xref: /openbmc/linux/drivers/infiniband/ulp/rtrs/rtrs.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 #undef pr_fmt
10 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
11 
12 #include <linux/module.h>
13 #include <linux/inet.h>
14 
15 #include "rtrs-pri.h"
16 #include "rtrs-log.h"
17 
18 MODULE_DESCRIPTION("RDMA Transport Core");
19 MODULE_LICENSE("GPL");
20 
21 struct rtrs_iu *rtrs_iu_alloc(u32 iu_num, size_t size, gfp_t gfp_mask,
22 			      struct ib_device *dma_dev,
23 			      enum dma_data_direction dir,
24 			      void (*done)(struct ib_cq *cq, struct ib_wc *wc))
25 {
26 	struct rtrs_iu *ius, *iu;
27 	int i;
28 
29 	ius = kcalloc(iu_num, sizeof(*ius), gfp_mask);
30 	if (!ius)
31 		return NULL;
32 	for (i = 0; i < iu_num; i++) {
33 		iu = &ius[i];
34 		iu->direction = dir;
35 		iu->buf = kzalloc(size, gfp_mask);
36 		if (!iu->buf)
37 			goto err;
38 
39 		iu->dma_addr = ib_dma_map_single(dma_dev, iu->buf, size, dir);
40 		if (ib_dma_mapping_error(dma_dev, iu->dma_addr))
41 			goto err;
42 
43 		iu->cqe.done  = done;
44 		iu->size      = size;
45 	}
46 	return ius;
47 err:
48 	rtrs_iu_free(ius, dma_dev, i);
49 	return NULL;
50 }
51 EXPORT_SYMBOL_GPL(rtrs_iu_alloc);
52 
53 void rtrs_iu_free(struct rtrs_iu *ius, struct ib_device *ibdev, u32 queue_num)
54 {
55 	struct rtrs_iu *iu;
56 	int i;
57 
58 	if (!ius)
59 		return;
60 
61 	for (i = 0; i < queue_num; i++) {
62 		iu = &ius[i];
63 		ib_dma_unmap_single(ibdev, iu->dma_addr, iu->size, iu->direction);
64 		kfree(iu->buf);
65 	}
66 	kfree(ius);
67 }
68 EXPORT_SYMBOL_GPL(rtrs_iu_free);
69 
70 int rtrs_iu_post_recv(struct rtrs_con *con, struct rtrs_iu *iu)
71 {
72 	struct rtrs_sess *sess = con->sess;
73 	struct ib_recv_wr wr;
74 	struct ib_sge list;
75 
76 	list.addr   = iu->dma_addr;
77 	list.length = iu->size;
78 	list.lkey   = sess->dev->ib_pd->local_dma_lkey;
79 
80 	if (list.length == 0) {
81 		rtrs_wrn(con->sess,
82 			  "Posting receive work request failed, sg list is empty\n");
83 		return -EINVAL;
84 	}
85 	wr = (struct ib_recv_wr) {
86 		.wr_cqe  = &iu->cqe,
87 		.sg_list = &list,
88 		.num_sge = 1,
89 	};
90 
91 	return ib_post_recv(con->qp, &wr, NULL);
92 }
93 EXPORT_SYMBOL_GPL(rtrs_iu_post_recv);
94 
95 int rtrs_post_recv_empty(struct rtrs_con *con, struct ib_cqe *cqe)
96 {
97 	struct ib_recv_wr wr;
98 
99 	wr = (struct ib_recv_wr) {
100 		.wr_cqe  = cqe,
101 	};
102 
103 	return ib_post_recv(con->qp, &wr, NULL);
104 }
105 EXPORT_SYMBOL_GPL(rtrs_post_recv_empty);
106 
107 static int rtrs_post_send(struct ib_qp *qp, struct ib_send_wr *head,
108 			  struct ib_send_wr *wr, struct ib_send_wr *tail)
109 {
110 	if (head) {
111 		struct ib_send_wr *next = head;
112 
113 		while (next->next)
114 			next = next->next;
115 		next->next = wr;
116 	} else {
117 		head = wr;
118 	}
119 
120 	if (tail)
121 		wr->next = tail;
