xref: /openbmc/linux/drivers/infiniband/ulp/rtrs/rtrs-srv.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/mempool.h>
15 
16 #include "rtrs-srv.h"
17 #include "rtrs-log.h"
18 #include <rdma/ib_cm.h>
19 #include <rdma/ib_verbs.h>
20 
21 MODULE_DESCRIPTION("RDMA Transport Server");
22 MODULE_LICENSE("GPL");
23 
24 /* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */
25 #define DEFAULT_MAX_CHUNK_SIZE (128 << 10)
26 #define DEFAULT_SESS_QUEUE_DEPTH 512
27 #define MAX_HDR_SIZE PAGE_SIZE
28 
29 /* We guarantee to serve 10 paths at least */
30 #define CHUNK_POOL_SZ 10
31 
32 static struct rtrs_rdma_dev_pd dev_pd;
33 static mempool_t *chunk_pool;
34 struct class *rtrs_dev_class;
35 static struct rtrs_srv_ib_ctx ib_ctx;
36 
37 static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE;
38 static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH;
39 
40 static bool always_invalidate = true;
41 module_param(always_invalidate, bool, 0444);
42 MODULE_PARM_DESC(always_invalidate,
43 		 "Invalidate memory registration for contiguous memory regions before accessing.");
44 
45 module_param_named(max_chunk_size, max_chunk_size, int, 0444);
46 MODULE_PARM_DESC(max_chunk_size,
47 		 "Max size for each IO request, when change the unit is in byte (default: "
48 		 __stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)");
49 
50 module_param_named(sess_queue_depth, sess_queue_depth, int, 0444);
51 MODULE_PARM_DESC(sess_queue_depth,
52 		 "Number of buffers for pending I/O requests to allocate per session. Maximum: "
53 		 __stringify(MAX_SESS_QUEUE_DEPTH) " (default: "
54 		 __stringify(DEFAULT_SESS_QUEUE_DEPTH) ")");
55 
56 static cpumask_t cq_affinity_mask = { CPU_BITS_ALL };
57 
58 static struct workqueue_struct *rtrs_wq;
59 
60 static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c)
61 {
62 	return container_of(c, struct rtrs_srv_con, c);
63 }
64 
65 static inline struct rtrs_srv_path *to_srv_path(struct rtrs_path *s)
66 {
67 	return container_of(s, struct rtrs_srv_path, s);
68 }
69 
70 static bool rtrs_srv_change_state(struct rtrs_srv_path *srv_path,
71 				  enum rtrs_srv_state new_state)
72 {
73 	enum rtrs_srv_state old_state;
74 	bool changed = false;
75 
76 	spin_lock_irq(&srv_path->state_lock);
77 	old_state = srv_path->state;
78 	switch (new_state) {
79 	case RTRS_SRV_CONNECTED:
80 		if (old_state == RTRS_SRV_CONNECTING)
81 			changed = true;
82 		break;
83 	case RTRS_SRV_CLOSING:
84 		if (old_state == RTRS_SRV_CONNECTING ||
85 		    old_state == RTRS_SRV_CONNECTED)
86 			changed = true;
87 		break;
88 	case RTRS_SRV_CLOSED:
89 		if (old_state == RTRS_SRV_CLOSING)
90 			changed = true;
91 		break;
92 	default:
93 		break;
94 	}
95 	if (changed)
96 		srv_path->state = new_state;
97 	spin_unlock_irq(&srv_path->state_lock);
98 
99 	return changed;
100 }
101 
102 static void free_id(struct rtrs_srv_op *id)
103 {
104 	if (!id)
105 		return;
106 	kfree(id);
107 }
108 
109 static void rtrs_srv_free_ops_ids(struct rtrs_srv_path *srv_path)
110 {
111 	struct rtrs_srv_sess *srv = srv_path->srv;
112 	int i;
113 
114 	if (srv_path->ops_ids) {
115 		for (i = 0; i < srv->queue_depth; i++)
116 			free_id(srv_path->ops_ids[i]);
117 		kfree(srv_path->ops_ids);
118 		srv_path->ops_ids = NULL;
119 	}
120 }
121 
122 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
123 
124 static struct ib_cqe io_comp_cqe = {
125 	.done = rtrs_srv_rdma_done
126 };
127 
128 static inline void rtrs_srv_inflight_ref_release(struct percpu_ref *ref)
129 {
130 	struct rtrs_srv_path *srv_path = container_of(ref,
131 						      struct rtrs_srv_path,
132 						      ids_inflight_ref);
133 
134 	percpu_ref_exit(&srv_path->ids_inflight_ref);
135 	complete(&srv_path->complete_done);
136 }
137 
138 static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_path *srv_path)
139 {
140 	struct rtrs_srv_sess *srv = srv_path->srv;
141 	struct rtrs_srv_op *id;
142 	int i, ret;
143 
144 	srv_path->ops_ids = kcalloc(srv->queue_depth,
145 				    sizeof(*srv_path->ops_ids),
146 				    GFP_KERNEL);
147 	if (!srv_path->ops_ids)
148 		goto err;
149 
150 	for (i = 0; i < srv->queue_depth; ++i) {
151 		id = kzalloc(sizeof(*id), GFP_KERNEL);
152 		if (!id)
153 			goto err;
154 
155 		srv_path->ops_ids[i] = id;
156 	}
157 
158 	ret = percpu_ref_init(&srv_path->ids_inflight_ref,
159 			      rtrs_srv_inflight_ref_release, 0, GFP_KERNEL);
160 	if (ret) {
161 		pr_err("Percpu reference init failed\n");
162 		goto err;
163 	}
164 	init_completion(&srv_path->complete_done);
165 
166 	return 0;
167 
168 err:
169 	rtrs_srv_free_ops_ids(srv_path);
170 	return -ENOMEM;
171 }
172 
173 static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_path *srv_path)
174 {
175 	percpu_ref_get(&srv_path->ids_inflight_ref);
176 }
177 
178 static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_path *srv_path)
179 {
180 	percpu_ref_put(&srv_path->ids_inflight_ref);
181 }
182 
183 static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc)
184 {
185 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
186 	struct rtrs_path *s = con->c.path;
187 	struct rtrs_srv_path *srv_path = to_srv_path(s);
188 
189 	if (wc->status != IB_WC_SUCCESS) {
190 		rtrs_err(s, "REG MR failed: %s\n",
191 			  ib_wc_status_msg(wc->status));
192 		close_path(srv_path);
193 		return;
194 	}
195 }
196 
197 static struct ib_cqe local_reg_cqe = {
198 	.done = rtrs_srv_reg_mr_done
199 };
200 
201 static int rdma_write_sg(struct rtrs_srv_op *id)
202 {
203 	struct rtrs_path *s = id->con->c.path;
204 	struct rtrs_srv_path *srv_path = to_srv_path(s);
205 	dma_addr_t dma_addr = srv_path->dma_addr[id->msg_id];
206 	struct rtrs_srv_mr *srv_mr;
207 	struct ib_send_wr inv_wr;
208 	struct ib_rdma_wr imm_wr;
209 	struct ib_rdma_wr *wr = NULL;
210 	enum ib_send_flags flags;
211 	size_t sg_cnt;
212 	int err, offset;
213 	bool need_inval;
214 	u32 rkey = 0;
215 	struct ib_reg_wr rwr;
216 	struct ib_sge *plist;
217 	struct ib_sge list;
218 
219 	sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt);
220 	need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F;
221 	if (sg_cnt != 1)
222 		return -EINVAL;
223 
224 	offset = 0;
225 
226 	wr		= &id->tx_wr;
227 	plist		= &id->tx_sg;
228 	plist->addr	= dma_addr + offset;
229 	plist->length	= le32_to_cpu(id->rd_msg->desc[0].len);
230 
231 	/* WR will fail with length error
232 	 * if this is 0
233 	 */
234 	if (plist->length == 0) {
235 		rtrs_err(s, "Invalid RDMA-Write sg list length 0\n");
236 		return -EINVAL;
237 	}
238 
239 	plist->lkey = srv_path->s.dev->ib_pd->local_dma_lkey;
240 	offset += plist->length;
241 
242 	wr->wr.sg_list	= plist;
243 	wr->wr.num_sge	= 1;
244 	wr->remote_addr	= le64_to_cpu(id->rd_msg->desc[0].addr);
245 	wr->rkey	= le32_to_cpu(id->rd_msg->desc[0].key);
246 	if (rkey == 0)
247 		rkey = wr->rkey;
248 	else
249 		/* Only one key is actually used */
250 		WARN_ON_ONCE(rkey != wr->rkey);
251 
252 	wr->wr.opcode = IB_WR_RDMA_WRITE;
253 	wr->wr.wr_cqe   = &io_comp_cqe;
254 	wr->wr.ex.imm_data = 0;
255 	wr->wr.send_flags  = 0;
256 
257 	if (need_inval && always_invalidate) {
258 		wr->wr.next = &rwr.wr;
259 		rwr.wr.next = &inv_wr;
260 		inv_wr.next = &imm_wr.wr;
261 	} else if (always_invalidate) {
262 		wr->wr.next = &rwr.wr;
263 		rwr.wr.next = &imm_wr.wr;
264 	} else if (need_inval) {
265 		wr->wr.next = &inv_wr;
266 		inv_wr.next = &imm_wr.wr;
267 	} else {
268 		wr->wr.next = &imm_wr.wr;
269 	}
270 	/*
271 	 * From time to time we have to post signaled sends,
272 	 * or send queue will fill up and only QP reset can help.
273 	 */
274 	flags = (atomic_inc_return(&id->con->c.wr_cnt) % s->signal_interval) ?
275 		0 : IB_SEND_SIGNALED;
276 
277 	if (need_inval) {
278 		inv_wr.sg_list = NULL;
279 		inv_wr.num_sge = 0;
280 		inv_wr.opcode = IB_WR_SEND_WITH_INV;
281 		inv_wr.wr_cqe   = &io_comp_cqe;
282 		inv_wr.send_flags = 0;
283 		inv_wr.ex.invalidate_rkey = rkey;
284 	}
285 
286 	imm_wr.wr.next = NULL;
287 	if (always_invalidate) {
288 		struct rtrs_msg_rkey_rsp *msg;
289 
290 		srv_mr = &srv_path->mrs[id->msg_id];
291 		rwr.wr.opcode = IB_WR_REG_MR;
292 		rwr.wr.wr_cqe = &local_reg_cqe;
293 		rwr.wr.num_sge = 0;
294 		rwr.mr = srv_mr->mr;
295 		rwr.wr.send_flags = 0;
296 		rwr.key = srv_mr->mr->rkey;
297 		rwr.access = (IB_ACCESS_LOCAL_WRITE |
298 			      IB_ACCESS_REMOTE_WRITE);
299 		msg = srv_mr->iu->buf;
300 		msg->buf_id = cpu_to_le16(id->msg_id);
301 		msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
302 		msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
303 
304 		list.addr   = srv_mr->iu->dma_addr;
305 		list.length = sizeof(*msg);
306 		list.lkey   = srv_path->s.dev->ib_pd->local_dma_lkey;
307 		imm_wr.wr.sg_list = &list;
308 		imm_wr.wr.num_sge = 1;
309 		imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
310 		ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev,
311 					      srv_mr->iu->dma_addr,
312 					      srv_mr->iu->size, DMA_TO_DEVICE);
313 	} else {
314 		imm_wr.wr.sg_list = NULL;
315 		imm_wr.wr.num_sge = 0;
316 		imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
317 	}
318 	imm_wr.wr.send_flags = flags;
319 	imm_wr.wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id,
320 							     0, need_inval));
321 
322 	imm_wr.wr.wr_cqe   = &io_comp_cqe;
323 	ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev, dma_addr,
324 				      offset, DMA_BIDIRECTIONAL);
325 
326 	err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL);
327 	if (err)
328 		rtrs_err(s,
329 			  "Posting RDMA-Write-Request to QP failed, err: %d\n",
330 			  err);
331 
332 	return err;
333 }
334 
335 /**
336  * send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE
337  *                      requests or on successful WRITE request.
