xref: /openbmc/linux/drivers/infiniband/ulp/rtrs/rtrs-srv.c (revision c64d01b3ceba873aa8e8605598cec4a6bc6d1601)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/mempool.h>
15 
16 #include "rtrs-srv.h"
17 #include "rtrs-log.h"
18 #include <rdma/ib_cm.h>
19 #include <rdma/ib_verbs.h>
20 
21 MODULE_DESCRIPTION("RDMA Transport Server");
22 MODULE_LICENSE("GPL");
23 
24 /* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */
25 #define DEFAULT_MAX_CHUNK_SIZE (128 << 10)
26 #define DEFAULT_SESS_QUEUE_DEPTH 512
27 #define MAX_HDR_SIZE PAGE_SIZE
28 
29 /* We guarantee to serve 10 paths at least */
30 #define CHUNK_POOL_SZ 10
31 
32 static struct rtrs_rdma_dev_pd dev_pd;
33 static mempool_t *chunk_pool;
34 struct class *rtrs_dev_class;
35 static struct rtrs_srv_ib_ctx ib_ctx;
36 
37 static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE;
38 static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH;
39 
40 static bool always_invalidate = true;
41 module_param(always_invalidate, bool, 0444);
42 MODULE_PARM_DESC(always_invalidate,
43 		 "Invalidate memory registration for contiguous memory regions before accessing.");
44 
45 module_param_named(max_chunk_size, max_chunk_size, int, 0444);
46 MODULE_PARM_DESC(max_chunk_size,
47 		 "Max size for each IO request, when change the unit is in byte (default: "
48 		 __stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)");
49 
50 module_param_named(sess_queue_depth, sess_queue_depth, int, 0444);
51 MODULE_PARM_DESC(sess_queue_depth,
52 		 "Number of buffers for pending I/O requests to allocate per session. Maximum: "
53 		 __stringify(MAX_SESS_QUEUE_DEPTH) " (default: "
54 		 __stringify(DEFAULT_SESS_QUEUE_DEPTH) ")");
55 
56 static cpumask_t cq_affinity_mask = { CPU_BITS_ALL };
57 
58 static struct workqueue_struct *rtrs_wq;
59 
60 static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c)
61 {
62 	return container_of(c, struct rtrs_srv_con, c);
63 }
64 
65 static inline struct rtrs_srv_sess *to_srv_sess(struct rtrs_sess *s)
66 {
67 	return container_of(s, struct rtrs_srv_sess, s);
68 }
69 
70 static bool rtrs_srv_change_state(struct rtrs_srv_sess *sess,
71 				  enum rtrs_srv_state new_state)
72 {
73 	enum rtrs_srv_state old_state;
74 	bool changed = false;
75 
76 	spin_lock_irq(&sess->state_lock);
77 	old_state = sess->state;
78 	switch (new_state) {
79 	case RTRS_SRV_CONNECTED:
80 		if (old_state == RTRS_SRV_CONNECTING)
81 			changed = true;
82 		break;
83 	case RTRS_SRV_CLOSING:
84 		if (old_state == RTRS_SRV_CONNECTING ||
85 		    old_state == RTRS_SRV_CONNECTED)
86 			changed = true;
87 		break;
88 	case RTRS_SRV_CLOSED:
89 		if (old_state == RTRS_SRV_CLOSING)
90 			changed = true;
91 		break;
92 	default:
93 		break;
94 	}
95 	if (changed)
96 		sess->state = new_state;
97 	spin_unlock_irq(&sess->state_lock);
98 
99 	return changed;
100 }
101 
102 static void free_id(struct rtrs_srv_op *id)
103 {
104 	if (!id)
105 		return;
106 	kfree(id);
107 }
108 
109 static void rtrs_srv_free_ops_ids(struct rtrs_srv_sess *sess)
110 {
111 	struct rtrs_srv *srv = sess->srv;
112 	int i;
113 
114 	if (sess->ops_ids) {
115 		for (i = 0; i < srv->queue_depth; i++)
116 			free_id(sess->ops_ids[i]);
117 		kfree(sess->ops_ids);
118 		sess->ops_ids = NULL;
119 	}
120 }
121 
122 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
123 
124 static struct ib_cqe io_comp_cqe = {
125 	.done = rtrs_srv_rdma_done
126 };
127 
128 static inline void rtrs_srv_inflight_ref_release(struct percpu_ref *ref)
129 {
130 	struct rtrs_srv_sess *sess = container_of(ref, struct rtrs_srv_sess, ids_inflight_ref);
131 
132 	percpu_ref_exit(&sess->ids_inflight_ref);
133 	complete(&sess->complete_done);
134 }
135 
136 static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_sess *sess)
137 {
138 	struct rtrs_srv *srv = sess->srv;
139 	struct rtrs_srv_op *id;
140 	int i, ret;
141 
142 	sess->ops_ids = kcalloc(srv->queue_depth, sizeof(*sess->ops_ids),
143 				GFP_KERNEL);
144 	if (!sess->ops_ids)
145 		goto err;
146 
147 	for (i = 0; i < srv->queue_depth; ++i) {
148 		id = kzalloc(sizeof(*id), GFP_KERNEL);
149 		if (!id)
150 			goto err;
151 
152 		sess->ops_ids[i] = id;
153 	}
154 
155 	ret = percpu_ref_init(&sess->ids_inflight_ref,
156 			      rtrs_srv_inflight_ref_release, 0, GFP_KERNEL);
157 	if (ret) {
158 		pr_err("Percpu reference init failed\n");
159 		goto err;
160 	}
161 	init_completion(&sess->complete_done);
162 
163 	return 0;
164 
165 err:
166 	rtrs_srv_free_ops_ids(sess);
167 	return -ENOMEM;
168 }
169 
170 static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_sess *sess)
171 {
172 	percpu_ref_get(&sess->ids_inflight_ref);
173 }
174 
175 static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_sess *sess)
176 {
177 	percpu_ref_put(&sess->ids_inflight_ref);
178 }
179 
180 static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc)
181 {
182 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
183 	struct rtrs_sess *s = con->c.sess;
184 	struct rtrs_srv_sess *sess = to_srv_sess(s);
185 
186 	if (wc->status != IB_WC_SUCCESS) {
187 		rtrs_err(s, "REG MR failed: %s\n",
188 			  ib_wc_status_msg(wc->status));
189 		close_sess(sess);
190 		return;
191 	}
192 }
193 
194 static struct ib_cqe local_reg_cqe = {
195 	.done = rtrs_srv_reg_mr_done
196 };
197 
198 static int rdma_write_sg(struct rtrs_srv_op *id)
199 {
200 	struct rtrs_sess *s = id->con->c.sess;
201 	struct rtrs_srv_sess *sess = to_srv_sess(s);
202 	dma_addr_t dma_addr = sess->dma_addr[id->msg_id];
203 	struct rtrs_srv_mr *srv_mr;
204 	struct ib_send_wr inv_wr;
205 	struct ib_rdma_wr imm_wr;
206 	struct ib_rdma_wr *wr = NULL;
207 	enum ib_send_flags flags;
208 	size_t sg_cnt;
209 	int err, offset;
210 	bool need_inval;
211 	u32 rkey = 0;
212 	struct ib_reg_wr rwr;
213 	struct ib_sge *plist;
214 	struct ib_sge list;
215 
216 	sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt);
217 	need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F;
218 	if (sg_cnt != 1)
219 		return -EINVAL;
220 
221 	offset = 0;
222 
223 	wr		= &id->tx_wr;
224 	plist		= &id->tx_sg;
225 	plist->addr	= dma_addr + offset;
226 	plist->length	= le32_to_cpu(id->rd_msg->desc[0].len);
227 
228 	/* WR will fail with length error
229 	 * if this is 0
230 	 */
231 	if (plist->length == 0) {
232 		rtrs_err(s, "Invalid RDMA-Write sg list length 0\n");
233 		return -EINVAL;
234 	}
235 
236 	plist->lkey = sess->s.dev->ib_pd->local_dma_lkey;
237 	offset += plist->length;
238 
239 	wr->wr.sg_list	= plist;
240 	wr->wr.num_sge	= 1;
241 	wr->remote_addr	= le64_to_cpu(id->rd_msg->desc[0].addr);
242 	wr->rkey	= le32_to_cpu(id->rd_msg->desc[0].key);
243 	if (rkey == 0)
244 		rkey = wr->rkey;
245 	else
246 		/* Only one key is actually used */
247 		WARN_ON_ONCE(rkey != wr->rkey);
248 
249 	wr->wr.opcode = IB_WR_RDMA_WRITE;
250 	wr->wr.wr_cqe   = &io_comp_cqe;
251 	wr->wr.ex.imm_data = 0;
252 	wr->wr.send_flags  = 0;
253 
254 	if (need_inval && always_invalidate) {
255 		wr->wr.next = &rwr.wr;
256 		rwr.wr.next = &inv_wr;
257 		inv_wr.next = &imm_wr.wr;
258 	} else if (always_invalidate) {
259 		wr->wr.next = &rwr.wr;
260 		rwr.wr.next = &imm_wr.wr;
261 	} else if (need_inval) {
262 		wr->wr.next = &inv_wr;
263 		inv_wr.next = &imm_wr.wr;
264 	} else {
265 		wr->wr.next = &imm_wr.wr;
266 	}
267 	/*
268 	 * From time to time we have to post signaled sends,
269 	 * or send queue will fill up and only QP reset can help.
270 	 */
271 	flags = (atomic_inc_return(&id->con->c.wr_cnt) % s->signal_interval) ?
272 		0 : IB_SEND_SIGNALED;
273 
274 	if (need_inval) {
275 		inv_wr.sg_list = NULL;
276 		inv_wr.num_sge = 0;
277 		inv_wr.opcode = IB_WR_SEND_WITH_INV;
278 		inv_wr.wr_cqe   = &io_comp_cqe;
279 		inv_wr.send_flags = 0;
280 		inv_wr.ex.invalidate_rkey = rkey;
281 	}
282 
283 	imm_wr.wr.next = NULL;
284 	if (always_invalidate) {
285 		struct rtrs_msg_rkey_rsp *msg;
286 
287 		srv_mr = &sess->mrs[id->msg_id];
288 		rwr.wr.opcode = IB_WR_REG_MR;
289 		rwr.wr.wr_cqe = &local_reg_cqe;
290 		rwr.wr.num_sge = 0;
291 		rwr.mr = srv_mr->mr;
292 		rwr.wr.send_flags = 0;
293 		rwr.key = srv_mr->mr->rkey;
294 		rwr.access = (IB_ACCESS_LOCAL_WRITE |
295 			      IB_ACCESS_REMOTE_WRITE);
296 		msg = srv_mr->iu->buf;
297 		msg->buf_id = cpu_to_le16(id->msg_id);
298 		msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
299 		msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
300 
301 		list.addr   = srv_mr->iu->dma_addr;
302 		list.length = sizeof(*msg);
303 		list.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
304 		imm_wr.wr.sg_list = &list;
305 		imm_wr.wr.num_sge = 1;
306 		imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
307 		ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
308 					      srv_mr->iu->dma_addr,
309 					      srv_mr->iu->size, DMA_TO_DEVICE);
310 	} else {
311 		imm_wr.wr.sg_list = NULL;
312 		imm_wr.wr.num_sge = 0;
313 		imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
314 	}
315 	imm_wr.wr.send_flags = flags;
316 	imm_wr.wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id,
317 							     0, need_inval));
318 
319 	imm_wr.wr.wr_cqe   = &io_comp_cqe;
320 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, dma_addr,
321 				      offset, DMA_BIDIRECTIONAL);
322 
323 	err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL);
324 	if (err)
325 		rtrs_err(s,
326 			  "Posting RDMA-Write-Request to QP failed, err: %d\n",
327 			  err);
328 
329 	return err;
330 }
331 
332 /**
333  * send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE
334  *                      requests or on successful WRITE request.