122 
123 	return ib_post_send(qp, head, NULL);
124 }
125 
126 int rtrs_iu_post_send(struct rtrs_con *con, struct rtrs_iu *iu, size_t size,
127 		       struct ib_send_wr *head)
128 {
129 	struct rtrs_sess *sess = con->sess;
130 	struct ib_send_wr wr;
131 	struct ib_sge list;
132 
133 	if (WARN_ON(size == 0))
134 		return -EINVAL;
135 
136 	list.addr   = iu->dma_addr;
137 	list.length = size;
138 	list.lkey   = sess->dev->ib_pd->local_dma_lkey;
139 
140 	wr = (struct ib_send_wr) {
141 		.wr_cqe     = &iu->cqe,
142 		.sg_list    = &list,
143 		.num_sge    = 1,
144 		.opcode     = IB_WR_SEND,
145 		.send_flags = IB_SEND_SIGNALED,
146 	};
147 
148 	return rtrs_post_send(con->qp, head, &wr, NULL);
149 }
150 EXPORT_SYMBOL_GPL(rtrs_iu_post_send);
151 
152 int rtrs_iu_post_rdma_write_imm(struct rtrs_con *con, struct rtrs_iu *iu,
153 				struct ib_sge *sge, unsigned int num_sge,
154 				u32 rkey, u64 rdma_addr, u32 imm_data,
155 				enum ib_send_flags flags,
156 				struct ib_send_wr *head,
157 				struct ib_send_wr *tail)
158 {
159 	struct ib_rdma_wr wr;
160 	int i;
161 
162 	wr = (struct ib_rdma_wr) {
163 		.wr.wr_cqe	  = &iu->cqe,
164 		.wr.sg_list	  = sge,
165 		.wr.num_sge	  = num_sge,
166 		.rkey		  = rkey,
167 		.remote_addr	  = rdma_addr,
168 		.wr.opcode	  = IB_WR_RDMA_WRITE_WITH_IMM,
169 		.wr.ex.imm_data = cpu_to_be32(imm_data),
170 		.wr.send_flags  = flags,
171 	};
172 
173 	/*
174 	 * If one of the sges has 0 size, the operation will fail with a
175 	 * length error
176 	 */
177 	for (i = 0; i < num_sge; i++)
178 		if (WARN_ON(sge[i].length == 0))
179 			return -EINVAL;
180 
181 	return rtrs_post_send(con->qp, head, &wr.wr, tail);
182 }
183 EXPORT_SYMBOL_GPL(rtrs_iu_post_rdma_write_imm);
184 
185 int rtrs_post_rdma_write_imm_empty(struct rtrs_con *con, struct ib_cqe *cqe,
186 				    u32 imm_data, enum ib_send_flags flags,
187 				    struct ib_send_wr *head)
188 {
189 	struct ib_rdma_wr wr;
190 
191 	wr = (struct ib_rdma_wr) {
192 		.wr.wr_cqe	= cqe,
193 		.wr.send_flags	= flags,
194 		.wr.opcode	= IB_WR_RDMA_WRITE_WITH_IMM,
195 		.wr.ex.imm_data	= cpu_to_be32(imm_data),
196 	};
197 
198 	return rtrs_post_send(con->qp, head, &wr.wr, NULL);
199 }
200 EXPORT_SYMBOL_GPL(rtrs_post_rdma_write_imm_empty);
201 
202 static void qp_event_handler(struct ib_event *ev, void *ctx)
203 {
204 	struct rtrs_con *con = ctx;
205 
206 	switch (ev->event) {
207 	case IB_EVENT_COMM_EST:
208 		rtrs_info(con->sess, "QP event %s (%d) received\n",
209 			   ib_event_msg(ev->event), ev->event);
210 		rdma_notify(con->cm_id, IB_EVENT_COMM_EST);
211 		break;
212 	default:
213 		rtrs_info(con->sess, "Unhandled QP event %s (%d) received\n",
214 			   ib_event_msg(ev->event), ev->event);
215 		break;
216 	}
217 }
218 
219 static int create_cq(struct rtrs_con *con, int cq_vector, int nr_cqe,
