xref: /openbmc/linux/drivers/infiniband/ulp/rtrs/rtrs-clt.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/rculist.h>
15 #include <linux/random.h>
16 
17 #include "rtrs-clt.h"
18 #include "rtrs-log.h"
19 
20 #define RTRS_CONNECT_TIMEOUT_MS 30000
21 /*
22  * Wait a bit before trying to reconnect after a failure
23  * in order to give server time to finish clean up which
24  * leads to "false positives" failed reconnect attempts
25  */
26 #define RTRS_RECONNECT_BACKOFF 1000
27 /*
28  * Wait for additional random time between 0 and 8 seconds
29  * before starting to reconnect to avoid clients reconnecting
30  * all at once in case of a major network outage
31  */
32 #define RTRS_RECONNECT_SEED 8
33 
34 #define FIRST_CONN 0x01
35 
36 MODULE_DESCRIPTION("RDMA Transport Client");
37 MODULE_LICENSE("GPL");
38 
39 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
40 static struct rtrs_rdma_dev_pd dev_pd = {
41 	.ops = &dev_pd_ops
42 };
43 
44 static struct workqueue_struct *rtrs_wq;
45 static struct class *rtrs_clt_dev_class;
46 
47 static inline bool rtrs_clt_is_connected(const struct rtrs_clt *clt)
48 {
49 	struct rtrs_clt_sess *sess;
50 	bool connected = false;
51 
52 	rcu_read_lock();
53 	list_for_each_entry_rcu(sess, &clt->paths_list, s.entry)
54 		connected |= READ_ONCE(sess->state) == RTRS_CLT_CONNECTED;
55 	rcu_read_unlock();
56 
57 	return connected;
58 }
59 
60 static struct rtrs_permit *
61 __rtrs_get_permit(struct rtrs_clt *clt, enum rtrs_clt_con_type con_type)
62 {
63 	size_t max_depth = clt->queue_depth;
64 	struct rtrs_permit *permit;
65 	int bit;
66 
67 	/*
68 	 * Adapted from null_blk get_tag(). Callers from different cpus may
69 	 * grab the same bit, since find_first_zero_bit is not atomic.
70 	 * But then the test_and_set_bit_lock will fail for all the
71 	 * callers but one, so that they will loop again.
72 	 * This way an explicit spinlock is not required.
73 	 */
74 	do {
75 		bit = find_first_zero_bit(clt->permits_map, max_depth);
76 		if (unlikely(bit >= max_depth))
77 			return NULL;
78 	} while (unlikely(test_and_set_bit_lock(bit, clt->permits_map)));
79 
80 	permit = get_permit(clt, bit);
81 	WARN_ON(permit->mem_id != bit);
82 	permit->cpu_id = raw_smp_processor_id();
83 	permit->con_type = con_type;
84 
85 	return permit;
86 }
87 
88 static inline void __rtrs_put_permit(struct rtrs_clt *clt,
89 				      struct rtrs_permit *permit)
90 {
91 	clear_bit_unlock(permit->mem_id, clt->permits_map);
92 }
93 
94 /**
95  * rtrs_clt_get_permit() - allocates permit for future RDMA operation
96  * @clt:	Current session
97  * @con_type:	Type of connection to use with the permit
98  * @can_wait:	Wait type
99  *
100  * Description:
101  *    Allocates permit for the following RDMA operation.  Permit is used
102  *    to preallocate all resources and to propagate memory pressure
103  *    up earlier.
104  *
105  * Context:
106  *    Can sleep if @wait == RTRS_PERMIT_WAIT
107  */
108 struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt *clt,
109 					  enum rtrs_clt_con_type con_type,
110 					  enum wait_type can_wait)
111 {
112 	struct rtrs_permit *permit;
113 	DEFINE_WAIT(wait);
114 
115 	permit = __rtrs_get_permit(clt, con_type);
116 	if (likely(permit) || !can_wait)
117 		return permit;
118 
119 	do {
120 		prepare_to_wait(&clt->permits_wait, &wait,
121 				TASK_UNINTERRUPTIBLE);
122 		permit = __rtrs_get_permit(clt, con_type);
123 		if (likely(permit))
124 			break;
125 
126 		io_schedule();
127 	} while (1);
128 
129 	finish_wait(&clt->permits_wait, &wait);
130 
131 	return permit;
132 }
133 EXPORT_SYMBOL(rtrs_clt_get_permit);
134 
135 /**
136  * rtrs_clt_put_permit() - puts allocated permit
137  * @clt:	Current session
138  * @permit:	Permit to be freed
139  *
140  * Context:
141  *    Does not matter
142  */
143 void rtrs_clt_put_permit(struct rtrs_clt *clt, struct rtrs_permit *permit)
144 {
145 	if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
146 		return;
147 
148 	__rtrs_put_permit(clt, permit);
149 
150 	/*
151 	 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
152 	 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
153 	 * it must have added itself to &clt->permits_wait before
154 	 * __rtrs_put_permit() finished.
155 	 * Hence it is safe to guard wake_up() with a waitqueue_active() test.
156 	 */
157 	if (waitqueue_active(&clt->permits_wait))
158 		wake_up(&clt->permits_wait);
159 }
160 EXPORT_SYMBOL(rtrs_clt_put_permit);
161 
162 /**
163  * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
164  * @sess: client session pointer
165  * @permit: permit for the allocation of the RDMA buffer
166  * Note:
167  *     IO connection starts from 1.
168  *     0 connection is for user messages.
169  */
170 static
171 struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_sess *sess,
172 					    struct rtrs_permit *permit)
173 {
174 	int id = 0;
175 
176 	if (likely(permit->con_type == RTRS_IO_CON))
177 		id = (permit->cpu_id % (sess->s.irq_con_num - 1)) + 1;
178 
179 	return to_clt_con(sess->s.con[id]);
180 }
181 
182 /**
183  * rtrs_clt_change_state() - change the session state through session state
184  * machine.
185  *
186  * @sess: client session to change the state of.
187  * @new_state: state to change to.
188  *
189  * returns true if sess's state is changed to new state, otherwise return false.
190  *
191  * Locks:
192  * state_wq lock must be hold.
193  */
194 static bool rtrs_clt_change_state(struct rtrs_clt_sess *sess,
195 				     enum rtrs_clt_state new_state)
196 {
197 	enum rtrs_clt_state old_state;
198 	bool changed = false;
199 
200 	lockdep_assert_held(&sess->state_wq.lock);
201 
202 	old_state = sess->state;
203 	switch (new_state) {
204 	case RTRS_CLT_CONNECTING:
205 		switch (old_state) {
206 		case RTRS_CLT_RECONNECTING:
207 			changed = true;
208 			fallthrough;
209 		default:
210 			break;
211 		}
212 		break;
213 	case RTRS_CLT_RECONNECTING:
214 		switch (old_state) {
215 		case RTRS_CLT_CONNECTED:
216 		case RTRS_CLT_CONNECTING_ERR:
217 		case RTRS_CLT_CLOSED:
218 			changed = true;
219 			fallthrough;
220 		default:
221 			break;
222 		}
223 		break;
224 	case RTRS_CLT_CONNECTED:
225 		switch (old_state) {
226 		case RTRS_CLT_CONNECTING:
227 			changed = true;
228 			fallthrough;
229 		default:
230 			break;
231 		}
232 		break;
233 	case RTRS_CLT_CONNECTING_ERR:
234 		switch (old_state) {
235 		case RTRS_CLT_CONNECTING:
236 			changed = true;
237 			fallthrough;
238 		default:
239 			break;
240 		}
241 		break;
242 	case RTRS_CLT_CLOSING:
243 		switch (old_state) {
244 		case RTRS_CLT_CONNECTING:
245 		case RTRS_CLT_CONNECTING_ERR:
246 		case RTRS_CLT_RECONNECTING:
247 		case RTRS_CLT_CONNECTED:
248 			changed = true;
249 			fallthrough;
250 		default:
251 			break;
252 		}
253 		break;
254 	case RTRS_CLT_CLOSED:
255 		switch (old_state) {
256 		case RTRS_CLT_CLOSING:
257 			changed = true;
258 			fallthrough;
259 		default:
260 			break;
261 		}
262 		break;
263 	case RTRS_CLT_DEAD:
264 		switch (old_state) {
265 		case RTRS_CLT_CLOSED:
266 			changed = true;
267 			fallthrough;
268 		default:
269 			break;
270 		}
271 		break;
272 	default:
273 		break;
274 	}
275 	if (changed) {
276 		sess->state = new_state;
277 		wake_up_locked(&sess->state_wq);
278 	}
279 
280 	return changed;
281 }
282 
283 static bool rtrs_clt_change_state_from_to(struct rtrs_clt_sess *sess,
284 					   enum rtrs_clt_state old_state,
285 					   enum rtrs_clt_state new_state)
286 {
287 	bool changed = false;
288 
289 	spin_lock_irq(&sess->state_wq.lock);
290 	if (sess->state == old_state)
291 		changed = rtrs_clt_change_state(sess, new_state);
292 	spin_unlock_irq(&sess->state_wq.lock);
293 
294 	return changed;
295 }
296 
297 static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
298 {
299 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
300 
301 	if (rtrs_clt_change_state_from_to(sess,
302 					   RTRS_CLT_CONNECTED,
303 					   RTRS_CLT_RECONNECTING)) {
304 		struct rtrs_clt *clt = sess->clt;
305 		unsigned int delay_ms;
306 
307 		/*
308 		 * Normal scenario, reconnect if we were successfully connected
309 		 */
310 		delay_ms = clt->reconnect_delay_sec * 1000;
311 		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
312 				   msecs_to_jiffies(delay_ms +
313 						    prandom_u32() % RTRS_RECONNECT_SEED));
314 	} else {
315 		/*
316 		 * Error can happen just on establishing new connection,
317 		 * so notify waiter with error state, waiter is responsible
318 		 * for cleaning the rest and reconnect if needed.
319 		 */
320 		rtrs_clt_change_state_from_to(sess,
321 					       RTRS_CLT_CONNECTING,
322 					       RTRS_CLT_CONNECTING_ERR);
323 	}
324 }
325 
326 static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
327 {
328 	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
329 
330 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
331 		rtrs_err(con->c.sess, "Failed IB_WR_REG_MR: %s\n",
332 			  ib_wc_status_msg(wc->status));
333 		rtrs_rdma_error_recovery(con);
334 	}
335 }
336 
337 static struct ib_cqe fast_reg_cqe = {
338 	.done = rtrs_clt_fast_reg_done
339 };
340 
341 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
342 			      bool notify, bool can_wait);
343 
344 static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
345 {
346 	struct rtrs_clt_io_req *req =
347 		container_of(wc->wr_cqe, typeof(*req), inv_cqe);
348 	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
349 
350 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
351 		rtrs_err(con->c.sess, "Failed IB_WR_LOCAL_INV: %s\n",
352 			  ib_wc_status_msg(wc->status));
353 		rtrs_rdma_error_recovery(con);
354 	}
355 	req->need_inv = false;
356 	if (likely(req->need_inv_comp))
357 		complete(&req->inv_comp);
358 	else
359 		/* Complete request from INV callback */
360 		complete_rdma_req(req, req->inv_errno, true, false);
361 }
362 
363 static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
364 {
365 	struct rtrs_clt_con *con = req->con;
366 	struct ib_send_wr wr = {
367 		.opcode		    = IB_WR_LOCAL_INV,
368 		.wr_cqe		    = &req->inv_cqe,
369 		.send_flags	    = IB_SEND_SIGNALED,
370 		.ex.invalidate_rkey = req->mr->rkey,
371 	};
372 	req->inv_cqe.done = rtrs_clt_inv_rkey_done;
373 
374 	return ib_post_send(con->c.qp, &wr, NULL);
375 }
376 
377 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
378 			      bool notify, bool can_wait)
379 {
380 	struct rtrs_clt_con *con = req->con;
381 	struct rtrs_clt_sess *sess;
382 	int err;
383 
384 	if (WARN_ON(!req->in_use))
385 		return;
386 	if (WARN_ON(!req->con))
387 		return;
388 	sess = to_clt_sess(con->c.sess);
389 
390 	if (req->sg_cnt) {
391 		if (unlikely(req->dir == DMA_FROM_DEVICE && req->need_inv)) {
392 			/*
393 			 * We are here to invalidate read requests
394 			 * ourselves.  In normal scenario server should
395 			 * send INV for all read requests, but
396 			 * we are here, thus two things could happen:
397 			 *
398 			 *    1.  this is failover, when errno != 0
399 			 *        and can_wait == 1,
400 			 *
401 			 *    2.  something totally bad happened and
402 			 *        server forgot to send INV, so we
403 			 *        should do that ourselves.
404 			 */
405 
406 			if (likely(can_wait)) {
407 				req->need_inv_comp = true;
408 			} else {
409 				/* This should be IO path, so always notify */
410 				WARN_ON(!notify);
411 				/* Save errno for INV callback */
412 				req->inv_errno = errno;
413 			}
414 
415 			err = rtrs_inv_rkey(req);
416 			if (unlikely(err)) {
417 				rtrs_err(con->c.sess, "Send INV WR key=%#x: %d\n",
418 					  req->mr->rkey, err);
419 			} else if (likely(can_wait)) {
420 				wait_for_completion(&req->inv_comp);
421 			} else {
422 				/*
423 				 * Something went wrong, so request will be
424 				 * completed from INV callback.