335  * @con:	the connection to send back result
336  * @id:		the id associated with the IO
337  * @errno:	the error number of the IO.
338  *
339  * Return 0 on success, errno otherwise.
340  */
341 static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id,
342 			    int errno)
343 {
344 	struct rtrs_sess *s = con->c.sess;
345 	struct rtrs_srv_sess *sess = to_srv_sess(s);
346 	struct ib_send_wr inv_wr, *wr = NULL;
347 	struct ib_rdma_wr imm_wr;
348 	struct ib_reg_wr rwr;
349 	struct rtrs_srv_mr *srv_mr;
350 	bool need_inval = false;
351 	enum ib_send_flags flags;
352 	u32 imm;
353 	int err;
354 
355 	if (id->dir == READ) {
356 		struct rtrs_msg_rdma_read *rd_msg = id->rd_msg;
357 		size_t sg_cnt;
358 
359 		need_inval = le16_to_cpu(rd_msg->flags) &
360 				RTRS_MSG_NEED_INVAL_F;
361 		sg_cnt = le16_to_cpu(rd_msg->sg_cnt);
362 
363 		if (need_inval) {
364 			if (sg_cnt) {
365 				inv_wr.wr_cqe   = &io_comp_cqe;
366 				inv_wr.sg_list = NULL;
367 				inv_wr.num_sge = 0;
368 				inv_wr.opcode = IB_WR_SEND_WITH_INV;
369 				inv_wr.send_flags = 0;
370 				/* Only one key is actually used */
371 				inv_wr.ex.invalidate_rkey =
372 					le32_to_cpu(rd_msg->desc[0].key);
373 			} else {
374 				WARN_ON_ONCE(1);
375 				need_inval = false;
376 			}
377 		}
378 	}
379 
380 	if (need_inval && always_invalidate) {
381 		wr = &inv_wr;
382 		inv_wr.next = &rwr.wr;
383 		rwr.wr.next = &imm_wr.wr;
384 	} else if (always_invalidate) {
385 		wr = &rwr.wr;
386 		rwr.wr.next = &imm_wr.wr;
387 	} else if (need_inval) {
388 		wr = &inv_wr;
389 		inv_wr.next = &imm_wr.wr;
390 	} else {
391 		wr = &imm_wr.wr;
392 	}
393 	/*
394 	 * From time to time we have to post signalled sends,
395 	 * or send queue will fill up and only QP reset can help.
396 	 */
397 	flags = (atomic_inc_return(&con->c.wr_cnt) % s->signal_interval) ?
398 		0 : IB_SEND_SIGNALED;
399 	imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval);
400 	imm_wr.wr.next = NULL;
401 	if (always_invalidate) {
402 		struct ib_sge list;
403 		struct rtrs_msg_rkey_rsp *msg;
404 
405 		srv_mr = &sess->mrs[id->msg_id];
406 		rwr.wr.next = &imm_wr.wr;
407 		rwr.wr.opcode = IB_WR_REG_MR;
408 		rwr.wr.wr_cqe = &local_reg_cqe;
409 		rwr.wr.num_sge = 0;
410 		rwr.wr.send_flags = 0;
411 		rwr.mr = srv_mr->mr;
412 		rwr.key = srv_mr->mr->rkey;
413 		rwr.access = (IB_ACCESS_LOCAL_WRITE |
414 			      IB_ACCESS_REMOTE_WRITE);
415 		msg = srv_mr->iu->buf;
416 		msg->buf_id = cpu_to_le16(id->msg_id);
417 		msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
418 		msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
419 
420 		list.addr   = srv_mr->iu->dma_addr;
421 		list.length = sizeof(*msg);
422 		list.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
423 		imm_wr.wr.sg_list = &list;
424 		imm_wr.wr.num_sge = 1;
425 		imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
426 		ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
427 					      srv_mr->iu->dma_addr,
428 					      srv_mr->iu->size, DMA_TO_DEVICE);
429 	} else {
430 		imm_wr.wr.sg_list = NULL;
431 		imm_wr.wr.num_sge = 0;
432 		imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
433 	}
434 	imm_wr.wr.send_flags = flags;
435 	imm_wr.wr.wr_cqe   = &io_comp_cqe;
436 
437 	imm_wr.wr.ex.imm_data = cpu_to_be32(imm);
438 
439 	err = ib_post_send(id->con->c.qp, wr, NULL);
440 	if (err)
441 		rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %d\n",
442 			     err);
443 
444 	return err;
445 }
446 
447 void close_sess(struct rtrs_srv_sess *sess)
448 {
449 	if (rtrs_srv_change_state(sess, RTRS_SRV_CLOSING))
450 		queue_work(rtrs_wq, &sess->close_work);
451 	WARN_ON(sess->state != RTRS_SRV_CLOSING);
452 }
453 
454 static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state)
455 {
456 	switch (state) {
457 	case RTRS_SRV_CONNECTING:
458 		return "RTRS_SRV_CONNECTING";
459 	case RTRS_SRV_CONNECTED:
460 		return "RTRS_SRV_CONNECTED";
461 	case RTRS_SRV_CLOSING:
462 		return "RTRS_SRV_CLOSING";
463 	case RTRS_SRV_CLOSED:
464 		return "RTRS_SRV_CLOSED";
465 	default:
466 		return "UNKNOWN";
467 	}
468 }
469 
470 /**
471  * rtrs_srv_resp_rdma() - Finish an RDMA request
472  *
473  * @id:		Internal RTRS operation identifier
474  * @status:	Response Code sent to the other side for this operation.
475  *		0 = success, <=0 error
476  * Context: any
477  *
478  * Finish a RDMA operation. A message is sent to the client and the
479  * corresponding memory areas will be released.
480  */
481 bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status)
482 {
483 	struct rtrs_srv_sess *sess;
484 	struct rtrs_srv_con *con;
485 	struct rtrs_sess *s;
486 	int err;
487 
488 	if (WARN_ON(!id))
489 		return true;
490 
491 	con = id->con;
492 	s = con->c.sess;
493 	sess = to_srv_sess(s);
494 
495 	id->status = status;
496 
497 	if (sess->state != RTRS_SRV_CONNECTED) {
498 		rtrs_err_rl(s,
499 			    "Sending I/O response failed,  session %s is disconnected, sess state %s\n",
500 			    kobject_name(&sess->kobj),
501 			    rtrs_srv_state_str(sess->state));
502 		goto out;
503 	}
504 	if (always_invalidate) {
505 		struct rtrs_srv_mr *mr = &sess->mrs[id->msg_id];
506 
507 		ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
508 	}
509 	if (atomic_sub_return(1, &con->c.sq_wr_avail) < 0) {
510 		rtrs_err(s, "IB send queue full: sess=%s cid=%d\n",
511 			 kobject_name(&sess->kobj),
512 			 con->c.cid);
513 		atomic_add(1, &con->c.sq_wr_avail);
514 		spin_lock(&con->rsp_wr_wait_lock);
515 		list_add_tail(&id->wait_list, &con->rsp_wr_wait_list);
516 		spin_unlock(&con->rsp_wr_wait_lock);
517 		return false;
518 	}
519 
520 	if (status || id->dir == WRITE || !id->rd_msg->sg_cnt)
521 		err = send_io_resp_imm(con, id, status);
522 	else
523 		err = rdma_write_sg(id);
524 
525 	if (err) {
526 		rtrs_err_rl(s, "IO response failed: %d: sess=%s\n", err,
527 			    kobject_name(&sess->kobj));
528 		close_sess(sess);
529 	}
530 out:
531 	rtrs_srv_put_ops_ids(sess);
532 	return true;
533 }
534 EXPORT_SYMBOL(rtrs_srv_resp_rdma);
535 
536 /**
537  * rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv.
538  * @srv:	Session pointer
539  * @priv:	The private pointer that is associated with the session.
540  */
541 void rtrs_srv_set_sess_priv(struct rtrs_srv *srv, void *priv)
542 {
543 	srv->priv = priv;
544 }
545 EXPORT_SYMBOL(rtrs_srv_set_sess_priv);
546 
547 static void unmap_cont_bufs(struct rtrs_srv_sess *sess)
548 {
549 	int i;
550 
551 	for (i = 0; i < sess->mrs_num; i++) {
552 		struct rtrs_srv_mr *srv_mr;
553 
554 		srv_mr = &sess->mrs[i];
555 		rtrs_iu_free(srv_mr->iu, sess->s.dev->ib_dev, 1);
556 		ib_dereg_mr(srv_mr->mr);
557 		ib_dma_unmap_sg(sess->s.dev->ib_dev, srv_mr->sgt.sgl,
558 				srv_mr->sgt.nents, DMA_BIDIRECTIONAL);
559 		sg_free_table(&srv_mr->sgt);
560 	}
561 	kfree(sess->mrs);
562 }
563 
564 static int map_cont_bufs(struct rtrs_srv_sess *sess)
565 {
566 	struct rtrs_srv *srv = sess->srv;
567 	struct rtrs_sess *ss = &sess->s;
568 	int i, mri, err, mrs_num;
569 	unsigned int chunk_bits;
570 	int chunks_per_mr = 1;
571 
572 	/*
573 	 * Here we map queue_depth chunks to MR.  Firstly we have to
574 	 * figure out how many chunks can we map per MR.
575 	 */
576 	if (always_invalidate) {
577 		/*
578 		 * in order to do invalidate for each chunks of memory, we needs
579 		 * more memory regions.
