1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/mempool.h>
15 
16 #include "rtrs-srv.h"
17 #include "rtrs-log.h"
18 #include <rdma/ib_cm.h>
19 #include <rdma/ib_verbs.h>
20 
21 MODULE_DESCRIPTION("RDMA Transport Server");
22 MODULE_LICENSE("GPL");
23 
24 /* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */
25 #define DEFAULT_MAX_CHUNK_SIZE (128 << 10)
26 #define DEFAULT_SESS_QUEUE_DEPTH 512
27 #define MAX_HDR_SIZE PAGE_SIZE
28 
29 /* We guarantee to serve 10 paths at least */
30 #define CHUNK_POOL_SZ 10
31 
32 static struct rtrs_rdma_dev_pd dev_pd;
33 static mempool_t *chunk_pool;
34 struct class *rtrs_dev_class;
35 static struct rtrs_srv_ib_ctx ib_ctx;
36 
37 static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE;
38 static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH;
39 
40 static bool always_invalidate = true;
41 module_param(always_invalidate, bool, 0444);
42 MODULE_PARM_DESC(always_invalidate,
43 		 "Invalidate memory registration for contiguous memory regions before accessing.");
44 
45 module_param_named(max_chunk_size, max_chunk_size, int, 0444);
46 MODULE_PARM_DESC(max_chunk_size,
47 		 "Max size for each IO request, when change the unit is in byte (default: "
48 		 __stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)");
49 
50 module_param_named(sess_queue_depth, sess_queue_depth, int, 0444);
51 MODULE_PARM_DESC(sess_queue_depth,
52 		 "Number of buffers for pending I/O requests to allocate per session. Maximum: "
53 		 __stringify(MAX_SESS_QUEUE_DEPTH) " (default: "
54 		 __stringify(DEFAULT_SESS_QUEUE_DEPTH) ")");
55 
56 static cpumask_t cq_affinity_mask = { CPU_BITS_ALL };
57 
58 static struct workqueue_struct *rtrs_wq;
59 
60 static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c)
61 {
62 	return container_of(c, struct rtrs_srv_con, c);
63 }
64 
65 static inline struct rtrs_srv_sess *to_srv_sess(struct rtrs_sess *s)
66 {
67 	return container_of(s, struct rtrs_srv_sess, s);
68 }
69 
70 static bool __rtrs_srv_change_state(struct rtrs_srv_sess *sess,
71 				     enum rtrs_srv_state new_state)
72 {
73 	enum rtrs_srv_state old_state;
74 	bool changed = false;
75 
76 	lockdep_assert_held(&sess->state_lock);
77 	old_state = sess->state;
78 	switch (new_state) {
79 	case RTRS_SRV_CONNECTED:
80 		switch (old_state) {
81 		case RTRS_SRV_CONNECTING:
82 			changed = true;
83 			fallthrough;
84 		default:
85 			break;
86 		}
87 		break;
88 	case RTRS_SRV_CLOSING:
89 		switch (old_state) {
90 		case RTRS_SRV_CONNECTING:
91 		case RTRS_SRV_CONNECTED:
92 			changed = true;
93 			fallthrough;
94 		default:
95 			break;
96 		}
97 		break;
98 	case RTRS_SRV_CLOSED:
99 		switch (old_state) {
100 		case RTRS_SRV_CLOSING:
101 			changed = true;
102 			fallthrough;
103 		default:
104 			break;
105 		}
106 		break;
107 	default:
108 		break;
109 	}
110 	if (changed)
111 		sess->state = new_state;
112 
113 	return changed;
114 }
115 
116 static bool rtrs_srv_change_state(struct rtrs_srv_sess *sess,
117 				   enum rtrs_srv_state new_state)
118 {
119 	bool changed;
120 
121 	spin_lock_irq(&sess->state_lock);
122 	changed = __rtrs_srv_change_state(sess, new_state);
123 	spin_unlock_irq(&sess->state_lock);
124 
125 	return changed;
126 }
127 
128 static void free_id(struct rtrs_srv_op *id)
129 {
130 	if (!id)
131 		return;
132 	kfree(id);
133 }
134 
135 static void rtrs_srv_free_ops_ids(struct rtrs_srv_sess *sess)
136 {
137 	struct rtrs_srv *srv = sess->srv;
138 	int i;
139 
140 	WARN_ON(atomic_read(&sess->ids_inflight));
141 	if (sess->ops_ids) {
142 		for (i = 0; i < srv->queue_depth; i++)
143 			free_id(sess->ops_ids[i]);
144 		kfree(sess->ops_ids);
145 		sess->ops_ids = NULL;
146 	}
147 }
148 
149 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
150 
151 static struct ib_cqe io_comp_cqe = {
152 	.done = rtrs_srv_rdma_done
153 };
154 
155 static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_sess *sess)
156 {
157 	struct rtrs_srv *srv = sess->srv;
158 	struct rtrs_srv_op *id;
159 	int i;
160 
161 	sess->ops_ids = kcalloc(srv->queue_depth, sizeof(*sess->ops_ids),
162 				GFP_KERNEL);
163 	if (!sess->ops_ids)
164 		goto err;
165 
166 	for (i = 0; i < srv->queue_depth; ++i) {
167 		id = kzalloc(sizeof(*id), GFP_KERNEL);
168 		if (!id)
169 			goto err;
170 
171 		sess->ops_ids[i] = id;
172 	}
173 	init_waitqueue_head(&sess->ids_waitq);
174 	atomic_set(&sess->ids_inflight, 0);
175 
176 	return 0;
177 
178 err:
179 	rtrs_srv_free_ops_ids(sess);
180 	return -ENOMEM;
181 }
182 
183 static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_sess *sess)
184 {
185 	atomic_inc(&sess->ids_inflight);
186 }
187 
188 static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_sess *sess)
189 {
190 	if (atomic_dec_and_test(&sess->ids_inflight))
191 		wake_up(&sess->ids_waitq);
192 }
193 
194 static void rtrs_srv_wait_ops_ids(struct rtrs_srv_sess *sess)
195 {
196 	wait_event(sess->ids_waitq, !atomic_read(&sess->ids_inflight));
197 }
198 
199 
200 static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc)
201 {
202 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
203 	struct rtrs_sess *s = con->c.sess;
204 	struct rtrs_srv_sess *sess = to_srv_sess(s);
205 
206 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
207 		rtrs_err(s, "REG MR failed: %s\n",
208 			  ib_wc_status_msg(wc->status));
209 		close_sess(sess);
210 		return;
211 	}
212 }
213 
214 static struct ib_cqe local_reg_cqe = {
215 	.done = rtrs_srv_reg_mr_done
216 };
217 
218 static int rdma_write_sg(struct rtrs_srv_op *id)
219 {
220 	struct rtrs_sess *s = id->con->c.sess;
221 	struct rtrs_srv_sess *sess = to_srv_sess(s);
222 	dma_addr_t dma_addr = sess->dma_addr[id->msg_id];
223 	struct rtrs_srv_mr *srv_mr;
224 	struct rtrs_srv *srv = sess->srv;
225 	struct ib_send_wr inv_wr;
226 	struct ib_rdma_wr imm_wr;
227 	struct ib_rdma_wr *wr = NULL;
228 	enum ib_send_flags flags;
229 	size_t sg_cnt;
230 	int err, offset;
231 	bool need_inval;
232 	u32 rkey = 0;
233 	struct ib_reg_wr rwr;
234 	struct ib_sge *plist;
235 	struct ib_sge list;
236 
237 	sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt);
238 	need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F;
239 	if (unlikely(sg_cnt != 1))
240 		return -EINVAL;
241 
242 	offset = 0;
243 
244 	wr		= &id->tx_wr;
245 	plist		= &id->tx_sg;
246 	plist->addr	= dma_addr + offset;
247 	plist->length	= le32_to_cpu(id->rd_msg->desc[0].len);
248 
249 	/* WR will fail with length error
250 	 * if this is 0
251 	 */
252 	if (unlikely(plist->length == 0)) {
253 		rtrs_err(s, "Invalid RDMA-Write sg list length 0\n");
254 		return -EINVAL;
255 	}
256 
257 	plist->lkey = sess->s.dev->ib_pd->local_dma_lkey;
258 	offset += plist->length;
259 
260 	wr->wr.sg_list	= plist;
261 	wr->wr.num_sge	= 1;
262 	wr->remote_addr	= le64_to_cpu(id->rd_msg->desc[0].addr);
263 	wr->rkey	= le32_to_cpu(id->rd_msg->desc[0].key);
264 	if (rkey == 0)
265 		rkey = wr->rkey;
266 	else
267 		/* Only one key is actually used */
268 		WARN_ON_ONCE(rkey != wr->rkey);
269 
270 	wr->wr.opcode = IB_WR_RDMA_WRITE;
271 	wr->wr.wr_cqe   = &io_comp_cqe;
272 	wr->wr.ex.imm_data = 0;
273 	wr->wr.send_flags  = 0;
274 
275 	if (need_inval && always_invalidate) {
276 		wr->wr.next = &rwr.wr;
277 		rwr.wr.next = &inv_wr;
278 		inv_wr.next = &imm_wr.wr;
279 	} else if (always_invalidate) {
280 		wr->wr.next = &rwr.wr;
281 		rwr.wr.next = &imm_wr.wr;
282 	} else if (need_inval) {
283 		wr->wr.next = &inv_wr;
284 		inv_wr.next = &imm_wr.wr;
285 	} else {
286 		wr->wr.next = &imm_wr.wr;
287 	}
288 	/*
289 	 * From time to time we have to post signaled sends,
290 	 * or send queue will fill up and only QP reset can help.
291 	 */
292 	flags = (atomic_inc_return(&id->con->wr_cnt) % srv->queue_depth) ?