425 				 */
426 				WARN_ON_ONCE(1);
427 
428 				return;
429 			}
430 		}
431 		ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
432 				req->sg_cnt, req->dir);
433 	}
434 	if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
435 		atomic_dec(&sess->stats->inflight);
436 
437 	req->in_use = false;
438 	req->con = NULL;
439 
440 	if (errno) {
441 		rtrs_err_rl(con->c.sess,
442 			    "IO request failed: error=%d path=%s [%s:%u]\n",
443 			    errno, kobject_name(&sess->kobj), sess->hca_name,
444 			    sess->hca_port);
445 	}
446 
447 	if (notify)
448 		req->conf(req->priv, errno);
449 }
450 
451 static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
452 				struct rtrs_clt_io_req *req,
453 				struct rtrs_rbuf *rbuf, u32 off,
454 				u32 imm, struct ib_send_wr *wr)
455 {
456 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
457 	enum ib_send_flags flags;
458 	struct ib_sge sge;
459 
460 	if (unlikely(!req->sg_size)) {
461 		rtrs_wrn(con->c.sess,
462 			 "Doing RDMA Write failed, no data supplied\n");
463 		return -EINVAL;
464 	}
465 
466 	/* user data and user message in the first list element */
467 	sge.addr   = req->iu->dma_addr;
468 	sge.length = req->sg_size;
469 	sge.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
470 
471 	/*
472 	 * From time to time we have to post signalled sends,
473 	 * or send queue will fill up and only QP reset can help.
474 	 */
475 	flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
476 			0 : IB_SEND_SIGNALED;
477 
478 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
479 				      req->sg_size, DMA_TO_DEVICE);
480 
481 	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
482 					    rbuf->rkey, rbuf->addr + off,
483 					    imm, flags, wr);
484 }
485 
486 static void process_io_rsp(struct rtrs_clt_sess *sess, u32 msg_id,
487 			   s16 errno, bool w_inval)
488 {
489 	struct rtrs_clt_io_req *req;
490 
491 	if (WARN_ON(msg_id >= sess->queue_depth))
492 		return;
493 
494 	req = &sess->reqs[msg_id];
495 	/* Drop need_inv if server responded with send with invalidation */
496 	req->need_inv &= !w_inval;
497 	complete_rdma_req(req, errno, true, false);
498 }
499 
500 static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
501 {
502 	struct rtrs_iu *iu;
503 	int err;
504 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
505 
506 	WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0);
507 	iu = container_of(wc->wr_cqe, struct rtrs_iu,
508 			  cqe);
509 	err = rtrs_iu_post_recv(&con->c, iu);
510 	if (unlikely(err)) {
511 		rtrs_err(con->c.sess, "post iu failed %d\n", err);
512 		rtrs_rdma_error_recovery(con);
513 	}
514 }
515 
516 static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
517 {
518 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
519 	struct rtrs_msg_rkey_rsp *msg;
520 	u32 imm_type, imm_payload;
521 	bool w_inval = false;
522 	struct rtrs_iu *iu;
523 	u32 buf_id;
524 	int err;
525 
526 	WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0);
527 
528 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
529 
530 	if (unlikely(wc->byte_len < sizeof(*msg))) {
531 		rtrs_err(con->c.sess, "rkey response is malformed: size %d\n",
532 			  wc->byte_len);
533 		goto out;
534 	}
535 	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
536 				   iu->size, DMA_FROM_DEVICE);
537 	msg = iu->buf;
538 	if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP)) {
539 		rtrs_err(sess->clt, "rkey response is malformed: type %d\n",
540 			  le16_to_cpu(msg->type));
541 		goto out;
542 	}
543 	buf_id = le16_to_cpu(msg->buf_id);
544 	if (WARN_ON(buf_id >= sess->queue_depth))
545 		goto out;
546 
547 	rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
548 	if (likely(imm_type == RTRS_IO_RSP_IMM ||
549 		   imm_type == RTRS_IO_RSP_W_INV_IMM)) {
550 		u32 msg_id;
551 
552 		w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
553 		rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
554 
555 		if (WARN_ON(buf_id != msg_id))
556 			goto out;
557 		sess->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
558 		process_io_rsp(sess, msg_id, err, w_inval);
559 	}
560 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, iu->dma_addr,
561 				      iu->size, DMA_FROM_DEVICE);
562 	return rtrs_clt_recv_done(con, wc);
563 out:
564 	rtrs_rdma_error_recovery(con);
565 }
566 
567 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
568 
569 static struct ib_cqe io_comp_cqe = {
570 	.done = rtrs_clt_rdma_done
571 };
572 
573 /*
574  * Post x2 empty WRs: first is for this RDMA with IMM,
575  * second is for RECV with INV, which happened earlier.
576  */
577 static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
578 {
579 	struct ib_recv_wr wr_arr[2], *wr;
580 	int i;
581 
582 	memset(wr_arr, 0, sizeof(wr_arr));
583 	for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
584 		wr = &wr_arr[i];
585 		wr->wr_cqe  = cqe;
586 		if (i)
587 			/* Chain backwards */
588 			wr->next = &wr_arr[i - 1];
589 	}
590 
591 	return ib_post_recv(con->qp, wr, NULL);
592 }
593 
594 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
595 {
596 	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
597 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
598 	u32 imm_type, imm_payload;
599 	bool w_inval = false;
600 	int err;
601 
602 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
603 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
604 			rtrs_err(sess->clt, "RDMA failed: %s\n",
605 				  ib_wc_status_msg(wc->status));
606 			rtrs_rdma_error_recovery(con);
607 		}
608 		return;
609 	}
610 	rtrs_clt_update_wc_stats(con);
611 
612 	switch (wc->opcode) {
613 	case IB_WC_RECV_RDMA_WITH_IMM:
614 		/*
615 		 * post_recv() RDMA write completions of IO reqs (read/write)
616 		 * and hb
617 		 */
618 		if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
619 			return;
620 		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
621 			       &imm_type, &imm_payload);
622 		if (likely(imm_type == RTRS_IO_RSP_IMM ||
623 			   imm_type == RTRS_IO_RSP_W_INV_IMM)) {
624 			u32 msg_id;
625 
626 			w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
627 			rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
628 
629 			process_io_rsp(sess, msg_id, err, w_inval);
630 		} else if (imm_type == RTRS_HB_MSG_IMM) {
631 			WARN_ON(con->c.cid);
632 			rtrs_send_hb_ack(&sess->s);
633 			if (sess->flags & RTRS_MSG_NEW_RKEY_F)
634 				return  rtrs_clt_recv_done(con, wc);
635 		} else if (imm_type == RTRS_HB_ACK_IMM) {
636 			WARN_ON(con->c.cid);
637 			sess->s.hb_missed_cnt = 0;
638 			sess->s.hb_cur_latency =
639 				ktime_sub(ktime_get(), sess->s.hb_last_sent);
640 			if (sess->flags & RTRS_MSG_NEW_RKEY_F)
641 				return  rtrs_clt_recv_done(con, wc);
642 		} else {
643 			rtrs_wrn(con->c.sess, "Unknown IMM type %u\n",
644 				  imm_type);
645 		}
646 		if (w_inval)
647 			/*
648 			 * Post x2 empty WRs: first is for this RDMA with IMM,
649 			 * second is for RECV with INV, which happened earlier.
650 			 */
651 			err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
652 		else
653 			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
654 		if (unlikely(err)) {
655 			rtrs_err(con->c.sess, "rtrs_post_recv_empty(): %d\n",
656 				  err);
657 			rtrs_rdma_error_recovery(con);
658 			break;
659 		}
660 		break;
661 	case IB_WC_RECV:
662 		/*
663 		 * Key invalidations from server side
664 		 */
665 		WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
666 			  wc->wc_flags & IB_WC_WITH_IMM));
667 		WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
668 		if (sess->flags & RTRS_MSG_NEW_RKEY_F) {
669 			if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
670 				return  rtrs_clt_recv_done(con, wc);
671 
672 			return  rtrs_clt_rkey_rsp_done(con, wc);
673 		}
674 		break;
675 	case IB_WC_RDMA_WRITE:
676 		/*
677 		 * post_send() RDMA write completions of IO reqs (read/write)
678 		 */
679 		break;
680 
681 	default:
682 		rtrs_wrn(sess->clt, "Unexpected WC type: %d\n", wc->opcode);
683 		return;
684 	}
685 }
686 
687 static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
688 {
689 	int err, i;
690 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
691 
692 	for (i = 0; i < q_size; i++) {
693 		if (sess->flags & RTRS_MSG_NEW_RKEY_F) {
694 			struct rtrs_iu *iu = &con->rsp_ius[i];
695 
696 			err = rtrs_iu_post_recv(&con->c, iu);
697 		} else {
698 			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
699 		}
700 		if (unlikely(err))
701 			return err;
702 	}
703 
704 	return 0;
705 }
706 
707 static int post_recv_sess(struct rtrs_clt_sess *sess)
708 {
709 	size_t q_size = 0;
710 	int err, cid;
711 
712 	for (cid = 0; cid < sess->s.con_num; cid++) {
713 		if (cid == 0)
714 			q_size = SERVICE_CON_QUEUE_DEPTH;
715 		else
716 			q_size = sess->queue_depth;
717 
718 		/*
719 		 * x2 for RDMA read responses + FR key invalidations,
720 		 * RDMA writes do not require any FR registrations.
721 		 */
722 		q_size *= 2;
723 
724 		err = post_recv_io(to_clt_con(sess->s.con[cid]), q_size);
725 		if (unlikely(err)) {
726 			rtrs_err(sess->clt, "post_recv_io(), err: %d\n", err);
727 			return err;
728 		}
729 	}
730 
731 	return 0;
732 }
733 
734 struct path_it {
735 	int i;
736 	struct list_head skip_list;
737 	struct rtrs_clt *clt;
738 	struct rtrs_clt_sess *(*next_path)(struct path_it *it);
739 };
740 
741 /**
742  * list_next_or_null_rr_rcu - get next list element in round-robin fashion.
743  * @head:	the head for the list.
744  * @ptr:        the list head to take the next element from.
745  * @type:       the type of the struct this is embedded in.
746  * @memb:       the name of the list_head within the struct.
747  *
748  * Next element returned in round-robin fashion, i.e. head will be skipped,
749  * but if list is observed as empty, NULL will be returned.
750  *
751  * This primitive may safely run concurrently with the _rcu list-mutation
752  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
753  */
754 #define list_next_or_null_rr_rcu(head, ptr, type, memb) \
755 ({ \
756 	list_next_or_null_rcu(head, ptr, type, memb) ?: \
757 		list_next_or_null_rcu(head, READ_ONCE((ptr)->next), \
758 				      type, memb); \
759 })
760 
761 /**
762  * get_next_path_rr() - Returns path in round-robin fashion.
763  * @it:	the path pointer
764  *
765  * Related to @MP_POLICY_RR
766  *
767  * Locks:
768  *    rcu_read_lock() must be hold.
769  */
770 static struct rtrs_clt_sess *get_next_path_rr(struct path_it *it)
771 {
772 	struct rtrs_clt_sess __rcu **ppcpu_path;
773 	struct rtrs_clt_sess *path;
774 	struct rtrs_clt *clt;
775 
776 	clt = it->clt;
777 
778 	/*
779 	 * Here we use two RCU objects: @paths_list and @pcpu_path
780 	 * pointer.  See rtrs_clt_remove_path_from_arr() for details
781 	 * how that is handled.
782 	 */
783 
784 	ppcpu_path = this_cpu_ptr(clt->pcpu_path);
785 	path = rcu_dereference(*ppcpu_path);
786 	if (unlikely(!path))
787 		path = list_first_or_null_rcu(&clt->paths_list,
788 					      typeof(*path), s.entry);
789 	else
790 		path = list_next_or_null_rr_rcu(&clt->paths_list,
791 						&path->s.entry,
792 						typeof(*path),
793 						s.entry);
794 	rcu_assign_pointer(*ppcpu_path, path);
795 
796 	return path;
797 }
798 
799 /**
800  * get_next_path_min_inflight() - Returns path with minimal inflight count.
801  * @it:	the path pointer
802  *
803  * Related to @MP_POLICY_MIN_INFLIGHT
804  *
805  * Locks:
806  *    rcu_read_lock() must be hold.
807  */
808 static struct rtrs_clt_sess *get_next_path_min_inflight(struct path_it *it)
809 {
810 	struct rtrs_clt_sess *min_path = NULL;
811 	struct rtrs_clt *clt = it->clt;
812 	struct rtrs_clt_sess *sess;
813 	int min_inflight = INT_MAX;
814 	int inflight;
815 
816 	list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) {
817 		if (unlikely(!list_empty(raw_cpu_ptr(sess->mp_skip_entry))))
818 			continue;
819 
820 		inflight = atomic_read(&sess->stats->inflight);
821 
822 		if (inflight < min_inflight) {
823 			min_inflight = inflight;
824 			min_path = sess;
825 		}
826 	}
827 
828 	/*
829 	 * add the path to the skip list, so that next time we can get
830 	 * a different one
831 	 */
832 	if (min_path)
833 		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
834 
835 	return min_path;
836 }
837 
838 /**
839  * get_next_path_min_latency() - Returns path with minimal latency.
840  * @it:	the path pointer
841  *
842  * Return: a path with the lowest latency or NULL if all paths are tried
843  *
844  * Locks:
845  *    rcu_read_lock() must be hold.
846  *
847  * Related to @MP_POLICY_MIN_LATENCY
848  *
849  * This DOES skip an already-tried path.
850  * There is a skip-list to skip a path if the path has tried but failed.
851  * It will try the minimum latency path and then the second minimum latency
852  * path and so on. Finally it will return NULL if all paths are tried.
853  * Therefore the caller MUST check the returned
854  * path is NULL and trigger the IO error.
