xref: /openbmc/linux/drivers/infiniband/ulp/rtrs/rtrs-srv.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12 
13 #include <linux/module.h>
14 
15 #include "rtrs-srv.h"
16 #include "rtrs-log.h"
17 #include <rdma/ib_cm.h>
18 #include <rdma/ib_verbs.h>
19 #include "rtrs-srv-trace.h"
20 
21 MODULE_DESCRIPTION("RDMA Transport Server");
22 MODULE_LICENSE("GPL");
23 
24 /* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */
25 #define DEFAULT_MAX_CHUNK_SIZE (128 << 10)
26 #define DEFAULT_SESS_QUEUE_DEPTH 512
27 #define MAX_HDR_SIZE PAGE_SIZE
28 
29 static struct rtrs_rdma_dev_pd dev_pd;
30 const struct class rtrs_dev_class = {
31 	.name = "rtrs-server",
32 };
33 static struct rtrs_srv_ib_ctx ib_ctx;
34 
35 static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE;
36 static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH;
37 
38 static bool always_invalidate = true;
39 module_param(always_invalidate, bool, 0444);
40 MODULE_PARM_DESC(always_invalidate,
41 		 "Invalidate memory registration for contiguous memory regions before accessing.");
42 
43 module_param_named(max_chunk_size, max_chunk_size, int, 0444);
44 MODULE_PARM_DESC(max_chunk_size,
45 		 "Max size for each IO request, when change the unit is in byte (default: "
46 		 __stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)");
47 
48 module_param_named(sess_queue_depth, sess_queue_depth, int, 0444);
49 MODULE_PARM_DESC(sess_queue_depth,
50 		 "Number of buffers for pending I/O requests to allocate per session. Maximum: "
51 		 __stringify(MAX_SESS_QUEUE_DEPTH) " (default: "
52 		 __stringify(DEFAULT_SESS_QUEUE_DEPTH) ")");
53 
54 static cpumask_t cq_affinity_mask = { CPU_BITS_ALL };
55 
56 static struct workqueue_struct *rtrs_wq;
57 
58 static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c)
59 {
60 	return container_of(c, struct rtrs_srv_con, c);
61 }
62 
63 static bool rtrs_srv_change_state(struct rtrs_srv_path *srv_path,
64 				  enum rtrs_srv_state new_state)
65 {
66 	enum rtrs_srv_state old_state;
67 	bool changed = false;
68 	unsigned long flags;
69 
70 	spin_lock_irqsave(&srv_path->state_lock, flags);
71 	old_state = srv_path->state;
72 	switch (new_state) {
73 	case RTRS_SRV_CONNECTED:
74 		if (old_state == RTRS_SRV_CONNECTING)
75 			changed = true;
76 		break;
77 	case RTRS_SRV_CLOSING:
78 		if (old_state == RTRS_SRV_CONNECTING ||
79 		    old_state == RTRS_SRV_CONNECTED)
80 			changed = true;
81 		break;
82 	case RTRS_SRV_CLOSED:
83 		if (old_state == RTRS_SRV_CLOSING)
84 			changed = true;
85 		break;
86 	default:
87 		break;
88 	}
89 	if (changed)
90 		srv_path->state = new_state;
91 	spin_unlock_irqrestore(&srv_path->state_lock, flags);
92 
93 	return changed;
94 }
95 
96 static void free_id(struct rtrs_srv_op *id)
97 {
98 	if (!id)
99 		return;
100 	kfree(id);
101 }
102 
103 static void rtrs_srv_free_ops_ids(struct rtrs_srv_path *srv_path)
104 {
105 	struct rtrs_srv_sess *srv = srv_path->srv;
106 	int i;
107 
108 	if (srv_path->ops_ids) {
109 		for (i = 0; i < srv->queue_depth; i++)
110 			free_id(srv_path->ops_ids[i]);
111 		kfree(srv_path->ops_ids);
112 		srv_path->ops_ids = NULL;
113 	}
114 }
115 
116 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
117 
118 static struct ib_cqe io_comp_cqe = {
119 	.done = rtrs_srv_rdma_done
120 };
121 
122 static inline void rtrs_srv_inflight_ref_release(struct percpu_ref *ref)
123 {
124 	struct rtrs_srv_path *srv_path = container_of(ref,
125 						      struct rtrs_srv_path,
126 						      ids_inflight_ref);
127 
128 	percpu_ref_exit(&srv_path->ids_inflight_ref);
129 	complete(&srv_path->complete_done);
130 }
131 
132 static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_path *srv_path)
133 {
134 	struct rtrs_srv_sess *srv = srv_path->srv;
135 	struct rtrs_srv_op *id;
136 	int i, ret;
137 
138 	srv_path->ops_ids = kcalloc(srv->queue_depth,
139 				    sizeof(*srv_path->ops_ids),
140 				    GFP_KERNEL);
141 	if (!srv_path->ops_ids)
142 		goto err;
143 
144 	for (i = 0; i < srv->queue_depth; ++i) {
145 		id = kzalloc(sizeof(*id), GFP_KERNEL);
146 		if (!id)
147 			goto err;
148 
149 		srv_path->ops_ids[i] = id;
150 	}
151 
152 	ret = percpu_ref_init(&srv_path->ids_inflight_ref,
153 			      rtrs_srv_inflight_ref_release, 0, GFP_KERNEL);
154 	if (ret) {
155 		pr_err("Percpu reference init failed\n");
156 		goto err;
157 	}
158 	init_completion(&srv_path->complete_done);
159 
160 	return 0;
161 
162 err:
163 	rtrs_srv_free_ops_ids(srv_path);
164 	return -ENOMEM;
165 }
166 
167 static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_path *srv_path)
168 {
169 	percpu_ref_get(&srv_path->ids_inflight_ref);
170 }
171 
172 static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_path *srv_path)
173 {
174 	percpu_ref_put(&srv_path->ids_inflight_ref);
175 }
176 
177 static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc)
178 {
179 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
180 	struct rtrs_path *s = con->c.path;
181 	struct rtrs_srv_path *srv_path = to_srv_path(s);
182 
183 	if (wc->status != IB_WC_SUCCESS) {
184 		rtrs_err(s, "REG MR failed: %s\n",
185 			  ib_wc_status_msg(wc->status));
186 		close_path(srv_path);
187 		return;
188 	}
189 }
190 
191 static struct ib_cqe local_reg_cqe = {
192 	.done = rtrs_srv_reg_mr_done
193 };
194 
195 static int rdma_write_sg(struct rtrs_srv_op *id)
196 {
197 	struct rtrs_path *s = id->con->c.path;
198 	struct rtrs_srv_path *srv_path = to_srv_path(s);
199 	dma_addr_t dma_addr = srv_path->dma_addr[id->msg_id];
200 	struct rtrs_srv_mr *srv_mr;
201 	struct ib_send_wr inv_wr;
202 	struct ib_rdma_wr imm_wr;
203 	struct ib_rdma_wr *wr = NULL;
204 	enum ib_send_flags flags;
205 	size_t sg_cnt;
206 	int err, offset;
207 	bool need_inval;
208 	u32 rkey = 0;
209 	struct ib_reg_wr rwr;
210 	struct ib_sge *plist;
211 	struct ib_sge list;
212 
213 	sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt);
214 	need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F;
215 	if (sg_cnt != 1)
216 		return -EINVAL;
217 
218 	offset = 0;
219 
220 	wr		= &id->tx_wr;
221 	plist		= &id->tx_sg;
222 	plist->addr	= dma_addr + offset;
223 	plist->length	= le32_to_cpu(id->rd_msg->desc[0].len);
224 
225 	/* WR will fail with length error
226 	 * if this is 0
227 	 */
228 	if (plist->length == 0) {
229 		rtrs_err(s, "Invalid RDMA-Write sg list length 0\n");
230 		return -EINVAL;
231 	}
232 
233 	plist->lkey = srv_path->s.dev->ib_pd->local_dma_lkey;
234 	offset += plist->length;
235 
236 	wr->wr.sg_list	= plist;
237 	wr->wr.num_sge	= 1;
238 	wr->remote_addr	= le64_to_cpu(id->rd_msg->desc[0].addr);
239 	wr->rkey	= le32_to_cpu(id->rd_msg->desc[0].key);
240 	if (rkey == 0)
241 		rkey = wr->rkey;
242 	else
243 		/* Only one key is actually used */
244 		WARN_ON_ONCE(rkey != wr->rkey);
245 
246 	wr->wr.opcode = IB_WR_RDMA_WRITE;
247 	wr->wr.wr_cqe   = &io_comp_cqe;
248 	wr->wr.ex.imm_data = 0;
249 	wr->wr.send_flags  = 0;
250 
251 	if (need_inval && always_invalidate) {
252 		wr->wr.next = &rwr.wr;
253 		rwr.wr.next = &inv_wr;
254 		inv_wr.next = &imm_wr.wr;
255 	} else if (always_invalidate) {
256 		wr->wr.next = &rwr.wr;
257 		rwr.wr.next = &imm_wr.wr;
258 	} else if (need_inval) {
259 		wr->wr.next = &inv_wr;
260 		inv_wr.next = &imm_wr.wr;
261 	} else {
262 		wr->wr.next = &imm_wr.wr;
263 	}
264 	/*
265 	 * From time to time we have to post signaled sends,
266 	 * or send queue will fill up and only QP reset can help.
267 	 */
268 	flags = (atomic_inc_return(&id->con->c.wr_cnt) % s->signal_interval) ?
269 		0 : IB_SEND_SIGNALED;
270 
271 	if (need_inval) {
272 		inv_wr.sg_list = NULL;
273 		inv_wr.num_sge = 0;
274 		inv_wr.opcode = IB_WR_SEND_WITH_INV;
275 		inv_wr.wr_cqe   = &io_comp_cqe;
276 		inv_wr.send_flags = 0;
277 		inv_wr.ex.invalidate_rkey = rkey;
278 	}
279 
280 	imm_wr.wr.next = NULL;
281 	if (always_invalidate) {
282 		struct rtrs_msg_rkey_rsp *msg;
283 
284 		srv_mr = &srv_path->mrs[id->msg_id];
285 		rwr.wr.opcode = IB_WR_REG_MR;
286 		rwr.wr.wr_cqe = &local_reg_cqe;
287 		rwr.wr.num_sge = 0;
288 		rwr.mr = srv_mr->mr;
289 		rwr.wr.send_flags = 0;
290 		rwr.key = srv_mr->mr->rkey;
291 		rwr.access = (IB_ACCESS_LOCAL_WRITE |
292 			      IB_ACCESS_REMOTE_WRITE);
293 		msg = srv_mr->iu->buf;
294 		msg->buf_id = cpu_to_le16(id->msg_id);
295 		msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
296 		msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
297 
298 		list.addr   = srv_mr->iu->dma_addr;
299 		list.length = sizeof(*msg);
300 		list.lkey   = srv_path->s.dev->ib_pd->local_dma_lkey;
301 		imm_wr.wr.sg_list = &list;
302 		imm_wr.wr.num_sge = 1;
303 		imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
304 		ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev,
305 					      srv_mr->iu->dma_addr,
306 					      srv_mr->iu->size, DMA_TO_DEVICE);
307 	} else {
308 		imm_wr.wr.sg_list = NULL;
309 		imm_wr.wr.num_sge = 0;
310 		imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
311 	}
312 	imm_wr.wr.send_flags = flags;
313 	imm_wr.wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id,
314 							     0, need_inval));
315 
316 	imm_wr.wr.wr_cqe   = &io_comp_cqe;
317 	ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev, dma_addr,
318 				      offset, DMA_BIDIRECTIONAL);
319 
320 	err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL);
321 	if (err)
322 		rtrs_err(s,
323 			  "Posting RDMA-Write-Request to QP failed, err: %d\n",
324 			  err);
325 
326 	return err;
327 }
328 
329 /**
330  * send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE
331  *                      requests or on successful WRITE request.