580 		 */
581 		mrs_num = srv->queue_depth;
582 	} else {
583 		chunks_per_mr =
584 			sess->s.dev->ib_dev->attrs.max_fast_reg_page_list_len;
585 		mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr);
586 		chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num);
587 	}
588 
589 	sess->mrs = kcalloc(mrs_num, sizeof(*sess->mrs), GFP_KERNEL);
590 	if (!sess->mrs)
591 		return -ENOMEM;
592 
593 	sess->mrs_num = mrs_num;
594 
595 	for (mri = 0; mri < mrs_num; mri++) {
596 		struct rtrs_srv_mr *srv_mr = &sess->mrs[mri];
597 		struct sg_table *sgt = &srv_mr->sgt;
598 		struct scatterlist *s;
599 		struct ib_mr *mr;
600 		int nr, chunks;
601 
602 		chunks = chunks_per_mr * mri;
603 		if (!always_invalidate)
604 			chunks_per_mr = min_t(int, chunks_per_mr,
605 					      srv->queue_depth - chunks);
606 
607 		err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL);
608 		if (err)
609 			goto err;
610 
611 		for_each_sg(sgt->sgl, s, chunks_per_mr, i)
612 			sg_set_page(s, srv->chunks[chunks + i],
613 				    max_chunk_size, 0);
614 
615 		nr = ib_dma_map_sg(sess->s.dev->ib_dev, sgt->sgl,
616 				   sgt->nents, DMA_BIDIRECTIONAL);
617 		if (nr < sgt->nents) {
618 			err = nr < 0 ? nr : -EINVAL;
619 			goto free_sg;
620 		}
621 		mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
622 				 sgt->nents);
623 		if (IS_ERR(mr)) {
624 			err = PTR_ERR(mr);
625 			goto unmap_sg;
626 		}
627 		nr = ib_map_mr_sg(mr, sgt->sgl, sgt->nents,
628 				  NULL, max_chunk_size);
629 		if (nr < 0 || nr < sgt->nents) {
630 			err = nr < 0 ? nr : -EINVAL;
631 			goto dereg_mr;
632 		}
633 
634 		if (always_invalidate) {
635 			srv_mr->iu = rtrs_iu_alloc(1,
636 					sizeof(struct rtrs_msg_rkey_rsp),
637 					GFP_KERNEL, sess->s.dev->ib_dev,
638 					DMA_TO_DEVICE, rtrs_srv_rdma_done);
639 			if (!srv_mr->iu) {
640 				err = -ENOMEM;
641 				rtrs_err(ss, "rtrs_iu_alloc(), err: %d\n", err);
642 				goto dereg_mr;
643 			}
644 		}
645 		/* Eventually dma addr for each chunk can be cached */
646 		for_each_sg(sgt->sgl, s, sgt->orig_nents, i)
647 			sess->dma_addr[chunks + i] = sg_dma_address(s);
648 
649 		ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey));
650 		srv_mr->mr = mr;
651 
652 		continue;
653 err:
654 		while (mri--) {
655 			srv_mr = &sess->mrs[mri];
656 			sgt = &srv_mr->sgt;
657 			mr = srv_mr->mr;
658 			rtrs_iu_free(srv_mr->iu, sess->s.dev->ib_dev, 1);
659 dereg_mr:
660 			ib_dereg_mr(mr);
661 unmap_sg:
662 			ib_dma_unmap_sg(sess->s.dev->ib_dev, sgt->sgl,
663 					sgt->nents, DMA_BIDIRECTIONAL);
664 free_sg:
665 			sg_free_table(sgt);
666 		}
667 		kfree(sess->mrs);
668 
669 		return err;
670 	}
671 
672 	chunk_bits = ilog2(srv->queue_depth - 1) + 1;
673 	sess->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits);
674 
675 	return 0;
676 }
677 
678 static void rtrs_srv_hb_err_handler(struct rtrs_con *c)
679 {
680 	close_sess(to_srv_sess(c->sess));
681 }
682 
683 static void rtrs_srv_init_hb(struct rtrs_srv_sess *sess)
684 {
685 	rtrs_init_hb(&sess->s, &io_comp_cqe,
686 		      RTRS_HB_INTERVAL_MS,
687 		      RTRS_HB_MISSED_MAX,
688 		      rtrs_srv_hb_err_handler,
689 		      rtrs_wq);
690 }
691 
692 static void rtrs_srv_start_hb(struct rtrs_srv_sess *sess)
693 {
694 	rtrs_start_hb(&sess->s);
695 }
696 
697 static void rtrs_srv_stop_hb(struct rtrs_srv_sess *sess)
698 {
699 	rtrs_stop_hb(&sess->s);
700 }
701 
702 static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
703 {
704 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
705 	struct rtrs_sess *s = con->c.sess;
706 	struct rtrs_srv_sess *sess = to_srv_sess(s);
707 	struct rtrs_iu *iu;
708 
709 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
710 	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
711 
712 	if (wc->status != IB_WC_SUCCESS) {
713 		rtrs_err(s, "Sess info response send failed: %s\n",
714 			  ib_wc_status_msg(wc->status));
715 		close_sess(sess);
716 		return;
717 	}
718 	WARN_ON(wc->opcode != IB_WC_SEND);
719 }
720 
721 static void rtrs_srv_sess_up(struct rtrs_srv_sess *sess)
722 {
723 	struct rtrs_srv *srv = sess->srv;
724 	struct rtrs_srv_ctx *ctx = srv->ctx;
725 	int up;
726 
727 	mutex_lock(&srv->paths_ev_mutex);
728 	up = ++srv->paths_up;
729 	if (up == 1)
730 		ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL);
731 	mutex_unlock(&srv->paths_ev_mutex);
732 
733 	/* Mark session as established */
734 	sess->established = true;
735 }
736 
737 static void rtrs_srv_sess_down(struct rtrs_srv_sess *sess)
738 {
739 	struct rtrs_srv *srv = sess->srv;
740 	struct rtrs_srv_ctx *ctx = srv->ctx;
741 
742 	if (!sess->established)
743 		return;
744 
745 	sess->established = false;
746 	mutex_lock(&srv->paths_ev_mutex);
747 	WARN_ON(!srv->paths_up);
748 	if (--srv->paths_up == 0)
749 		ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv);
750 	mutex_unlock(&srv->paths_ev_mutex);
751 }
752 
753 static bool exist_sessname(struct rtrs_srv_ctx *ctx,
754 			   const char *sessname, const uuid_t *path_uuid)
755 {
756 	struct rtrs_srv *srv;
757 	struct rtrs_srv_sess *sess;
758 	bool found = false;
759 
760 	mutex_lock(&ctx->srv_mutex);
761 	list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
762 		mutex_lock(&srv->paths_mutex);
763 
764 		/* when a client with same uuid and same sessname tried to add a path */
765 		if (uuid_equal(&srv->paths_uuid, path_uuid)) {
766 			mutex_unlock(&srv->paths_mutex);
767 			continue;
768 		}
769 
770 		list_for_each_entry(sess, &srv->paths_list, s.entry) {
771 			if (strlen(sess->s.sessname) == strlen(sessname) &&
772 			    !strcmp(sess->s.sessname, sessname)) {
773 				found = true;
774 				break;
775 			}
776 		}
777 		mutex_unlock(&srv->paths_mutex);
778 		if (found)
779 			break;
780 	}
781 	mutex_unlock(&ctx->srv_mutex);
782 	return found;
783 }
784 
785 static int post_recv_sess(struct rtrs_srv_sess *sess);
786 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno);
787 
788 static int process_info_req(struct rtrs_srv_con *con,
789 			    struct rtrs_msg_info_req *msg)
790 {
791 	struct rtrs_sess *s = con->c.sess;
792 	struct rtrs_srv_sess *sess = to_srv_sess(s);
793 	struct ib_send_wr *reg_wr = NULL;
794 	struct rtrs_msg_info_rsp *rsp;
795 	struct rtrs_iu *tx_iu;
796 	struct ib_reg_wr *rwr;
797 	int mri, err;
798 	size_t tx_sz;
799 
800 	err = post_recv_sess(sess);
801 	if (err) {
802 		rtrs_err(s, "post_recv_sess(), err: %d\n", err);
803 		return err;
804 	}
805 
806 	if (strchr(msg->sessname, '/') || strchr(msg->sessname, '.')) {
807 		rtrs_err(s, "sessname cannot contain / and .\n");
808 		return -EINVAL;
809 	}
810 
811 	if (exist_sessname(sess->srv->ctx,
812 			   msg->sessname, &sess->srv->paths_uuid)) {
813 		rtrs_err(s, "sessname is duplicated: %s\n", msg->sessname);
814 		return -EPERM;
815 	}
816 	strscpy(sess->s.sessname, msg->sessname, sizeof(sess->s.sessname));
817 
818 	rwr = kcalloc(sess->mrs_num, sizeof(*rwr), GFP_KERNEL);
819 	if (!rwr)
820 		return -ENOMEM;
821 
822 	tx_sz  = sizeof(*rsp);
823 	tx_sz += sizeof(rsp->desc[0]) * sess->mrs_num;
824 	tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
825 			       DMA_TO_DEVICE, rtrs_srv_info_rsp_done);
826 	if (!tx_iu) {
827 		err = -ENOMEM;
828 		goto rwr_free;
829 	}
830 
831 	rsp = tx_iu->buf;
832 	rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP);
833 	rsp->sg_cnt = cpu_to_le16(sess->mrs_num);
834 
835 	for (mri = 0; mri < sess->mrs_num; mri++) {
836 		struct ib_mr *mr = sess->mrs[mri].mr;
837 
838 		rsp->desc[mri].addr = cpu_to_le64(mr->iova);
839 		rsp->desc[mri].key  = cpu_to_le32(mr->rkey);
840 		rsp->desc[mri].len  = cpu_to_le32(mr->length);
841 
842 		/*
843 		 * Fill in reg MR request and chain them *backwards*
844 		 */
845 		rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL;
846 		rwr[mri].wr.opcode = IB_WR_REG_MR;
847 		rwr[mri].wr.wr_cqe = &local_reg_cqe;
848 		rwr[mri].wr.num_sge = 0;
849 		rwr[mri].wr.send_flags = 0;
850 		rwr[mri].mr = mr;
851 		rwr[mri].key = mr->rkey;
852 		rwr[mri].access = (IB_ACCESS_LOCAL_WRITE |
853 				   IB_ACCESS_REMOTE_WRITE);
854 		reg_wr = &rwr[mri].wr;
855 	}
856 
857 	err = rtrs_srv_create_sess_files(sess);
858 	if (err)
859 		goto iu_free;
860 	kobject_get(&sess->kobj);
861 	get_device(&sess->srv->dev);
862 	rtrs_srv_change_state(sess, RTRS_SRV_CONNECTED);
863 	rtrs_srv_start_hb(sess);
864 
865 	/*
866 	 * We do not account number of established connections at the current
867 	 * moment, we rely on the client, which should send info request when
868 	 * all connections are successfully established.  Thus, simply notify
869 	 * listener with a proper event if we are the first path.