220 		     enum ib_poll_context poll_ctx)
221 {
222 	struct rdma_cm_id *cm_id = con->cm_id;
223 	struct ib_cq *cq;
224 
225 	cq = ib_cq_pool_get(cm_id->device, nr_cqe, cq_vector, poll_ctx);
226 	if (IS_ERR(cq)) {
227 		rtrs_err(con->sess, "Creating completion queue failed, errno: %ld\n",
228 			  PTR_ERR(cq));
229 		return PTR_ERR(cq);
230 	}
231 	con->cq = cq;
232 	con->nr_cqe = nr_cqe;
233 
234 	return 0;
235 }
236 
237 static int create_qp(struct rtrs_con *con, struct ib_pd *pd,
238 		     u32 max_send_wr, u32 max_recv_wr, u32 max_sge)
239 {
240 	struct ib_qp_init_attr init_attr = {NULL};
241 	struct rdma_cm_id *cm_id = con->cm_id;
242 	int ret;
243 
244 	init_attr.cap.max_send_wr = max_send_wr;
245 	init_attr.cap.max_recv_wr = max_recv_wr;
246 	init_attr.cap.max_recv_sge = 1;
247 	init_attr.event_handler = qp_event_handler;
248 	init_attr.qp_context = con;
249 	init_attr.cap.max_send_sge = max_sge;
250 
251 	init_attr.qp_type = IB_QPT_RC;
252 	init_attr.send_cq = con->cq;
253 	init_attr.recv_cq = con->cq;
254 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
255 
256 	ret = rdma_create_qp(cm_id, pd, &init_attr);
257 	if (ret) {
258 		rtrs_err(con->sess, "Creating QP failed, err: %d\n", ret);
259 		return ret;
260 	}
261 	con->qp = cm_id->qp;
262 
263 	return ret;
264 }
265 
266 int rtrs_cq_qp_create(struct rtrs_sess *sess, struct rtrs_con *con,
267 		       u32 max_send_sge, int cq_vector, int nr_cqe,
268 		       u32 max_send_wr, u32 max_recv_wr,
269 		       enum ib_poll_context poll_ctx)
270 {
271 	int err;
272 
273 	err = create_cq(con, cq_vector, nr_cqe, poll_ctx);
274 	if (err)
275 		return err;
276 
277 	err = create_qp(con, sess->dev->ib_pd, max_send_wr, max_recv_wr,
278 			max_send_sge);
279 	if (err) {
280 		ib_cq_pool_put(con->cq, con->nr_cqe);
281 		con->cq = NULL;
282 		return err;
283 	}
284 	con->sess = sess;
285 
286 	return 0;
287 }
288 EXPORT_SYMBOL_GPL(rtrs_cq_qp_create);
289 
290 void rtrs_cq_qp_destroy(struct rtrs_con *con)
291 {
292 	if (con->qp) {
293 		rdma_destroy_qp(con->cm_id);
294 		con->qp = NULL;
295 	}
296 	if (con->cq) {
297 		ib_cq_pool_put(con->cq, con->nr_cqe);
298 		con->cq = NULL;
299 	}
300 }
301 EXPORT_SYMBOL_GPL(rtrs_cq_qp_destroy);
302 
303 static void schedule_hb(struct rtrs_sess *sess)
304 {
305 	queue_delayed_work(sess->hb_wq, &sess->hb_dwork,
306 			   msecs_to_jiffies(sess->hb_interval_ms));
307 }
308 
309 void rtrs_send_hb_ack(struct rtrs_sess *sess)
310 {
311 	struct rtrs_con *usr_con = sess->con[0];
312 	u32 imm;
313 	int err;
314 
315 	imm = rtrs_to_imm(RTRS_HB_ACK_IMM, 0);
316 	err = rtrs_post_rdma_write_imm_empty(usr_con, sess->hb_cqe, imm,
317 					     0, NULL);
318 	if (err) {
319 		sess->hb_err_handler(usr_con);
320 		return;
321 	}
322 }
323 EXPORT_SYMBOL_GPL(rtrs_send_hb_ack);
324 
325 static void hb_work(struct work_struct *work)