332  * @con:	the connection to send back result
333  * @id:		the id associated with the IO
334  * @errno:	the error number of the IO.
335  *
336  * Return 0 on success, errno otherwise.
337  */
338 static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id,
339 			    int errno)
340 {
341 	struct rtrs_path *s = con->c.path;
342 	struct rtrs_srv_path *srv_path = to_srv_path(s);
343 	struct ib_send_wr inv_wr, *wr = NULL;
344 	struct ib_rdma_wr imm_wr;
345 	struct ib_reg_wr rwr;
346 	struct rtrs_srv_mr *srv_mr;
347 	bool need_inval = false;
348 	enum ib_send_flags flags;
349 	u32 imm;
350 	int err;
351 
352 	if (id->dir == READ) {
353 		struct rtrs_msg_rdma_read *rd_msg = id->rd_msg;
354 		size_t sg_cnt;
355 
356 		need_inval = le16_to_cpu(rd_msg->flags) &
357 				RTRS_MSG_NEED_INVAL_F;
358 		sg_cnt = le16_to_cpu(rd_msg->sg_cnt);
359 
360 		if (need_inval) {
361 			if (sg_cnt) {
362 				inv_wr.wr_cqe   = &io_comp_cqe;
363 				inv_wr.sg_list = NULL;
364 				inv_wr.num_sge = 0;
365 				inv_wr.opcode = IB_WR_SEND_WITH_INV;
366 				inv_wr.send_flags = 0;
367 				/* Only one key is actually used */
368 				inv_wr.ex.invalidate_rkey =
369 					le32_to_cpu(rd_msg->desc[0].key);
370 			} else {
371 				WARN_ON_ONCE(1);
372 				need_inval = false;
373 			}
374 		}
375 	}
376 
377 	trace_send_io_resp_imm(id, need_inval, always_invalidate, errno);
378 
379 	if (need_inval && always_invalidate) {
380 		wr = &inv_wr;
381 		inv_wr.next = &rwr.wr;
382 		rwr.wr.next = &imm_wr.wr;
383 	} else if (always_invalidate) {
384 		wr = &rwr.wr;
385 		rwr.wr.next = &imm_wr.wr;
386 	} else if (need_inval) {
387 		wr = &inv_wr;
388 		inv_wr.next = &imm_wr.wr;
389 	} else {
390 		wr = &imm_wr.wr;
391 	}
392 	/*
393 	 * From time to time we have to post signalled sends,
394 	 * or send queue will fill up and only QP reset can help.
395 	 */
396 	flags = (atomic_inc_return(&con->c.wr_cnt) % s->signal_interval) ?
397 		0 : IB_SEND_SIGNALED;
398 	imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval);
399 	imm_wr.wr.next = NULL;
400 	if (always_invalidate) {
401 		struct ib_sge list;
402 		struct rtrs_msg_rkey_rsp *msg;
403 
404 		srv_mr = &srv_path->mrs[id->msg_id];
405 		rwr.wr.next = &imm_wr.wr;
406 		rwr.wr.opcode = IB_WR_REG_MR;
407 		rwr.wr.wr_cqe = &local_reg_cqe;
408 		rwr.wr.num_sge = 0;
409 		rwr.wr.send_flags = 0;
410 		rwr.mr = srv_mr->mr;
411 		rwr.key = srv_mr->mr->rkey;
412 		rwr.access = (IB_ACCESS_LOCAL_WRITE |
413 			      IB_ACCESS_REMOTE_WRITE);
414 		msg = srv_mr->iu->buf;
415 		msg->buf_id = cpu_to_le16(id->msg_id);
416 		msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
417 		msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
418 
419 		list.addr   = srv_mr->iu->dma_addr;
420 		list.length = sizeof(*msg);
421 		list.lkey   = srv_path->s.dev->ib_pd->local_dma_lkey;
422 		imm_wr.wr.sg_list = &list;
423 		imm_wr.wr.num_sge = 1;
424 		imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
425 		ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev,
426 					      srv_mr->iu->dma_addr,
427 					      srv_mr->iu->size, DMA_TO_DEVICE);
428 	} else {
429 		imm_wr.wr.sg_list = NULL;
430 		imm_wr.wr.num_sge = 0;
431 		imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
432 	}
433 	imm_wr.wr.send_flags = flags;
434 	imm_wr.wr.wr_cqe   = &io_comp_cqe;
435 
436 	imm_wr.wr.ex.imm_data = cpu_to_be32(imm);
437 
438 	err = ib_post_send(id->con->c.qp, wr, NULL);
439 	if (err)
440 		rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %d\n",
441 			     err);
442 
443 	return err;
444 }
445 
446 void close_path(struct rtrs_srv_path *srv_path)
447 {
448 	if (rtrs_srv_change_state(srv_path, RTRS_SRV_CLOSING))
449 		queue_work(rtrs_wq, &srv_path->close_work);
450 	WARN_ON(srv_path->state != RTRS_SRV_CLOSING);
451 }
452 
453 static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state)
454 {
455 	switch (state) {
456 	case RTRS_SRV_CONNECTING:
457 		return "RTRS_SRV_CONNECTING";
458 	case RTRS_SRV_CONNECTED:
459 		return "RTRS_SRV_CONNECTED";
460 	case RTRS_SRV_CLOSING:
461 		return "RTRS_SRV_CLOSING";
462 	case RTRS_SRV_CLOSED:
463 		return "RTRS_SRV_CLOSED";
464 	default:
465 		return "UNKNOWN";
466 	}
467 }
468 
469 /**
470  * rtrs_srv_resp_rdma() - Finish an RDMA request
471  *
472  * @id:		Internal RTRS operation identifier
473  * @status:	Response Code sent to the other side for this operation.
474  *		0 = success, <=0 error
475  * Context: any
476  *
477  * Finish a RDMA operation. A message is sent to the client and the
478  * corresponding memory areas will be released.
479  */
480 bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status)
481 {
482 	struct rtrs_srv_path *srv_path;
483 	struct rtrs_srv_con *con;
484 	struct rtrs_path *s;
485 	int err;
486 
487 	if (WARN_ON(!id))
488 		return true;
489 
490 	con = id->con;
491 	s = con->c.path;
492 	srv_path = to_srv_path(s);
493 
494 	id->status = status;
495 
496 	if (srv_path->state != RTRS_SRV_CONNECTED) {
497 		rtrs_err_rl(s,
498 			    "Sending I/O response failed,  server path %s is disconnected, path state %s\n",
499 			    kobject_name(&srv_path->kobj),
500 			    rtrs_srv_state_str(srv_path->state));
501 		goto out;
502 	}
503 	if (always_invalidate) {
504 		struct rtrs_srv_mr *mr = &srv_path->mrs[id->msg_id];
505 
506 		ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
507 	}
508 	if (atomic_sub_return(1, &con->c.sq_wr_avail) < 0) {
509 		rtrs_err(s, "IB send queue full: srv_path=%s cid=%d\n",
510 			 kobject_name(&srv_path->kobj),
511 			 con->c.cid);
512 		atomic_add(1, &con->c.sq_wr_avail);
513 		spin_lock(&con->rsp_wr_wait_lock);
514 		list_add_tail(&id->wait_list, &con->rsp_wr_wait_list);
515 		spin_unlock(&con->rsp_wr_wait_lock);
516 		return false;
517 	}
518 
519 	if (status || id->dir == WRITE || !id->rd_msg->sg_cnt)
520 		err = send_io_resp_imm(con, id, status);
521 	else
522 		err = rdma_write_sg(id);
523 
524 	if (err) {
525 		rtrs_err_rl(s, "IO response failed: %d: srv_path=%s\n", err,
526 			    kobject_name(&srv_path->kobj));
527 		close_path(srv_path);
528 	}
529 out:
530 	rtrs_srv_put_ops_ids(srv_path);
531 	return true;
532 }
533 EXPORT_SYMBOL(rtrs_srv_resp_rdma);
534 
535 /**
536  * rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv.
537  * @srv:	Session pointer
538  * @priv:	The private pointer that is associated with the session.
539  */
540 void rtrs_srv_set_sess_priv(struct rtrs_srv_sess *srv, void *priv)
541 {
542 	srv->priv = priv;
543 }
544 EXPORT_SYMBOL(rtrs_srv_set_sess_priv);
545 
546 static void unmap_cont_bufs(struct rtrs_srv_path *srv_path)
547 {
548 	int i;
549 
550 	for (i = 0; i < srv_path->mrs_num; i++) {
551 		struct rtrs_srv_mr *srv_mr;
552 
553 		srv_mr = &srv_path->mrs[i];
554 
555 		if (always_invalidate)
556 			rtrs_iu_free(srv_mr->iu, srv_path->s.dev->ib_dev, 1);
557 
558 		ib_dereg_mr(srv_mr->mr);
559 		ib_dma_unmap_sg(srv_path->s.dev->ib_dev, srv_mr->sgt.sgl,
560 				srv_mr->sgt.nents, DMA_BIDIRECTIONAL);
561 		sg_free_table(&srv_mr->sgt);
562 	}
563 	kfree(srv_path->mrs);
564 }
565 
566 static int map_cont_bufs(struct rtrs_srv_path *srv_path)
567 {
568 	struct rtrs_srv_sess *srv = srv_path->srv;
569 	struct rtrs_path *ss = &srv_path->s;
570 	int i, err, mrs_num;
571 	unsigned int chunk_bits;
572 	int chunks_per_mr = 1;
573 	struct ib_mr *mr;
574 	struct sg_table *sgt;
575 
576 	/*
577 	 * Here we map queue_depth chunks to MR.  Firstly we have to
578 	 * figure out how many chunks can we map per MR.
579 	 */
580 	if (always_invalidate) {
581 		/*
582 		 * in order to do invalidate for each chunks of memory, we needs
583 		 * more memory regions.