855  */
856 static struct rtrs_clt_sess *get_next_path_min_latency(struct path_it *it)
857 {
858 	struct rtrs_clt_sess *min_path = NULL;
859 	struct rtrs_clt *clt = it->clt;
860 	struct rtrs_clt_sess *sess;
861 	ktime_t min_latency = INT_MAX;
862 	ktime_t latency;
863 
864 	list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) {
865 		if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED))
866 			continue;
867 
868 		if (unlikely(!list_empty(raw_cpu_ptr(sess->mp_skip_entry))))
869 			continue;
870 
871 		latency = sess->s.hb_cur_latency;
872 
873 		if (latency < min_latency) {
874 			min_latency = latency;
875 			min_path = sess;
876 		}
877 	}
878 
879 	/*
880 	 * add the path to the skip list, so that next time we can get
881 	 * a different one
882 	 */
883 	if (min_path)
884 		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
885 
886 	return min_path;
887 }
888 
889 static inline void path_it_init(struct path_it *it, struct rtrs_clt *clt)
890 {
891 	INIT_LIST_HEAD(&it->skip_list);
892 	it->clt = clt;
893 	it->i = 0;
894 
895 	if (clt->mp_policy == MP_POLICY_RR)
896 		it->next_path = get_next_path_rr;
897 	else if (clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
898 		it->next_path = get_next_path_min_inflight;
899 	else
900 		it->next_path = get_next_path_min_latency;
901 }
902 
903 static inline void path_it_deinit(struct path_it *it)
904 {
905 	struct list_head *skip, *tmp;
906 	/*
907 	 * The skip_list is used only for the MIN_INFLIGHT policy.
908 	 * We need to remove paths from it, so that next IO can insert
909 	 * paths (->mp_skip_entry) into a skip_list again.
910 	 */
911 	list_for_each_safe(skip, tmp, &it->skip_list)
912 		list_del_init(skip);
913 }
914 
915 /**
916  * rtrs_clt_init_req() Initialize an rtrs_clt_io_req holding information
917  * about an inflight IO.
918  * The user buffer holding user control message (not data) is copied into
919  * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
920  * also hold the control message of rtrs.
921  * @req: an io request holding information about IO.
922  * @sess: client session
923  * @conf: conformation callback function to notify upper layer.
924  * @permit: permit for allocation of RDMA remote buffer
925  * @priv: private pointer
926  * @vec: kernel vector containing control message
927  * @usr_len: length of the user message
928  * @sg: scater list for IO data
929  * @sg_cnt: number of scater list entries
930  * @data_len: length of the IO data
931  * @dir: direction of the IO.
932  */
933 static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
934 			      struct rtrs_clt_sess *sess,
935 			      void (*conf)(void *priv, int errno),
936 			      struct rtrs_permit *permit, void *priv,
937 			      const struct kvec *vec, size_t usr_len,
938 			      struct scatterlist *sg, size_t sg_cnt,
939 			      size_t data_len, int dir)
940 {
941 	struct iov_iter iter;
942 	size_t len;
943 
944 	req->permit = permit;
945 	req->in_use = true;
946 	req->usr_len = usr_len;
947 	req->data_len = data_len;
948 	req->sglist = sg;
949 	req->sg_cnt = sg_cnt;
950 	req->priv = priv;
951 	req->dir = dir;
952 	req->con = rtrs_permit_to_clt_con(sess, permit);
953 	req->conf = conf;
954 	req->need_inv = false;
955 	req->need_inv_comp = false;
956 	req->inv_errno = 0;
957 
958 	iov_iter_kvec(&iter, READ, vec, 1, usr_len);
959 	len = _copy_from_iter(req->iu->buf, usr_len, &iter);
960 	WARN_ON(len != usr_len);
961 
962 	reinit_completion(&req->inv_comp);
963 }
964 
965 static struct rtrs_clt_io_req *
966 rtrs_clt_get_req(struct rtrs_clt_sess *sess,
967 		 void (*conf)(void *priv, int errno),
968 		 struct rtrs_permit *permit, void *priv,
969 		 const struct kvec *vec, size_t usr_len,
970 		 struct scatterlist *sg, size_t sg_cnt,
971 		 size_t data_len, int dir)
972 {
973 	struct rtrs_clt_io_req *req;
974 
975 	req = &sess->reqs[permit->mem_id];
976 	rtrs_clt_init_req(req, sess, conf, permit, priv, vec, usr_len,
977 			   sg, sg_cnt, data_len, dir);
978 	return req;
979 }
980 
981 static struct rtrs_clt_io_req *
982 rtrs_clt_get_copy_req(struct rtrs_clt_sess *alive_sess,
983 		       struct rtrs_clt_io_req *fail_req)
984 {
985 	struct rtrs_clt_io_req *req;
986 	struct kvec vec = {
987 		.iov_base = fail_req->iu->buf,
988 		.iov_len  = fail_req->usr_len
989 	};
990 
991 	req = &alive_sess->reqs[fail_req->permit->mem_id];
992 	rtrs_clt_init_req(req, alive_sess, fail_req->conf, fail_req->permit,
993 			   fail_req->priv, &vec, fail_req->usr_len,
994 			   fail_req->sglist, fail_req->sg_cnt,
995 			   fail_req->data_len, fail_req->dir);
996 	return req;
997 }
998 
999 static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
1000 				    struct rtrs_clt_io_req *req,
1001 				    struct rtrs_rbuf *rbuf,
1002 				    u32 size, u32 imm)
1003 {
1004 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1005 	struct ib_sge *sge = req->sge;
1006 	enum ib_send_flags flags;
1007 	struct scatterlist *sg;
1008 	size_t num_sge;
1009 	int i;
1010 
1011 	for_each_sg(req->sglist, sg, req->sg_cnt, i) {
1012 		sge[i].addr   = sg_dma_address(sg);
1013 		sge[i].length = sg_dma_len(sg);
1014 		sge[i].lkey   = sess->s.dev->ib_pd->local_dma_lkey;
1015 	}
1016 	sge[i].addr   = req->iu->dma_addr;
1017 	sge[i].length = size;
1018 	sge[i].lkey   = sess->s.dev->ib_pd->local_dma_lkey;
1019 
1020 	num_sge = 1 + req->sg_cnt;
1021 
1022 	/*
1023 	 * From time to time we have to post signalled sends,
1024 	 * or send queue will fill up and only QP reset can help.
1025 	 */
1026 	flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
1027 			0 : IB_SEND_SIGNALED;
1028 
1029 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
1030 				      size, DMA_TO_DEVICE);
1031 
1032 	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
1033 					    rbuf->rkey, rbuf->addr, imm,
1034 					    flags, NULL);
1035 }
1036 
1037 static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
1038 {
1039 	struct rtrs_clt_con *con = req->con;
1040 	struct rtrs_sess *s = con->c.sess;
1041 	struct rtrs_clt_sess *sess = to_clt_sess(s);
1042 	struct rtrs_msg_rdma_write *msg;
1043 
1044 	struct rtrs_rbuf *rbuf;
1045 	int ret, count = 0;
1046 	u32 imm, buf_id;
1047 
1048 	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1049 
1050 	if (unlikely(tsize > sess->chunk_size)) {
1051 		rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
1052 			  tsize, sess->chunk_size);
1053 		return -EMSGSIZE;
1054 	}
1055 	if (req->sg_cnt) {
1056 		count = ib_dma_map_sg(sess->s.dev->ib_dev, req->sglist,
1057 				      req->sg_cnt, req->dir);
1058 		if (unlikely(!count)) {
1059 			rtrs_wrn(s, "Write request failed, map failed\n");
1060 			return -EINVAL;
1061 		}
1062 	}
1063 	/* put rtrs msg after sg and user message */
1064 	msg = req->iu->buf + req->usr_len;
1065 	msg->type = cpu_to_le16(RTRS_MSG_WRITE);
1066 	msg->usr_len = cpu_to_le16(req->usr_len);
1067 
1068 	/* rtrs message on server side will be after user data and message */
1069 	imm = req->permit->mem_off + req->data_len + req->usr_len;
1070 	imm = rtrs_to_io_req_imm(imm);
1071 	buf_id = req->permit->mem_id;
1072 	req->sg_size = tsize;
1073 	rbuf = &sess->rbufs[buf_id];
1074 
1075 	/*
1076 	 * Update stats now, after request is successfully sent it is not
1077 	 * safe anymore to touch it.
1078 	 */
1079 	rtrs_clt_update_all_stats(req, WRITE);
1080 
1081 	ret = rtrs_post_rdma_write_sg(req->con, req, rbuf,
1082 				       req->usr_len + sizeof(*msg),
1083 				       imm);
1084 	if (unlikely(ret)) {
1085 		rtrs_err_rl(s,
1086 			    "Write request failed: error=%d path=%s [%s:%u]\n",
1087 			    ret, kobject_name(&sess->kobj), sess->hca_name,
1088 			    sess->hca_port);
1089 		if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
1090 			atomic_dec(&sess->stats->inflight);
1091 		if (req->sg_cnt)
1092 			ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
1093 					req->sg_cnt, req->dir);
1094 	}
1095 
1096 	return ret;
1097 }
1098 
1099 static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
1100 {
1101 	int nr;
1102 
1103 	/* Align the MR to a 4K page size to match the block virt boundary */
1104 	nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1105 	if (nr < 0)
1106 		return nr;
1107 	if (unlikely(nr < req->sg_cnt))
1108 		return -EINVAL;
1109 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1110 
1111 	return nr;
1112 }
1113 
1114 static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
1115 {
1116 	struct rtrs_clt_con *con = req->con;
1117 	struct rtrs_sess *s = con->c.sess;
1118 	struct rtrs_clt_sess *sess = to_clt_sess(s);
1119 	struct rtrs_msg_rdma_read *msg;
1120 	struct rtrs_ib_dev *dev = sess->s.dev;
1121 
1122 	struct ib_reg_wr rwr;
1123 	struct ib_send_wr *wr = NULL;
1124 
1125 	int ret, count = 0;
1126 	u32 imm, buf_id;
1127 
1128 	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1129 
1130 	if (unlikely(tsize > sess->chunk_size)) {
1131 		rtrs_wrn(s,
1132 			  "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
1133 			  tsize, sess->chunk_size);
1134 		return -EMSGSIZE;
1135 	}
1136 
1137 	if (req->sg_cnt) {
1138 		count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1139 				      req->dir);
1140 		if (unlikely(!count)) {
1141 			rtrs_wrn(s,
1142 				  "Read request failed, dma map failed\n");
1143 			return -EINVAL;
1144 		}
1145 	}
1146 	/* put our message into req->buf after user message*/
1147 	msg = req->iu->buf + req->usr_len;
1148 	msg->type = cpu_to_le16(RTRS_MSG_READ);
1149 	msg->usr_len = cpu_to_le16(req->usr_len);
1150 
1151 	if (count) {
1152 		ret = rtrs_map_sg_fr(req, count);
1153 		if (ret < 0) {
1154 			rtrs_err_rl(s,
1155 				     "Read request failed, failed to map  fast reg. data, err: %d\n",
1156 				     ret);
1157 			ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1158 					req->dir);
1159 			return ret;
1160 		}
1161 		rwr = (struct ib_reg_wr) {
1162 			.wr.opcode = IB_WR_REG_MR,
1163 			.wr.wr_cqe = &fast_reg_cqe,
1164 			.mr = req->mr,
1165 			.key = req->mr->rkey,
1166 			.access = (IB_ACCESS_LOCAL_WRITE |
1167 				   IB_ACCESS_REMOTE_WRITE),
1168 		};
1169 		wr = &rwr.wr;
1170 
1171 		msg->sg_cnt = cpu_to_le16(1);
1172 		msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
1173 
1174 		msg->desc[0].addr = cpu_to_le64(req->mr->iova);
1175 		msg->desc[0].key = cpu_to_le32(req->mr->rkey);
1176 		msg->desc[0].len = cpu_to_le32(req->mr->length);
1177 
1178 		/* Further invalidation is required */
1179 		req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
1180 
1181 	} else {
1182 		msg->sg_cnt = 0;
1183 		msg->flags = 0;
1184 	}
1185 	/*
1186 	 * rtrs message will be after the space reserved for disk data and
1187 	 * user message
1188 	 */
1189 	imm = req->permit->mem_off + req->data_len + req->usr_len;
1190 	imm = rtrs_to_io_req_imm(imm);
1191 	buf_id = req->permit->mem_id;
1192 
1193 	req->sg_size  = sizeof(*msg);
1194 	req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
1195 	req->sg_size += req->usr_len;
1196 
1197 	/*
1198 	 * Update stats now, after request is successfully sent it is not
1199 	 * safe anymore to touch it.
1200 	 */
1201 	rtrs_clt_update_all_stats(req, READ);
1202 
1203 	ret = rtrs_post_send_rdma(req->con, req, &sess->rbufs[buf_id],
1204 				   req->data_len, imm, wr);
1205 	if (unlikely(ret)) {
1206 		rtrs_err_rl(s,
1207 			    "Read request failed: error=%d path=%s [%s:%u]\n",
1208 			    ret, kobject_name(&sess->kobj), sess->hca_name,
1209 			    sess->hca_port);
1210 		if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
1211 			atomic_dec(&sess->stats->inflight);
1212 		req->need_inv = false;
1213 		if (req->sg_cnt)
1214 			ib_dma_unmap_sg(dev->ib_dev, req->sglist,
1215 					req->sg_cnt, req->dir);
1216 	}
1217 
1218 	return ret;
1219 }
1220 
1221 /**
1222  * rtrs_clt_failover_req() Try to find an active path for a failed request
1223  * @clt: clt context
1224  * @fail_req: a failed io request.