326 {
327 	struct rtrs_con *usr_con;
328 	struct rtrs_sess *sess;
329 	u32 imm;
330 	int err;
331 
332 	sess = container_of(to_delayed_work(work), typeof(*sess), hb_dwork);
333 	usr_con = sess->con[0];
334 
335 	if (sess->hb_missed_cnt > sess->hb_missed_max) {
336 		sess->hb_err_handler(usr_con);
337 		return;
338 	}
339 	if (sess->hb_missed_cnt++) {
340 		/* Reschedule work without sending hb */
341 		schedule_hb(sess);
342 		return;
343 	}
344 
345 	sess->hb_last_sent = ktime_get();
346 
347 	imm = rtrs_to_imm(RTRS_HB_MSG_IMM, 0);
348 	err = rtrs_post_rdma_write_imm_empty(usr_con, sess->hb_cqe, imm,
349 					     0, NULL);
350 	if (err) {
351 		sess->hb_err_handler(usr_con);
352 		return;
353 	}
354 
355 	schedule_hb(sess);
356 }
357 
358 void rtrs_init_hb(struct rtrs_sess *sess, struct ib_cqe *cqe,
359 		  unsigned int interval_ms, unsigned int missed_max,
360 		  void (*err_handler)(struct rtrs_con *con),
361 		  struct workqueue_struct *wq)
362 {
363 	sess->hb_cqe = cqe;
364 	sess->hb_interval_ms = interval_ms;
365 	sess->hb_err_handler = err_handler;
366 	sess->hb_wq = wq;
367 	sess->hb_missed_max = missed_max;
368 	sess->hb_missed_cnt = 0;
369 	INIT_DELAYED_WORK(&sess->hb_dwork, hb_work);
370 }
371 EXPORT_SYMBOL_GPL(rtrs_init_hb);
372 
373 void rtrs_start_hb(struct rtrs_sess *sess)
374 {
375 	schedule_hb(sess);
376 }
377 EXPORT_SYMBOL_GPL(rtrs_start_hb);
378 
379 void rtrs_stop_hb(struct rtrs_sess *sess)
380 {
381 	cancel_delayed_work_sync(&sess->hb_dwork);
382 	sess->hb_missed_cnt = 0;
383 }
384 EXPORT_SYMBOL_GPL(rtrs_stop_hb);
385 
386 static int rtrs_str_gid_to_sockaddr(const char *addr, size_t len,
387 				     short port, struct sockaddr_storage *dst)
388 {
389 	struct sockaddr_ib *dst_ib = (struct sockaddr_ib *)dst;
390 	int ret;
391 
392 	/*
393 	 * We can use some of the IPv6 functions since GID is a valid
394 	 * IPv6 address format
395 	 */
396 	ret = in6_pton(addr, len, dst_ib->sib_addr.sib_raw, '\0', NULL);
397 	if (ret == 0)
398 		return -EINVAL;
399 
400 	dst_ib->sib_family = AF_IB;
401 	/*
402 	 * Use the same TCP server port number as the IB service ID
403 	 * on the IB port space range
404 	 */
405 	dst_ib->sib_sid = cpu_to_be64(RDMA_IB_IP_PS_IB | port);
406 	dst_ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
407 	dst_ib->sib_pkey = cpu_to_be16(0xffff);
408 
409 	return 0;
410 }
411 
412 /**
413  * rtrs_str_to_sockaddr() - Convert rtrs address string to sockaddr
414  * @addr:	String representation of an addr (IPv4, IPv6 or IB GID):
415  *              - "ip:192.168.1.1"
416  *              - "ip:fe80::200:5aee:feaa:20a2"
417  *              - "gid:fe80::200:5aee:feaa:20a2"
418  * @len:        String address length
419  * @port:	Destination port
420  * @dst:	Destination sockaddr structure
421  *
422  * Returns 0 if conversion successful. Non-zero on error.