293 		0 : IB_SEND_SIGNALED;
294 
295 	if (need_inval) {
296 		inv_wr.sg_list = NULL;
297 		inv_wr.num_sge = 0;
298 		inv_wr.opcode = IB_WR_SEND_WITH_INV;
299 		inv_wr.wr_cqe   = &io_comp_cqe;
300 		inv_wr.send_flags = 0;
301 		inv_wr.ex.invalidate_rkey = rkey;
302 	}
303 
304 	imm_wr.wr.next = NULL;
305 	if (always_invalidate) {
306 		struct rtrs_msg_rkey_rsp *msg;
307 
308 		srv_mr = &sess->mrs[id->msg_id];
309 		rwr.wr.opcode = IB_WR_REG_MR;
310 		rwr.wr.wr_cqe = &local_reg_cqe;
311 		rwr.wr.num_sge = 0;
312 		rwr.mr = srv_mr->mr;
313 		rwr.wr.send_flags = 0;
314 		rwr.key = srv_mr->mr->rkey;
315 		rwr.access = (IB_ACCESS_LOCAL_WRITE |
316 			      IB_ACCESS_REMOTE_WRITE);
317 		msg = srv_mr->iu->buf;
318 		msg->buf_id = cpu_to_le16(id->msg_id);
319 		msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
320 		msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
321 
322 		list.addr   = srv_mr->iu->dma_addr;
323 		list.length = sizeof(*msg);
324 		list.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
325 		imm_wr.wr.sg_list = &list;
326 		imm_wr.wr.num_sge = 1;
327 		imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
328 		ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
329 					      srv_mr->iu->dma_addr,
330 					      srv_mr->iu->size, DMA_TO_DEVICE);
331 	} else {
332 		imm_wr.wr.sg_list = NULL;
333 		imm_wr.wr.num_sge = 0;
334 		imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
335 	}
336 	imm_wr.wr.send_flags = flags;
337 	imm_wr.wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id,
338 							     0, need_inval));
339 
340 	imm_wr.wr.wr_cqe   = &io_comp_cqe;
341 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, dma_addr,
342 				      offset, DMA_BIDIRECTIONAL);
343 
344 	err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL);
345 	if (unlikely(err))
346 		rtrs_err(s,
347 			  "Posting RDMA-Write-Request to QP failed, err: %d\n",
348 			  err);
349 
350 	return err;
351 }
352 
353 /**
354  * send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE
355  *                      requests or on successful WRITE request.
356  * @con:	the connection to send back result
357  * @id:		the id associated with the IO
358  * @errno:	the error number of the IO.
359  *
360  * Return 0 on success, errno otherwise.
361  */
362 static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id,
363 			    int errno)
364 {
365 	struct rtrs_sess *s = con->c.sess;
366 	struct rtrs_srv_sess *sess = to_srv_sess(s);
367 	struct ib_send_wr inv_wr, *wr = NULL;
368 	struct ib_rdma_wr imm_wr;
369 	struct ib_reg_wr rwr;
370 	struct rtrs_srv *srv = sess->srv;
371 	struct rtrs_srv_mr *srv_mr;
372 	bool need_inval = false;
373 	enum ib_send_flags flags;
374 	u32 imm;
375 	int err;
376 
377 	if (id->dir == READ) {
378 		struct rtrs_msg_rdma_read *rd_msg = id->rd_msg;
379 		size_t sg_cnt;
380 
381 		need_inval = le16_to_cpu(rd_msg->flags) &
382 				RTRS_MSG_NEED_INVAL_F;
383 		sg_cnt = le16_to_cpu(rd_msg->sg_cnt);
384 
385 		if (need_inval) {
386 			if (likely(sg_cnt)) {
387 				inv_wr.wr_cqe   = &io_comp_cqe;
388 				inv_wr.sg_list = NULL;
389 				inv_wr.num_sge = 0;
390 				inv_wr.opcode = IB_WR_SEND_WITH_INV;
391 				inv_wr.send_flags = 0;
392 				/* Only one key is actually used */
393 				inv_wr.ex.invalidate_rkey =
394 					le32_to_cpu(rd_msg->desc[0].key);
395 			} else {
396 				WARN_ON_ONCE(1);
397 				need_inval = false;
398 			}
399 		}
400 	}
401 
402 	if (need_inval && always_invalidate) {
403 		wr = &inv_wr;
404 		inv_wr.next = &rwr.wr;
405 		rwr.wr.next = &imm_wr.wr;
406 	} else if (always_invalidate) {
407 		wr = &rwr.wr;
408 		rwr.wr.next = &imm_wr.wr;
409 	} else if (need_inval) {
410 		wr = &inv_wr;
411 		inv_wr.next = &imm_wr.wr;
412 	} else {
413 		wr = &imm_wr.wr;
414 	}
415 	/*
416 	 * From time to time we have to post signalled sends,
417 	 * or send queue will fill up and only QP reset can help.
418 	 */
419 	flags = (atomic_inc_return(&con->wr_cnt) % srv->queue_depth) ?
420 		0 : IB_SEND_SIGNALED;
421 	imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval);
422 	imm_wr.wr.next = NULL;
423 	if (always_invalidate) {
424 		struct ib_sge list;
425 		struct rtrs_msg_rkey_rsp *msg;
426 
427 		srv_mr = &sess->mrs[id->msg_id];
428 		rwr.wr.next = &imm_wr.wr;
429 		rwr.wr.opcode = IB_WR_REG_MR;
430 		rwr.wr.wr_cqe = &local_reg_cqe;
431 		rwr.wr.num_sge = 0;
432 		rwr.wr.send_flags = 0;
433 		rwr.mr = srv_mr->mr;
434 		rwr.key = srv_mr->mr->rkey;
435 		rwr.access = (IB_ACCESS_LOCAL_WRITE |
436 			      IB_ACCESS_REMOTE_WRITE);
437 		msg = srv_mr->iu->buf;
438 		msg->buf_id = cpu_to_le16(id->msg_id);
439 		msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
440 		msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
441 
442 		list.addr   = srv_mr->iu->dma_addr;
443 		list.length = sizeof(*msg);
444 		list.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
445 		imm_wr.wr.sg_list = &list;
446 		imm_wr.wr.num_sge = 1;
447 		imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
448 		ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
449 					      srv_mr->iu->dma_addr,
450 					      srv_mr->iu->size, DMA_TO_DEVICE);
451 	} else {
452 		imm_wr.wr.sg_list = NULL;
453 		imm_wr.wr.num_sge = 0;
454 		imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
455 	}
456 	imm_wr.wr.send_flags = flags;
457 	imm_wr.wr.wr_cqe   = &io_comp_cqe;
458 
459 	imm_wr.wr.ex.imm_data = cpu_to_be32(imm);
460 
461 	err = ib_post_send(id->con->c.qp, wr, NULL);
462 	if (unlikely(err))
463 		rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %d\n",
464 			     err);
465 
466 	return err;
467 }
468 
469 void close_sess(struct rtrs_srv_sess *sess)
470 {
471 	if (rtrs_srv_change_state(sess, RTRS_SRV_CLOSING))
472 		queue_work(rtrs_wq, &sess->close_work);
473 	WARN_ON(sess->state != RTRS_SRV_CLOSING);
474 }
475 
476 static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state)
477 {
478 	switch (state) {
479 	case RTRS_SRV_CONNECTING:
480 		return "RTRS_SRV_CONNECTING";
481 	case RTRS_SRV_CONNECTED:
482 		return "RTRS_SRV_CONNECTED";
483 	case RTRS_SRV_CLOSING:
484 		return "RTRS_SRV_CLOSING";
485 	case RTRS_SRV_CLOSED:
486 		return "RTRS_SRV_CLOSED";
487 	default:
488 		return "UNKNOWN";
489 	}
490 }
491 
492 /**
493  * rtrs_srv_resp_rdma() - Finish an RDMA request
494  *
495  * @id:		Internal RTRS operation identifier
496  * @status:	Response Code sent to the other side for this operation.
497  *		0 = success, <=0 error
498  * Context: any
499  *
500  * Finish a RDMA operation. A message is sent to the client and the
501  * corresponding memory areas will be released.
502  */
503 bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status)
504 {
505 	struct rtrs_srv_sess *sess;
506 	struct rtrs_srv_con *con;
507 	struct rtrs_sess *s;
508 	int err;
509 
510 	if (WARN_ON(!id))
511 		return true;
512 
513 	con = id->con;
514 	s = con->c.sess;
515 	sess = to_srv_sess(s);
516 
517 	id->status = status;
518 
519 	if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
520 		rtrs_err_rl(s,
521 			    "Sending I/O response failed,  session %s is disconnected, sess state %s\n",
522 			    kobject_name(&sess->kobj),
523 			    rtrs_srv_state_str(sess->state));
524 		goto out;
525 	}
526 	if (always_invalidate) {
527 		struct rtrs_srv_mr *mr = &sess->mrs[id->msg_id];
528 
529 		ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
530 	}
531 	if (unlikely(atomic_sub_return(1,
532 				       &con->sq_wr_avail) < 0)) {
533 		rtrs_err(s, "IB send queue full: sess=%s cid=%d\n",
534 			 kobject_name(&sess->kobj),
535 			 con->c.cid);
536 		atomic_add(1, &con->sq_wr_avail);
537 		spin_lock(&con->rsp_wr_wait_lock);
538 		list_add_tail(&id->wait_list, &con->rsp_wr_wait_list);
539 		spin_unlock(&con->rsp_wr_wait_lock);
540 		return false;
541 	}
542 
543 	if (status || id->dir == WRITE || !id->rd_msg->sg_cnt)
544 		err = send_io_resp_imm(con, id, status);
545 	else
546 		err = rdma_write_sg(id);
547 
548 	if (unlikely(err)) {
549 		rtrs_err_rl(s, "IO response failed: %d: sess=%s\n", err,
550 			    kobject_name(&sess->kobj));
551 		close_sess(sess);
552 	}
553 out:
554 	rtrs_srv_put_ops_ids(sess);
555 	return true;
556 }
557 EXPORT_SYMBOL(rtrs_srv_resp_rdma);
558 
559 /**
560  * rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv.
561  * @srv:	Session pointer
562  * @priv:	The private pointer that is associated with the session.
563  */
564 void rtrs_srv_set_sess_priv(struct rtrs_srv *srv, void *priv)
565 {
566 	srv->priv = priv;
567 }
568 EXPORT_SYMBOL(rtrs_srv_set_sess_priv);
569 
570 static void unmap_cont_bufs(struct rtrs_srv_sess *sess)
571 {
572 	int i;
573 
574 	for (i = 0; i < sess->mrs_num; i++) {
575 		struct rtrs_srv_mr *srv_mr;
576 
577 		srv_mr = &sess->mrs[i];
578 		rtrs_iu_free(srv_mr->iu, sess->s.dev->ib_dev, 1);
579 		ib_dereg_mr(srv_mr->mr);
580 		ib_dma_unmap_sg(sess->s.dev->ib_dev, srv_mr->sgt.sgl,
581 				srv_mr->sgt.nents, DMA_BIDIRECTIONAL);
582 		sg_free_table(&srv_mr->sgt);
583 	}
584 	kfree(sess->mrs);
585 }
586 
587 static int map_cont_bufs(struct rtrs_srv_sess *sess)
588 {
589 	struct rtrs_srv *srv = sess->srv;
590 	struct rtrs_sess *ss = &sess->s;
591 	int i, mri, err, mrs_num;
592 	unsigned int chunk_bits;
593 	int chunks_per_mr = 1;
594 
595 	/*
596 	 * Here we map queue_depth chunks to MR.  Firstly we have to
597 	 * figure out how many chunks can we map per MR.
