			goto error_free;
2413 
2414 		ret = ib_send_cm_rtu(cm_id, NULL, 0);
2415 	}
2416 
2417 error_free:
2418 	kfree(qp_attr);
2419 
2420 error:
2421 	ch->status = ret;
2422 }
2423 
2424 static void srp_ib_cm_rej_handler(struct ib_cm_id *cm_id,
2425 				  const struct ib_cm_event *event,
2426 				  struct srp_rdma_ch *ch)
2427 {
2428 	struct srp_target_port *target = ch->target;
2429 	struct Scsi_Host *shost = target->scsi_host;
2430 	struct ib_class_port_info *cpi;
2431 	int opcode;
2432 	u16 dlid;
2433 
2434 	switch (event->param.rej_rcvd.reason) {
2435 	case IB_CM_REJ_PORT_CM_REDIRECT:
2436 		cpi = event->param.rej_rcvd.ari;
2437 		dlid = be16_to_cpu(cpi->redirect_lid);
2438 		sa_path_set_dlid(&ch->ib_cm.path, dlid);
2439 		ch->ib_cm.path.pkey = cpi->redirect_pkey;
2440 		cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2441 		memcpy(ch->ib_cm.path.dgid.raw, cpi->redirect_gid, 16);
2442 
2443 		ch->status = dlid ? SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2444 		break;
2445 
2446 	case IB_CM_REJ_PORT_REDIRECT:
2447 		if (srp_target_is_topspin(target)) {
2448 			union ib_gid *dgid = &ch->ib_cm.path.dgid;
2449 
2450 			/*
2451 			 * Topspin/Cisco SRP gateways incorrectly send
2452 			 * reject reason code 25 when they mean 24
2453 			 * (port redirect).
2454 			 */
2455 			memcpy(dgid->raw, event->param.rej_rcvd.ari, 16);
2456 
2457 			shost_printk(KERN_DEBUG, shost,
2458 				     PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2459 				     be64_to_cpu(dgid->global.subnet_prefix),
2460 				     be64_to_cpu(dgid->global.interface_id));
2461 
2462 			ch->status = SRP_PORT_REDIRECT;
2463 		} else {
2464 			shost_printk(KERN_WARNING, shost,
2465 				     "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2466 			ch->status = -ECONNRESET;
2467 		}
2468 		break;
2469 
2470 	case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2471 		shost_printk(KERN_WARNING, shost,
2472 			    "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2473 		ch->status = -ECONNRESET;
2474 		break;
2475 
2476 	case IB_CM_REJ_CONSUMER_DEFINED:
2477 		opcode = *(u8 *) event->private_data;
2478 		if (opcode == SRP_LOGIN_REJ) {
2479 			struct srp_login_rej *rej = event->private_data;
2480 			u32 reason = be32_to_cpu(rej->reason);
2481 
2482 			if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2483 				shost_printk(KERN_WARNING, shost,
2484 					     PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2485 			else
2486 				shost_printk(KERN_WARNING, shost, PFX
2487 					     "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2488 					     target->sgid.raw,
2489 					     target->ib_cm.orig_dgid.raw,
2490 					     reason);
2491 		} else
2492 			shost_printk(KERN_WARNING, shost,
2493 				     "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2494 				     " opcode 0x%02x\n", opcode);
2495 		ch->status = -ECONNRESET;
2496 		break;
2497 
2498 	case IB_CM_REJ_STALE_CONN:
2499 		shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2500 		ch->status = SRP_STALE_CONN;
2501 		break;
2502 
2503 	default:
2504 		shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2505 			     event->param.rej_rcvd.reason);
2506 		ch->status = -ECONNRESET;
2507 	}
2508 }
2509 
2510 static int srp_ib_cm_handler(struct ib_cm_id *cm_id,
2511 			     const struct ib_cm_event *event)
2512 {
2513 	struct srp_rdma_ch *ch = cm_id->context;
2514 	struct srp_target_port *target = ch->target;
2515 	int comp = 0;
2516 
2517 	switch (event->event) {
2518 	case IB_CM_REQ_ERROR:
2519 		shost_printk(KERN_DEBUG, target->scsi_host,
2520 			     PFX "Sending CM REQ failed\n");
2521 		comp = 1;
2522 		ch->status = -ECONNRESET;
2523 		break;
2524 
2525 	case IB_CM_REP_RECEIVED:
2526 		comp = 1;
2527 		srp_cm_rep_handler(cm_id, event->private_data, ch);
2528 		break;
2529 
2530 	case IB_CM_REJ_RECEIVED:
2531 		shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2532 		comp = 1;
2533 
2534 		srp_ib_cm_rej_handler(cm_id, event, ch);
2535 		break;
2536 
2537 	case IB_CM_DREQ_RECEIVED:
2538 		shost_printk(KERN_WARNING, target->scsi_host,
2539 			     PFX "DREQ received - connection closed\n");
2540 		ch->connected = false;
2541 		if (ib_send_cm_drep(cm_id, NULL, 0))
2542 			shost_printk(KERN_ERR, target->scsi_host,
2543 				     PFX "Sending CM DREP failed\n");
2544 		queue_work(system_long_wq, &target->tl_err_work);
2545 		break;
2546 
2547 	case IB_CM_TIMEWAIT_EXIT:
2548 		shost_printk(KERN_ERR, target->scsi_host,
2549 			     PFX "connection closed\n");
2550 		comp = 1;
2551 
2552 		ch->status = 0;
2553 		break;
2554 
2555 	case IB_CM_MRA_RECEIVED:
2556 	case IB_CM_DREQ_ERROR:
2557 	case IB_CM_DREP_RECEIVED:
2558 		break;
2559 
2560 	default:
2561 		shost_printk(KERN_WARNING, target->scsi_host,
2562 			     PFX "Unhandled CM event %d\n", event->event);
2563 		break;
2564 	}
2565 
2566 	if (comp)
2567 		complete(&ch->done);
2568 
2569 	return 0;
2570 }
2571 
2572 static void srp_rdma_cm_rej_handler(struct srp_rdma_ch *ch,
2573 				    struct rdma_cm_event *event)
2574 {
2575 	struct srp_target_port *target = ch->target;
2576 	struct Scsi_Host *shost = target->scsi_host;
2577 	int opcode;
2578 
2579 	switch (event->status) {
2580 	case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2581 		shost_printk(KERN_WARNING, shost,
2582 			    "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2583 		ch->status = -ECONNRESET;
2584 		break;
2585 
2586 	case IB_CM_REJ_CONSUMER_DEFINED:
2587 		opcode = *(u8 *) event->param.conn.private_data;
2588 		if (opcode == SRP_LOGIN_REJ) {
2589 			struct srp_login_rej *rej =
2590 				(struct srp_login_rej *)
2591 				event->param.conn.private_data;
2592 			u32 reason = be32_to_cpu(rej->reason);
2593 
2594 			if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2595 				shost_printk(KERN_WARNING, shost,
2596 					     PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2597 			else
2598 				shost_printk(KERN_WARNING, shost,
2599 					    PFX "SRP LOGIN REJECTED, reason 0x%08x\n", reason);
2600 		} else {
2601 			shost_printk(KERN_WARNING, shost,
2602 				     "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED, opcode 0x%02x\n",
2603 				     opcode);
2604 		}
2605 		ch->status = -ECONNRESET;
2606 		break;
2607 
2608 	case IB_CM_REJ_STALE_CONN:
2609 		shost_printk(KERN_WARNING, shost,
2610 			     "  REJ reason: stale connection\n");
2611 		ch->status = SRP_STALE_CONN;
2612 		break;
2613 
2614 	default:
2615 		shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2616 			     event->status);
2617 		ch->status = -ECONNRESET;
2618 		break;
2619 	}
2620 }
2621 
2622 static int srp_rdma_cm_handler(struct rdma_cm_id *cm_id,
2623 			       struct rdma_cm_event *event)
2624 {
2625 	struct srp_rdma_ch *ch = cm_id->context;
2626 	struct srp_target_port *target = ch->target;
2627 	int comp = 0;
2628 
2629 	switch (event->event) {
2630 	case RDMA_CM_EVENT_ADDR_RESOLVED:
2631 		ch->status = 0;
2632 		comp = 1;
2633 		break;
2634 
2635 	case RDMA_CM_EVENT_ADDR_ERROR:
2636 		ch->status = -ENXIO;
2637 		comp = 1;
2638 		break;
2639 
2640 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
2641 		ch->status = 0;
2642 		comp = 1;
2643 		break;
2644 
2645 	case RDMA_CM_EVENT_ROUTE_ERROR:
2646 	case RDMA_CM_EVENT_UNREACHABLE:
2647 		ch->status = -EHOSTUNREACH;
2648 		comp = 1;
2649 		break;
2650 
2651 	case RDMA_CM_EVENT_CONNECT_ERROR:
2652 		shost_printk(KERN_DEBUG, target->scsi_host,
2653 			     PFX "Sending CM REQ failed\n");
2654 		comp = 1;
2655 		ch->status = -ECONNRESET;
2656 		break;
2657 
2658 	case RDMA_CM_EVENT_ESTABLISHED:
2659 		comp = 1;
2660 		srp_cm_rep_handler(NULL, event->param.conn.private_data, ch);
2661 		break;
2662 
2663 	case RDMA_CM_EVENT_REJECTED:
2664 		shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2665 		comp = 1;
2666 
2667 		srp_rdma_cm_rej_handler(ch, event);
2668 		break;
2669 
2670 	case RDMA_CM_EVENT_DISCONNECTED:
2671 		if (ch->connected) {
2672 			shost_printk(KERN_WARNING, target->scsi_host,
2673 				     PFX "received DREQ\n");
2674 			rdma_disconnect(ch->rdma_cm.cm_id);
2675 			comp = 1;
2676 			ch->status = 0;
2677 			queue_work(system_long_wq, &target->tl_err_work);
2678 		}
2679 		break;
2680 
2681 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2682 		shost_printk(KERN_ERR, target->scsi_host,
2683 			     PFX "connection closed\n");
2684 
2685 		comp = 1;
2686 		ch->status = 0;
2687 		break;
2688 
2689 	default:
2690 		shost_printk(KERN_WARNING, target->scsi_host,
2691 			     PFX "Unhandled CM event %d\n", event->event);
2692 		break;
2693 	}
2694 
2695 	if (comp)
2696 		complete(&ch->done);
2697 
2698 	return 0;
2699 }
2700 
2701 /**
2702  * srp_change_queue_depth - setting device queue depth
2703  * @sdev: scsi device struct
2704  * @qdepth: requested queue depth
2705  *
2706  * Returns queue depth.