423  */
424 static int rtrs_str_to_sockaddr(const char *addr, size_t len,
425 				u16 port, struct sockaddr_storage *dst)
426 {
427 	if (strncmp(addr, "gid:", 4) == 0) {
428 		return rtrs_str_gid_to_sockaddr(addr + 4, len - 4, port, dst);
429 	} else if (strncmp(addr, "ip:", 3) == 0) {
430 		char port_str[8];
431 		char *cpy;
432 		int err;
433 
434 		snprintf(port_str, sizeof(port_str), "%u", port);
435 		cpy = kstrndup(addr + 3, len - 3, GFP_KERNEL);
436 		err = cpy ? inet_pton_with_scope(&init_net, AF_UNSPEC,
437 						 cpy, port_str, dst) : -ENOMEM;
438 		kfree(cpy);
439 
440 		return err;
441 	}
442 	return -EPROTONOSUPPORT;
443 }
444 
445 /**
446  * sockaddr_to_str() - convert sockaddr to a string.
447  * @addr:	the sockadddr structure to be converted.
448  * @buf:	string containing socket addr.
449  * @len:	string length.
450  *
451  * The return value is the number of characters written into buf not
452  * including the trailing '\0'. If len is == 0 the function returns 0..
453  */
454 int sockaddr_to_str(const struct sockaddr *addr, char *buf, size_t len)
455 {
456 
457 	switch (addr->sa_family) {
458 	case AF_IB:
459 		return scnprintf(buf, len, "gid:%pI6",
460 			&((struct sockaddr_ib *)addr)->sib_addr.sib_raw);
461 	case AF_INET:
462 		return scnprintf(buf, len, "ip:%pI4",
463 			&((struct sockaddr_in *)addr)->sin_addr);
464 	case AF_INET6:
465 		return scnprintf(buf, len, "ip:%pI6c",
466 			  &((struct sockaddr_in6 *)addr)->sin6_addr);
467 	}
468 	return scnprintf(buf, len, "<invalid address family>");
469 }
470 EXPORT_SYMBOL(sockaddr_to_str);
471 
472 /**
473  * rtrs_addr_to_str() - convert rtrs_addr to a string "src@dst"
474  * @addr:	the rtrs_addr structure to be converted
475  * @buf:	string containing source and destination addr of a path
476  *		separated by '@' I.e. "ip:1.1.1.1@ip:1.1.1.2"
477  *		"ip:1.1.1.1@ip:1.1.1.2".
478  * @len:	string length
479  *
480  * The return value is the number of characters written into buf not
481  * including the trailing '\0'.
482  */
483 int rtrs_addr_to_str(const struct rtrs_addr *addr, char *buf, size_t len)
484 {
485 	int cnt;
486 
487 	cnt = sockaddr_to_str((struct sockaddr *)addr->src,
488 			      buf, len);
489 	cnt += scnprintf(buf + cnt, len - cnt, "@");
490 	sockaddr_to_str((struct sockaddr *)addr->dst,
491 			buf + cnt, len - cnt);
492 	return cnt;
493 }
494 EXPORT_SYMBOL(rtrs_addr_to_str);
495 
496 /**
497  * rtrs_addr_to_sockaddr() - convert path string "src,dst" or "src@dst"
498  * to sockaddreses
499  * @str:	string containing source and destination addr of a path
500  *		separated by ',' or '@' I.e. "ip:1.1.1.1,ip:1.1.1.2" or
501  *		"ip:1.1.1.1@ip:1.1.1.2". If str contains only one address it's
502  *		considered to be destination.
503  * @len:	string length
504  * @port:	Destination port number.
505  * @addr:	will be set to the source/destination address or to NULL
506  *		if str doesn't contain any source address.
507  *
508  * Returns zero if conversion successful. Non-zero otherwise.