598 	 */
599 	if (always_invalidate) {
600 		/*
601 		 * in order to do invalidate for each chunks of memory, we needs
602 		 * more memory regions.
603 		 */
604 		mrs_num = srv->queue_depth;
605 	} else {
606 		chunks_per_mr =
607 			sess->s.dev->ib_dev->attrs.max_fast_reg_page_list_len;
608 		mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr);
609 		chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num);
610 	}
611 
612 	sess->mrs = kcalloc(mrs_num, sizeof(*sess->mrs), GFP_KERNEL);
613 	if (!sess->mrs)
614 		return -ENOMEM;
615 
616 	sess->mrs_num = mrs_num;
617 
618 	for (mri = 0; mri < mrs_num; mri++) {
619 		struct rtrs_srv_mr *srv_mr = &sess->mrs[mri];
620 		struct sg_table *sgt = &srv_mr->sgt;
621 		struct scatterlist *s;
622 		struct ib_mr *mr;
623 		int nr, chunks;
624 
625 		chunks = chunks_per_mr * mri;
626 		if (!always_invalidate)
627 			chunks_per_mr = min_t(int, chunks_per_mr,
628 					      srv->queue_depth - chunks);
629 
630 		err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL);
631 		if (err)
632 			goto err;
633 
634 		for_each_sg(sgt->sgl, s, chunks_per_mr, i)
635 			sg_set_page(s, srv->chunks[chunks + i],
636 				    max_chunk_size, 0);
637 
638 		nr = ib_dma_map_sg(sess->s.dev->ib_dev, sgt->sgl,
639 				   sgt->nents, DMA_BIDIRECTIONAL);
640 		if (nr < sgt->nents) {
641 			err = nr < 0 ? nr : -EINVAL;
642 			goto free_sg;
643 		}
644 		mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
645 				 sgt->nents);
646 		if (IS_ERR(mr)) {
647 			err = PTR_ERR(mr);
648 			goto unmap_sg;
649 		}
650 		nr = ib_map_mr_sg(mr, sgt->sgl, sgt->nents,
651 				  NULL, max_chunk_size);
652 		if (nr < 0 || nr < sgt->nents) {
653 			err = nr < 0 ? nr : -EINVAL;
654 			goto dereg_mr;
655 		}
656 
657 		if (always_invalidate) {
658 			srv_mr->iu = rtrs_iu_alloc(1,
659 					sizeof(struct rtrs_msg_rkey_rsp),
660 					GFP_KERNEL, sess->s.dev->ib_dev,
661 					DMA_TO_DEVICE, rtrs_srv_rdma_done);
662 			if (!srv_mr->iu) {
663 				err = -ENOMEM;
664 				rtrs_err(ss, "rtrs_iu_alloc(), err: %d\n", err);
665 				goto dereg_mr;
666 			}
667 		}
668 		/* Eventually dma addr for each chunk can be cached */
669 		for_each_sg(sgt->sgl, s, sgt->orig_nents, i)
670 			sess->dma_addr[chunks + i] = sg_dma_address(s);
671 
672 		ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey));
673 		srv_mr->mr = mr;
674 
675 		continue;
676 err:
677 		while (mri--) {
678 			srv_mr = &sess->mrs[mri];
679 			sgt = &srv_mr->sgt;
680 			mr = srv_mr->mr;
681 			rtrs_iu_free(srv_mr->iu, sess->s.dev->ib_dev, 1);
682 dereg_mr:
683 			ib_dereg_mr(mr);
684 unmap_sg:
685 			ib_dma_unmap_sg(sess->s.dev->ib_dev, sgt->sgl,
686 					sgt->nents, DMA_BIDIRECTIONAL);
687 free_sg:
688 			sg_free_table(sgt);
689 		}
690 		kfree(sess->mrs);
691 
692 		return err;
693 	}
694 
695 	chunk_bits = ilog2(srv->queue_depth - 1) + 1;
696 	sess->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits);
697 
698 	return 0;
699 }
700 
701 static void rtrs_srv_hb_err_handler(struct rtrs_con *c)
702 {
703 	close_sess(to_srv_sess(c->sess));
704 }
705 
706 static void rtrs_srv_init_hb(struct rtrs_srv_sess *sess)
707 {
708 	rtrs_init_hb(&sess->s, &io_comp_cqe,
709 		      RTRS_HB_INTERVAL_MS,
710 		      RTRS_HB_MISSED_MAX,
711 		      rtrs_srv_hb_err_handler,
712 		      rtrs_wq);
713 }
714 
715 static void rtrs_srv_start_hb(struct rtrs_srv_sess *sess)
716 {
717 	rtrs_start_hb(&sess->s);
718 }
719 
720 static void rtrs_srv_stop_hb(struct rtrs_srv_sess *sess)
721 {
722 	rtrs_stop_hb(&sess->s);
723 }
724 
725 static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
726 {
727 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
728 	struct rtrs_sess *s = con->c.sess;
729 	struct rtrs_srv_sess *sess = to_srv_sess(s);
730 	struct rtrs_iu *iu;
731 
732 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
733 	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
734 
735 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
736 		rtrs_err(s, "Sess info response send failed: %s\n",
737 			  ib_wc_status_msg(wc->status));
738 		close_sess(sess);
739 		return;
740 	}
741 	WARN_ON(wc->opcode != IB_WC_SEND);
742 }
743 
744 static void rtrs_srv_sess_up(struct rtrs_srv_sess *sess)
745 {
746 	struct rtrs_srv *srv = sess->srv;
747 	struct rtrs_srv_ctx *ctx = srv->ctx;
748 	int up;
749 
750 	mutex_lock(&srv->paths_ev_mutex);
751 	up = ++srv->paths_up;
752 	if (up == 1)
753 		ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL);
754 	mutex_unlock(&srv->paths_ev_mutex);
755 
756 	/* Mark session as established */
757 	sess->established = true;
758 }
759 
760 static void rtrs_srv_sess_down(struct rtrs_srv_sess *sess)
761 {
762 	struct rtrs_srv *srv = sess->srv;
763 	struct rtrs_srv_ctx *ctx = srv->ctx;
764 
765 	if (!sess->established)
766 		return;
767 
768 	sess->established = false;
769 	mutex_lock(&srv->paths_ev_mutex);
770 	WARN_ON(!srv->paths_up);
771 	if (--srv->paths_up == 0)
772 		ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv);
773 	mutex_unlock(&srv->paths_ev_mutex);
774 }
775 
776 static int post_recv_sess(struct rtrs_srv_sess *sess);
777 
778 static int process_info_req(struct rtrs_srv_con *con,
779 			    struct rtrs_msg_info_req *msg)
780 {
781 	struct rtrs_sess *s = con->c.sess;
782 	struct rtrs_srv_sess *sess = to_srv_sess(s);
783 	struct ib_send_wr *reg_wr = NULL;
784 	struct rtrs_msg_info_rsp *rsp;
785 	struct rtrs_iu *tx_iu;
786 	struct ib_reg_wr *rwr;
787 	int mri, err;
788 	size_t tx_sz;
789 
790 	err = post_recv_sess(sess);
791 	if (unlikely(err)) {
792 		rtrs_err(s, "post_recv_sess(), err: %d\n", err);
793 		return err;
794 	}
795 	rwr = kcalloc(sess->mrs_num, sizeof(*rwr), GFP_KERNEL);
796 	if (unlikely(!rwr))
797 		return -ENOMEM;
798 	strlcpy(sess->s.sessname, msg->sessname, sizeof(sess->s.sessname));
799 
800 	tx_sz  = sizeof(*rsp);
801 	tx_sz += sizeof(rsp->desc[0]) * sess->mrs_num;
802 	tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
803 			       DMA_TO_DEVICE, rtrs_srv_info_rsp_done);
804 	if (unlikely(!tx_iu)) {
805 		err = -ENOMEM;
806 		goto rwr_free;
807 	}
808 
809 	rsp = tx_iu->buf;
810 	rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP);
811 	rsp->sg_cnt = cpu_to_le16(sess->mrs_num);
812 
813 	for (mri = 0; mri < sess->mrs_num; mri++) {
814 		struct ib_mr *mr = sess->mrs[mri].mr;
815 
816 		rsp->desc[mri].addr = cpu_to_le64(mr->iova);
817 		rsp->desc[mri].key  = cpu_to_le32(mr->rkey);
818 		rsp->desc[mri].len  = cpu_to_le32(mr->length);
819 
820 		/*
821 		 * Fill in reg MR request and chain them *backwards*
822 		 */
823 		rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL;
824 		rwr[mri].wr.opcode = IB_WR_REG_MR;
825 		rwr[mri].wr.wr_cqe = &local_reg_cqe;
826 		rwr[mri].wr.num_sge = 0;
827 		rwr[mri].wr.send_flags = 0;
828 		rwr[mri].mr = mr;
829 		rwr[mri].key = mr->rkey;
830 		rwr[mri].access = (IB_ACCESS_LOCAL_WRITE |
831 				   IB_ACCESS_REMOTE_WRITE);
832 		reg_wr = &rwr[mri].wr;
833 	}
834 
835 	err = rtrs_srv_create_sess_files(sess);
836 	if (unlikely(err))
837 		goto iu_free;
838 	kobject_get(&sess->kobj);
839 	get_device(&sess->srv->dev);
840 	rtrs_srv_change_state(sess, RTRS_SRV_CONNECTED);
841 	rtrs_srv_start_hb(sess);
842 
843 	/*
844 	 * We do not account number of established connections at the current
845 	 * moment, we rely on the client, which should send info request when
846 	 * all connections are successfully established.  Thus, simply notify
847 	 * listener with a proper event if we are the first path.