584 		 */
585 		mrs_num = srv->queue_depth;
586 	} else {
587 		chunks_per_mr =
588 			srv_path->s.dev->ib_dev->attrs.max_fast_reg_page_list_len;
589 		mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr);
590 		chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num);
591 	}
592 
593 	srv_path->mrs = kcalloc(mrs_num, sizeof(*srv_path->mrs), GFP_KERNEL);
594 	if (!srv_path->mrs)
595 		return -ENOMEM;
596 
597 	for (srv_path->mrs_num = 0; srv_path->mrs_num < mrs_num;
598 	     srv_path->mrs_num++) {
599 		struct rtrs_srv_mr *srv_mr = &srv_path->mrs[srv_path->mrs_num];
600 		struct scatterlist *s;
601 		int nr, nr_sgt, chunks;
602 
603 		sgt = &srv_mr->sgt;
604 		chunks = chunks_per_mr * srv_path->mrs_num;
605 		if (!always_invalidate)
606 			chunks_per_mr = min_t(int, chunks_per_mr,
607 					      srv->queue_depth - chunks);
608 
609 		err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL);
610 		if (err)
611 			goto err;
612 
613 		for_each_sg(sgt->sgl, s, chunks_per_mr, i)
614 			sg_set_page(s, srv->chunks[chunks + i],
615 				    max_chunk_size, 0);
616 
617 		nr_sgt = ib_dma_map_sg(srv_path->s.dev->ib_dev, sgt->sgl,
618 				   sgt->nents, DMA_BIDIRECTIONAL);
619 		if (!nr_sgt) {
620 			err = -EINVAL;
621 			goto free_sg;
622 		}
623 		mr = ib_alloc_mr(srv_path->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
624 				 nr_sgt);
625 		if (IS_ERR(mr)) {
626 			err = PTR_ERR(mr);
627 			goto unmap_sg;
628 		}
629 		nr = ib_map_mr_sg(mr, sgt->sgl, nr_sgt,
630 				  NULL, max_chunk_size);
631 		if (nr != nr_sgt) {
632 			err = nr < 0 ? nr : -EINVAL;
633 			goto dereg_mr;
634 		}
635 
636 		if (always_invalidate) {
637 			srv_mr->iu = rtrs_iu_alloc(1,
638 					sizeof(struct rtrs_msg_rkey_rsp),
639 					GFP_KERNEL, srv_path->s.dev->ib_dev,
640 					DMA_TO_DEVICE, rtrs_srv_rdma_done);
641 			if (!srv_mr->iu) {
642 				err = -ENOMEM;
643 				rtrs_err(ss, "rtrs_iu_alloc(), err: %d\n", err);
644 				goto dereg_mr;
645 			}
646 		}
647 		/* Eventually dma addr for each chunk can be cached */
648 		for_each_sg(sgt->sgl, s, nr_sgt, i)
649 			srv_path->dma_addr[chunks + i] = sg_dma_address(s);
650 
651 		ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey));
652 		srv_mr->mr = mr;
653 	}
654 
655 	chunk_bits = ilog2(srv->queue_depth - 1) + 1;
656 	srv_path->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits);
657 
658 	return 0;
659 
660 dereg_mr:
661 	ib_dereg_mr(mr);
662 unmap_sg:
663 	ib_dma_unmap_sg(srv_path->s.dev->ib_dev, sgt->sgl,
664 			sgt->nents, DMA_BIDIRECTIONAL);
665 free_sg:
666 	sg_free_table(sgt);
667 err:
668 	unmap_cont_bufs(srv_path);
669 
670 	return err;
671 }
672 
673 static void rtrs_srv_hb_err_handler(struct rtrs_con *c)
674 {
675 	close_path(to_srv_path(c->path));
676 }
677 
678 static void rtrs_srv_init_hb(struct rtrs_srv_path *srv_path)
679 {
680 	rtrs_init_hb(&srv_path->s, &io_comp_cqe,
681 		      RTRS_HB_INTERVAL_MS,
682 		      RTRS_HB_MISSED_MAX,
683 		      rtrs_srv_hb_err_handler,
684 		      rtrs_wq);
685 }
686 
687 static void rtrs_srv_start_hb(struct rtrs_srv_path *srv_path)
688 {
689 	rtrs_start_hb(&srv_path->s);
690 }
691 
692 static void rtrs_srv_stop_hb(struct rtrs_srv_path *srv_path)
693 {
694 	rtrs_stop_hb(&srv_path->s);
695 }
696 
697 static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
698 {
699 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
700 	struct rtrs_path *s = con->c.path;
701 	struct rtrs_srv_path *srv_path = to_srv_path(s);
702 	struct rtrs_iu *iu;
703 
704 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
705 	rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1);
706 
707 	if (wc->status != IB_WC_SUCCESS) {
708 		rtrs_err(s, "Sess info response send failed: %s\n",
709 			  ib_wc_status_msg(wc->status));
710 		close_path(srv_path);
711 		return;
712 	}
713 	WARN_ON(wc->opcode != IB_WC_SEND);
714 }
715 
716 static int rtrs_srv_path_up(struct rtrs_srv_path *srv_path)
717 {
718 	struct rtrs_srv_sess *srv = srv_path->srv;
719 	struct rtrs_srv_ctx *ctx = srv->ctx;
720 	int up, ret = 0;
721 
722 	mutex_lock(&srv->paths_ev_mutex);
723 	up = ++srv->paths_up;
724 	if (up == 1)
725 		ret = ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL);
726 	mutex_unlock(&srv->paths_ev_mutex);
727 
728 	/* Mark session as established */
729 	if (!ret)
730 		srv_path->established = true;
731 
732 	return ret;
733 }
734 
735 static void rtrs_srv_path_down(struct rtrs_srv_path *srv_path)
736 {
737 	struct rtrs_srv_sess *srv = srv_path->srv;
738 	struct rtrs_srv_ctx *ctx = srv->ctx;
739 
740 	if (!srv_path->established)
741 		return;
742 
743 	srv_path->established = false;
744 	mutex_lock(&srv->paths_ev_mutex);
745 	WARN_ON(!srv->paths_up);
746 	if (--srv->paths_up == 0)
747 		ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv);
748 	mutex_unlock(&srv->paths_ev_mutex);
749 }
750 
751 static bool exist_pathname(struct rtrs_srv_ctx *ctx,
752 			   const char *pathname, const uuid_t *path_uuid)
753 {
754 	struct rtrs_srv_sess *srv;
755 	struct rtrs_srv_path *srv_path;
756 	bool found = false;
757 
758 	mutex_lock(&ctx->srv_mutex);
759 	list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
760 		mutex_lock(&srv->paths_mutex);
761 
762 		/* when a client with same uuid and same sessname tried to add a path */
763 		if (uuid_equal(&srv->paths_uuid, path_uuid)) {
764 			mutex_unlock(&srv->paths_mutex);
765 			continue;
766 		}
767 
768 		list_for_each_entry(srv_path, &srv->paths_list, s.entry) {
769 			if (strlen(srv_path->s.sessname) == strlen(pathname) &&
770 			    !strcmp(srv_path->s.sessname, pathname)) {
771 				found = true;
772 				break;
773 			}
774 		}
775 		mutex_unlock(&srv->paths_mutex);
776 		if (found)
777 			break;
778 	}
779 	mutex_unlock(&ctx->srv_mutex);
780 	return found;
781 }
782 
783 static int post_recv_path(struct rtrs_srv_path *srv_path);
784 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno);
785 
786 static int process_info_req(struct rtrs_srv_con *con,
787 			    struct rtrs_msg_info_req *msg)
788 {
789 	struct rtrs_path *s = con->c.path;
790 	struct rtrs_srv_path *srv_path = to_srv_path(s);
791 	struct ib_send_wr *reg_wr = NULL;
792 	struct rtrs_msg_info_rsp *rsp;
793 	struct rtrs_iu *tx_iu;
794 	struct ib_reg_wr *rwr;
795 	int mri, err;
796 	size_t tx_sz;
797 
798 	err = post_recv_path(srv_path);
799 	if (err) {
800 		rtrs_err(s, "post_recv_path(), err: %d\n", err);
801 		return err;
802 	}
803 
804 	if (strchr(msg->pathname, '/') || strchr(msg->pathname, '.')) {
805 		rtrs_err(s, "pathname cannot contain / and .\n");
806 		return -EINVAL;
807 	}
808 
809 	if (exist_pathname(srv_path->srv->ctx,
810 			   msg->pathname, &srv_path->srv->paths_uuid)) {
811 		rtrs_err(s, "pathname is duplicated: %s\n", msg->pathname);
812 		return -EPERM;
813 	}
814 	strscpy(srv_path->s.sessname, msg->pathname,
815 		sizeof(srv_path->s.sessname));
816 
817 	rwr = kcalloc(srv_path->mrs_num, sizeof(*rwr), GFP_KERNEL);
818 	if (!rwr)
819 		return -ENOMEM;
820 
821 	tx_sz  = sizeof(*rsp);
822 	tx_sz += sizeof(rsp->desc[0]) * srv_path->mrs_num;
823 	tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, srv_path->s.dev->ib_dev,
824 			       DMA_TO_DEVICE, rtrs_srv_info_rsp_done);
825 	if (!tx_iu) {
826 		err = -ENOMEM;
827 		goto rwr_free;
828 	}
829 
830 	rsp = tx_iu->buf;
831 	rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP);
832 	rsp->sg_cnt = cpu_to_le16(srv_path->mrs_num);
833 
834 	for (mri = 0; mri < srv_path->mrs_num; mri++) {
835 		struct ib_mr *mr = srv_path->mrs[mri].mr;
836 
837 		rsp->desc[mri].addr = cpu_to_le64(mr->iova);
838 		rsp->desc[mri].key  = cpu_to_le32(mr->rkey);
839 		rsp->desc[mri].len  = cpu_to_le32(mr->length);
840 
841 		/*
842 		 * Fill in reg MR request and chain them *backwards*
843 		 */
844 		rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL;
845 		rwr[mri].wr.opcode = IB_WR_REG_MR;
846 		rwr[mri].wr.wr_cqe = &local_reg_cqe;
847 		rwr[mri].wr.num_sge = 0;
848 		rwr[mri].wr.send_flags = 0;
849 		rwr[mri].mr = mr;
850 		rwr[mri].key = mr->rkey;
851 		rwr[mri].access = (IB_ACCESS_LOCAL_WRITE |
852 				   IB_ACCESS_REMOTE_WRITE);
853 		reg_wr = &rwr[mri].wr;
854 	}
855 
856 	err = rtrs_srv_create_path_files(srv_path);
857 	if (err)
858 		goto iu_free;
859 	kobject_get(&srv_path->kobj);
860 	get_device(&srv_path->srv->dev);
861 	err = rtrs_srv_change_state(srv_path, RTRS_SRV_CONNECTED);
862 	if (!err) {
863 		rtrs_err(s, "rtrs_srv_change_state(), err: %d\n", err);
864 		goto iu_free;
865 	}
866 
867 	rtrs_srv_start_hb(srv_path);
868 
869 	/*
870 	 * We do not account number of established connections at the current
871 	 * moment, we rely on the client, which should send info request when
872 	 * all connections are successfully established.  Thus, simply notify
873 	 * listener with a proper event if we are the first path.
