1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * RDMA Transport Layer 4 * 5 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved. 6 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved. 7 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved. 8 */ 9 10 #undef pr_fmt 11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt 12 13 #include <linux/module.h> 14 15 #include "rtrs-srv.h" 16 #include "rtrs-log.h" 17 #include <rdma/ib_cm.h> 18 #include <rdma/ib_verbs.h> 19 #include "rtrs-srv-trace.h" 20 21 MODULE_DESCRIPTION("RDMA Transport Server"); 22 MODULE_LICENSE("GPL"); 23 24 /* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */ 25 #define DEFAULT_MAX_CHUNK_SIZE (128 << 10) 26 #define DEFAULT_SESS_QUEUE_DEPTH 512 27 #define MAX_HDR_SIZE PAGE_SIZE 28 29 static struct rtrs_rdma_dev_pd dev_pd; 30 struct class *rtrs_dev_class; 31 static struct rtrs_srv_ib_ctx ib_ctx; 32 33 static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE; 34 static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH; 35 36 static bool always_invalidate = true; 37 module_param(always_invalidate, bool, 0444); 38 MODULE_PARM_DESC(always_invalidate, 39 "Invalidate memory registration for contiguous memory regions before accessing."); 40 41 module_param_named(max_chunk_size, max_chunk_size, int, 0444); 42 MODULE_PARM_DESC(max_chunk_size, 43 "Max size for each IO request, when change the unit is in byte (default: " 44 __stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)"); 45 46 module_param_named(sess_queue_depth, sess_queue_depth, int, 0444); 47 MODULE_PARM_DESC(sess_queue_depth, 48 "Number of buffers for pending I/O requests to allocate per session. Maximum: " 49 __stringify(MAX_SESS_QUEUE_DEPTH) " (default: " 50 __stringify(DEFAULT_SESS_QUEUE_DEPTH) ")"); 51 52 static cpumask_t cq_affinity_mask = { CPU_BITS_ALL }; 53 54 static struct workqueue_struct *rtrs_wq; 55 56 static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c) 57 { 58 return container_of(c, struct rtrs_srv_con, c); 59 } 60 61 static bool rtrs_srv_change_state(struct rtrs_srv_path *srv_path, 62 enum rtrs_srv_state new_state) 63 { 64 enum rtrs_srv_state old_state; 65 bool changed = false; 66 67 spin_lock_irq(&srv_path->state_lock); 68 old_state = srv_path->state; 69 switch (new_state) { 70 case RTRS_SRV_CONNECTED: 71 if (old_state == RTRS_SRV_CONNECTING) 72 changed = true; 73 break; 74 case RTRS_SRV_CLOSING: 75 if (old_state == RTRS_SRV_CONNECTING || 76 old_state == RTRS_SRV_CONNECTED) 77 changed = true; 78 break; 79 case RTRS_SRV_CLOSED: 80 if (old_state == RTRS_SRV_CLOSING) 81 changed = true; 82 break; 83 default: 84 break; 85 } 86 if (changed) 87 srv_path->state = new_state; 88 spin_unlock_irq(&srv_path->state_lock); 89 90 return changed; 91 } 92 93 static void free_id(struct rtrs_srv_op *id) 94 { 95 if (!id) 96 return; 97 kfree(id); 98 } 99 100 static void rtrs_srv_free_ops_ids(struct rtrs_srv_path *srv_path) 101 { 102 struct rtrs_srv_sess *srv = srv_path->srv; 103 int i; 104 105 if (srv_path->ops_ids) { 106 for (i = 0; i < srv->queue_depth; i++) 107 free_id(srv_path->ops_ids[i]); 108 kfree(srv_path->ops_ids); 109 srv_path->ops_ids = NULL; 110 } 111 } 112 113 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc); 114 115 static struct ib_cqe io_comp_cqe = { 116 .done = rtrs_srv_rdma_done 117 }; 118 119 static inline void rtrs_srv_inflight_ref_release(struct percpu_ref *ref) 120 { 121 struct rtrs_srv_path *srv_path = container_of(ref, 122 struct rtrs_srv_path, 123 ids_inflight_ref); 124 125 percpu_ref_exit(&srv_path->ids_inflight_ref); 126 complete(&srv_path->complete_done); 127 } 128 129 static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_path *srv_path) 130 { 131 struct rtrs_srv_sess *srv = srv_path->srv; 132 struct rtrs_srv_op *id; 133 int i, ret; 134 135 srv_path->ops_ids = kcalloc(srv->queue_depth, 136 sizeof(*srv_path->ops_ids), 137 GFP_KERNEL); 138 if (!srv_path->ops_ids) 139 goto err; 140 141 for (i = 0; i < srv->queue_depth; ++i) { 142 id = kzalloc(sizeof(*id), GFP_KERNEL); 143 if (!id) 144 goto err; 145 146 srv_path->ops_ids[i] = id; 147 } 148 149 ret = percpu_ref_init(&srv_path->ids_inflight_ref, 150 rtrs_srv_inflight_ref_release, 0, GFP_KERNEL); 151 if (ret) { 152 pr_err("Percpu reference init failed\n"); 153 goto err; 154 } 155 init_completion(&srv_path->complete_done); 156 157 return 0; 158 159 err: 160 rtrs_srv_free_ops_ids(srv_path); 161 return -ENOMEM; 162 } 163 164 static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_path *srv_path) 165 { 166 percpu_ref_get(&srv_path->ids_inflight_ref); 167 } 168 169 static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_path *srv_path) 170 { 171 percpu_ref_put(&srv_path->ids_inflight_ref); 172 } 173 174 static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc) 175 { 176 struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context); 177 struct rtrs_path *s = con->c.path; 178 struct rtrs_srv_path *srv_path = to_srv_path(s); 179 180 if (wc->status != IB_WC_SUCCESS) { 181 rtrs_err(s, "REG MR failed: %s\n", 182 ib_wc_status_msg(wc->status)); 183 close_path(srv_path); 184 return; 185 } 186 } 187 188 static struct ib_cqe local_reg_cqe = { 189 .done = rtrs_srv_reg_mr_done 190 }; 191 192 static int rdma_write_sg(struct rtrs_srv_op *id) 193 { 194 struct rtrs_path *s = id->con->c.path; 195 struct rtrs_srv_path *srv_path = to_srv_path(s); 196 dma_addr_t dma_addr = srv_path->dma_addr[id->msg_id]; 197 struct rtrs_srv_mr *srv_mr; 198 struct ib_send_wr inv_wr; 199 struct ib_rdma_wr imm_wr; 200 struct ib_rdma_wr *wr = NULL; 201 enum ib_send_flags flags; 202 size_t sg_cnt; 203 int err, offset; 204 bool need_inval; 205 u32 rkey = 0; 206 struct ib_reg_wr rwr; 207 struct ib_sge *plist; 208 struct ib_sge list; 209 210 sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt); 211 need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F; 212 if (sg_cnt != 1) 213 return -EINVAL; 214 215 offset = 0; 216 217 wr = &id->tx_wr; 218 plist = &id->tx_sg; 219 plist->addr = dma_addr + offset; 220 plist->length = le32_to_cpu(id->rd_msg->desc[0].len); 221 222 /* WR will fail with length error 223 * if this is 0 224 */ 225 if (plist->length == 0) { 226 rtrs_err(s, "Invalid RDMA-Write sg list length 0\n"); 227 return -EINVAL; 228 } 229 230 plist->lkey = srv_path->s.dev->ib_pd->local_dma_lkey; 231 offset += plist->length; 232 233 wr->wr.sg_list = plist; 234 wr->wr.num_sge = 1; 235 wr->remote_addr = le64_to_cpu(id->rd_msg->desc[0].addr); 236 wr->rkey = le32_to_cpu(id->rd_msg->desc[0].key); 237 if (rkey == 0) 238 rkey = wr->rkey; 239 else 240 /* Only one key is actually used */ 241 WARN_ON_ONCE(rkey != wr->rkey); 242 243 wr->wr.opcode = IB_WR_RDMA_WRITE; 244 wr->wr.wr_cqe = &io_comp_cqe; 245 wr->wr.ex.imm_data = 0; 246 wr->wr.send_flags = 0; 247 248 if (need_inval && always_invalidate) { 249 wr->wr.next = &rwr.wr; 250 rwr.wr.next = &inv_wr; 251 inv_wr.next = &imm_wr.wr; 252 } else if (always_invalidate) { 253 wr->wr.next = &rwr.wr; 254 rwr.wr.next = &imm_wr.wr; 255 } else if (need_inval) { 256 wr->wr.next = &inv_wr; 257 inv_wr.next = &imm_wr.wr; 258 } else { 259 wr->wr.next = &imm_wr.wr; 260 } 261 /* 262 * From time to time we have to post signaled sends, 263 * or send queue will fill up and only QP reset can help. 264 */ 265 flags = (atomic_inc_return(&id->con->c.wr_cnt) % s->signal_interval) ? 