xref: /openbmc/linux/drivers/infiniband/ulp/rtrs/rtrs-clt.c (revision cd1e565a5b7fa60c349ca8a16db1e61715fe8230)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/rculist.h>
15 #include <linux/random.h>
16 
17 #include "rtrs-clt.h"
18 #include "rtrs-log.h"
19 #include "rtrs-clt-trace.h"
20 
21 #define RTRS_CONNECT_TIMEOUT_MS 30000
22 /*
23  * Wait a bit before trying to reconnect after a failure
24  * in order to give server time to finish clean up which
25  * leads to "false positives" failed reconnect attempts
26  */
27 #define RTRS_RECONNECT_BACKOFF 1000
28 /*
29  * Wait for additional random time between 0 and 8 seconds
30  * before starting to reconnect to avoid clients reconnecting
31  * all at once in case of a major network outage
32  */
33 #define RTRS_RECONNECT_SEED 8
34 
35 #define FIRST_CONN 0x01
36 /* limit to 128 * 4k = 512k max IO */
37 #define RTRS_MAX_SEGMENTS          128
38 
39 MODULE_DESCRIPTION("RDMA Transport Client");
40 MODULE_LICENSE("GPL");
41 
42 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
43 static struct rtrs_rdma_dev_pd dev_pd = {
44 	.ops = &dev_pd_ops
45 };
46 
47 static struct workqueue_struct *rtrs_wq;
48 static const struct class rtrs_clt_dev_class = {
49 	.name = "rtrs-client",
50 };
51 
52 static inline bool rtrs_clt_is_connected(const struct rtrs_clt_sess *clt)
53 {
54 	struct rtrs_clt_path *clt_path;
55 	bool connected = false;
56 
57 	rcu_read_lock();
58 	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry)
59 		if (READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED) {
60 			connected = true;
61 			break;
62 		}
63 	rcu_read_unlock();
64 
65 	return connected;
66 }
67 
68 static struct rtrs_permit *
69 __rtrs_get_permit(struct rtrs_clt_sess *clt, enum rtrs_clt_con_type con_type)
70 {
71 	size_t max_depth = clt->queue_depth;
72 	struct rtrs_permit *permit;
73 	int bit;
74 
75 	/*
76 	 * Adapted from null_blk get_tag(). Callers from different cpus may
77 	 * grab the same bit, since find_first_zero_bit is not atomic.
78 	 * But then the test_and_set_bit_lock will fail for all the
79 	 * callers but one, so that they will loop again.
80 	 * This way an explicit spinlock is not required.
81 	 */
82 	do {
83 		bit = find_first_zero_bit(clt->permits_map, max_depth);
84 		if (bit >= max_depth)
85 			return NULL;
86 	} while (test_and_set_bit_lock(bit, clt->permits_map));
87 
88 	permit = get_permit(clt, bit);
89 	WARN_ON(permit->mem_id != bit);
90 	permit->cpu_id = raw_smp_processor_id();
91 	permit->con_type = con_type;
92 
93 	return permit;
94 }
95 
96 static inline void __rtrs_put_permit(struct rtrs_clt_sess *clt,
97 				      struct rtrs_permit *permit)
98 {
99 	clear_bit_unlock(permit->mem_id, clt->permits_map);
100 }
101 
102 /**
103  * rtrs_clt_get_permit() - allocates permit for future RDMA operation
104  * @clt:	Current session
105  * @con_type:	Type of connection to use with the permit
106  * @can_wait:	Wait type
107  *
108  * Description:
109  *    Allocates permit for the following RDMA operation.  Permit is used
110  *    to preallocate all resources and to propagate memory pressure
111  *    up earlier.
112  *
113  * Context:
114  *    Can sleep if @wait == RTRS_PERMIT_WAIT
115  */
116 struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt_sess *clt,
117 					  enum rtrs_clt_con_type con_type,
118 					  enum wait_type can_wait)
119 {
120 	struct rtrs_permit *permit;
121 	DEFINE_WAIT(wait);
122 
123 	permit = __rtrs_get_permit(clt, con_type);
124 	if (permit || !can_wait)
125 		return permit;
126 
127 	do {
128 		prepare_to_wait(&clt->permits_wait, &wait,
129 				TASK_UNINTERRUPTIBLE);
130 		permit = __rtrs_get_permit(clt, con_type);
131 		if (permit)
132 			break;
133 
134 		io_schedule();
135 	} while (1);
136 
137 	finish_wait(&clt->permits_wait, &wait);
138 
139 	return permit;
140 }
141 EXPORT_SYMBOL(rtrs_clt_get_permit);
142 
143 /**
144  * rtrs_clt_put_permit() - puts allocated permit
145  * @clt:	Current session
146  * @permit:	Permit to be freed
147  *
148  * Context:
149  *    Does not matter
150  */
151 void rtrs_clt_put_permit(struct rtrs_clt_sess *clt,
152 			 struct rtrs_permit *permit)
153 {
154 	if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
155 		return;
156 
157 	__rtrs_put_permit(clt, permit);
158 
159 	/*
160 	 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
161 	 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
162 	 * it must have added itself to &clt->permits_wait before
163 	 * __rtrs_put_permit() finished.