874 	 */
875 	err = rtrs_srv_path_up(srv_path);
876 	if (err) {
877 		rtrs_err(s, "rtrs_srv_path_up(), err: %d\n", err);
878 		goto iu_free;
879 	}
880 
881 	ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev,
882 				      tx_iu->dma_addr,
883 				      tx_iu->size, DMA_TO_DEVICE);
884 
885 	/* Send info response */
886 	err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr);
887 	if (err) {
888 		rtrs_err(s, "rtrs_iu_post_send(), err: %d\n", err);
889 iu_free:
890 		rtrs_iu_free(tx_iu, srv_path->s.dev->ib_dev, 1);
891 	}
892 rwr_free:
893 	kfree(rwr);
894 
895 	return err;
896 }
897 
898 static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
899 {
900 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
901 	struct rtrs_path *s = con->c.path;
902 	struct rtrs_srv_path *srv_path = to_srv_path(s);
903 	struct rtrs_msg_info_req *msg;
904 	struct rtrs_iu *iu;
905 	int err;
906 
907 	WARN_ON(con->c.cid);
908 
909 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
910 	if (wc->status != IB_WC_SUCCESS) {
911 		rtrs_err(s, "Sess info request receive failed: %s\n",
912 			  ib_wc_status_msg(wc->status));
913 		goto close;
914 	}
915 	WARN_ON(wc->opcode != IB_WC_RECV);
916 
917 	if (wc->byte_len < sizeof(*msg)) {
918 		rtrs_err(s, "Sess info request is malformed: size %d\n",
919 			  wc->byte_len);
920 		goto close;
921 	}
922 	ib_dma_sync_single_for_cpu(srv_path->s.dev->ib_dev, iu->dma_addr,
923 				   iu->size, DMA_FROM_DEVICE);
924 	msg = iu->buf;
925 	if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ) {
926 		rtrs_err(s, "Sess info request is malformed: type %d\n",
927 			  le16_to_cpu(msg->type));
928 		goto close;
929 	}
930 	err = process_info_req(con, msg);
931 	if (err)
932 		goto close;
933 
934 out:
935 	rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1);
936 	return;
937 close:
938 	close_path(srv_path);
939 	goto out;
940 }
941 
942 static int post_recv_info_req(struct rtrs_srv_con *con)
943 {
944 	struct rtrs_path *s = con->c.path;
945 	struct rtrs_srv_path *srv_path = to_srv_path(s);
946 	struct rtrs_iu *rx_iu;
947 	int err;
948 
949 	rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req),
950 			       GFP_KERNEL, srv_path->s.dev->ib_dev,
951 			       DMA_FROM_DEVICE, rtrs_srv_info_req_done);
952 	if (!rx_iu)
953 		return -ENOMEM;
954 	/* Prepare for getting info response */
955 	err = rtrs_iu_post_recv(&con->c, rx_iu);
956 	if (err) {
957 		rtrs_err(s, "rtrs_iu_post_recv(), err: %d\n", err);
958 		rtrs_iu_free(rx_iu, srv_path->s.dev->ib_dev, 1);
959 		return err;
960 	}
961 
962 	return 0;
963 }
964 
965 static int post_recv_io(struct rtrs_srv_con *con, size_t q_size)
966 {
967 	int i, err;
968 
969 	for (i = 0; i < q_size; i++) {
970 		err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
971 		if (err)
972 			return err;
973 	}
974 
975 	return 0;
976 }
977 
978 static int post_recv_path(struct rtrs_srv_path *srv_path)
979 {
980 	struct rtrs_srv_sess *srv = srv_path->srv;
981 	struct rtrs_path *s = &srv_path->s;
982 	size_t q_size;
983 	int err, cid;
984 
985 	for (cid = 0; cid < srv_path->s.con_num; cid++) {
986 		if (cid == 0)
987 			q_size = SERVICE_CON_QUEUE_DEPTH;
988 		else
989 			q_size = srv->queue_depth;
990 
991 		err = post_recv_io(to_srv_con(srv_path->s.con[cid]), q_size);
992 		if (err) {
993 			rtrs_err(s, "post_recv_io(), err: %d\n", err);
994 			return err;
995 		}
996 	}
997 
998 	return 0;
999 }
1000 
1001 static void process_read(struct rtrs_srv_con *con,
1002 			 struct rtrs_msg_rdma_read *msg,
1003 			 u32 buf_id, u32 off)
1004 {
1005 	struct rtrs_path *s = con->c.path;
1006 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1007 	struct rtrs_srv_sess *srv = srv_path->srv;
1008 	struct rtrs_srv_ctx *ctx = srv->ctx;
1009 	struct rtrs_srv_op *id;
1010 
1011 	size_t usr_len, data_len;
1012 	void *data;
1013 	int ret;
1014 
1015 	if (srv_path->state != RTRS_SRV_CONNECTED) {
1016 		rtrs_err_rl(s,
1017 			     "Processing read request failed,  session is disconnected, sess state %s\n",
1018 			     rtrs_srv_state_str(srv_path->state));
1019 		return;
1020 	}
1021 	if (msg->sg_cnt != 1 && msg->sg_cnt != 0) {
1022 		rtrs_err_rl(s,
1023 			    "Processing read request failed, invalid message\n");
1024 		return;
1025 	}
1026 	rtrs_srv_get_ops_ids(srv_path);
1027 	rtrs_srv_update_rdma_stats(srv_path->stats, off, READ);
1028 	id = srv_path->ops_ids[buf_id];
1029 	id->con		= con;
1030 	id->dir		= READ;
1031 	id->msg_id	= buf_id;
1032 	id->rd_msg	= msg;
1033 	usr_len = le16_to_cpu(msg->usr_len);
1034 	data_len = off - usr_len;
1035 	data = page_address(srv->chunks[buf_id]);
1036 	ret = ctx->ops.rdma_ev(srv->priv, id, data, data_len,
1037 			   data + data_len, usr_len);
1038 
1039 	if (ret) {
1040 		rtrs_err_rl(s,
1041 			     "Processing read request failed, user module cb reported for msg_id %d, err: %d\n",
1042 			     buf_id, ret);
1043 		goto send_err_msg;
1044 	}
1045 
1046 	return;
1047 
1048 send_err_msg:
1049 	ret = send_io_resp_imm(con, id, ret);
1050 	if (ret < 0) {
1051 		rtrs_err_rl(s,
1052 			     "Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %d\n",
1053 			     buf_id, ret);
1054 		close_path(srv_path);
1055 	}
1056 	rtrs_srv_put_ops_ids(srv_path);
1057 }
1058 
1059 static void process_write(struct rtrs_srv_con *con,
1060 			  struct rtrs_msg_rdma_write *req,
1061 			  u32 buf_id, u32 off)
1062 {
1063 	struct rtrs_path *s = con->c.path;
1064 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1065 	struct rtrs_srv_sess *srv = srv_path->srv;
1066 	struct rtrs_srv_ctx *ctx = srv->ctx;
1067 	struct rtrs_srv_op *id;
1068 
1069 	size_t data_len, usr_len;
1070 	void *data;
1071 	int ret;
1072 
1073 	if (srv_path->state != RTRS_SRV_CONNECTED) {
1074 		rtrs_err_rl(s,
1075 			     "Processing write request failed,  session is disconnected, sess state %s\n",
1076 			     rtrs_srv_state_str(srv_path->state));
1077 		return;
1078 	}
1079 	rtrs_srv_get_ops_ids(srv_path);
1080 	rtrs_srv_update_rdma_stats(srv_path->stats, off, WRITE);
1081 	id = srv_path->ops_ids[buf_id];
1082 	id->con    = con;
1083 	id->dir    = WRITE;
1084 	id->msg_id = buf_id;
1085 
1086 	usr_len = le16_to_cpu(req->usr_len);
1087 	data_len = off - usr_len;
1088 	data = page_address(srv->chunks[buf_id]);
1089 	ret = ctx->ops.rdma_ev(srv->priv, id, data, data_len,
1090 			       data + data_len, usr_len);
1091 	if (ret) {
1092 		rtrs_err_rl(s,
1093 			     "Processing write request failed, user module callback reports err: %d\n",
1094 			     ret);
1095 		goto send_err_msg;
1096 	}
1097 
1098 	return;
1099 
1100 send_err_msg:
1101 	ret = send_io_resp_imm(con, id, ret);
1102 	if (ret < 0) {
1103 		rtrs_err_rl(s,
1104 			     "Processing write request failed, sending I/O response failed, msg_id %d, err: %d\n",
1105 			     buf_id, ret);
1106 		close_path(srv_path);
1107 	}
1108 	rtrs_srv_put_ops_ids(srv_path);
1109 }
1110 
1111 static void process_io_req(struct rtrs_srv_con *con, void *msg,
1112 			   u32 id, u32 off)
1113 {
1114 	struct rtrs_path *s = con->c.path;
1115 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1116 	struct rtrs_msg_rdma_hdr *hdr;
1117 	unsigned int type;
1118 
1119 	ib_dma_sync_single_for_cpu(srv_path->s.dev->ib_dev,
1120 				   srv_path->dma_addr[id],
1121 				   max_chunk_size, DMA_BIDIRECTIONAL);
1122 	hdr = msg;
1123 	type = le16_to_cpu(hdr->type);
1124 
1125 	switch (type) {
1126 	case RTRS_MSG_WRITE:
1127 		process_write(con, msg, id, off);
1128 		break;
1129 	case RTRS_MSG_READ:
1130 		process_read(con, msg, id, off);
1131 		break;
1132 	default:
1133 		rtrs_err(s,
1134 			  "Processing I/O request failed, unknown message type received: 0x%02x\n",
1135 			  type);
1136 		goto err;
1137 	}
1138 
1139 	return;