338  * @con:	the connection to send back result
339  * @id:		the id associated with the IO
340  * @errno:	the error number of the IO.
341  *
342  * Return 0 on success, errno otherwise.
343  */
344 static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id,
345 			    int errno)
346 {
347 	struct rtrs_path *s = con->c.path;
348 	struct rtrs_srv_path *srv_path = to_srv_path(s);
349 	struct ib_send_wr inv_wr, *wr = NULL;
350 	struct ib_rdma_wr imm_wr;
351 	struct ib_reg_wr rwr;
352 	struct rtrs_srv_mr *srv_mr;
353 	bool need_inval = false;
354 	enum ib_send_flags flags;
355 	u32 imm;
356 	int err;
357 
358 	if (id->dir == READ) {
359 		struct rtrs_msg_rdma_read *rd_msg = id->rd_msg;
360 		size_t sg_cnt;
361 
362 		need_inval = le16_to_cpu(rd_msg->flags) &
363 				RTRS_MSG_NEED_INVAL_F;
364 		sg_cnt = le16_to_cpu(rd_msg->sg_cnt);
365 
366 		if (need_inval) {
367 			if (sg_cnt) {
368 				inv_wr.wr_cqe   = &io_comp_cqe;
369 				inv_wr.sg_list = NULL;
370 				inv_wr.num_sge = 0;
371 				inv_wr.opcode = IB_WR_SEND_WITH_INV;
372 				inv_wr.send_flags = 0;
373 				/* Only one key is actually used */
374 				inv_wr.ex.invalidate_rkey =
375 					le32_to_cpu(rd_msg->desc[0].key);
376 			} else {
377 				WARN_ON_ONCE(1);
378 				need_inval = false;
379 			}
380 		}
381 	}
382 
383 	if (need_inval && always_invalidate) {
384 		wr = &inv_wr;
385 		inv_wr.next = &rwr.wr;
386 		rwr.wr.next = &imm_wr.wr;
387 	} else if (always_invalidate) {
388 		wr = &rwr.wr;
389 		rwr.wr.next = &imm_wr.wr;
390 	} else if (need_inval) {
391 		wr = &inv_wr;
392 		inv_wr.next = &imm_wr.wr;
393 	} else {
394 		wr = &imm_wr.wr;
395 	}
396 	/*
397 	 * From time to time we have to post signalled sends,
398 	 * or send queue will fill up and only QP reset can help.
399 	 */
400 	flags = (atomic_inc_return(&con->c.wr_cnt) % s->signal_interval) ?
401 		0 : IB_SEND_SIGNALED;
402 	imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval);
403 	imm_wr.wr.next = NULL;
404 	if (always_invalidate) {
405 		struct ib_sge list;
406 		struct rtrs_msg_rkey_rsp *msg;
407 
408 		srv_mr = &srv_path->mrs[id->msg_id];
409 		rwr.wr.next = &imm_wr.wr;
410 		rwr.wr.opcode = IB_WR_REG_MR;
411 		rwr.wr.wr_cqe = &local_reg_cqe;
412 		rwr.wr.num_sge = 0;
413 		rwr.wr.send_flags = 0;
414 		rwr.mr = srv_mr->mr;
415 		rwr.key = srv_mr->mr->rkey;
416 		rwr.access = (IB_ACCESS_LOCAL_WRITE |
417 			      IB_ACCESS_REMOTE_WRITE);
418 		msg = srv_mr->iu->buf;
419 		msg->buf_id = cpu_to_le16(id->msg_id);
420 		msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
421 		msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
422 
423 		list.addr   = srv_mr->iu->dma_addr;
424 		list.length = sizeof(*msg);
425 		list.lkey   = srv_path->s.dev->ib_pd->local_dma_lkey;
426 		imm_wr.wr.sg_list = &list;
427 		imm_wr.wr.num_sge = 1;
428 		imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
429 		ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev,
430 					      srv_mr->iu->dma_addr,
431 					      srv_mr->iu->size, DMA_TO_DEVICE);
432 	} else {
433 		imm_wr.wr.sg_list = NULL;
434 		imm_wr.wr.num_sge = 0;
435 		imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
436 	}
437 	imm_wr.wr.send_flags = flags;
438 	imm_wr.wr.wr_cqe   = &io_comp_cqe;
439 
440 	imm_wr.wr.ex.imm_data = cpu_to_be32(imm);
441 
442 	err = ib_post_send(id->con->c.qp, wr, NULL);
443 	if (err)
444 		rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %d\n",
445 			     err);
446 
447 	return err;
448 }
449 
450 void close_path(struct rtrs_srv_path *srv_path)
451 {
452 	if (rtrs_srv_change_state(srv_path, RTRS_SRV_CLOSING))
453 		queue_work(rtrs_wq, &srv_path->close_work);
454 	WARN_ON(srv_path->state != RTRS_SRV_CLOSING);
455 }
456 
457 static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state)
458 {
459 	switch (state) {
460 	case RTRS_SRV_CONNECTING:
461 		return "RTRS_SRV_CONNECTING";
462 	case RTRS_SRV_CONNECTED:
463 		return "RTRS_SRV_CONNECTED";
464 	case RTRS_SRV_CLOSING:
465 		return "RTRS_SRV_CLOSING";
466 	case RTRS_SRV_CLOSED:
467 		return "RTRS_SRV_CLOSED";
468 	default:
469 		return "UNKNOWN";
470 	}
471 }
472 
473 /**
474  * rtrs_srv_resp_rdma() - Finish an RDMA request
475  *
476  * @id:		Internal RTRS operation identifier
477  * @status:	Response Code sent to the other side for this operation.
478  *		0 = success, <=0 error
479  * Context: any
480  *
481  * Finish a RDMA operation. A message is sent to the client and the
482  * corresponding memory areas will be released.
483  */
484 bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status)
485 {
486 	struct rtrs_srv_path *srv_path;
487 	struct rtrs_srv_con *con;
488 	struct rtrs_path *s;
489 	int err;
490 
491 	if (WARN_ON(!id))
492 		return true;
493 
494 	con = id->con;
495 	s = con->c.path;
496 	srv_path = to_srv_path(s);
497 
498 	id->status = status;
499 
500 	if (srv_path->state != RTRS_SRV_CONNECTED) {
501 		rtrs_err_rl(s,
502 			    "Sending I/O response failed,  server path %s is disconnected, path state %s\n",
503 			    kobject_name(&srv_path->kobj),
504 			    rtrs_srv_state_str(srv_path->state));
505 		goto out;
506 	}
507 	if (always_invalidate) {
508 		struct rtrs_srv_mr *mr = &srv_path->mrs[id->msg_id];
509 
510 		ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
511 	}
512 	if (atomic_sub_return(1, &con->c.sq_wr_avail) < 0) {
513 		rtrs_err(s, "IB send queue full: srv_path=%s cid=%d\n",
514 			 kobject_name(&srv_path->kobj),
515 			 con->c.cid);
516 		atomic_add(1, &con->c.sq_wr_avail);
517 		spin_lock(&con->rsp_wr_wait_lock);
518 		list_add_tail(&id->wait_list, &con->rsp_wr_wait_list);
519 		spin_unlock(&con->rsp_wr_wait_lock);
520 		return false;
521 	}
522 
523 	if (status || id->dir == WRITE || !id->rd_msg->sg_cnt)
524 		err = send_io_resp_imm(con, id, status);
525 	else
526 		err = rdma_write_sg(id);
527 
528 	if (err) {
529 		rtrs_err_rl(s, "IO response failed: %d: srv_path=%s\n", err,
530 			    kobject_name(&srv_path->kobj));
531 		close_path(srv_path);
532 	}
533 out:
534 	rtrs_srv_put_ops_ids(srv_path);
535 	return true;
536 }
537 EXPORT_SYMBOL(rtrs_srv_resp_rdma);
538 
539 /**
540  * rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv.
541  * @srv:	Session pointer
542  * @priv:	The private pointer that is associated with the session.
543  */
544 void rtrs_srv_set_sess_priv(struct rtrs_srv_sess *srv, void *priv)
545 {
546 	srv->priv = priv;
547 }
548 EXPORT_SYMBOL(rtrs_srv_set_sess_priv);
549 
550 static void unmap_cont_bufs(struct rtrs_srv_path *srv_path)
551 {
552 	int i;
553 
554 	for (i = 0; i < srv_path->mrs_num; i++) {
555 		struct rtrs_srv_mr *srv_mr;
556 
557 		srv_mr = &srv_path->mrs[i];
558 		rtrs_iu_free(srv_mr->iu, srv_path->s.dev->ib_dev, 1);
559 		ib_dereg_mr(srv_mr->mr);
560 		ib_dma_unmap_sg(srv_path->s.dev->ib_dev, srv_mr->sgt.sgl,
561 				srv_mr->sgt.nents, DMA_BIDIRECTIONAL);
562 		sg_free_table(&srv_mr->sgt);
563 	}
564 	kfree(srv_path->mrs);
565 }
566 
567 static int map_cont_bufs(struct rtrs_srv_path *srv_path)
568 {
569 	struct rtrs_srv_sess *srv = srv_path->srv;
570 	struct rtrs_path *ss = &srv_path->s;
571 	int i, mri, err, mrs_num;
572 	unsigned int chunk_bits;
573 	int chunks_per_mr = 1;
574 
575 	/*
576 	 * Here we map queue_depth chunks to MR.  Firstly we have to
577 	 * figure out how many chunks can we map per MR.
578 	 */
579 	if (always_invalidate) {
580 		/*
581 		 * in order to do invalidate for each chunks of memory, we needs
582 		 * more memory regions.