266 0 : IB_SEND_SIGNALED; 267 268 if (need_inval) { 269 inv_wr.sg_list = NULL; 270 inv_wr.num_sge = 0; 271 inv_wr.opcode = IB_WR_SEND_WITH_INV; 272 inv_wr.wr_cqe = &io_comp_cqe; 273 inv_wr.send_flags = 0; 274 inv_wr.ex.invalidate_rkey = rkey; 275 } 276 277 imm_wr.wr.next = NULL; 278 if (always_invalidate) { 279 struct rtrs_msg_rkey_rsp *msg; 280 281 srv_mr = &srv_path->mrs[id->msg_id]; 282 rwr.wr.opcode = IB_WR_REG_MR; 283 rwr.wr.wr_cqe = &local_reg_cqe; 284 rwr.wr.num_sge = 0; 285 rwr.mr = srv_mr->mr; 286 rwr.wr.send_flags = 0; 287 rwr.key = srv_mr->mr->rkey; 288 rwr.access = (IB_ACCESS_LOCAL_WRITE | 289 IB_ACCESS_REMOTE_WRITE); 290 msg = srv_mr->iu->buf; 291 msg->buf_id = cpu_to_le16(id->msg_id); 292 msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP); 293 msg->rkey = cpu_to_le32(srv_mr->mr->rkey); 294 295 list.addr = srv_mr->iu->dma_addr; 296 list.length = sizeof(*msg); 297 list.lkey = srv_path->s.dev->ib_pd->local_dma_lkey; 298 imm_wr.wr.sg_list = &list; 299 imm_wr.wr.num_sge = 1; 300 imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM; 301 ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev, 302 srv_mr->iu->dma_addr, 303 srv_mr->iu->size, DMA_TO_DEVICE); 304 } else { 305 imm_wr.wr.sg_list = NULL; 306 imm_wr.wr.num_sge = 0; 307 imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM; 308 } 309 imm_wr.wr.send_flags = flags; 310 imm_wr.wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id, 311 0, need_inval)); 312 313 imm_wr.wr.wr_cqe = &io_comp_cqe; 314 ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev, dma_addr, 315 offset, DMA_BIDIRECTIONAL); 316 317 err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL); 318 if (err) 319 rtrs_err(s, 320 "Posting RDMA-Write-Request to QP failed, err: %d\n", 321 err); 322 323 return err; 324 } 325 326 /** 327 * send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE 328 * requests or on successful WRITE request. 329 * @con: the connection to send back result 330 * @id: the id associated with the IO 331 * @errno: the error number of the IO. 332 * 333 * Return 0 on success, errno otherwise. 334 */ 335 static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id, 336 int errno) 337 { 338 struct rtrs_path *s = con->c.path; 339 struct rtrs_srv_path *srv_path = to_srv_path(s); 340 struct ib_send_wr inv_wr, *wr = NULL; 341 struct ib_rdma_wr imm_wr; 342 struct ib_reg_wr rwr; 343 struct rtrs_srv_mr *srv_mr; 344 bool need_inval = false; 345 enum ib_send_flags flags; 346 u32 imm; 347 int err; 348 349 if (id->dir == READ) { 350 struct rtrs_msg_rdma_read *rd_msg = id->rd_msg; 351 size_t sg_cnt; 352 353 need_inval = le16_to_cpu(rd_msg->flags) & 354 RTRS_MSG_NEED_INVAL_F; 355 sg_cnt = le16_to_cpu(rd_msg->sg_cnt); 356 357 if (need_inval) { 358 if (sg_cnt) { 359 inv_wr.wr_cqe = &io_comp_cqe; 360 inv_wr.sg_list = NULL; 361 inv_wr.num_sge = 0; 362 inv_wr.opcode = IB_WR_SEND_WITH_INV; 363 inv_wr.send_flags = 0; 364 /* Only one key is actually used */ 365 inv_wr.ex.invalidate_rkey = 366 le32_to_cpu(rd_msg->desc[0].key); 367 } else { 368 WARN_ON_ONCE(1); 369 need_inval = false; 370 } 371 } 372 } 373 374 trace_send_io_resp_imm(id, need_inval, always_invalidate, errno); 375 376 if (need_inval && always_invalidate) { 377 wr = &inv_wr; 378 inv_wr.next = &rwr.wr; 379 rwr.wr.next = &imm_wr.wr; 380 } else if (always_invalidate) { 381 wr = &rwr.wr; 382 rwr.wr.next = &imm_wr.wr; 383 } else if (need_inval) { 384 wr = &inv_wr; 385 inv_wr.next = &imm_wr.wr; 386 } else { 387 wr = &imm_wr.wr; 388 } 389 /* 390 * From time to time we have to post signalled sends, 391 * or send queue will fill up and only QP reset can help. 392 */ 393 flags = (atomic_inc_return(&con->c.wr_cnt) % s->signal_interval) ? 394 0 : IB_SEND_SIGNALED; 395 imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval); 396 imm_wr.wr.next = NULL; 397 if (always_invalidate) { 398 struct ib_sge list; 399 struct rtrs_msg_rkey_rsp *msg; 400 401 srv_mr = &srv_path->mrs[id->msg_id]; 402 rwr.wr.next = &imm_wr.wr; 403 rwr.wr.opcode = IB_WR_REG_MR; 404 rwr.wr.wr_cqe = &local_reg_cqe; 405 rwr.wr.num_sge = 0; 406 rwr.wr.send_flags = 0; 407 rwr.mr = srv_mr->mr; 408 rwr.key = srv_mr->mr->rkey; 409 rwr.access = (IB_ACCESS_LOCAL_WRITE | 410 IB_ACCESS_REMOTE_WRITE); 411 msg = srv_mr->iu->buf; 412 msg->buf_id = cpu_to_le16(id->msg_id); 413 msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP); 414 msg->rkey = cpu_to_le32(srv_mr->mr->rkey); 415 416 list.addr = srv_mr->iu->dma_addr; 417 list.length = sizeof(*msg); 418 list.lkey = srv_path->s.dev->ib_pd->local_dma_lkey; 419 imm_wr.wr.sg_list = &list; 420 imm_wr.wr.num_sge = 1; 421 imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM; 422 ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev, 423 srv_mr->iu->dma_addr, 424 srv_mr->iu->size, DMA_TO_DEVICE); 425 } else { 426 imm_wr.wr.sg_list = NULL; 427 imm_wr.wr.num_sge = 0; 428 imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM; 429 } 430 imm_wr.wr.send_flags = flags; 431 imm_wr.wr.wr_cqe = &io_comp_cqe; 432 433 imm_wr.wr.ex.imm_data = cpu_to_be32(imm); 434 435 err = ib_post_send(id->con->c.qp, wr, NULL); 436 if (err) 437 rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %d\n", 438 err); 439 440 return err; 441 } 442 443 void close_path(struct rtrs_srv_path *srv_path) 444 { 445 if (rtrs_srv_change_state(srv_path, RTRS_SRV_CLOSING)) 446 queue_work(rtrs_wq, &srv_path->close_work); 447 WARN_ON(srv_path->state != RTRS_SRV_CLOSING); 448 } 449 450 static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state) 451 { 452 switch (state) { 453 case RTRS_SRV_CONNECTING: 454 return "RTRS_SRV_CONNECTING"; 455 case RTRS_SRV_CONNECTED: 456 return "RTRS_SRV_CONNECTED"; 457 case RTRS_SRV_CLOSING: 458 return "RTRS_SRV_CLOSING"; 459 case RTRS_SRV_CLOSED: 460 return "RTRS_SRV_CLOSED"; 461 default: 462 return "UNKNOWN"; 463 } 464 } 465 466 /** 467 * rtrs_srv_resp_rdma() - Finish an RDMA request 468 * 469 * @id: Internal RTRS operation identifier 470 * @status: Response Code sent to the other side for this operation. 471 * 0 = success, <=0 error 472 * Context: any 473 * 474 * Finish a RDMA operation. A message is sent to the client and the 475 * corresponding memory areas will be released. 476 */ 477 bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status) 478 { 479 struct rtrs_srv_path *srv_path; 480 struct rtrs_srv_con *con; 481 struct rtrs_path *s; 482 int err; 483 484 if (WARN_ON(!id)) 485 return true; 486 487 con = id->con; 488 s = con->c.path; 489 srv_path = to_srv_path(s); 490 491 id->status = status; 492 493 if (srv_path->state != RTRS_SRV_CONNECTED) { 494 rtrs_err_rl(s, 495 "Sending I/O response failed, server path %s is disconnected, path state %s\n", 496 kobject_name(&srv_path->kobj), 497 rtrs_srv_state_str(srv_path->state)); 498 goto out; 499 } 500 if (always_invalidate) { 501 struct rtrs_srv_mr *mr = &srv_path->mrs[id->msg_id]; 502 503 ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey)); 504 } 505 if (atomic_sub_return(1, &con->c.sq_wr_avail) < 0) { 506 rtrs_err(s, "IB send queue full: srv_path=%s cid=%d\n", 507 kobject_name(&srv_path->kobj), 508 con->c.cid); 509 atomic_add(1, &con->c.sq_wr_avail); 510 spin_lock(&con->rsp_wr_wait_lock); 511 list_add_tail(&id->wait_list, &con->rsp_wr_wait_list); 512 spin_unlock(&con->rsp_wr_wait_lock); 513 return false; 514 } 515 516 if (status || id->dir == WRITE || !id->rd_msg->sg_cnt) 517 err = send_io_resp_imm(con, id, status); 518 else 519 err = rdma_write_sg(id); 520 521 if (err) { 522 rtrs_err_rl(s, "IO response failed: %d: srv_path=%s\n", err, 523 kobject_name(&srv_path->kobj)); 524 close_path(srv_path); 525 } 526 out: 527 rtrs_srv_put_ops_ids(srv_path); 528 return true; 529 } 530 EXPORT_SYMBOL(rtrs_srv_resp_rdma); 531 532 /** 533 * rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv. 534 * @srv: Session pointer 535 * @priv: The private pointer that is associated with the session. 536 */ 537 void rtrs_srv_set_sess_priv(struct rtrs_srv_sess *srv, void *priv) 538 { 539 srv->priv = priv; 540 } 541 EXPORT_SYMBOL(rtrs_srv_set_sess_priv); 542 543 static void unmap_cont_bufs(struct rtrs_srv_path *srv_path) 544 { 545 int i; 546 547 for (i = 0; i < srv_path->mrs_num; i++) { 548 struct rtrs_srv_mr *srv_mr; 549 550 srv_mr = &srv_path->mrs[i]; 551 rtrs_iu_free(srv_mr->iu, srv_path->s.dev->ib_dev, 1); 552 ib_dereg_mr(srv_mr->mr); 553 ib_dma_unmap_sg(srv_path->s.dev->ib_dev, srv_mr->sgt.sgl, 554 srv_mr->sgt.nents, DMA_BIDIRECTIONAL); 555 sg_free_table(&srv_mr->sgt); 556 } 557 kfree(srv_path->mrs); 558 } 559 560 static int map_cont_bufs(struct rtrs_srv_path *srv_path) 561 { 562 struct rtrs_srv_sess *srv = srv_path->srv; 563 struct rtrs_path *ss = &srv_path->s; 564 int i, err, mrs_num; 565 unsigned int chunk_bits; 566 int chunks_per_mr = 1; 567 struct ib_mr *mr; 568 struct sg_table *sgt; 569 570 /* 571 * Here we map queue_depth chunks to MR. Firstly we have to 572 * figure out how many chunks can we map per MR. 573 */ 574 if (always_invalidate) { 575 /* 576 * in order to do invalidate for each chunks of memory, we needs 577 * more memory regions. 