2707  */
2708 static int
2709 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2710 {
2711 	if (!sdev->tagged_supported)
2712 		qdepth = 1;
2713 	return scsi_change_queue_depth(sdev, qdepth);
2714 }
2715 
2716 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2717 			     u8 func, u8 *status)
2718 {
2719 	struct srp_target_port *target = ch->target;
2720 	struct srp_rport *rport = target->rport;
2721 	struct ib_device *dev = target->srp_host->srp_dev->dev;
2722 	struct srp_iu *iu;
2723 	struct srp_tsk_mgmt *tsk_mgmt;
2724 	int res;
2725 
2726 	if (!ch->connected || target->qp_in_error)
2727 		return -1;
2728 
2729 	/*
2730 	 * Lock the rport mutex to avoid that srp_create_ch_ib() is
2731 	 * invoked while a task management function is being sent.
2732 	 */
2733 	mutex_lock(&rport->mutex);
2734 	spin_lock_irq(&ch->lock);
2735 	iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2736 	spin_unlock_irq(&ch->lock);
2737 
2738 	if (!iu) {
2739 		mutex_unlock(&rport->mutex);
2740 
2741 		return -1;
2742 	}
2743 
2744 	iu->num_sge = 1;
2745 
2746 	ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2747 				   DMA_TO_DEVICE);
2748 	tsk_mgmt = iu->buf;
2749 	memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2750 
2751 	tsk_mgmt->opcode 	= SRP_TSK_MGMT;
2752 	int_to_scsilun(lun, &tsk_mgmt->lun);
2753 	tsk_mgmt->tsk_mgmt_func = func;
2754 	tsk_mgmt->task_tag	= req_tag;
2755 
2756 	spin_lock_irq(&ch->lock);
2757 	ch->tsk_mgmt_tag = (ch->tsk_mgmt_tag + 1) | SRP_TAG_TSK_MGMT;
2758 	tsk_mgmt->tag = ch->tsk_mgmt_tag;
2759 	spin_unlock_irq(&ch->lock);
2760 
2761 	init_completion(&ch->tsk_mgmt_done);
2762 
2763 	ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2764 				      DMA_TO_DEVICE);
2765 	if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2766 		srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2767 		mutex_unlock(&rport->mutex);
2768 
2769 		return -1;
2770 	}
2771 	res = wait_for_completion_timeout(&ch->tsk_mgmt_done,
2772 					msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS));
2773 	if (res > 0 && status)
2774 		*status = ch->tsk_mgmt_status;
2775 	mutex_unlock(&rport->mutex);
2776 
2777 	WARN_ON_ONCE(res < 0);
2778 
2779 	return res > 0 ? 0 : -1;
2780 }
2781 
2782 static int srp_abort(struct scsi_cmnd *scmnd)
2783 {
2784 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2785 	struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2786 	u32 tag;
2787 	u16 ch_idx;
2788 	struct srp_rdma_ch *ch;
2789 	int ret;
2790 
2791 	shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2792 
2793 	if (!req)
2794 		return SUCCESS;
2795 	tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmnd));
2796 	ch_idx = blk_mq_unique_tag_to_hwq(tag);
2797 	if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2798 		return SUCCESS;
2799 	ch = &target->ch[ch_idx];
2800 	if (!srp_claim_req(ch, req, NULL, scmnd))
2801 		return SUCCESS;
2802 	shost_printk(KERN_ERR, target->scsi_host,
2803 		     "Sending SRP abort for tag %#x\n", tag);
2804 	if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2805 			      SRP_TSK_ABORT_TASK, NULL) == 0)
2806 		ret = SUCCESS;
2807 	else if (target->rport->state == SRP_RPORT_LOST)
2808 		ret = FAST_IO_FAIL;
2809 	else
2810 		ret = FAILED;
2811 	if (ret == SUCCESS) {
2812 		srp_free_req(ch, req, scmnd, 0);
2813 		scmnd->result = DID_ABORT << 16;
2814 		scmnd->scsi_done(scmnd);
2815 	}
2816 
2817 	return ret;
2818 }
2819 
2820 static int srp_reset_device(struct scsi_cmnd *scmnd)
2821 {
2822 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2823 	struct srp_rdma_ch *ch;
2824 	u8 status;
2825 
2826 	shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2827 
2828 	ch = &target->ch[0];
2829 	if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2830 			      SRP_TSK_LUN_RESET, &status))
2831 		return FAILED;
2832 	if (status)
2833 		return FAILED;
2834 
2835 	return SUCCESS;
2836 }
2837 
2838 static int srp_reset_host(struct scsi_cmnd *scmnd)
2839 {
2840 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2841 
2842 	shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2843 
2844 	return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2845 }
2846 
2847 static int srp_target_alloc(struct scsi_target *starget)
2848 {
2849 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2850 	struct srp_target_port *target = host_to_target(shost);
2851 
2852 	if (target->target_can_queue)
2853 		starget->can_queue = target->target_can_queue;
2854 	return 0;
2855 }
2856 
2857 static int srp_slave_configure(struct scsi_device *sdev)
2858 {
2859 	struct Scsi_Host *shost = sdev->host;
2860 	struct srp_target_port *target = host_to_target(shost);
2861 	struct request_queue *q = sdev->request_queue;
2862 	unsigned long timeout;
2863 
2864 	if (sdev->type == TYPE_DISK) {
2865 		timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2866 		blk_queue_rq_timeout(q, timeout);
2867 	}
2868 
2869 	return 0;
2870 }
2871 
2872 static ssize_t id_ext_show(struct device *dev, struct device_attribute *attr,
2873 			   char *buf)
2874 {
2875 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2876 
2877 	return sysfs_emit(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2878 }
2879 
2880 static DEVICE_ATTR_RO(id_ext);
2881 
2882 static ssize_t ioc_guid_show(struct device *dev, struct device_attribute *attr,
2883 			     char *buf)
2884 {
2885 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2886 
2887 	return sysfs_emit(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2888 }
2889 
2890 static DEVICE_ATTR_RO(ioc_guid);
2891 
2892 static ssize_t service_id_show(struct device *dev,
2893 			       struct device_attribute *attr, char *buf)
2894 {
2895 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2896 
2897 	if (target->using_rdma_cm)
2898 		return -ENOENT;
2899 	return sysfs_emit(buf, "0x%016llx\n",
2900 			  be64_to_cpu(target->ib_cm.service_id));
2901 }
2902 
2903 static DEVICE_ATTR_RO(service_id);
2904 
2905 static ssize_t pkey_show(struct device *dev, struct device_attribute *attr,
2906 			 char *buf)
2907 {
2908 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2909 
2910 	if (target->using_rdma_cm)