870 	 */
871 	rtrs_srv_sess_up(sess);
872 
873 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
874 				      tx_iu->size, DMA_TO_DEVICE);
875 
876 	/* Send info response */
877 	err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr);
878 	if (err) {
879 		rtrs_err(s, "rtrs_iu_post_send(), err: %d\n", err);
880 iu_free:
881 		rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1);
882 	}
883 rwr_free:
884 	kfree(rwr);
885 
886 	return err;
887 }
888 
889 static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
890 {
891 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
892 	struct rtrs_sess *s = con->c.sess;
893 	struct rtrs_srv_sess *sess = to_srv_sess(s);
894 	struct rtrs_msg_info_req *msg;
895 	struct rtrs_iu *iu;
896 	int err;
897 
898 	WARN_ON(con->c.cid);
899 
900 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
901 	if (wc->status != IB_WC_SUCCESS) {
902 		rtrs_err(s, "Sess info request receive failed: %s\n",
903 			  ib_wc_status_msg(wc->status));
904 		goto close;
905 	}
906 	WARN_ON(wc->opcode != IB_WC_RECV);
907 
908 	if (wc->byte_len < sizeof(*msg)) {
909 		rtrs_err(s, "Sess info request is malformed: size %d\n",
910 			  wc->byte_len);
911 		goto close;
912 	}
913 	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
914 				   iu->size, DMA_FROM_DEVICE);
915 	msg = iu->buf;
916 	if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ) {
917 		rtrs_err(s, "Sess info request is malformed: type %d\n",
918 			  le16_to_cpu(msg->type));
919 		goto close;
920 	}
921 	err = process_info_req(con, msg);
922 	if (err)
923 		goto close;
924 
925 out:
926 	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
927 	return;
928 close:
929 	close_sess(sess);
930 	goto out;
931 }
932 
933 static int post_recv_info_req(struct rtrs_srv_con *con)
934 {
935 	struct rtrs_sess *s = con->c.sess;
936 	struct rtrs_srv_sess *sess = to_srv_sess(s);
937 	struct rtrs_iu *rx_iu;
938 	int err;
939 
940 	rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req),
941 			       GFP_KERNEL, sess->s.dev->ib_dev,
942 			       DMA_FROM_DEVICE, rtrs_srv_info_req_done);
943 	if (!rx_iu)
944 		return -ENOMEM;
945 	/* Prepare for getting info response */
946 	err = rtrs_iu_post_recv(&con->c, rx_iu);
947 	if (err) {
948 		rtrs_err(s, "rtrs_iu_post_recv(), err: %d\n", err);
949 		rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1);
950 		return err;
951 	}
952 
953 	return 0;
954 }
955 
956 static int post_recv_io(struct rtrs_srv_con *con, size_t q_size)
957 {
958 	int i, err;
959 
960 	for (i = 0; i < q_size; i++) {
961 		err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
962 		if (err)
963 			return err;
964 	}
965 
966 	return 0;
967 }
968 
969 static int post_recv_sess(struct rtrs_srv_sess *sess)
970 {
971 	struct rtrs_srv *srv = sess->srv;
972 	struct rtrs_sess *s = &sess->s;
973 	size_t q_size;
974 	int err, cid;
975 
976 	for (cid = 0; cid < sess->s.con_num; cid++) {
977 		if (cid == 0)
978 			q_size = SERVICE_CON_QUEUE_DEPTH;
979 		else
980 			q_size = srv->queue_depth;
981 
982 		err = post_recv_io(to_srv_con(sess->s.con[cid]), q_size);
983 		if (err) {
984 			rtrs_err(s, "post_recv_io(), err: %d\n", err);
985 			return err;
986 		}
987 	}
988 
989 	return 0;
990 }
991 
992 static void process_read(struct rtrs_srv_con *con,
993 			 struct rtrs_msg_rdma_read *msg,
994 			 u32 buf_id, u32 off)
995 {
996 	struct rtrs_sess *s = con->c.sess;
997 	struct rtrs_srv_sess *sess = to_srv_sess(s);
998 	struct rtrs_srv *srv = sess->srv;
999 	struct rtrs_srv_ctx *ctx = srv->ctx;
1000 	struct rtrs_srv_op *id;
1001 
1002 	size_t usr_len, data_len;
1003 	void *data;
1004 	int ret;
1005 
1006 	if (sess->state != RTRS_SRV_CONNECTED) {
1007 		rtrs_err_rl(s,
1008 			     "Processing read request failed,  session is disconnected, sess state %s\n",
1009 			     rtrs_srv_state_str(sess->state));
1010 		return;
1011 	}
1012 	if (msg->sg_cnt != 1 && msg->sg_cnt != 0) {
1013 		rtrs_err_rl(s,
1014 			    "Processing read request failed, invalid message\n");
1015 		return;
1016 	}
1017 	rtrs_srv_get_ops_ids(sess);
1018 	rtrs_srv_update_rdma_stats(sess->stats, off, READ);
1019 	id = sess->ops_ids[buf_id];
1020 	id->con		= con;
1021 	id->dir		= READ;
1022 	id->msg_id	= buf_id;
1023 	id->rd_msg	= msg;
1024 	usr_len = le16_to_cpu(msg->usr_len);
1025 	data_len = off - usr_len;
1026 	data = page_address(srv->chunks[buf_id]);
1027 	ret = ctx->ops.rdma_ev(srv->priv, id, READ, data, data_len,
1028 			   data + data_len, usr_len);
1029 
1030 	if (ret) {
1031 		rtrs_err_rl(s,
1032 			     "Processing read request failed, user module cb reported for msg_id %d, err: %d\n",
1033 			     buf_id, ret);
1034 		goto send_err_msg;
1035 	}
1036 
1037 	return;
1038 
1039 send_err_msg:
1040 	ret = send_io_resp_imm(con, id, ret);
1041 	if (ret < 0) {
1042 		rtrs_err_rl(s,
1043 			     "Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %d\n",
1044 			     buf_id, ret);
1045 		close_sess(sess);
1046 	}
1047 	rtrs_srv_put_ops_ids(sess);
1048 }
1049 
1050 static void process_write(struct rtrs_srv_con *con,
1051 			  struct rtrs_msg_rdma_write *req,
1052 			  u32 buf_id, u32 off)
1053 {
1054 	struct rtrs_sess *s = con->c.sess;
1055 	struct rtrs_srv_sess *sess = to_srv_sess(s);
1056 	struct rtrs_srv *srv = sess->srv;
1057 	struct rtrs_srv_ctx *ctx = srv->ctx;
1058 	struct rtrs_srv_op *id;
1059 
1060 	size_t data_len, usr_len;
1061 	void *data;
1062 	int ret;
1063 
1064 	if (sess->state != RTRS_SRV_CONNECTED) {
1065 		rtrs_err_rl(s,
1066 			     "Processing write request failed,  session is disconnected, sess state %s\n",
1067 			     rtrs_srv_state_str(sess->state));
1068 		return;
1069 	}
1070 	rtrs_srv_get_ops_ids(sess);
1071 	rtrs_srv_update_rdma_stats(sess->stats, off, WRITE);
1072 	id = sess->ops_ids[buf_id];
1073 	id->con    = con;
1074 	id->dir    = WRITE;
1075 	id->msg_id = buf_id;
1076 
1077 	usr_len = le16_to_cpu(req->usr_len);
1078 	data_len = off - usr_len;
1079 	data = page_address(srv->chunks[buf_id]);
1080 	ret = ctx->ops.rdma_ev(srv->priv, id, WRITE, data, data_len,
1081 			       data + data_len, usr_len);
1082 	if (ret) {
1083 		rtrs_err_rl(s,
1084 			     "Processing write request failed, user module callback reports err: %d\n",
1085 			     ret);
1086 		goto send_err_msg;
1087 	}
1088 
1089 	return;
1090 
1091 send_err_msg:
1092 	ret = send_io_resp_imm(con, id, ret);
1093 	if (ret < 0) {
1094 		rtrs_err_rl(s,
1095 			     "Processing write request failed, sending I/O response failed, msg_id %d, err: %d\n",
1096 			     buf_id, ret);
1097 		close_sess(sess);
1098 	}
1099 	rtrs_srv_put_ops_ids(sess);
1100 }
1101 
1102 static void process_io_req(struct rtrs_srv_con *con, void *msg,
1103 			   u32 id, u32 off)
1104 {
1105 	struct rtrs_sess *s = con->c.sess;
1106 	struct rtrs_srv_sess *sess = to_srv_sess(s);
1107 	struct rtrs_msg_rdma_hdr *hdr;
1108 	unsigned int type;
1109 
1110 	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, sess->dma_addr[id],
1111 				   max_chunk_size, DMA_BIDIRECTIONAL);
1112 	hdr = msg;
1113 	type = le16_to_cpu(hdr->type);
1114 
1115 	switch (type) {
1116 	case RTRS_MSG_WRITE:
1117 		process_write(con, msg, id, off);
1118 		break;
1119 	case RTRS_MSG_READ:
1120 		process_read(con, msg, id, off);
1121 		break;
1122 	default:
1123 		rtrs_err(s,
1124 			  "Processing I/O request failed, unknown message type received: 0x%02x\n",
1125 			  type);
1126 		goto err;
1127 	}
1128 
1129 	return;
1130 
1131 err:
1132 	close_sess(sess);
1133 }
