xref: /openbmc/linux/drivers/infiniband/ulp/rtrs/rtrs.c (revision 26541cb1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 #undef pr_fmt
10 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
11 
12 #include <linux/module.h>
13 #include <linux/inet.h>
14 
15 #include "rtrs-pri.h"
16 #include "rtrs-log.h"
17 
18 MODULE_DESCRIPTION("RDMA Transport Core");
19 MODULE_LICENSE("GPL");
20 
21 struct rtrs_iu *rtrs_iu_alloc(u32 queue_size, size_t size, gfp_t gfp_mask,
22 			      struct ib_device *dma_dev,
23 			      enum dma_data_direction dir,
24 			      void (*done)(struct ib_cq *cq, struct ib_wc *wc))
25 {
26 	struct rtrs_iu *ius, *iu;
27 	int i;
28 
29 	ius = kcalloc(queue_size, sizeof(*ius), gfp_mask);
30 	if (!ius)
31 		return NULL;
32 	for (i = 0; i < queue_size; i++) {
33 		iu = &ius[i];
34 		iu->direction = dir;
35 		iu->buf = kzalloc(size, gfp_mask);
36 		if (!iu->buf)
37 			goto err;
38 
39 		iu->dma_addr = ib_dma_map_single(dma_dev, iu->buf, size, dir);
40 		if (ib_dma_mapping_error(dma_dev, iu->dma_addr))
41 			goto err;
42 
43 		iu->cqe.done  = done;
44 		iu->size      = size;
45 	}
46 	return ius;
47 err:
48 	rtrs_iu_free(ius, dma_dev, i);
49 	return NULL;
50 }
51 EXPORT_SYMBOL_GPL(rtrs_iu_alloc);
52 
53 void rtrs_iu_free(struct rtrs_iu *ius, struct ib_device *ibdev, u32 queue_size)
54 {
55 	struct rtrs_iu *iu;
56 	int i;
57 
58 	if (!ius)
59 		return;
60 
61 	for (i = 0; i < queue_size; i++) {
62 		iu = &ius[i];
63 		ib_dma_unmap_single(ibdev, iu->dma_addr, iu->size, iu->direction);
64 		kfree(iu->buf);
65 	}
66 	kfree(ius);
67 }
68 EXPORT_SYMBOL_GPL(rtrs_iu_free);
69 
70 int rtrs_iu_post_recv(struct rtrs_con *con, struct rtrs_iu *iu)
71 {
72 	struct rtrs_sess *sess = con->sess;
73 	struct ib_recv_wr wr;
74 	struct ib_sge list;
75 
76 	list.addr   = iu->dma_addr;
77 	list.length = iu->size;
78 	list.lkey   = sess->dev->ib_pd->local_dma_lkey;
79 
80 	if (list.length == 0) {
81 		rtrs_wrn(con->sess,
82 			  "Posting receive work request failed, sg list is empty\n");
83 		return -EINVAL;
84 	}
85 	wr = (struct ib_recv_wr) {
86 		.wr_cqe  = &iu->cqe,
87 		.sg_list = &list,
88 		.num_sge = 1,
89 	};
90 
91 	return ib_post_recv(con->qp, &wr, NULL);
92 }
93 EXPORT_SYMBOL_GPL(rtrs_iu_post_recv);
94 
95 int rtrs_post_recv_empty(struct rtrs_con *con, struct ib_cqe *cqe)
96 {
97 	struct ib_recv_wr wr;
98 
99 	wr = (struct ib_recv_wr) {
100 		.wr_cqe  = cqe,
101 	};
102 
103 	return ib_post_recv(con->qp, &wr, NULL);
104 }
105 EXPORT_SYMBOL_GPL(rtrs_post_recv_empty);
106 
107 static int rtrs_post_send(struct ib_qp *qp, struct ib_send_wr *head,
108 			     struct ib_send_wr *wr)
109 {
110 	if (head) {
111 		struct ib_send_wr *tail = head;
112 
113 		while (tail->next)
114 			tail = tail->next;
115 		tail->next = wr;
116 	} else {
117 		head = wr;
118 	}
119 