2911 		return -ENOENT;
2912 
2913 	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(target->ib_cm.pkey));
2914 }
2915 
2916 static DEVICE_ATTR_RO(pkey);
2917 
2918 static ssize_t sgid_show(struct device *dev, struct device_attribute *attr,
2919 			 char *buf)
2920 {
2921 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2922 
2923 	return sysfs_emit(buf, "%pI6\n", target->sgid.raw);
2924 }
2925 
2926 static DEVICE_ATTR_RO(sgid);
2927 
2928 static ssize_t dgid_show(struct device *dev, struct device_attribute *attr,
2929 			 char *buf)
2930 {
2931 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2932 	struct srp_rdma_ch *ch = &target->ch[0];
2933 
2934 	if (target->using_rdma_cm)
2935 		return -ENOENT;
2936 
2937 	return sysfs_emit(buf, "%pI6\n", ch->ib_cm.path.dgid.raw);
2938 }
2939 
2940 static DEVICE_ATTR_RO(dgid);
2941 
2942 static ssize_t orig_dgid_show(struct device *dev, struct device_attribute *attr,
2943 			      char *buf)
2944 {
2945 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2946 
2947 	if (target->using_rdma_cm)
2948 		return -ENOENT;
2949 
2950 	return sysfs_emit(buf, "%pI6\n", target->ib_cm.orig_dgid.raw);
2951 }
2952 
2953 static DEVICE_ATTR_RO(orig_dgid);
2954 
2955 static ssize_t req_lim_show(struct device *dev, struct device_attribute *attr,
2956 			    char *buf)
2957 {
2958 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2959 	struct srp_rdma_ch *ch;
2960 	int i, req_lim = INT_MAX;
2961 
2962 	for (i = 0; i < target->ch_count; i++) {
2963 		ch = &target->ch[i];
2964 		req_lim = min(req_lim, ch->req_lim);
2965 	}
2966 
2967 	return sysfs_emit(buf, "%d\n", req_lim);
2968 }
2969 
2970 static DEVICE_ATTR_RO(req_lim);
2971 
2972 static ssize_t zero_req_lim_show(struct device *dev,
2973 				 struct device_attribute *attr, char *buf)
2974 {
2975 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2976 
2977 	return sysfs_emit(buf, "%d\n", target->zero_req_lim);
2978 }
2979 
2980 static DEVICE_ATTR_RO(zero_req_lim);
2981 
2982 static ssize_t local_ib_port_show(struct device *dev,
2983 				  struct device_attribute *attr, char *buf)
2984 {
2985 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2986 
2987 	return sysfs_emit(buf, "%d\n", target->srp_host->port);
2988 }
2989 
2990 static DEVICE_ATTR_RO(local_ib_port);
2991 
2992 static ssize_t local_ib_device_show(struct device *dev,
2993 				    struct device_attribute *attr, char *buf)
2994 {
2995 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2996 
2997 	return sysfs_emit(buf, "%s\n",
2998 			  dev_name(&target->srp_host->srp_dev->dev->dev));
2999 }
3000 
3001 static DEVICE_ATTR_RO(local_ib_device);
3002 
3003 static ssize_t ch_count_show(struct device *dev, struct device_attribute *attr,
3004 			     char *buf)
3005 {
3006 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
3007 
3008 	return sysfs_emit(buf, "%d\n", target->ch_count);
3009 }
3010 
3011 static DEVICE_ATTR_RO(ch_count);
3012 
3013 static ssize_t comp_vector_show(struct device *dev,
3014 				struct device_attribute *attr, char *buf)
3015 {
3016 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
3017 
3018 	return sysfs_emit(buf, "%d\n", target->comp_vector);
3019 }
3020 
3021 static DEVICE_ATTR_RO(comp_vector);
3022 
3023 static ssize_t tl_retry_count_show(struct device *dev,
3024 				   struct device_attribute *attr, char *buf)
3025 {
3026 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
3027 
3028 	return sysfs_emit(buf, "%d\n", target->tl_retry_count);
3029 }
3030 
3031 static DEVICE_ATTR_RO(tl_retry_count);
3032 
3033 static ssize_t cmd_sg_entries_show(struct device *dev,
3034 				   struct device_attribute *attr, char *buf)
3035 {
3036 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
3037 
3038 	return sysfs_emit(buf, "%u\n", target->cmd_sg_cnt);
3039 }
3040 
3041 static DEVICE_ATTR_RO(cmd_sg_entries);
3042 
3043 static ssize_t allow_ext_sg_show(struct device *dev,
3044 				 struct device_attribute *attr, char *buf)
3045 {
3046 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
3047 
3048 	return sysfs_emit(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
3049 }
3050 
3051 static DEVICE_ATTR_RO(allow_ext_sg);
3052 
3053 static struct device_attribute *srp_host_attrs[] = {
3054 	&dev_attr_id_ext,
3055 	&dev_attr_ioc_guid,
3056 	&dev_attr_service_id,
3057 	&dev_attr_pkey,
3058 	&dev_attr_sgid,
3059 	&dev_attr_dgid,
3060 	&dev_attr_orig_dgid,
3061 	&dev_attr_req_lim,
3062 	&dev_attr_zero_req_lim,
3063 	&dev_attr_local_ib_port,
3064 	&dev_attr_local_ib_device,
3065 	&dev_attr_ch_count,
3066 	&dev_attr_comp_vector,
3067 	&dev_attr_tl_retry_count,
3068 	&dev_attr_cmd_sg_entries,
3069 	&dev_attr_allow_ext_sg,
3070 	NULL
3071 };
3072 
3073 static struct scsi_host_template srp_template = {
3074 	.module				= THIS_MODULE,
3075 	.name				= "InfiniBand SRP initiator",
3076 	.proc_name			= DRV_NAME,
3077 	.target_alloc			= srp_target_alloc,
3078 	.slave_configure		= srp_slave_configure,
3079 	.info				= srp_target_info,
3080 	.init_cmd_priv			= srp_init_cmd_priv,
3081 	.exit_cmd_priv			= srp_exit_cmd_priv,
3082 	.queuecommand			= srp_queuecommand,
3083 	.change_queue_depth             = srp_change_queue_depth,
3084 	.eh_timed_out			= srp_timed_out,
3085 	.eh_abort_handler		= srp_abort,
3086 	.eh_device_reset_handler	= srp_reset_device,
3087 	.eh_host_reset_handler		= srp_reset_host,
3088 	.skip_settle_delay		= true,
3089 	.sg_tablesize			= SRP_DEF_SG_TABLESIZE,
3090 	.can_queue			= SRP_DEFAULT_CMD_SQ_SIZE,
3091 	.this_id			= -1,
3092 	.cmd_per_lun			= SRP_DEFAULT_CMD_SQ_SIZE,
3093 	.shost_attrs			= srp_host_attrs,
3094 	.track_queue_depth		= 1,
3095 	.cmd_size			= sizeof(struct srp_request),
3096 };
3097 
3098 static int srp_sdev_count(struct Scsi_Host *host)
3099 {
3100 	struct scsi_device *sdev;
3101 	int c = 0;
3102 
3103 	shost_for_each_device(sdev, host)
3104 		c++;
3105 
3106 	return c;
3107 }
3108 
3109 /*
3110  * Return values:
3111  * < 0 upon failure. Caller is responsible for SRP target port cleanup.
3112  * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
3113  *    removal has been scheduled.
3114  * 0 and target->state != SRP_TARGET_REMOVED upon success.