1134 
1135 static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1136 {
1137 	struct rtrs_srv_mr *mr =
1138 		container_of(wc->wr_cqe, typeof(*mr), inv_cqe);
1139 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1140 	struct rtrs_sess *s = con->c.sess;
1141 	struct rtrs_srv_sess *sess = to_srv_sess(s);
1142 	struct rtrs_srv *srv = sess->srv;
1143 	u32 msg_id, off;
1144 	void *data;
1145 
1146 	if (wc->status != IB_WC_SUCCESS) {
1147 		rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n",
1148 			  ib_wc_status_msg(wc->status));
1149 		close_sess(sess);
1150 	}
1151 	msg_id = mr->msg_id;
1152 	off = mr->msg_off;
1153 	data = page_address(srv->chunks[msg_id]) + off;
1154 	process_io_req(con, data, msg_id, off);
1155 }
1156 
1157 static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con,
1158 			      struct rtrs_srv_mr *mr)
1159 {
1160 	struct ib_send_wr wr = {
1161 		.opcode		    = IB_WR_LOCAL_INV,
1162 		.wr_cqe		    = &mr->inv_cqe,
1163 		.send_flags	    = IB_SEND_SIGNALED,
1164 		.ex.invalidate_rkey = mr->mr->rkey,
1165 	};
1166 	mr->inv_cqe.done = rtrs_srv_inv_rkey_done;
1167 
1168 	return ib_post_send(con->c.qp, &wr, NULL);
1169 }
1170 
1171 static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con)
1172 {
1173 	spin_lock(&con->rsp_wr_wait_lock);
1174 	while (!list_empty(&con->rsp_wr_wait_list)) {
1175 		struct rtrs_srv_op *id;
1176 		int ret;
1177 
1178 		id = list_entry(con->rsp_wr_wait_list.next,
1179 				struct rtrs_srv_op, wait_list);
1180 		list_del(&id->wait_list);
1181 
1182 		spin_unlock(&con->rsp_wr_wait_lock);
1183 		ret = rtrs_srv_resp_rdma(id, id->status);
1184 		spin_lock(&con->rsp_wr_wait_lock);
1185 
1186 		if (!ret) {
1187 			list_add(&id->wait_list, &con->rsp_wr_wait_list);
1188 			break;
1189 		}
1190 	}
1191 	spin_unlock(&con->rsp_wr_wait_lock);
1192 }
1193 
1194 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
1195 {
1196 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1197 	struct rtrs_sess *s = con->c.sess;
1198 	struct rtrs_srv_sess *sess = to_srv_sess(s);
1199 	struct rtrs_srv *srv = sess->srv;
1200 	u32 imm_type, imm_payload;
1201 	int err;
1202 
1203 	if (wc->status != IB_WC_SUCCESS) {
1204 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
1205 			rtrs_err(s,
1206 				  "%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n",
1207 				  ib_wc_status_msg(wc->status), wc->wr_cqe,
1208 				  wc->opcode, wc->vendor_err, wc->byte_len);
1209 			close_sess(sess);
1210 		}
1211 		return;
1212 	}
1213 
1214 	switch (wc->opcode) {
1215 	case IB_WC_RECV_RDMA_WITH_IMM:
1216 		/*
1217 		 * post_recv() RDMA write completions of IO reqs (read/write)
1218 		 * and hb
1219 		 */
1220 		if (WARN_ON(wc->wr_cqe != &io_comp_cqe))
1221 			return;
1222 		err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
1223 		if (err) {
1224 			rtrs_err(s, "rtrs_post_recv(), err: %d\n", err);
1225 			close_sess(sess);
1226 			break;
1227 		}
1228 		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
1229 			       &imm_type, &imm_payload);
1230 		if (imm_type == RTRS_IO_REQ_IMM) {
1231 			u32 msg_id, off;
1232 			void *data;
1233 
1234 			msg_id = imm_payload >> sess->mem_bits;
1235 			off = imm_payload & ((1 << sess->mem_bits) - 1);
1236 			if (msg_id >= srv->queue_depth || off >= max_chunk_size) {
1237 				rtrs_err(s, "Wrong msg_id %u, off %u\n",
1238 					  msg_id, off);
1239 				close_sess(sess);
1240 				return;
1241 			}
1242 			if (always_invalidate) {
1243 				struct rtrs_srv_mr *mr = &sess->mrs[msg_id];
1244 
1245 				mr->msg_off = off;
1246 				mr->msg_id = msg_id;
1247 				err = rtrs_srv_inv_rkey(con, mr);
1248 				if (err) {
1249 					rtrs_err(s, "rtrs_post_recv(), err: %d\n",
1250 						  err);
1251 					close_sess(sess);
1252 					break;
1253 				}
1254 			} else {
1255 				data = page_address(srv->chunks[msg_id]) + off;
1256 				process_io_req(con, data, msg_id, off);
1257 			}
1258 		} else if (imm_type == RTRS_HB_MSG_IMM) {
1259 			WARN_ON(con->c.cid);
1260 			rtrs_send_hb_ack(&sess->s);
1261 		} else if (imm_type == RTRS_HB_ACK_IMM) {
1262 			WARN_ON(con->c.cid);
1263 			sess->s.hb_missed_cnt = 0;
1264 		} else {
1265 			rtrs_wrn(s, "Unknown IMM type %u\n", imm_type);
1266 		}
1267 		break;
1268 	case IB_WC_RDMA_WRITE:
1269 	case IB_WC_SEND:
1270 		/*
1271 		 * post_send() RDMA write completions of IO reqs (read/write)
1272 		 * and hb.
1273 		 */
1274 		atomic_add(s->signal_interval, &con->c.sq_wr_avail);
1275 
1276 		if (!list_empty_careful(&con->rsp_wr_wait_list))
1277 			rtrs_rdma_process_wr_wait_list(con);
1278 
1279 		break;
1280 	default:
1281 		rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode);
1282 		return;
1283 	}
1284 }
1285 
1286 /**
1287  * rtrs_srv_get_sess_name() - Get rtrs_srv peer hostname.
1288  * @srv:	Session
1289  * @sessname:	Sessname buffer
1290  * @len:	Length of sessname buffer
1291  */
1292 int rtrs_srv_get_sess_name(struct rtrs_srv *srv, char *sessname, size_t len)
1293 {
1294 	struct rtrs_srv_sess *sess;
1295 	int err = -ENOTCONN;
1296 
1297 	mutex_lock(&srv->paths_mutex);
1298 	list_for_each_entry(sess, &srv->paths_list, s.entry) {
1299 		if (sess->state != RTRS_SRV_CONNECTED)
1300 			continue;
1301 		strscpy(sessname, sess->s.sessname,
1302 		       min_t(size_t, sizeof(sess->s.sessname), len));
1303 		err = 0;
1304 		break;
1305 	}
1306 	mutex_unlock(&srv->paths_mutex);
1307 
1308 	return err;
1309 }
1310 EXPORT_SYMBOL(rtrs_srv_get_sess_name);
1311 
1312 /**
1313  * rtrs_srv_get_queue_depth() - Get rtrs_srv qdepth.
1314  * @srv:	Session
1315  */
1316 int rtrs_srv_get_queue_depth(struct rtrs_srv *srv)
1317 {
1318 	return srv->queue_depth;
1319 }
1320 EXPORT_SYMBOL(rtrs_srv_get_queue_depth);
1321 
1322 static int find_next_bit_ring(struct rtrs_srv_sess *sess)
1323 {
1324 	struct ib_device *ib_dev = sess->s.dev->ib_dev;
1325 	int v;
1326 
1327 	v = cpumask_next(sess->cur_cq_vector, &cq_affinity_mask);
1328 	if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors)
1329 		v = cpumask_first(&cq_affinity_mask);
1330 	return v;
1331 }
1332 
1333 static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_sess *sess)
1334 {
1335 	sess->cur_cq_vector = find_next_bit_ring(sess);
1336 
1337 	return sess->cur_cq_vector;
1338 }
1339 
1340 static void rtrs_srv_dev_release(struct device *dev)
1341 {
1342 	struct rtrs_srv *srv = container_of(dev, struct rtrs_srv, dev);
1343 
1344 	kfree(srv);
1345 }
1346 
1347 static void free_srv(struct rtrs_srv *srv)
1348 {
1349 	int i;
1350 
1351 	WARN_ON(refcount_read(&srv->refcount));
1352 	for (i = 0; i < srv->queue_depth; i++)
1353 		mempool_free(srv->chunks[i], chunk_pool);
1354 	kfree(srv->chunks);
1355 	mutex_destroy(&srv->paths_mutex);
1356 	mutex_destroy(&srv->paths_ev_mutex);
1357 	/* last put to release the srv structure */
1358 	put_device(&srv->dev);
1359 }
1360 
1361 static struct rtrs_srv *get_or_create_srv(struct rtrs_srv_ctx *ctx,
1362 					  const uuid_t *paths_uuid,
1363 					  bool first_conn)
1364 {
1365 	struct rtrs_srv *srv;
1366 	int i;
1367 
1368 	mutex_lock(&ctx->srv_mutex);
1369 	list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
1370 		if (uuid_equal(&srv->paths_uuid, paths_uuid) &&
1371 		    refcount_inc_not_zero(&srv->refcount)) {
1372 			mutex_unlock(&ctx->srv_mutex);
1373 			return srv;
1374 		}
1375 	}
1376 	mutex_unlock(&ctx->srv_mutex);
1377 	/*
1378 	 * If this request is not the first connection request from the
1379 	 * client for this session then fail and return error.