164 	 * Hence it is safe to guard wake_up() with a waitqueue_active() test.
165 	 */
166 	if (waitqueue_active(&clt->permits_wait))
167 		wake_up(&clt->permits_wait);
168 }
169 EXPORT_SYMBOL(rtrs_clt_put_permit);
170 
171 /**
172  * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
173  * @clt_path: client path pointer
174  * @permit: permit for the allocation of the RDMA buffer
175  * Note:
176  *     IO connection starts from 1.
177  *     0 connection is for user messages.
178  */
179 static
180 struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_path *clt_path,
181 					    struct rtrs_permit *permit)
182 {
183 	int id = 0;
184 
185 	if (permit->con_type == RTRS_IO_CON)
186 		id = (permit->cpu_id % (clt_path->s.irq_con_num - 1)) + 1;
187 
188 	return to_clt_con(clt_path->s.con[id]);
189 }
190 
191 /**
192  * rtrs_clt_change_state() - change the session state through session state
193  * machine.
194  *
195  * @clt_path: client path to change the state of.
196  * @new_state: state to change to.
197  *
198  * returns true if sess's state is changed to new state, otherwise return false.
199  *
200  * Locks:
201  * state_wq lock must be hold.
202  */
203 static bool rtrs_clt_change_state(struct rtrs_clt_path *clt_path,
204 				     enum rtrs_clt_state new_state)
205 {
206 	enum rtrs_clt_state old_state;
207 	bool changed = false;
208 
209 	lockdep_assert_held(&clt_path->state_wq.lock);
210 
211 	old_state = clt_path->state;
212 	switch (new_state) {
213 	case RTRS_CLT_CONNECTING:
214 		switch (old_state) {
215 		case RTRS_CLT_RECONNECTING:
216 			changed = true;
217 			fallthrough;
218 		default:
219 			break;
220 		}
221 		break;
222 	case RTRS_CLT_RECONNECTING:
223 		switch (old_state) {
224 		case RTRS_CLT_CONNECTED:
225 		case RTRS_CLT_CONNECTING_ERR:
226 		case RTRS_CLT_CLOSED:
227 			changed = true;
228 			fallthrough;
229 		default:
230 			break;
231 		}
232 		break;
233 	case RTRS_CLT_CONNECTED:
234 		switch (old_state) {
235 		case RTRS_CLT_CONNECTING:
236 			changed = true;
237 			fallthrough;
238 		default:
239 			break;
240 		}
241 		break;
242 	case RTRS_CLT_CONNECTING_ERR:
243 		switch (old_state) {
244 		case RTRS_CLT_CONNECTING:
245 			changed = true;
246 			fallthrough;
247 		default:
248 			break;
249 		}
250 		break;
251 	case RTRS_CLT_CLOSING:
252 		switch (old_state) {
253 		case RTRS_CLT_CONNECTING:
254 		case RTRS_CLT_CONNECTING_ERR:
255 		case RTRS_CLT_RECONNECTING:
256 		case RTRS_CLT_CONNECTED:
257 			changed = true;
258 			fallthrough;
259 		default:
260 			break;
261 		}
262 		break;
263 	case RTRS_CLT_CLOSED:
264 		switch (old_state) {
265 		case RTRS_CLT_CLOSING:
266 			changed = true;
267 			fallthrough;
268 		default:
269 			break;
270 		}
271 		break;
272 	case RTRS_CLT_DEAD:
273 		switch (old_state) {
274 		case RTRS_CLT_CLOSED:
275 			changed = true;
276 			fallthrough;
277 		default:
278 			break;
279 		}
280 		break;
281 	default:
282 		break;
283 	}
284 	if (changed) {
285 		clt_path->state = new_state;
286 		wake_up_locked(&clt_path->state_wq);
287 	}
288 
289 	return changed;
290 }
291 
292 static bool rtrs_clt_change_state_from_to(struct rtrs_clt_path *clt_path,
293 					   enum rtrs_clt_state old_state,
294 					   enum rtrs_clt_state new_state)
295 {
296 	bool changed = false;
297 
298 	spin_lock_irq(&clt_path->state_wq.lock);
299 	if (clt_path->state == old_state)
300 		changed = rtrs_clt_change_state(clt_path, new_state);
301 	spin_unlock_irq(&clt_path->state_wq.lock);
302 
303 	return changed;
304 }
305 
306 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path);
307 static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
308 {
309 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
310 
311 	trace_rtrs_rdma_error_recovery(clt_path);
312 
313 	if (rtrs_clt_change_state_from_to(clt_path,
314 					   RTRS_CLT_CONNECTED,
315 					   RTRS_CLT_RECONNECTING)) {
316 		queue_work(rtrs_wq, &clt_path->err_recovery_work);
317 	} else {
318 		/*
319 		 * Error can happen just on establishing new connection,
320 		 * so notify waiter with error state, waiter is responsible
321 		 * for cleaning the rest and reconnect if needed.