1225  */
1226 static int rtrs_clt_failover_req(struct rtrs_clt *clt,
1227 				 struct rtrs_clt_io_req *fail_req)
1228 {
1229 	struct rtrs_clt_sess *alive_sess;
1230 	struct rtrs_clt_io_req *req;
1231 	int err = -ECONNABORTED;
1232 	struct path_it it;
1233 
1234 	rcu_read_lock();
1235 	for (path_it_init(&it, clt);
1236 	     (alive_sess = it.next_path(&it)) && it.i < it.clt->paths_num;
1237 	     it.i++) {
1238 		if (unlikely(READ_ONCE(alive_sess->state) !=
1239 			     RTRS_CLT_CONNECTED))
1240 			continue;
1241 		req = rtrs_clt_get_copy_req(alive_sess, fail_req);
1242 		if (req->dir == DMA_TO_DEVICE)
1243 			err = rtrs_clt_write_req(req);
1244 		else
1245 			err = rtrs_clt_read_req(req);
1246 		if (unlikely(err)) {
1247 			req->in_use = false;
1248 			continue;
1249 		}
1250 		/* Success path */
1251 		rtrs_clt_inc_failover_cnt(alive_sess->stats);
1252 		break;
1253 	}
1254 	path_it_deinit(&it);
1255 	rcu_read_unlock();
1256 
1257 	return err;
1258 }
1259 
1260 static void fail_all_outstanding_reqs(struct rtrs_clt_sess *sess)
1261 {
1262 	struct rtrs_clt *clt = sess->clt;
1263 	struct rtrs_clt_io_req *req;
1264 	int i, err;
1265 
1266 	if (!sess->reqs)
1267 		return;
1268 	for (i = 0; i < sess->queue_depth; ++i) {
1269 		req = &sess->reqs[i];
1270 		if (!req->in_use)
1271 			continue;
1272 
1273 		/*
1274 		 * Safely (without notification) complete failed request.
1275 		 * After completion this request is still useble and can
1276 		 * be failovered to another path.
1277 		 */
1278 		complete_rdma_req(req, -ECONNABORTED, false, true);
1279 
1280 		err = rtrs_clt_failover_req(clt, req);
1281 		if (unlikely(err))
1282 			/* Failover failed, notify anyway */
1283 			req->conf(req->priv, err);
1284 	}
1285 }
1286 
1287 static void free_sess_reqs(struct rtrs_clt_sess *sess)
1288 {
1289 	struct rtrs_clt_io_req *req;
1290 	int i;
1291 
1292 	if (!sess->reqs)
1293 		return;
1294 	for (i = 0; i < sess->queue_depth; ++i) {
1295 		req = &sess->reqs[i];
1296 		if (req->mr)
1297 			ib_dereg_mr(req->mr);
1298 		kfree(req->sge);
1299 		rtrs_iu_free(req->iu, sess->s.dev->ib_dev, 1);
1300 	}
1301 	kfree(sess->reqs);
1302 	sess->reqs = NULL;
1303 }
1304 
1305 static int alloc_sess_reqs(struct rtrs_clt_sess *sess)
1306 {
1307 	struct rtrs_clt_io_req *req;
1308 	struct rtrs_clt *clt = sess->clt;
1309 	int i, err = -ENOMEM;
1310 
1311 	sess->reqs = kcalloc(sess->queue_depth, sizeof(*sess->reqs),
1312 			     GFP_KERNEL);
1313 	if (!sess->reqs)
1314 		return -ENOMEM;
1315 
1316 	for (i = 0; i < sess->queue_depth; ++i) {
1317 		req = &sess->reqs[i];
1318 		req->iu = rtrs_iu_alloc(1, sess->max_hdr_size, GFP_KERNEL,
1319 					 sess->s.dev->ib_dev,
1320 					 DMA_TO_DEVICE,
1321 					 rtrs_clt_rdma_done);
1322 		if (!req->iu)
1323 			goto out;
1324 
1325 		req->sge = kmalloc_array(clt->max_segments + 1,
1326 					 sizeof(*req->sge), GFP_KERNEL);
1327 		if (!req->sge)
1328 			goto out;
1329 
1330 		req->mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
1331 				      sess->max_pages_per_mr);
1332 		if (IS_ERR(req->mr)) {
1333 			err = PTR_ERR(req->mr);
1334 			req->mr = NULL;
1335 			pr_err("Failed to alloc sess->max_pages_per_mr %d\n",
1336 			       sess->max_pages_per_mr);
1337 			goto out;
1338 		}
1339 
1340 		init_completion(&req->inv_comp);
1341 	}
1342 
1343 	return 0;
1344 
1345 out:
1346 	free_sess_reqs(sess);
1347 
1348 	return err;
1349 }
1350 
1351 static int alloc_permits(struct rtrs_clt *clt)
1352 {
1353 	unsigned int chunk_bits;
1354 	int err, i;
1355 
1356 	clt->permits_map = kcalloc(BITS_TO_LONGS(clt->queue_depth),
1357 				   sizeof(long), GFP_KERNEL);
1358 	if (!clt->permits_map) {
1359 		err = -ENOMEM;
1360 		goto out_err;
1361 	}
1362 	clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
1363 	if (!clt->permits) {
1364 		err = -ENOMEM;
1365 		goto err_map;
1366 	}
1367 	chunk_bits = ilog2(clt->queue_depth - 1) + 1;
1368 	for (i = 0; i < clt->queue_depth; i++) {
1369 		struct rtrs_permit *permit;
1370 
1371 		permit = get_permit(clt, i);
1372 		permit->mem_id = i;
1373 		permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
1374 	}
1375 
1376 	return 0;
1377 
1378 err_map:
1379 	kfree(clt->permits_map);
1380 	clt->permits_map = NULL;
1381 out_err:
1382 	return err;
1383 }
1384 
1385 static void free_permits(struct rtrs_clt *clt)
1386 {
1387 	if (clt->permits_map) {
1388 		size_t sz = clt->queue_depth;
1389 
1390 		wait_event(clt->permits_wait,
1391 			   find_first_bit(clt->permits_map, sz) >= sz);
1392 	}
1393 	kfree(clt->permits_map);
1394 	clt->permits_map = NULL;
1395 	kfree(clt->permits);
1396 	clt->permits = NULL;
1397 }
1398 
1399 static void query_fast_reg_mode(struct rtrs_clt_sess *sess)
1400 {
1401 	struct ib_device *ib_dev;
1402 	u64 max_pages_per_mr;
1403 	int mr_page_shift;
1404 
1405 	ib_dev = sess->s.dev->ib_dev;
1406 
1407 	/*
1408 	 * Use the smallest page size supported by the HCA, down to a
1409 	 * minimum of 4096 bytes. We're unlikely to build large sglists
1410 	 * out of smaller entries.
1411 	 */
1412 	mr_page_shift      = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
1413 	max_pages_per_mr   = ib_dev->attrs.max_mr_size;
1414 	do_div(max_pages_per_mr, (1ull << mr_page_shift));
1415 	sess->max_pages_per_mr =
1416 		min3(sess->max_pages_per_mr, (u32)max_pages_per_mr,
1417 		     ib_dev->attrs.max_fast_reg_page_list_len);
1418 	sess->max_send_sge = ib_dev->attrs.max_send_sge;
1419 }
1420 
1421 static bool rtrs_clt_change_state_get_old(struct rtrs_clt_sess *sess,
1422 					   enum rtrs_clt_state new_state,
1423 					   enum rtrs_clt_state *old_state)
1424 {
1425 	bool changed;
1426 
1427 	spin_lock_irq(&sess->state_wq.lock);
1428 	if (old_state)
1429 		*old_state = sess->state;
1430 	changed = rtrs_clt_change_state(sess, new_state);
1431 	spin_unlock_irq(&sess->state_wq.lock);
1432 
1433 	return changed;
1434 }
1435 
1436 static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
1437 {
1438 	struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
1439 
1440 	rtrs_rdma_error_recovery(con);
1441 }
1442 
1443 static void rtrs_clt_init_hb(struct rtrs_clt_sess *sess)
1444 {
1445 	rtrs_init_hb(&sess->s, &io_comp_cqe,
1446 		      RTRS_HB_INTERVAL_MS,
1447 		      RTRS_HB_MISSED_MAX,
1448 		      rtrs_clt_hb_err_handler,
1449 		      rtrs_wq);
1450 }
1451 
1452 static void rtrs_clt_start_hb(struct rtrs_clt_sess *sess)
1453 {
1454 	rtrs_start_hb(&sess->s);
1455 }
1456 
1457 static void rtrs_clt_stop_hb(struct rtrs_clt_sess *sess)
1458 {
1459 	rtrs_stop_hb(&sess->s);
1460 }
1461 
1462 static void rtrs_clt_reconnect_work(struct work_struct *work);
1463 static void rtrs_clt_close_work(struct work_struct *work);
1464 
1465 static struct rtrs_clt_sess *alloc_sess(struct rtrs_clt *clt,
1466 					 const struct rtrs_addr *path,
1467 					 size_t con_num, u16 max_segments,
1468 					 u32 nr_poll_queues)
1469 {
1470 	struct rtrs_clt_sess *sess;
1471 	int err = -ENOMEM;
1472 	int cpu;
1473 	size_t total_con;
1474 
1475 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
1476 	if (!sess)
1477 		goto err;
1478 
1479 	/*
1480 	 * irqmode and poll
1481 	 * +1: Extra connection for user messages
1482 	 */
1483 	total_con = con_num + nr_poll_queues + 1;
1484 	sess->s.con = kcalloc(total_con, sizeof(*sess->s.con), GFP_KERNEL);
1485 	if (!sess->s.con)
1486 		goto err_free_sess;
1487 
1488 	sess->s.con_num = total_con;
1489 	sess->s.irq_con_num = con_num + 1;
1490 
1491 	sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
1492 	if (!sess->stats)
1493 		goto err_free_con;
1494 
1495 	mutex_init(&sess->init_mutex);
1496 	uuid_gen(&sess->s.uuid);
1497 	memcpy(&sess->s.dst_addr, path->dst,
1498 	       rdma_addr_size((struct sockaddr *)path->dst));
1499 
1500 	/*
1501 	 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
1502 	 * checks the sa_family to be non-zero. If user passed src_addr=NULL
1503 	 * the sess->src_addr will contain only zeros, which is then fine.
1504 	 */
1505 	if (path->src)
1506 		memcpy(&sess->s.src_addr, path->src,
1507 		       rdma_addr_size((struct sockaddr *)path->src));
1508 	strlcpy(sess->s.sessname, clt->sessname, sizeof(sess->s.sessname));
1509 	sess->clt = clt;
1510 	sess->max_pages_per_mr = max_segments;
1511 	init_waitqueue_head(&sess->state_wq);
1512 	sess->state = RTRS_CLT_CONNECTING;
1513 	atomic_set(&sess->connected_cnt, 0);
1514 	INIT_WORK(&sess->close_work, rtrs_clt_close_work);
1515 	INIT_DELAYED_WORK(&sess->reconnect_dwork, rtrs_clt_reconnect_work);
1516 	rtrs_clt_init_hb(sess);
1517 
1518 	sess->mp_skip_entry = alloc_percpu(typeof(*sess->mp_skip_entry));
1519 	if (!sess->mp_skip_entry)
1520 		goto err_free_stats;
1521 
1522 	for_each_possible_cpu(cpu)
1523 		INIT_LIST_HEAD(per_cpu_ptr(sess->mp_skip_entry, cpu));
1524 
1525 	err = rtrs_clt_init_stats(sess->stats);
1526 	if (err)
1527 		goto err_free_percpu;
1528 
1529 	return sess;
1530 
1531 err_free_percpu:
1532 	free_percpu(sess->mp_skip_entry);
1533 err_free_stats:
1534 	kfree(sess->stats);
1535 err_free_con:
1536 	kfree(sess->s.con);
1537 err_free_sess:
1538 	kfree(sess);
1539 err:
1540 	return ERR_PTR(err);
1541 }
1542 
1543 void free_sess(struct rtrs_clt_sess *sess)
1544 {
1545 	free_percpu(sess->mp_skip_entry);
1546 	mutex_destroy(&sess->init_mutex);
1547 	kfree(sess->s.con);
1548 	kfree(sess->rbufs);
1549 	kfree(sess);
1550 }
1551 
1552 static int create_con(struct rtrs_clt_sess *sess, unsigned int cid)
1553 {
1554 	struct rtrs_clt_con *con;
1555 
1556 	con = kzalloc(sizeof(*con), GFP_KERNEL);
1557 	if (!con)
1558 		return -ENOMEM;
1559 
1560 	/* Map first two connections to the first CPU */
1561 	con->cpu  = (cid ? cid - 1 : 0) % nr_cpu_ids;
1562 	con->c.cid = cid;
1563 	con->c.sess = &sess->s;
1564 	atomic_set(&con->io_cnt, 0);
1565 	mutex_init(&con->con_mutex);
1566 
1567 	sess->s.con[cid] = &con->c;
1568 
1569 	return 0;
1570 }
1571 
1572 static void destroy_con(struct rtrs_clt_con *con)
1573 {
1574 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1575 
1576 	sess->s.con[con->c.cid] = NULL;
1577 	mutex_destroy(&con->con_mutex);
1578 	kfree(con);
1579 }
1580 
1581 static int create_con_cq_qp(struct rtrs_clt_con *con)
1582 {
1583 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1584 	u32 max_send_wr, max_recv_wr, cq_size;
1585 	int err, cq_vector;
1586 	struct rtrs_msg_rkey_rsp *rsp;
1587 
1588 	lockdep_assert_held(&con->con_mutex);
1589 	if (con->c.cid == 0) {
1590 		/*
1591 		 * One completion for each receive and two for each send
1592 		 * (send request + registration)
1593 		 * + 2 for drain and heartbeat
1594 		 * in case qp gets into error state
1595 		 */
1596 		max_send_wr = SERVICE_CON_QUEUE_DEPTH * 2 + 2;
1597 		max_recv_wr = SERVICE_CON_QUEUE_DEPTH * 2 + 2;
1598 		/* We must be the first here */
1599 		if (WARN_ON(sess->s.dev))
1600 			return -EINVAL;
1601 
1602 		/*
1603 		 * The whole session uses device from user connection.
1604 		 * Be careful not to close user connection before ib dev
1605 		 * is gracefully put.
1606 		 */
1607 		sess->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
1608 						       &dev_pd);
1609 		if (!sess->s.dev) {
1610 			rtrs_wrn(sess->clt,
1611 				  "rtrs_ib_dev_find_get_or_add(): no memory\n");
1612 			return -ENOMEM;
1613 		}
1614 		sess->s.dev_ref = 1;
1615 		query_fast_reg_mode(sess);
1616 	} else {
1617 		/*
1618 		 * Here we assume that session members are correctly set.