3115  */
3116 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
3117 {
3118 	struct srp_rport_identifiers ids;
3119 	struct srp_rport *rport;
3120 
3121 	target->state = SRP_TARGET_SCANNING;
3122 	sprintf(target->target_name, "SRP.T10:%016llX",
3123 		be64_to_cpu(target->id_ext));
3124 
3125 	if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dev.parent))
3126 		return -ENODEV;
3127 
3128 	memcpy(ids.port_id, &target->id_ext, 8);
3129 	memcpy(ids.port_id + 8, &target->ioc_guid, 8);
3130 	ids.roles = SRP_RPORT_ROLE_TARGET;
3131 	rport = srp_rport_add(target->scsi_host, &ids);
3132 	if (IS_ERR(rport)) {
3133 		scsi_remove_host(target->scsi_host);
3134 		return PTR_ERR(rport);
3135 	}
3136 
3137 	rport->lld_data = target;
3138 	target->rport = rport;
3139 
3140 	spin_lock(&host->target_lock);
3141 	list_add_tail(&target->list, &host->target_list);
3142 	spin_unlock(&host->target_lock);
3143 
3144 	scsi_scan_target(&target->scsi_host->shost_gendev,
3145 			 0, target->scsi_id, SCAN_WILD_CARD, SCSI_SCAN_INITIAL);
3146 
3147 	if (srp_connected_ch(target) < target->ch_count ||
3148 	    target->qp_in_error) {
3149 		shost_printk(KERN_INFO, target->scsi_host,
3150 			     PFX "SCSI scan failed - removing SCSI host\n");
3151 		srp_queue_remove_work(target);
3152 		goto out;
3153 	}
3154 
3155 	pr_debug("%s: SCSI scan succeeded - detected %d LUNs\n",
3156 		 dev_name(&target->scsi_host->shost_gendev),
3157 		 srp_sdev_count(target->scsi_host));
3158 
3159 	spin_lock_irq(&target->lock);
3160 	if (target->state == SRP_TARGET_SCANNING)
3161 		target->state = SRP_TARGET_LIVE;
3162 	spin_unlock_irq(&target->lock);
3163 
3164 out:
3165 	return 0;
3166 }
3167 
3168 static void srp_release_dev(struct device *dev)
3169 {
3170 	struct srp_host *host =
3171 		container_of(dev, struct srp_host, dev);
3172 
3173 	complete(&host->released);
3174 }
3175 
3176 static struct class srp_class = {
3177 	.name    = "infiniband_srp",
3178 	.dev_release = srp_release_dev
3179 };
3180 
3181 /**
3182  * srp_conn_unique() - check whether the connection to a target is unique
3183  * @host:   SRP host.
3184  * @target: SRP target port.
3185  */
3186 static bool srp_conn_unique(struct srp_host *host,
3187 			    struct srp_target_port *target)
3188 {
3189 	struct srp_target_port *t;
3190 	bool ret = false;
3191 
3192 	if (target->state == SRP_TARGET_REMOVED)
3193 		goto out;
3194 
3195 	ret = true;
3196 
3197 	spin_lock(&host->target_lock);
3198 	list_for_each_entry(t, &host->target_list, list) {
3199 		if (t != target &&
3200 		    target->id_ext == t->id_ext &&
3201 		    target->ioc_guid == t->ioc_guid &&
3202 		    target->initiator_ext == t->initiator_ext) {
3203 			ret = false;
3204 			break;
3205 		}
3206 	}
3207 	spin_unlock(&host->target_lock);
3208 
3209 out:
3210 	return ret;
3211 }
3212 
3213 /*
3214  * Target ports are added by writing
3215  *
3216  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
3217  *     pkey=<P_Key>,service_id=<service ID>
3218  * or
3219  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,
3220  *     [src=<IPv4 address>,]dest=<IPv4 address>:<port number>
3221  *
3222  * to the add_target sysfs attribute.
3223  */
3224 enum {
3225 	SRP_OPT_ERR		= 0,
3226 	SRP_OPT_ID_EXT		= 1 << 0,
3227 	SRP_OPT_IOC_GUID	= 1 << 1,
3228 	SRP_OPT_DGID		= 1 << 2,
3229 	SRP_OPT_PKEY		= 1 << 3,
3230 	SRP_OPT_SERVICE_ID	= 1 << 4,
3231 	SRP_OPT_MAX_SECT	= 1 << 5,
3232 	SRP_OPT_MAX_CMD_PER_LUN	= 1 << 6,
3233 	SRP_OPT_IO_CLASS	= 1 << 7,
3234 	SRP_OPT_INITIATOR_EXT	= 1 << 8,
3235 	SRP_OPT_CMD_SG_ENTRIES	= 1 << 9,
3236 	SRP_OPT_ALLOW_EXT_SG	= 1 << 10,
3237 	SRP_OPT_SG_TABLESIZE	= 1 << 11,
3238 	SRP_OPT_COMP_VECTOR	= 1 << 12,
3239 	SRP_OPT_TL_RETRY_COUNT	= 1 << 13,
3240 	SRP_OPT_QUEUE_SIZE	= 1 << 14,
3241 	SRP_OPT_IP_SRC		= 1 << 15,
3242 	SRP_OPT_IP_DEST		= 1 << 16,
3243 	SRP_OPT_TARGET_CAN_QUEUE= 1 << 17,
3244 	SRP_OPT_MAX_IT_IU_SIZE  = 1 << 18,
3245 	SRP_OPT_CH_COUNT	= 1 << 19,
3246 };
3247 
3248 static unsigned int srp_opt_mandatory[] = {
3249 	SRP_OPT_ID_EXT		|
3250 	SRP_OPT_IOC_GUID	|
3251 	SRP_OPT_DGID		|
3252 	SRP_OPT_PKEY		|
3253 	SRP_OPT_SERVICE_ID,
3254 	SRP_OPT_ID_EXT		|
3255 	SRP_OPT_IOC_GUID	|
3256 	SRP_OPT_IP_DEST,
3257 };
3258 
3259 static const match_table_t srp_opt_tokens = {
3260 	{ SRP_OPT_ID_EXT,		"id_ext=%s" 		},
3261 	{ SRP_OPT_IOC_GUID,		"ioc_guid=%s" 		},
3262 	{ SRP_OPT_DGID,			"dgid=%s" 		},
3263 	{ SRP_OPT_PKEY,			"pkey=%x" 		},
3264 	{ SRP_OPT_SERVICE_ID,		"service_id=%s"		},
3265 	{ SRP_OPT_MAX_SECT,		"max_sect=%d" 		},
3266 	{ SRP_OPT_MAX_CMD_PER_LUN,	"max_cmd_per_lun=%d" 	},
3267 	{ SRP_OPT_TARGET_CAN_QUEUE,	"target_can_queue=%d"	},
3268 	{ SRP_OPT_IO_CLASS,		"io_class=%x"		},
3269 	{ SRP_OPT_INITIATOR_EXT,	"initiator_ext=%s"	},
3270 	{ SRP_OPT_CMD_SG_ENTRIES,	"cmd_sg_entries=%u"	},
3271 	{ SRP_OPT_ALLOW_EXT_SG,		"allow_ext_sg=%u"	},
3272 	{ SRP_OPT_SG_TABLESIZE,		"sg_tablesize=%u"	},
3273 	{ SRP_OPT_COMP_VECTOR,		"comp_vector=%u"	},
3274 	{ SRP_OPT_TL_RETRY_COUNT,	"tl_retry_count=%u"	},
3275 	{ SRP_OPT_QUEUE_SIZE,		"queue_size=%d"		},
3276 	{ SRP_OPT_IP_SRC,		"src=%s"		},
3277 	{ SRP_OPT_IP_DEST,		"dest=%s"		},
3278 	{ SRP_OPT_MAX_IT_IU_SIZE,	"max_it_iu_size=%d"	},
3279 	{ SRP_OPT_CH_COUNT,		"ch_count=%u",		},
3280 	{ SRP_OPT_ERR,			NULL 			}
3281 };
3282 
3283 /**
3284  * srp_parse_in - parse an IP address and port number combination
3285  * @net:	   [in]  Network namespace.
3286  * @sa:		   [out] Address family, IP address and port number.
3287  * @addr_port_str: [in]  IP address and port number.
3288  * @has_port:	   [out] Whether or not @addr_port_str includes a port number.
3289  *
3290  * Parse the following address formats:
3291  * - IPv4: <ip_address>:<port>, e.g. 1.2.3.4:5.
3292  * - IPv6: \[<ipv6_address>\]:<port>, e.g. [1::2:3%4]:5.