1380 	 */
1381 	if (!first_conn) {
1382 		pr_err_ratelimited("Error: Not the first connection request for this session\n");
1383 		return ERR_PTR(-ENXIO);
1384 	}
1385 
1386 	/* need to allocate a new srv */
1387 	srv = kzalloc(sizeof(*srv), GFP_KERNEL);
1388 	if  (!srv)
1389 		return ERR_PTR(-ENOMEM);
1390 
1391 	INIT_LIST_HEAD(&srv->paths_list);
1392 	mutex_init(&srv->paths_mutex);
1393 	mutex_init(&srv->paths_ev_mutex);
1394 	uuid_copy(&srv->paths_uuid, paths_uuid);
1395 	srv->queue_depth = sess_queue_depth;
1396 	srv->ctx = ctx;
1397 	device_initialize(&srv->dev);
1398 	srv->dev.release = rtrs_srv_dev_release;
1399 
1400 	srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks),
1401 			      GFP_KERNEL);
1402 	if (!srv->chunks)
1403 		goto err_free_srv;
1404 
1405 	for (i = 0; i < srv->queue_depth; i++) {
1406 		srv->chunks[i] = mempool_alloc(chunk_pool, GFP_KERNEL);
1407 		if (!srv->chunks[i])
1408 			goto err_free_chunks;
1409 	}
1410 	refcount_set(&srv->refcount, 1);
1411 	mutex_lock(&ctx->srv_mutex);
1412 	list_add(&srv->ctx_list, &ctx->srv_list);
1413 	mutex_unlock(&ctx->srv_mutex);
1414 
1415 	return srv;
1416 
1417 err_free_chunks:
1418 	while (i--)
1419 		mempool_free(srv->chunks[i], chunk_pool);
1420 	kfree(srv->chunks);
1421 
1422 err_free_srv:
1423 	kfree(srv);
1424 	return ERR_PTR(-ENOMEM);
1425 }
1426 
1427 static void put_srv(struct rtrs_srv *srv)
1428 {
1429 	if (refcount_dec_and_test(&srv->refcount)) {
1430 		struct rtrs_srv_ctx *ctx = srv->ctx;
1431 
1432 		WARN_ON(srv->dev.kobj.state_in_sysfs);
1433 
1434 		mutex_lock(&ctx->srv_mutex);
1435 		list_del(&srv->ctx_list);
1436 		mutex_unlock(&ctx->srv_mutex);
1437 		free_srv(srv);
1438 	}
1439 }
1440 
1441 static void __add_path_to_srv(struct rtrs_srv *srv,
1442 			      struct rtrs_srv_sess *sess)
1443 {
1444 	list_add_tail(&sess->s.entry, &srv->paths_list);
1445 	srv->paths_num++;
1446 	WARN_ON(srv->paths_num >= MAX_PATHS_NUM);
1447 }
1448 
1449 static void del_path_from_srv(struct rtrs_srv_sess *sess)
1450 {
1451 	struct rtrs_srv *srv = sess->srv;
1452 
1453 	if (WARN_ON(!srv))
1454 		return;
1455 
1456 	mutex_lock(&srv->paths_mutex);
1457 	list_del(&sess->s.entry);
1458 	WARN_ON(!srv->paths_num);
1459 	srv->paths_num--;
1460 	mutex_unlock(&srv->paths_mutex);
1461 }
1462 
1463 /* return true if addresses are the same, error other wise */
1464 static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b)
1465 {
1466 	switch (a->sa_family) {
1467 	case AF_IB:
1468 		return memcmp(&((struct sockaddr_ib *)a)->sib_addr,
1469 			      &((struct sockaddr_ib *)b)->sib_addr,
1470 			      sizeof(struct ib_addr)) &&
1471 			(b->sa_family == AF_IB);
1472 	case AF_INET:
1473 		return memcmp(&((struct sockaddr_in *)a)->sin_addr,
1474 			      &((struct sockaddr_in *)b)->sin_addr,
1475 			      sizeof(struct in_addr)) &&
1476 			(b->sa_family == AF_INET);
1477 	case AF_INET6:
1478 		return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr,
1479 			      &((struct sockaddr_in6 *)b)->sin6_addr,
1480 			      sizeof(struct in6_addr)) &&
1481 			(b->sa_family == AF_INET6);
1482 	default:
1483 		return -ENOENT;
1484 	}
1485 }
1486 
1487 static bool __is_path_w_addr_exists(struct rtrs_srv *srv,
1488 				    struct rdma_addr *addr)
1489 {
1490 	struct rtrs_srv_sess *sess;
1491 
1492 	list_for_each_entry(sess, &srv->paths_list, s.entry)
1493 		if (!sockaddr_cmp((struct sockaddr *)&sess->s.dst_addr,
1494 				  (struct sockaddr *)&addr->dst_addr) &&
1495 		    !sockaddr_cmp((struct sockaddr *)&sess->s.src_addr,
1496 				  (struct sockaddr *)&addr->src_addr))
1497 			return true;
1498 
1499 	return false;
1500 }
1501 
1502 static void free_sess(struct rtrs_srv_sess *sess)
1503 {
1504 	if (sess->kobj.state_in_sysfs) {
1505 		kobject_del(&sess->kobj);
1506 		kobject_put(&sess->kobj);
1507 	} else {
1508 		kfree(sess->stats);
1509 		kfree(sess);
1510 	}
1511 }
1512 
1513 static void rtrs_srv_close_work(struct work_struct *work)
1514 {
1515 	struct rtrs_srv_sess *sess;
1516 	struct rtrs_srv_con *con;
1517 	int i;
1518 
1519 	sess = container_of(work, typeof(*sess), close_work);
1520 
1521 	rtrs_srv_destroy_sess_files(sess);
1522 	rtrs_srv_stop_hb(sess);
1523 
1524 	for (i = 0; i < sess->s.con_num; i++) {
1525 		if (!sess->s.con[i])
1526 			continue;
1527 		con = to_srv_con(sess->s.con[i]);
1528 		rdma_disconnect(con->c.cm_id);
1529 		ib_drain_qp(con->c.qp);
1530 	}
1531 
1532 	/*
1533 	 * Degrade ref count to the usual model with a single shared
1534 	 * atomic_t counter
1535 	 */
1536 	percpu_ref_kill(&sess->ids_inflight_ref);
1537 
1538 	/* Wait for all completion */
1539 	wait_for_completion(&sess->complete_done);
1540 
1541 	/* Notify upper layer if we are the last path */
1542 	rtrs_srv_sess_down(sess);
1543 
1544 	unmap_cont_bufs(sess);
1545 	rtrs_srv_free_ops_ids(sess);
1546 
1547 	for (i = 0; i < sess->s.con_num; i++) {
1548 		if (!sess->s.con[i])
1549 			continue;
1550 		con = to_srv_con(sess->s.con[i]);
1551 		rtrs_cq_qp_destroy(&con->c);
1552 		rdma_destroy_id(con->c.cm_id);
1553 		kfree(con);
1554 	}
1555 	rtrs_ib_dev_put(sess->s.dev);
1556 
1557 	del_path_from_srv(sess);
1558 	put_srv(sess->srv);
1559 	sess->srv = NULL;
1560 	rtrs_srv_change_state(sess, RTRS_SRV_CLOSED);
1561 
1562 	kfree(sess->dma_addr);
1563 	kfree(sess->s.con);
1564 	free_sess(sess);
1565 }
1566 
1567 static int rtrs_rdma_do_accept(struct rtrs_srv_sess *sess,
1568 			       struct rdma_cm_id *cm_id)
1569 {
1570 	struct rtrs_srv *srv = sess->srv;
1571 	struct rtrs_msg_conn_rsp msg;
1572 	struct rdma_conn_param param;
1573 	int err;
1574 
1575 	param = (struct rdma_conn_param) {
1576 		.rnr_retry_count = 7,
1577 		.private_data = &msg,
1578 		.private_data_len = sizeof(msg),
1579 	};
1580 
1581 	msg = (struct rtrs_msg_conn_rsp) {
1582 		.magic = cpu_to_le16(RTRS_MAGIC),
1583 		.version = cpu_to_le16(RTRS_PROTO_VER),
1584 		.queue_depth = cpu_to_le16(srv->queue_depth),
1585 		.max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE),
1586 		.max_hdr_size = cpu_to_le32(MAX_HDR_SIZE),
1587 	};
1588 
1589 	if (always_invalidate)
1590 		msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F);
1591 
1592 	err = rdma_accept(cm_id, &param);
1593 	if (err)
1594 		pr_err("rdma_accept(), err: %d\n", err);
1595 
1596 	return err;
1597 }
1598 
1599 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno)
1600 {
1601 	struct rtrs_msg_conn_rsp msg;
1602 	int err;
1603 
1604 	msg = (struct rtrs_msg_conn_rsp) {
1605 		.magic = cpu_to_le16(RTRS_MAGIC),
1606 		.version = cpu_to_le16(RTRS_PROTO_VER),
1607 		.errno = cpu_to_le16(errno),
1608 	};
1609 
1610 	err = rdma_reject(cm_id, &msg, sizeof(msg), IB_CM_REJ_CONSUMER_DEFINED);
1611 	if (err)
1612 		pr_err("rdma_reject(), err: %d\n", err);
1613 
1614 	/* Bounce errno back */
1615 	return errno;
1616 }
1617 
1618 static struct rtrs_srv_sess *
1619 __find_sess(struct rtrs_srv *srv, const uuid_t *sess_uuid)
1620 {
1621 	struct rtrs_srv_sess *sess;
1622 
1623 	list_for_each_entry(sess, &srv->paths_list, s.entry) {
1624 		if (uuid_equal(&sess->s.uuid, sess_uuid))
1625 			return sess;
1626 	}
1627 
1628 	return NULL;
1629 }
1630 
1631 static int create_con(struct rtrs_srv_sess *sess,
1632 		      struct rdma_cm_id *cm_id,
1633 		      unsigned int cid)
1634 {
1635 	struct rtrs_srv *srv = sess->srv;
1636 	struct rtrs_sess *s = &sess->s;
1637 	struct rtrs_srv_con *con;
1638 
1639 	u32 cq_num, max_send_wr, max_recv_wr, wr_limit;
1640 	int err, cq_vector;
1641 
1642 	con = kzalloc(sizeof(*con), GFP_KERNEL);
1643 	if (!con) {
1644 		err = -ENOMEM;
1645 		goto err;
1646 	}
1647 
1648 	spin_lock_init(&con->rsp_wr_wait_lock);
1649 	INIT_LIST_HEAD(&con->rsp_wr_wait_list);
1650 	con->c.cm_id = cm_id;
1651 	con->c.sess = &sess->s;
1652 	con->c.cid = cid;
1653 	atomic_set(&con->c.wr_cnt, 1);
1654 	wr_limit = sess->s.dev->ib_dev->attrs.max_qp_wr;
1655 
1656 	if (con->c.cid == 0) {
1657 		/*
1658 		 * All receive and all send (each requiring invalidate)
1659 		 * + 2 for drain and heartbeat
1660 		 */
1661 		max_send_wr = min_t(int, wr_limit,
1662 				    SERVICE_CON_QUEUE_DEPTH * 2 + 2);
1663 		max_recv_wr = max_send_wr;
1664 		s->signal_interval = min_not_zero(srv->queue_depth,
1665 						  (size_t)SERVICE_CON_QUEUE_DEPTH);
1666 	} else {
1667 		/* when always_invlaidate enalbed, we need linv+rinv+mr+imm */
1668 		if (always_invalidate)
1669 			max_send_wr =
1670 				min_t(int, wr_limit,
1671 				      srv->queue_depth * (1 + 4) + 1);
1672 		else
1673 			max_send_wr =
1674 				min_t(int, wr_limit,
1675 				      srv->queue_depth * (1 + 2) + 1);
1676 
1677 		max_recv_wr = srv->queue_depth + 1;
1678 		/*
1679 		 * If we have all receive requests posted and
1680 		 * all write requests posted and each read request
1681 		 * requires an invalidate request + drain
1682 		 * and qp gets into error state.
1683 		 */
1684 	}
1685 	cq_num = max_send_wr + max_recv_wr;
1686 	atomic_set(&con->c.sq_wr_avail, max_send_wr);
1687 	cq_vector = rtrs_srv_get_next_cq_vector(sess);
1688 
1689 	/* TODO: SOFTIRQ can be faster, but be careful with softirq context */
1690 	err = rtrs_cq_qp_create(&sess->s, &con->c, 1, cq_vector, cq_num,
1691 				 max_send_wr, max_recv_wr,
1692 				 IB_POLL_WORKQUEUE);
1693 	if (err) {
1694 		rtrs_err(s, "rtrs_cq_qp_create(), err: %d\n", err);
1695 		goto free_con;
1696 	}
1697 	if (con->c.cid == 0) {
1698 		err = post_recv_info_req(con);
1699 		if (err)
1700 			goto free_cqqp;
1701 	}
1702 	WARN_ON(sess->s.con[cid]);
1703 	sess->s.con[cid] = &con->c;
1704 
1705 	/*
1706 	 * Change context from server to current connection.  The other
1707 	 * way is to use cm_id->qp->qp_context, which does not work on OFED.