583 		 */
584 		mrs_num = srv->queue_depth;
585 	} else {
586 		chunks_per_mr =
587 			srv_path->s.dev->ib_dev->attrs.max_fast_reg_page_list_len;
588 		mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr);
589 		chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num);
590 	}
591 
592 	srv_path->mrs = kcalloc(mrs_num, sizeof(*srv_path->mrs), GFP_KERNEL);
593 	if (!srv_path->mrs)
594 		return -ENOMEM;
595 
596 	srv_path->mrs_num = mrs_num;
597 
598 	for (mri = 0; mri < mrs_num; mri++) {
599 		struct rtrs_srv_mr *srv_mr = &srv_path->mrs[mri];
600 		struct sg_table *sgt = &srv_mr->sgt;
601 		struct scatterlist *s;
602 		struct ib_mr *mr;
603 		int nr, chunks;
604 
605 		chunks = chunks_per_mr * mri;
606 		if (!always_invalidate)
607 			chunks_per_mr = min_t(int, chunks_per_mr,
608 					      srv->queue_depth - chunks);
609 
610 		err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL);
611 		if (err)
612 			goto err;
613 
614 		for_each_sg(sgt->sgl, s, chunks_per_mr, i)
615 			sg_set_page(s, srv->chunks[chunks + i],
616 				    max_chunk_size, 0);
617 
618 		nr = ib_dma_map_sg(srv_path->s.dev->ib_dev, sgt->sgl,
619 				   sgt->nents, DMA_BIDIRECTIONAL);
620 		if (nr < sgt->nents) {
621 			err = nr < 0 ? nr : -EINVAL;
622 			goto free_sg;
623 		}
624 		mr = ib_alloc_mr(srv_path->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
625 				 sgt->nents);
626 		if (IS_ERR(mr)) {
627 			err = PTR_ERR(mr);
628 			goto unmap_sg;
629 		}
630 		nr = ib_map_mr_sg(mr, sgt->sgl, sgt->nents,
631 				  NULL, max_chunk_size);
632 		if (nr < 0 || nr < sgt->nents) {
633 			err = nr < 0 ? nr : -EINVAL;
634 			goto dereg_mr;
635 		}
636 
637 		if (always_invalidate) {
638 			srv_mr->iu = rtrs_iu_alloc(1,
639 					sizeof(struct rtrs_msg_rkey_rsp),
640 					GFP_KERNEL, srv_path->s.dev->ib_dev,
641 					DMA_TO_DEVICE, rtrs_srv_rdma_done);
642 			if (!srv_mr->iu) {
643 				err = -ENOMEM;
644 				rtrs_err(ss, "rtrs_iu_alloc(), err: %d\n", err);
645 				goto dereg_mr;
646 			}
647 		}
648 		/* Eventually dma addr for each chunk can be cached */
649 		for_each_sg(sgt->sgl, s, sgt->orig_nents, i)
650 			srv_path->dma_addr[chunks + i] = sg_dma_address(s);
651 
652 		ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey));
653 		srv_mr->mr = mr;
654 
655 		continue;
656 err:
657 		while (mri--) {
658 			srv_mr = &srv_path->mrs[mri];
659 			sgt = &srv_mr->sgt;
660 			mr = srv_mr->mr;
661 			rtrs_iu_free(srv_mr->iu, srv_path->s.dev->ib_dev, 1);
662 dereg_mr:
663 			ib_dereg_mr(mr);
664 unmap_sg:
665 			ib_dma_unmap_sg(srv_path->s.dev->ib_dev, sgt->sgl,
666 					sgt->nents, DMA_BIDIRECTIONAL);
667 free_sg:
668 			sg_free_table(sgt);
669 		}
670 		kfree(srv_path->mrs);
671 
672 		return err;
673 	}
674 
675 	chunk_bits = ilog2(srv->queue_depth - 1) + 1;
676 	srv_path->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits);
677 
678 	return 0;
679 }
680 
681 static void rtrs_srv_hb_err_handler(struct rtrs_con *c)
682 {
683 	close_path(to_srv_path(c->path));
684 }
685 
686 static void rtrs_srv_init_hb(struct rtrs_srv_path *srv_path)
687 {
688 	rtrs_init_hb(&srv_path->s, &io_comp_cqe,
689 		      RTRS_HB_INTERVAL_MS,
690 		      RTRS_HB_MISSED_MAX,
691 		      rtrs_srv_hb_err_handler,
692 		      rtrs_wq);
693 }
694 
695 static void rtrs_srv_start_hb(struct rtrs_srv_path *srv_path)
696 {
697 	rtrs_start_hb(&srv_path->s);
698 }
699 
700 static void rtrs_srv_stop_hb(struct rtrs_srv_path *srv_path)
701 {
702 	rtrs_stop_hb(&srv_path->s);
703 }
704 
705 static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
706 {
707 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
708 	struct rtrs_path *s = con->c.path;
709 	struct rtrs_srv_path *srv_path = to_srv_path(s);
710 	struct rtrs_iu *iu;
711 
712 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
713 	rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1);
714 
715 	if (wc->status != IB_WC_SUCCESS) {
716 		rtrs_err(s, "Sess info response send failed: %s\n",
717 			  ib_wc_status_msg(wc->status));
718 		close_path(srv_path);
719 		return;
720 	}
721 	WARN_ON(wc->opcode != IB_WC_SEND);
722 }
723 
724 static void rtrs_srv_path_up(struct rtrs_srv_path *srv_path)
725 {
726 	struct rtrs_srv_sess *srv = srv_path->srv;
727 	struct rtrs_srv_ctx *ctx = srv->ctx;
728 	int up;
729 
730 	mutex_lock(&srv->paths_ev_mutex);
731 	up = ++srv->paths_up;
732 	if (up == 1)
733 		ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL);
734 	mutex_unlock(&srv->paths_ev_mutex);
735 
736 	/* Mark session as established */
737 	srv_path->established = true;
738 }
739 
740 static void rtrs_srv_path_down(struct rtrs_srv_path *srv_path)
741 {
742 	struct rtrs_srv_sess *srv = srv_path->srv;
743 	struct rtrs_srv_ctx *ctx = srv->ctx;
744 
745 	if (!srv_path->established)
746 		return;
747 
748 	srv_path->established = false;
749 	mutex_lock(&srv->paths_ev_mutex);
750 	WARN_ON(!srv->paths_up);
751 	if (--srv->paths_up == 0)
752 		ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv);
753 	mutex_unlock(&srv->paths_ev_mutex);
754 }
755 
756 static bool exist_pathname(struct rtrs_srv_ctx *ctx,
757 			   const char *pathname, const uuid_t *path_uuid)
758 {
759 	struct rtrs_srv_sess *srv;
760 	struct rtrs_srv_path *srv_path;
761 	bool found = false;
762 
763 	mutex_lock(&ctx->srv_mutex);
764 	list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
765 		mutex_lock(&srv->paths_mutex);
766 
767 		/* when a client with same uuid and same sessname tried to add a path */
768 		if (uuid_equal(&srv->paths_uuid, path_uuid)) {
769 			mutex_unlock(&srv->paths_mutex);
770 			continue;
771 		}
772 
773 		list_for_each_entry(srv_path, &srv->paths_list, s.entry) {
774 			if (strlen(srv_path->s.sessname) == strlen(pathname) &&
775 			    !strcmp(srv_path->s.sessname, pathname)) {
776 				found = true;
777 				break;
778 			}
779 		}
780 		mutex_unlock(&srv->paths_mutex);
781 		if (found)
782 			break;
783 	}
784 	mutex_unlock(&ctx->srv_mutex);
785 	return found;
786 }
787 
788 static int post_recv_path(struct rtrs_srv_path *srv_path);
789 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno);
790 
791 static int process_info_req(struct rtrs_srv_con *con,
792 			    struct rtrs_msg_info_req *msg)
793 {
794 	struct rtrs_path *s = con->c.path;
795 	struct rtrs_srv_path *srv_path = to_srv_path(s);
796 	struct ib_send_wr *reg_wr = NULL;
797 	struct rtrs_msg_info_rsp *rsp;
798 	struct rtrs_iu *tx_iu;
799 	struct ib_reg_wr *rwr;
800 	int mri, err;
801 	size_t tx_sz;
802 
803 	err = post_recv_path(srv_path);
804 	if (err) {
805 		rtrs_err(s, "post_recv_path(), err: %d\n", err);
806 		return err;
807 	}
808 
809 	if (strchr(msg->pathname, '/') || strchr(msg->pathname, '.')) {
810 		rtrs_err(s, "pathname cannot contain / and .\n");
811 		return -EINVAL;
812 	}
813 
814 	if (exist_pathname(srv_path->srv->ctx,
815 			   msg->pathname, &srv_path->srv->paths_uuid)) {
816 		rtrs_err(s, "pathname is duplicated: %s\n", msg->pathname);
817 		return -EPERM;
818 	}
819 	strscpy(srv_path->s.sessname, msg->pathname,
820 		sizeof(srv_path->s.sessname));
821 
822 	rwr = kcalloc(srv_path->mrs_num, sizeof(*rwr), GFP_KERNEL);
823 	if (!rwr)
824 		return -ENOMEM;
825 
826 	tx_sz  = sizeof(*rsp);
827 	tx_sz += sizeof(rsp->desc[0]) * srv_path->mrs_num;
828 	tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, srv_path->s.dev->ib_dev,
829 			       DMA_TO_DEVICE, rtrs_srv_info_rsp_done);
830 	if (!tx_iu) {
831 		err = -ENOMEM;
832 		goto rwr_free;
833 	}
834 
835 	rsp = tx_iu->buf;
836 	rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP);
837 	rsp->sg_cnt = cpu_to_le16(srv_path->mrs_num);
838 
839 	for (mri = 0; mri < srv_path->mrs_num; mri++) {
840 		struct ib_mr *mr = srv_path->mrs[mri].mr;
841 
842 		rsp->desc[mri].addr = cpu_to_le64(mr->iova);
843 		rsp->desc[mri].key  = cpu_to_le32(mr->rkey);
844 		rsp->desc[mri].len  = cpu_to_le32(mr->length);
845 
846 		/*
847 		 * Fill in reg MR request and chain them *backwards*
848 		 */
849 		rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL;
850 		rwr[mri].wr.opcode = IB_WR_REG_MR;
851 		rwr[mri].wr.wr_cqe = &local_reg_cqe;
852 		rwr[mri].wr.num_sge = 0;
853 		rwr[mri].wr.send_flags = 0;
854 		rwr[mri].mr = mr;
855 		rwr[mri].key = mr->rkey;
856 		rwr[mri].access = (IB_ACCESS_LOCAL_WRITE |
857 				   IB_ACCESS_REMOTE_WRITE);
858 		reg_wr = &rwr[mri].wr;
859 	}
860 
861 	err = rtrs_srv_create_path_files(srv_path);
862 	if (err)
863 		goto iu_free;
864 	kobject_get(&srv_path->kobj);
865 	get_device(&srv_path->srv->dev);
866 	rtrs_srv_change_state(srv_path, RTRS_SRV_CONNECTED);
867 	rtrs_srv_start_hb(srv_path);
868 
869 	/*
870 	 * We do not account number of established connections at the current
871 	 * moment, we rely on the client, which should send info request when
872 	 * all connections are successfully established.  Thus, simply notify
873 	 * listener with a proper event if we are the first path.