3293  */
3294 static int srp_parse_in(struct net *net, struct sockaddr_storage *sa,
3295 			const char *addr_port_str, bool *has_port)
3296 {
3297 	char *addr_end, *addr = kstrdup(addr_port_str, GFP_KERNEL);
3298 	char *port_str;
3299 	int ret;
3300 
3301 	if (!addr)
3302 		return -ENOMEM;
3303 	port_str = strrchr(addr, ':');
3304 	if (port_str && strchr(port_str, ']'))
3305 		port_str = NULL;
3306 	if (port_str)
3307 		*port_str++ = '\0';
3308 	if (has_port)
3309 		*has_port = port_str != NULL;
3310 	ret = inet_pton_with_scope(net, AF_INET, addr, port_str, sa);
3311 	if (ret && addr[0]) {
3312 		addr_end = addr + strlen(addr) - 1;
3313 		if (addr[0] == '[' && *addr_end == ']') {
3314 			*addr_end = '\0';
3315 			ret = inet_pton_with_scope(net, AF_INET6, addr + 1,
3316 						   port_str, sa);
3317 		}
3318 	}
3319 	kfree(addr);
3320 	pr_debug("%s -> %pISpfsc\n", addr_port_str, sa);
3321 	return ret;
3322 }
3323 
3324 static int srp_parse_options(struct net *net, const char *buf,
3325 			     struct srp_target_port *target)
3326 {
3327 	char *options, *sep_opt;
3328 	char *p;
3329 	substring_t args[MAX_OPT_ARGS];
3330 	unsigned long long ull;
3331 	bool has_port;
3332 	int opt_mask = 0;
3333 	int token;
3334 	int ret = -EINVAL;
3335 	int i;
3336 
3337 	options = kstrdup(buf, GFP_KERNEL);
3338 	if (!options)
3339 		return -ENOMEM;
3340 
3341 	sep_opt = options;
3342 	while ((p = strsep(&sep_opt, ",\n")) != NULL) {
3343 		if (!*p)
3344 			continue;
3345 
3346 		token = match_token(p, srp_opt_tokens, args);
3347 		opt_mask |= token;
3348 
3349 		switch (token) {
3350 		case SRP_OPT_ID_EXT:
3351 			p = match_strdup(args);
3352 			if (!p) {
3353 				ret = -ENOMEM;
3354 				goto out;
3355 			}
3356 			ret = kstrtoull(p, 16, &ull);
3357 			if (ret) {
3358 				pr_warn("invalid id_ext parameter '%s'\n", p);
3359 				kfree(p);
3360 				goto out;
3361 			}
3362 			target->id_ext = cpu_to_be64(ull);
3363 			kfree(p);
3364 			break;
3365 
3366 		case SRP_OPT_IOC_GUID:
3367 			p = match_strdup(args);
3368 			if (!p) {
3369 				ret = -ENOMEM;
3370 				goto out;
3371 			}
3372 			ret = kstrtoull(p, 16, &ull);
3373 			if (ret) {
3374 				pr_warn("invalid ioc_guid parameter '%s'\n", p);
3375 				kfree(p);
3376 				goto out;
3377 			}
3378 			target->ioc_guid = cpu_to_be64(ull);
3379 			kfree(p);
3380 			break;
3381 
3382 		case SRP_OPT_DGID:
3383 			p = match_strdup(args);
3384 			if (!p) {
3385 				ret = -ENOMEM;
3386 				goto out;
3387 			}
3388 			if (strlen(p) != 32) {
3389 				pr_warn("bad dest GID parameter '%s'\n", p);
3390 				kfree(p);
3391 				goto out;
3392 			}
3393 
3394 			ret = hex2bin(target->ib_cm.orig_dgid.raw, p, 16);
3395 			kfree(p);
3396 			if (ret < 0)
3397 				goto out;
3398 			break;
3399 
3400 		case SRP_OPT_PKEY:
3401 			if (match_hex(args, &token)) {
3402 				pr_warn("bad P_Key parameter '%s'\n", p);
3403 				goto out;
3404 			}
3405 			target->ib_cm.pkey = cpu_to_be16(token);
3406 			break;
3407 
3408 		case SRP_OPT_SERVICE_ID:
3409 			p = match_strdup(args);
3410 			if (!p) {
3411 				ret = -ENOMEM;
3412 				goto out;
3413 			}
3414 			ret = kstrtoull(p, 16, &ull);
3415 			if (ret) {
3416 				pr_warn("bad service_id parameter '%s'\n", p);
3417 				kfree(p);
3418 				goto out;
3419 			}
3420 			target->ib_cm.service_id = cpu_to_be64(ull);
3421 			kfree(p);
3422 			break;
3423 
3424 		case SRP_OPT_IP_SRC:
3425 			p = match_strdup(args);
3426 			if (!p) {
3427 				ret = -ENOMEM;
3428 				goto out;
3429 			}
3430 			ret = srp_parse_in(net, &target->rdma_cm.src.ss, p,
3431 					   NULL);
3432 			if (ret < 0) {
3433 				pr_warn("bad source parameter '%s'\n", p);
3434 				kfree(p);
3435 				goto out;
3436 			}
3437 			target->rdma_cm.src_specified = true;
3438 			kfree(p);
3439 			break;
3440 
3441 		case SRP_OPT_IP_DEST:
3442 			p = match_strdup(args);
3443 			if (!p) {
3444 				ret = -ENOMEM;
3445 				goto out;
3446 			}
3447 			ret = srp_parse_in(net, &target->rdma_cm.dst.ss, p,
3448 					   &has_port);
3449 			if (!has_port)
3450 				ret = -EINVAL;
3451 			if (ret < 0) {
3452 				pr_warn("bad dest parameter '%s'\n", p);
3453 				kfree(p);
3454 				goto out;
3455 			}
3456 			target->using_rdma_cm = true;
3457 			kfree(p);
3458 			break;
3459 
3460 		case SRP_OPT_MAX_SECT:
3461 			if (match_int(args, &token)) {
3462 				pr_warn("bad max sect parameter '%s'\n", p);
3463 				goto out;
3464 			}
3465 			target->scsi_host->max_sectors = token;
3466 			break;
3467 
3468 		case SRP_OPT_QUEUE_SIZE:
3469 			if (match_int(args, &token) || token < 1) {
3470 				pr_warn("bad queue_size parameter '%s'\n", p);
3471 				goto out;
3472 			}
3473 			target->scsi_host->can_queue = token;
3474 			target->queue_size = token + SRP_RSP_SQ_SIZE +
3475 					     SRP_TSK_MGMT_SQ_SIZE;
3476 			if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3477 				target->scsi_host->cmd_per_lun = token;
3478 			break;
3479 
3480 		case SRP_OPT_MAX_CMD_PER_LUN:
3481 			if (match_int(args, &token) || token < 1) {
3482 				pr_warn("bad max cmd_per_lun parameter '%s'\n",
3483 					p);
3484 				goto out;
3485 			}
3486 			target->scsi_host->cmd_per_lun = token;
3487 			break;
3488 
3489 		case SRP_OPT_TARGET_CAN_QUEUE:
3490 			if (match_int(args, &token) || token < 1) {
3491 				pr_warn("bad max target_can_queue parameter '%s'\n",
3492 					p);
3493 				goto out;
3494 			}
3495 			target->target_can_queue = token;
3496 			break;
3497 
3498 		case SRP_OPT_IO_CLASS:
3499 			if (match_hex(args, &token)) {
3500 				pr_warn("bad IO class parameter '%s'\n", p);
3501 				goto out;
3502 			}
3503 			if (token != SRP_REV10_IB_IO_CLASS &&
3504 			    token != SRP_REV16A_IB_IO_CLASS) {
3505 				pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3506 					token, SRP_REV10_IB_IO_CLASS,
3507 					SRP_REV16A_IB_IO_CLASS);
3508 				goto out;
3509 			}
3510 			target->io_class = token;
3511 			break;
3512 
3513 		case SRP_OPT_INITIATOR_EXT:
3514 			p = match_strdup(args);
3515 			if (!p) {
3516 				ret = -ENOMEM;
3517 				goto out;
3518 			}
3519 			ret = kstrtoull(p, 16, &ull);
3520 			if (ret) {
3521 				pr_warn("bad initiator_ext value '%s'\n", p);
3522 				kfree(p);
3523 				goto out;
3524 			}
3525 			target->initiator_ext = cpu_to_be64(ull);
3526 			kfree(p);
3527 			break;
3528 
3529 		case SRP_OPT_CMD_SG_ENTRIES:
3530 			if (match_int(args, &token) || token < 1 || token > 255) {
3531 				pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3532 					p);
3533 				goto out;
3534 			}
3535 			target->cmd_sg_cnt = token;
3536 			break;
3537 
3538 		case SRP_OPT_ALLOW_EXT_SG:
3539 			if (match_int(args, &token)) {
3540 				pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3541 				goto out;
3542 			}
3543 			target->allow_ext_sg = !!token;
3544 			break;
3545 
3546 		case SRP_OPT_SG_TABLESIZE:
3547 			if (match_int(args, &token) || token < 1 ||
3548 					token > SG_MAX_SEGMENTS) {
3549 				pr_warn("bad max sg_tablesize parameter '%s'\n",
3550 					p);
3551 				goto out;
3552 			}
3553 			target->sg_tablesize = token;
3554 			break;
3555 
3556 		case SRP_OPT_COMP_VECTOR:
3557 			if (match_int(args, &token) || token < 0) {
3558 				pr_warn("bad comp_vector parameter '%s'\n", p);
3559 				goto out;
3560 			}
3561 			target->comp_vector = token;
3562 			break;
3563 
3564 		case SRP_OPT_TL_RETRY_COUNT:
3565 			if (match_int(args, &token) || token < 2 || token > 7) {
3566 				pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3567 					p);
3568 				goto out;
3569 			}
3570 			target->tl_retry_count = token;
3571 			break;
3572 
3573 		case SRP_OPT_MAX_IT_IU_SIZE:
3574 			if (match_int(args, &token) || token < 0) {
3575 				pr_warn("bad maximum initiator to target IU size '%s'\n", p);
3576 				goto out;
3577 			}
3578 			target->max_it_iu_size = token;
3579 			break;
3580 
3581 		case SRP_OPT_CH_COUNT:
3582 			if (match_int(args, &token) || token < 1) {
3583 				pr_warn("bad channel count %s\n", p);
3584 				goto out;
3585 			}
3586 			target->ch_count = token;
3587 			break;
3588 
3589 		default:
3590 			pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3591 				p);
3592 			goto out;
3593 		}
3594 	}
3595 
3596 	for (i = 0; i < ARRAY_SIZE(srp_opt_mandatory); i++) {
3597 		if ((opt_mask & srp_opt_mandatory[i]) == srp_opt_mandatory[i]) {
3598 			ret = 0;
3599 			break;
3600 		}
3601 	}
3602 	if (ret)
3603 		pr_warn("target creation request is missing one or more parameters\n");
3604 
3605 	if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3606 	    && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3607 		pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3608 			target->scsi_host->cmd_per_lun,
3609 			target->scsi_host->can_queue);
3610 
3611 out:
3612 	kfree(options);
3613 	return ret;
3614 }
3615 
3616 static ssize_t add_target_store(struct device *dev,
3617 				struct device_attribute *attr, const char *buf,
3618 				size_t count)
3619 {
3620 	struct srp_host *host =
3621 		container_of(dev, struct srp_host, dev);
3622 	struct Scsi_Host *target_host;
3623 	struct srp_target_port *target;
3624 	struct srp_rdma_ch *ch;
3625 	struct srp_device *srp_dev = host->srp_dev;
3626 	struct ib_device *ibdev = srp_dev->dev;
3627 	int ret, i, ch_idx;
3628 	unsigned int max_sectors_per_mr, mr_per_cmd = 0;
3629 	bool multich = false;
3630 	uint32_t max_iu_len;
3631 
3632 	target_host = scsi_host_alloc(&srp_template,
3633 				      sizeof (struct srp_target_port));
3634 	if (!target_host)
3635 		return -ENOMEM;
3636 
3637 	target_host->transportt  = ib_srp_transport_template;
3638 	target_host->max_channel = 0;
3639 	target_host->max_id      = 1;
3640 	target_host->max_lun     = -1LL;
3641 	target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3642 	target_host->max_segment_size = ib_dma_max_seg_size(ibdev);
3643 
3644 	if (!(ibdev->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG))
3645 		target_host->virt_boundary_mask = ~srp_dev->mr_page_mask;
3646 
3647 	target = host_to_target(target_host);
3648 
3649 	target->net		= kobj_ns_grab_current(KOBJ_NS_TYPE_NET);
3650 	target->io_class	= SRP_REV16A_IB_IO_CLASS;
3651 	target->scsi_host	= target_host;
3652 	target->srp_host	= host;
3653 	target->lkey		= host->srp_dev->pd->local_dma_lkey;
3654 	target->global_rkey	= host->srp_dev->global_rkey;
3655 	target->cmd_sg_cnt	= cmd_sg_entries;
3656 	target->sg_tablesize	= indirect_sg_entries ? : cmd_sg_entries;
3657 	target->allow_ext_sg	= allow_ext_sg;
3658 	target->tl_retry_count	= 7;
3659 	target->queue_size	= SRP_DEFAULT_QUEUE_SIZE;
3660 
3661 	/*
3662 	 * Avoid that the SCSI host can be removed by srp_remove_target()
3663 	 * before this function returns.
3664 	 */
3665 	scsi_host_get(target->scsi_host);
3666 
3667 	ret = mutex_lock_interruptible(&host->add_target_mutex);
3668 	if (ret < 0)
3669 		goto put;
3670 
3671 	ret = srp_parse_options(target->net, buf, target);
3672 	if (ret)
3673 		goto out;
3674 
3675 	if (!srp_conn_unique(target->srp_host, target)) {
3676 		if (target->using_rdma_cm) {
3677 			shost_printk(KERN_INFO, target->scsi_host,
3678 				     PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;dest=%pIS\n",
3679 				     be64_to_cpu(target->id_ext),
3680 				     be64_to_cpu(target->ioc_guid),
3681 				     &target->rdma_cm.dst);
3682 		} else {
3683 			shost_printk(KERN_INFO, target->scsi_host,
3684 				     PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3685 				     be64_to_cpu(target->id_ext),
3686 				     be64_to_cpu(target->ioc_guid),
3687 				     be64_to_cpu(target->initiator_ext));
3688 		}
3689 		ret = -EEXIST;
3690 		goto out;
3691 	}
3692 
3693 	if (!srp_dev->has_fr && !target->allow_ext_sg &&
3694 	    target->cmd_sg_cnt < target->sg_tablesize) {
3695 		pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3696 		target->sg_tablesize = target->cmd_sg_cnt;
3697 	}
3698 
3699 	if (srp_dev->use_fast_reg) {
3700 		bool gaps_reg = (ibdev->attrs.device_cap_flags &
3701 				 IB_DEVICE_SG_GAPS_REG);
3702 
3703 		max_sectors_per_mr = srp_dev->max_pages_per_mr <<
3704 				  (ilog2(srp_dev->mr_page_size) - 9);
3705 		if (!gaps_reg) {
3706 			/*
3707 			 * FR can only map one HCA page per entry. If the start
3708 			 * address is not aligned on a HCA page boundary two
3709 			 * entries will be used for the head and the tail
3710 			 * although these two entries combined contain at most
3711 			 * one HCA page of data. Hence the "+ 1" in the
3712 			 * calculation below.
3713 			 *
3714 			 * The indirect data buffer descriptor is contiguous
3715 			 * so the memory for that buffer will only be
3716 			 * registered if register_always is true. Hence add
3717 			 * one to mr_per_cmd if register_always has been set.