322 		 */
323 		rtrs_clt_change_state_from_to(clt_path,
324 					       RTRS_CLT_CONNECTING,
325 					       RTRS_CLT_CONNECTING_ERR);
326 	}
327 }
328 
329 static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
330 {
331 	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
332 
333 	if (wc->status != IB_WC_SUCCESS) {
334 		rtrs_err(con->c.path, "Failed IB_WR_REG_MR: %s\n",
335 			  ib_wc_status_msg(wc->status));
336 		rtrs_rdma_error_recovery(con);
337 	}
338 }
339 
340 static struct ib_cqe fast_reg_cqe = {
341 	.done = rtrs_clt_fast_reg_done
342 };
343 
344 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
345 			      bool notify, bool can_wait);
346 
347 static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
348 {
349 	struct rtrs_clt_io_req *req =
350 		container_of(wc->wr_cqe, typeof(*req), inv_cqe);
351 	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
352 
353 	if (wc->status != IB_WC_SUCCESS) {
354 		rtrs_err(con->c.path, "Failed IB_WR_LOCAL_INV: %s\n",
355 			  ib_wc_status_msg(wc->status));
356 		rtrs_rdma_error_recovery(con);
357 	}
358 	req->need_inv = false;
359 	if (req->need_inv_comp)
360 		complete(&req->inv_comp);
361 	else
362 		/* Complete request from INV callback */
363 		complete_rdma_req(req, req->inv_errno, true, false);
364 }
365 
366 static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
367 {
368 	struct rtrs_clt_con *con = req->con;
369 	struct ib_send_wr wr = {
370 		.opcode		    = IB_WR_LOCAL_INV,
371 		.wr_cqe		    = &req->inv_cqe,
372 		.send_flags	    = IB_SEND_SIGNALED,
373 		.ex.invalidate_rkey = req->mr->rkey,
374 	};
375 	req->inv_cqe.done = rtrs_clt_inv_rkey_done;
376 
377 	return ib_post_send(con->c.qp, &wr, NULL);
378 }
379 
380 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
381 			      bool notify, bool can_wait)
382 {
383 	struct rtrs_clt_con *con = req->con;
384 	struct rtrs_clt_path *clt_path;
385 	int err;
386 
387 	if (!req->in_use)
388 		return;
389 	if (WARN_ON(!req->con))
390 		return;
391 	clt_path = to_clt_path(con->c.path);
392 
393 	if (req->sg_cnt) {
394 		if (req->dir == DMA_FROM_DEVICE && req->need_inv) {
395 			/*
396 			 * We are here to invalidate read requests
397 			 * ourselves.  In normal scenario server should
398 			 * send INV for all read requests, but
399 			 * we are here, thus two things could happen:
400 			 *
401 			 *    1.  this is failover, when errno != 0
402 			 *        and can_wait == 1,
403 			 *
404 			 *    2.  something totally bad happened and
405 			 *        server forgot to send INV, so we
406 			 *        should do that ourselves.
407 			 */
408 
409 			if (can_wait) {
410 				req->need_inv_comp = true;
411 			} else {
412 				/* This should be IO path, so always notify */
413 				WARN_ON(!notify);
414 				/* Save errno for INV callback */
415 				req->inv_errno = errno;
416 			}
417 
418 			refcount_inc(&req->ref);
419 			err = rtrs_inv_rkey(req);
420 			if (err) {
421 				rtrs_err(con->c.path, "Send INV WR key=%#x: %d\n",
422 					  req->mr->rkey, err);
423 			} else if (can_wait) {
424 				wait_for_completion(&req->inv_comp);
425 			} else {
426 				/*
427 				 * Something went wrong, so request will be
428 				 * completed from INV callback.
429 				 */
430 				WARN_ON_ONCE(1);
431 
432 				return;
433 			}
434 			if (!refcount_dec_and_test(&req->ref))
435 				return;
436 		}
437 		ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
438 				req->sg_cnt, req->dir);
439 	}
440 	if (!refcount_dec_and_test(&req->ref))
441 		return;
442 	if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
443 		atomic_dec(&clt_path->stats->inflight);
444 
445 	req->in_use = false;
446 	req->con = NULL;
447 
448 	if (errno) {
449 		rtrs_err_rl(con->c.path, "IO request failed: error=%d path=%s [%s:%u] notify=%d\n",
450 			    errno, kobject_name(&clt_path->kobj), clt_path->hca_name,
451 			    clt_path->hca_port, notify);
452 	}
453 
454 	if (notify)
455 		req->conf(req->priv, errno);
456 }
457 
458 static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
459 				struct rtrs_clt_io_req *req,
460 				struct rtrs_rbuf *rbuf, u32 off,
461 				u32 imm, struct ib_send_wr *wr)
462 {
463 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
464 	enum ib_send_flags flags;
465 	struct ib_sge sge;
466 
467 	if (!req->sg_size) {
468 		rtrs_wrn(con->c.path,
469 			 "Doing RDMA Write failed, no data supplied\n");
470 		return -EINVAL;
471 	}
472 
473 	/* user data and user message in the first list element */
474 	sge.addr   = req->iu->dma_addr;
475 	sge.length = req->sg_size;
476 	sge.lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
477 
478 	/*
479 	 * From time to time we have to post signalled sends,
480 	 * or send queue will fill up and only QP reset can help.
481 	 */
482 	flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ?