578 */ 579 mrs_num = srv->queue_depth; 580 } else { 581 chunks_per_mr = 582 srv_path->s.dev->ib_dev->attrs.max_fast_reg_page_list_len; 583 mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr); 584 chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num); 585 } 586 587 srv_path->mrs = kcalloc(mrs_num, sizeof(*srv_path->mrs), GFP_KERNEL); 588 if (!srv_path->mrs) 589 return -ENOMEM; 590 591 for (srv_path->mrs_num = 0; srv_path->mrs_num < mrs_num; 592 srv_path->mrs_num++) { 593 struct rtrs_srv_mr *srv_mr = &srv_path->mrs[srv_path->mrs_num]; 594 struct scatterlist *s; 595 int nr, nr_sgt, chunks; 596 597 sgt = &srv_mr->sgt; 598 chunks = chunks_per_mr * srv_path->mrs_num; 599 if (!always_invalidate) 600 chunks_per_mr = min_t(int, chunks_per_mr, 601 srv->queue_depth - chunks); 602 603 err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL); 604 if (err) 605 goto err; 606 607 for_each_sg(sgt->sgl, s, chunks_per_mr, i) 608 sg_set_page(s, srv->chunks[chunks + i], 609 max_chunk_size, 0); 610 611 nr_sgt = ib_dma_map_sg(srv_path->s.dev->ib_dev, sgt->sgl, 612 sgt->nents, DMA_BIDIRECTIONAL); 613 if (!nr_sgt) { 614 err = -EINVAL; 615 goto free_sg; 616 } 617 mr = ib_alloc_mr(srv_path->s.dev->ib_pd, IB_MR_TYPE_MEM_REG, 618 nr_sgt); 619 if (IS_ERR(mr)) { 620 err = PTR_ERR(mr); 621 goto unmap_sg; 622 } 623 nr = ib_map_mr_sg(mr, sgt->sgl, nr_sgt, 624 NULL, max_chunk_size); 625 if (nr != nr_sgt) { 626 err = nr < 0 ? nr : -EINVAL; 627 goto dereg_mr; 628 } 629 630 if (always_invalidate) { 631 srv_mr->iu = rtrs_iu_alloc(1, 632 sizeof(struct rtrs_msg_rkey_rsp), 633 GFP_KERNEL, srv_path->s.dev->ib_dev, 634 DMA_TO_DEVICE, rtrs_srv_rdma_done); 635 if (!srv_mr->iu) { 636 err = -ENOMEM; 637 rtrs_err(ss, "rtrs_iu_alloc(), err: %d\n", err); 638 goto dereg_mr; 639 } 640 } 641 /* Eventually dma addr for each chunk can be cached */ 642 for_each_sg(sgt->sgl, s, nr_sgt, i) 643 srv_path->dma_addr[chunks + i] = sg_dma_address(s); 644 645 ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey)); 646 srv_mr->mr = mr; 647 } 648 649 chunk_bits = ilog2(srv->queue_depth - 1) + 1; 650 srv_path->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits); 651 652 return 0; 653 654 dereg_mr: 655 ib_dereg_mr(mr); 656 unmap_sg: 657 ib_dma_unmap_sg(srv_path->s.dev->ib_dev, sgt->sgl, 658 sgt->nents, DMA_BIDIRECTIONAL); 659 free_sg: 660 sg_free_table(sgt); 661 err: 662 unmap_cont_bufs(srv_path); 663 664 return err; 665 } 666 667 static void rtrs_srv_hb_err_handler(struct rtrs_con *c) 668 { 669 close_path(to_srv_path(c->path)); 670 } 671 672 static void rtrs_srv_init_hb(struct rtrs_srv_path *srv_path) 673 { 674 rtrs_init_hb(&srv_path->s, &io_comp_cqe, 675 RTRS_HB_INTERVAL_MS, 676 RTRS_HB_MISSED_MAX, 677 rtrs_srv_hb_err_handler, 678 rtrs_wq); 679 } 680 681 static void rtrs_srv_start_hb(struct rtrs_srv_path *srv_path) 682 { 683 rtrs_start_hb(&srv_path->s); 684 } 685 686 static void rtrs_srv_stop_hb(struct rtrs_srv_path *srv_path) 687 { 688 rtrs_stop_hb(&srv_path->s); 689 } 690 691 static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc) 692 { 693 struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context); 694 struct rtrs_path *s = con->c.path; 695 struct rtrs_srv_path *srv_path = to_srv_path(s); 696 struct rtrs_iu *iu; 697 698 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); 699 rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1); 700 701 if (wc->status != IB_WC_SUCCESS) { 702 rtrs_err(s, "Sess info response send failed: %s\n", 703 ib_wc_status_msg(wc->status)); 704 close_path(srv_path); 705 return; 706 } 707 WARN_ON(wc->opcode != IB_WC_SEND); 708 } 709 710 static void rtrs_srv_path_up(struct rtrs_srv_path *srv_path) 711 { 712 struct rtrs_srv_sess *srv = srv_path->srv; 713 struct rtrs_srv_ctx *ctx = srv->ctx; 714 int up; 715 716 mutex_lock(&srv->paths_ev_mutex); 717 up = ++srv->paths_up; 718 if (up == 1) 719 ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL); 720 mutex_unlock(&srv->paths_ev_mutex); 721 722 /* Mark session as established */ 723 srv_path->established = true; 724 } 725 726 static void rtrs_srv_path_down(struct rtrs_srv_path *srv_path) 727 { 728 struct rtrs_srv_sess *srv = srv_path->srv; 729 struct rtrs_srv_ctx *ctx = srv->ctx; 730 731 if (!srv_path->established) 732 return; 733 734 srv_path->established = false; 735 mutex_lock(&srv->paths_ev_mutex); 736 WARN_ON(!srv->paths_up); 737 if (--srv->paths_up == 0) 738 ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv); 739 mutex_unlock(&srv->paths_ev_mutex); 740 } 741 742 static bool exist_pathname(struct rtrs_srv_ctx *ctx, 743 const char *pathname, const uuid_t *path_uuid) 744 { 745 struct rtrs_srv_sess *srv; 746 struct rtrs_srv_path *srv_path; 747 bool found = false; 748 749 mutex_lock(&ctx->srv_mutex); 750 list_for_each_entry(srv, &ctx->srv_list, ctx_list) { 751 mutex_lock(&srv->paths_mutex); 752 753 /* when a client with same uuid and same sessname tried to add a path */ 754 if (uuid_equal(&srv->paths_uuid, path_uuid)) { 755 mutex_unlock(&srv->paths_mutex); 756 continue; 757 } 758 759 list_for_each_entry(srv_path, &srv->paths_list, s.entry) { 760 if (strlen(srv_path->s.sessname) == strlen(pathname) && 761 !strcmp(srv_path->s.sessname, pathname)) { 762 found = true; 763 break; 764 } 765 } 766 mutex_unlock(&srv->paths_mutex); 767 if (found) 768 break; 769 } 770 mutex_unlock(&ctx->srv_mutex); 771 return found; 772 } 773 774 static int post_recv_path(struct rtrs_srv_path *srv_path); 775 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno); 776 777 static int process_info_req(struct rtrs_srv_con *con, 778 struct rtrs_msg_info_req *msg) 779 { 780 struct rtrs_path *s = con->c.path; 781 struct rtrs_srv_path *srv_path = to_srv_path(s); 782 struct ib_send_wr *reg_wr = NULL; 783 struct rtrs_msg_info_rsp *rsp; 784 struct rtrs_iu *tx_iu; 785 struct ib_reg_wr *rwr; 786 int mri, err; 787 size_t tx_sz; 788 789 err = post_recv_path(srv_path); 790 if (err) { 791 rtrs_err(s, "post_recv_path(), err: %d\n", err); 792 return err; 793 } 794 795 if (strchr(msg->pathname, '/') || strchr(msg->pathname, '.')) { 796 rtrs_err(s, "pathname cannot contain / and .\n"); 797 return -EINVAL; 798 } 799 800 if (exist_pathname(srv_path->srv->ctx, 801 msg->pathname, &srv_path->srv->paths_uuid)) { 802 rtrs_err(s, "pathname is duplicated: %s\n", msg->pathname); 803 return -EPERM; 804 } 805 strscpy(srv_path->s.sessname, msg->pathname, 806 sizeof(srv_path->s.sessname)); 807 808 rwr = kcalloc(srv_path->mrs_num, sizeof(*rwr), GFP_KERNEL); 809 if (!rwr) 810 return -ENOMEM; 811 812 tx_sz = sizeof(*rsp); 813 tx_sz += sizeof(rsp->desc[0]) * srv_path->mrs_num; 814 tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, srv_path->s.dev->ib_dev, 815 DMA_TO_DEVICE, rtrs_srv_info_rsp_done); 816 if (!tx_iu) { 817 err = -ENOMEM; 818 goto rwr_free; 819 } 820 821 rsp = tx_iu->buf; 822 rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP); 823 rsp->sg_cnt = cpu_to_le16(srv_path->mrs_num); 824 825 for (mri = 0; mri < srv_path->mrs_num; mri++) { 826 struct ib_mr *mr = srv_path->mrs[mri].mr; 827 828 rsp->desc[mri].addr = cpu_to_le64(mr->iova); 829 rsp->desc[mri].key = cpu_to_le32(mr->rkey); 830 rsp->desc[mri].len = cpu_to_le32(mr->length); 831 832 /* 833 * Fill in reg MR request and chain them *backwards* 834 */ 835 rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL; 836 rwr[mri].wr.opcode = IB_WR_REG_MR; 837 rwr[mri].wr.wr_cqe = &local_reg_cqe; 838 rwr[mri].wr.num_sge = 0; 839 rwr[mri].wr.send_flags = 0; 840 rwr[mri].mr = mr; 841 rwr[mri].key = mr->rkey; 842 rwr[mri].access = (IB_ACCESS_LOCAL_WRITE | 843 IB_ACCESS_REMOTE_WRITE); 844 reg_wr = &rwr[mri].wr; 845 } 846 847 err = rtrs_srv_create_path_files(srv_path); 848 if (err) 849 goto iu_free; 850 kobject_get(&srv_path->kobj); 851 get_device(&srv_path->srv->dev); 852 rtrs_srv_change_state(srv_path, RTRS_SRV_CONNECTED); 853 rtrs_srv_start_hb(srv_path); 854 855 /* 856 * We do not account number of established connections at the current 857 * moment, we rely on the client, which should send info request when 858 * all connections are successfully established. Thus, simply notify 859 * listener with a proper event if we are the first path. 860 */ 861 rtrs_srv_path_up(srv_path); 862 863 ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev, 864 tx_iu->dma_addr, 865 tx_iu->size, DMA_TO_DEVICE); 866 867 /* Send info response */ 868 err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr); 869 if (err) { 870 rtrs_err(s, "rtrs_iu_post_send(), err: %d\n", err); 871 iu_free: 872 rtrs_iu_free(tx_iu, srv_path->s.dev->ib_dev, 1); 873 } 874 rwr_free: 875 kfree(rwr); 876 877 return err; 878 } 879 880 static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc) 881 { 882 struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context); 883 struct rtrs_path *s = con->c.path; 884 struct rtrs_srv_path *srv_path = to_srv_path(s); 885 struct rtrs_msg_info_req *msg; 886 struct rtrs_iu *iu; 887 int err; 888 889 WARN_ON(con->c.cid); 890 891 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); 892 if (wc->status != IB_WC_SUCCESS) { 893 rtrs_err(s, "Sess info request receive failed: %s\n", 894 ib_wc_status_msg(wc->status)); 895 goto close; 896 } 897 WARN_ON(wc->opcode != IB_WC_RECV); 898 899 if (wc->byte_len < sizeof(*msg)) { 900 rtrs_err(s, "Sess info request is malformed: size %d\n", 901 wc->byte_len); 902 goto close; 903 } 904 ib_dma_sync_single_for_cpu(srv_path->s.dev->ib_dev, iu->dma_addr, 905 iu->size, DMA_FROM_DEVICE); 906 msg = iu->buf; 907 if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ) { 908 rtrs_err(s, "Sess info request is malformed: type %d\n", 909 le16_to_cpu(msg->type)); 910 goto close; 911 } 912 err = process_info_req(con, msg); 913 if (err) 914 goto close; 915 916 out: 917 rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1); 918 return; 919 close: 920 close_path(srv_path); 921 goto out; 922 } 923 924 static int post_recv_info_req(struct rtrs_srv_con *con) 925 { 926 struct rtrs_path *s = con->c.path; 927 struct rtrs_srv_path *srv_path = to_srv_path(s); 928 struct rtrs_iu *rx_iu; 929 int err; 930 931 rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), 932 GFP_KERNEL, srv_path->s.dev->ib_dev, 933 DMA_FROM_DEVICE, rtrs_srv_info_req_done); 934 if (!rx_iu) 935 return -ENOMEM; 936 /* Prepare for getting info response */ 937 err = rtrs_iu_post_recv(&con->c, rx_iu); 938 if (err) { 939 rtrs_err(s, "rtrs_iu_post_recv(), err: %d\n", err); 940 rtrs_iu_free(rx_iu, srv_path->s.dev->ib_dev, 1); 941 return err; 942 } 943 944 return 0; 945 } 946 947 static int post_recv_io(struct rtrs_srv_con *con, size_t q_size) 948 { 949 int i, err; 950 951 for (i = 0; i < q_size; i++) { 952 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe); 953 if (err) 954 return err; 955 } 956 957 return 0; 958 } 959 960 static int post_recv_path(struct rtrs_srv_path *srv_path) 961 { 962 struct rtrs_srv_sess *srv = srv_path->srv; 963 struct rtrs_path *s = &srv_path->s; 964 size_t q_size; 965 int err, cid; 966 967 for (cid = 0; cid < srv_path->s.con_num; cid++) { 968 if (cid == 0) 969 q_size = SERVICE_CON_QUEUE_DEPTH; 970 else 971 q_size = srv->queue_depth; 972 973 err = post_recv_io(to_srv_con(srv_path->s.con[cid]), q_size); 974 if (err) { 975 rtrs_err(s, "post_recv_io(), err: %d\n", err); 976 return err; 977 } 978 } 979 980 return 0; 981 } 982 983 static void process_read(struct rtrs_srv_con *con, 984 struct rtrs_msg_rdma_read *msg, 985 u32 buf_id, u32 off) 986 { 987 struct rtrs_path *s = con->c.path; 988 struct rtrs_srv_path *srv_path = to_srv_path(s); 989 struct rtrs_srv_sess *srv = srv_path->srv; 990 struct rtrs_srv_ctx *ctx = srv->ctx; 991 struct rtrs_srv_op *id; 992 993 size_t usr_len, data_len; 994 void *data; 995 int ret; 996 997 if (srv_path->state != RTRS_SRV_CONNECTED) { 998 rtrs_err_rl(s, 999 "Processing read request failed, session is disconnected, sess state %s\n", 1000 rtrs_srv_state_str(srv_path->state)); 1001 return; 1002 } 1003 if (msg->sg_cnt != 1 && msg->sg_cnt != 0) { 1004 rtrs_err_rl(s, 1005 "Processing read request failed, invalid message\n"); 1006 return; 1007 } 1008 rtrs_srv_get_ops_ids(srv_path); 1009 rtrs_srv_update_rdma_stats(srv_path->stats, off, READ); 1010 id = srv_path->ops_ids[buf_id]; 1011 id->con = con; 1012 id->dir = READ; 1013 id->msg_id = buf_id; 1014 id->rd_msg = msg; 1015 usr_len = le16_to_cpu(msg->usr_len); 1016 data_len = off - usr_len; 1017 data = page_address(srv->chunks[buf_id]); 1018 ret = ctx->ops.rdma_ev(srv->priv, id, data, data_len, 1019 data + data_len, usr_len); 1020 1021 if (ret) { 1022 rtrs_err_rl(s, 1023 "Processing read request failed, user module cb reported for msg_id %d, err: %d\n", 1024 buf_id, ret); 1025 goto send_err_msg; 1026 } 1027 1028 return; 1029 1030 send_err_msg: 1031 ret = send_io_resp_imm(con, id, ret); 1032 if (ret < 0) { 1033 rtrs_err_rl(s, 1034 "Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %d\n", 1035 buf_id, ret); 1036 close_path(srv_path); 1037 } 1038 rtrs_srv_put_ops_ids(srv_path); 1039 } 1040 1041 static void process_write(struct rtrs_srv_con *con, 1042 struct rtrs_msg_rdma_write *req, 1043 u32 buf_id, u32 off) 1044 { 1045 struct rtrs_path *s = con->c.path; 1046 struct rtrs_srv_path *srv_path = to_srv_path(s); 1047 struct rtrs_srv_sess *srv = srv_path->srv; 1048 struct rtrs_srv_ctx *ctx = srv->ctx; 1049 struct rtrs_srv_op *id; 1050 1051 size_t data_len, usr_len; 1052 void *data; 1053 int ret; 1054 1055 if (srv_path->state != RTRS_SRV_CONNECTED) { 1056 rtrs_err_rl(s, 1057 "Processing write request failed, session is disconnected, sess state %s\n", 1058 rtrs_srv_state_str(srv_path->state)); 1059 return; 1060 } 1061 rtrs_srv_get_ops_ids(srv_path); 1062 rtrs_srv_update_rdma_stats(srv_path->stats, off, WRITE); 1063 id = srv_path->ops_ids[buf_id]; 1064 id->con = con; 1065 id->dir = WRITE; 1066 id->msg_id = buf_id; 1067 1068 usr_len = le16_to_cpu(req->usr_len); 1069 data_len = off - usr_len; 1070 data = page_address(srv->chunks[buf_id]); 1071 ret = ctx->ops.rdma_ev(srv->priv, id, data, data_len, 1072 data + data_len, usr_len); 1073 if (ret) { 1074 rtrs_err_rl(s, 1075 "Processing write request failed, user module callback reports err: %d\n", 1076 ret); 1077 goto send_err_msg; 1078 } 1079 1080 return; 1081 1082 send_err_msg: 1083 ret = send_io_resp_imm(con, id, ret); 1084 if (ret < 0) { 1085 rtrs_err_rl(s, 1086 "Processing write request failed, sending I/O response failed, msg_id %d, err: %d\n", 1087 buf_id, ret); 1088 close_path(srv_path); 1089 } 1090 rtrs_srv_put_ops_ids(srv_path); 1091 } 1092 1093 static void process_io_req(struct rtrs_srv_con *con, void *msg, 1094 u32 id, u32 off) 1095 { 1096 struct rtrs_path *s = con->c.path; 1097 struct rtrs_srv_path *srv_path = to_srv_path(s); 1098 struct rtrs_msg_rdma_hdr *hdr; 1099 unsigned int type; 1100 1101 ib_dma_sync_single_for_cpu(srv_path->s.dev->ib_dev, 1102 srv_path->dma_addr[id], 1103 max_chunk_size, DMA_BIDIRECTIONAL); 1104 hdr = msg; 1105 type = le16_to_cpu(hdr->type); 1106 1107 switch (type) { 1108 case RTRS_MSG_WRITE: 1109 process_write(con, msg, id, off); 1110 break; 1111 case RTRS_MSG_READ: 1112 process_read(con, msg, id, off); 1113 break; 1114 default: 1115 rtrs_err(s, 1116 "Processing I/O request failed, unknown message type received: 0x%02x\n", 1117 type); 1118 goto err; 1119 } 1120 1121 return; 1122 1123 err: 1124 close_path(srv_path); 1125 } 1126 1127 static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1128 { 1129 struct rtrs_srv_mr *mr = 1130 container_of(wc->wr_cqe, typeof(*mr), inv_cqe); 1131 struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context); 1132 struct rtrs_path *s = con->c.path; 1133 struct rtrs_srv_path *srv_path = to_srv_path(s); 