1708 	 */
1709 	cm_id->context = &con->c;
1710 
1711 	return 0;
1712 
1713 free_cqqp:
1714 	rtrs_cq_qp_destroy(&con->c);
1715 free_con:
1716 	kfree(con);
1717 
1718 err:
1719 	return err;
1720 }
1721 
1722 static struct rtrs_srv_sess *__alloc_sess(struct rtrs_srv *srv,
1723 					   struct rdma_cm_id *cm_id,
1724 					   unsigned int con_num,
1725 					   unsigned int recon_cnt,
1726 					   const uuid_t *uuid)
1727 {
1728 	struct rtrs_srv_sess *sess;
1729 	int err = -ENOMEM;
1730 	char str[NAME_MAX];
1731 	struct rtrs_addr path;
1732 
1733 	if (srv->paths_num >= MAX_PATHS_NUM) {
1734 		err = -ECONNRESET;
1735 		goto err;
1736 	}
1737 	if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) {
1738 		err = -EEXIST;
1739 		pr_err("Path with same addr exists\n");
1740 		goto err;
1741 	}
1742 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
1743 	if (!sess)
1744 		goto err;
1745 
1746 	sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
1747 	if (!sess->stats)
1748 		goto err_free_sess;
1749 
1750 	sess->stats->sess = sess;
1751 
1752 	sess->dma_addr = kcalloc(srv->queue_depth, sizeof(*sess->dma_addr),
1753 				 GFP_KERNEL);
1754 	if (!sess->dma_addr)
1755 		goto err_free_stats;
1756 
1757 	sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
1758 	if (!sess->s.con)
1759 		goto err_free_dma_addr;
1760 
1761 	sess->state = RTRS_SRV_CONNECTING;
1762 	sess->srv = srv;
1763 	sess->cur_cq_vector = -1;
1764 	sess->s.dst_addr = cm_id->route.addr.dst_addr;
1765 	sess->s.src_addr = cm_id->route.addr.src_addr;
1766 
1767 	/* temporary until receiving session-name from client */
1768 	path.src = &sess->s.src_addr;
1769 	path.dst = &sess->s.dst_addr;
1770 	rtrs_addr_to_str(&path, str, sizeof(str));
1771 	strscpy(sess->s.sessname, str, sizeof(sess->s.sessname));
1772 
1773 	sess->s.con_num = con_num;
1774 	sess->s.irq_con_num = con_num;
1775 	sess->s.recon_cnt = recon_cnt;
1776 	uuid_copy(&sess->s.uuid, uuid);
1777 	spin_lock_init(&sess->state_lock);
1778 	INIT_WORK(&sess->close_work, rtrs_srv_close_work);
1779 	rtrs_srv_init_hb(sess);
1780 
1781 	sess->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd);
1782 	if (!sess->s.dev) {
1783 		err = -ENOMEM;
1784 		goto err_free_con;
1785 	}
1786 	err = map_cont_bufs(sess);
1787 	if (err)
1788 		goto err_put_dev;
1789 
1790 	err = rtrs_srv_alloc_ops_ids(sess);
1791 	if (err)
1792 		goto err_unmap_bufs;
1793 
1794 	__add_path_to_srv(srv, sess);
1795 
1796 	return sess;
1797 
1798 err_unmap_bufs:
1799 	unmap_cont_bufs(sess);
1800 err_put_dev:
1801 	rtrs_ib_dev_put(sess->s.dev);
1802 err_free_con:
1803 	kfree(sess->s.con);
1804 err_free_dma_addr:
1805 	kfree(sess->dma_addr);
1806 err_free_stats:
1807 	kfree(sess->stats);
1808 err_free_sess:
1809 	kfree(sess);
1810 err:
1811 	return ERR_PTR(err);
1812 }
1813 
1814 static int rtrs_rdma_connect(struct rdma_cm_id *cm_id,
1815 			      const struct rtrs_msg_conn_req *msg,
1816 			      size_t len)
1817 {
1818 	struct rtrs_srv_ctx *ctx = cm_id->context;
1819 	struct rtrs_srv_sess *sess;
1820 	struct rtrs_srv *srv;
1821 
1822 	u16 version, con_num, cid;
1823 	u16 recon_cnt;
1824 	int err = -ECONNRESET;
1825 
1826 	if (len < sizeof(*msg)) {
1827 		pr_err("Invalid RTRS connection request\n");
1828 		goto reject_w_err;
1829 	}
1830 	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1831 		pr_err("Invalid RTRS magic\n");
1832 		goto reject_w_err;
1833 	}
1834 	version = le16_to_cpu(msg->version);
1835 	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1836 		pr_err("Unsupported major RTRS version: %d, expected %d\n",
1837 		       version >> 8, RTRS_PROTO_VER_MAJOR);
1838 		goto reject_w_err;
1839 	}
1840 	con_num = le16_to_cpu(msg->cid_num);
1841 	if (con_num > 4096) {
1842 		/* Sanity check */
1843 		pr_err("Too many connections requested: %d\n", con_num);
1844 		goto reject_w_err;
1845 	}
1846 	cid = le16_to_cpu(msg->cid);
1847 	if (cid >= con_num) {
1848 		/* Sanity check */
1849 		pr_err("Incorrect cid: %d >= %d\n", cid, con_num);
1850 		goto reject_w_err;
1851 	}
1852 	recon_cnt = le16_to_cpu(msg->recon_cnt);
1853 	srv = get_or_create_srv(ctx, &msg->paths_uuid, msg->first_conn);
1854 	if (IS_ERR(srv)) {
1855 		err = PTR_ERR(srv);
1856 		pr_err("get_or_create_srv(), error %d\n", err);
1857 		goto reject_w_err;
1858 	}
1859 	mutex_lock(&srv->paths_mutex);
1860 	sess = __find_sess(srv, &msg->sess_uuid);
1861 	if (sess) {
1862 		struct rtrs_sess *s = &sess->s;
1863 
1864 		/* Session already holds a reference */
1865 		put_srv(srv);
1866 
1867 		if (sess->state != RTRS_SRV_CONNECTING) {
1868 			rtrs_err(s, "Session in wrong state: %s\n",
1869 				  rtrs_srv_state_str(sess->state));
1870 			mutex_unlock(&srv->paths_mutex);
1871 			goto reject_w_err;
1872 		}
1873 		/*
1874 		 * Sanity checks
1875 		 */
1876 		if (con_num != s->con_num || cid >= s->con_num) {
1877 			rtrs_err(s, "Incorrect request: %d, %d\n",
1878 				  cid, con_num);
1879 			mutex_unlock(&srv->paths_mutex);
1880 			goto reject_w_err;
1881 		}
1882 		if (s->con[cid]) {
1883 			rtrs_err(s, "Connection already exists: %d\n",
1884 				  cid);
1885 			mutex_unlock(&srv->paths_mutex);
1886 			goto reject_w_err;
1887 		}
1888 	} else {
1889 		sess = __alloc_sess(srv, cm_id, con_num, recon_cnt,
1890 				    &msg->sess_uuid);
1891 		if (IS_ERR(sess)) {
1892 			mutex_unlock(&srv->paths_mutex);
1893 			put_srv(srv);
1894 			err = PTR_ERR(sess);
1895 			pr_err("RTRS server session allocation failed: %d\n", err);
1896 			goto reject_w_err;
1897 		}
1898 	}
1899 	err = create_con(sess, cm_id, cid);
1900 	if (err) {
1901 		rtrs_err((&sess->s), "create_con(), error %d\n", err);
1902 		rtrs_rdma_do_reject(cm_id, err);
1903 		/*
1904 		 * Since session has other connections we follow normal way
1905 		 * through workqueue, but still return an error to tell cma.c
1906 		 * to call rdma_destroy_id() for current connection.
1907 		 */
1908 		goto close_and_return_err;
1909 	}
1910 	err = rtrs_rdma_do_accept(sess, cm_id);
1911 	if (err) {
1912 		rtrs_err((&sess->s), "rtrs_rdma_do_accept(), error %d\n", err);
1913 		rtrs_rdma_do_reject(cm_id, err);
1914 		/*
1915 		 * Since current connection was successfully added to the
1916 		 * session we follow normal way through workqueue to close the
1917 		 * session, thus return 0 to tell cma.c we call
1918 		 * rdma_destroy_id() ourselves.
1919 		 */
1920 		err = 0;
1921 		goto close_and_return_err;
1922 	}
1923 	mutex_unlock(&srv->paths_mutex);
1924 
1925 	return 0;
1926 
1927 reject_w_err:
1928 	return rtrs_rdma_do_reject(cm_id, err);
1929 
1930 close_and_return_err:
1931 	mutex_unlock(&srv->paths_mutex);
1932 	close_sess(sess);
1933 
1934 	return err;
1935 }
1936 
1937 static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id,
1938 				     struct rdma_cm_event *ev)
1939 {
1940 	struct rtrs_srv_sess *sess = NULL;
1941 	struct rtrs_sess *s = NULL;
1942 
1943 	if (ev->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
1944 		struct rtrs_con *c = cm_id->context;
1945 
1946 		s = c->sess;
1947 		sess = to_srv_sess(s);
1948 	}
1949 
1950 	switch (ev->event) {
1951 	case RDMA_CM_EVENT_CONNECT_REQUEST:
1952 		/*
1953 		 * In case of error cma.c will destroy cm_id,
1954 		 * see cma_process_remove()
1955 		 */
1956 		return rtrs_rdma_connect(cm_id, ev->param.conn.private_data,
1957 					  ev->param.conn.private_data_len);
1958 	case RDMA_CM_EVENT_ESTABLISHED:
1959 		/* Nothing here */
1960 		break;
1961 	case RDMA_CM_EVENT_REJECTED:
1962 	case RDMA_CM_EVENT_CONNECT_ERROR:
1963 	case RDMA_CM_EVENT_UNREACHABLE:
1964 		rtrs_err(s, "CM error (CM event: %s, err: %d)\n",
1965 			  rdma_event_msg(ev->event), ev->status);
1966 		fallthrough;
1967 	case RDMA_CM_EVENT_DISCONNECTED:
1968 	case RDMA_CM_EVENT_ADDR_CHANGE:
1969 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1970 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1971 		close_sess(sess);
1972 		break;
1973 	default:
1974 		pr_err("Ignoring unexpected CM event %s, err %d\n",
1975 		       rdma_event_msg(ev->event), ev->status);
1976 		break;
1977 	}
1978 
1979 	return 0;
1980 }
1981 
1982 static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx,
1983 					    struct sockaddr *addr,
1984 					    enum rdma_ucm_port_space ps)
1985 {
1986 	struct rdma_cm_id *cm_id;
1987 	int ret;
1988 
1989 	cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler,
1990 			       ctx, ps, IB_QPT_RC);
1991 	if (IS_ERR(cm_id)) {
1992 		ret = PTR_ERR(cm_id);
1993 		pr_err("Creating id for RDMA connection failed, err: %d\n",
1994 		       ret);
1995 		goto err_out;
1996 	}
1997 	ret = rdma_bind_addr(cm_id, addr);
1998 	if (ret) {
1999 		pr_err("Binding RDMA address failed, err: %d\n", ret);
2000 		goto err_cm;
2001 	}
2002 	ret = rdma_listen(cm_id, 64);
2003 	if (ret) {
2004 		pr_err("Listening on RDMA connection failed, err: %d\n",
2005 		       ret);
2006 		goto err_cm;
2007 	}
2008 
2009 	return cm_id;
2010 
2011 err_cm:
2012 	rdma_destroy_id(cm_id);
2013 err_out:
2014 
2015 	return ERR_PTR(ret);
2016 }
2017 
2018 static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port)
2019 {
2020 	struct sockaddr_in6 sin = {
2021 		.sin6_family	= AF_INET6,
2022 		.sin6_addr	= IN6ADDR_ANY_INIT,
2023 		.sin6_port	= htons(port),
2024 	};
2025 	struct sockaddr_ib sib = {
2026 		.sib_family			= AF_IB,
2027 		.sib_sid	= cpu_to_be64(RDMA_IB_IP_PS_IB | port),
2028 		.sib_sid_mask	= cpu_to_be64(0xffffffffffffffffULL),
2029 		.sib_pkey	= cpu_to_be16(0xffff),
2030 	};
2031 	struct rdma_cm_id *cm_ip, *cm_ib;
2032 	int ret;
2033 
2034 	/*
2035 	 * We accept both IPoIB and IB connections, so we need to keep
2036 	 * two cm id's, one for each socket type and port space.