120 	return ib_post_send(qp, head, NULL);
121 }
122 
123 int rtrs_iu_post_send(struct rtrs_con *con, struct rtrs_iu *iu, size_t size,
124 		       struct ib_send_wr *head)
125 {
126 	struct rtrs_sess *sess = con->sess;
127 	struct ib_send_wr wr;
128 	struct ib_sge list;
129 
130 	if (WARN_ON(size == 0))
131 		return -EINVAL;
132 
133 	list.addr   = iu->dma_addr;
134 	list.length = size;
135 	list.lkey   = sess->dev->ib_pd->local_dma_lkey;
136 
137 	wr = (struct ib_send_wr) {
138 		.wr_cqe     = &iu->cqe,
139 		.sg_list    = &list,
140 		.num_sge    = 1,
141 		.opcode     = IB_WR_SEND,
142 		.send_flags = IB_SEND_SIGNALED,
143 	};
144 
145 	return rtrs_post_send(con->qp, head, &wr);
146 }
147 EXPORT_SYMBOL_GPL(rtrs_iu_post_send);
148 
149 int rtrs_iu_post_rdma_write_imm(struct rtrs_con *con, struct rtrs_iu *iu,
150 				 struct ib_sge *sge, unsigned int num_sge,
151 				 u32 rkey, u64 rdma_addr, u32 imm_data,
152 				 enum ib_send_flags flags,
153 				 struct ib_send_wr *head)
154 {
155 	struct ib_rdma_wr wr;
156 	int i;
157 
158 	wr = (struct ib_rdma_wr) {
159 		.wr.wr_cqe	  = &iu->cqe,
160 		.wr.sg_list	  = sge,
161 		.wr.num_sge	  = num_sge,
162 		.rkey		  = rkey,
163 		.remote_addr	  = rdma_addr,
164 		.wr.opcode	  = IB_WR_RDMA_WRITE_WITH_IMM,
165 		.wr.ex.imm_data = cpu_to_be32(imm_data),
166 		.wr.send_flags  = flags,
167 	};
168 
169 	/*
170 	 * If one of the sges has 0 size, the operation will fail with a
171 	 * length error
172 	 */
173 	for (i = 0; i < num_sge; i++)
174 		if (WARN_ON(sge[i].length == 0))
175 			return -EINVAL;
176 
177 	return rtrs_post_send(con->qp, head, &wr.wr);
178 }
179 EXPORT_SYMBOL_GPL(rtrs_iu_post_rdma_write_imm);
180 
181 int rtrs_post_rdma_write_imm_empty(struct rtrs_con *con, struct ib_cqe *cqe,
182 				    u32 imm_data, enum ib_send_flags flags,
183 				    struct ib_send_wr *head)
184 {
185 	struct ib_rdma_wr wr;
186 
187 	wr = (struct ib_rdma_wr) {
188 		.wr.wr_cqe	= cqe,
189 		.wr.send_flags	= flags,
190 		.wr.opcode	= IB_WR_RDMA_WRITE_WITH_IMM,
191 		.wr.ex.imm_data	= cpu_to_be32(imm_data),
192 	};
193 
194 	return rtrs_post_send(con->qp, head, &wr.wr);
195 }
196 EXPORT_SYMBOL_GPL(rtrs_post_rdma_write_imm_empty);
197 
198 static void qp_event_handler(struct ib_event *ev, void *ctx)
199 {
200 	struct rtrs_con *con = ctx;
201 
202 	switch (ev->event) {
203 	case IB_EVENT_COMM_EST:
204 		rtrs_info(con->sess, "QP event %s (%d) received\n",
205 			   ib_event_msg(ev->event), ev->event);
206 		rdma_notify(con->cm_id, IB_EVENT_COMM_EST);
207 		break;
208 	default:
209 		rtrs_info(con->sess, "Unhandled QP event %s (%d) received\n",
210 			   ib_event_msg(ev->event), ev->event);
211 		break;
212 	}
213 }
214 
215 static int create_cq(struct rtrs_con *con, int cq_vector, u16 cq_size,
216 		     enum ib_poll_context poll_ctx)
217 {
218 	struct rdma_cm_id *cm_id = con->cm_id;