848 	 */
849 	rtrs_srv_sess_up(sess);
850 
851 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
852 				      tx_iu->size, DMA_TO_DEVICE);
853 
854 	/* Send info response */
855 	err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr);
856 	if (unlikely(err)) {
857 		rtrs_err(s, "rtrs_iu_post_send(), err: %d\n", err);
858 iu_free:
859 		rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1);
860 	}
861 rwr_free:
862 	kfree(rwr);
863 
864 	return err;
865 }
866 
867 static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
868 {
869 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
870 	struct rtrs_sess *s = con->c.sess;
871 	struct rtrs_srv_sess *sess = to_srv_sess(s);
872 	struct rtrs_msg_info_req *msg;
873 	struct rtrs_iu *iu;
874 	int err;
875 
876 	WARN_ON(con->c.cid);
877 
878 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
879 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
880 		rtrs_err(s, "Sess info request receive failed: %s\n",
881 			  ib_wc_status_msg(wc->status));
882 		goto close;
883 	}
884 	WARN_ON(wc->opcode != IB_WC_RECV);
885 
886 	if (unlikely(wc->byte_len < sizeof(*msg))) {
887 		rtrs_err(s, "Sess info request is malformed: size %d\n",
888 			  wc->byte_len);
889 		goto close;
890 	}
891 	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
892 				   iu->size, DMA_FROM_DEVICE);
893 	msg = iu->buf;
894 	if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ)) {
895 		rtrs_err(s, "Sess info request is malformed: type %d\n",
896 			  le16_to_cpu(msg->type));
897 		goto close;
898 	}
899 	err = process_info_req(con, msg);
900 	if (unlikely(err))
901 		goto close;
902 
903 out:
904 	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
905 	return;
906 close:
907 	close_sess(sess);
908 	goto out;
909 }
910 
911 static int post_recv_info_req(struct rtrs_srv_con *con)
912 {
913 	struct rtrs_sess *s = con->c.sess;
914 	struct rtrs_srv_sess *sess = to_srv_sess(s);
915 	struct rtrs_iu *rx_iu;
916 	int err;
917 
918 	rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req),
919 			       GFP_KERNEL, sess->s.dev->ib_dev,
920 			       DMA_FROM_DEVICE, rtrs_srv_info_req_done);
921 	if (unlikely(!rx_iu))
922 		return -ENOMEM;
923 	/* Prepare for getting info response */
924 	err = rtrs_iu_post_recv(&con->c, rx_iu);
925 	if (unlikely(err)) {
926 		rtrs_err(s, "rtrs_iu_post_recv(), err: %d\n", err);
927 		rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1);
928 		return err;
929 	}
930 
931 	return 0;
932 }
933 
934 static int post_recv_io(struct rtrs_srv_con *con, size_t q_size)
935 {
936 	int i, err;
937 
938 	for (i = 0; i < q_size; i++) {
939 		err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
940 		if (unlikely(err))
941 			return err;
942 	}
943 
944 	return 0;
945 }
946 
947 static int post_recv_sess(struct rtrs_srv_sess *sess)
948 {
949 	struct rtrs_srv *srv = sess->srv;
950 	struct rtrs_sess *s = &sess->s;
951 	size_t q_size;
952 	int err, cid;
953 
954 	for (cid = 0; cid < sess->s.con_num; cid++) {
955 		if (cid == 0)
956 			q_size = SERVICE_CON_QUEUE_DEPTH;
957 		else
958 			q_size = srv->queue_depth;
959 
960 		err = post_recv_io(to_srv_con(sess->s.con[cid]), q_size);
961 		if (unlikely(err)) {
962 			rtrs_err(s, "post_recv_io(), err: %d\n", err);
963 			return err;
964 		}
965 	}
966 
967 	return 0;
968 }
969 
970 static void process_read(struct rtrs_srv_con *con,
971 			 struct rtrs_msg_rdma_read *msg,
972 			 u32 buf_id, u32 off)
973 {
974 	struct rtrs_sess *s = con->c.sess;
975 	struct rtrs_srv_sess *sess = to_srv_sess(s);
976 	struct rtrs_srv *srv = sess->srv;
977 	struct rtrs_srv_ctx *ctx = srv->ctx;
978 	struct rtrs_srv_op *id;
979 
980 	size_t usr_len, data_len;
981 	void *data;
982 	int ret;
983 
984 	if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
985 		rtrs_err_rl(s,
986 			     "Processing read request failed,  session is disconnected, sess state %s\n",
987 			     rtrs_srv_state_str(sess->state));
988 		return;
989 	}
990 	if (unlikely(msg->sg_cnt != 1 && msg->sg_cnt != 0)) {
991 		rtrs_err_rl(s,
992 			    "Processing read request failed, invalid message\n");
993 		return;
994 	}
995 	rtrs_srv_get_ops_ids(sess);
996 	rtrs_srv_update_rdma_stats(sess->stats, off, READ);
997 	id = sess->ops_ids[buf_id];
998 	id->con		= con;
999 	id->dir		= READ;
1000 	id->msg_id	= buf_id;
1001 	id->rd_msg	= msg;
1002 	usr_len = le16_to_cpu(msg->usr_len);
1003 	data_len = off - usr_len;
1004 	data = page_address(srv->chunks[buf_id]);
1005 	ret = ctx->ops.rdma_ev(srv->priv, id, READ, data, data_len,
1006 			   data + data_len, usr_len);
1007 
1008 	if (unlikely(ret)) {
1009 		rtrs_err_rl(s,
1010 			     "Processing read request failed, user module cb reported for msg_id %d, err: %d\n",
1011 			     buf_id, ret);
1012 		goto send_err_msg;
1013 	}
1014 
1015 	return;
1016 
1017 send_err_msg:
1018 	ret = send_io_resp_imm(con, id, ret);
1019 	if (ret < 0) {
1020 		rtrs_err_rl(s,
1021 			     "Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %d\n",
1022 			     buf_id, ret);
1023 		close_sess(sess);
1024 	}
1025 	rtrs_srv_put_ops_ids(sess);
1026 }
1027 
1028 static void process_write(struct rtrs_srv_con *con,
1029 			  struct rtrs_msg_rdma_write *req,
1030 			  u32 buf_id, u32 off)
1031 {
1032 	struct rtrs_sess *s = con->c.sess;
1033 	struct rtrs_srv_sess *sess = to_srv_sess(s);
1034 	struct rtrs_srv *srv = sess->srv;
1035 	struct rtrs_srv_ctx *ctx = srv->ctx;
1036 	struct rtrs_srv_op *id;
1037 
1038 	size_t data_len, usr_len;
1039 	void *data;
1040 	int ret;
1041 
1042 	if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
1043 		rtrs_err_rl(s,
1044 			     "Processing write request failed,  session is disconnected, sess state %s\n",
1045 			     rtrs_srv_state_str(sess->state));
1046 		return;
1047 	}
1048 	rtrs_srv_get_ops_ids(sess);
1049 	rtrs_srv_update_rdma_stats(sess->stats, off, WRITE);
1050 	id = sess->ops_ids[buf_id];
1051 	id->con    = con;
1052 	id->dir    = WRITE;
1053 	id->msg_id = buf_id;
1054 
1055 	usr_len = le16_to_cpu(req->usr_len);
1056 	data_len = off - usr_len;
1057 	data = page_address(srv->chunks[buf_id]);
1058 	ret = ctx->ops.rdma_ev(srv->priv, id, WRITE, data, data_len,
1059 			   data + data_len, usr_len);
1060 	if (unlikely(ret)) {
1061 		rtrs_err_rl(s,
1062 			     "Processing write request failed, user module callback reports err: %d\n",
1063 			     ret);
1064 		goto send_err_msg;
1065 	}
1066 
1067 	return;
1068 
1069 send_err_msg:
1070 	ret = send_io_resp_imm(con, id, ret);
1071 	if (ret < 0) {
1072 		rtrs_err_rl(s,
1073 			     "Processing write request failed, sending I/O response failed, msg_id %d, err: %d\n",
1074 			     buf_id, ret);
1075 		close_sess(sess);
1076 	}
1077 	rtrs_srv_put_ops_ids(sess);
1078 }
1079 
1080 static void process_io_req(struct rtrs_srv_con *con, void *msg,
1081 			   u32 id, u32 off)
1082 {
1083 	struct rtrs_sess *s = con->c.sess;
1084 	struct rtrs_srv_sess *sess = to_srv_sess(s);
1085 	struct rtrs_msg_rdma_hdr *hdr;
1086 	unsigned int type;
1087 
1088 	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, sess->dma_addr[id],
1089 				   max_chunk_size, DMA_BIDIRECTIONAL);
1090 	hdr = msg;
1091 	type = le16_to_cpu(hdr->type);
1092 
1093 	switch (type) {
1094 	case RTRS_MSG_WRITE:
1095 		process_write(con, msg, id, off);
1096 		break;
1097 	case RTRS_MSG_READ:
1098 		process_read(con, msg, id, off);
1099 		break;
1100 	default:
1101 		rtrs_err(s,
1102 			  "Processing I/O request failed, unknown message type received: 0x%02x\n",
1103 			  type);
1104 		goto err;
1105 	}
1106 
1107 	return;
1108 
1109 err:
1110 	close_sess(sess);
1111 }
1112 
1113 static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1114 {
1115 	struct rtrs_srv_mr *mr =
1116 		container_of(wc->wr_cqe, typeof(*mr), inv_cqe);
1117 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1118 	struct rtrs_sess *s = con->c.sess;
1119 	struct rtrs_srv_sess *sess = to_srv_sess(s);
1120 	struct rtrs_srv *srv = sess->srv;
1121 	u32 msg_id, off;
1122 	void *data;
1123 
1124 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1125 		rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n",
1126 			  ib_wc_status_msg(wc->status));
1127 		close_sess(sess);
1128 	}
1129 	msg_id = mr->msg_id;
1130 	off = mr->msg_off;
1131 	data = page_address(srv->chunks[msg_id]) + off;
1132 	process_io_req(con, data, msg_id, off);
1133 }
1134 
1135 static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con,
1136 			      struct rtrs_srv_mr *mr)
1137 {
1138 	struct ib_send_wr wr = {
1139 		.opcode		    = IB_WR_LOCAL_INV,
1140 		.wr_cqe		    = &mr->inv_cqe,
1141 		.send_flags	    = IB_SEND_SIGNALED,
1142 		.ex.invalidate_rkey = mr->mr->rkey,
1143 	};
1144 	mr->inv_cqe.done = rtrs_srv_inv_rkey_done;
1145 
1146 	return ib_post_send(con->c.qp, &wr, NULL);
1147 }
1148 
1149 static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con)
1150 {
1151 	spin_lock(&con->rsp_wr_wait_lock);
1152 	while (!list_empty(&con->rsp_wr_wait_list)) {
1153 		struct rtrs_srv_op *id;
1154 		int ret;
1155 
1156 		id = list_entry(con->rsp_wr_wait_list.next,
1157 				struct rtrs_srv_op, wait_list);
1158 		list_del(&id->wait_list);
1159 
1160 		spin_unlock(&con->rsp_wr_wait_lock);
1161 		ret = rtrs_srv_resp_rdma(id, id->status);
1162 		spin_lock(&con->rsp_wr_wait_lock);
1163 
1164 		if (!ret) {
1165 			list_add(&id->wait_list, &con->rsp_wr_wait_list);
1166 			break;
1167 		}
1168 	}
1169 	spin_unlock(&con->rsp_wr_wait_lock);
1170 }
1171 
1172 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
1173 {
1174 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1175 	struct rtrs_sess *s = con->c.sess;
1176 	struct rtrs_srv_sess *sess = to_srv_sess(s);
1177 	struct rtrs_srv *srv = sess->srv;
1178 	u32 imm_type, imm_payload;
1179 	int err;
1180 
1181 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1182 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
1183 			rtrs_err(s,
1184 				  "%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n",
1185 				  ib_wc_status_msg(wc->status), wc->wr_cqe,
1186 				  wc->opcode, wc->vendor_err, wc->byte_len);
1187 			close_sess(sess);
1188 		}
1189 		return;
1190 	}
1191 
1192 	switch (wc->opcode) {
1193 	case IB_WC_RECV_RDMA_WITH_IMM:
1194 		/*
1195 		 * post_recv() RDMA write completions of IO reqs (read/write)
1196 		 * and hb
1197 		 */
1198 		if (WARN_ON(wc->wr_cqe != &io_comp_cqe))
1199 			return;
1200 		err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
1201 		if (unlikely(err)) {
1202 			rtrs_err(s, "rtrs_post_recv(), err: %d\n", err);
1203 			close_sess(sess);
1204 			break;
1205 		}
1206 		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
1207 			       &imm_type, &imm_payload);
1208 		if (likely(imm_type == RTRS_IO_REQ_IMM)) {
1209 			u32 msg_id, off;
1210 			void *data;
1211 
1212 			msg_id = imm_payload >> sess->mem_bits;
1213 			off = imm_payload & ((1 << sess->mem_bits) - 1);
1214 			if (unlikely(msg_id >= srv->queue_depth ||
1215 				     off >= max_chunk_size)) {
1216 				rtrs_err(s, "Wrong msg_id %u, off %u\n",
1217 					  msg_id, off);
1218 				close_sess(sess);
1219 				return;
1220 			}
1221 			if (always_invalidate) {
1222 				struct rtrs_srv_mr *mr = &sess->mrs[msg_id];
1223 
1224 				mr->msg_off = off;
1225 				mr->msg_id = msg_id;
1226 				err = rtrs_srv_inv_rkey(con, mr);
1227 				if (unlikely(err)) {
1228 					rtrs_err(s, "rtrs_post_recv(), err: %d\n",
1229 						  err);
1230 					close_sess(sess);
1231 					break;
1232 				}
1233 			} else {
1234 				data = page_address(srv->chunks[msg_id]) + off;
1235 				process_io_req(con, data, msg_id, off);
1236 			}
1237 		} else if (imm_type == RTRS_HB_MSG_IMM) {
1238 			WARN_ON(con->c.cid);
1239 			rtrs_send_hb_ack(&sess->s);
1240 		} else if (imm_type == RTRS_HB_ACK_IMM) {
1241 			WARN_ON(con->c.cid);
1242 			sess->s.hb_missed_cnt = 0;
1243 		} else {
1244 			rtrs_wrn(s, "Unknown IMM type %u\n", imm_type);
1245 		}
1246 		break;
1247 	case IB_WC_RDMA_WRITE:
1248 	case IB_WC_SEND:
1249 		/*
1250 		 * post_send() RDMA write completions of IO reqs (read/write)
1251 		 */
1252 		atomic_add(srv->queue_depth, &con->sq_wr_avail);
1253 
1254 		if (unlikely(!list_empty_careful(&con->rsp_wr_wait_list)))
1255 			rtrs_rdma_process_wr_wait_list(con);
1256 
1257 		break;
1258 	default:
1259 		rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode);
1260 		return;
1261 	}
1262 }
1263 
1264 /**
1265  * rtrs_srv_get_sess_name() - Get rtrs_srv peer hostname.
1266  * @srv:	Session
1267  * @sessname:	Sessname buffer
1268  * @len:	Length of sessname buffer
1269  */
1270 int rtrs_srv_get_sess_name(struct rtrs_srv *srv, char *sessname, size_t len)
1271 {
1272 	struct rtrs_srv_sess *sess;
1273 	int err = -ENOTCONN;
1274 
1275 	mutex_lock(&srv->paths_mutex);
1276 	list_for_each_entry(sess, &srv->paths_list, s.entry) {
1277 		if (sess->state != RTRS_SRV_CONNECTED)
1278 			continue;
1279 		strlcpy(sessname, sess->s.sessname,
1280 		       min_t(size_t, sizeof(sess->s.sessname), len));
1281 		err = 0;
1282 		break;
1283 	}
1284 	mutex_unlock(&srv->paths_mutex);
1285 
1286 	return err;
1287 }
1288 EXPORT_SYMBOL(rtrs_srv_get_sess_name);
1289 
1290 /**
1291  * rtrs_srv_get_sess_qdepth() - Get rtrs_srv qdepth.
1292  * @srv:	Session
1293  */
1294 int rtrs_srv_get_queue_depth(struct rtrs_srv *srv)
1295 {
1296 	return srv->queue_depth;
1297 }
1298 EXPORT_SYMBOL(rtrs_srv_get_queue_depth);
1299 
1300 static int find_next_bit_ring(struct rtrs_srv_sess *sess)
1301 {
1302 	struct ib_device *ib_dev = sess->s.dev->ib_dev;
1303 	int v;
1304 
1305 	v = cpumask_next(sess->cur_cq_vector, &cq_affinity_mask);
1306 	if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors)
1307 		v = cpumask_first(&cq_affinity_mask);
1308 	return v;
1309 }
1310 
1311 static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_sess *sess)
1312 {
1313 	sess->cur_cq_vector = find_next_bit_ring(sess);
1314 
1315 	return sess->cur_cq_vector;
1316 }
1317 
1318 static void rtrs_srv_dev_release(struct device *dev)
1319 {
1320 	struct rtrs_srv *srv = container_of(dev, struct rtrs_srv, dev);
1321 
1322 	kfree(srv);
1323 }
1324 
1325 static void free_srv(struct rtrs_srv *srv)
1326 {
1327 	int i;
1328 
1329 	WARN_ON(refcount_read(&srv->refcount));
1330 	for (i = 0; i < srv->queue_depth; i++)
1331 		mempool_free(srv->chunks[i], chunk_pool);
1332 	kfree(srv->chunks);
1333 	mutex_destroy(&srv->paths_mutex);
1334 	mutex_destroy(&srv->paths_ev_mutex);
1335 	/* last put to release the srv structure */
1336 	put_device(&srv->dev);
1337 }
1338 
1339 static struct rtrs_srv *get_or_create_srv(struct rtrs_srv_ctx *ctx,
1340 					  const uuid_t *paths_uuid,
1341 					  bool first_conn)
1342 {
1343 	struct rtrs_srv *srv;
1344 	int i;
1345 
1346 	mutex_lock(&ctx->srv_mutex);
1347 	list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
1348 		if (uuid_equal(&srv->paths_uuid, paths_uuid) &&
1349 		    refcount_inc_not_zero(&srv->refcount)) {
1350 			mutex_unlock(&ctx->srv_mutex);
1351 			return srv;
1352 		}
1353 	}
1354 	mutex_unlock(&ctx->srv_mutex);
1355 	/*
1356 	 * If this request is not the first connection request from the
1357 	 * client for this session then fail and return error.