1140 
1141 err:
1142 	close_path(srv_path);
1143 }
1144 
1145 static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1146 {
1147 	struct rtrs_srv_mr *mr =
1148 		container_of(wc->wr_cqe, typeof(*mr), inv_cqe);
1149 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1150 	struct rtrs_path *s = con->c.path;
1151 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1152 	struct rtrs_srv_sess *srv = srv_path->srv;
1153 	u32 msg_id, off;
1154 	void *data;
1155 
1156 	if (wc->status != IB_WC_SUCCESS) {
1157 		rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n",
1158 			  ib_wc_status_msg(wc->status));
1159 		close_path(srv_path);
1160 	}
1161 	msg_id = mr->msg_id;
1162 	off = mr->msg_off;
1163 	data = page_address(srv->chunks[msg_id]) + off;
1164 	process_io_req(con, data, msg_id, off);
1165 }
1166 
1167 static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con,
1168 			      struct rtrs_srv_mr *mr)
1169 {
1170 	struct ib_send_wr wr = {
1171 		.opcode		    = IB_WR_LOCAL_INV,
1172 		.wr_cqe		    = &mr->inv_cqe,
1173 		.send_flags	    = IB_SEND_SIGNALED,
1174 		.ex.invalidate_rkey = mr->mr->rkey,
1175 	};
1176 	mr->inv_cqe.done = rtrs_srv_inv_rkey_done;
1177 
1178 	return ib_post_send(con->c.qp, &wr, NULL);
1179 }
1180 
1181 static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con)
1182 {
1183 	spin_lock(&con->rsp_wr_wait_lock);
1184 	while (!list_empty(&con->rsp_wr_wait_list)) {
1185 		struct rtrs_srv_op *id;
1186 		int ret;
1187 
1188 		id = list_entry(con->rsp_wr_wait_list.next,
1189 				struct rtrs_srv_op, wait_list);
1190 		list_del(&id->wait_list);
1191 
1192 		spin_unlock(&con->rsp_wr_wait_lock);
1193 		ret = rtrs_srv_resp_rdma(id, id->status);
1194 		spin_lock(&con->rsp_wr_wait_lock);
1195 
1196 		if (!ret) {
1197 			list_add(&id->wait_list, &con->rsp_wr_wait_list);
1198 			break;
1199 		}
1200 	}
1201 	spin_unlock(&con->rsp_wr_wait_lock);
1202 }
1203 
1204 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
1205 {
1206 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1207 	struct rtrs_path *s = con->c.path;
1208 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1209 	struct rtrs_srv_sess *srv = srv_path->srv;
1210 	u32 imm_type, imm_payload;
1211 	int err;
1212 
1213 	if (wc->status != IB_WC_SUCCESS) {
1214 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
1215 			rtrs_err(s,
1216 				  "%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n",
1217 				  ib_wc_status_msg(wc->status), wc->wr_cqe,
1218 				  wc->opcode, wc->vendor_err, wc->byte_len);
1219 			close_path(srv_path);
1220 		}
1221 		return;
1222 	}
1223 
1224 	switch (wc->opcode) {
1225 	case IB_WC_RECV_RDMA_WITH_IMM:
1226 		/*
1227 		 * post_recv() RDMA write completions of IO reqs (read/write)
1228 		 * and hb
1229 		 */
1230 		if (WARN_ON(wc->wr_cqe != &io_comp_cqe))
1231 			return;
1232 		err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
1233 		if (err) {
1234 			rtrs_err(s, "rtrs_post_recv(), err: %d\n", err);
1235 			close_path(srv_path);
1236 			break;
1237 		}
1238 		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
1239 			       &imm_type, &imm_payload);
1240 		if (imm_type == RTRS_IO_REQ_IMM) {
1241 			u32 msg_id, off;
1242 			void *data;
1243 
1244 			msg_id = imm_payload >> srv_path->mem_bits;
1245 			off = imm_payload & ((1 << srv_path->mem_bits) - 1);
1246 			if (msg_id >= srv->queue_depth || off >= max_chunk_size) {
1247 				rtrs_err(s, "Wrong msg_id %u, off %u\n",
1248 					  msg_id, off);
1249 				close_path(srv_path);
1250 				return;
1251 			}
1252 			if (always_invalidate) {
1253 				struct rtrs_srv_mr *mr = &srv_path->mrs[msg_id];
1254 
1255 				mr->msg_off = off;
1256 				mr->msg_id = msg_id;
1257 				err = rtrs_srv_inv_rkey(con, mr);
1258 				if (err) {
1259 					rtrs_err(s, "rtrs_post_recv(), err: %d\n",
1260 						  err);
1261 					close_path(srv_path);
1262 					break;
1263 				}
1264 			} else {
1265 				data = page_address(srv->chunks[msg_id]) + off;
1266 				process_io_req(con, data, msg_id, off);
1267 			}
1268 		} else if (imm_type == RTRS_HB_MSG_IMM) {
1269 			WARN_ON(con->c.cid);
1270 			rtrs_send_hb_ack(&srv_path->s);
1271 		} else if (imm_type == RTRS_HB_ACK_IMM) {
1272 			WARN_ON(con->c.cid);
1273 			srv_path->s.hb_missed_cnt = 0;
1274 		} else {
1275 			rtrs_wrn(s, "Unknown IMM type %u\n", imm_type);
1276 		}
1277 		break;
1278 	case IB_WC_RDMA_WRITE:
1279 	case IB_WC_SEND:
1280 		/*
1281 		 * post_send() RDMA write completions of IO reqs (read/write)
1282 		 * and hb.
1283 		 */
1284 		atomic_add(s->signal_interval, &con->c.sq_wr_avail);
1285 
1286 		if (!list_empty_careful(&con->rsp_wr_wait_list))
1287 			rtrs_rdma_process_wr_wait_list(con);
1288 
1289 		break;
1290 	default:
1291 		rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode);
1292 		return;
1293 	}
1294 }
1295 
1296 /**
1297  * rtrs_srv_get_path_name() - Get rtrs_srv peer hostname.
1298  * @srv:	Session
1299  * @pathname:	Pathname buffer
1300  * @len:	Length of sessname buffer
1301  */
1302 int rtrs_srv_get_path_name(struct rtrs_srv_sess *srv, char *pathname,
1303 			   size_t len)
1304 {
1305 	struct rtrs_srv_path *srv_path;
1306 	int err = -ENOTCONN;
1307 
1308 	mutex_lock(&srv->paths_mutex);
1309 	list_for_each_entry(srv_path, &srv->paths_list, s.entry) {
1310 		if (srv_path->state != RTRS_SRV_CONNECTED)
1311 			continue;
1312 		strscpy(pathname, srv_path->s.sessname,
1313 			min_t(size_t, sizeof(srv_path->s.sessname), len));
1314 		err = 0;
1315 		break;
1316 	}
1317 	mutex_unlock(&srv->paths_mutex);
1318 
1319 	return err;
1320 }
1321 EXPORT_SYMBOL(rtrs_srv_get_path_name);
1322 
1323 /**
1324  * rtrs_srv_get_queue_depth() - Get rtrs_srv qdepth.
1325  * @srv:	Session
1326  */
1327 int rtrs_srv_get_queue_depth(struct rtrs_srv_sess *srv)
1328 {
1329 	return srv->queue_depth;
1330 }
1331 EXPORT_SYMBOL(rtrs_srv_get_queue_depth);
1332 
1333 static int find_next_bit_ring(struct rtrs_srv_path *srv_path)
1334 {
1335 	struct ib_device *ib_dev = srv_path->s.dev->ib_dev;
1336 	int v;
1337 
1338 	v = cpumask_next(srv_path->cur_cq_vector, &cq_affinity_mask);
1339 	if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors)
1340 		v = cpumask_first(&cq_affinity_mask);
1341 	return v;
1342 }
1343 
1344 static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_path *srv_path)
1345 {
1346 	srv_path->cur_cq_vector = find_next_bit_ring(srv_path);
1347 
1348 	return srv_path->cur_cq_vector;
1349 }
1350 
1351 static void rtrs_srv_dev_release(struct device *dev)
1352 {
1353 	struct rtrs_srv_sess *srv = container_of(dev, struct rtrs_srv_sess,
1354 						 dev);
1355 
1356 	kfree(srv);
1357 }
1358 
1359 static void free_srv(struct rtrs_srv_sess *srv)
1360 {
1361 	int i;
1362 
1363 	WARN_ON(refcount_read(&srv->refcount));
1364 	for (i = 0; i < srv->queue_depth; i++)
1365 		__free_pages(srv->chunks[i], get_order(max_chunk_size));
1366 	kfree(srv->chunks);
1367 	mutex_destroy(&srv->paths_mutex);
1368 	mutex_destroy(&srv->paths_ev_mutex);
1369 	/* last put to release the srv structure */
1370 	put_device(&srv->dev);
1371 }
1372 
1373 static struct rtrs_srv_sess *get_or_create_srv(struct rtrs_srv_ctx *ctx,
1374 					  const uuid_t *paths_uuid,
1375 					  bool first_conn)
1376 {
1377 	struct rtrs_srv_sess *srv;
1378 	int i;
1379 
1380 	mutex_lock(&ctx->srv_mutex);
1381 	list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
1382 		if (uuid_equal(&srv->paths_uuid, paths_uuid) &&
1383 		    refcount_inc_not_zero(&srv->refcount)) {
1384 			mutex_unlock(&ctx->srv_mutex);
1385 			return srv;
1386 		}
1387 	}
1388 	mutex_unlock(&ctx->srv_mutex);
1389 	/*
1390 	 * If this request is not the first connection request from the
1391 	 * client for this session then fail and return error.