483 			0 : IB_SEND_SIGNALED;
484 
485 	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
486 				      req->iu->dma_addr,
487 				      req->sg_size, DMA_TO_DEVICE);
488 
489 	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
490 					    rbuf->rkey, rbuf->addr + off,
491 					    imm, flags, wr, NULL);
492 }
493 
494 static void process_io_rsp(struct rtrs_clt_path *clt_path, u32 msg_id,
495 			   s16 errno, bool w_inval)
496 {
497 	struct rtrs_clt_io_req *req;
498 
499 	if (WARN_ON(msg_id >= clt_path->queue_depth))
500 		return;
501 
502 	req = &clt_path->reqs[msg_id];
503 	/* Drop need_inv if server responded with send with invalidation */
504 	req->need_inv &= !w_inval;
505 	complete_rdma_req(req, errno, true, false);
506 }
507 
508 static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
509 {
510 	struct rtrs_iu *iu;
511 	int err;
512 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
513 
514 	WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0);
515 	iu = container_of(wc->wr_cqe, struct rtrs_iu,
516 			  cqe);
517 	err = rtrs_iu_post_recv(&con->c, iu);
518 	if (err) {
519 		rtrs_err(con->c.path, "post iu failed %d\n", err);
520 		rtrs_rdma_error_recovery(con);
521 	}
522 }
523 
524 static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
525 {
526 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
527 	struct rtrs_msg_rkey_rsp *msg;
528 	u32 imm_type, imm_payload;
529 	bool w_inval = false;
530 	struct rtrs_iu *iu;
531 	u32 buf_id;
532 	int err;
533 
534 	WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0);
535 
536 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
537 
538 	if (wc->byte_len < sizeof(*msg)) {
539 		rtrs_err(con->c.path, "rkey response is malformed: size %d\n",
540 			  wc->byte_len);
541 		goto out;
542 	}
543 	ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr,
544 				   iu->size, DMA_FROM_DEVICE);
545 	msg = iu->buf;
546 	if (le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP) {
547 		rtrs_err(clt_path->clt,
548 			  "rkey response is malformed: type %d\n",
549 			  le16_to_cpu(msg->type));
550 		goto out;
551 	}
552 	buf_id = le16_to_cpu(msg->buf_id);
553 	if (WARN_ON(buf_id >= clt_path->queue_depth))
554 		goto out;
555 
556 	rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
557 	if (imm_type == RTRS_IO_RSP_IMM ||
558 	    imm_type == RTRS_IO_RSP_W_INV_IMM) {
559 		u32 msg_id;
560 
561 		w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
562 		rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
563 
564 		if (WARN_ON(buf_id != msg_id))
565 			goto out;
566 		clt_path->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
567 		process_io_rsp(clt_path, msg_id, err, w_inval);
568 	}
569 	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev, iu->dma_addr,
570 				      iu->size, DMA_FROM_DEVICE);
571 	return rtrs_clt_recv_done(con, wc);
572 out:
573 	rtrs_rdma_error_recovery(con);
574 }
575 
576 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
577 
578 static struct ib_cqe io_comp_cqe = {
579 	.done = rtrs_clt_rdma_done
580 };
581 
582 /*
583  * Post x2 empty WRs: first is for this RDMA with IMM,
584  * second is for RECV with INV, which happened earlier.
585  */
586 static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
587 {
588 	struct ib_recv_wr wr_arr[2], *wr;
589 	int i;
590 
591 	memset(wr_arr, 0, sizeof(wr_arr));
592 	for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
593 		wr = &wr_arr[i];
594 		wr->wr_cqe  = cqe;
595 		if (i)
596 			/* Chain backwards */
597 			wr->next = &wr_arr[i - 1];
598 	}
599 
600 	return ib_post_recv(con->qp, wr, NULL);
601 }
602 
603 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
604 {
605 	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
606 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
607 	u32 imm_type, imm_payload;
608 	bool w_inval = false;
609 	int err;
610 
611 	if (wc->status != IB_WC_SUCCESS) {
612 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
613 			rtrs_err(clt_path->clt, "RDMA failed: %s\n",
614 				  ib_wc_status_msg(wc->status));
615 			rtrs_rdma_error_recovery(con);
616 		}
617 		return;
618 	}
619 	rtrs_clt_update_wc_stats(con);
620 
621 	switch (wc->opcode) {
622 	case IB_WC_RECV_RDMA_WITH_IMM:
623 		/*
624 		 * post_recv() RDMA write completions of IO reqs (read/write)
625 		 * and hb
626 		 */
627 		if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
628 			return;
629 		clt_path->s.hb_missed_cnt = 0;
630 		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
631 			       &imm_type, &imm_payload);
632 		if (imm_type == RTRS_IO_RSP_IMM ||
633 		    imm_type == RTRS_IO_RSP_W_INV_IMM) {
634 			u32 msg_id;
635 
636 			w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
637 			rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
638 
639 			process_io_rsp(clt_path, msg_id, err, w_inval);
640 		} else if (imm_type == RTRS_HB_MSG_IMM) {
641 			WARN_ON(con->c.cid);
642 			rtrs_send_hb_ack(&clt_path->s);
643 			if (clt_path->flags & RTRS_MSG_NEW_RKEY_F)
644 				return  rtrs_clt_recv_done(con, wc);
645 		} else if (imm_type == RTRS_HB_ACK_IMM) {
646 			WARN_ON(con->c.cid);
647 			clt_path->s.hb_cur_latency =
648 				ktime_sub(ktime_get(), clt_path->s.hb_last_sent);
649 			if (clt_path->flags & RTRS_MSG_NEW_RKEY_F)
650 				return  rtrs_clt_recv_done(con, wc);
651 		} else {
652 			rtrs_wrn(con->c.path, "Unknown IMM type %u\n",
653 				  imm_type);
654 		}
655 		if (w_inval)
656 			/*
657 			 * Post x2 empty WRs: first is for this RDMA with IMM,
658 			 * second is for RECV with INV, which happened earlier.