874 	 */
875 	rtrs_srv_path_up(srv_path);
876 
877 	ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev,
878 				      tx_iu->dma_addr,
879 				      tx_iu->size, DMA_TO_DEVICE);
880 
881 	/* Send info response */
882 	err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr);
883 	if (err) {
884 		rtrs_err(s, "rtrs_iu_post_send(), err: %d\n", err);
885 iu_free:
886 		rtrs_iu_free(tx_iu, srv_path->s.dev->ib_dev, 1);
887 	}
888 rwr_free:
889 	kfree(rwr);
890 
891 	return err;
892 }
893 
894 static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
895 {
896 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
897 	struct rtrs_path *s = con->c.path;
898 	struct rtrs_srv_path *srv_path = to_srv_path(s);
899 	struct rtrs_msg_info_req *msg;
900 	struct rtrs_iu *iu;
901 	int err;
902 
903 	WARN_ON(con->c.cid);
904 
905 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
906 	if (wc->status != IB_WC_SUCCESS) {
907 		rtrs_err(s, "Sess info request receive failed: %s\n",
908 			  ib_wc_status_msg(wc->status));
909 		goto close;
910 	}
911 	WARN_ON(wc->opcode != IB_WC_RECV);
912 
913 	if (wc->byte_len < sizeof(*msg)) {
914 		rtrs_err(s, "Sess info request is malformed: size %d\n",
915 			  wc->byte_len);
916 		goto close;
917 	}
918 	ib_dma_sync_single_for_cpu(srv_path->s.dev->ib_dev, iu->dma_addr,
919 				   iu->size, DMA_FROM_DEVICE);
920 	msg = iu->buf;
921 	if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ) {
922 		rtrs_err(s, "Sess info request is malformed: type %d\n",
923 			  le16_to_cpu(msg->type));
924 		goto close;
925 	}
926 	err = process_info_req(con, msg);
927 	if (err)
928 		goto close;
929 
930 out:
931 	rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1);
932 	return;
933 close:
934 	close_path(srv_path);
935 	goto out;
936 }
937 
938 static int post_recv_info_req(struct rtrs_srv_con *con)
939 {
940 	struct rtrs_path *s = con->c.path;
941 	struct rtrs_srv_path *srv_path = to_srv_path(s);
942 	struct rtrs_iu *rx_iu;
943 	int err;
944 
945 	rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req),
946 			       GFP_KERNEL, srv_path->s.dev->ib_dev,
947 			       DMA_FROM_DEVICE, rtrs_srv_info_req_done);
948 	if (!rx_iu)
949 		return -ENOMEM;
950 	/* Prepare for getting info response */
951 	err = rtrs_iu_post_recv(&con->c, rx_iu);
952 	if (err) {
953 		rtrs_err(s, "rtrs_iu_post_recv(), err: %d\n", err);
954 		rtrs_iu_free(rx_iu, srv_path->s.dev->ib_dev, 1);
955 		return err;
956 	}
957 
958 	return 0;
959 }
960 
961 static int post_recv_io(struct rtrs_srv_con *con, size_t q_size)
962 {
963 	int i, err;
964 
965 	for (i = 0; i < q_size; i++) {
966 		err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
967 		if (err)
968 			return err;
969 	}
970 
971 	return 0;
972 }
973 
974 static int post_recv_path(struct rtrs_srv_path *srv_path)
975 {
976 	struct rtrs_srv_sess *srv = srv_path->srv;
977 	struct rtrs_path *s = &srv_path->s;
978 	size_t q_size;
979 	int err, cid;
980 
981 	for (cid = 0; cid < srv_path->s.con_num; cid++) {
982 		if (cid == 0)
983 			q_size = SERVICE_CON_QUEUE_DEPTH;
984 		else
985 			q_size = srv->queue_depth;
986 
987 		err = post_recv_io(to_srv_con(srv_path->s.con[cid]), q_size);
988 		if (err) {
989 			rtrs_err(s, "post_recv_io(), err: %d\n", err);
990 			return err;
991 		}
992 	}
993 
994 	return 0;
995 }
996 
997 static void process_read(struct rtrs_srv_con *con,
998 			 struct rtrs_msg_rdma_read *msg,
999 			 u32 buf_id, u32 off)
1000 {
1001 	struct rtrs_path *s = con->c.path;
1002 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1003 	struct rtrs_srv_sess *srv = srv_path->srv;
1004 	struct rtrs_srv_ctx *ctx = srv->ctx;
1005 	struct rtrs_srv_op *id;
1006 
1007 	size_t usr_len, data_len;
1008 	void *data;
1009 	int ret;
1010 
1011 	if (srv_path->state != RTRS_SRV_CONNECTED) {
1012 		rtrs_err_rl(s,
1013 			     "Processing read request failed,  session is disconnected, sess state %s\n",
1014 			     rtrs_srv_state_str(srv_path->state));
1015 		return;
1016 	}
1017 	if (msg->sg_cnt != 1 && msg->sg_cnt != 0) {
1018 		rtrs_err_rl(s,
1019 			    "Processing read request failed, invalid message\n");
1020 		return;
1021 	}
1022 	rtrs_srv_get_ops_ids(srv_path);
1023 	rtrs_srv_update_rdma_stats(srv_path->stats, off, READ);
1024 	id = srv_path->ops_ids[buf_id];
1025 	id->con		= con;
1026 	id->dir		= READ;
1027 	id->msg_id	= buf_id;
1028 	id->rd_msg	= msg;
1029 	usr_len = le16_to_cpu(msg->usr_len);
1030 	data_len = off - usr_len;
1031 	data = page_address(srv->chunks[buf_id]);
1032 	ret = ctx->ops.rdma_ev(srv->priv, id, READ, data, data_len,
1033 			   data + data_len, usr_len);
1034 
1035 	if (ret) {
1036 		rtrs_err_rl(s,
1037 			     "Processing read request failed, user module cb reported for msg_id %d, err: %d\n",
1038 			     buf_id, ret);
1039 		goto send_err_msg;
1040 	}
1041 
1042 	return;
1043 
1044 send_err_msg:
1045 	ret = send_io_resp_imm(con, id, ret);
1046 	if (ret < 0) {
1047 		rtrs_err_rl(s,
1048 			     "Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %d\n",
1049 			     buf_id, ret);
1050 		close_path(srv_path);
1051 	}
1052 	rtrs_srv_put_ops_ids(srv_path);
1053 }
1054 
1055 static void process_write(struct rtrs_srv_con *con,
1056 			  struct rtrs_msg_rdma_write *req,
1057 			  u32 buf_id, u32 off)
1058 {
1059 	struct rtrs_path *s = con->c.path;
1060 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1061 	struct rtrs_srv_sess *srv = srv_path->srv;
1062 	struct rtrs_srv_ctx *ctx = srv->ctx;
1063 	struct rtrs_srv_op *id;
1064 
1065 	size_t data_len, usr_len;
1066 	void *data;
1067 	int ret;
1068 
1069 	if (srv_path->state != RTRS_SRV_CONNECTED) {
1070 		rtrs_err_rl(s,
1071 			     "Processing write request failed,  session is disconnected, sess state %s\n",
1072 			     rtrs_srv_state_str(srv_path->state));
1073 		return;
1074 	}
1075 	rtrs_srv_get_ops_ids(srv_path);
1076 	rtrs_srv_update_rdma_stats(srv_path->stats, off, WRITE);
1077 	id = srv_path->ops_ids[buf_id];
1078 	id->con    = con;
1079 	id->dir    = WRITE;
1080 	id->msg_id = buf_id;
1081 
1082 	usr_len = le16_to_cpu(req->usr_len);
1083 	data_len = off - usr_len;
1084 	data = page_address(srv->chunks[buf_id]);
1085 	ret = ctx->ops.rdma_ev(srv->priv, id, WRITE, data, data_len,
1086 			       data + data_len, usr_len);
1087 	if (ret) {
1088 		rtrs_err_rl(s,
1089 			     "Processing write request failed, user module callback reports err: %d\n",
1090 			     ret);
1091 		goto send_err_msg;
1092 	}
1093 
1094 	return;
1095 
1096 send_err_msg:
1097 	ret = send_io_resp_imm(con, id, ret);
1098 	if (ret < 0) {
1099 		rtrs_err_rl(s,
1100 			     "Processing write request failed, sending I/O response failed, msg_id %d, err: %d\n",
1101 			     buf_id, ret);
1102 		close_path(srv_path);
1103 	}
1104 	rtrs_srv_put_ops_ids(srv_path);
1105 }
1106 
1107 static void process_io_req(struct rtrs_srv_con *con, void *msg,
1108 			   u32 id, u32 off)
1109 {
1110 	struct rtrs_path *s = con->c.path;
1111 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1112 	struct rtrs_msg_rdma_hdr *hdr;
1113 	unsigned int type;
1114 
1115 	ib_dma_sync_single_for_cpu(srv_path->s.dev->ib_dev,
1116 				   srv_path->dma_addr[id],
1117 				   max_chunk_size, DMA_BIDIRECTIONAL);
1118 	hdr = msg;
1119 	type = le16_to_cpu(hdr->type);
1120 
1121 	switch (type) {
1122 	case RTRS_MSG_WRITE:
1123 		process_write(con, msg, id, off);
1124 		break;
1125 	case RTRS_MSG_READ:
1126 		process_read(con, msg, id, off);
1127 		break;
1128 	default:
1129 		rtrs_err(s,
1130 			  "Processing I/O request failed, unknown message type received: 0x%02x\n",
1131 			  type);
1132 		goto err;
1133 	}
1134 
1135 	return;
1136 
1137 err:
1138 	close_path(srv_path);