1134 struct rtrs_srv_sess *srv = srv_path->srv; 1135 u32 msg_id, off; 1136 void *data; 1137 1138 if (wc->status != IB_WC_SUCCESS) { 1139 rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n", 1140 ib_wc_status_msg(wc->status)); 1141 close_path(srv_path); 1142 } 1143 msg_id = mr->msg_id; 1144 off = mr->msg_off; 1145 data = page_address(srv->chunks[msg_id]) + off; 1146 process_io_req(con, data, msg_id, off); 1147 } 1148 1149 static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con, 1150 struct rtrs_srv_mr *mr) 1151 { 1152 struct ib_send_wr wr = { 1153 .opcode = IB_WR_LOCAL_INV, 1154 .wr_cqe = &mr->inv_cqe, 1155 .send_flags = IB_SEND_SIGNALED, 1156 .ex.invalidate_rkey = mr->mr->rkey, 1157 }; 1158 mr->inv_cqe.done = rtrs_srv_inv_rkey_done; 1159 1160 return ib_post_send(con->c.qp, &wr, NULL); 1161 } 1162 1163 static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con) 1164 { 1165 spin_lock(&con->rsp_wr_wait_lock); 1166 while (!list_empty(&con->rsp_wr_wait_list)) { 1167 struct rtrs_srv_op *id; 1168 int ret; 1169 1170 id = list_entry(con->rsp_wr_wait_list.next, 1171 struct rtrs_srv_op, wait_list); 1172 list_del(&id->wait_list); 1173 1174 spin_unlock(&con->rsp_wr_wait_lock); 1175 ret = rtrs_srv_resp_rdma(id, id->status); 1176 spin_lock(&con->rsp_wr_wait_lock); 1177 1178 if (!ret) { 1179 list_add(&id->wait_list, &con->rsp_wr_wait_list); 1180 break; 1181 } 1182 } 1183 spin_unlock(&con->rsp_wr_wait_lock); 1184 } 1185 1186 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc) 1187 { 1188 struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context); 1189 struct rtrs_path *s = con->c.path; 1190 struct rtrs_srv_path *srv_path = to_srv_path(s); 1191 struct rtrs_srv_sess *srv = srv_path->srv; 1192 u32 imm_type, imm_payload; 1193 int err; 1194 1195 if (wc->status != IB_WC_SUCCESS) { 1196 if (wc->status != IB_WC_WR_FLUSH_ERR) { 1197 rtrs_err(s, 1198 "%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n", 1199 ib_wc_status_msg(wc->status), wc->wr_cqe, 1200 wc->opcode, wc->vendor_err, wc->byte_len); 1201 close_path(srv_path); 1202 } 1203 return; 1204 } 1205 1206 switch (wc->opcode) { 1207 case IB_WC_RECV_RDMA_WITH_IMM: 1208 /* 1209 * post_recv() RDMA write completions of IO reqs (read/write) 1210 * and hb 1211 */ 1212 if (WARN_ON(wc->wr_cqe != &io_comp_cqe)) 1213 return; 1214 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe); 1215 if (err) { 1216 rtrs_err(s, "rtrs_post_recv(), err: %d\n", err); 1217 close_path(srv_path); 1218 break; 1219 } 1220 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), 1221 &imm_type, &imm_payload); 1222 if (imm_type == RTRS_IO_REQ_IMM) { 1223 u32 msg_id, off; 1224 void *data; 1225 1226 msg_id = imm_payload >> srv_path->mem_bits; 1227 off = imm_payload & ((1 << srv_path->mem_bits) - 1); 1228 if (msg_id >= srv->queue_depth || off >= max_chunk_size) { 1229 rtrs_err(s, "Wrong msg_id %u, off %u\n", 1230 msg_id, off); 1231 close_path(srv_path); 1232 return; 1233 } 1234 if (always_invalidate) { 1235 struct rtrs_srv_mr *mr = &srv_path->mrs[msg_id]; 1236 1237 mr->msg_off = off; 1238 mr->msg_id = msg_id; 1239 err = rtrs_srv_inv_rkey(con, mr); 1240 if (err) { 1241 rtrs_err(s, "rtrs_post_recv(), err: %d\n", 1242 err); 1243 close_path(srv_path); 1244 break; 1245 } 1246 } else { 1247 data = page_address(srv->chunks[msg_id]) + off; 1248 process_io_req(con, data, msg_id, off); 1249 } 1250 } else if (imm_type == RTRS_HB_MSG_IMM) { 1251 WARN_ON(con->c.cid); 1252 rtrs_send_hb_ack(&srv_path->s); 1253 } else if (imm_type == RTRS_HB_ACK_IMM) { 1254 WARN_ON(con->c.cid); 1255 srv_path->s.hb_missed_cnt = 0; 1256 } else { 1257 rtrs_wrn(s, "Unknown IMM type %u\n", imm_type); 1258 } 1259 break; 1260 case IB_WC_RDMA_WRITE: 1261 case IB_WC_SEND: 1262 /* 1263 * post_send() RDMA write completions of IO reqs (read/write) 1264 * and hb. 1265 */ 1266 atomic_add(s->signal_interval, &con->c.sq_wr_avail); 1267 1268 if (!list_empty_careful(&con->rsp_wr_wait_list)) 1269 rtrs_rdma_process_wr_wait_list(con); 1270 1271 break; 1272 default: 1273 rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode); 1274 return; 1275 } 1276 } 1277 1278 /** 1279 * rtrs_srv_get_path_name() - Get rtrs_srv peer hostname. 1280 * @srv: Session 1281 * @pathname: Pathname buffer 1282 * @len: Length of sessname buffer 1283 */ 1284 int rtrs_srv_get_path_name(struct rtrs_srv_sess *srv, char *pathname, 1285 size_t len) 1286 { 1287 struct rtrs_srv_path *srv_path; 1288 int err = -ENOTCONN; 1289 1290 mutex_lock(&srv->paths_mutex); 1291 list_for_each_entry(srv_path, &srv->paths_list, s.entry) { 1292 if (srv_path->state != RTRS_SRV_CONNECTED) 1293 continue; 1294 strscpy(pathname, srv_path->s.sessname, 1295 min_t(size_t, sizeof(srv_path->s.sessname), len)); 1296 err = 0; 1297 break; 1298 } 1299 mutex_unlock(&srv->paths_mutex); 1300 1301 return err; 1302 } 1303 EXPORT_SYMBOL(rtrs_srv_get_path_name); 1304 1305 /** 1306 * rtrs_srv_get_queue_depth() - Get rtrs_srv qdepth. 1307 * @srv: Session 1308 */ 1309 int rtrs_srv_get_queue_depth(struct rtrs_srv_sess *srv) 1310 { 1311 return srv->queue_depth; 1312 } 1313 EXPORT_SYMBOL(rtrs_srv_get_queue_depth); 1314 1315 static int find_next_bit_ring(struct rtrs_srv_path *srv_path) 1316 { 1317 struct ib_device *ib_dev = srv_path->s.dev->ib_dev; 1318 int v; 1319 1320 v = cpumask_next(srv_path->cur_cq_vector, &cq_affinity_mask); 1321 if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors) 1322 v = cpumask_first(&cq_affinity_mask); 1323 return v; 1324 } 1325 1326 static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_path *srv_path) 1327 { 1328 srv_path->cur_cq_vector = find_next_bit_ring(srv_path); 1329 1330 return srv_path->cur_cq_vector; 1331 } 1332 1333 static void rtrs_srv_dev_release(struct device *dev) 1334 { 1335 struct rtrs_srv_sess *srv = container_of(dev, struct rtrs_srv_sess, 1336 dev); 1337 1338 kfree(srv); 1339 } 1340 1341 static void free_srv(struct rtrs_srv_sess *srv) 1342 { 1343 int i; 1344 1345 WARN_ON(refcount_read(&srv->refcount)); 1346 for (i = 0; i < srv->queue_depth; i++) 1347 __free_pages(srv->chunks[i], get_order(max_chunk_size)); 1348 kfree(srv->chunks); 1349 mutex_destroy(&srv->paths_mutex); 1350 mutex_destroy(&srv->paths_ev_mutex); 1351 /* last put to release the srv structure */ 1352 put_device(&srv->dev); 1353 } 1354 1355 static struct rtrs_srv_sess *get_or_create_srv(struct rtrs_srv_ctx *ctx, 1356 const uuid_t *paths_uuid, 1357 bool first_conn) 1358 { 1359 struct rtrs_srv_sess *srv; 1360 int i; 1361 1362 mutex_lock(&ctx->srv_mutex); 1363 list_for_each_entry(srv, &ctx->srv_list, ctx_list) { 1364 if (uuid_equal(&srv->paths_uuid, paths_uuid) && 1365 refcount_inc_not_zero(&srv->refcount)) { 1366 mutex_unlock(&ctx->srv_mutex); 1367 return srv; 1368 } 1369 } 1370 mutex_unlock(&ctx->srv_mutex); 1371 /* 1372 * If this request is not the first connection request from the 1373 * client for this session then fail and return error. 