1619 		 * This is always true if user connection (cid == 0) is
1620 		 * established first.
1621 		 */
1622 		if (WARN_ON(!sess->s.dev))
1623 			return -EINVAL;
1624 		if (WARN_ON(!sess->queue_depth))
1625 			return -EINVAL;
1626 
1627 		/* Shared between connections */
1628 		sess->s.dev_ref++;
1629 		max_send_wr =
1630 			min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr,
1631 			      /* QD * (REQ + RSP + FR REGS or INVS) + drain */
1632 			      sess->queue_depth * 3 + 1);
1633 		max_recv_wr =
1634 			min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr,
1635 			      sess->queue_depth * 3 + 1);
1636 	}
1637 	/* alloc iu to recv new rkey reply when server reports flags set */
1638 	if (sess->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1639 		con->rsp_ius = rtrs_iu_alloc(max_recv_wr, sizeof(*rsp),
1640 					      GFP_KERNEL, sess->s.dev->ib_dev,
1641 					      DMA_FROM_DEVICE,
1642 					      rtrs_clt_rdma_done);
1643 		if (!con->rsp_ius)
1644 			return -ENOMEM;
1645 		con->queue_size = max_recv_wr;
1646 	}
1647 	cq_size = max_send_wr + max_recv_wr;
1648 	cq_vector = con->cpu % sess->s.dev->ib_dev->num_comp_vectors;
1649 	if (con->c.cid >= sess->s.irq_con_num)
1650 		err = rtrs_cq_qp_create(&sess->s, &con->c, sess->max_send_sge,
1651 					cq_vector, cq_size, max_send_wr,
1652 					max_recv_wr, IB_POLL_DIRECT);
1653 	else
1654 		err = rtrs_cq_qp_create(&sess->s, &con->c, sess->max_send_sge,
1655 					cq_vector, cq_size, max_send_wr,
1656 					max_recv_wr, IB_POLL_SOFTIRQ);
1657 	/*
1658 	 * In case of error we do not bother to clean previous allocations,
1659 	 * since destroy_con_cq_qp() must be called.
1660 	 */
1661 	return err;
1662 }
1663 
1664 static void destroy_con_cq_qp(struct rtrs_clt_con *con)
1665 {
1666 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1667 
1668 	/*
1669 	 * Be careful here: destroy_con_cq_qp() can be called even
1670 	 * create_con_cq_qp() failed, see comments there.
1671 	 */
1672 	lockdep_assert_held(&con->con_mutex);
1673 	rtrs_cq_qp_destroy(&con->c);
1674 	if (con->rsp_ius) {
1675 		rtrs_iu_free(con->rsp_ius, sess->s.dev->ib_dev, con->queue_size);
1676 		con->rsp_ius = NULL;
1677 		con->queue_size = 0;
1678 	}
1679 	if (sess->s.dev_ref && !--sess->s.dev_ref) {
1680 		rtrs_ib_dev_put(sess->s.dev);
1681 		sess->s.dev = NULL;
1682 	}
1683 }
1684 
1685 static void stop_cm(struct rtrs_clt_con *con)
1686 {
1687 	rdma_disconnect(con->c.cm_id);
1688 	if (con->c.qp)
1689 		ib_drain_qp(con->c.qp);
1690 }
1691 
1692 static void destroy_cm(struct rtrs_clt_con *con)
1693 {
1694 	rdma_destroy_id(con->c.cm_id);
1695 	con->c.cm_id = NULL;
1696 }
1697 
1698 static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
1699 {
1700 	struct rtrs_sess *s = con->c.sess;
1701 	int err;
1702 
1703 	mutex_lock(&con->con_mutex);
1704 	err = create_con_cq_qp(con);
1705 	mutex_unlock(&con->con_mutex);
1706 	if (err) {
1707 		rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
1708 		return err;
1709 	}
1710 	err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1711 	if (err)
1712 		rtrs_err(s, "Resolving route failed, err: %d\n", err);
1713 
1714 	return err;
1715 }
1716 
1717 static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
1718 {
1719 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1720 	struct rtrs_clt *clt = sess->clt;
1721 	struct rtrs_msg_conn_req msg;
1722 	struct rdma_conn_param param;
1723 
1724 	int err;
1725 
1726 	param = (struct rdma_conn_param) {
1727 		.retry_count = 7,
1728 		.rnr_retry_count = 7,
1729 		.private_data = &msg,
1730 		.private_data_len = sizeof(msg),
1731 	};
1732 
1733 	msg = (struct rtrs_msg_conn_req) {
1734 		.magic = cpu_to_le16(RTRS_MAGIC),
1735 		.version = cpu_to_le16(RTRS_PROTO_VER),
1736 		.cid = cpu_to_le16(con->c.cid),
1737 		.cid_num = cpu_to_le16(sess->s.con_num),
1738 		.recon_cnt = cpu_to_le16(sess->s.recon_cnt),
1739 	};
1740 	msg.first_conn = sess->for_new_clt ? FIRST_CONN : 0;
1741 	uuid_copy(&msg.sess_uuid, &sess->s.uuid);
1742 	uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
1743 
1744 	err = rdma_connect_locked(con->c.cm_id, &param);
1745 	if (err)
1746 		rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
1747 
1748 	return err;
1749 }
1750 
1751 static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
1752 				       struct rdma_cm_event *ev)
1753 {
1754 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1755 	struct rtrs_clt *clt = sess->clt;
1756 	const struct rtrs_msg_conn_rsp *msg;
1757 	u16 version, queue_depth;
1758 	int errno;
1759 	u8 len;
1760 
1761 	msg = ev->param.conn.private_data;
1762 	len = ev->param.conn.private_data_len;
1763 	if (len < sizeof(*msg)) {
1764 		rtrs_err(clt, "Invalid RTRS connection response\n");
1765 		return -ECONNRESET;
1766 	}
1767 	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1768 		rtrs_err(clt, "Invalid RTRS magic\n");
1769 		return -ECONNRESET;
1770 	}
1771 	version = le16_to_cpu(msg->version);
1772 	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1773 		rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
1774 			  version >> 8, RTRS_PROTO_VER_MAJOR);
1775 		return -ECONNRESET;
1776 	}
1777 	errno = le16_to_cpu(msg->errno);
1778 	if (errno) {
1779 		rtrs_err(clt, "Invalid RTRS message: errno %d\n",
1780 			  errno);
1781 		return -ECONNRESET;
1782 	}
1783 	if (con->c.cid == 0) {
1784 		queue_depth = le16_to_cpu(msg->queue_depth);
1785 
1786 		if (queue_depth > MAX_SESS_QUEUE_DEPTH) {
1787 			rtrs_err(clt, "Invalid RTRS message: queue=%d\n",
1788 				  queue_depth);
1789 			return -ECONNRESET;
1790 		}
1791 		if (!sess->rbufs || sess->queue_depth < queue_depth) {
1792 			kfree(sess->rbufs);
1793 			sess->rbufs = kcalloc(queue_depth, sizeof(*sess->rbufs),
1794 					      GFP_KERNEL);
1795 			if (!sess->rbufs)
1796 				return -ENOMEM;
1797 		}
1798 		sess->queue_depth = queue_depth;
1799 		sess->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
1800 		sess->max_io_size = le32_to_cpu(msg->max_io_size);
1801 		sess->flags = le32_to_cpu(msg->flags);
1802 		sess->chunk_size = sess->max_io_size + sess->max_hdr_size;
1803 
1804 		/*
1805 		 * Global queue depth and IO size is always a minimum.
1806 		 * If while a reconnection server sends us a value a bit
1807 		 * higher - client does not care and uses cached minimum.
1808 		 *
1809 		 * Since we can have several sessions (paths) restablishing
1810 		 * connections in parallel, use lock.
1811 		 */
1812 		mutex_lock(&clt->paths_mutex);
1813 		clt->queue_depth = min_not_zero(sess->queue_depth,
1814 						clt->queue_depth);
1815 		clt->max_io_size = min_not_zero(sess->max_io_size,
1816 						clt->max_io_size);
1817 		mutex_unlock(&clt->paths_mutex);
1818 
1819 		/*
1820 		 * Cache the hca_port and hca_name for sysfs
1821 		 */
1822 		sess->hca_port = con->c.cm_id->port_num;
1823 		scnprintf(sess->hca_name, sizeof(sess->hca_name),
1824 			  sess->s.dev->ib_dev->name);
1825 		sess->s.src_addr = con->c.cm_id->route.addr.src_addr;
1826 		/* set for_new_clt, to allow future reconnect on any path */
1827 		sess->for_new_clt = 1;
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 static inline void flag_success_on_conn(struct rtrs_clt_con *con)
1834 {
1835 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1836 
1837 	atomic_inc(&sess->connected_cnt);
1838 	con->cm_err = 1;
1839 }
1840 
1841 static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
1842 				    struct rdma_cm_event *ev)
1843 {
1844 	struct rtrs_sess *s = con->c.sess;
1845 	const struct rtrs_msg_conn_rsp *msg;
1846 	const char *rej_msg;
1847 	int status, errno;
1848 	u8 data_len;
1849 
1850 	status = ev->status;
1851 	rej_msg = rdma_reject_msg(con->c.cm_id, status);
1852 	msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
1853 
1854 	if (msg && data_len >= sizeof(*msg)) {
1855 		errno = (int16_t)le16_to_cpu(msg->errno);
1856 		if (errno == -EBUSY)
1857 			rtrs_err(s,
1858 				  "Previous session is still exists on the server, please reconnect later\n");
1859 		else
1860 			rtrs_err(s,
1861 				  "Connect rejected: status %d (%s), rtrs errno %d\n",
1862 				  status, rej_msg, errno);
1863 	} else {
1864 		rtrs_err(s,
1865 			  "Connect rejected but with malformed message: status %d (%s)\n",
1866 			  status, rej_msg);
1867 	}
1868 
1869 	return -ECONNRESET;
1870 }
1871 
1872 static void rtrs_clt_close_conns(struct rtrs_clt_sess *sess, bool wait)
1873 {
1874 	if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_CLOSING, NULL))
1875 		queue_work(rtrs_wq, &sess->close_work);
1876 	if (wait)
1877 		flush_work(&sess->close_work);
1878 }
1879 
1880 static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
1881 {
1882 	if (con->cm_err == 1) {
1883 		struct rtrs_clt_sess *sess;
1884 
1885 		sess = to_clt_sess(con->c.sess);
1886 		if (atomic_dec_and_test(&sess->connected_cnt))
1887 
1888 			wake_up(&sess->state_wq);
1889 	}
1890 	con->cm_err = cm_err;
1891 }
1892 
1893 static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
1894 				     struct rdma_cm_event *ev)
1895 {
1896 	struct rtrs_clt_con *con = cm_id->context;
1897 	struct rtrs_sess *s = con->c.sess;
1898 	struct rtrs_clt_sess *sess = to_clt_sess(s);
1899 	int cm_err = 0;
1900 
1901 	switch (ev->event) {
1902 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1903 		cm_err = rtrs_rdma_addr_resolved(con);
1904 		break;
1905 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1906 		cm_err = rtrs_rdma_route_resolved(con);
1907 		break;
1908 	case RDMA_CM_EVENT_ESTABLISHED:
1909 		cm_err = rtrs_rdma_conn_established(con, ev);
1910 		if (likely(!cm_err)) {
1911 			/*
1912 			 * Report success and wake up. Here we abuse state_wq,
1913 			 * i.e. wake up without state change, but we set cm_err.
1914 			 */
1915 			flag_success_on_conn(con);
1916 			wake_up(&sess->state_wq);
1917 			return 0;
1918 		}
1919 		break;
1920 	case RDMA_CM_EVENT_REJECTED:
1921 		cm_err = rtrs_rdma_conn_rejected(con, ev);
1922 		break;
1923 	case RDMA_CM_EVENT_DISCONNECTED:
1924 		/* No message for disconnecting */
1925 		cm_err = -ECONNRESET;
1926 		break;
1927 	case RDMA_CM_EVENT_CONNECT_ERROR:
1928 	case RDMA_CM_EVENT_UNREACHABLE:
1929 	case RDMA_CM_EVENT_ADDR_CHANGE:
1930 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1931 		rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
1932 			 rdma_event_msg(ev->event), ev->status);
1933 		cm_err = -ECONNRESET;
1934 		break;
1935 	case RDMA_CM_EVENT_ADDR_ERROR:
1936 	case RDMA_CM_EVENT_ROUTE_ERROR:
1937 		rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
1938 			 rdma_event_msg(ev->event), ev->status);
1939 		cm_err = -EHOSTUNREACH;
1940 		break;
1941 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1942 		/*
1943 		 * Device removal is a special case.  Queue close and return 0.
1944 		 */
1945 		rtrs_clt_close_conns(sess, false);
1946 		return 0;
1947 	default:
1948 		rtrs_err(s, "Unexpected RDMA CM error (CM event: %s, err: %d)\n",
1949 			 rdma_event_msg(ev->event), ev->status);
1950 		cm_err = -ECONNRESET;
1951 		break;
1952 	}
1953 
1954 	if (cm_err) {
1955 		/*
1956 		 * cm error makes sense only on connection establishing,
1957 		 * in other cases we rely on normal procedure of reconnecting.
1958 		 */
1959 		flag_error_on_conn(con, cm_err);
1960 		rtrs_rdma_error_recovery(con);
1961 	}
1962 
1963 	return 0;
1964 }
1965 
1966 static int create_cm(struct rtrs_clt_con *con)
1967 {
1968 	struct rtrs_sess *s = con->c.sess;
1969 	struct rtrs_clt_sess *sess = to_clt_sess(s);
1970 	struct rdma_cm_id *cm_id;
1971 	int err;
1972 
1973 	cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
1974 			       sess->s.dst_addr.ss_family == AF_IB ?