1358 	 */
1359 	if (!first_conn) {
1360 		pr_err_ratelimited("Error: Not the first connection request for this session\n");
1361 		return ERR_PTR(-ENXIO);
1362 	}
1363 
1364 	/* need to allocate a new srv */
1365 	srv = kzalloc(sizeof(*srv), GFP_KERNEL);
1366 	if  (!srv)
1367 		return ERR_PTR(-ENOMEM);
1368 
1369 	INIT_LIST_HEAD(&srv->paths_list);
1370 	mutex_init(&srv->paths_mutex);
1371 	mutex_init(&srv->paths_ev_mutex);
1372 	uuid_copy(&srv->paths_uuid, paths_uuid);
1373 	srv->queue_depth = sess_queue_depth;
1374 	srv->ctx = ctx;
1375 	device_initialize(&srv->dev);
1376 	srv->dev.release = rtrs_srv_dev_release;
1377 
1378 	srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks),
1379 			      GFP_KERNEL);
1380 	if (!srv->chunks)
1381 		goto err_free_srv;
1382 
1383 	for (i = 0; i < srv->queue_depth; i++) {
1384 		srv->chunks[i] = mempool_alloc(chunk_pool, GFP_KERNEL);
1385 		if (!srv->chunks[i])
1386 			goto err_free_chunks;
1387 	}
1388 	refcount_set(&srv->refcount, 1);
1389 	mutex_lock(&ctx->srv_mutex);
1390 	list_add(&srv->ctx_list, &ctx->srv_list);
1391 	mutex_unlock(&ctx->srv_mutex);
1392 
1393 	return srv;
1394 
1395 err_free_chunks:
1396 	while (i--)
1397 		mempool_free(srv->chunks[i], chunk_pool);
1398 	kfree(srv->chunks);
1399 
1400 err_free_srv:
1401 	kfree(srv);
1402 	return ERR_PTR(-ENOMEM);
1403 }
1404 
1405 static void put_srv(struct rtrs_srv *srv)
1406 {
1407 	if (refcount_dec_and_test(&srv->refcount)) {
1408 		struct rtrs_srv_ctx *ctx = srv->ctx;
1409 
1410 		WARN_ON(srv->dev.kobj.state_in_sysfs);
1411 
1412 		mutex_lock(&ctx->srv_mutex);
1413 		list_del(&srv->ctx_list);
1414 		mutex_unlock(&ctx->srv_mutex);
1415 		free_srv(srv);
1416 	}
1417 }
1418 
1419 static void __add_path_to_srv(struct rtrs_srv *srv,
1420 			      struct rtrs_srv_sess *sess)
1421 {
1422 	list_add_tail(&sess->s.entry, &srv->paths_list);
1423 	srv->paths_num++;
1424 	WARN_ON(srv->paths_num >= MAX_PATHS_NUM);
1425 }
1426 
1427 static void del_path_from_srv(struct rtrs_srv_sess *sess)
1428 {
1429 	struct rtrs_srv *srv = sess->srv;
1430 
1431 	if (WARN_ON(!srv))
1432 		return;
1433 
1434 	mutex_lock(&srv->paths_mutex);
1435 	list_del(&sess->s.entry);
1436 	WARN_ON(!srv->paths_num);
1437 	srv->paths_num--;
1438 	mutex_unlock(&srv->paths_mutex);
1439 }
1440 
1441 /* return true if addresses are the same, error other wise */
1442 static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b)
1443 {
1444 	switch (a->sa_family) {
1445 	case AF_IB:
1446 		return memcmp(&((struct sockaddr_ib *)a)->sib_addr,
1447 			      &((struct sockaddr_ib *)b)->sib_addr,
1448 			      sizeof(struct ib_addr)) &&
1449 			(b->sa_family == AF_IB);
1450 	case AF_INET:
1451 		return memcmp(&((struct sockaddr_in *)a)->sin_addr,
1452 			      &((struct sockaddr_in *)b)->sin_addr,
1453 			      sizeof(struct in_addr)) &&
1454 			(b->sa_family == AF_INET);
1455 	case AF_INET6:
1456 		return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr,
1457 			      &((struct sockaddr_in6 *)b)->sin6_addr,
1458 			      sizeof(struct in6_addr)) &&
1459 			(b->sa_family == AF_INET6);
1460 	default:
1461 		return -ENOENT;
1462 	}
1463 }
1464 
1465 static bool __is_path_w_addr_exists(struct rtrs_srv *srv,
1466 				    struct rdma_addr *addr)
1467 {
1468 	struct rtrs_srv_sess *sess;
1469 
1470 	list_for_each_entry(sess, &srv->paths_list, s.entry)
1471 		if (!sockaddr_cmp((struct sockaddr *)&sess->s.dst_addr,
1472 				  (struct sockaddr *)&addr->dst_addr) &&
1473 		    !sockaddr_cmp((struct sockaddr *)&sess->s.src_addr,
1474 				  (struct sockaddr *)&addr->src_addr))
1475 			return true;
1476 
1477 	return false;
1478 }
1479 
1480 static void free_sess(struct rtrs_srv_sess *sess)
1481 {
1482 	if (sess->kobj.state_in_sysfs) {
1483 		kobject_del(&sess->kobj);
1484 		kobject_put(&sess->kobj);
1485 	} else {
1486 		kfree(sess);
1487 	}
1488 }
1489 
1490 static void rtrs_srv_close_work(struct work_struct *work)
1491 {
1492 	struct rtrs_srv_sess *sess;
1493 	struct rtrs_srv_con *con;
1494 	int i;
1495 
1496 	sess = container_of(work, typeof(*sess), close_work);
1497 
1498 	rtrs_srv_destroy_sess_files(sess);
1499 	rtrs_srv_stop_hb(sess);
1500 
1501 	for (i = 0; i < sess->s.con_num; i++) {
1502 		if (!sess->s.con[i])
1503 			continue;
1504 		con = to_srv_con(sess->s.con[i]);
1505 		rdma_disconnect(con->c.cm_id);
1506 		ib_drain_qp(con->c.qp);
1507 	}
1508 	/* Wait for all inflights */
1509 	rtrs_srv_wait_ops_ids(sess);
1510 
1511 	/* Notify upper layer if we are the last path */
1512 	rtrs_srv_sess_down(sess);
1513 
1514 	unmap_cont_bufs(sess);
1515 	rtrs_srv_free_ops_ids(sess);
1516 
1517 	for (i = 0; i < sess->s.con_num; i++) {
1518 		if (!sess->s.con[i])
1519 			continue;
1520 		con = to_srv_con(sess->s.con[i]);
1521 		rtrs_cq_qp_destroy(&con->c);
1522 		rdma_destroy_id(con->c.cm_id);
1523 		kfree(con);
1524 	}
1525 	rtrs_ib_dev_put(sess->s.dev);
1526 
1527 	del_path_from_srv(sess);
1528 	put_srv(sess->srv);
1529 	sess->srv = NULL;
1530 	rtrs_srv_change_state(sess, RTRS_SRV_CLOSED);
1531 
1532 	kfree(sess->dma_addr);
1533 	kfree(sess->s.con);
1534 	free_sess(sess);
1535 }
1536 
1537 static int rtrs_rdma_do_accept(struct rtrs_srv_sess *sess,
1538 			       struct rdma_cm_id *cm_id)
1539 {
1540 	struct rtrs_srv *srv = sess->srv;
1541 	struct rtrs_msg_conn_rsp msg;
1542 	struct rdma_conn_param param;
1543 	int err;
1544 
1545 	param = (struct rdma_conn_param) {
1546 		.rnr_retry_count = 7,
1547 		.private_data = &msg,
1548 		.private_data_len = sizeof(msg),
1549 	};
1550 
1551 	msg = (struct rtrs_msg_conn_rsp) {
1552 		.magic = cpu_to_le16(RTRS_MAGIC),
1553 		.version = cpu_to_le16(RTRS_PROTO_VER),
1554 		.queue_depth = cpu_to_le16(srv->queue_depth),
1555 		.max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE),
1556 		.max_hdr_size = cpu_to_le32(MAX_HDR_SIZE),
1557 	};
1558 
1559 	if (always_invalidate)
1560 		msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F);
1561 
1562 	err = rdma_accept(cm_id, &param);
1563 	if (err)
1564 		pr_err("rdma_accept(), err: %d\n", err);
1565 
1566 	return err;
1567 }
1568 
1569 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno)
1570 {
1571 	struct rtrs_msg_conn_rsp msg;
1572 	int err;
1573 
1574 	msg = (struct rtrs_msg_conn_rsp) {
1575 		.magic = cpu_to_le16(RTRS_MAGIC),
1576 		.version = cpu_to_le16(RTRS_PROTO_VER),
1577 		.errno = cpu_to_le16(errno),
1578 	};
1579 
1580 	err = rdma_reject(cm_id, &msg, sizeof(msg), IB_CM_REJ_CONSUMER_DEFINED);
1581 	if (err)
1582 		pr_err("rdma_reject(), err: %d\n", err);
1583 
1584 	/* Bounce errno back */
1585 	return errno;
1586 }
1587 
1588 static struct rtrs_srv_sess *
1589 __find_sess(struct rtrs_srv *srv, const uuid_t *sess_uuid)
1590 {
1591 	struct rtrs_srv_sess *sess;
1592 
1593 	list_for_each_entry(sess, &srv->paths_list, s.entry) {
1594 		if (uuid_equal(&sess->s.uuid, sess_uuid))
1595 			return sess;
1596 	}
1597 
1598 	return NULL;
1599 }
1600 
1601 static int create_con(struct rtrs_srv_sess *sess,
1602 		      struct rdma_cm_id *cm_id,
1603 		      unsigned int cid)
1604 {
1605 	struct rtrs_srv *srv = sess->srv;
1606 	struct rtrs_sess *s = &sess->s;
1607 	struct rtrs_srv_con *con;
1608 
1609 	u32 cq_size, wr_queue_size;
1610 	int err, cq_vector;
1611 
1612 	con = kzalloc(sizeof(*con), GFP_KERNEL);
1613 	if (!con) {
1614 		err = -ENOMEM;
1615 		goto err;
1616 	}
1617 
1618 	spin_lock_init(&con->rsp_wr_wait_lock);
1619 	INIT_LIST_HEAD(&con->rsp_wr_wait_list);
1620 	con->c.cm_id = cm_id;
1621 	con->c.sess = &sess->s;
1622 	con->c.cid = cid;
1623 	atomic_set(&con->wr_cnt, 1);
1624 
1625 	if (con->c.cid == 0) {
1626 		/*
1627 		 * All receive and all send (each requiring invalidate)
1628 		 * + 2 for drain and heartbeat
1629 		 */
1630 		wr_queue_size = SERVICE_CON_QUEUE_DEPTH * 3 + 2;
1631 		cq_size = wr_queue_size;
1632 	} else {
1633 		/*
1634 		 * If we have all receive requests posted and
1635 		 * all write requests posted and each read request
1636 		 * requires an invalidate request + drain
1637 		 * and qp gets into error state.
1638 		 */
1639 		cq_size = srv->queue_depth * 3 + 1;
1640 		/*
1641 		 * In theory we might have queue_depth * 32
1642 		 * outstanding requests if an unsafe global key is used
1643 		 * and we have queue_depth read requests each consisting
1644 		 * of 32 different addresses. div 3 for mlx5.
1645 		 */
1646 		wr_queue_size = sess->s.dev->ib_dev->attrs.max_qp_wr / 3;
1647 	}
1648 	atomic_set(&con->sq_wr_avail, wr_queue_size);
1649 	cq_vector = rtrs_srv_get_next_cq_vector(sess);
1650 
1651 	/* TODO: SOFTIRQ can be faster, but be careful with softirq context */
1652 	err = rtrs_cq_qp_create(&sess->s, &con->c, 1, cq_vector, cq_size,
1653 				 wr_queue_size, wr_queue_size,
1654 				 IB_POLL_WORKQUEUE);
1655 	if (err) {
1656 		rtrs_err(s, "rtrs_cq_qp_create(), err: %d\n", err);
1657 		goto free_con;
1658 	}
1659 	if (con->c.cid == 0) {
1660 		err = post_recv_info_req(con);
1661 		if (err)
1662 			goto free_cqqp;
1663 	}
1664 	WARN_ON(sess->s.con[cid]);
1665 	sess->s.con[cid] = &con->c;
1666 
1667 	/*
1668 	 * Change context from server to current connection.  The other
1669 	 * way is to use cm_id->qp->qp_context, which does not work on OFED.