1139 }
1140 
1141 static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1142 {
1143 	struct rtrs_srv_mr *mr =
1144 		container_of(wc->wr_cqe, typeof(*mr), inv_cqe);
1145 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1146 	struct rtrs_path *s = con->c.path;
1147 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1148 	struct rtrs_srv_sess *srv = srv_path->srv;
1149 	u32 msg_id, off;
1150 	void *data;
1151 
1152 	if (wc->status != IB_WC_SUCCESS) {
1153 		rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n",
1154 			  ib_wc_status_msg(wc->status));
1155 		close_path(srv_path);
1156 	}
1157 	msg_id = mr->msg_id;
1158 	off = mr->msg_off;
1159 	data = page_address(srv->chunks[msg_id]) + off;
1160 	process_io_req(con, data, msg_id, off);
1161 }
1162 
1163 static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con,
1164 			      struct rtrs_srv_mr *mr)
1165 {
1166 	struct ib_send_wr wr = {
1167 		.opcode		    = IB_WR_LOCAL_INV,
1168 		.wr_cqe		    = &mr->inv_cqe,
1169 		.send_flags	    = IB_SEND_SIGNALED,
1170 		.ex.invalidate_rkey = mr->mr->rkey,
1171 	};
1172 	mr->inv_cqe.done = rtrs_srv_inv_rkey_done;
1173 
1174 	return ib_post_send(con->c.qp, &wr, NULL);
1175 }
1176 
1177 static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con)
1178 {
1179 	spin_lock(&con->rsp_wr_wait_lock);
1180 	while (!list_empty(&con->rsp_wr_wait_list)) {
1181 		struct rtrs_srv_op *id;
1182 		int ret;
1183 
1184 		id = list_entry(con->rsp_wr_wait_list.next,
1185 				struct rtrs_srv_op, wait_list);
1186 		list_del(&id->wait_list);
1187 
1188 		spin_unlock(&con->rsp_wr_wait_lock);
1189 		ret = rtrs_srv_resp_rdma(id, id->status);
1190 		spin_lock(&con->rsp_wr_wait_lock);
1191 
1192 		if (!ret) {
1193 			list_add(&id->wait_list, &con->rsp_wr_wait_list);
1194 			break;
1195 		}
1196 	}
1197 	spin_unlock(&con->rsp_wr_wait_lock);
1198 }
1199 
1200 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
1201 {
1202 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1203 	struct rtrs_path *s = con->c.path;
1204 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1205 	struct rtrs_srv_sess *srv = srv_path->srv;
1206 	u32 imm_type, imm_payload;
1207 	int err;
1208 
1209 	if (wc->status != IB_WC_SUCCESS) {
1210 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
1211 			rtrs_err(s,
1212 				  "%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n",
1213 				  ib_wc_status_msg(wc->status), wc->wr_cqe,
1214 				  wc->opcode, wc->vendor_err, wc->byte_len);
1215 			close_path(srv_path);
1216 		}
1217 		return;
1218 	}
1219 
1220 	switch (wc->opcode) {
1221 	case IB_WC_RECV_RDMA_WITH_IMM:
1222 		/*
1223 		 * post_recv() RDMA write completions of IO reqs (read/write)
1224 		 * and hb
1225 		 */
1226 		if (WARN_ON(wc->wr_cqe != &io_comp_cqe))
1227 			return;
1228 		err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
1229 		if (err) {
1230 			rtrs_err(s, "rtrs_post_recv(), err: %d\n", err);
1231 			close_path(srv_path);
1232 			break;
1233 		}
1234 		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
1235 			       &imm_type, &imm_payload);
1236 		if (imm_type == RTRS_IO_REQ_IMM) {
1237 			u32 msg_id, off;
1238 			void *data;
1239 
1240 			msg_id = imm_payload >> srv_path->mem_bits;
1241 			off = imm_payload & ((1 << srv_path->mem_bits) - 1);
1242 			if (msg_id >= srv->queue_depth || off >= max_chunk_size) {
1243 				rtrs_err(s, "Wrong msg_id %u, off %u\n",
1244 					  msg_id, off);
1245 				close_path(srv_path);
1246 				return;
1247 			}
1248 			if (always_invalidate) {
1249 				struct rtrs_srv_mr *mr = &srv_path->mrs[msg_id];
1250 
1251 				mr->msg_off = off;
1252 				mr->msg_id = msg_id;
1253 				err = rtrs_srv_inv_rkey(con, mr);
1254 				if (err) {
1255 					rtrs_err(s, "rtrs_post_recv(), err: %d\n",
1256 						  err);
1257 					close_path(srv_path);
1258 					break;
1259 				}
1260 			} else {
1261 				data = page_address(srv->chunks[msg_id]) + off;
1262 				process_io_req(con, data, msg_id, off);
1263 			}
1264 		} else if (imm_type == RTRS_HB_MSG_IMM) {
1265 			WARN_ON(con->c.cid);
1266 			rtrs_send_hb_ack(&srv_path->s);
1267 		} else if (imm_type == RTRS_HB_ACK_IMM) {
1268 			WARN_ON(con->c.cid);
1269 			srv_path->s.hb_missed_cnt = 0;
1270 		} else {
1271 			rtrs_wrn(s, "Unknown IMM type %u\n", imm_type);
1272 		}
1273 		break;
1274 	case IB_WC_RDMA_WRITE:
1275 	case IB_WC_SEND:
1276 		/*
1277 		 * post_send() RDMA write completions of IO reqs (read/write)
1278 		 * and hb.
1279 		 */
1280 		atomic_add(s->signal_interval, &con->c.sq_wr_avail);
1281 
1282 		if (!list_empty_careful(&con->rsp_wr_wait_list))
1283 			rtrs_rdma_process_wr_wait_list(con);
1284 
1285 		break;
1286 	default:
1287 		rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode);
1288 		return;
1289 	}
1290 }
1291 
1292 /**
1293  * rtrs_srv_get_path_name() - Get rtrs_srv peer hostname.
1294  * @srv:	Session
1295  * @pathname:	Pathname buffer
1296  * @len:	Length of sessname buffer
1297  */
1298 int rtrs_srv_get_path_name(struct rtrs_srv_sess *srv, char *pathname,
1299 			   size_t len)
1300 {
1301 	struct rtrs_srv_path *srv_path;
1302 	int err = -ENOTCONN;
1303 
1304 	mutex_lock(&srv->paths_mutex);
1305 	list_for_each_entry(srv_path, &srv->paths_list, s.entry) {
1306 		if (srv_path->state != RTRS_SRV_CONNECTED)
1307 			continue;
1308 		strscpy(pathname, srv_path->s.sessname,
1309 			min_t(size_t, sizeof(srv_path->s.sessname), len));
1310 		err = 0;
1311 		break;
1312 	}
1313 	mutex_unlock(&srv->paths_mutex);
1314 
1315 	return err;
1316 }
1317 EXPORT_SYMBOL(rtrs_srv_get_path_name);
1318 
1319 /**
1320  * rtrs_srv_get_queue_depth() - Get rtrs_srv qdepth.
1321  * @srv:	Session
1322  */
1323 int rtrs_srv_get_queue_depth(struct rtrs_srv_sess *srv)
1324 {
1325 	return srv->queue_depth;
1326 }
1327 EXPORT_SYMBOL(rtrs_srv_get_queue_depth);
1328 
1329 static int find_next_bit_ring(struct rtrs_srv_path *srv_path)
1330 {
1331 	struct ib_device *ib_dev = srv_path->s.dev->ib_dev;
1332 	int v;
1333 
1334 	v = cpumask_next(srv_path->cur_cq_vector, &cq_affinity_mask);
1335 	if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors)
1336 		v = cpumask_first(&cq_affinity_mask);
1337 	return v;
1338 }
1339 
1340 static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_path *srv_path)
1341 {
1342 	srv_path->cur_cq_vector = find_next_bit_ring(srv_path);
1343 
1344 	return srv_path->cur_cq_vector;
1345 }
1346 
1347 static void rtrs_srv_dev_release(struct device *dev)
1348 {
1349 	struct rtrs_srv_sess *srv = container_of(dev, struct rtrs_srv_sess,
1350 						 dev);
1351 
1352 	kfree(srv);
1353 }
1354 
1355 static void free_srv(struct rtrs_srv_sess *srv)
1356 {
1357 	int i;
1358 
1359 	WARN_ON(refcount_read(&srv->refcount));
1360 	for (i = 0; i < srv->queue_depth; i++)
1361 		mempool_free(srv->chunks[i], chunk_pool);
1362 	kfree(srv->chunks);
1363 	mutex_destroy(&srv->paths_mutex);
1364 	mutex_destroy(&srv->paths_ev_mutex);
1365 	/* last put to release the srv structure */
1366 	put_device(&srv->dev);
1367 }
1368 
1369 static struct rtrs_srv_sess *get_or_create_srv(struct rtrs_srv_ctx *ctx,
1370 					  const uuid_t *paths_uuid,
1371 					  bool first_conn)
1372 {
1373 	struct rtrs_srv_sess *srv;
1374 	int i;
1375 
1376 	mutex_lock(&ctx->srv_mutex);
1377 	list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
1378 		if (uuid_equal(&srv->paths_uuid, paths_uuid) &&
1379 		    refcount_inc_not_zero(&srv->refcount)) {
1380 			mutex_unlock(&ctx->srv_mutex);
1381 			return srv;
1382 		}
1383 	}
1384 	mutex_unlock(&ctx->srv_mutex);
1385 	/*
1386 	 * If this request is not the first connection request from the
1387 	 * client for this session then fail and return error.