1374 */ 1375 if (!first_conn) { 1376 pr_err_ratelimited("Error: Not the first connection request for this session\n"); 1377 return ERR_PTR(-ENXIO); 1378 } 1379 1380 /* need to allocate a new srv */ 1381 srv = kzalloc(sizeof(*srv), GFP_KERNEL); 1382 if (!srv) 1383 return ERR_PTR(-ENOMEM); 1384 1385 INIT_LIST_HEAD(&srv->paths_list); 1386 mutex_init(&srv->paths_mutex); 1387 mutex_init(&srv->paths_ev_mutex); 1388 uuid_copy(&srv->paths_uuid, paths_uuid); 1389 srv->queue_depth = sess_queue_depth; 1390 srv->ctx = ctx; 1391 device_initialize(&srv->dev); 1392 srv->dev.release = rtrs_srv_dev_release; 1393 1394 srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks), 1395 GFP_KERNEL); 1396 if (!srv->chunks) 1397 goto err_free_srv; 1398 1399 for (i = 0; i < srv->queue_depth; i++) { 1400 srv->chunks[i] = alloc_pages(GFP_KERNEL, 1401 get_order(max_chunk_size)); 1402 if (!srv->chunks[i]) 1403 goto err_free_chunks; 1404 } 1405 refcount_set(&srv->refcount, 1); 1406 mutex_lock(&ctx->srv_mutex); 1407 list_add(&srv->ctx_list, &ctx->srv_list); 1408 mutex_unlock(&ctx->srv_mutex); 1409 1410 return srv; 1411 1412 err_free_chunks: 1413 while (i--) 1414 __free_pages(srv->chunks[i], get_order(max_chunk_size)); 1415 kfree(srv->chunks); 1416 1417 err_free_srv: 1418 kfree(srv); 1419 return ERR_PTR(-ENOMEM); 1420 } 1421 1422 static void put_srv(struct rtrs_srv_sess *srv) 1423 { 1424 if (refcount_dec_and_test(&srv->refcount)) { 1425 struct rtrs_srv_ctx *ctx = srv->ctx; 1426 1427 WARN_ON(srv->dev.kobj.state_in_sysfs); 1428 1429 mutex_lock(&ctx->srv_mutex); 1430 list_del(&srv->ctx_list); 1431 mutex_unlock(&ctx->srv_mutex); 1432 free_srv(srv); 1433 } 1434 } 1435 1436 static void __add_path_to_srv(struct rtrs_srv_sess *srv, 1437 struct rtrs_srv_path *srv_path) 1438 { 1439 list_add_tail(&srv_path->s.entry, &srv->paths_list); 1440 srv->paths_num++; 1441 WARN_ON(srv->paths_num >= MAX_PATHS_NUM); 1442 } 1443 1444 static void del_path_from_srv(struct rtrs_srv_path *srv_path) 1445 { 1446 struct rtrs_srv_sess *srv = srv_path->srv; 1447 1448 if (WARN_ON(!srv)) 1449 return; 1450 1451 mutex_lock(&srv->paths_mutex); 1452 list_del(&srv_path->s.entry); 1453 WARN_ON(!srv->paths_num); 1454 srv->paths_num--; 1455 mutex_unlock(&srv->paths_mutex); 1456 } 1457 1458 /* return true if addresses are the same, error other wise */ 1459 static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b) 1460 { 1461 switch (a->sa_family) { 1462 case AF_IB: 1463 return memcmp(&((struct sockaddr_ib *)a)->sib_addr, 1464 &((struct sockaddr_ib *)b)->sib_addr, 1465 sizeof(struct ib_addr)) && 1466 (b->sa_family == AF_IB); 1467 case AF_INET: 1468 return memcmp(&((struct sockaddr_in *)a)->sin_addr, 1469 &((struct sockaddr_in *)b)->sin_addr, 1470 sizeof(struct in_addr)) && 1471 (b->sa_family == AF_INET); 1472 case AF_INET6: 1473 return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr, 1474 &((struct sockaddr_in6 *)b)->sin6_addr, 1475 sizeof(struct in6_addr)) && 1476 (b->sa_family == AF_INET6); 1477 default: 1478 return -ENOENT; 1479 } 1480 } 1481 1482 static bool __is_path_w_addr_exists(struct rtrs_srv_sess *srv, 1483 struct rdma_addr *addr) 1484 { 1485 struct rtrs_srv_path *srv_path; 1486 1487 list_for_each_entry(srv_path, &srv->paths_list, s.entry) 1488 if (!sockaddr_cmp((struct sockaddr *)&srv_path->s.dst_addr, 1489 (struct sockaddr *)&addr->dst_addr) && 1490 !sockaddr_cmp((struct sockaddr *)&srv_path->s.src_addr, 1491 (struct sockaddr *)&addr->src_addr)) 1492 return true; 1493 1494 return false; 1495 } 1496 1497 static void free_path(struct rtrs_srv_path *srv_path) 1498 { 1499 if (srv_path->kobj.state_in_sysfs) { 1500 kobject_del(&srv_path->kobj); 1501 kobject_put(&srv_path->kobj); 1502 } else { 1503 free_percpu(srv_path->stats->rdma_stats); 1504 kfree(srv_path->stats); 1505 kfree(srv_path); 1506 } 1507 } 1508 1509 static void rtrs_srv_close_work(struct work_struct *work) 1510 { 1511 struct rtrs_srv_path *srv_path; 1512 struct rtrs_srv_con *con; 1513 int i; 1514 1515 srv_path = container_of(work, typeof(*srv_path), close_work); 1516 1517 rtrs_srv_destroy_path_files(srv_path); 1518 rtrs_srv_stop_hb(srv_path); 1519 1520 for (i = 0; i < srv_path->s.con_num; i++) { 1521 if (!srv_path->s.con[i]) 1522 continue; 1523 con = to_srv_con(srv_path->s.con[i]); 1524 rdma_disconnect(con->c.cm_id); 1525 ib_drain_qp(con->c.qp); 1526 } 1527 1528 /* 1529 * Degrade ref count to the usual model with a single shared 1530 * atomic_t counter 1531 */ 1532 percpu_ref_kill(&srv_path->ids_inflight_ref); 1533 1534 /* Wait for all completion */ 1535 wait_for_completion(&srv_path->complete_done); 1536 1537 /* Notify upper layer if we are the last path */ 1538 rtrs_srv_path_down(srv_path); 1539 1540 unmap_cont_bufs(srv_path); 1541 rtrs_srv_free_ops_ids(srv_path); 1542 1543 for (i = 0; i < srv_path->s.con_num; i++) { 1544 if (!srv_path->s.con[i]) 1545 continue; 1546 con = to_srv_con(srv_path->s.con[i]); 1547 rtrs_cq_qp_destroy(&con->c); 1548 rdma_destroy_id(con->c.cm_id); 1549 kfree(con); 1550 } 1551 rtrs_ib_dev_put(srv_path->s.dev); 1552 1553 del_path_from_srv(srv_path); 1554 put_srv(srv_path->srv); 1555 srv_path->srv = NULL; 1556 rtrs_srv_change_state(srv_path, RTRS_SRV_CLOSED); 1557 1558 kfree(srv_path->dma_addr); 1559 kfree(srv_path->s.con); 1560 free_path(srv_path); 1561 } 1562 1563 static int rtrs_rdma_do_accept(struct rtrs_srv_path *srv_path, 1564 struct rdma_cm_id *cm_id) 1565 { 1566 struct rtrs_srv_sess *srv = srv_path->srv; 1567 struct rtrs_msg_conn_rsp msg; 1568 struct rdma_conn_param param; 1569 int err; 1570 1571 param = (struct rdma_conn_param) { 1572 .rnr_retry_count = 7, 1573 .private_data = &msg, 1574 .private_data_len = sizeof(msg), 1575 }; 1576 1577 msg = (struct rtrs_msg_conn_rsp) { 1578 .magic = cpu_to_le16(RTRS_MAGIC), 1579 .version = cpu_to_le16(RTRS_PROTO_VER), 1580 .queue_depth = cpu_to_le16(srv->queue_depth), 1581 .max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE), 1582 .max_hdr_size = cpu_to_le32(MAX_HDR_SIZE), 1583 }; 1584 1585 if (always_invalidate) 1586 msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F); 1587 1588 err = rdma_accept(cm_id, ¶m); 1589 if (err) 1590 pr_err("rdma_accept(), err: %d\n", err); 1591 1592 return err; 1593 } 1594 1595 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno) 1596 { 1597 struct rtrs_msg_conn_rsp msg; 1598 int err; 1599 1600 msg = (struct rtrs_msg_conn_rsp) { 1601 .magic = cpu_to_le16(RTRS_MAGIC), 1602 .version = cpu_to_le16(RTRS_PROTO_VER), 1603 .errno = cpu_to_le16(errno), 1604 }; 1605 1606 err = rdma_reject(cm_id, &msg, sizeof(msg), IB_CM_REJ_CONSUMER_DEFINED); 1607 if (err) 1608 pr_err("rdma_reject(), err: %d\n", err); 1609 1610 /* Bounce errno back */ 1611 return errno; 1612 } 1613 1614 static struct rtrs_srv_path * 1615 __find_path(struct rtrs_srv_sess *srv, const uuid_t *sess_uuid) 1616 { 1617 struct rtrs_srv_path *srv_path; 1618 1619 list_for_each_entry(srv_path, &srv->paths_list, s.entry) { 1620 if (uuid_equal(&srv_path->s.uuid, sess_uuid)) 1621 return srv_path; 1622 } 1623 1624 return NULL; 1625 } 1626 1627 static int create_con(struct rtrs_srv_path *srv_path, 1628 struct rdma_cm_id *cm_id, 1629 unsigned int cid) 1630 { 1631 struct rtrs_srv_sess *srv = srv_path->srv; 1632 struct rtrs_path *s = &srv_path->s; 1633 struct rtrs_srv_con *con; 1634 1635 u32 cq_num, max_send_wr, max_recv_wr, wr_limit; 1636 int err, cq_vector; 1637 1638 con = kzalloc(sizeof(*con), GFP_KERNEL); 1639 if (!con) { 1640 err = -ENOMEM; 1641 goto err; 1642 } 1643 1644 spin_lock_init(&con->rsp_wr_wait_lock); 1645 INIT_LIST_HEAD(&con->rsp_wr_wait_list); 1646 con->c.cm_id = cm_id; 1647 con->c.path = &srv_path->s; 1648 con->c.cid = cid; 1649 atomic_set(&con->c.wr_cnt, 1); 1650 wr_limit = srv_path->s.dev->ib_dev->attrs.max_qp_wr; 1651 1652 if (con->c.cid == 0) { 1653 /* 1654 * All receive and all send (each requiring invalidate) 1655 * + 2 for drain and heartbeat 1656 */ 1657 max_send_wr = min_t(int, wr_limit, 1658 SERVICE_CON_QUEUE_DEPTH * 2 + 2); 1659 max_recv_wr = max_send_wr; 1660 s->signal_interval = min_not_zero(srv->queue_depth, 1661 (size_t)SERVICE_CON_QUEUE_DEPTH); 1662 } else { 1663 /* when always_invlaidate enalbed, we need linv+rinv+mr+imm */ 1664 if (always_invalidate) 1665 max_send_wr = 1666 min_t(int, wr_limit, 1667 srv->queue_depth * (1 + 4) + 1); 1668 else 1669 max_send_wr = 1670 min_t(int, wr_limit, 1671 srv->queue_depth * (1 + 2) + 1); 1672 1673 max_recv_wr = srv->queue_depth + 1; 1674 } 1675 cq_num = max_send_wr + max_recv_wr; 1676 atomic_set(&con->c.sq_wr_avail, max_send_wr); 1677 cq_vector = rtrs_srv_get_next_cq_vector(srv_path); 1678 1679 /* TODO: SOFTIRQ can be faster, but be careful with softirq context */ 1680 err = rtrs_cq_qp_create(&srv_path->s, &con->c, 1, cq_vector, cq_num, 1681 max_send_wr, max_recv_wr, 1682 IB_POLL_WORKQUEUE); 1683 if (err) { 1684 rtrs_err(s, "rtrs_cq_qp_create(), err: %d\n", err); 1685 goto free_con; 1686 } 1687 if (con->c.cid == 0) { 1688 err = post_recv_info_req(con); 1689 if (err) 1690 goto free_cqqp; 1691 } 1692 WARN_ON(srv_path->s.con[cid]); 1693 srv_path->s.con[cid] = &con->c; 1694 1695 /* 1696 * Change context from server to current