1392 	 */
1393 	if (!first_conn) {
1394 		pr_err_ratelimited("Error: Not the first connection request for this session\n");
1395 		return ERR_PTR(-ENXIO);
1396 	}
1397 
1398 	/* need to allocate a new srv */
1399 	srv = kzalloc(sizeof(*srv), GFP_KERNEL);
1400 	if  (!srv)
1401 		return ERR_PTR(-ENOMEM);
1402 
1403 	INIT_LIST_HEAD(&srv->paths_list);
1404 	mutex_init(&srv->paths_mutex);
1405 	mutex_init(&srv->paths_ev_mutex);
1406 	uuid_copy(&srv->paths_uuid, paths_uuid);
1407 	srv->queue_depth = sess_queue_depth;
1408 	srv->ctx = ctx;
1409 	device_initialize(&srv->dev);
1410 	srv->dev.release = rtrs_srv_dev_release;
1411 
1412 	srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks),
1413 			      GFP_KERNEL);
1414 	if (!srv->chunks)
1415 		goto err_free_srv;
1416 
1417 	for (i = 0; i < srv->queue_depth; i++) {
1418 		srv->chunks[i] = alloc_pages(GFP_KERNEL,
1419 					     get_order(max_chunk_size));
1420 		if (!srv->chunks[i])
1421 			goto err_free_chunks;
1422 	}
1423 	refcount_set(&srv->refcount, 1);
1424 	mutex_lock(&ctx->srv_mutex);
1425 	list_add(&srv->ctx_list, &ctx->srv_list);
1426 	mutex_unlock(&ctx->srv_mutex);
1427 
1428 	return srv;
1429 
1430 err_free_chunks:
1431 	while (i--)
1432 		__free_pages(srv->chunks[i], get_order(max_chunk_size));
1433 	kfree(srv->chunks);
1434 
1435 err_free_srv:
1436 	kfree(srv);
1437 	return ERR_PTR(-ENOMEM);
1438 }
1439 
1440 static void put_srv(struct rtrs_srv_sess *srv)
1441 {
1442 	if (refcount_dec_and_test(&srv->refcount)) {
1443 		struct rtrs_srv_ctx *ctx = srv->ctx;
1444 
1445 		WARN_ON(srv->dev.kobj.state_in_sysfs);
1446 
1447 		mutex_lock(&ctx->srv_mutex);
1448 		list_del(&srv->ctx_list);
1449 		mutex_unlock(&ctx->srv_mutex);
1450 		free_srv(srv);
1451 	}
1452 }
1453 
1454 static void __add_path_to_srv(struct rtrs_srv_sess *srv,
1455 			      struct rtrs_srv_path *srv_path)
1456 {
1457 	list_add_tail(&srv_path->s.entry, &srv->paths_list);
1458 	srv->paths_num++;
1459 	WARN_ON(srv->paths_num >= MAX_PATHS_NUM);
1460 }
1461 
1462 static void del_path_from_srv(struct rtrs_srv_path *srv_path)
1463 {
1464 	struct rtrs_srv_sess *srv = srv_path->srv;
1465 
1466 	if (WARN_ON(!srv))
1467 		return;
1468 
1469 	mutex_lock(&srv->paths_mutex);
1470 	list_del(&srv_path->s.entry);
1471 	WARN_ON(!srv->paths_num);
1472 	srv->paths_num--;
1473 	mutex_unlock(&srv->paths_mutex);
1474 }
1475 
1476 /* return true if addresses are the same, error other wise */
1477 static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b)
1478 {
1479 	switch (a->sa_family) {
1480 	case AF_IB:
1481 		return memcmp(&((struct sockaddr_ib *)a)->sib_addr,
1482 			      &((struct sockaddr_ib *)b)->sib_addr,
1483 			      sizeof(struct ib_addr)) &&
1484 			(b->sa_family == AF_IB);
1485 	case AF_INET:
1486 		return memcmp(&((struct sockaddr_in *)a)->sin_addr,
1487 			      &((struct sockaddr_in *)b)->sin_addr,
1488 			      sizeof(struct in_addr)) &&
1489 			(b->sa_family == AF_INET);
1490 	case AF_INET6:
1491 		return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr,
1492 			      &((struct sockaddr_in6 *)b)->sin6_addr,
1493 			      sizeof(struct in6_addr)) &&
1494 			(b->sa_family == AF_INET6);
1495 	default:
1496 		return -ENOENT;
1497 	}
1498 }
1499 
1500 static bool __is_path_w_addr_exists(struct rtrs_srv_sess *srv,
1501 				    struct rdma_addr *addr)
1502 {
1503 	struct rtrs_srv_path *srv_path;
1504 
1505 	list_for_each_entry(srv_path, &srv->paths_list, s.entry)
1506 		if (!sockaddr_cmp((struct sockaddr *)&srv_path->s.dst_addr,
1507 				  (struct sockaddr *)&addr->dst_addr) &&
1508 		    !sockaddr_cmp((struct sockaddr *)&srv_path->s.src_addr,
1509 				  (struct sockaddr *)&addr->src_addr))
1510 			return true;
1511 
1512 	return false;
1513 }
1514 
1515 static void free_path(struct rtrs_srv_path *srv_path)
1516 {
1517 	if (srv_path->kobj.state_in_sysfs) {
1518 		kobject_del(&srv_path->kobj);
1519 		kobject_put(&srv_path->kobj);
1520 	} else {
1521 		free_percpu(srv_path->stats->rdma_stats);
1522 		kfree(srv_path->stats);
1523 		kfree(srv_path);
1524 	}
1525 }
1526 
1527 static void rtrs_srv_close_work(struct work_struct *work)
1528 {
1529 	struct rtrs_srv_path *srv_path;
1530 	struct rtrs_srv_con *con;
1531 	int i;
1532 
1533 	srv_path = container_of(work, typeof(*srv_path), close_work);
1534 
1535 	rtrs_srv_stop_hb(srv_path);
1536 
1537 	for (i = 0; i < srv_path->s.con_num; i++) {
1538 		if (!srv_path->s.con[i])
1539 			continue;
1540 		con = to_srv_con(srv_path->s.con[i]);
1541 		rdma_disconnect(con->c.cm_id);
1542 		ib_drain_qp(con->c.qp);
1543 	}
1544 
1545 	/*
1546 	 * Degrade ref count to the usual model with a single shared
1547 	 * atomic_t counter
1548 	 */
1549 	percpu_ref_kill(&srv_path->ids_inflight_ref);
1550 
1551 	/* Wait for all completion */
1552 	wait_for_completion(&srv_path->complete_done);
1553 
1554 	rtrs_srv_destroy_path_files(srv_path);
1555 
1556 	/* Notify upper layer if we are the last path */
1557 	rtrs_srv_path_down(srv_path);
1558 
1559 	unmap_cont_bufs(srv_path);
1560 	rtrs_srv_free_ops_ids(srv_path);
1561 
1562 	for (i = 0; i < srv_path->s.con_num; i++) {
1563 		if (!srv_path->s.con[i])
1564 			continue;
1565 		con = to_srv_con(srv_path->s.con[i]);
1566 		rtrs_cq_qp_destroy(&con->c);
1567 		rdma_destroy_id(con->c.cm_id);
1568 		kfree(con);
1569 	}
1570 	rtrs_ib_dev_put(srv_path->s.dev);
1571 
1572 	del_path_from_srv(srv_path);
1573 	put_srv(srv_path->srv);
1574 	srv_path->srv = NULL;
1575 	rtrs_srv_change_state(srv_path, RTRS_SRV_CLOSED);
1576 
1577 	kfree(srv_path->dma_addr);
1578 	kfree(srv_path->s.con);
1579 	free_path(srv_path);
1580 }
1581 
1582 static int rtrs_rdma_do_accept(struct rtrs_srv_path *srv_path,
1583 			       struct rdma_cm_id *cm_id)
1584 {
1585 	struct rtrs_srv_sess *srv = srv_path->srv;
1586 	struct rtrs_msg_conn_rsp msg;
1587 	struct rdma_conn_param param;
1588 	int err;
1589 
1590 	param = (struct rdma_conn_param) {
1591 		.rnr_retry_count = 7,
1592 		.private_data = &msg,
1593 		.private_data_len = sizeof(msg),
1594 	};
1595 
1596 	msg = (struct rtrs_msg_conn_rsp) {
1597 		.magic = cpu_to_le16(RTRS_MAGIC),
1598 		.version = cpu_to_le16(RTRS_PROTO_VER),
1599 		.queue_depth = cpu_to_le16(srv->queue_depth),
1600 		.max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE),
1601 		.max_hdr_size = cpu_to_le32(MAX_HDR_SIZE),
1602 	};
1603 
1604 	if (always_invalidate)
1605 		msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F);
1606 
1607 	err = rdma_accept(cm_id, &param);
1608 	if (err)
1609 		pr_err("rdma_accept(), err: %d\n", err);
1610 
1611 	return err;
1612 }
1613 
1614 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno)
1615 {
1616 	struct rtrs_msg_conn_rsp msg;
1617 	int err;
1618 
1619 	msg = (struct rtrs_msg_conn_rsp) {
1620 		.magic = cpu_to_le16(RTRS_MAGIC),
1621 		.version = cpu_to_le16(RTRS_PROTO_VER),
1622 		.errno = cpu_to_le16(errno),
1623 	};
1624 
1625 	err = rdma_reject(cm_id, &msg, sizeof(msg), IB_CM_REJ_CONSUMER_DEFINED);
1626 	if (err)
1627 		pr_err("rdma_reject(), err: %d\n", err);
1628 
1629 	/* Bounce errno back */
1630 	return errno;
1631 }
1632 
1633 static struct rtrs_srv_path *
1634 __find_path(struct rtrs_srv_sess *srv, const uuid_t *sess_uuid)
1635 {
1636 	struct rtrs_srv_path *srv_path;
1637 
1638 	list_for_each_entry(srv_path, &srv->paths_list, s.entry) {
1639 		if (uuid_equal(&srv_path->s.uuid, sess_uuid))
1640 			return srv_path;
1641 	}
1642 
1643 	return NULL;
1644 }
1645 
1646 static int create_con(struct rtrs_srv_path *srv_path,
1647 		      struct rdma_cm_id *cm_id,
1648 		      unsigned int cid)
1649 {
1650 	struct rtrs_srv_sess *srv = srv_path->srv;
1651 	struct rtrs_path *s = &srv_path->s;
1652 	struct rtrs_srv_con *con;
1653 
1654 	u32 cq_num, max_send_wr, max_recv_wr, wr_limit;
1655 	int err, cq_vector;
1656 
1657 	con = kzalloc(sizeof(*con), GFP_KERNEL);
1658 	if (!con) {
1659 		err = -ENOMEM;
1660 		goto err;
1661 	}
1662 
1663 	spin_lock_init(&con->rsp_wr_wait_lock);
1664 	INIT_LIST_HEAD(&con->rsp_wr_wait_list);
1665 	con->c.cm_id = cm_id;
1666 	con->c.path = &srv_path->s;
1667 	con->c.cid = cid;
1668 	atomic_set(&con->c.wr_cnt, 1);
1669 	wr_limit = srv_path->s.dev->ib_dev->attrs.max_qp_wr;
1670 
1671 	if (con->c.cid == 0) {
1672 		/*
1673 		 * All receive and all send (each requiring invalidate)
1674 		 * + 2 for drain and heartbeat
1675 		 */
1676 		max_send_wr = min_t(int, wr_limit,
1677 				    SERVICE_CON_QUEUE_DEPTH * 2 + 2);
1678 		max_recv_wr = max_send_wr;
1679 		s->signal_interval = min_not_zero(srv->queue_depth,
1680 						  (size_t)SERVICE_CON_QUEUE_DEPTH);
1681 	} else {
1682 		/* when always_invlaidate enalbed, we need linv+rinv+mr+imm */
1683 		if (always_invalidate)
1684 			max_send_wr =
1685 				min_t(int, wr_limit,
1686 				      srv->queue_depth * (1 + 4) + 1);
1687 		else
1688 			max_send_wr =
1689 				min_t(int, wr_limit,
1690 				      srv->queue_depth * (1 + 2) + 1);
1691 
1692 		max_recv_wr = srv->queue_depth + 1;
1693 	}
1694 	cq_num = max_send_wr + max_recv_wr;
1695 	atomic_set(&con->c.sq_wr_avail, max_send_wr);
1696 	cq_vector = rtrs_srv_get_next_cq_vector(srv_path);
1697 
1698 	/* TODO: SOFTIRQ can be faster, but be careful with softirq context */
1699 	err = rtrs_cq_qp_create(&srv_path->s, &con->c, 1, cq_vector, cq_num,
1700 				 max_send_wr, max_recv_wr,
1701 				 IB_POLL_WORKQUEUE);
1702 	if (err) {
1703 		rtrs_err(s, "rtrs_cq_qp_create(), err: %d\n", err);
1704 		goto free_con;
1705 	}
1706 	if (con->c.cid == 0) {
1707 		err = post_recv_info_req(con);
1708 		if (err)
1709 			goto free_cqqp;
1710 	}
1711 	WARN_ON(srv_path->s.con[cid]);
1712 	srv_path->s.con[cid] = &con->c;
1713 
1714 	/*
1715 	 * Change context from server to current connection.  The other
1716 	 * way is to use cm_id->qp->qp_context, which does not work on OFED.