1388 	 */
1389 	if (!first_conn) {
1390 		pr_err_ratelimited("Error: Not the first connection request for this session\n");
1391 		return ERR_PTR(-ENXIO);
1392 	}
1393 
1394 	/* need to allocate a new srv */
1395 	srv = kzalloc(sizeof(*srv), GFP_KERNEL);
1396 	if  (!srv)
1397 		return ERR_PTR(-ENOMEM);
1398 
1399 	INIT_LIST_HEAD(&srv->paths_list);
1400 	mutex_init(&srv->paths_mutex);
1401 	mutex_init(&srv->paths_ev_mutex);
1402 	uuid_copy(&srv->paths_uuid, paths_uuid);
1403 	srv->queue_depth = sess_queue_depth;
1404 	srv->ctx = ctx;
1405 	device_initialize(&srv->dev);
1406 	srv->dev.release = rtrs_srv_dev_release;
1407 
1408 	srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks),
1409 			      GFP_KERNEL);
1410 	if (!srv->chunks)
1411 		goto err_free_srv;
1412 
1413 	for (i = 0; i < srv->queue_depth; i++) {
1414 		srv->chunks[i] = mempool_alloc(chunk_pool, GFP_KERNEL);
1415 		if (!srv->chunks[i])
1416 			goto err_free_chunks;
1417 	}
1418 	refcount_set(&srv->refcount, 1);
1419 	mutex_lock(&ctx->srv_mutex);
1420 	list_add(&srv->ctx_list, &ctx->srv_list);
1421 	mutex_unlock(&ctx->srv_mutex);
1422 
1423 	return srv;
1424 
1425 err_free_chunks:
1426 	while (i--)
1427 		mempool_free(srv->chunks[i], chunk_pool);
1428 	kfree(srv->chunks);
1429 
1430 err_free_srv:
1431 	kfree(srv);
1432 	return ERR_PTR(-ENOMEM);
1433 }
1434 
1435 static void put_srv(struct rtrs_srv_sess *srv)
1436 {
1437 	if (refcount_dec_and_test(&srv->refcount)) {
1438 		struct rtrs_srv_ctx *ctx = srv->ctx;
1439 
1440 		WARN_ON(srv->dev.kobj.state_in_sysfs);
1441 
1442 		mutex_lock(&ctx->srv_mutex);
1443 		list_del(&srv->ctx_list);
1444 		mutex_unlock(&ctx->srv_mutex);
1445 		free_srv(srv);
1446 	}
1447 }
1448 
1449 static void __add_path_to_srv(struct rtrs_srv_sess *srv,
1450 			      struct rtrs_srv_path *srv_path)
1451 {
1452 	list_add_tail(&srv_path->s.entry, &srv->paths_list);
1453 	srv->paths_num++;
1454 	WARN_ON(srv->paths_num >= MAX_PATHS_NUM);
1455 }
1456 
1457 static void del_path_from_srv(struct rtrs_srv_path *srv_path)
1458 {
1459 	struct rtrs_srv_sess *srv = srv_path->srv;
1460 
1461 	if (WARN_ON(!srv))
1462 		return;
1463 
1464 	mutex_lock(&srv->paths_mutex);
1465 	list_del(&srv_path->s.entry);
1466 	WARN_ON(!srv->paths_num);
1467 	srv->paths_num--;
1468 	mutex_unlock(&srv->paths_mutex);
1469 }
1470 
1471 /* return true if addresses are the same, error other wise */
1472 static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b)
1473 {
1474 	switch (a->sa_family) {
1475 	case AF_IB:
1476 		return memcmp(&((struct sockaddr_ib *)a)->sib_addr,
1477 			      &((struct sockaddr_ib *)b)->sib_addr,
1478 			      sizeof(struct ib_addr)) &&
1479 			(b->sa_family == AF_IB);
1480 	case AF_INET:
1481 		return memcmp(&((struct sockaddr_in *)a)->sin_addr,
1482 			      &((struct sockaddr_in *)b)->sin_addr,
1483 			      sizeof(struct in_addr)) &&
1484 			(b->sa_family == AF_INET);
1485 	case AF_INET6:
1486 		return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr,
1487 			      &((struct sockaddr_in6 *)b)->sin6_addr,
1488 			      sizeof(struct in6_addr)) &&
1489 			(b->sa_family == AF_INET6);
1490 	default:
1491 		return -ENOENT;
1492 	}
1493 }
1494 
1495 static bool __is_path_w_addr_exists(struct rtrs_srv_sess *srv,
1496 				    struct rdma_addr *addr)
1497 {
1498 	struct rtrs_srv_path *srv_path;
1499 
1500 	list_for_each_entry(srv_path, &srv->paths_list, s.entry)
1501 		if (!sockaddr_cmp((struct sockaddr *)&srv_path->s.dst_addr,
1502 				  (struct sockaddr *)&addr->dst_addr) &&
1503 		    !sockaddr_cmp((struct sockaddr *)&srv_path->s.src_addr,
1504 				  (struct sockaddr *)&addr->src_addr))
1505 			return true;
1506 
1507 	return false;
1508 }
1509 
1510 static void free_path(struct rtrs_srv_path *srv_path)
1511 {
1512 	if (srv_path->kobj.state_in_sysfs) {
1513 		kobject_del(&srv_path->kobj);
1514 		kobject_put(&srv_path->kobj);
1515 	} else {
1516 		kfree(srv_path->stats);
1517 		kfree(srv_path);
1518 	}
1519 }
1520 
1521 static void rtrs_srv_close_work(struct work_struct *work)
1522 {
1523 	struct rtrs_srv_path *srv_path;
1524 	struct rtrs_srv_con *con;
1525 	int i;
1526 
1527 	srv_path = container_of(work, typeof(*srv_path), close_work);
1528 
1529 	rtrs_srv_destroy_path_files(srv_path);
1530 	rtrs_srv_stop_hb(srv_path);
1531 
1532 	for (i = 0; i < srv_path->s.con_num; i++) {
1533 		if (!srv_path->s.con[i])
1534 			continue;
1535 		con = to_srv_con(srv_path->s.con[i]);
1536 		rdma_disconnect(con->c.cm_id);
1537 		ib_drain_qp(con->c.qp);
1538 	}
1539 
1540 	/*
1541 	 * Degrade ref count to the usual model with a single shared
1542 	 * atomic_t counter
1543 	 */
1544 	percpu_ref_kill(&srv_path->ids_inflight_ref);
1545 
1546 	/* Wait for all completion */
1547 	wait_for_completion(&srv_path->complete_done);
1548 
1549 	/* Notify upper layer if we are the last path */
1550 	rtrs_srv_path_down(srv_path);
1551 
1552 	unmap_cont_bufs(srv_path);
1553 	rtrs_srv_free_ops_ids(srv_path);
1554 
1555 	for (i = 0; i < srv_path->s.con_num; i++) {
1556 		if (!srv_path->s.con[i])
1557 			continue;
1558 		con = to_srv_con(srv_path->s.con[i]);
1559 		rtrs_cq_qp_destroy(&con->c);
1560 		rdma_destroy_id(con->c.cm_id);
1561 		kfree(con);
1562 	}
1563 	rtrs_ib_dev_put(srv_path->s.dev);
1564 
1565 	del_path_from_srv(srv_path);
1566 	put_srv(srv_path->srv);
1567 	srv_path->srv = NULL;
1568 	rtrs_srv_change_state(srv_path, RTRS_SRV_CLOSED);
1569 
1570 	kfree(srv_path->dma_addr);
1571 	kfree(srv_path->s.con);
1572 	free_path(srv_path);
1573 }
1574 
1575 static int rtrs_rdma_do_accept(struct rtrs_srv_path *srv_path,
1576 			       struct rdma_cm_id *cm_id)
1577 {
1578 	struct rtrs_srv_sess *srv = srv_path->srv;
1579 	struct rtrs_msg_conn_rsp msg;
1580 	struct rdma_conn_param param;
1581 	int err;
1582 
1583 	param = (struct rdma_conn_param) {
1584 		.rnr_retry_count = 7,
1585 		.private_data = &msg,
1586 		.private_data_len = sizeof(msg),
1587 	};
1588 
1589 	msg = (struct rtrs_msg_conn_rsp) {
1590 		.magic = cpu_to_le16(RTRS_MAGIC),
1591 		.version = cpu_to_le16(RTRS_PROTO_VER),
1592 		.queue_depth = cpu_to_le16(srv->queue_depth),
1593 		.max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE),
1594 		.max_hdr_size = cpu_to_le32(MAX_HDR_SIZE),
1595 	};
1596 
1597 	if (always_invalidate)
1598 		msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F);
1599 
1600 	err = rdma_accept(cm_id, &param);
1601 	if (err)
1602 		pr_err("rdma_accept(), err: %d\n", err);
1603 
1604 	return err;
1605 }
1606 
1607 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno)
1608 {
1609 	struct rtrs_msg_conn_rsp msg;
1610 	int err;
1611 
1612 	msg = (struct rtrs_msg_conn_rsp) {
1613 		.magic = cpu_to_le16(RTRS_MAGIC),
1614 		.version = cpu_to_le16(RTRS_PROTO_VER),
1615 		.errno = cpu_to_le16(errno),
1616 	};
1617 
1618 	err = rdma_reject(cm_id, &msg, sizeof(msg), IB_CM_REJ_CONSUMER_DEFINED);
1619 	if (err)
1620 		pr_err("rdma_reject(), err: %d\n", err);
1621 
1622 	/* Bounce errno back */
1623 	return errno;
1624 }
1625 
1626 static struct rtrs_srv_path *
1627 __find_path(struct rtrs_srv_sess *srv, const uuid_t *sess_uuid)
1628 {
1629 	struct rtrs_srv_path *srv_path;
1630 
1631 	list_for_each_entry(srv_path, &srv->paths_list, s.entry) {
1632 		if (uuid_equal(&srv_path->s.uuid, sess_uuid))
1633 			return srv_path;
1634 	}
1635 
1636 	return NULL;
1637 }
1638 
1639 static int create_con(struct rtrs_srv_path *srv_path,
1640 		      struct rdma_cm_id *cm_id,
1641 		      unsigned int cid)
1642 {
1643 	struct rtrs_srv_sess *srv = srv_path->srv;
1644 	struct rtrs_path *s = &srv_path->s;
1645 	struct rtrs_srv_con *con;
1646 
1647 	u32 cq_num, max_send_wr, max_recv_wr, wr_limit;
1648 	int err, cq_vector;
1649 
1650 	con = kzalloc(sizeof(*con), GFP_KERNEL);
1651 	if (!con) {
1652 		err = -ENOMEM;
1653 		goto err;
1654 	}
1655 
1656 	spin_lock_init(&con->rsp_wr_wait_lock);
1657 	INIT_LIST_HEAD(&con->rsp_wr_wait_list);
1658 	con->c.cm_id = cm_id;
1659 	con->c.path = &srv_path->s;
1660 	con->c.cid = cid;
1661 	atomic_set(&con->c.wr_cnt, 1);
1662 	wr_limit = srv_path->s.dev->ib_dev->attrs.max_qp_wr;
1663 
1664 	if (con->c.cid == 0) {
1665 		/*
1666 		 * All receive and all send (each requiring invalidate)
1667 		 * + 2 for drain and heartbeat
1668 		 */
1669 		max_send_wr = min_t(int, wr_limit,
1670 				    SERVICE_CON_QUEUE_DEPTH * 2 + 2);
1671 		max_recv_wr = max_send_wr;
1672 		s->signal_interval = min_not_zero(srv->queue_depth,
1673 						  (size_t)SERVICE_CON_QUEUE_DEPTH);
1674 	} else {
1675 		/* when always_invlaidate enalbed, we need linv+rinv+mr+imm */
1676 		if (always_invalidate)
1677 			max_send_wr =
1678 				min_t(int, wr_limit,
1679 				      srv->queue_depth * (1 + 4) + 1);
1680 		else
1681 			max_send_wr =
1682 				min_t(int, wr_limit,
1683 				      srv->queue_depth * (1 + 2) + 1);
1684 
1685 		max_recv_wr = srv->queue_depth + 1;
1686 		/*
1687 		 * If we have all receive requests posted and
1688 		 * all write requests posted and each read request
1689 		 * requires an invalidate request + drain
1690 		 * and qp gets into error state.
1691 		 */
1692 	}
1693 	cq_num = max_send_wr + max_recv_wr;
1694 	atomic_set(&con->c.sq_wr_avail, max_send_wr);
1695 	cq_vector = rtrs_srv_get_next_cq_vector(srv_path);
1696 
1697 	/* TODO: SOFTIRQ can be faster, but be careful with softirq context */
1698 	err = rtrs_cq_qp_create(&srv_path->s, &con->c, 1, cq_vector, cq_num,
1699 				 max_send_wr, max_recv_wr,
1700 				 IB_POLL_WORKQUEUE);
1701 	if (err) {
1702 		rtrs_err(s, "rtrs_cq_qp_create(), err: %d\n", err);
1703 		goto free_con;
1704 	}
1705 	if (con->c.cid == 0) {
1706 		err = post_recv_info_req(con);
1707 		if (err)
1708 			goto free_cqqp;
1709 	}
1710 	WARN_ON(srv_path->s.con[cid]);
1711 	srv_path->s.con[cid] = &con->c;
1712 
1713 	/*
1714 	 * Change context from server to current connection.  The other
1715 	 * way is to use cm_id->qp->qp_context, which does not work on OFED.