1670 	 */
1671 	cm_id->context = &con->c;
1672 
1673 	return 0;
1674 
1675 free_cqqp:
1676 	rtrs_cq_qp_destroy(&con->c);
1677 free_con:
1678 	kfree(con);
1679 
1680 err:
1681 	return err;
1682 }
1683 
1684 static struct rtrs_srv_sess *__alloc_sess(struct rtrs_srv *srv,
1685 					   struct rdma_cm_id *cm_id,
1686 					   unsigned int con_num,
1687 					   unsigned int recon_cnt,
1688 					   const uuid_t *uuid)
1689 {
1690 	struct rtrs_srv_sess *sess;
1691 	int err = -ENOMEM;
1692 	char str[NAME_MAX];
1693 	struct rtrs_addr path;
1694 
1695 	if (srv->paths_num >= MAX_PATHS_NUM) {
1696 		err = -ECONNRESET;
1697 		goto err;
1698 	}
1699 	if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) {
1700 		err = -EEXIST;
1701 		pr_err("Path with same addr exists\n");
1702 		goto err;
1703 	}
1704 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
1705 	if (!sess)
1706 		goto err;
1707 
1708 	sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
1709 	if (!sess->stats)
1710 		goto err_free_sess;
1711 
1712 	sess->stats->sess = sess;
1713 
1714 	sess->dma_addr = kcalloc(srv->queue_depth, sizeof(*sess->dma_addr),
1715 				 GFP_KERNEL);
1716 	if (!sess->dma_addr)
1717 		goto err_free_stats;
1718 
1719 	sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
1720 	if (!sess->s.con)
1721 		goto err_free_dma_addr;
1722 
1723 	sess->state = RTRS_SRV_CONNECTING;
1724 	sess->srv = srv;
1725 	sess->cur_cq_vector = -1;
1726 	sess->s.dst_addr = cm_id->route.addr.dst_addr;
1727 	sess->s.src_addr = cm_id->route.addr.src_addr;
1728 
1729 	/* temporary until receiving session-name from client */
1730 	path.src = &sess->s.src_addr;
1731 	path.dst = &sess->s.dst_addr;
1732 	rtrs_addr_to_str(&path, str, sizeof(str));
1733 	strlcpy(sess->s.sessname, str, sizeof(sess->s.sessname));
1734 
1735 	sess->s.con_num = con_num;
1736 	sess->s.recon_cnt = recon_cnt;
1737 	uuid_copy(&sess->s.uuid, uuid);
1738 	spin_lock_init(&sess->state_lock);
1739 	INIT_WORK(&sess->close_work, rtrs_srv_close_work);
1740 	rtrs_srv_init_hb(sess);
1741 
1742 	sess->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd);
1743 	if (!sess->s.dev) {
1744 		err = -ENOMEM;
1745 		goto err_free_con;
1746 	}
1747 	err = map_cont_bufs(sess);
1748 	if (err)
1749 		goto err_put_dev;
1750 
1751 	err = rtrs_srv_alloc_ops_ids(sess);
1752 	if (err)
1753 		goto err_unmap_bufs;
1754 
1755 	__add_path_to_srv(srv, sess);
1756 
1757 	return sess;
1758 
1759 err_unmap_bufs:
1760 	unmap_cont_bufs(sess);
1761 err_put_dev:
1762 	rtrs_ib_dev_put(sess->s.dev);
1763 err_free_con:
1764 	kfree(sess->s.con);
1765 err_free_dma_addr:
1766 	kfree(sess->dma_addr);
1767 err_free_stats:
1768 	kfree(sess->stats);
1769 err_free_sess:
1770 	kfree(sess);
1771 err:
1772 	return ERR_PTR(err);
1773 }
1774 
1775 static int rtrs_rdma_connect(struct rdma_cm_id *cm_id,
1776 			      const struct rtrs_msg_conn_req *msg,
1777 			      size_t len)
1778 {
1779 	struct rtrs_srv_ctx *ctx = cm_id->context;
1780 	struct rtrs_srv_sess *sess;
1781 	struct rtrs_srv *srv;
1782 
1783 	u16 version, con_num, cid;
1784 	u16 recon_cnt;
1785 	int err = -ECONNRESET;
1786 
1787 	if (len < sizeof(*msg)) {
1788 		pr_err("Invalid RTRS connection request\n");
1789 		goto reject_w_err;
1790 	}
1791 	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1792 		pr_err("Invalid RTRS magic\n");
1793 		goto reject_w_err;
1794 	}
1795 	version = le16_to_cpu(msg->version);
1796 	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1797 		pr_err("Unsupported major RTRS version: %d, expected %d\n",
1798 		       version >> 8, RTRS_PROTO_VER_MAJOR);
1799 		goto reject_w_err;
1800 	}
1801 	con_num = le16_to_cpu(msg->cid_num);
1802 	if (con_num > 4096) {
1803 		/* Sanity check */
1804 		pr_err("Too many connections requested: %d\n", con_num);
1805 		goto reject_w_err;
1806 	}
1807 	cid = le16_to_cpu(msg->cid);
1808 	if (cid >= con_num) {
1809 		/* Sanity check */
1810 		pr_err("Incorrect cid: %d >= %d\n", cid, con_num);
1811 		goto reject_w_err;
1812 	}
1813 	recon_cnt = le16_to_cpu(msg->recon_cnt);
1814 	srv = get_or_create_srv(ctx, &msg->paths_uuid, msg->first_conn);
1815 	if (IS_ERR(srv)) {
1816 		err = PTR_ERR(srv);
1817 		pr_err("get_or_create_srv(), error %d\n", err);
1818 		goto reject_w_err;
1819 	}
1820 	mutex_lock(&srv->paths_mutex);
1821 	sess = __find_sess(srv, &msg->sess_uuid);
1822 	if (sess) {
1823 		struct rtrs_sess *s = &sess->s;
1824 
1825 		/* Session already holds a reference */
1826 		put_srv(srv);
1827 
1828 		if (sess->state != RTRS_SRV_CONNECTING) {
1829 			rtrs_err(s, "Session in wrong state: %s\n",
1830 				  rtrs_srv_state_str(sess->state));
1831 			mutex_unlock(&srv->paths_mutex);
1832 			goto reject_w_err;
1833 		}
1834 		/*
1835 		 * Sanity checks
1836 		 */
1837 		if (con_num != s->con_num || cid >= s->con_num) {
1838 			rtrs_err(s, "Incorrect request: %d, %d\n",
1839 				  cid, con_num);
1840 			mutex_unlock(&srv->paths_mutex);
1841 			goto reject_w_err;
1842 		}
1843 		if (s->con[cid]) {
1844 			rtrs_err(s, "Connection already exists: %d\n",
1845 				  cid);
1846 			mutex_unlock(&srv->paths_mutex);
1847 			goto reject_w_err;
1848 		}
1849 	} else {
1850 		sess = __alloc_sess(srv, cm_id, con_num, recon_cnt,
1851 				    &msg->sess_uuid);
1852 		if (IS_ERR(sess)) {
1853 			mutex_unlock(&srv->paths_mutex);
1854 			put_srv(srv);
1855 			err = PTR_ERR(sess);
1856 			pr_err("RTRS server session allocation failed: %d\n", err);
1857 			goto reject_w_err;
1858 		}
1859 	}
1860 	err = create_con(sess, cm_id, cid);
1861 	if (err) {
1862 		rtrs_err((&sess->s), "create_con(), error %d\n", err);
1863 		(void)rtrs_rdma_do_reject(cm_id, err);
1864 		/*
1865 		 * Since session has other connections we follow normal way
1866 		 * through workqueue, but still return an error to tell cma.c
1867 		 * to call rdma_destroy_id() for current connection.
1868 		 */
1869 		goto close_and_return_err;
1870 	}
1871 	err = rtrs_rdma_do_accept(sess, cm_id);
1872 	if (err) {
1873 		rtrs_err((&sess->s), "rtrs_rdma_do_accept(), error %d\n", err);
1874 		(void)rtrs_rdma_do_reject(cm_id, err);
1875 		/*
1876 		 * Since current connection was successfully added to the
1877 		 * session we follow normal way through workqueue to close the
1878 		 * session, thus return 0 to tell cma.c we call
1879 		 * rdma_destroy_id() ourselves.
1880 		 */
1881 		err = 0;
1882 		goto close_and_return_err;
1883 	}
1884 	mutex_unlock(&srv->paths_mutex);
1885 
1886 	return 0;
1887 
1888 reject_w_err:
1889 	return rtrs_rdma_do_reject(cm_id, err);
1890 
1891 close_and_return_err:
1892 	mutex_unlock(&srv->paths_mutex);
1893 	close_sess(sess);
1894 
1895 	return err;
1896 }
1897 
1898 static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id,
1899 				     struct rdma_cm_event *ev)
1900 {
1901 	struct rtrs_srv_sess *sess = NULL;
1902 	struct rtrs_sess *s = NULL;
1903 
1904 	if (ev->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
1905 		struct rtrs_con *c = cm_id->context;
1906 
1907 		s = c->sess;
1908 		sess = to_srv_sess(s);
1909 	}
1910 
1911 	switch (ev->event) {
1912 	case RDMA_CM_EVENT_CONNECT_REQUEST:
1913 		/*
1914 		 * In case of error cma.c will destroy cm_id,
1915 		 * see cma_process_remove()
1916 		 */
1917 		return rtrs_rdma_connect(cm_id, ev->param.conn.private_data,
1918 					  ev->param.conn.private_data_len);
1919 	case RDMA_CM_EVENT_ESTABLISHED:
1920 		/* Nothing here */
1921 		break;
1922 	case RDMA_CM_EVENT_REJECTED:
1923 	case RDMA_CM_EVENT_CONNECT_ERROR:
1924 	case RDMA_CM_EVENT_UNREACHABLE:
1925 		rtrs_err(s, "CM error (CM event: %s, err: %d)\n",
1926 			  rdma_event_msg(ev->event), ev->status);
1927 		fallthrough;
1928 	case RDMA_CM_EVENT_DISCONNECTED:
1929 	case RDMA_CM_EVENT_ADDR_CHANGE:
1930 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1931 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1932 		close_sess(sess);
1933 		break;
1934 	default:
1935 		pr_err("Ignoring unexpected CM event %s, err %d\n",
1936 		       rdma_event_msg(ev->event), ev->status);
1937 		break;
1938 	}
1939 
1940 	return 0;
1941 }
1942 
1943 static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx,
1944 					    struct sockaddr *addr,
1945 					    enum rdma_ucm_port_space ps)
1946 {
1947 	struct rdma_cm_id *cm_id;
1948 	int ret;
1949 
1950 	cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler,
1951 			       ctx, ps, IB_QPT_RC);
1952 	if (IS_ERR(cm_id)) {
1953 		ret = PTR_ERR(cm_id);
1954 		pr_err("Creating id for RDMA connection failed, err: %d\n",
1955 		       ret);
1956 		goto err_out;
1957 	}
1958 	ret = rdma_bind_addr(cm_id, addr);
1959 	if (ret) {
1960 		pr_err("Binding RDMA address failed, err: %d\n", ret);
1961 		goto err_cm;
1962 	}
1963 	ret = rdma_listen(cm_id, 64);
1964 	if (ret) {
1965 		pr_err("Listening on RDMA connection failed, err: %d\n",
1966 		       ret);
1967 		goto err_cm;
1968 	}
1969 
1970 	return cm_id;
1971 
1972 err_cm:
1973 	rdma_destroy_id(cm_id);
1974 err_out:
1975 
1976 	return ERR_PTR(ret);
1977 }
1978 
1979 static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port)
1980 {
1981 	struct sockaddr_in6 sin = {
1982 		.sin6_family	= AF_INET6,
1983 		.sin6_addr	= IN6ADDR_ANY_INIT,
1984 		.sin6_port	= htons(port),
1985 	};
1986 	struct sockaddr_ib sib = {
1987 		.sib_family			= AF_IB,
1988 		.sib_sid	= cpu_to_be64(RDMA_IB_IP_PS_IB | port),
1989 		.sib_sid_mask	= cpu_to_be64(0xffffffffffffffffULL),
1990 		.sib_pkey	= cpu_to_be16(0xffff),
1991 	};
1992 	struct rdma_cm_id *cm_ip, *cm_ib;
1993 	int ret;
1994 
1995 	/*
1996 	 * We accept both IPoIB and IB connections, so we need to keep
1997 	 * two cm id's, one for each socket type and port space.