3718 			 */
3719 			mr_per_cmd = register_always +
3720 				(target->scsi_host->max_sectors + 1 +
3721 				 max_sectors_per_mr - 1) / max_sectors_per_mr;
3722 		} else {
3723 			mr_per_cmd = register_always +
3724 				(target->sg_tablesize +
3725 				 srp_dev->max_pages_per_mr - 1) /
3726 				srp_dev->max_pages_per_mr;
3727 		}
3728 		pr_debug("max_sectors = %u; max_pages_per_mr = %u; mr_page_size = %u; max_sectors_per_mr = %u; mr_per_cmd = %u\n",
3729 			 target->scsi_host->max_sectors, srp_dev->max_pages_per_mr, srp_dev->mr_page_size,
3730 			 max_sectors_per_mr, mr_per_cmd);
3731 	}
3732 
3733 	target_host->sg_tablesize = target->sg_tablesize;
3734 	target->mr_pool_size = target->scsi_host->can_queue * mr_per_cmd;
3735 	target->mr_per_cmd = mr_per_cmd;
3736 	target->indirect_size = target->sg_tablesize *
3737 				sizeof (struct srp_direct_buf);
3738 	max_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
3739 				       srp_use_imm_data,
3740 				       target->max_it_iu_size);
3741 
3742 	INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3743 	INIT_WORK(&target->remove_work, srp_remove_work);
3744 	spin_lock_init(&target->lock);
3745 	ret = rdma_query_gid(ibdev, host->port, 0, &target->sgid);
3746 	if (ret)
3747 		goto out;
3748 
3749 	ret = -ENOMEM;
3750 	if (target->ch_count == 0) {
3751 		target->ch_count =
3752 			min(ch_count ?:
3753 				max(4 * num_online_nodes(),
3754 				    ibdev->num_comp_vectors),
3755 				num_online_cpus());
3756 	}
3757 
3758 	target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3759 			     GFP_KERNEL);
3760 	if (!target->ch)
3761 		goto out;
3762 
3763 	for (ch_idx = 0; ch_idx < target->ch_count; ++ch_idx) {
3764 		ch = &target->ch[ch_idx];
3765 		ch->target = target;
3766 		ch->comp_vector = ch_idx % ibdev->num_comp_vectors;
3767 		spin_lock_init(&ch->lock);
3768 		INIT_LIST_HEAD(&ch->free_tx);
3769 		ret = srp_new_cm_id(ch);
3770 		if (ret)
3771 			goto err_disconnect;
3772 
3773 		ret = srp_create_ch_ib(ch);
3774 		if (ret)
3775 			goto err_disconnect;
3776 
3777 		ret = srp_connect_ch(ch, max_iu_len, multich);
3778 		if (ret) {
3779 			char dst[64];
3780 
3781 			if (target->using_rdma_cm)
3782 				snprintf(dst, sizeof(dst), "%pIS",
3783 					&target->rdma_cm.dst);
3784 			else
3785 				snprintf(dst, sizeof(dst), "%pI6",
3786 					target->ib_cm.orig_dgid.raw);
3787 			shost_printk(KERN_ERR, target->scsi_host,
3788 				PFX "Connection %d/%d to %s failed\n",
3789 				ch_idx,
3790 				target->ch_count, dst);
3791 			if (ch_idx == 0) {
3792 				goto free_ch;
3793 			} else {
3794 				srp_free_ch_ib(target, ch);
3795 				target->ch_count = ch - target->ch;
3796 				goto connected;
3797 			}
3798 		}
3799 		multich = true;
3800 	}
3801 
3802 connected:
3803 	target->scsi_host->nr_hw_queues = target->ch_count;
3804 
3805 	ret = srp_add_target(host, target);
3806 	if (ret)
3807 		goto err_disconnect;
3808 
3809 	if (target->state != SRP_TARGET_REMOVED) {
3810 		if (target->using_rdma_cm) {
3811 			shost_printk(KERN_DEBUG, target->scsi_host, PFX
3812 				     "new target: id_ext %016llx ioc_guid %016llx sgid %pI6 dest %pIS\n",
3813 				     be64_to_cpu(target->id_ext),
3814 				     be64_to_cpu(target->ioc_guid),
3815 				     target->sgid.raw, &target->rdma_cm.dst);
3816 		} else {
3817 			shost_printk(KERN_DEBUG, target->scsi_host, PFX
3818 				     "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3819 				     be64_to_cpu(target->id_ext),
3820 				     be64_to_cpu(target->ioc_guid),
3821 				     be16_to_cpu(target->ib_cm.pkey),
3822 				     be64_to_cpu(target->ib_cm.service_id),
3823 				     target->sgid.raw,
3824 				     target->ib_cm.orig_dgid.raw);
3825 		}
3826 	}
3827 
3828 	ret = count;
3829 
3830 out:
3831 	mutex_unlock(&host->add_target_mutex);
3832 
3833 put:
3834 	scsi_host_put(target->scsi_host);
3835 	if (ret < 0) {
3836 		/*
3837 		 * If a call to srp_remove_target() has not been scheduled,
3838 		 * drop the network namespace reference now that was obtained
3839 		 * earlier in this function.
3840 		 */
3841 		if (target->state != SRP_TARGET_REMOVED)
3842 			kobj_ns_drop(KOBJ_NS_TYPE_NET, target->net);
3843 		scsi_host_put(target->scsi_host);
3844 	}
3845 
3846 	return ret;
3847 
3848 err_disconnect:
3849 	srp_disconnect_target(target);
3850 
3851 free_ch:
3852 	for (i = 0; i < target->ch_count; i++) {
3853 		ch = &target->ch[i];
3854 		srp_free_ch_ib(target, ch);
3855 	}
3856 
3857 	kfree(target->ch);
3858 	goto out;
3859 }
3860 
3861 static DEVICE_ATTR_WO(add_target);
3862 
3863 static ssize_t ibdev_show(struct device *dev, struct device_attribute *attr,
3864 			  char *buf)
3865 {
3866 	struct srp_host *host = container_of(dev, struct srp_host, dev);
3867 
3868 	return sysfs_emit(buf, "%s\n", dev_name(&host->srp_dev->dev->dev));
3869 }
3870 
3871 static DEVICE_ATTR_RO(ibdev);
3872 
3873 static ssize_t port_show(struct device *dev, struct device_attribute *attr,
3874 			 char *buf)
3875 {
3876 	struct srp_host *host = container_of(dev, struct srp_host, dev);
3877 
3878 	return sysfs_emit(buf, "%d\n", host->port);
3879 }
3880 
3881 static DEVICE_ATTR_RO(port);
3882 
3883 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3884 {
3885 	struct srp_host *host;
3886 
3887 	host = kzalloc(sizeof *host, GFP_KERNEL);
3888 	if (!host)
3889 		return NULL;
3890 
3891 	INIT_LIST_HEAD(&host->target_list);
3892 	spin_lock_init(&host->target_lock);
3893 	init_completion(&host->released);
3894 	mutex_init(&host->add_target_mutex);
3895 	host->srp_dev = device;
3896 	host->port = port;
3897 
3898 	host->dev.class = &srp_class;
3899 	host->dev.parent = device->dev->dev.parent;
3900 	dev_set_name(&host->dev, "srp-%s-%d", dev_name(&device->dev->dev),
3901 		     port);
3902 
3903 	if (device_register(&host->dev))
3904 		goto free_host;
3905 	if (device_create_file(&host->dev, &dev_attr_add_target))
3906 		goto err_class;
3907 	if (device_create_file(&host->dev, &dev_attr_ibdev))
3908 		goto err_class;
3909 	if (device_create_file(&host->dev, &dev_attr_port))
3910 		goto err_class;
3911 
3912 	return host;
3913 
3914 err_class:
3915 	device_unregister(&host->dev);
3916 
3917 free_host:
3918 	kfree(host);
3919 
3920 	return NULL;
3921 }
3922 
3923 static void srp_rename_dev(struct ib_device *device, void *client_data)
3924 {
3925 	struct srp_device *srp_dev = client_data;
3926 	struct srp_host *host, *tmp_host;
3927 
3928 	list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3929 		char name[IB_DEVICE_NAME_MAX + 8];
3930 
3931 		snprintf(name, sizeof(name), "srp-%s-%d",
3932 			 dev_name(&device->dev), host->port);
3933 		device_rename(&host->dev, name);
3934 	}
3935 }
3936 
3937 static int srp_add_one(struct ib_device *device)
3938 {
3939 	struct srp_device *srp_dev;
3940 	struct ib_device_attr *attr = &device->attrs;
3941 	struct srp_host *host;
3942 	int mr_page_shift;
3943 	unsigned int p;
3944 	u64 max_pages_per_mr;
3945 	unsigned int flags = 0;
3946 
3947 	srp_dev = kzalloc(sizeof(*srp_dev), GFP_KERNEL);
3948 	if (!srp_dev)
3949 		return -ENOMEM;
3950 
3951 	/*
3952 	 * Use the smallest page size supported by the HCA, down to a
3953 	 * minimum of 4096 bytes. We're unlikely to build large sglists
3954 	 * out of smaller entries.