659 			 */
660 			err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
661 		else
662 			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
663 		if (err) {
664 			rtrs_err(con->c.path, "rtrs_post_recv_empty(): %d\n",
665 				  err);
666 			rtrs_rdma_error_recovery(con);
667 		}
668 		break;
669 	case IB_WC_RECV:
670 		/*
671 		 * Key invalidations from server side
672 		 */
673 		clt_path->s.hb_missed_cnt = 0;
674 		WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
675 			  wc->wc_flags & IB_WC_WITH_IMM));
676 		WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
677 		if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) {
678 			if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
679 				return  rtrs_clt_recv_done(con, wc);
680 
681 			return  rtrs_clt_rkey_rsp_done(con, wc);
682 		}
683 		break;
684 	case IB_WC_RDMA_WRITE:
685 		/*
686 		 * post_send() RDMA write completions of IO reqs (read/write)
687 		 * and hb.
688 		 */
689 		break;
690 
691 	default:
692 		rtrs_wrn(clt_path->clt, "Unexpected WC type: %d\n", wc->opcode);
693 		return;
694 	}
695 }
696 
697 static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
698 {
699 	int err, i;
700 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
701 
702 	for (i = 0; i < q_size; i++) {
703 		if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) {
704 			struct rtrs_iu *iu = &con->rsp_ius[i];
705 
706 			err = rtrs_iu_post_recv(&con->c, iu);
707 		} else {
708 			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
709 		}
710 		if (err)
711 			return err;
712 	}
713 
714 	return 0;
715 }
716 
717 static int post_recv_path(struct rtrs_clt_path *clt_path)
718 {
719 	size_t q_size = 0;
720 	int err, cid;
721 
722 	for (cid = 0; cid < clt_path->s.con_num; cid++) {
723 		if (cid == 0)
724 			q_size = SERVICE_CON_QUEUE_DEPTH;
725 		else
726 			q_size = clt_path->queue_depth;
727 
728 		/*
729 		 * x2 for RDMA read responses + FR key invalidations,
730 		 * RDMA writes do not require any FR registrations.
731 		 */
732 		q_size *= 2;
733 
734 		err = post_recv_io(to_clt_con(clt_path->s.con[cid]), q_size);
735 		if (err) {
736 			rtrs_err(clt_path->clt, "post_recv_io(), err: %d\n",
737 				 err);
738 			return err;
739 		}
740 	}
741 
742 	return 0;
743 }
744 
745 struct path_it {
746 	int i;
747 	struct list_head skip_list;
748 	struct rtrs_clt_sess *clt;
749 	struct rtrs_clt_path *(*next_path)(struct path_it *it);
750 };
751 
752 /*
753  * rtrs_clt_get_next_path_or_null - get clt path from the list or return NULL
754  * @head:	the head for the list.
755  * @clt_path:	The element to take the next clt_path from.
756  *
757  * Next clt path returned in round-robin fashion, i.e. head will be skipped,
758  * but if list is observed as empty, NULL will be returned.
759  *
760  * This function may safely run concurrently with the _rcu list-mutation
761  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
762  */
763 static inline struct rtrs_clt_path *
764 rtrs_clt_get_next_path_or_null(struct list_head *head, struct rtrs_clt_path *clt_path)
765 {
766 	return list_next_or_null_rcu(head, &clt_path->s.entry, typeof(*clt_path), s.entry) ?:
767 				     list_next_or_null_rcu(head,
768 							   READ_ONCE((&clt_path->s.entry)->next),
769 							   typeof(*clt_path), s.entry);
770 }
771 
772 /**
773  * get_next_path_rr() - Returns path in round-robin fashion.
774  * @it:	the path pointer
775  *
776  * Related to @MP_POLICY_RR
777  *
778  * Locks:
779  *    rcu_read_lock() must be hold.
780  */
781 static struct rtrs_clt_path *get_next_path_rr(struct path_it *it)
782 {
783 	struct rtrs_clt_path __rcu **ppcpu_path;
784 	struct rtrs_clt_path *path;
785 	struct rtrs_clt_sess *clt;
786 
787 	clt = it->clt;
788 
789 	/*
790 	 * Here we use two RCU objects: @paths_list and @pcpu_path
791 	 * pointer.  See rtrs_clt_remove_path_from_arr() for details
792 	 * how that is handled.