219 	struct ib_cq *cq;
220 
221 	cq = ib_cq_pool_get(cm_id->device, cq_size, cq_vector, poll_ctx);
222 	if (IS_ERR(cq)) {
223 		rtrs_err(con->sess, "Creating completion queue failed, errno: %ld\n",
224 			  PTR_ERR(cq));
225 		return PTR_ERR(cq);
226 	}
227 	con->cq = cq;
228 	con->cq_size = cq_size;
229 
230 	return 0;
231 }
232 
233 static int create_qp(struct rtrs_con *con, struct ib_pd *pd,
234 		     u32 max_send_wr, u32 max_recv_wr, u32 max_sge)
235 {
236 	struct ib_qp_init_attr init_attr = {NULL};
237 	struct rdma_cm_id *cm_id = con->cm_id;
238 	int ret;
239 
240 	init_attr.cap.max_send_wr = max_send_wr;
241 	init_attr.cap.max_recv_wr = max_recv_wr;
242 	init_attr.cap.max_recv_sge = 1;
243 	init_attr.event_handler = qp_event_handler;
244 	init_attr.qp_context = con;
245 	init_attr.cap.max_send_sge = max_sge;
246 
247 	init_attr.qp_type = IB_QPT_RC;
248 	init_attr.send_cq = con->cq;
249 	init_attr.recv_cq = con->cq;
250 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
251 
252 	ret = rdma_create_qp(cm_id, pd, &init_attr);
253 	if (ret) {
254 		rtrs_err(con->sess, "Creating QP failed, err: %d\n", ret);
255 		return ret;
256 	}
257 	con->qp = cm_id->qp;
258 
259 	return ret;
260 }
261 
262 int rtrs_cq_qp_create(struct rtrs_sess *sess, struct rtrs_con *con,
263 		       u32 max_send_sge, int cq_vector, int cq_size,
264 		       u32 max_send_wr, u32 max_recv_wr,
265 		       enum ib_poll_context poll_ctx)
266 {
267 	int err;
268 
269 	err = create_cq(con, cq_vector, cq_size, poll_ctx);
270 	if (err)
271 		return err;
272 
273 	err = create_qp(con, sess->dev->ib_pd, max_send_wr, max_recv_wr,
274 			max_send_sge);
275 	if (err) {
276 		ib_cq_pool_put(con->cq, con->cq_size);
277 		con->cq = NULL;
278 		return err;
279 	}
280 	con->sess = sess;
281 
282 	return 0;
283 }
284 EXPORT_SYMBOL_GPL(rtrs_cq_qp_create);
285 
286 void rtrs_cq_qp_destroy(struct rtrs_con *con)
287 {
288 	if (con->qp) {
289 		rdma_destroy_qp(con->cm_id);
290 		con->qp = NULL;
291 	}
292 	if (con->cq) {
293 		ib_cq_pool_put(con->cq, con->cq_size);
294 		con->cq = NULL;
295 	}
296 }
297 EXPORT_SYMBOL_GPL(rtrs_cq_qp_destroy);
298 
299 static void schedule_hb(struct rtrs_sess *sess)
300 {
301 	queue_delayed_work(sess->hb_wq, &sess->hb_dwork,
302 			   msecs_to_jiffies(sess->hb_interval_ms));
303 }
304 
305 void rtrs_send_hb_ack(struct rtrs_sess *sess)
306 {
307 	struct rtrs_con *usr_con = sess->con[0];
308 	u32 imm;
309 	int err;
310 
311 	imm = rtrs_to_imm(RTRS_HB_ACK_IMM, 0);
312 	err = rtrs_post_rdma_write_imm_empty(usr_con, sess->hb_cqe, imm,
313 					     0, NULL);
314 	if (err) {
315 		sess->hb_err_handler(usr_con);
316 		return;
317 	}
318 }
319 EXPORT_SYMBOL_GPL(rtrs_send_hb_ack);
320 
321 static void hb_work(struct work_struct *work)
322 {
323 	struct rtrs_con *usr_con;