3955 	 */
3956 	mr_page_shift		= max(12, ffs(attr->page_size_cap) - 1);
3957 	srp_dev->mr_page_size	= 1 << mr_page_shift;
3958 	srp_dev->mr_page_mask	= ~((u64) srp_dev->mr_page_size - 1);
3959 	max_pages_per_mr	= attr->max_mr_size;
3960 	do_div(max_pages_per_mr, srp_dev->mr_page_size);
3961 	pr_debug("%s: %llu / %u = %llu <> %u\n", __func__,
3962 		 attr->max_mr_size, srp_dev->mr_page_size,
3963 		 max_pages_per_mr, SRP_MAX_PAGES_PER_MR);
3964 	srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3965 					  max_pages_per_mr);
3966 
3967 	srp_dev->has_fr = (attr->device_cap_flags &
3968 			   IB_DEVICE_MEM_MGT_EXTENSIONS);
3969 	if (!never_register && !srp_dev->has_fr)
3970 		dev_warn(&device->dev, "FR is not supported\n");
3971 	else if (!never_register &&
3972 		 attr->max_mr_size >= 2 * srp_dev->mr_page_size)
3973 		srp_dev->use_fast_reg = srp_dev->has_fr;
3974 
3975 	if (never_register || !register_always || !srp_dev->has_fr)
3976 		flags |= IB_PD_UNSAFE_GLOBAL_RKEY;
3977 
3978 	if (srp_dev->use_fast_reg) {
3979 		srp_dev->max_pages_per_mr =
3980 			min_t(u32, srp_dev->max_pages_per_mr,
3981 			      attr->max_fast_reg_page_list_len);
3982 	}
3983 	srp_dev->mr_max_size	= srp_dev->mr_page_size *
3984 				   srp_dev->max_pages_per_mr;
3985 	pr_debug("%s: mr_page_shift = %d, device->max_mr_size = %#llx, device->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3986 		 dev_name(&device->dev), mr_page_shift, attr->max_mr_size,
3987 		 attr->max_fast_reg_page_list_len,
3988 		 srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3989 
3990 	INIT_LIST_HEAD(&srp_dev->dev_list);
3991 
3992 	srp_dev->dev = device;
3993 	srp_dev->pd  = ib_alloc_pd(device, flags);
3994 	if (IS_ERR(srp_dev->pd)) {
3995 		int ret = PTR_ERR(srp_dev->pd);
3996 
3997 		kfree(srp_dev);
3998 		return ret;
3999 	}
4000 
4001 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
4002 		srp_dev->global_rkey = srp_dev->pd->unsafe_global_rkey;
4003 		WARN_ON_ONCE(srp_dev->global_rkey == 0);
4004 	}
4005 
4006 	rdma_for_each_port (device, p) {
4007 		host = srp_add_port(srp_dev, p);
4008 		if (host)
4009 			list_add_tail(&host->list, &srp_dev->dev_list);
4010 	}
4011 
4012 	ib_set_client_data(device, &srp_client, srp_dev);
4013 	return 0;
4014 }
4015 
4016 static void srp_remove_one(struct ib_device *device, void *client_data)
4017 {
4018 	struct srp_device *srp_dev;
4019 	struct srp_host *host, *tmp_host;
4020 	struct srp_target_port *target;
4021 
4022 	srp_dev = client_data;
4023 
4024 	list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
4025 		device_unregister(&host->dev);
4026 		/*
4027 		 * Wait for the sysfs entry to go away, so that no new
4028 		 * target ports can be created.
4029 		 */
4030 		wait_for_completion(&host->released);
4031 
4032 		/*
4033 		 * Remove all target ports.
4034 		 */
4035 		spin_lock(&host->target_lock);
4036 		list_for_each_entry(target, &host->target_list, list)
4037 			srp_queue_remove_work(target);
4038 		spin_unlock(&host->target_lock);
4039 
4040 		/*
4041 		 * Wait for tl_err and target port removal tasks.
4042 		 */
4043 		flush_workqueue(system_long_wq);
4044 		flush_workqueue(srp_remove_wq);
4045 
4046 		kfree(host);
4047 	}
4048 
4049 	ib_dealloc_pd(srp_dev->pd);
4050 
4051 	kfree(srp_dev);
4052 }
4053 
4054 static struct srp_function_template ib_srp_transport_functions = {
4055 	.has_rport_state	 = true,
4056 	.reset_timer_if_blocked	 = true,
4057 	.reconnect_delay	 = &srp_reconnect_delay,
4058 	.fast_io_fail_tmo	 = &srp_fast_io_fail_tmo,
4059 	.dev_loss_tmo		 = &srp_dev_loss_tmo,
4060 	.reconnect		 = srp_rport_reconnect,
4061 	.rport_delete		 = srp_rport_delete,
4062 	.terminate_rport_io	 = srp_terminate_io,
4063 };
4064 
4065 static int __init srp_init_module(void)
4066 {
4067 	int ret;
4068 
4069 	BUILD_BUG_ON(sizeof(struct srp_aer_req) != 36);
4070 	BUILD_BUG_ON(sizeof(struct srp_cmd) != 48);
4071 	BUILD_BUG_ON(sizeof(struct srp_imm_buf) != 4);
4072 	BUILD_BUG_ON(sizeof(struct srp_indirect_buf) != 20);
4073 	BUILD_BUG_ON(sizeof(struct srp_login_req) != 64);
4074 	BUILD_BUG_ON(sizeof(struct srp_login_req_rdma) != 56);
4075 	BUILD_BUG_ON(sizeof(struct srp_rsp) != 36);
4076 
4077 	if (srp_sg_tablesize) {
4078 		pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
4079 		if (!cmd_sg_entries)
4080 			cmd_sg_entries = srp_sg_tablesize;
4081 	}
4082 
4083 	if (!cmd_sg_entries)
4084 		cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
4085 
4086 	if (cmd_sg_entries > 255) {
4087 		pr_warn("Clamping cmd_sg_entries to 255\n");
4088 		cmd_sg_entries = 255;
4089 	}
4090 
4091 	if (!indirect_sg_entries)
4092 		indirect_sg_entries = cmd_sg_entries;
4093 	else if (indirect_sg_entries < cmd_sg_entries) {
4094 		pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
4095 			cmd_sg_entries);
4096 		indirect_sg_entries = cmd_sg_entries;
4097 	}
4098 
4099 	if (indirect_sg_entries > SG_MAX_SEGMENTS) {
4100 		pr_warn("Clamping indirect_sg_entries to %u\n",
4101 			SG_MAX_SEGMENTS);
4102 		indirect_sg_entries = SG_MAX_SEGMENTS;
4103 	}
4104 
4105 	srp_remove_wq = create_workqueue("srp_remove");
4106 	if (!srp_remove_wq) {
4107 		ret = -ENOMEM;
4108 		goto out;
4109 	}
4110 
4111 	ret = -ENOMEM;
4112 	ib_srp_transport_template =
4113 		srp_attach_transport(&ib_srp_transport_functions);
4114 	if (!ib_srp_transport_template)
4115 		goto destroy_wq;
4116 
4117 	ret = class_register(&srp_class);
4118 	if (ret) {
4119 		pr_err("couldn't register class infiniband_srp\n");
4120 		goto release_tr;
4121 	}
4122 
4123 	ib_sa_register_client(&srp_sa_client);
4124 
4125 	ret = ib_register_client(&srp_client);
4126 	if (ret) {
4127 		pr_err("couldn't register IB client\n");
4128 		goto unreg_sa;
4129 	}
4130 
4131 out:
4132 	return ret;
4133 
4134 unreg_sa:
4135 	ib_sa_unregister_client(&srp_sa_client);
4136 	class_unregister(&srp_class);
4137 
4138 release_tr:
4139 	srp_release_transport(ib_srp_transport_template);
4140 
4141 destroy_wq:
4142 	destroy_workqueue(srp_remove_wq);
4143 	goto out;
4144 }
4145 
4146 static void __exit srp_cleanup_module(void)
4147 {
4148 	ib_unregister_client(&srp_client);
4149 	ib_sa_unregister_client(&srp_sa_client);
4150 	class_unregister(&srp_class);
4151 	srp_release_transport(ib_srp_transport_template);
4152 	destroy_workqueue(srp_remove_wq);
4153 }
4154 
4155 module_init(srp_init_module);
4156 module_exit(srp_cleanup_module);
4157