793 	 */
794 
795 	ppcpu_path = this_cpu_ptr(clt->pcpu_path);
796 	path = rcu_dereference(*ppcpu_path);
797 	if (!path)
798 		path = list_first_or_null_rcu(&clt->paths_list,
799 					      typeof(*path), s.entry);
800 	else
801 		path = rtrs_clt_get_next_path_or_null(&clt->paths_list, path);
802 
803 	rcu_assign_pointer(*ppcpu_path, path);
804 
805 	return path;
806 }
807 
808 /**
809  * get_next_path_min_inflight() - Returns path with minimal inflight count.
810  * @it:	the path pointer
811  *
812  * Related to @MP_POLICY_MIN_INFLIGHT
813  *
814  * Locks:
815  *    rcu_read_lock() must be hold.
816  */
817 static struct rtrs_clt_path *get_next_path_min_inflight(struct path_it *it)
818 {
819 	struct rtrs_clt_path *min_path = NULL;
820 	struct rtrs_clt_sess *clt = it->clt;
821 	struct rtrs_clt_path *clt_path;
822 	int min_inflight = INT_MAX;
823 	int inflight;
824 
825 	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) {
826 		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
827 			continue;
828 
829 		if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry)))
830 			continue;
831 
832 		inflight = atomic_read(&clt_path->stats->inflight);
833 
834 		if (inflight < min_inflight) {
835 			min_inflight = inflight;
836 			min_path = clt_path;
837 		}
838 	}
839 
840 	/*
841 	 * add the path to the skip list, so that next time we can get
842 	 * a different one
843 	 */
844 	if (min_path)
845 		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
846 
847 	return min_path;
848 }
849 
850 /**
851  * get_next_path_min_latency() - Returns path with minimal latency.
852  * @it:	the path pointer
853  *
854  * Return: a path with the lowest latency or NULL if all paths are tried
855  *
856  * Locks:
857  *    rcu_read_lock() must be hold.
858  *
859  * Related to @MP_POLICY_MIN_LATENCY
860  *
861  * This DOES skip an already-tried path.
862  * There is a skip-list to skip a path if the path has tried but failed.
863  * It will try the minimum latency path and then the second minimum latency
864  * path and so on. Finally it will return NULL if all paths are tried.
865  * Therefore the caller MUST check the returned
866  * path is NULL and trigger the IO error.
867  */
868 static struct rtrs_clt_path *get_next_path_min_latency(struct path_it *it)
869 {
870 	struct rtrs_clt_path *min_path = NULL;
871 	struct rtrs_clt_sess *clt = it->clt;
872 	struct rtrs_clt_path *clt_path;
873 	ktime_t min_latency = KTIME_MAX;
874 	ktime_t latency;
875 
876 	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) {
877 		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
878 			continue;
879 
880 		if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry)))
881 			continue;
882 
883 		latency = clt_path->s.hb_cur_latency;
884 
885 		if (latency < min_latency) {
886 			min_latency = latency;
887 			min_path = clt_path;
888 		}
889 	}
890 
891 	/*
892 	 * add the path to the skip list, so that next time we can get
893 	 * a different one
894 	 */
895 	if (min_path)
896 		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
897 
898 	return min_path;
899 }
900 
901 static inline void path_it_init(struct path_it *it, struct rtrs_clt_sess *clt)
902 {
903 	INIT_LIST_HEAD(&it->skip_list);
904 	it->clt = clt;
905 	it->i = 0;
906 
907 	if (clt->mp_policy == MP_POLICY_RR)
908 		it->next_path = get_next_path_rr;
909 	else if (clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
910 		it->next_path = get_next_path_min_inflight;
911 	else
912 		it->next_path = get_next_path_min_latency;
913 }
914 
915 static inline void path_it_deinit(struct path_it *it)
916 {
917 	struct list_head *skip, *tmp;
918 	/*
919 	 * The skip_list is used only for the MIN_INFLIGHT and MIN_LATENCY policies.
920 	 * We need to remove paths from it, so that next IO can insert
921 	 * paths (->mp_skip_entry) into a skip_list again.
922 	 */
923 	list_for_each_safe(skip, tmp, &it->skip_list)
924 		list_del_init(skip);
925 }
926 
927 /**
928  * rtrs_clt_init_req() - Initialize an rtrs_clt_io_req holding information
929  * about an inflight IO.
930  * The user buffer holding user control message (not data) is copied into
931  * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
932  * also hold the control message of rtrs.
933  * @req: an io request holding information about IO.
934  * @clt_path: client path
935  * @conf: conformation callback function to notify upper layer.
936  * @permit: permit for allocation of RDMA remote buffer
937  * @priv: private pointer
938  * @vec: kernel vector containing control message
939  * @usr_len: length of the user message
940  * @sg: scater list for IO data
941  * @sg_cnt: number of scater list entries
942  * @data_len: length of the IO data
943  * @dir: direction of the IO.