509  */
510 int rtrs_addr_to_sockaddr(const char *str, size_t len, u16 port,
511 			  struct rtrs_addr *addr)
512 {
513 	const char *d;
514 
515 	d = strchr(str, ',');
516 	if (!d)
517 		d = strchr(str, '@');
518 	if (d) {
519 		if (rtrs_str_to_sockaddr(str, d - str, 0, addr->src))
520 			return -EINVAL;
521 		d += 1;
522 		len -= d - str;
523 		str  = d;
524 
525 	} else {
526 		addr->src = NULL;
527 	}
528 	return rtrs_str_to_sockaddr(str, len, port, addr->dst);
529 }
530 EXPORT_SYMBOL(rtrs_addr_to_sockaddr);
531 
532 void rtrs_rdma_dev_pd_init(enum ib_pd_flags pd_flags,
533 			    struct rtrs_rdma_dev_pd *pool)
534 {
535 	WARN_ON(pool->ops && (!pool->ops->alloc ^ !pool->ops->free));
536 	INIT_LIST_HEAD(&pool->list);
537 	mutex_init(&pool->mutex);
538 	pool->pd_flags = pd_flags;
539 }
540 EXPORT_SYMBOL(rtrs_rdma_dev_pd_init);
541 
542 void rtrs_rdma_dev_pd_deinit(struct rtrs_rdma_dev_pd *pool)
543 {
544 	mutex_destroy(&pool->mutex);
545 	WARN_ON(!list_empty(&pool->list));
546 }
547 EXPORT_SYMBOL(rtrs_rdma_dev_pd_deinit);
548 
549 static void dev_free(struct kref *ref)
550 {
551 	struct rtrs_rdma_dev_pd *pool;
552 	struct rtrs_ib_dev *dev;
553 
554 	dev = container_of(ref, typeof(*dev), ref);
555 	pool = dev->pool;
556 
557 	mutex_lock(&pool->mutex);
558 	list_del(&dev->entry);
559 	mutex_unlock(&pool->mutex);
560 
561 	if (pool->ops && pool->ops->deinit)
562 		pool->ops->deinit(dev);
563 
564 	ib_dealloc_pd(dev->ib_pd);
565 
566 	if (pool->ops && pool->ops->free)
567 		pool->ops->free(dev);
568 	else
569 		kfree(dev);
570 }
571 
572 int rtrs_ib_dev_put(struct rtrs_ib_dev *dev)
573 {
574 	return kref_put(&dev->ref, dev_free);
575 }
576 EXPORT_SYMBOL(rtrs_ib_dev_put);
577 
578 static int rtrs_ib_dev_get(struct rtrs_ib_dev *dev)
579 {
580 	return kref_get_unless_zero(&dev->ref);
581 }
582 
583 struct rtrs_ib_dev *
584 rtrs_ib_dev_find_or_add(struct ib_device *ib_dev,
585 			 struct rtrs_rdma_dev_pd *pool)
586 {
587 	struct rtrs_ib_dev *dev;
588 
589 	mutex_lock(&pool->mutex);
590 	list_for_each_entry(dev, &pool->list, entry) {
591 		if (dev->ib_dev->node_guid == ib_dev->node_guid &&
592 		    rtrs_ib_dev_get(dev))
593 			goto out_unlock;
594 	}
595 	mutex_unlock(&pool->mutex);
596 	if (pool->ops && pool->ops->alloc)
597 		dev = pool->ops->alloc();
598 	else
599 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
600 	if (IS_ERR_OR_NULL(dev))
601 		goto out_err;
602 
603 	kref_init(&dev->ref);
604 	dev->pool = pool;
605 	dev->ib_dev = ib_dev;
606 	dev->ib_pd = ib_alloc_pd(ib_dev, pool->pd_flags);
607 	if (IS_ERR(dev->ib_pd))
608 		goto out_free_dev;
609 
610 	if (pool->ops && pool->ops->init && pool->ops->init(dev))
611 		goto out_free_pd;
612 
613 	mutex_lock(&pool->mutex);
614 	list_add(&dev->entry, &pool->list);
615 out_unlock:
616 	mutex_unlock(&pool->mutex);
617 	return dev;
618 
619 out_free_pd:
620 	ib_dealloc_pd(dev->ib_pd);
621 out_free_dev:
622 	if (pool->ops && pool->ops->free)
623 		pool->ops->free(dev);
624 	else
625 		kfree(dev);
626 out_err:
627 	return NULL;
628 }
629 EXPORT_SYMBOL(rtrs_ib_dev_find_or_add);
630