1998 	 * If the cm initialization of one of the id's fails, we abort
1999 	 * everything.
2000 	 */
2001 	cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP);
2002 	if (IS_ERR(cm_ip))
2003 		return PTR_ERR(cm_ip);
2004 
2005 	cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB);
2006 	if (IS_ERR(cm_ib)) {
2007 		ret = PTR_ERR(cm_ib);
2008 		goto free_cm_ip;
2009 	}
2010 
2011 	ctx->cm_id_ip = cm_ip;
2012 	ctx->cm_id_ib = cm_ib;
2013 
2014 	return 0;
2015 
2016 free_cm_ip:
2017 	rdma_destroy_id(cm_ip);
2018 
2019 	return ret;
2020 }
2021 
2022 static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops)
2023 {
2024 	struct rtrs_srv_ctx *ctx;
2025 
2026 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2027 	if (!ctx)
2028 		return NULL;
2029 
2030 	ctx->ops = *ops;
2031 	mutex_init(&ctx->srv_mutex);
2032 	INIT_LIST_HEAD(&ctx->srv_list);
2033 
2034 	return ctx;
2035 }
2036 
2037 static void free_srv_ctx(struct rtrs_srv_ctx *ctx)
2038 {
2039 	WARN_ON(!list_empty(&ctx->srv_list));
2040 	mutex_destroy(&ctx->srv_mutex);
2041 	kfree(ctx);
2042 }
2043 
2044 static int rtrs_srv_add_one(struct ib_device *device)
2045 {
2046 	struct rtrs_srv_ctx *ctx;
2047 	int ret = 0;
2048 
2049 	mutex_lock(&ib_ctx.ib_dev_mutex);
2050 	if (ib_ctx.ib_dev_count)
2051 		goto out;
2052 
2053 	/*
2054 	 * Since our CM IDs are NOT bound to any ib device we will create them
2055 	 * only once
2056 	 */
2057 	ctx = ib_ctx.srv_ctx;
2058 	ret = rtrs_srv_rdma_init(ctx, ib_ctx.port);
2059 	if (ret) {
2060 		/*
2061 		 * We errored out here.
2062 		 * According to the ib code, if we encounter an error here then the
2063 		 * error code is ignored, and no more calls to our ops are made.
2064 		 */
2065 		pr_err("Failed to initialize RDMA connection");
2066 		goto err_out;
2067 	}
2068 
2069 out:
2070 	/*
2071 	 * Keep a track on the number of ib devices added
2072 	 */
2073 	ib_ctx.ib_dev_count++;
2074 
2075 err_out:
2076 	mutex_unlock(&ib_ctx.ib_dev_mutex);
2077 	return ret;
2078 }
2079 
2080 static void rtrs_srv_remove_one(struct ib_device *device, void *client_data)
2081 {
2082 	struct rtrs_srv_ctx *ctx;
2083 
2084 	mutex_lock(&ib_ctx.ib_dev_mutex);
2085 	ib_ctx.ib_dev_count--;
2086 
2087 	if (ib_ctx.ib_dev_count)
2088 		goto out;
2089 
2090 	/*
2091 	 * Since our CM IDs are NOT bound to any ib device we will remove them
2092 	 * only once, when the last device is removed
2093 	 */
2094 	ctx = ib_ctx.srv_ctx;
2095 	rdma_destroy_id(ctx->cm_id_ip);
2096 	rdma_destroy_id(ctx->cm_id_ib);
2097 
2098 out:
2099 	mutex_unlock(&ib_ctx.ib_dev_mutex);
2100 }
2101 
2102 static struct ib_client rtrs_srv_client = {
2103 	.name	= "rtrs_server",
2104 	.add	= rtrs_srv_add_one,
2105 	.remove	= rtrs_srv_remove_one
2106 };
2107 
2108 /**
2109  * rtrs_srv_open() - open RTRS server context
2110  * @ops:		callback functions
2111  * @port:               port to listen on
2112  *
2113  * Creates server context with specified callbacks.
2114  *
2115  * Return a valid pointer on success otherwise PTR_ERR.
2116  */
2117 struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port)
2118 {
2119 	struct rtrs_srv_ctx *ctx;
2120 	int err;
2121 
2122 	ctx = alloc_srv_ctx(ops);
2123 	if (!ctx)
2124 		return ERR_PTR(-ENOMEM);
2125 
2126 	mutex_init(&ib_ctx.ib_dev_mutex);
2127 	ib_ctx.srv_ctx = ctx;
2128 	ib_ctx.port = port;
2129 
2130 	err = ib_register_client(&rtrs_srv_client);
2131 	if (err) {
2132 		free_srv_ctx(ctx);
2133 		return ERR_PTR(err);
2134 	}
2135 
2136 	return ctx;
2137 }
2138 EXPORT_SYMBOL(rtrs_srv_open);
2139 
2140 static void close_sessions(struct rtrs_srv *srv)
2141 {
2142 	struct rtrs_srv_sess *sess;
2143 
2144 	mutex_lock(&srv->paths_mutex);
2145 	list_for_each_entry(sess, &srv->paths_list, s.entry)
2146 		close_sess(sess);
2147 	mutex_unlock(&srv->paths_mutex);
2148 }
2149 
2150 static void close_ctx(struct rtrs_srv_ctx *ctx)
2151 {
2152 	struct rtrs_srv *srv;
2153 
2154 	mutex_lock(&ctx->srv_mutex);
2155 	list_for_each_entry(srv, &ctx->srv_list, ctx_list)
2156 		close_sessions(srv);
2157 	mutex_unlock(&ctx->srv_mutex);
2158 	flush_workqueue(rtrs_wq);
2159 }
2160 
2161 /**
2162  * rtrs_srv_close() - close RTRS server context
2163  * @ctx: pointer to server context
2164  *
2165  * Closes RTRS server context with all client sessions.
2166  */
2167 void rtrs_srv_close(struct rtrs_srv_ctx *ctx)
2168 {
2169 	ib_unregister_client(&rtrs_srv_client);
2170 	mutex_destroy(&ib_ctx.ib_dev_mutex);
2171 	close_ctx(ctx);
2172 	free_srv_ctx(ctx);
2173 }
2174 EXPORT_SYMBOL(rtrs_srv_close);
2175 
2176 static int check_module_params(void)
2177 {
2178 	if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) {
2179 		pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n",
2180 		       sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH);
2181 		return -EINVAL;
2182 	}
2183 	if (max_chunk_size < 4096 || !is_power_of_2(max_chunk_size)) {
2184 		pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n",
2185 		       max_chunk_size, 4096);
2186 		return -EINVAL;
2187 	}
2188 
2189 	/*
2190 	 * Check if IB immediate data size is enough to hold the mem_id and the
2191 	 * offset inside the memory chunk
2192 	 */
2193 	if ((ilog2(sess_queue_depth - 1) + 1) +
2194 	    (ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) {
2195 		pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n",
2196 		       MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size);
2197 		return -EINVAL;
2198 	}
2199 
2200 	return 0;
2201 }
2202 
2203 static int __init rtrs_server_init(void)
2204 {
2205 	int err;
2206 
2207 	pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n",
2208 		KBUILD_MODNAME, RTRS_PROTO_VER_STRING,
2209 		max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE,
2210 		sess_queue_depth, always_invalidate);
2211 
2212 	rtrs_rdma_dev_pd_init(0, &dev_pd);
2213 
2214 	err = check_module_params();
2215 	if (err) {
2216 		pr_err("Failed to load module, invalid module parameters, err: %d\n",
2217 		       err);
2218 		return err;
2219 	}
2220 	chunk_pool = mempool_create_page_pool(sess_queue_depth * CHUNK_POOL_SZ,
2221 					      get_order(max_chunk_size));
2222 	if (!chunk_pool)
2223 		return -ENOMEM;
2224 	rtrs_dev_class = class_create(THIS_MODULE, "rtrs-server");
2225 	if (IS_ERR(rtrs_dev_class)) {
2226 		err = PTR_ERR(rtrs_dev_class);
2227 		goto out_chunk_pool;
2228 	}
2229 	rtrs_wq = alloc_workqueue("rtrs_server_wq", 0, 0);
2230 	if (!rtrs_wq) {
2231 		err = -ENOMEM;
2232 		goto out_dev_class;
2233 	}
2234 
2235 	return 0;
2236 
2237 out_dev_class:
2238 	class_destroy(rtrs_dev_class);
2239 out_chunk_pool:
2240 	mempool_destroy(chunk_pool);
2241 
2242 	return err;
2243 }
2244 
2245 static void __exit rtrs_server_exit(void)
2246 {
2247 	destroy_workqueue(rtrs_wq);
2248 	class_destroy(rtrs_dev_class);
2249 	mempool_destroy(chunk_pool);
2250 	rtrs_rdma_dev_pd_deinit(&dev_pd);
2251 }
2252 
2253 module_init(rtrs_server_init);
2254 module_exit(rtrs_server_exit);
2255