944  */
945 static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
946 			      struct rtrs_clt_path *clt_path,
947 			      void (*conf)(void *priv, int errno),
948 			      struct rtrs_permit *permit, void *priv,
949 			      const struct kvec *vec, size_t usr_len,
950 			      struct scatterlist *sg, size_t sg_cnt,
951 			      size_t data_len, int dir)
952 {
953 	struct iov_iter iter;
954 	size_t len;
955 
956 	req->permit = permit;
957 	req->in_use = true;
958 	req->usr_len = usr_len;
959 	req->data_len = data_len;
960 	req->sglist = sg;
961 	req->sg_cnt = sg_cnt;
962 	req->priv = priv;
963 	req->dir = dir;
964 	req->con = rtrs_permit_to_clt_con(clt_path, permit);
965 	req->conf = conf;
966 	req->need_inv = false;
967 	req->need_inv_comp = false;
968 	req->inv_errno = 0;
969 	refcount_set(&req->ref, 1);
970 	req->mp_policy = clt_path->clt->mp_policy;
971 
972 	iov_iter_kvec(&iter, ITER_SOURCE, vec, 1, usr_len);
973 	len = _copy_from_iter(req->iu->buf, usr_len, &iter);
974 	WARN_ON(len != usr_len);
975 
976 	reinit_completion(&req->inv_comp);
977 }
978 
979 static struct rtrs_clt_io_req *
980 rtrs_clt_get_req(struct rtrs_clt_path *clt_path,
981 		 void (*conf)(void *priv, int errno),
982 		 struct rtrs_permit *permit, void *priv,
983 		 const struct kvec *vec, size_t usr_len,
984 		 struct scatterlist *sg, size_t sg_cnt,
985 		 size_t data_len, int dir)
986 {
987 	struct rtrs_clt_io_req *req;
988 
989 	req = &clt_path->reqs[permit->mem_id];
990 	rtrs_clt_init_req(req, clt_path, conf, permit, priv, vec, usr_len,
991 			   sg, sg_cnt, data_len, dir);
992 	return req;
993 }
994 
995 static struct rtrs_clt_io_req *
996 rtrs_clt_get_copy_req(struct rtrs_clt_path *alive_path,
997 		       struct rtrs_clt_io_req *fail_req)
998 {
999 	struct rtrs_clt_io_req *req;
1000 	struct kvec vec = {
1001 		.iov_base = fail_req->iu->buf,
1002 		.iov_len  = fail_req->usr_len
1003 	};
1004 
1005 	req = &alive_path->reqs[fail_req->permit->mem_id];
1006 	rtrs_clt_init_req(req, alive_path, fail_req->conf, fail_req->permit,
1007 			   fail_req->priv, &vec, fail_req->usr_len,
1008 			   fail_req->sglist, fail_req->sg_cnt,
1009 			   fail_req->data_len, fail_req->dir);
1010 	return req;
1011 }
1012 
1013 static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
1014 				   struct rtrs_clt_io_req *req,
1015 				   struct rtrs_rbuf *rbuf, bool fr_en,
1016 				   u32 count, u32 size, u32 imm,
1017 				   struct ib_send_wr *wr,
1018 				   struct ib_send_wr *tail)
1019 {
1020 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1021 	struct ib_sge *sge = req->sge;
1022 	enum ib_send_flags flags;
1023 	struct scatterlist *sg;
1024 	size_t num_sge;
1025 	int i;
1026 	struct ib_send_wr *ptail = NULL;
1027 
1028 	if (fr_en) {
1029 		i = 0;
1030 		sge[i].addr   = req->mr->iova;
1031 		sge[i].length = req->mr->length;
1032 		sge[i].lkey   = req->mr->lkey;
1033 		i++;
1034 		num_sge = 2;
1035 		ptail = tail;
1036 	} else {
1037 		for_each_sg(req->sglist, sg, count, i) {
1038 			sge[i].addr   = sg_dma_address(sg);
1039 			sge[i].length = sg_dma_len(sg);
1040 			sge[i].lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
1041 		}
1042 		num_sge = 1 + count;
1043 	}
1044 	sge[i].addr   = req->iu->dma_addr;
1045 	sge[i].length = size;
1046 	sge[i].lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
1047 
1048 	/*
1049 	 * From time to time we have to post signalled sends,
1050 	 * or send queue will fill up and only QP reset can help.
1051 	 */
1052 	flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ?