324 	struct rtrs_sess *sess;
325 	u32 imm;
326 	int err;
327 
328 	sess = container_of(to_delayed_work(work), typeof(*sess), hb_dwork);
329 	usr_con = sess->con[0];
330 
331 	if (sess->hb_missed_cnt > sess->hb_missed_max) {
332 		sess->hb_err_handler(usr_con);
333 		return;
334 	}
335 	if (sess->hb_missed_cnt++) {
336 		/* Reschedule work without sending hb */
337 		schedule_hb(sess);
338 		return;
339 	}
340 
341 	sess->hb_last_sent = ktime_get();
342 
343 	imm = rtrs_to_imm(RTRS_HB_MSG_IMM, 0);
344 	err = rtrs_post_rdma_write_imm_empty(usr_con, sess->hb_cqe, imm,
345 					     0, NULL);
346 	if (err) {
347 		sess->hb_err_handler(usr_con);
348 		return;
349 	}
350 
351 	schedule_hb(sess);
352 }
353 
354 void rtrs_init_hb(struct rtrs_sess *sess, struct ib_cqe *cqe,
355 		  unsigned int interval_ms, unsigned int missed_max,
356 		  void (*err_handler)(struct rtrs_con *con),
357 		  struct workqueue_struct *wq)
358 {
359 	sess->hb_cqe = cqe;
360 	sess->hb_interval_ms = interval_ms;
361 	sess->hb_err_handler = err_handler;
362 	sess->hb_wq = wq;
363 	sess->hb_missed_max = missed_max;
364 	sess->hb_missed_cnt = 0;
365 	INIT_DELAYED_WORK(&sess->hb_dwork, hb_work);
366 }
367 EXPORT_SYMBOL_GPL(rtrs_init_hb);
368 
369 void rtrs_start_hb(struct rtrs_sess *sess)
370 {
371 	schedule_hb(sess);
372 }
373 EXPORT_SYMBOL_GPL(rtrs_start_hb);
374 
375 void rtrs_stop_hb(struct rtrs_sess *sess)
376 {
377 	cancel_delayed_work_sync(&sess->hb_dwork);
378 	sess->hb_missed_cnt = 0;
379 	sess->hb_missed_max = 0;
380 }
381 EXPORT_SYMBOL_GPL(rtrs_stop_hb);
382 
383 static int rtrs_str_gid_to_sockaddr(const char *addr, size_t len,
384 				     short port, struct sockaddr_storage *dst)
385 {
386 	struct sockaddr_ib *dst_ib = (struct sockaddr_ib *)dst;
387 	int ret;
388 
389 	/*
390 	 * We can use some of the IPv6 functions since GID is a valid
391 	 * IPv6 address format
392 	 */
393 	ret = in6_pton(addr, len, dst_ib->sib_addr.sib_raw, '\0', NULL);
394 	if (ret == 0)
395 		return -EINVAL;
396 
397 	dst_ib->sib_family = AF_IB;
398 	/*
399 	 * Use the same TCP server port number as the IB service ID
400 	 * on the IB port space range
401 	 */
402 	dst_ib->sib_sid = cpu_to_be64(RDMA_IB_IP_PS_IB | port);
403 	dst_ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
404 	dst_ib->sib_pkey = cpu_to_be16(0xffff);
405 
406 	return 0;
407 }
408 
409 /**
410  * rtrs_str_to_sockaddr() - Convert rtrs address string to sockaddr
411  * @addr:	String representation of an addr (IPv4, IPv6 or IB GID):
412  *              - "ip:192.168.1.1"
413  *              - "ip:fe80::200:5aee:feaa:20a2"
414  *              - "gid:fe80::200:5aee:feaa:20a2"
415  * @len:        String address length
416  * @port:	Destination port
417  * @dst:	Destination sockaddr structure
418  *
419  * Returns 0 if conversion successful. Non-zero on error.