1975 			       RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
1976 	if (IS_ERR(cm_id)) {
1977 		err = PTR_ERR(cm_id);
1978 		rtrs_err(s, "Failed to create CM ID, err: %d\n", err);
1979 
1980 		return err;
1981 	}
1982 	con->c.cm_id = cm_id;
1983 	con->cm_err = 0;
1984 	/* allow the port to be reused */
1985 	err = rdma_set_reuseaddr(cm_id, 1);
1986 	if (err != 0) {
1987 		rtrs_err(s, "Set address reuse failed, err: %d\n", err);
1988 		goto destroy_cm;
1989 	}
1990 	err = rdma_resolve_addr(cm_id, (struct sockaddr *)&sess->s.src_addr,
1991 				(struct sockaddr *)&sess->s.dst_addr,
1992 				RTRS_CONNECT_TIMEOUT_MS);
1993 	if (err) {
1994 		rtrs_err(s, "Failed to resolve address, err: %d\n", err);
1995 		goto destroy_cm;
1996 	}
1997 	/*
1998 	 * Combine connection status and session events. This is needed
1999 	 * for waiting two possible cases: cm_err has something meaningful
2000 	 * or session state was really changed to error by device removal.
2001 	 */
2002 	err = wait_event_interruptible_timeout(
2003 			sess->state_wq,
2004 			con->cm_err || sess->state != RTRS_CLT_CONNECTING,
2005 			msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2006 	if (err == 0 || err == -ERESTARTSYS) {
2007 		if (err == 0)
2008 			err = -ETIMEDOUT;
2009 		/* Timedout or interrupted */
2010 		goto errr;
2011 	}
2012 	if (con->cm_err < 0) {
2013 		err = con->cm_err;
2014 		goto errr;
2015 	}
2016 	if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTING) {
2017 		/* Device removal */
2018 		err = -ECONNABORTED;
2019 		goto errr;
2020 	}
2021 
2022 	return 0;
2023 
2024 errr:
2025 	stop_cm(con);
2026 	mutex_lock(&con->con_mutex);
2027 	destroy_con_cq_qp(con);
2028 	mutex_unlock(&con->con_mutex);
2029 destroy_cm:
2030 	destroy_cm(con);
2031 
2032 	return err;
2033 }
2034 
2035 static void rtrs_clt_sess_up(struct rtrs_clt_sess *sess)
2036 {
2037 	struct rtrs_clt *clt = sess->clt;
2038 	int up;
2039 
2040 	/*
2041 	 * We can fire RECONNECTED event only when all paths were
2042 	 * connected on rtrs_clt_open(), then each was disconnected
2043 	 * and the first one connected again.  That's why this nasty
2044 	 * game with counter value.
2045 	 */
2046 
2047 	mutex_lock(&clt->paths_ev_mutex);
2048 	up = ++clt->paths_up;
2049 	/*
2050 	 * Here it is safe to access paths num directly since up counter
2051 	 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
2052 	 * in progress, thus paths removals are impossible.
2053 	 */
2054 	if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
2055 		clt->paths_up = clt->paths_num;
2056 	else if (up == 1)
2057 		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
2058 	mutex_unlock(&clt->paths_ev_mutex);
2059 
2060 	/* Mark session as established */
2061 	sess->established = true;
2062 	sess->reconnect_attempts = 0;
2063 	sess->stats->reconnects.successful_cnt++;
2064 }
2065 
2066 static void rtrs_clt_sess_down(struct rtrs_clt_sess *sess)
2067 {
2068 	struct rtrs_clt *clt = sess->clt;
2069 
2070 	if (!sess->established)
2071 		return;
2072 
2073 	sess->established = false;
2074 	mutex_lock(&clt->paths_ev_mutex);
2075 	WARN_ON(!clt->paths_up);
2076 	if (--clt->paths_up == 0)
2077 		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
2078 	mutex_unlock(&clt->paths_ev_mutex);
2079 }
2080 
2081 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_sess *sess)
2082 {
2083 	struct rtrs_clt_con *con;
2084 	unsigned int cid;
2085 
2086 	WARN_ON(READ_ONCE(sess->state) == RTRS_CLT_CONNECTED);
2087 
2088 	/*
2089 	 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
2090 	 * exactly in between.  Start destroying after it finishes.
2091 	 */
2092 	mutex_lock(&sess->init_mutex);
2093 	mutex_unlock(&sess->init_mutex);
2094 
2095 	/*
2096 	 * All IO paths must observe !CONNECTED state before we
2097 	 * free everything.
2098 	 */
2099 	synchronize_rcu();
2100 
2101 	rtrs_clt_stop_hb(sess);
2102 
2103 	/*
2104 	 * The order it utterly crucial: firstly disconnect and complete all
2105 	 * rdma requests with error (thus set in_use=false for requests),
2106 	 * then fail outstanding requests checking in_use for each, and
2107 	 * eventually notify upper layer about session disconnection.
2108 	 */
2109 
2110 	for (cid = 0; cid < sess->s.con_num; cid++) {
2111 		if (!sess->s.con[cid])
2112 			break;
2113 		con = to_clt_con(sess->s.con[cid]);
2114 		stop_cm(con);
2115 	}
2116 	fail_all_outstanding_reqs(sess);
2117 	free_sess_reqs(sess);
2118 	rtrs_clt_sess_down(sess);
2119 
2120 	/*
2121 	 * Wait for graceful shutdown, namely when peer side invokes
2122 	 * rdma_disconnect(). 'connected_cnt' is decremented only on
2123 	 * CM events, thus if other side had crashed and hb has detected
2124 	 * something is wrong, here we will stuck for exactly timeout ms,
2125 	 * since CM does not fire anything.  That is fine, we are not in
2126 	 * hurry.
2127 	 */
2128 	wait_event_timeout(sess->state_wq, !atomic_read(&sess->connected_cnt),
2129 			   msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2130 
2131 	for (cid = 0; cid < sess->s.con_num; cid++) {
2132 		if (!sess->s.con[cid])
2133 			break;
2134 		con = to_clt_con(sess->s.con[cid]);
2135 		mutex_lock(&con->con_mutex);
2136 		destroy_con_cq_qp(con);
2137 		mutex_unlock(&con->con_mutex);
2138 		destroy_cm(con);
2139 		destroy_con(con);
2140 	}
2141 }
2142 
2143 static inline bool xchg_sessions(struct rtrs_clt_sess __rcu **rcu_ppcpu_path,
2144 				 struct rtrs_clt_sess *sess,
2145 				 struct rtrs_clt_sess *next)
2146 {
2147 	struct rtrs_clt_sess **ppcpu_path;
2148 
2149 	/* Call cmpxchg() without sparse warnings */
2150 	ppcpu_path = (typeof(ppcpu_path))rcu_ppcpu_path;
2151 	return sess == cmpxchg(ppcpu_path, sess, next);
2152 }
2153 
2154 static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_sess *sess)
2155 {
2156 	struct rtrs_clt *clt = sess->clt;
2157 	struct rtrs_clt_sess *next;
2158 	bool wait_for_grace = false;
2159 	int cpu;
2160 
2161 	mutex_lock(&clt->paths_mutex);
2162 	list_del_rcu(&sess->s.entry);
2163 
2164 	/* Make sure everybody observes path removal. */
2165 	synchronize_rcu();
2166 
2167 	/*
2168 	 * At this point nobody sees @sess in the list, but still we have
2169 	 * dangling pointer @pcpu_path which _can_ point to @sess.  Since
2170 	 * nobody can observe @sess in the list, we guarantee that IO path
2171 	 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
2172 	 * to @sess, but can never again become @sess.
2173 	 */
2174 
2175 	/*
2176 	 * Decrement paths number only after grace period, because
2177 	 * caller of do_each_path() must firstly observe list without
2178 	 * path and only then decremented paths number.
2179 	 *
2180 	 * Otherwise there can be the following situation:
2181 	 *    o Two paths exist and IO is coming.
2182 	 *    o One path is removed:
2183 	 *      CPU#0                          CPU#1
2184 	 *      do_each_path():                rtrs_clt_remove_path_from_arr():
2185 	 *          path = get_next_path()
2186 	 *          ^^^                            list_del_rcu(path)
2187 	 *          [!CONNECTED path]              clt->paths_num--
2188 	 *                                              ^^^^^^^^^
2189 	 *          load clt->paths_num                 from 2 to 1
2190 	 *                    ^^^^^^^^^
2191 	 *                    sees 1
2192 	 *
2193 	 *      path is observed as !CONNECTED, but do_each_path() loop
2194 	 *      ends, because expression i < clt->paths_num is false.
2195 	 */
2196 	clt->paths_num--;
2197 
2198 	/*
2199 	 * Get @next connection from current @sess which is going to be
2200 	 * removed.  If @sess is the last element, then @next is NULL.
2201 	 */
2202 	rcu_read_lock();
2203 	next = list_next_or_null_rr_rcu(&clt->paths_list, &sess->s.entry,
2204 					typeof(*next), s.entry);
2205 	rcu_read_unlock();
2206 
2207 	/*
2208 	 * @pcpu paths can still point to the path which is going to be
2209 	 * removed, so change the pointer manually.
2210 	 */
2211 	for_each_possible_cpu(cpu) {
2212 		struct rtrs_clt_sess __rcu **ppcpu_path;
2213 
2214 		ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
2215 		if (rcu_dereference_protected(*ppcpu_path,
2216 			lockdep_is_held(&clt->paths_mutex)) != sess)
2217 			/*
2218 			 * synchronize_rcu() was called just after deleting
2219 			 * entry from the list, thus IO code path cannot
2220 			 * change pointer back to the pointer which is going
2221 			 * to be removed, we are safe here.
2222 			 */
2223 			continue;
2224 
2225 		/*
2226 		 * We race with IO code path, which also changes pointer,
2227 		 * thus we have to be careful not to overwrite it.
2228 		 */
2229 		if (xchg_sessions(ppcpu_path, sess, next))
2230 			/*
2231 			 * @ppcpu_path was successfully replaced with @next,
2232 			 * that means that someone could also pick up the
2233 			 * @sess and dereferencing it right now, so wait for
2234 			 * a grace period is required.
2235 			 */
2236 			wait_for_grace = true;
2237 	}
2238 	if (wait_for_grace)
2239 		synchronize_rcu();
2240 
2241 	mutex_unlock(&clt->paths_mutex);
2242 }
2243 
2244 static void rtrs_clt_add_path_to_arr(struct rtrs_clt_sess *sess)
2245 {
2246 	struct rtrs_clt *clt = sess->clt;
2247 
2248 	mutex_lock(&clt->paths_mutex);
2249 	clt->paths_num++;
2250 
2251 	list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
2252 	mutex_unlock(&clt->paths_mutex);
2253 }
2254 
2255 static void rtrs_clt_close_work(struct work_struct *work)
2256 {
2257 	struct rtrs_clt_sess *sess;
2258 
2259 	sess = container_of(work, struct rtrs_clt_sess, close_work);
2260 
2261 	cancel_delayed_work_sync(&sess->reconnect_dwork);
2262 	rtrs_clt_stop_and_destroy_conns(sess);
2263 	rtrs_clt_change_state_get_old(sess, RTRS_CLT_CLOSED, NULL);
2264 }
2265 
2266 static int init_conns(struct rtrs_clt_sess *sess)
2267 {
2268 	unsigned int cid;
2269 	int err;
2270 
2271 	/*
2272 	 * On every new session connections increase reconnect counter
2273 	 * to avoid clashes with previous sessions not yet closed
2274 	 * sessions on a server side.
2275 	 */
2276 	sess->s.recon_cnt++;
2277 
2278 	/* Establish all RDMA connections  */
2279 	for (cid = 0; cid < sess->s.con_num; cid++) {
2280 		err = create_con(sess, cid);
2281 		if (err)
2282 			goto destroy;
2283 
2284 		err = create_cm(to_clt_con(sess->s.con[cid]));
2285 		if (err) {
2286 			destroy_con(to_clt_con(sess->s.con[cid]));
2287 			goto destroy;
2288 		}
2289 	}
2290 	err = alloc_sess_reqs(sess);
2291 	if (err)
2292 		goto destroy;
2293 
2294 	rtrs_clt_start_hb(sess);
2295 
2296 	return 0;
2297 
2298 destroy:
2299 	while (cid--) {
2300 		struct rtrs_clt_con *con = to_clt_con(sess->s.con[cid]);
2301 
2302 		stop_cm(con);
2303 
2304 		mutex_lock(&con->con_mutex);
2305 		destroy_con_cq_qp(con);
2306 		mutex_unlock(&con->con_mutex);
2307 		destroy_cm(con);
2308 		destroy_con(con);
2309 	}
2310 	/*
2311 	 * If we've never taken async path and got an error, say,
2312 	 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
2313 	 * manually to keep reconnecting.
2314 	 */
2315 	rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL);
2316 
2317 	return err;
2318 }
2319 
2320 static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
2321 {
2322 	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2323 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
2324 	struct rtrs_iu *iu;
2325 
2326 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2327 	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
2328 
2329 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
2330 		rtrs_err(sess->clt, "Sess info request send failed: %s\n",
2331 			  ib_wc_status_msg(wc->status));
2332 		rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL);
2333 		return;
2334 	}
2335 
2336 	rtrs_clt_update_wc_stats(con);
2337 }
2338 
2339 static int process_info_rsp(struct rtrs_clt_sess *sess,
2340 			    const struct rtrs_msg_info_rsp *msg)
2341 {
2342 	unsigned int sg_cnt, total_len;
2343 	int i, sgi;
2344 
2345 	sg_cnt = le16_to_cpu(msg->sg_cnt);
2346 	if (unlikely(!sg_cnt || (sess->queue_depth % sg_cnt))) {
2347 		rtrs_err(sess->clt, "Incorrect sg_cnt %d, is not multiple\n",
2348 			  sg_cnt);
2349 		return -EINVAL;
2350 	}
2351 
2352 	/*
2353 	 * Check if IB immediate data size is enough to hold the mem_id and
2354 	 * the offset inside the memory chunk.