1716 	 */
1717 	cm_id->context = &con->c;
1718 
1719 	return 0;
1720 
1721 free_cqqp:
1722 	rtrs_cq_qp_destroy(&con->c);
1723 free_con:
1724 	kfree(con);
1725 
1726 err:
1727 	return err;
1728 }
1729 
1730 static struct rtrs_srv_path *__alloc_path(struct rtrs_srv_sess *srv,
1731 					   struct rdma_cm_id *cm_id,
1732 					   unsigned int con_num,
1733 					   unsigned int recon_cnt,
1734 					   const uuid_t *uuid)
1735 {
1736 	struct rtrs_srv_path *srv_path;
1737 	int err = -ENOMEM;
1738 	char str[NAME_MAX];
1739 	struct rtrs_addr path;
1740 
1741 	if (srv->paths_num >= MAX_PATHS_NUM) {
1742 		err = -ECONNRESET;
1743 		goto err;
1744 	}
1745 	if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) {
1746 		err = -EEXIST;
1747 		pr_err("Path with same addr exists\n");
1748 		goto err;
1749 	}
1750 	srv_path = kzalloc(sizeof(*srv_path), GFP_KERNEL);
1751 	if (!srv_path)
1752 		goto err;
1753 
1754 	srv_path->stats = kzalloc(sizeof(*srv_path->stats), GFP_KERNEL);
1755 	if (!srv_path->stats)
1756 		goto err_free_sess;
1757 
1758 	srv_path->stats->srv_path = srv_path;
1759 
1760 	srv_path->dma_addr = kcalloc(srv->queue_depth,
1761 				     sizeof(*srv_path->dma_addr),
1762 				     GFP_KERNEL);
1763 	if (!srv_path->dma_addr)
1764 		goto err_free_stats;
1765 
1766 	srv_path->s.con = kcalloc(con_num, sizeof(*srv_path->s.con),
1767 				  GFP_KERNEL);
1768 	if (!srv_path->s.con)
1769 		goto err_free_dma_addr;
1770 
1771 	srv_path->state = RTRS_SRV_CONNECTING;
1772 	srv_path->srv = srv;
1773 	srv_path->cur_cq_vector = -1;
1774 	srv_path->s.dst_addr = cm_id->route.addr.dst_addr;
1775 	srv_path->s.src_addr = cm_id->route.addr.src_addr;
1776 
1777 	/* temporary until receiving session-name from client */
1778 	path.src = &srv_path->s.src_addr;
1779 	path.dst = &srv_path->s.dst_addr;
1780 	rtrs_addr_to_str(&path, str, sizeof(str));
1781 	strscpy(srv_path->s.sessname, str, sizeof(srv_path->s.sessname));
1782 
1783 	srv_path->s.con_num = con_num;
1784 	srv_path->s.irq_con_num = con_num;
1785 	srv_path->s.recon_cnt = recon_cnt;
1786 	uuid_copy(&srv_path->s.uuid, uuid);
1787 	spin_lock_init(&srv_path->state_lock);
1788 	INIT_WORK(&srv_path->close_work, rtrs_srv_close_work);
1789 	rtrs_srv_init_hb(srv_path);
1790 
1791 	srv_path->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd);
1792 	if (!srv_path->s.dev) {
1793 		err = -ENOMEM;
1794 		goto err_free_con;
1795 	}
1796 	err = map_cont_bufs(srv_path);
1797 	if (err)
1798 		goto err_put_dev;
1799 
1800 	err = rtrs_srv_alloc_ops_ids(srv_path);
1801 	if (err)
1802 		goto err_unmap_bufs;
1803 
1804 	__add_path_to_srv(srv, srv_path);
1805 
1806 	return srv_path;
1807 
1808 err_unmap_bufs:
1809 	unmap_cont_bufs(srv_path);
1810 err_put_dev:
1811 	rtrs_ib_dev_put(srv_path->s.dev);
1812 err_free_con:
1813 	kfree(srv_path->s.con);
1814 err_free_dma_addr:
1815 	kfree(srv_path->dma_addr);
1816 err_free_stats:
1817 	kfree(srv_path->stats);
1818 err_free_sess:
1819 	kfree(srv_path);
1820 err:
1821 	return ERR_PTR(err);
1822 }
1823 
1824 static int rtrs_rdma_connect(struct rdma_cm_id *cm_id,
1825 			      const struct rtrs_msg_conn_req *msg,
1826 			      size_t len)
1827 {
1828 	struct rtrs_srv_ctx *ctx = cm_id->context;
1829 	struct rtrs_srv_path *srv_path;
1830 	struct rtrs_srv_sess *srv;
1831 
1832 	u16 version, con_num, cid;
1833 	u16 recon_cnt;
1834 	int err = -ECONNRESET;
1835 
1836 	if (len < sizeof(*msg)) {
1837 		pr_err("Invalid RTRS connection request\n");
1838 		goto reject_w_err;
1839 	}
1840 	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1841 		pr_err("Invalid RTRS magic\n");
1842 		goto reject_w_err;
1843 	}
1844 	version = le16_to_cpu(msg->version);
1845 	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1846 		pr_err("Unsupported major RTRS version: %d, expected %d\n",
1847 		       version >> 8, RTRS_PROTO_VER_MAJOR);
1848 		goto reject_w_err;
1849 	}
1850 	con_num = le16_to_cpu(msg->cid_num);
1851 	if (con_num > 4096) {
1852 		/* Sanity check */
1853 		pr_err("Too many connections requested: %d\n", con_num);
1854 		goto reject_w_err;
1855 	}
1856 	cid = le16_to_cpu(msg->cid);
1857 	if (cid >= con_num) {
1858 		/* Sanity check */
1859 		pr_err("Incorrect cid: %d >= %d\n", cid, con_num);
1860 		goto reject_w_err;
1861 	}
1862 	recon_cnt = le16_to_cpu(msg->recon_cnt);
1863 	srv = get_or_create_srv(ctx, &msg->paths_uuid, msg->first_conn);
1864 	if (IS_ERR(srv)) {
1865 		err = PTR_ERR(srv);
1866 		pr_err("get_or_create_srv(), error %d\n", err);
1867 		goto reject_w_err;
1868 	}
1869 	mutex_lock(&srv->paths_mutex);
1870 	srv_path = __find_path(srv, &msg->sess_uuid);
1871 	if (srv_path) {
1872 		struct rtrs_path *s = &srv_path->s;
1873 
1874 		/* Session already holds a reference */
1875 		put_srv(srv);
1876 
1877 		if (srv_path->state != RTRS_SRV_CONNECTING) {
1878 			rtrs_err(s, "Session in wrong state: %s\n",
1879 				  rtrs_srv_state_str(srv_path->state));
1880 			mutex_unlock(&srv->paths_mutex);
1881 			goto reject_w_err;
1882 		}
1883 		/*
1884 		 * Sanity checks
1885 		 */
1886 		if (con_num != s->con_num || cid >= s->con_num) {
1887 			rtrs_err(s, "Incorrect request: %d, %d\n",
1888 				  cid, con_num);
1889 			mutex_unlock(&srv->paths_mutex);
1890 			goto reject_w_err;
1891 		}
1892 		if (s->con[cid]) {
1893 			rtrs_err(s, "Connection already exists: %d\n",
1894 				  cid);
1895 			mutex_unlock(&srv->paths_mutex);
1896 			goto reject_w_err;
1897 		}
1898 	} else {
1899 		srv_path = __alloc_path(srv, cm_id, con_num, recon_cnt,
1900 				    &msg->sess_uuid);
1901 		if (IS_ERR(srv_path)) {
1902 			mutex_unlock(&srv->paths_mutex);
1903 			put_srv(srv);
1904 			err = PTR_ERR(srv_path);
1905 			pr_err("RTRS server session allocation failed: %d\n", err);
1906 			goto reject_w_err;
1907 		}
1908 	}
1909 	err = create_con(srv_path, cm_id, cid);
1910 	if (err) {
1911 		rtrs_err((&srv_path->s), "create_con(), error %d\n", err);
1912 		rtrs_rdma_do_reject(cm_id, err);
1913 		/*
1914 		 * Since session has other connections we follow normal way
1915 		 * through workqueue, but still return an error to tell cma.c
1916 		 * to call rdma_destroy_id() for current connection.
1917 		 */
1918 		goto close_and_return_err;
1919 	}
1920 	err = rtrs_rdma_do_accept(srv_path, cm_id);
1921 	if (err) {
1922 		rtrs_err((&srv_path->s), "rtrs_rdma_do_accept(), error %d\n", err);
1923 		rtrs_rdma_do_reject(cm_id, err);
1924 		/*
1925 		 * Since current connection was successfully added to the
1926 		 * session we follow normal way through workqueue to close the
1927 		 * session, thus return 0 to tell cma.c we call
1928 		 * rdma_destroy_id() ourselves.
1929 		 */
1930 		err = 0;
1931 		goto close_and_return_err;
1932 	}
1933 	mutex_unlock(&srv->paths_mutex);
1934 
1935 	return 0;
1936 
1937 reject_w_err:
1938 	return rtrs_rdma_do_reject(cm_id, err);
1939 
1940 close_and_return_err:
1941 	mutex_unlock(&srv->paths_mutex);
1942 	close_path(srv_path);
1943 
1944 	return err;
1945 }
1946 
1947 static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id,
1948 				     struct rdma_cm_event *ev)
1949 {
1950 	struct rtrs_srv_path *srv_path = NULL;
1951 	struct rtrs_path *s = NULL;
1952 
1953 	if (ev->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
1954 		struct rtrs_con *c = cm_id->context;
1955 
1956 		s = c->path;
1957 		srv_path = to_srv_path(s);
1958 	}
1959 
1960 	switch (ev->event) {
1961 	case RDMA_CM_EVENT_CONNECT_REQUEST:
1962 		/*
1963 		 * In case of error cma.c will destroy cm_id,
1964 		 * see cma_process_remove()
1965 		 */
1966 		return rtrs_rdma_connect(cm_id, ev->param.conn.private_data,
1967 					  ev->param.conn.private_data_len);
1968 	case RDMA_CM_EVENT_ESTABLISHED:
1969 		/* Nothing here */
1970 		break;
1971 	case RDMA_CM_EVENT_REJECTED:
1972 	case RDMA_CM_EVENT_CONNECT_ERROR:
1973 	case RDMA_CM_EVENT_UNREACHABLE:
1974 		rtrs_err(s, "CM error (CM event: %s, err: %d)\n",
1975 			  rdma_event_msg(ev->event), ev->status);
1976 		fallthrough;
1977 	case RDMA_CM_EVENT_DISCONNECTED:
1978 	case RDMA_CM_EVENT_ADDR_CHANGE:
1979 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1980 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1981 		close_path(srv_path);
1982 		break;
1983 	default:
1984 		pr_err("Ignoring unexpected CM event %s, err %d\n",
1985 		       rdma_event_msg(ev->event), ev->status);
1986 		break;
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx,
1993 					    struct sockaddr *addr,
1994 					    enum rdma_ucm_port_space ps)
1995 {
1996 	struct rdma_cm_id *cm_id;
1997 	int ret;
1998 
1999 	cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler,
2000 			       ctx, ps, IB_QPT_RC);
2001 	if (IS_ERR(cm_id)) {
2002 		ret = PTR_ERR(cm_id);
2003 		pr_err("Creating id for RDMA connection failed, err: %d\n",
2004 		       ret);
2005 		goto err_out;
2006 	}
2007 	ret = rdma_bind_addr(cm_id, addr);
2008 	if (ret) {
2009 		pr_err("Binding RDMA address failed, err: %d\n", ret);
2010 		goto err_cm;
2011 	}
2012 	ret = rdma_listen(cm_id, 64);
2013 	if (ret) {
2014 		pr_err("Listening on RDMA connection failed, err: %d\n",
2015 		       ret);
2016 		goto err_cm;
2017 	}
2018 
2019 	return cm_id;
2020 
2021 err_cm:
2022 	rdma_destroy_id(cm_id);
2023 err_out:
2024 
2025 	return ERR_PTR(ret);
2026 }
2027 
2028 static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port)
2029 {
2030 	struct sockaddr_in6 sin = {
2031 		.sin6_family	= AF_INET6,
2032 		.sin6_addr	= IN6ADDR_ANY_INIT,
2033 		.sin6_port	= htons(port),
2034 	};
2035 	struct sockaddr_ib sib = {
2036 		.sib_family			= AF_IB,
2037 		.sib_sid	= cpu_to_be64(RDMA_IB_IP_PS_IB | port),
2038 		.sib_sid_mask	= cpu_to_be64(0xffffffffffffffffULL),
2039 		.sib_pkey	= cpu_to_be16(0xffff),
2040 	};
2041 	struct rdma_cm_id *cm_ip, *cm_ib;
2042 	int ret;
2043 
2044 	/*
2045 	 * We accept both IPoIB and IB connections, so we need to keep
2046 	 * two cm id's, one for each socket type and port space.