connection. The other 1697 * way is to use cm_id->qp->qp_context, which does not work on OFED. 1698 */ 1699 cm_id->context = &con->c; 1700 1701 return 0; 1702 1703 free_cqqp: 1704 rtrs_cq_qp_destroy(&con->c); 1705 free_con: 1706 kfree(con); 1707 1708 err: 1709 return err; 1710 } 1711 1712 static struct rtrs_srv_path *__alloc_path(struct rtrs_srv_sess *srv, 1713 struct rdma_cm_id *cm_id, 1714 unsigned int con_num, 1715 unsigned int recon_cnt, 1716 const uuid_t *uuid) 1717 { 1718 struct rtrs_srv_path *srv_path; 1719 int err = -ENOMEM; 1720 char str[NAME_MAX]; 1721 struct rtrs_addr path; 1722 1723 if (srv->paths_num >= MAX_PATHS_NUM) { 1724 err = -ECONNRESET; 1725 goto err; 1726 } 1727 if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) { 1728 err = -EEXIST; 1729 pr_err("Path with same addr exists\n"); 1730 goto err; 1731 } 1732 srv_path = kzalloc(sizeof(*srv_path), GFP_KERNEL); 1733 if (!srv_path) 1734 goto err; 1735 1736 srv_path->stats = kzalloc(sizeof(*srv_path->stats), GFP_KERNEL); 1737 if (!srv_path->stats) 1738 goto err_free_sess; 1739 1740 srv_path->stats->rdma_stats = alloc_percpu(struct rtrs_srv_stats_rdma_stats); 1741 if (!srv_path->stats->rdma_stats) 1742 goto err_free_stats; 1743 1744 srv_path->stats->srv_path = srv_path; 1745 1746 srv_path->dma_addr = kcalloc(srv->queue_depth, 1747 sizeof(*srv_path->dma_addr), 1748 GFP_KERNEL); 1749 if (!srv_path->dma_addr) 1750 goto err_free_percpu; 1751 1752 srv_path->s.con = kcalloc(con_num, sizeof(*srv_path->s.con), 1753 GFP_KERNEL); 1754 if (!srv_path->s.con) 1755 goto err_free_dma_addr; 1756 1757 srv_path->state = RTRS_SRV_CONNECTING; 1758 srv_path->srv = srv; 1759 srv_path->cur_cq_vector = -1; 1760 srv_path->s.dst_addr = cm_id->route.addr.dst_addr; 1761 srv_path->s.src_addr = cm_id->route.addr.src_addr; 1762 1763 /* temporary until receiving session-name from client */ 1764 path.src = &srv_path->s.src_addr; 1765 path.dst = &srv_path->s.dst_addr; 1766 rtrs_addr_to_str(&path, str, sizeof(str)); 1767 strscpy(srv_path->s.sessname, str, sizeof(srv_path->s.sessname)); 1768 1769 srv_path->s.con_num = con_num; 1770 srv_path->s.irq_con_num = con_num; 1771 srv_path->s.recon_cnt = recon_cnt; 1772 uuid_copy(&srv_path->s.uuid, uuid); 1773 spin_lock_init(&srv_path->state_lock); 1774 INIT_WORK(&srv_path->close_work, rtrs_srv_close_work); 1775 rtrs_srv_init_hb(srv_path); 1776 1777 srv_path->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd); 1778 if (!srv_path->s.dev) { 1779 err = -ENOMEM; 1780 goto err_free_con; 1781 } 1782 err = map_cont_bufs(srv_path); 1783 if (err) 1784 goto err_put_dev; 1785 1786 err = rtrs_srv_alloc_ops_ids(srv_path); 1787 if (err) 1788 goto err_unmap_bufs; 1789 1790 __add_path_to_srv(srv, srv_path); 1791 1792 return srv_path; 1793 1794 err_unmap_bufs: 1795 unmap_cont_bufs(srv_path); 1796 err_put_dev: 1797 rtrs_ib_dev_put(srv_path->s.dev); 1798 err_free_con: 1799 kfree(srv_path->s.con); 1800 err_free_dma_addr: 1801 kfree(srv_path->dma_addr); 1802 err_free_percpu: 1803 free_percpu(srv_path->stats->rdma_stats); 1804 err_free_stats: 1805 kfree(srv_path->stats); 1806 err_free_sess: 1807 kfree(srv_path); 1808 err: 1809 return ERR_PTR(err); 1810 } 1811 1812 static int rtrs_rdma_connect(struct rdma_cm_id *cm_id, 1813 const struct rtrs_msg_conn_req *msg, 1814 size_t len) 1815 { 1816 struct rtrs_srv_ctx *ctx = cm_id->context; 1817 struct rtrs_srv_path *srv_path; 1818 struct rtrs_srv_sess *srv; 1819 1820 u16 version, con_num, cid; 1821 u16 recon_cnt; 1822 int err = -ECONNRESET; 1823 1824 if (len < sizeof(*msg)) { 1825 pr_err("Invalid RTRS connection request\n"); 1826 goto reject_w_err; 1827 } 1828 if (le16_to_cpu(msg->magic) != RTRS_MAGIC) { 1829 pr_err("Invalid RTRS magic\n"); 1830 goto reject_w_err; 1831 } 1832 version = le16_to_cpu(msg->version); 1833 if (version >> 8 != RTRS_PROTO_VER_MAJOR) { 1834 pr_err("Unsupported major RTRS version: %d, expected %d\n", 1835 version >> 8, RTRS_PROTO_VER_MAJOR); 1836 goto reject_w_err; 1837 } 1838 con_num = le16_to_cpu(msg->cid_num); 1839 if (con_num > 4096) { 1840 /* Sanity check */ 1841 pr_err("Too many connections requested: %d\n", con_num); 1842 goto reject_w_err; 1843 } 1844 cid = le16_to_cpu(msg->cid); 1845 if (cid >= con_num) { 1846 /* Sanity check */ 1847 pr_err("Incorrect cid: %d >= %d\n", cid, con_num); 1848 goto reject_w_err; 1849 } 1850 recon_cnt = le16_to_cpu(msg->recon_cnt); 1851 srv = get_or_create_srv(ctx, &msg->paths_uuid, msg->first_conn); 1852 if (IS_ERR(srv)) { 1853 err = PTR_ERR(srv); 1854 pr_err("get_or_create_srv(), error %d\n", err); 1855 goto reject_w_err; 1856 } 1857 mutex_lock(&srv->paths_mutex); 1858 srv_path = __find_path(srv, &msg->sess_uuid); 1859 if (srv_path) { 1860 struct rtrs_path *s = &srv_path->s; 1861 1862 /* Session already holds a reference */ 1863 put_srv(srv); 1864 1865 if (srv_path->state != RTRS_SRV_CONNECTING) { 1866 rtrs_err(s, "Session in wrong state: %s\n", 1867 rtrs_srv_state_str(srv_path->state)); 1868 mutex_unlock(&srv->paths_mutex); 1869 goto reject_w_err; 1870 } 1871 /* 1872 * Sanity checks 1873 */ 1874 if (con_num != s->con_num || cid >= s->con_num) { 1875 rtrs_err(s, "Incorrect request: %d, %d\n", 1876 cid, con_num); 1877 mutex_unlock(&srv->paths_mutex); 1878 goto reject_w_err; 1879 } 1880 if (s->con[cid]) { 1881 rtrs_err(s, "Connection already exists: %d\n", 1882 cid); 1883 mutex_unlock(&srv->paths_mutex); 1884 goto reject_w_err; 1885 } 1886 } else { 1887 srv_path = __alloc_path(srv, cm_id, con_num, recon_cnt, 1888 &msg->sess_uuid); 1889 if (IS_ERR(srv_path)) { 1890 mutex_unlock(&srv->paths_mutex); 1891 put_srv(srv); 1892 err = PTR_ERR(srv_path); 1893 pr_err("RTRS server session allocation failed: %d\n", err); 1894 goto reject_w_err; 1895 } 1896 } 1897 err = create_con(srv_path, cm_id, cid); 1898 if (err) { 1899 rtrs_err((&srv_path->s), "create_con(), error %d\n", err); 1900 rtrs_rdma_do_reject(cm_id, err); 1901 /* 1902 * Since session has other connections we follow normal way 1903 * through workqueue, but still return an error to tell cma.c 1904 * to call rdma_destroy_id() for current connection. 1905 */ 1906 goto close_and_return_err; 1907 } 1908 err = rtrs_rdma_do_accept(srv_path, cm_id); 1909 if (err) { 1910 rtrs_err((&srv_path->s), "rtrs_rdma_do_accept(), error %d\n", err); 1911 rtrs_rdma_do_reject(cm_id, err); 1912 /* 1913 * Since current connection was successfully added to the 1914 * session we follow normal way through workqueue to close the 1915 * session, thus return 0 to tell cma.c we call 1916 * rdma_destroy_id() ourselves. 1917 */ 1918 err = 0; 1919 goto close_and_return_err; 1920 } 1921 mutex_unlock(&srv->paths_mutex); 1922 1923 return 0; 1924 1925 reject_w_err: 1926 return rtrs_rdma_do_reject(cm_id, err); 1927 1928 close_and_return_err: 1929 mutex_unlock(&srv->paths_mutex); 1930 close_path(srv_path); 1931 1932 return err; 1933 } 1934 1935 static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id, 1936 struct rdma_cm_event *ev) 1937 { 1938 struct rtrs_srv_path *srv_path = NULL; 1939 struct rtrs_path *s = NULL; 1940 struct rtrs_con *c = NULL; 1941 1942 if (ev->event == RDMA_CM_EVENT_CONNECT_REQUEST) 1943 /* 1944 * In case of error cma.c will destroy cm_id, 1945 * see cma_process_remove() 1946 */ 1947 return rtrs_rdma_connect(cm_id, ev->param.conn.private_data, 1948 ev->param.conn.private_data_len); 1949 1950 c = cm_id->context; 1951 s = c->path; 1952 srv_path = to_srv_path(s); 1953 1954 switch (ev->event) { 1955 case RDMA_CM_EVENT_ESTABLISHED: 1956 /* Nothing here */ 1957 break; 1958 case RDMA_CM_EVENT_REJECTED: 1959 case RDMA_CM_EVENT_CONNECT_ERROR: 1960 case RDMA_CM_EVENT_UNREACHABLE: 1961 rtrs_err(s, "CM error (CM event: %s, err: %d)\n", 1962 rdma_event_msg(ev->event), ev->status); 1963 fallthrough; 1964 case RDMA_CM_EVENT_DISCONNECTED: 1965 case RDMA_CM_EVENT_ADDR_CHANGE: 1966 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1967 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1968 close_path(srv_path); 1969 break; 1970 default: 1971 pr_err("Ignoring unexpected CM event %s, err %d\n", 1972 rdma_event_msg(ev->event), ev->status); 1973 break; 1974 } 1975 1976 return 0; 1977 } 1978 1979 static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx, 1980 struct sockaddr *addr, 1981 enum rdma_ucm_port_space ps) 1982 { 1983 struct rdma_cm_id *cm_id; 1984 int ret; 1985 1986 cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler, 1987 ctx, ps, IB_QPT_RC); 1988 if (IS_ERR(cm_id)) { 1989 ret = PTR_ERR(cm_id); 1990 pr_err("Creating id for RDMA connection failed, err: %d\n", 1991 ret); 1992 goto err_out; 1993 } 1994 ret = rdma_bind_addr(cm_id, addr); 1995 if (ret) { 1996 pr_err("Binding RDMA address failed, err: %d\n", ret); 1997 goto err_cm; 1998 } 1999 ret = rdma_listen(cm_id, 64); 2000 if (ret) { 2001 pr_err("Listening on RDMA connection failed, err: %d\n", 2002 ret); 2003 goto err_cm; 2004 } 2005 2006 return cm_id; 2007 2008 err_cm: 2009 rdma_destroy_id(cm_id); 2010 err_out: 2011 2012 return ERR_PTR(ret); 2013 } 2014 2015 static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port) 2016 { 2017 struct sockaddr_in6 sin = { 2018 .sin6_family = AF_INET6, 2019 .sin6_addr = IN6ADDR_ANY_INIT, 2020 .sin6_port = htons(port), 2021 }; 2022 struct sockaddr_ib sib = { 2023 .sib_family = AF_IB, 2024 .sib_sid = cpu_to_be64(RDMA_IB_IP_PS_IB | port), 2025 .sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL), 2026 .sib_pkey = cpu_to_be16(0xffff), 2027 }; 2028 struct rdma_cm_id *cm_ip, *cm_ib; 2029 int ret; 2030 2031 /* 2032 * We accept both IPoIB and IB connections, so we need to keep 2033 * two cm id's, one for each socket type and port space. 2034 * If the cm initialization of one of the id's fails, we abort 2035 * everything. 2036 */ 2037 cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP); 2038 if (IS_ERR(cm_ip)) 2039 return PTR_ERR(cm_ip); 2040 2041 cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB); 2042 if (IS_ERR(cm_ib)) { 2043 ret = PTR_ERR(cm_ib); 2044 goto free_cm_ip; 2045 } 2046 2047 ctx->cm_id_ip = cm_ip; 2048 ctx->cm_id_ib = cm_ib; 2049 2050 return 0; 2051 2052 free_cm_ip: 2053 rdma_destroy_id(cm_ip); 2054 2055 return ret; 2056 } 2057 2058 static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops) 2059 { 2060 struct rtrs_srv_ctx *ctx; 2061 2062 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2063 if (!ctx) 2064 return NULL; 2065 2066 ctx->ops = *ops; 2067 mutex_init(&ctx->srv_mutex); 2068 INIT_LIST_HEAD(&ctx->srv_list); 2069 2070 return ctx; 2071 } 2072 2073 static void free_srv_ctx(struct rtrs_srv_ctx *ctx) 2074 { 2075 WARN_ON(!list_empty(&ctx->srv_list)); 2076 mutex_destroy(&ctx->srv_mutex); 2077 kfree(ctx); 2078 } 2079 2080 static int rtrs_srv_add_one(struct ib_device *device) 2081 { 2082 struct rtrs_srv_ctx *ctx; 2083 int ret = 0; 2084 2085 mutex_lock(&ib_ctx.ib_dev_mutex); 2086 if (ib_ctx.ib_dev_count) 2087 goto out; 2088 2089 /* 2090 * Since our CM IDs are NOT bound to any ib device we will create them 2091 * only once 2092 */ 2093 ctx = ib_ctx.srv_ctx; 2094 ret = rtrs_srv_rdma_init(ctx, ib_ctx.port); 2095 if (ret) { 2096 /* 2097 * We errored out here. 2098 * According to the ib code, if we encounter an error here then the 2099 * error code is ignored, and no more calls to our ops are made. 2100 */ 2101 pr_err("Failed to initialize RDMA connection"); 2102 goto err_out; 2103 } 2104 2105 out: 2106 /* 2107 * Keep a track on the number of ib devices added 2108 */ 2109 ib_ctx.ib_dev_count++; 2110 2111 err_out: 2112 mutex_unlock(&ib_ctx.ib_dev_mutex); 2113 return ret; 2114 } 2115 2116 static void rtrs_srv_remove_one(struct ib_device *device, void *client_data) 2117 { 2118 struct rtrs_srv_ctx *ctx; 2119 2120 mutex_lock(&ib_ctx.ib_dev_mutex); 2121 ib_ctx.ib_dev_count--; 2122 2123 if (ib_ctx.ib_dev_count) 2124 goto out; 2125 2126 /* 2127 * Since our CM IDs are NOT bound to any ib device we will remove them 2128 * only once, when the last device is removed 2129 */ 2130 ctx = ib_ctx.srv_ctx; 2131 rdma_destroy_id(ctx->cm_id_ip); 2132 rdma_destroy_id(ctx->cm_id_ib); 2133 2134 out: 2135 mutex_unlock(&ib_ctx.ib_dev_mutex); 2136 } 2137 2138 static struct ib_client rtrs_srv_client = { 2139 .name = "rtrs_server", 2140 .add = rtrs_srv_add_one, 2141 .remove = rtrs_srv_remove_one 2142 }; 2143 2144 /** 2145 * rtrs_srv_open() - open RTRS server context 2146 * @ops: callback functions 2147 * @port: port to listen on 2148 * 2149 * Creates server context with specified callbacks. 2150 * 2151 * Return a valid pointer on success otherwise PTR_ERR. 2152 */ 2153 struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port) 2154 { 2155 struct rtrs_srv_ctx *ctx; 2156 int err; 2157 2158 ctx = alloc_srv_ctx(ops); 2159 if (!ctx) 2160 return ERR_PTR(-ENOMEM); 2161 2162 mutex_init(&ib_ctx.ib_dev_mutex); 2163 ib_ctx.srv_ctx = ctx; 2164 ib_ctx.port = port; 2165 2166 err = ib_register_client(&rtrs_srv_client); 2167 if (err) { 2168 free_srv_ctx(ctx); 2169 return ERR_PTR(err); 2170 } 2171 2172 return ctx; 2173 } 2174 EXPORT_SYMBOL(rtrs_srv_open); 2175 2176 static void close_paths(struct rtrs_srv_sess *srv) 2177 { 2178 struct rtrs_srv_path *srv_path; 2179 2180 mutex_lock(&srv->paths_mutex); 2181 list_for_each_entry(srv_path, &srv->paths_list, s.entry) 2182 close_path(srv_path); 2183 mutex_unlock(&srv->paths_mutex); 2184 } 2185 2186 static void close_ctx(struct rtrs_srv_ctx *ctx) 2187 { 2188 struct rtrs_srv_sess *srv; 2189 2190 mutex_lock(&ctx->srv_mutex); 2191 list_for_each_entry(srv, &ctx->srv_list, ctx_list) 2192 close_paths(srv); 2193 mutex_unlock(&ctx->srv_mutex); 2194 flush_workqueue(rtrs_wq); 2195 } 2196 2197 /** 2198 * rtrs_srv_close() - close RTRS server context 2199 * @ctx: pointer to server context 2200 * 2201 * Closes RTRS server context with all client sessions. 2202 */ 2203 void rtrs_srv_close(struct rtrs_srv_ctx *ctx) 2204 { 2205 ib_unregister_client(&rtrs_srv_client); 2206 mutex_destroy(&ib_ctx.ib_dev_mutex); 2207 close_ctx(ctx); 2208 free_srv_ctx(ctx); 2209 } 2210 EXPORT_SYMBOL(rtrs_srv_close); 2211 2212 static int check_module_params(void) 2213 { 2214 if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) { 2215 pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n", 2216 sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH); 2217 return -EINVAL; 2218 } 2219 if (max_chunk_size < MIN_CHUNK_SIZE || !is_power_of_2(max_chunk_size)) { 2220 pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n", 2221 max_chunk_size, MIN_CHUNK_SIZE); 2222 return -EINVAL; 2223 } 2224 2225 /* 2226 * Check if IB immediate data size is enough to hold the mem_id and the 2227 * offset inside the memory chunk 2228 */ 2229 if ((ilog2(sess_queue_depth - 1) + 1) + 2230 (ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) { 2231 pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n", 2232 MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size); 2233 return -EINVAL; 2234 } 2235 2236 return 0; 2237 } 2238 2239 static int __init rtrs_server_init(void) 2240 { 2241 int err; 2242 2243 pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n", 2244 KBUILD_MODNAME, RTRS_PROTO_VER_STRING, 2245 max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE, 2246 sess_queue_depth, always_invalidate); 2247 2248 rtrs_rdma_dev_pd_init(0, &dev_pd); 2249 2250 err = check_module_params(); 2251 if (err) { 2252 pr_err("Failed to load module, invalid module parameters, err: %d\n", 2253 err); 2254 return err; 2255 } 2256 rtrs_dev_class = class_create(THIS_MODULE, "rtrs-server"); 2257 if (IS_ERR(rtrs_dev_class)) { 2258 err = PTR_ERR(rtrs_dev_class); 2259 goto out_err; 2260 } 2261 rtrs_wq = alloc_workqueue("rtrs_server_wq", 0, 0); 2262 if (!rtrs_wq) { 2263 err = -ENOMEM; 2264 goto out_dev_class; 2265 } 2266 2267 return 0; 2268 2269 out_dev_class: 2270 class_destroy(rtrs_dev_class); 2271 out_err: 2272 return err; 2273 } 2274 2275 static void __exit rtrs_server_exit(void) 2276 { 2277 destroy_workqueue(rtrs_wq); 2278 class_destroy(rtrs_dev_class); 2279 rtrs_rdma_dev_pd_deinit(&dev_pd); 2280 } 2281 2282 module_init(rtrs_server_init); 2283 module_exit(rtrs_server_exit); 2284