2355 	 */
2356 	if (unlikely((ilog2(sg_cnt - 1) + 1) +
2357 		     (ilog2(sess->chunk_size - 1) + 1) >
2358 		     MAX_IMM_PAYL_BITS)) {
2359 		rtrs_err(sess->clt,
2360 			  "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
2361 			  MAX_IMM_PAYL_BITS, sg_cnt, sess->chunk_size);
2362 		return -EINVAL;
2363 	}
2364 	total_len = 0;
2365 	for (sgi = 0, i = 0; sgi < sg_cnt && i < sess->queue_depth; sgi++) {
2366 		const struct rtrs_sg_desc *desc = &msg->desc[sgi];
2367 		u32 len, rkey;
2368 		u64 addr;
2369 
2370 		addr = le64_to_cpu(desc->addr);
2371 		rkey = le32_to_cpu(desc->key);
2372 		len  = le32_to_cpu(desc->len);
2373 
2374 		total_len += len;
2375 
2376 		if (unlikely(!len || (len % sess->chunk_size))) {
2377 			rtrs_err(sess->clt, "Incorrect [%d].len %d\n", sgi,
2378 				  len);
2379 			return -EINVAL;
2380 		}
2381 		for ( ; len && i < sess->queue_depth; i++) {
2382 			sess->rbufs[i].addr = addr;
2383 			sess->rbufs[i].rkey = rkey;
2384 
2385 			len  -= sess->chunk_size;
2386 			addr += sess->chunk_size;
2387 		}
2388 	}
2389 	/* Sanity check */
2390 	if (unlikely(sgi != sg_cnt || i != sess->queue_depth)) {
2391 		rtrs_err(sess->clt, "Incorrect sg vector, not fully mapped\n");
2392 		return -EINVAL;
2393 	}
2394 	if (unlikely(total_len != sess->chunk_size * sess->queue_depth)) {
2395 		rtrs_err(sess->clt, "Incorrect total_len %d\n", total_len);
2396 		return -EINVAL;
2397 	}
2398 
2399 	return 0;
2400 }
2401 
2402 static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
2403 {
2404 	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2405 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
2406 	struct rtrs_msg_info_rsp *msg;
2407 	enum rtrs_clt_state state;
2408 	struct rtrs_iu *iu;
2409 	size_t rx_sz;
2410 	int err;
2411 
2412 	state = RTRS_CLT_CONNECTING_ERR;
2413 
2414 	WARN_ON(con->c.cid);
2415 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2416 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
2417 		rtrs_err(sess->clt, "Sess info response recv failed: %s\n",
2418 			  ib_wc_status_msg(wc->status));
2419 		goto out;
2420 	}
2421 	WARN_ON(wc->opcode != IB_WC_RECV);
2422 
2423 	if (unlikely(wc->byte_len < sizeof(*msg))) {
2424 		rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
2425 			  wc->byte_len);
2426 		goto out;
2427 	}
2428 	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
2429 				   iu->size, DMA_FROM_DEVICE);
2430 	msg = iu->buf;
2431 	if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP)) {
2432 		rtrs_err(sess->clt, "Sess info response is malformed: type %d\n",
2433 			  le16_to_cpu(msg->type));
2434 		goto out;
2435 	}
2436 	rx_sz  = sizeof(*msg);
2437 	rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
2438 	if (unlikely(wc->byte_len < rx_sz)) {
2439 		rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
2440 			  wc->byte_len);
2441 		goto out;
2442 	}
2443 	err = process_info_rsp(sess, msg);
2444 	if (unlikely(err))
2445 		goto out;
2446 
2447 	err = post_recv_sess(sess);
2448 	if (unlikely(err))
2449 		goto out;
2450 
2451 	state = RTRS_CLT_CONNECTED;
2452 
2453 out:
2454 	rtrs_clt_update_wc_stats(con);
2455 	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
2456 	rtrs_clt_change_state_get_old(sess, state, NULL);
2457 }
2458 
2459 static int rtrs_send_sess_info(struct rtrs_clt_sess *sess)
2460 {
2461 	struct rtrs_clt_con *usr_con = to_clt_con(sess->s.con[0]);
2462 	struct rtrs_msg_info_req *msg;
2463 	struct rtrs_iu *tx_iu, *rx_iu;
2464 	size_t rx_sz;
2465 	int err;
2466 
2467 	rx_sz  = sizeof(struct rtrs_msg_info_rsp);
2468 	rx_sz += sizeof(u64) * MAX_SESS_QUEUE_DEPTH;
2469 
2470 	tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
2471 			       sess->s.dev->ib_dev, DMA_TO_DEVICE,
2472 			       rtrs_clt_info_req_done);
2473 	rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
2474 			       DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
2475 	if (unlikely(!tx_iu || !rx_iu)) {
2476 		err = -ENOMEM;
2477 		goto out;
2478 	}
2479 	/* Prepare for getting info response */
2480 	err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
2481 	if (unlikely(err)) {
2482 		rtrs_err(sess->clt, "rtrs_iu_post_recv(), err: %d\n", err);
2483 		goto out;
2484 	}
2485 	rx_iu = NULL;
2486 
2487 	msg = tx_iu->buf;
2488 	msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
2489 	memcpy(msg->sessname, sess->s.sessname, sizeof(msg->sessname));
2490 
2491 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
2492 				      tx_iu->size, DMA_TO_DEVICE);
2493 
2494 	/* Send info request */
2495 	err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
2496 	if (unlikely(err)) {
2497 		rtrs_err(sess->clt, "rtrs_iu_post_send(), err: %d\n", err);
2498 		goto out;
2499 	}
2500 	tx_iu = NULL;
2501 
2502 	/* Wait for state change */
2503 	wait_event_interruptible_timeout(sess->state_wq,
2504 					 sess->state != RTRS_CLT_CONNECTING,
2505 					 msecs_to_jiffies(
2506 						 RTRS_CONNECT_TIMEOUT_MS));
2507 	if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)) {
2508 		if (READ_ONCE(sess->state) == RTRS_CLT_CONNECTING_ERR)
2509 			err = -ECONNRESET;
2510 		else
2511 			err = -ETIMEDOUT;
2512 	}
2513 
2514 out:
2515 	if (tx_iu)
2516 		rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1);
2517 	if (rx_iu)
2518 		rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1);
2519 	if (unlikely(err))
2520 		/* If we've never taken async path because of malloc problems */
2521 		rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL);
2522 
2523 	return err;
2524 }
2525 
2526 /**
2527  * init_sess() - establishes all session connections and does handshake
2528  * @sess: client session.
2529  * In case of error full close or reconnect procedure should be taken,
2530  * because reconnect or close async works can be started.
2531  */
2532 static int init_sess(struct rtrs_clt_sess *sess)
2533 {
2534 	int err;
2535 	char str[NAME_MAX];
2536 	struct rtrs_addr path = {
2537 		.src = &sess->s.src_addr,
2538 		.dst = &sess->s.dst_addr,
2539 	};
2540 
2541 	rtrs_addr_to_str(&path, str, sizeof(str));
2542 
2543 	mutex_lock(&sess->init_mutex);
2544 	err = init_conns(sess);
2545 	if (err) {
2546 		rtrs_err(sess->clt,
2547 			 "init_conns() failed: err=%d path=%s [%s:%u]\n", err,
2548 			 str, sess->hca_name, sess->hca_port);
2549 		goto out;
2550 	}
2551 	err = rtrs_send_sess_info(sess);
2552 	if (err) {
2553 		rtrs_err(
2554 			sess->clt,
2555 			"rtrs_send_sess_info() failed: err=%d path=%s [%s:%u]\n",
2556 			err, str, sess->hca_name, sess->hca_port);
2557 		goto out;
2558 	}
2559 	rtrs_clt_sess_up(sess);
2560 out:
2561 	mutex_unlock(&sess->init_mutex);
2562 
2563 	return err;
2564 }
2565 
2566 static void rtrs_clt_reconnect_work(struct work_struct *work)
2567 {
2568 	struct rtrs_clt_sess *sess;
2569 	struct rtrs_clt *clt;
2570 	unsigned int delay_ms;
2571 	int err;
2572 
2573 	sess = container_of(to_delayed_work(work), struct rtrs_clt_sess,
2574 			    reconnect_dwork);
2575 	clt = sess->clt;
2576 
2577 	if (READ_ONCE(sess->state) != RTRS_CLT_RECONNECTING)
2578 		return;
2579 
2580 	if (sess->reconnect_attempts >= clt->max_reconnect_attempts) {
2581 		/* Close a session completely if max attempts is reached */
2582 		rtrs_clt_close_conns(sess, false);
2583 		return;
2584 	}
2585 	sess->reconnect_attempts++;
2586 
2587 	/* Stop everything */
2588 	rtrs_clt_stop_and_destroy_conns(sess);
2589 	msleep(RTRS_RECONNECT_BACKOFF);
2590 	if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING, NULL)) {
2591 		err = init_sess(sess);
2592 		if (err)
2593 			goto reconnect_again;
2594 	}
2595 
2596 	return;
2597 
2598 reconnect_again:
2599 	if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING, NULL)) {
2600 		sess->stats->reconnects.fail_cnt++;
2601 		delay_ms = clt->reconnect_delay_sec * 1000;
2602 		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
2603 				   msecs_to_jiffies(delay_ms +
2604 						    prandom_u32() %
2605 						    RTRS_RECONNECT_SEED));
2606 	}
2607 }
2608 
2609 static void rtrs_clt_dev_release(struct device *dev)
2610 {
2611 	struct rtrs_clt *clt = container_of(dev, struct rtrs_clt, dev);
2612 
2613 	kfree(clt);
2614 }
2615 
2616 static struct rtrs_clt *alloc_clt(const char *sessname, size_t paths_num,
2617 				  u16 port, size_t pdu_sz, void *priv,
2618 				  void	(*link_ev)(void *priv,
2619 						   enum rtrs_clt_link_ev ev),
2620 				  unsigned int max_segments,
2621 				  unsigned int reconnect_delay_sec,
2622 				  unsigned int max_reconnect_attempts)
2623 {
2624 	struct rtrs_clt *clt;
2625 	int err;
2626 
2627 	if (!paths_num || paths_num > MAX_PATHS_NUM)
2628 		return ERR_PTR(-EINVAL);
2629 
2630 	if (strlen(sessname) >= sizeof(clt->sessname))
2631 		return ERR_PTR(-EINVAL);
2632 
2633 	clt = kzalloc(sizeof(*clt), GFP_KERNEL);
2634 	if (!clt)
2635 		return ERR_PTR(-ENOMEM);
2636 
2637 	clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
2638 	if (!clt->pcpu_path) {
2639 		kfree(clt);
2640 		return ERR_PTR(-ENOMEM);
2641 	}
2642 
2643 	uuid_gen(&clt->paths_uuid);
2644 	INIT_LIST_HEAD_RCU(&clt->paths_list);
2645 	clt->paths_num = paths_num;
2646 	clt->paths_up = MAX_PATHS_NUM;
2647 	clt->port = port;
2648 	clt->pdu_sz = pdu_sz;
2649 	clt->max_segments = max_segments;
2650 	clt->reconnect_delay_sec = reconnect_delay_sec;
2651 	clt->max_reconnect_attempts = max_reconnect_attempts;
2652 	clt->priv = priv;
2653 	clt->link_ev = link_ev;
2654 	clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2655 	strlcpy(clt->sessname, sessname, sizeof(clt->sessname));
2656 	init_waitqueue_head(&clt->permits_wait);
2657 	mutex_init(&clt->paths_ev_mutex);
2658 	mutex_init(&clt->paths_mutex);
2659 
2660 	clt->dev.class = rtrs_clt_dev_class;
2661 	clt->dev.release = rtrs_clt_dev_release;
2662 	err = dev_set_name(&clt->dev, "%s", sessname);
2663 	if (err)
2664 		goto err;
2665 	/*
2666 	 * Suppress user space notification until
2667 	 * sysfs files are created
2668 	 */
2669 	dev_set_uevent_suppress(&clt->dev, true);
2670 	err = device_register(&clt->dev);
2671 	if (err) {
2672 		put_device(&clt->dev);
2673 		goto err;
2674 	}
2675 
2676 	clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
2677 	if (!clt->kobj_paths) {
2678 		err = -ENOMEM;
2679 		goto err_dev;
2680 	}
2681 	err = rtrs_clt_create_sysfs_root_files(clt);
2682 	if (err) {
2683 		kobject_del(clt->kobj_paths);
2684 		kobject_put(clt->kobj_paths);
2685 		goto err_dev;
2686 	}
2687 	dev_set_uevent_suppress(&clt->dev, false);
2688 	kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
2689 
2690 	return clt;
2691 err_dev:
2692 	device_unregister(&clt->dev);
2693 err:
2694 	free_percpu(clt->pcpu_path);
2695 	kfree(clt);
2696 	return ERR_PTR(err);
2697 }
2698 
2699 static void free_clt(struct rtrs_clt *clt)
2700 {
2701 	free_permits(clt);
2702 	free_percpu(clt->pcpu_path);
2703 	mutex_destroy(&clt->paths_ev_mutex);
2704 	mutex_destroy(&clt->paths_mutex);
2705 	/* release callback will free clt in last put */
2706 	device_unregister(&clt->dev);
2707 }
2708 
2709 /**
2710  * rtrs_clt_open() - Open a session to an RTRS server
2711  * @ops: holds the link event callback and the private pointer.
2712  * @sessname: name of the session
2713  * @paths: Paths to be established defined by their src and dst addresses
2714  * @paths_num: Number of elements in the @paths array
2715  * @port: port to be used by the RTRS session
2716  * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
2717  * @reconnect_delay_sec: time between reconnect tries
2718  * @max_segments: Max. number of segments per IO request
2719  * @max_reconnect_attempts: Number of times to reconnect on error before giving
2720  *			    up, 0 for * disabled, -1 for forever
2721  * @nr_poll_queues: number of polling mode connection using IB_POLL_DIRECT flag
2722  *
2723  * Starts session establishment with the rtrs_server. The function can block
2724  * up to ~2000ms before it returns.