2047 	 * If the cm initialization of one of the id's fails, we abort
2048 	 * everything.
2049 	 */
2050 	cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP);
2051 	if (IS_ERR(cm_ip))
2052 		return PTR_ERR(cm_ip);
2053 
2054 	cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB);
2055 	if (IS_ERR(cm_ib)) {
2056 		ret = PTR_ERR(cm_ib);
2057 		goto free_cm_ip;
2058 	}
2059 
2060 	ctx->cm_id_ip = cm_ip;
2061 	ctx->cm_id_ib = cm_ib;
2062 
2063 	return 0;
2064 
2065 free_cm_ip:
2066 	rdma_destroy_id(cm_ip);
2067 
2068 	return ret;
2069 }
2070 
2071 static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops)
2072 {
2073 	struct rtrs_srv_ctx *ctx;
2074 
2075 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2076 	if (!ctx)
2077 		return NULL;
2078 
2079 	ctx->ops = *ops;
2080 	mutex_init(&ctx->srv_mutex);
2081 	INIT_LIST_HEAD(&ctx->srv_list);
2082 
2083 	return ctx;
2084 }
2085 
2086 static void free_srv_ctx(struct rtrs_srv_ctx *ctx)
2087 {
2088 	WARN_ON(!list_empty(&ctx->srv_list));
2089 	mutex_destroy(&ctx->srv_mutex);
2090 	kfree(ctx);
2091 }
2092 
2093 static int rtrs_srv_add_one(struct ib_device *device)
2094 {
2095 	struct rtrs_srv_ctx *ctx;
2096 	int ret = 0;
2097 
2098 	mutex_lock(&ib_ctx.ib_dev_mutex);
2099 	if (ib_ctx.ib_dev_count)
2100 		goto out;
2101 
2102 	/*
2103 	 * Since our CM IDs are NOT bound to any ib device we will create them
2104 	 * only once
2105 	 */
2106 	ctx = ib_ctx.srv_ctx;
2107 	ret = rtrs_srv_rdma_init(ctx, ib_ctx.port);
2108 	if (ret) {
2109 		/*
2110 		 * We errored out here.
2111 		 * According to the ib code, if we encounter an error here then the
2112 		 * error code is ignored, and no more calls to our ops are made.
2113 		 */
2114 		pr_err("Failed to initialize RDMA connection");
2115 		goto err_out;
2116 	}
2117 
2118 out:
2119 	/*
2120 	 * Keep a track on the number of ib devices added
2121 	 */
2122 	ib_ctx.ib_dev_count++;
2123 
2124 err_out:
2125 	mutex_unlock(&ib_ctx.ib_dev_mutex);
2126 	return ret;
2127 }
2128 
2129 static void rtrs_srv_remove_one(struct ib_device *device, void *client_data)
2130 {
2131 	struct rtrs_srv_ctx *ctx;
2132 
2133 	mutex_lock(&ib_ctx.ib_dev_mutex);
2134 	ib_ctx.ib_dev_count--;
2135 
2136 	if (ib_ctx.ib_dev_count)
2137 		goto out;
2138 
2139 	/*
2140 	 * Since our CM IDs are NOT bound to any ib device we will remove them
2141 	 * only once, when the last device is removed
2142 	 */
2143 	ctx = ib_ctx.srv_ctx;
2144 	rdma_destroy_id(ctx->cm_id_ip);
2145 	rdma_destroy_id(ctx->cm_id_ib);
2146 
2147 out:
2148 	mutex_unlock(&ib_ctx.ib_dev_mutex);
2149 }
2150 
2151 static struct ib_client rtrs_srv_client = {
2152 	.name	= "rtrs_server",
2153 	.add	= rtrs_srv_add_one,
2154 	.remove	= rtrs_srv_remove_one
2155 };
2156 
2157 /**
2158  * rtrs_srv_open() - open RTRS server context
2159  * @ops:		callback functions
2160  * @port:               port to listen on
2161  *
2162  * Creates server context with specified callbacks.
2163  *
2164  * Return a valid pointer on success otherwise PTR_ERR.
2165  */
2166 struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port)
2167 {
2168 	struct rtrs_srv_ctx *ctx;
2169 	int err;
2170 
2171 	ctx = alloc_srv_ctx(ops);
2172 	if (!ctx)
2173 		return ERR_PTR(-ENOMEM);
2174 
2175 	mutex_init(&ib_ctx.ib_dev_mutex);
2176 	ib_ctx.srv_ctx = ctx;
2177 	ib_ctx.port = port;
2178 
2179 	err = ib_register_client(&rtrs_srv_client);
2180 	if (err) {
2181 		free_srv_ctx(ctx);
2182 		return ERR_PTR(err);
2183 	}
2184 
2185 	return ctx;
2186 }
2187 EXPORT_SYMBOL(rtrs_srv_open);
2188 
2189 static void close_paths(struct rtrs_srv_sess *srv)
2190 {
2191 	struct rtrs_srv_path *srv_path;
2192 
2193 	mutex_lock(&srv->paths_mutex);
2194 	list_for_each_entry(srv_path, &srv->paths_list, s.entry)
2195 		close_path(srv_path);
2196 	mutex_unlock(&srv->paths_mutex);
2197 }
2198 
2199 static void close_ctx(struct rtrs_srv_ctx *ctx)
2200 {
2201 	struct rtrs_srv_sess *srv;
2202 
2203 	mutex_lock(&ctx->srv_mutex);
2204 	list_for_each_entry(srv, &ctx->srv_list, ctx_list)
2205 		close_paths(srv);
2206 	mutex_unlock(&ctx->srv_mutex);
2207 	flush_workqueue(rtrs_wq);
2208 }
2209 
2210 /**
2211  * rtrs_srv_close() - close RTRS server context
2212  * @ctx: pointer to server context
2213  *
2214  * Closes RTRS server context with all client sessions.
2215  */
2216 void rtrs_srv_close(struct rtrs_srv_ctx *ctx)
2217 {
2218 	ib_unregister_client(&rtrs_srv_client);
2219 	mutex_destroy(&ib_ctx.ib_dev_mutex);
2220 	close_ctx(ctx);
2221 	free_srv_ctx(ctx);
2222 }
2223 EXPORT_SYMBOL(rtrs_srv_close);
2224 
2225 static int check_module_params(void)
2226 {
2227 	if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) {
2228 		pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n",
2229 		       sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH);
2230 		return -EINVAL;
2231 	}
2232 	if (max_chunk_size < MIN_CHUNK_SIZE || !is_power_of_2(max_chunk_size)) {
2233 		pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n",
2234 		       max_chunk_size, MIN_CHUNK_SIZE);
2235 		return -EINVAL;
2236 	}
2237 
2238 	/*
2239 	 * Check if IB immediate data size is enough to hold the mem_id and the
2240 	 * offset inside the memory chunk
2241 	 */
2242 	if ((ilog2(sess_queue_depth - 1) + 1) +
2243 	    (ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) {
2244 		pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n",
2245 		       MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size);
2246 		return -EINVAL;
2247 	}
2248 
2249 	return 0;
2250 }
2251 
2252 static int __init rtrs_server_init(void)
2253 {
2254 	int err;
2255 
2256 	pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n",
2257 		KBUILD_MODNAME, RTRS_PROTO_VER_STRING,
2258 		max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE,
2259 		sess_queue_depth, always_invalidate);
2260 
2261 	rtrs_rdma_dev_pd_init(0, &dev_pd);
2262 
2263 	err = check_module_params();
2264 	if (err) {
2265 		pr_err("Failed to load module, invalid module parameters, err: %d\n",
2266 		       err);
2267 		return err;
2268 	}
2269 	chunk_pool = mempool_create_page_pool(sess_queue_depth * CHUNK_POOL_SZ,
2270 					      get_order(max_chunk_size));
2271 	if (!chunk_pool)
2272 		return -ENOMEM;
2273 	rtrs_dev_class = class_create(THIS_MODULE, "rtrs-server");
2274 	if (IS_ERR(rtrs_dev_class)) {
2275 		err = PTR_ERR(rtrs_dev_class);
2276 		goto out_chunk_pool;
2277 	}
2278 	rtrs_wq = alloc_workqueue("rtrs_server_wq", 0, 0);
2279 	if (!rtrs_wq) {
2280 		err = -ENOMEM;
2281 		goto out_dev_class;
2282 	}
2283 
2284 	return 0;
2285 
2286 out_dev_class:
2287 	class_destroy(rtrs_dev_class);
2288 out_chunk_pool:
2289 	mempool_destroy(chunk_pool);
2290 
2291 	return err;
2292 }
2293 
2294 static void __exit rtrs_server_exit(void)
2295 {
2296 	destroy_workqueue(rtrs_wq);
2297 	class_destroy(rtrs_dev_class);
2298 	mempool_destroy(chunk_pool);
2299 	rtrs_rdma_dev_pd_deinit(&dev_pd);
2300 }
2301 
2302 module_init(rtrs_server_init);
2303 module_exit(rtrs_server_exit);
2304