1717 	 */
1718 	cm_id->context = &con->c;
1719 
1720 	return 0;
1721 
1722 free_cqqp:
1723 	rtrs_cq_qp_destroy(&con->c);
1724 free_con:
1725 	kfree(con);
1726 
1727 err:
1728 	return err;
1729 }
1730 
1731 static struct rtrs_srv_path *__alloc_path(struct rtrs_srv_sess *srv,
1732 					   struct rdma_cm_id *cm_id,
1733 					   unsigned int con_num,
1734 					   unsigned int recon_cnt,
1735 					   const uuid_t *uuid)
1736 {
1737 	struct rtrs_srv_path *srv_path;
1738 	int err = -ENOMEM;
1739 	char str[NAME_MAX];
1740 	struct rtrs_addr path;
1741 
1742 	if (srv->paths_num >= MAX_PATHS_NUM) {
1743 		err = -ECONNRESET;
1744 		goto err;
1745 	}
1746 	if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) {
1747 		err = -EEXIST;
1748 		pr_err("Path with same addr exists\n");
1749 		goto err;
1750 	}
1751 	srv_path = kzalloc(sizeof(*srv_path), GFP_KERNEL);
1752 	if (!srv_path)
1753 		goto err;
1754 
1755 	srv_path->stats = kzalloc(sizeof(*srv_path->stats), GFP_KERNEL);
1756 	if (!srv_path->stats)
1757 		goto err_free_sess;
1758 
1759 	srv_path->stats->rdma_stats = alloc_percpu(struct rtrs_srv_stats_rdma_stats);
1760 	if (!srv_path->stats->rdma_stats)
1761 		goto err_free_stats;
1762 
1763 	srv_path->stats->srv_path = srv_path;
1764 
1765 	srv_path->dma_addr = kcalloc(srv->queue_depth,
1766 				     sizeof(*srv_path->dma_addr),
1767 				     GFP_KERNEL);
1768 	if (!srv_path->dma_addr)
1769 		goto err_free_percpu;
1770 
1771 	srv_path->s.con = kcalloc(con_num, sizeof(*srv_path->s.con),
1772 				  GFP_KERNEL);
1773 	if (!srv_path->s.con)
1774 		goto err_free_dma_addr;
1775 
1776 	srv_path->state = RTRS_SRV_CONNECTING;
1777 	srv_path->srv = srv;
1778 	srv_path->cur_cq_vector = -1;
1779 	srv_path->s.dst_addr = cm_id->route.addr.dst_addr;
1780 	srv_path->s.src_addr = cm_id->route.addr.src_addr;
1781 
1782 	/* temporary until receiving session-name from client */
1783 	path.src = &srv_path->s.src_addr;
1784 	path.dst = &srv_path->s.dst_addr;
1785 	rtrs_addr_to_str(&path, str, sizeof(str));
1786 	strscpy(srv_path->s.sessname, str, sizeof(srv_path->s.sessname));
1787 
1788 	srv_path->s.con_num = con_num;
1789 	srv_path->s.irq_con_num = con_num;
1790 	srv_path->s.recon_cnt = recon_cnt;
1791 	uuid_copy(&srv_path->s.uuid, uuid);
1792 	spin_lock_init(&srv_path->state_lock);
1793 	INIT_WORK(&srv_path->close_work, rtrs_srv_close_work);
1794 	rtrs_srv_init_hb(srv_path);
1795 
1796 	srv_path->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd);
1797 	if (!srv_path->s.dev) {
1798 		err = -ENOMEM;
1799 		goto err_free_con;
1800 	}
1801 	err = map_cont_bufs(srv_path);
1802 	if (err)
1803 		goto err_put_dev;
1804 
1805 	err = rtrs_srv_alloc_ops_ids(srv_path);
1806 	if (err)
1807 		goto err_unmap_bufs;
1808 
1809 	__add_path_to_srv(srv, srv_path);
1810 
1811 	return srv_path;
1812 
1813 err_unmap_bufs:
1814 	unmap_cont_bufs(srv_path);
1815 err_put_dev:
1816 	rtrs_ib_dev_put(srv_path->s.dev);
1817 err_free_con:
1818 	kfree(srv_path->s.con);
1819 err_free_dma_addr:
1820 	kfree(srv_path->dma_addr);
1821 err_free_percpu:
1822 	free_percpu(srv_path->stats->rdma_stats);
1823 err_free_stats:
1824 	kfree(srv_path->stats);
1825 err_free_sess:
1826 	kfree(srv_path);
1827 err:
1828 	return ERR_PTR(err);
1829 }
1830 
1831 static int rtrs_rdma_connect(struct rdma_cm_id *cm_id,
1832 			      const struct rtrs_msg_conn_req *msg,
1833 			      size_t len)
1834 {
1835 	struct rtrs_srv_ctx *ctx = cm_id->context;
1836 	struct rtrs_srv_path *srv_path;
1837 	struct rtrs_srv_sess *srv;
1838 
1839 	u16 version, con_num, cid;
1840 	u16 recon_cnt;
1841 	int err = -ECONNRESET;
1842 
1843 	if (len < sizeof(*msg)) {
1844 		pr_err("Invalid RTRS connection request\n");
1845 		goto reject_w_err;
1846 	}
1847 	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1848 		pr_err("Invalid RTRS magic\n");
1849 		goto reject_w_err;
1850 	}
1851 	version = le16_to_cpu(msg->version);
1852 	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1853 		pr_err("Unsupported major RTRS version: %d, expected %d\n",
1854 		       version >> 8, RTRS_PROTO_VER_MAJOR);
1855 		goto reject_w_err;
1856 	}
1857 	con_num = le16_to_cpu(msg->cid_num);
1858 	if (con_num > 4096) {
1859 		/* Sanity check */
1860 		pr_err("Too many connections requested: %d\n", con_num);
1861 		goto reject_w_err;
1862 	}
1863 	cid = le16_to_cpu(msg->cid);
1864 	if (cid >= con_num) {
1865 		/* Sanity check */
1866 		pr_err("Incorrect cid: %d >= %d\n", cid, con_num);
1867 		goto reject_w_err;
1868 	}
1869 	recon_cnt = le16_to_cpu(msg->recon_cnt);
1870 	srv = get_or_create_srv(ctx, &msg->paths_uuid, msg->first_conn);
1871 	if (IS_ERR(srv)) {
1872 		err = PTR_ERR(srv);
1873 		pr_err("get_or_create_srv(), error %d\n", err);
1874 		goto reject_w_err;
1875 	}
1876 	mutex_lock(&srv->paths_mutex);
1877 	srv_path = __find_path(srv, &msg->sess_uuid);
1878 	if (srv_path) {
1879 		struct rtrs_path *s = &srv_path->s;
1880 
1881 		/* Session already holds a reference */
1882 		put_srv(srv);
1883 
1884 		if (srv_path->state != RTRS_SRV_CONNECTING) {
1885 			rtrs_err(s, "Session in wrong state: %s\n",
1886 				  rtrs_srv_state_str(srv_path->state));
1887 			mutex_unlock(&srv->paths_mutex);
1888 			goto reject_w_err;
1889 		}
1890 		/*
1891 		 * Sanity checks
1892 		 */
1893 		if (con_num != s->con_num || cid >= s->con_num) {
1894 			rtrs_err(s, "Incorrect request: %d, %d\n",
1895 				  cid, con_num);
1896 			mutex_unlock(&srv->paths_mutex);
1897 			goto reject_w_err;
1898 		}
1899 		if (s->con[cid]) {
1900 			rtrs_err(s, "Connection already exists: %d\n",
1901 				  cid);
1902 			mutex_unlock(&srv->paths_mutex);
1903 			goto reject_w_err;
1904 		}
1905 	} else {
1906 		srv_path = __alloc_path(srv, cm_id, con_num, recon_cnt,
1907 				    &msg->sess_uuid);
1908 		if (IS_ERR(srv_path)) {
1909 			mutex_unlock(&srv->paths_mutex);
1910 			put_srv(srv);
1911 			err = PTR_ERR(srv_path);
1912 			pr_err("RTRS server session allocation failed: %d\n", err);
1913 			goto reject_w_err;
1914 		}
1915 	}
1916 	err = create_con(srv_path, cm_id, cid);
1917 	if (err) {
1918 		rtrs_err((&srv_path->s), "create_con(), error %d\n", err);
1919 		rtrs_rdma_do_reject(cm_id, err);
1920 		/*
1921 		 * Since session has other connections we follow normal way
1922 		 * through workqueue, but still return an error to tell cma.c
1923 		 * to call rdma_destroy_id() for current connection.
1924 		 */
1925 		goto close_and_return_err;
1926 	}
1927 	err = rtrs_rdma_do_accept(srv_path, cm_id);
1928 	if (err) {
1929 		rtrs_err((&srv_path->s), "rtrs_rdma_do_accept(), error %d\n", err);
1930 		rtrs_rdma_do_reject(cm_id, err);
1931 		/*
1932 		 * Since current connection was successfully added to the
1933 		 * session we follow normal way through workqueue to close the
1934 		 * session, thus return 0 to tell cma.c we call
1935 		 * rdma_destroy_id() ourselves.