2725  *
2726  * Return a valid pointer on success otherwise PTR_ERR.
2727  */
2728 struct rtrs_clt *rtrs_clt_open(struct rtrs_clt_ops *ops,
2729 				 const char *sessname,
2730 				 const struct rtrs_addr *paths,
2731 				 size_t paths_num, u16 port,
2732 				 size_t pdu_sz, u8 reconnect_delay_sec,
2733 				 u16 max_segments,
2734 				 s16 max_reconnect_attempts, u32 nr_poll_queues)
2735 {
2736 	struct rtrs_clt_sess *sess, *tmp;
2737 	struct rtrs_clt *clt;
2738 	int err, i;
2739 
2740 	clt = alloc_clt(sessname, paths_num, port, pdu_sz, ops->priv,
2741 			ops->link_ev,
2742 			max_segments, reconnect_delay_sec,
2743 			max_reconnect_attempts);
2744 	if (IS_ERR(clt)) {
2745 		err = PTR_ERR(clt);
2746 		goto out;
2747 	}
2748 	for (i = 0; i < paths_num; i++) {
2749 		struct rtrs_clt_sess *sess;
2750 
2751 		sess = alloc_sess(clt, &paths[i], nr_cpu_ids,
2752 				  max_segments, nr_poll_queues);
2753 		if (IS_ERR(sess)) {
2754 			err = PTR_ERR(sess);
2755 			goto close_all_sess;
2756 		}
2757 		if (!i)
2758 			sess->for_new_clt = 1;
2759 		list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
2760 
2761 		err = init_sess(sess);
2762 		if (err) {
2763 			list_del_rcu(&sess->s.entry);
2764 			rtrs_clt_close_conns(sess, true);
2765 			free_sess(sess);
2766 			goto close_all_sess;
2767 		}
2768 
2769 		err = rtrs_clt_create_sess_files(sess);
2770 		if (err) {
2771 			list_del_rcu(&sess->s.entry);
2772 			rtrs_clt_close_conns(sess, true);
2773 			free_sess(sess);
2774 			goto close_all_sess;
2775 		}
2776 	}
2777 	err = alloc_permits(clt);
2778 	if (err)
2779 		goto close_all_sess;
2780 
2781 	return clt;
2782 
2783 close_all_sess:
2784 	list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
2785 		rtrs_clt_destroy_sess_files(sess, NULL);
2786 		rtrs_clt_close_conns(sess, true);
2787 		kobject_put(&sess->kobj);
2788 	}
2789 	rtrs_clt_destroy_sysfs_root(clt);
2790 	free_clt(clt);
2791 
2792 out:
2793 	return ERR_PTR(err);
2794 }
2795 EXPORT_SYMBOL(rtrs_clt_open);
2796 
2797 /**
2798  * rtrs_clt_close() - Close a session
2799  * @clt: Session handle. Session is freed upon return.
2800  */
2801 void rtrs_clt_close(struct rtrs_clt *clt)
2802 {
2803 	struct rtrs_clt_sess *sess, *tmp;
2804 
2805 	/* Firstly forbid sysfs access */
2806 	rtrs_clt_destroy_sysfs_root(clt);
2807 
2808 	/* Now it is safe to iterate over all paths without locks */
2809 	list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
2810 		rtrs_clt_close_conns(sess, true);
2811 		rtrs_clt_destroy_sess_files(sess, NULL);
2812 		kobject_put(&sess->kobj);
2813 	}
2814 	free_clt(clt);
2815 }
2816 EXPORT_SYMBOL(rtrs_clt_close);
2817 
2818 int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_sess *sess)
2819 {
2820 	enum rtrs_clt_state old_state;
2821 	int err = -EBUSY;
2822 	bool changed;
2823 
2824 	changed = rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING,
2825 						 &old_state);
2826 	if (changed) {
2827 		sess->reconnect_attempts = 0;
2828 		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 0);
2829 	}
2830 	if (changed || old_state == RTRS_CLT_RECONNECTING) {
2831 		/*
2832 		 * flush_delayed_work() queues pending work for immediate
2833 		 * execution, so do the flush if we have queued something
2834 		 * right now or work is pending.
2835 		 */
2836 		flush_delayed_work(&sess->reconnect_dwork);
2837 		err = (READ_ONCE(sess->state) ==
2838 		       RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
2839 	}
2840 
2841 	return err;
2842 }
2843 
2844 int rtrs_clt_disconnect_from_sysfs(struct rtrs_clt_sess *sess)
2845 {
2846 	rtrs_clt_close_conns(sess, true);
2847 
2848 	return 0;
2849 }
2850 
2851 int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_sess *sess,
2852 				     const struct attribute *sysfs_self)
2853 {
2854 	enum rtrs_clt_state old_state;
2855 	bool changed;
2856 
2857 	/*
2858 	 * Continue stopping path till state was changed to DEAD or
2859 	 * state was observed as DEAD:
2860 	 * 1. State was changed to DEAD - we were fast and nobody
2861 	 *    invoked rtrs_clt_reconnect(), which can again start
2862 	 *    reconnecting.
2863 	 * 2. State was observed as DEAD - we have someone in parallel
2864 	 *    removing the path.
2865 	 */
2866 	do {
2867 		rtrs_clt_close_conns(sess, true);
2868 		changed = rtrs_clt_change_state_get_old(sess,
2869 							RTRS_CLT_DEAD,
2870 							&old_state);
2871 	} while (!changed && old_state != RTRS_CLT_DEAD);
2872 
2873 	if (likely(changed)) {
2874 		rtrs_clt_remove_path_from_arr(sess);
2875 		rtrs_clt_destroy_sess_files(sess, sysfs_self);
2876 		kobject_put(&sess->kobj);
2877 	}
2878 
2879 	return 0;
2880 }
2881 
2882 void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt *clt, int value)
2883 {
2884 	clt->max_reconnect_attempts = (unsigned int)value;
2885 }
2886 
2887 int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt *clt)
2888 {
2889 	return (int)clt->max_reconnect_attempts;
2890 }
2891 
2892 /**
2893  * rtrs_clt_request() - Request data transfer to/from server via RDMA.
2894  *
2895  * @dir:	READ/WRITE
2896  * @ops:	callback function to be called as confirmation, and the pointer.
2897  * @clt:	Session
2898  * @permit:	Preallocated permit
2899  * @vec:	Message that is sent to server together with the request.
2900  *		Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
2901  *		Since the msg is copied internally it can be allocated on stack.
2902  * @nr:		Number of elements in @vec.
2903  * @data_len:	length of data sent to/from server
2904  * @sg:		Pages to be sent/received to/from server.
2905  * @sg_cnt:	Number of elements in the @sg
2906  *
2907  * Return:
2908  * 0:		Success
2909  * <0:		Error
2910  *
2911  * On dir=READ rtrs client will request a data transfer from Server to client.
2912  * The data that the server will respond with will be stored in @sg when
2913  * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
2914  * On dir=WRITE rtrs client will rdma write data in sg to server side.
2915  */
2916 int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
2917 		     struct rtrs_clt *clt, struct rtrs_permit *permit,
2918 		      const struct kvec *vec, size_t nr, size_t data_len,
2919 		      struct scatterlist *sg, unsigned int sg_cnt)
2920 {
2921 	struct rtrs_clt_io_req *req;
2922 	struct rtrs_clt_sess *sess;
2923 
2924 	enum dma_data_direction dma_dir;
2925 	int err = -ECONNABORTED, i;
2926 	size_t usr_len, hdr_len;
2927 	struct path_it it;
2928 
2929 	/* Get kvec length */
2930 	for (i = 0, usr_len = 0; i < nr; i++)
2931 		usr_len += vec[i].iov_len;
2932 
2933 	if (dir == READ) {
2934 		hdr_len = sizeof(struct rtrs_msg_rdma_read) +
2935 			  sg_cnt * sizeof(struct rtrs_sg_desc);
2936 		dma_dir = DMA_FROM_DEVICE;
2937 	} else {
2938 		hdr_len = sizeof(struct rtrs_msg_rdma_write);
2939 		dma_dir = DMA_TO_DEVICE;
2940 	}
2941 
2942 	rcu_read_lock();
2943 	for (path_it_init(&it, clt);
2944 	     (sess = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
2945 		if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED))
2946 			continue;
2947 
2948 		if (unlikely(usr_len + hdr_len > sess->max_hdr_size)) {
2949 			rtrs_wrn_rl(sess->clt,
2950 				     "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
2951 				     dir == READ ? "Read" : "Write",
2952 				     usr_len, hdr_len, sess->max_hdr_size);
2953 			err = -EMSGSIZE;
2954 			break;
2955 		}
2956 		req = rtrs_clt_get_req(sess, ops->conf_fn, permit, ops->priv,
2957 				       vec, usr_len, sg, sg_cnt, data_len,
2958 				       dma_dir);
2959 		if (dir == READ)
2960 			err = rtrs_clt_read_req(req);
2961 		else
2962 			err = rtrs_clt_write_req(req);
2963 		if (unlikely(err)) {
2964 			req->in_use = false;
2965 			continue;
2966 		}
2967 		/* Success path */
2968 		break;
2969 	}
2970 	path_it_deinit(&it);
2971 	rcu_read_unlock();
2972 
2973 	return err;
2974 }
2975 EXPORT_SYMBOL(rtrs_clt_request);
2976 
2977 int rtrs_clt_rdma_cq_direct(struct rtrs_clt *clt, unsigned int index)
2978 {
2979 	/* If no path, return -1 for block layer not to try again */
2980 	int cnt = -1;
2981 	struct rtrs_con *con;
2982 	struct rtrs_clt_sess *sess;
2983 	struct path_it it;
2984 
2985 	rcu_read_lock();
2986 	for (path_it_init(&it, clt);
2987 	     (sess = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
2988 		if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)
2989 			continue;
2990 
2991 		con = sess->s.con[index + 1];
2992 		cnt = ib_process_cq_direct(con->cq, -1);
2993 		if (cnt)
2994 			break;
2995 	}
2996 	path_it_deinit(&it);
2997 	rcu_read_unlock();
2998 
2999 	return cnt;
3000 }
3001 EXPORT_SYMBOL(rtrs_clt_rdma_cq_direct);
3002 
3003 /**
3004  * rtrs_clt_query() - queries RTRS session attributes
3005  *@clt: session pointer
3006  *@attr: query results for session attributes.
3007  * Returns:
3008  *    0 on success
3009  *    -ECOMM		no connection to the server
3010  */
3011 int rtrs_clt_query(struct rtrs_clt *clt, struct rtrs_attrs *attr)
3012 {
3013 	if (!rtrs_clt_is_connected(clt))
3014 		return -ECOMM;
3015 
3016 	attr->queue_depth      = clt->queue_depth;
3017 	/* Cap max_io_size to min of remote buffer size and the fr pages */
3018 	attr->max_io_size = min_t(int, clt->max_io_size,
3019 				  clt->max_segments * SZ_4K);
3020 
3021 	return 0;
3022 }
3023 EXPORT_SYMBOL(rtrs_clt_query);
3024 
3025 int rtrs_clt_create_path_from_sysfs(struct rtrs_clt *clt,
3026 				     struct rtrs_addr *addr)
3027 {
3028 	struct rtrs_clt_sess *sess;
3029 	int err;
3030 
3031 	sess = alloc_sess(clt, addr, nr_cpu_ids, clt->max_segments, 0);
3032 	if (IS_ERR(sess))
3033 		return PTR_ERR(sess);
3034 
3035 	/*
3036 	 * It is totally safe to add path in CONNECTING state: coming
3037 	 * IO will never grab it.  Also it is very important to add
3038 	 * path before init, since init fires LINK_CONNECTED event.
3039 	 */
3040 	rtrs_clt_add_path_to_arr(sess);
3041 
3042 	err = init_sess(sess);
3043 	if (err)
3044 		goto close_sess;
3045 
3046 	err = rtrs_clt_create_sess_files(sess);
3047 	if (err)
3048 		goto close_sess;
3049 
3050 	return 0;
3051 
3052 close_sess:
3053 	rtrs_clt_remove_path_from_arr(sess);
3054 	rtrs_clt_close_conns(sess, true);
3055 	free_sess(sess);
3056 
3057 	return err;
3058 }
3059 
3060 static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
3061 {
3062 	if (!(dev->ib_dev->attrs.device_cap_flags &
3063 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
3064 		pr_err("Memory registrations not supported.\n");
3065 		return -ENOTSUPP;
3066 	}
3067 
3068 	return 0;
3069 }
3070 
3071 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
3072 	.init = rtrs_clt_ib_dev_init
3073 };
3074 
3075 static int __init rtrs_client_init(void)
3076 {
3077 	rtrs_rdma_dev_pd_init(0, &dev_pd);
3078 
3079 	rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client");
3080 	if (IS_ERR(rtrs_clt_dev_class)) {
3081 		pr_err("Failed to create rtrs-client dev class\n");
3082 		return PTR_ERR(rtrs_clt_dev_class);
3083 	}
3084 	rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0);
3085 	if (!rtrs_wq) {
3086 		class_destroy(rtrs_clt_dev_class);
3087 		return -ENOMEM;
3088 	}
3089 
3090 	return 0;
3091 }
3092 
3093 static void __exit rtrs_client_exit(void)
3094 {
3095 	destroy_workqueue(rtrs_wq);
3096 	class_destroy(rtrs_clt_dev_class);
3097 	rtrs_rdma_dev_pd_deinit(&dev_pd);
3098 }
3099 
3100 module_init(rtrs_client_init);
3101 module_exit(rtrs_client_exit);
3102