420  */
421 static int rtrs_str_to_sockaddr(const char *addr, size_t len,
422 				u16 port, struct sockaddr_storage *dst)
423 {
424 	if (strncmp(addr, "gid:", 4) == 0) {
425 		return rtrs_str_gid_to_sockaddr(addr + 4, len - 4, port, dst);
426 	} else if (strncmp(addr, "ip:", 3) == 0) {
427 		char port_str[8];
428 		char *cpy;
429 		int err;
430 
431 		snprintf(port_str, sizeof(port_str), "%u", port);
432 		cpy = kstrndup(addr + 3, len - 3, GFP_KERNEL);
433 		err = cpy ? inet_pton_with_scope(&init_net, AF_UNSPEC,
434 						 cpy, port_str, dst) : -ENOMEM;
435 		kfree(cpy);
436 
437 		return err;
438 	}
439 	return -EPROTONOSUPPORT;
440 }
441 
442 /**
443  * sockaddr_to_str() - convert sockaddr to a string.
444  * @addr:	the sockadddr structure to be converted.
445  * @buf:	string containing socket addr.
446  * @len:	string length.
447  *
448  * The return value is the number of characters written into buf not
449  * including the trailing '\0'. If len is == 0 the function returns 0..
450  */
451 int sockaddr_to_str(const struct sockaddr *addr, char *buf, size_t len)
452 {
453 
454 	switch (addr->sa_family) {
455 	case AF_IB:
456 		return scnprintf(buf, len, "gid:%pI6",
457 			&((struct sockaddr_ib *)addr)->sib_addr.sib_raw);
458 	case AF_INET:
459 		return scnprintf(buf, len, "ip:%pI4",
460 			&((struct sockaddr_in *)addr)->sin_addr);
461 	case AF_INET6:
462 		return scnprintf(buf, len, "ip:%pI6c",
463 			  &((struct sockaddr_in6 *)addr)->sin6_addr);
464 	}
465 	return scnprintf(buf, len, "<invalid address family>");
466 }
467 EXPORT_SYMBOL(sockaddr_to_str);
468 
469 /**
470  * rtrs_addr_to_str() - convert rtrs_addr to a string "src@dst"
471  * @addr:	the rtrs_addr structure to be converted
472  * @buf:	string containing source and destination addr of a path
473  *		separated by '@' I.e. "ip:1.1.1.1@ip:1.1.1.2"
474  *		"ip:1.1.1.1@ip:1.1.1.2".
475  * @len:	string length
476  *
477  * The return value is the number of characters written into buf not
478  * including the trailing '\0'.
479  */
480 int rtrs_addr_to_str(const struct rtrs_addr *addr, char *buf, size_t len)
481 {
482 	int cnt;
483 
484 	cnt = sockaddr_to_str((struct sockaddr *)addr->src,
485 			      buf, len);
486 	cnt += scnprintf(buf + cnt, len - cnt, "@");
487 	sockaddr_to_str((struct sockaddr *)addr->dst,
488 			buf + cnt, len - cnt);
489 	return cnt;
490 }
491 EXPORT_SYMBOL(rtrs_addr_to_str);
492 
493 /**
494  * rtrs_addr_to_sockaddr() - convert path string "src,dst" or "src@dst"
495  * to sockaddreses
496  * @str:	string containing source and destination addr of a path
497  *		separated by ',' or '@' I.e. "ip:1.1.1.1,ip:1.1.1.2" or
498  *		"ip:1.1.1.1@ip:1.1.1.2". If str contains only one address it's
499  *		considered to be destination.
500  * @len:	string length
501  * @port:	Destination port number.
502  * @addr:	will be set to the source/destination address or to NULL
503  *		if str doesn't contain any source address.
504  *
505  * Returns zero if conversion successful. Non-zero otherwise.