2037 	 * If the cm initialization of one of the id's fails, we abort
2038 	 * everything.
2039 	 */
2040 	cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP);
2041 	if (IS_ERR(cm_ip))
2042 		return PTR_ERR(cm_ip);
2043 
2044 	cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB);
2045 	if (IS_ERR(cm_ib)) {
2046 		ret = PTR_ERR(cm_ib);
2047 		goto free_cm_ip;
2048 	}
2049 
2050 	ctx->cm_id_ip = cm_ip;
2051 	ctx->cm_id_ib = cm_ib;
2052 
2053 	return 0;
2054 
2055 free_cm_ip:
2056 	rdma_destroy_id(cm_ip);
2057 
2058 	return ret;
2059 }
2060 
2061 static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops)
2062 {
2063 	struct rtrs_srv_ctx *ctx;
2064 
2065 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2066 	if (!ctx)
2067 		return NULL;
2068 
2069 	ctx->ops = *ops;
2070 	mutex_init(&ctx->srv_mutex);
2071 	INIT_LIST_HEAD(&ctx->srv_list);
2072 
2073 	return ctx;
2074 }
2075 
2076 static void free_srv_ctx(struct rtrs_srv_ctx *ctx)
2077 {
2078 	WARN_ON(!list_empty(&ctx->srv_list));
2079 	mutex_destroy(&ctx->srv_mutex);
2080 	kfree(ctx);
2081 }
2082 
2083 static int rtrs_srv_add_one(struct ib_device *device)
2084 {
2085 	struct rtrs_srv_ctx *ctx;
2086 	int ret = 0;
2087 
2088 	mutex_lock(&ib_ctx.ib_dev_mutex);
2089 	if (ib_ctx.ib_dev_count)
2090 		goto out;
2091 
2092 	/*
2093 	 * Since our CM IDs are NOT bound to any ib device we will create them
2094 	 * only once
2095 	 */
2096 	ctx = ib_ctx.srv_ctx;
2097 	ret = rtrs_srv_rdma_init(ctx, ib_ctx.port);
2098 	if (ret) {
2099 		/*
2100 		 * We errored out here.
2101 		 * According to the ib code, if we encounter an error here then the
2102 		 * error code is ignored, and no more calls to our ops are made.
2103 		 */
2104 		pr_err("Failed to initialize RDMA connection");
2105 		goto err_out;
2106 	}
2107 
2108 out:
2109 	/*
2110 	 * Keep a track on the number of ib devices added
2111 	 */
2112 	ib_ctx.ib_dev_count++;
2113 
2114 err_out:
2115 	mutex_unlock(&ib_ctx.ib_dev_mutex);
2116 	return ret;
2117 }
2118 
2119 static void rtrs_srv_remove_one(struct ib_device *device, void *client_data)
2120 {
2121 	struct rtrs_srv_ctx *ctx;
2122 
2123 	mutex_lock(&ib_ctx.ib_dev_mutex);
2124 	ib_ctx.ib_dev_count--;
2125 
2126 	if (ib_ctx.ib_dev_count)
2127 		goto out;
2128 
2129 	/*
2130 	 * Since our CM IDs are NOT bound to any ib device we will remove them
2131 	 * only once, when the last device is removed
2132 	 */
2133 	ctx = ib_ctx.srv_ctx;
2134 	rdma_destroy_id(ctx->cm_id_ip);
2135 	rdma_destroy_id(ctx->cm_id_ib);
2136 
2137 out:
2138 	mutex_unlock(&ib_ctx.ib_dev_mutex);
2139 }
2140 
2141 static struct ib_client rtrs_srv_client = {
2142 	.name	= "rtrs_server",
2143 	.add	= rtrs_srv_add_one,
2144 	.remove	= rtrs_srv_remove_one
2145 };
2146 
2147 /**
2148  * rtrs_srv_open() - open RTRS server context
2149  * @ops:		callback functions
2150  * @port:               port to listen on
2151  *
2152  * Creates server context with specified callbacks.
2153  *
2154  * Return a valid pointer on success otherwise PTR_ERR.
2155  */
2156 struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port)
2157 {
2158 	struct rtrs_srv_ctx *ctx;
2159 	int err;
2160 
2161 	ctx = alloc_srv_ctx(ops);
2162 	if (!ctx)
2163 		return ERR_PTR(-ENOMEM);
2164 
2165 	mutex_init(&ib_ctx.ib_dev_mutex);
2166 	ib_ctx.srv_ctx = ctx;
2167 	ib_ctx.port = port;
2168 
2169 	err = ib_register_client(&rtrs_srv_client);
2170 	if (err) {
2171 		free_srv_ctx(ctx);
2172 		return ERR_PTR(err);
2173 	}
2174 
2175 	return ctx;
2176 }
2177 EXPORT_SYMBOL(rtrs_srv_open);
2178 
2179 static void close_sessions(struct rtrs_srv *srv)
2180 {
2181 	struct rtrs_srv_sess *sess;
2182 
2183 	mutex_lock(&srv->paths_mutex);
2184 	list_for_each_entry(sess, &srv->paths_list, s.entry)
2185 		close_sess(sess);
2186 	mutex_unlock(&srv->paths_mutex);
2187 }
2188 
2189 static void close_ctx(struct rtrs_srv_ctx *ctx)
2190 {
2191 	struct rtrs_srv *srv;
2192 
2193 	mutex_lock(&ctx->srv_mutex);
2194 	list_for_each_entry(srv, &ctx->srv_list, ctx_list)
2195 		close_sessions(srv);
2196 	mutex_unlock(&ctx->srv_mutex);
2197 	flush_workqueue(rtrs_wq);
2198 }
2199 
2200 /**
2201  * rtrs_srv_close() - close RTRS server context
2202  * @ctx: pointer to server context
2203  *
2204  * Closes RTRS server context with all client sessions.
2205  */
2206 void rtrs_srv_close(struct rtrs_srv_ctx *ctx)
2207 {
2208 	ib_unregister_client(&rtrs_srv_client);
2209 	mutex_destroy(&ib_ctx.ib_dev_mutex);
2210 	close_ctx(ctx);
2211 	free_srv_ctx(ctx);
2212 }
2213 EXPORT_SYMBOL(rtrs_srv_close);
2214 
2215 static int check_module_params(void)
2216 {
2217 	if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) {
2218 		pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n",
2219 		       sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH);
2220 		return -EINVAL;
2221 	}
2222 	if (max_chunk_size < MIN_CHUNK_SIZE || !is_power_of_2(max_chunk_size)) {
2223 		pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n",
2224 		       max_chunk_size, MIN_CHUNK_SIZE);
2225 		return -EINVAL;
2226 	}
2227 
2228 	/*
2229 	 * Check if IB immediate data size is enough to hold the mem_id and the
2230 	 * offset inside the memory chunk
2231 	 */
2232 	if ((ilog2(sess_queue_depth - 1) + 1) +
2233 	    (ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) {
2234 		pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n",
2235 		       MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size);
2236 		return -EINVAL;
2237 	}
2238 
2239 	return 0;
2240 }
2241 
2242 static int __init rtrs_server_init(void)
2243 {
2244 	int err;
2245 
2246 	pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n",
2247 		KBUILD_MODNAME, RTRS_PROTO_VER_STRING,
2248 		max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE,
2249 		sess_queue_depth, always_invalidate);
2250 
2251 	rtrs_rdma_dev_pd_init(0, &dev_pd);
2252 
2253 	err = check_module_params();
2254 	if (err) {
2255 		pr_err("Failed to load module, invalid module parameters, err: %d\n",
2256 		       err);
2257 		return err;
2258 	}
2259 	chunk_pool = mempool_create_page_pool(sess_queue_depth * CHUNK_POOL_SZ,
2260 					      get_order(max_chunk_size));
2261 	if (!chunk_pool)
2262 		return -ENOMEM;
2263 	rtrs_dev_class = class_create(THIS_MODULE, "rtrs-server");
2264 	if (IS_ERR(rtrs_dev_class)) {
2265 		err = PTR_ERR(rtrs_dev_class);
2266 		goto out_chunk_pool;
2267 	}
2268 	rtrs_wq = alloc_workqueue("rtrs_server_wq", 0, 0);
2269 	if (!rtrs_wq) {
2270 		err = -ENOMEM;
2271 		goto out_dev_class;
2272 	}
2273 
2274 	return 0;
2275 
2276 out_dev_class:
2277 	class_destroy(rtrs_dev_class);
2278 out_chunk_pool:
2279 	mempool_destroy(chunk_pool);
2280 
2281 	return err;
2282 }
2283 
2284 static void __exit rtrs_server_exit(void)
2285 {
2286 	destroy_workqueue(rtrs_wq);
2287 	class_destroy(rtrs_dev_class);
2288 	mempool_destroy(chunk_pool);
2289 	rtrs_rdma_dev_pd_deinit(&dev_pd);
2290 }
2291 
2292 module_init(rtrs_server_init);
2293 module_exit(rtrs_server_exit);
2294