1936 		 */
1937 		err = 0;
1938 		goto close_and_return_err;
1939 	}
1940 	mutex_unlock(&srv->paths_mutex);
1941 
1942 	return 0;
1943 
1944 reject_w_err:
1945 	return rtrs_rdma_do_reject(cm_id, err);
1946 
1947 close_and_return_err:
1948 	mutex_unlock(&srv->paths_mutex);
1949 	close_path(srv_path);
1950 
1951 	return err;
1952 }
1953 
1954 static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id,
1955 				     struct rdma_cm_event *ev)
1956 {
1957 	struct rtrs_srv_path *srv_path = NULL;
1958 	struct rtrs_path *s = NULL;
1959 	struct rtrs_con *c = NULL;
1960 
1961 	if (ev->event == RDMA_CM_EVENT_CONNECT_REQUEST)
1962 		/*
1963 		 * In case of error cma.c will destroy cm_id,
1964 		 * see cma_process_remove()
1965 		 */
1966 		return rtrs_rdma_connect(cm_id, ev->param.conn.private_data,
1967 					  ev->param.conn.private_data_len);
1968 
1969 	c = cm_id->context;
1970 	s = c->path;
1971 	srv_path = to_srv_path(s);
1972 
1973 	switch (ev->event) {
1974 	case RDMA_CM_EVENT_ESTABLISHED:
1975 		/* Nothing here */
1976 		break;
1977 	case RDMA_CM_EVENT_REJECTED:
1978 	case RDMA_CM_EVENT_CONNECT_ERROR:
1979 	case RDMA_CM_EVENT_UNREACHABLE:
1980 		rtrs_err(s, "CM error (CM event: %s, err: %d)\n",
1981 			  rdma_event_msg(ev->event), ev->status);
1982 		fallthrough;
1983 	case RDMA_CM_EVENT_DISCONNECTED:
1984 	case RDMA_CM_EVENT_ADDR_CHANGE:
1985 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1986 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1987 		close_path(srv_path);
1988 		break;
1989 	default:
1990 		pr_err("Ignoring unexpected CM event %s, err %d\n",
1991 		       rdma_event_msg(ev->event), ev->status);
1992 		break;
1993 	}
1994 
1995 	return 0;
1996 }
1997 
1998 static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx,
1999 					    struct sockaddr *addr,
2000 					    enum rdma_ucm_port_space ps)
2001 {
2002 	struct rdma_cm_id *cm_id;
2003 	int ret;
2004 
2005 	cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler,
2006 			       ctx, ps, IB_QPT_RC);
2007 	if (IS_ERR(cm_id)) {
2008 		ret = PTR_ERR(cm_id);
2009 		pr_err("Creating id for RDMA connection failed, err: %d\n",
2010 		       ret);
2011 		goto err_out;
2012 	}
2013 	ret = rdma_bind_addr(cm_id, addr);
2014 	if (ret) {
2015 		pr_err("Binding RDMA address failed, err: %d\n", ret);
2016 		goto err_cm;
2017 	}
2018 	ret = rdma_listen(cm_id, 64);
2019 	if (ret) {
2020 		pr_err("Listening on RDMA connection failed, err: %d\n",
2021 		       ret);
2022 		goto err_cm;
2023 	}
2024 
2025 	return cm_id;
2026 
2027 err_cm:
2028 	rdma_destroy_id(cm_id);
2029 err_out:
2030 
2031 	return ERR_PTR(ret);
2032 }
2033 
2034 static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port)
2035 {
2036 	struct sockaddr_in6 sin = {
2037 		.sin6_family	= AF_INET6,
2038 		.sin6_addr	= IN6ADDR_ANY_INIT,
2039 		.sin6_port	= htons(port),
2040 	};
2041 	struct sockaddr_ib sib = {
2042 		.sib_family			= AF_IB,
2043 		.sib_sid	= cpu_to_be64(RDMA_IB_IP_PS_IB | port),
2044 		.sib_sid_mask	= cpu_to_be64(0xffffffffffffffffULL),
2045 		.sib_pkey	= cpu_to_be16(0xffff),
2046 	};
2047 	struct rdma_cm_id *cm_ip, *cm_ib;
2048 	int ret;
2049 
2050 	/*
2051 	 * We accept both IPoIB and IB connections, so we need to keep
2052 	 * two cm id's, one for each socket type and port space.
2053 	 * If the cm initialization of one of the id's fails, we abort
2054 	 * everything.
2055 	 */
2056 	cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP);
2057 	if (IS_ERR(cm_ip))
2058 		return PTR_ERR(cm_ip);
2059 
2060 	cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB);
2061 	if (IS_ERR(cm_ib)) {
2062 		ret = PTR_ERR(cm_ib);
2063 		goto free_cm_ip;
2064 	}
2065 
2066 	ctx->cm_id_ip = cm_ip;
2067 	ctx->cm_id_ib = cm_ib;
2068 
2069 	return 0;
2070 
2071 free_cm_ip:
2072 	rdma_destroy_id(cm_ip);
2073 
2074 	return ret;
2075 }
2076 
2077 static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops)
2078 {
2079 	struct rtrs_srv_ctx *ctx;
2080 
2081 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2082 	if (!ctx)
2083 		return NULL;
2084 
2085 	ctx->ops = *ops;
2086 	mutex_init(&ctx->srv_mutex);
2087 	INIT_LIST_HEAD(&ctx->srv_list);
2088 
2089 	return ctx;
2090 }
2091 
2092 static void free_srv_ctx(struct rtrs_srv_ctx *ctx)
2093 {
2094 	WARN_ON(!list_empty(&ctx->srv_list));
2095 	mutex_destroy(&ctx->srv_mutex);
2096 	kfree(ctx);
2097 }
2098 
2099 static int rtrs_srv_add_one(struct ib_device *device)
2100 {
2101 	struct rtrs_srv_ctx *ctx;
2102 	int ret = 0;
2103 
2104 	mutex_lock(&ib_ctx.ib_dev_mutex);
2105 	if (ib_ctx.ib_dev_count)
2106 		goto out;
2107 
2108 	/*
2109 	 * Since our CM IDs are NOT bound to any ib device we will create them
2110 	 * only once
2111 	 */
2112 	ctx = ib_ctx.srv_ctx;
2113 	ret = rtrs_srv_rdma_init(ctx, ib_ctx.port);
2114 	if (ret) {
2115 		/*
2116 		 * We errored out here.
2117 		 * According to the ib code, if we encounter an error here then the
2118 		 * error code is ignored, and no more calls to our ops are made.
2119 		 */
2120 		pr_err("Failed to initialize RDMA connection");
2121 		goto err_out;
2122 	}
2123 
2124 out:
2125 	/*
2126 	 * Keep a track on the number of ib devices added
2127 	 */
2128 	ib_ctx.ib_dev_count++;
2129 
2130 err_out:
2131 	mutex_unlock(&ib_ctx.ib_dev_mutex);
2132 	return ret;
2133 }
2134 
2135 static void rtrs_srv_remove_one(struct ib_device *device, void *client_data)
2136 {
2137 	struct rtrs_srv_ctx *ctx;
2138 
2139 	mutex_lock(&ib_ctx.ib_dev_mutex);
2140 	ib_ctx.ib_dev_count--;
2141 
2142 	if (ib_ctx.ib_dev_count)
2143 		goto out;
2144 
2145 	/*
2146 	 * Since our CM IDs are NOT bound to any ib device we will remove them
2147 	 * only once, when the last device is removed
2148 	 */
2149 	ctx = ib_ctx.srv_ctx;
2150 	rdma_destroy_id(ctx->cm_id_ip);
2151 	rdma_destroy_id(ctx->cm_id_ib);
2152 
2153 out:
2154 	mutex_unlock(&ib_ctx.ib_dev_mutex);
2155 }
2156 
2157 static struct ib_client rtrs_srv_client = {
2158 	.name	= "rtrs_server",
2159 	.add	= rtrs_srv_add_one,
2160 	.remove	= rtrs_srv_remove_one
2161 };
2162 
2163 /**
2164  * rtrs_srv_open() - open RTRS server context
2165  * @ops:		callback functions
2166  * @port:               port to listen on
2167  *
2168  * Creates server context with specified callbacks.
2169  *
2170  * Return a valid pointer on success otherwise PTR_ERR.
2171  */
2172 struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port)
2173 {
2174 	struct rtrs_srv_ctx *ctx;
2175 	int err;
2176 
2177 	ctx = alloc_srv_ctx(ops);
2178 	if (!ctx)
2179 		return ERR_PTR(-ENOMEM);
2180 
2181 	mutex_init(&ib_ctx.ib_dev_mutex);
2182 	ib_ctx.srv_ctx = ctx;
2183 	ib_ctx.port = port;
2184 
2185 	err = ib_register_client(&rtrs_srv_client);
2186 	if (err) {
2187 		free_srv_ctx(ctx);
2188 		return ERR_PTR(err);
2189 	}
2190 
2191 	return ctx;
2192 }
2193 EXPORT_SYMBOL(rtrs_srv_open);
2194 
2195 static void close_paths(struct rtrs_srv_sess *srv)
2196 {
2197 	struct rtrs_srv_path *srv_path;
2198 
2199 	mutex_lock(&srv->paths_mutex);
2200 	list_for_each_entry(srv_path, &srv->paths_list, s.entry)
2201 		close_path(srv_path);
2202 	mutex_unlock(&srv->paths_mutex);
2203 }
2204 
2205 static void close_ctx(struct rtrs_srv_ctx *ctx)
2206 {
2207 	struct rtrs_srv_sess *srv;
2208 
2209 	mutex_lock(&ctx->srv_mutex);
2210 	list_for_each_entry(srv, &ctx->srv_list, ctx_list)
2211 		close_paths(srv);
2212 	mutex_unlock(&ctx->srv_mutex);
2213 	flush_workqueue(rtrs_wq);
2214 }
2215 
2216 /**
2217  * rtrs_srv_close() - close RTRS server context
2218  * @ctx: pointer to server context
2219  *
2220  * Closes RTRS server context with all client sessions.
2221  */
2222 void rtrs_srv_close(struct rtrs_srv_ctx *ctx)
2223 {
2224 	ib_unregister_client(&rtrs_srv_client);
2225 	mutex_destroy(&ib_ctx.ib_dev_mutex);
2226 	close_ctx(ctx);
2227 	free_srv_ctx(ctx);
2228 }
2229 EXPORT_SYMBOL(rtrs_srv_close);
2230 
2231 static int check_module_params(void)
2232 {
2233 	if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) {
2234 		pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n",
2235 		       sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH);
2236 		return -EINVAL;
2237 	}
2238 	if (max_chunk_size < MIN_CHUNK_SIZE || !is_power_of_2(max_chunk_size)) {
2239 		pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n",
2240 		       max_chunk_size, MIN_CHUNK_SIZE);
2241 		return -EINVAL;
2242 	}
2243 
2244 	/*
2245 	 * Check if IB immediate data size is enough to hold the mem_id and the
2246 	 * offset inside the memory chunk
2247 	 */
2248 	if ((ilog2(sess_queue_depth - 1) + 1) +
2249 	    (ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) {
2250 		pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n",
2251 		       MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size);
2252 		return -EINVAL;
2253 	}
2254 
2255 	return 0;
2256 }
2257 
2258 static int __init rtrs_server_init(void)
2259 {
2260 	int err;
2261 
2262 	pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n",
2263 		KBUILD_MODNAME, RTRS_PROTO_VER_STRING,
2264 		max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE,
2265 		sess_queue_depth, always_invalidate);
2266 
2267 	rtrs_rdma_dev_pd_init(0, &dev_pd);
2268 
2269 	err = check_module_params();
2270 	if (err) {
2271 		pr_err("Failed to load module, invalid module parameters, err: %d\n",
2272 		       err);
2273 		return err;
2274 	}
2275 	err = class_register(&rtrs_dev_class);
2276 	if (err)
2277 		goto out_err;
2278 
2279 	rtrs_wq = alloc_workqueue("rtrs_server_wq", 0, 0);
2280 	if (!rtrs_wq) {
2281 		err = -ENOMEM;
2282 		goto out_dev_class;
2283 	}
2284 
2285 	return 0;
2286 
2287 out_dev_class:
2288 	class_unregister(&rtrs_dev_class);
2289 out_err:
2290 	return err;
2291 }
2292 
2293 static void __exit rtrs_server_exit(void)
2294 {
2295 	destroy_workqueue(rtrs_wq);
2296 	class_unregister(&rtrs_dev_class);
2297 	rtrs_rdma_dev_pd_deinit(&dev_pd);
2298 }
2299 
2300 module_init(rtrs_server_init);
2301 module_exit(rtrs_server_exit);
2302