506  */
507 int rtrs_addr_to_sockaddr(const char *str, size_t len, u16 port,
508 			  struct rtrs_addr *addr)
509 {
510 	const char *d;
511 
512 	d = strchr(str, ',');
513 	if (!d)
514 		d = strchr(str, '@');
515 	if (d) {
516 		if (rtrs_str_to_sockaddr(str, d - str, 0, addr->src))
517 			return -EINVAL;
518 		d += 1;
519 		len -= d - str;
520 		str  = d;
521 
522 	} else {
523 		addr->src = NULL;
524 	}
525 	return rtrs_str_to_sockaddr(str, len, port, addr->dst);
526 }
527 EXPORT_SYMBOL(rtrs_addr_to_sockaddr);
528 
529 void rtrs_rdma_dev_pd_init(enum ib_pd_flags pd_flags,
530 			    struct rtrs_rdma_dev_pd *pool)
531 {
532 	WARN_ON(pool->ops && (!pool->ops->alloc ^ !pool->ops->free));
533 	INIT_LIST_HEAD(&pool->list);
534 	mutex_init(&pool->mutex);
535 	pool->pd_flags = pd_flags;
536 }
537 EXPORT_SYMBOL(rtrs_rdma_dev_pd_init);
538 
539 void rtrs_rdma_dev_pd_deinit(struct rtrs_rdma_dev_pd *pool)
540 {
541 	mutex_destroy(&pool->mutex);
542 	WARN_ON(!list_empty(&pool->list));
543 }
544 EXPORT_SYMBOL(rtrs_rdma_dev_pd_deinit);
545 
546 static void dev_free(struct kref *ref)
547 {
548 	struct rtrs_rdma_dev_pd *pool;
549 	struct rtrs_ib_dev *dev;
550 
551 	dev = container_of(ref, typeof(*dev), ref);
552 	pool = dev->pool;
553 
554 	mutex_lock(&pool->mutex);
555 	list_del(&dev->entry);
556 	mutex_unlock(&pool->mutex);
557 
558 	if (pool->ops && pool->ops->deinit)
559 		pool->ops->deinit(dev);
560 
561 	ib_dealloc_pd(dev->ib_pd);
562 
563 	if (pool->ops && pool->ops->free)
564 		pool->ops->free(dev);
565 	else
566 		kfree(dev);
567 }
568 
569 int rtrs_ib_dev_put(struct rtrs_ib_dev *dev)
570 {
571 	return kref_put(&dev->ref, dev_free);
572 }
573 EXPORT_SYMBOL(rtrs_ib_dev_put);
574 
575 static int rtrs_ib_dev_get(struct rtrs_ib_dev *dev)
576 {
577 	return kref_get_unless_zero(&dev->ref);
578 }
579 
580 struct rtrs_ib_dev *
581 rtrs_ib_dev_find_or_add(struct ib_device *ib_dev,
582 			 struct rtrs_rdma_dev_pd *pool)
583 {
584 	struct rtrs_ib_dev *dev;
585 
586 	mutex_lock(&pool->mutex);
587 	list_for_each_entry(dev, &pool->list, entry) {
588 		if (dev->ib_dev->node_guid == ib_dev->node_guid &&
589 		    rtrs_ib_dev_get(dev))
590 			goto out_unlock;
591 	}
592 	mutex_unlock(&pool->mutex);
593 	if (pool->ops && pool->ops->alloc)
594 		dev = pool->ops->alloc();
595 	else
596 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
597 	if (IS_ERR_OR_NULL(dev))
598 		goto out_err;
599 
600 	kref_init(&dev->ref);
601 	dev->pool = pool;
602 	dev->ib_dev = ib_dev;
603 	dev->ib_pd = ib_alloc_pd(ib_dev, pool->pd_flags);
604 	if (IS_ERR(dev->ib_pd))
605 		goto out_free_dev;
606 
607 	if (pool->ops && pool->ops->init && pool->ops->init(dev))
608 		goto out_free_pd;
609 
610 	mutex_lock(&pool->mutex);
611 	list_add(&dev->entry, &pool->list);
612 out_unlock:
613 	mutex_unlock(&pool->mutex);
614 	return dev;
615 
616 out_free_pd:
617 	ib_dealloc_pd(dev->ib_pd);
618 out_free_dev:
619 	if (pool->ops && pool->ops->free)
620 		pool->ops->free(dev);
621 	else
622 		kfree(dev);
623 out_err:
624 	return NULL;
625 }
626 EXPORT_SYMBOL(rtrs_ib_dev_find_or_add);
627