1053 			0 : IB_SEND_SIGNALED;
1054 
1055 	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
1056 				      req->iu->dma_addr,
1057 				      size, DMA_TO_DEVICE);
1058 
1059 	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
1060 					    rbuf->rkey, rbuf->addr, imm,
1061 					    flags, wr, ptail);
1062 }
1063 
1064 static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
1065 {
1066 	int nr;
1067 
1068 	/* Align the MR to a 4K page size to match the block virt boundary */
1069 	nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1070 	if (nr != count)
1071 		return nr < 0 ? nr : -EINVAL;
1072 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1073 
1074 	return nr;
1075 }
1076 
1077 static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
1078 {
1079 	struct rtrs_clt_con *con = req->con;
1080 	struct rtrs_path *s = con->c.path;
1081 	struct rtrs_clt_path *clt_path = to_clt_path(s);
1082 	struct rtrs_msg_rdma_write *msg;
1083 
1084 	struct rtrs_rbuf *rbuf;
1085 	int ret, count = 0;
1086 	u32 imm, buf_id;
1087 	struct ib_reg_wr rwr;
1088 	struct ib_send_wr inv_wr;
1089 	struct ib_send_wr *wr = NULL;
1090 	bool fr_en = false;
1091 
1092 	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1093 
1094 	if (tsize > clt_path->chunk_size) {
1095 		rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
1096 			  tsize, clt_path->chunk_size);
1097 		return -EMSGSIZE;
1098 	}
1099 	if (req->sg_cnt) {
1100 		count = ib_dma_map_sg(clt_path->s.dev->ib_dev, req->sglist,
1101 				      req->sg_cnt, req->dir);
1102 		if (!count) {
1103 			rtrs_wrn(s, "Write request failed, map failed\n");
1104 			return -EINVAL;
1105 		}
1106 	}
1107 	/* put rtrs msg after sg and user message */
1108 	msg = req->iu->buf + req->usr_len;
1109 	msg->type = cpu_to_le16(RTRS_MSG_WRITE);
1110 	msg->usr_len = cpu_to_le16(req->usr_len);
1111 
1112 	/* rtrs message on server side will be after user data and message */
1113 	imm = req->permit->mem_off + req->data_len + req->usr_len;
1114 	imm = rtrs_to_io_req_imm(imm);
1115 	buf_id = req->permit->mem_id;
1116 	req->sg_size = tsize;
1117 	rbuf = &clt_path->rbufs[buf_id];
1118 
1119 	if (count) {
1120 		ret = rtrs_map_sg_fr(req, count);
1121 		if (ret < 0) {
1122 			rtrs_err_rl(s,
1123 				    "Write request failed, failed to map fast reg. data, err: %d\n",
1124 				    ret);
1125 			ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
1126 					req->sg_cnt, req->dir);
1127 			return ret;
1128 		}
1129 		inv_wr = (struct ib_send_wr) {
1130 			.opcode		    = IB_WR_LOCAL_INV,
1131 			.wr_cqe		    = &req->inv_cqe,
1132 			.send_flags	    = IB_SEND_SIGNALED,
1133 			.ex.invalidate_rkey = req->mr->rkey,
1134 		};
1135 		req->inv_cqe.done = rtrs_clt_inv_rkey_done;
1136 		rwr = (struct ib_reg_wr) {
1137 			.wr.opcode = IB_WR_REG_MR,
1138 			.wr.wr_cqe = &fast_reg_cqe,
1139 			.mr = req->mr,
1140 			.key = req->mr->rkey,
1141 			.access = (IB_ACCESS_LOCAL_WRITE),
1142 		};
1143 		wr = &rwr.wr;
1144 		fr_en = true;
1145 		refcount_inc(&req->ref);
1146 	}
1147 	/*
1148 	 * Update stats now, after request is successfully sent it is not
1149 	 * safe anymore to touch it.
1150 	 */
1151 	rtrs_clt_update_all_stats(req, WRITE);
1152 
1153 	ret = rtrs_post_rdma_write_sg(req->con, req, rbuf, fr_en, count,
1154 				      req->usr_len + sizeof(*msg),
1155 				      imm, wr, &inv_wr);
1156 	if (ret) {
1157 		rtrs_err_rl(s,
1158 			    "Write request failed: error=%d path=%s [%s:%u]\n",
1159 			    ret, kobject_name(&clt_path->kobj), clt_path->hca_name,
1160 			    clt_path->hca_port);
1161 		if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
1162 			atomic_dec(&clt_path->stats->inflight);
1163 		if (req->sg_cnt)
1164 			ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
1165 					req->sg_cnt, req->dir);
1166 	}
1167 
1168 	return ret;
1169 }
1170 
1171 static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
1172 {
1173 	struct rtrs_clt_con *con = req->con;
1174 	struct rtrs_path *s = con->c.path;
1175 	struct rtrs_clt_path *clt_path = to_clt_path(s);
1176 	struct rtrs_msg_rdma_read *msg;
1177 	struct rtrs_ib_dev *dev = clt_path->s.dev;
1178 
1179 	struct ib_reg_wr rwr;
1180 	struct ib_send_wr *wr = NULL;
1181 
1182 	int ret, count = 0;
1183 	u32 imm, buf_id;
1184 
1185 	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1186 
1187 	if (tsize > clt_path->chunk_size) {
1188 		rtrs_wrn(s,
1189 			  "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
1190 			  tsize, clt_path->chunk_size);
1191 		return -EMSGSIZE;
1192 	}
1193 
1194 	if (req->sg_cnt) {
1195 		count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1196 				      req->dir);
1197 		if (!count) {
1198 			rtrs_wrn(s,
1199 				  "Read request failed, dma map failed\n");
1200 			return -EINVAL;
1201 		}
1202 	}
1203 	/* put our message into req->buf after user message*/
1204 	msg = req->iu->buf + req->usr_len;
1205 	msg->type = cpu_to_le16(RTRS_MSG_READ);
1206 	msg->usr_len = cpu_to_le16(req->usr_len);
1207 
1208 	if (count) {
1209 		ret = rtrs_map_sg_fr(req, count);
1210 		if (ret < 0) {
1211 			rtrs_err_rl(s,
1212 				     "Read request failed, failed to map  fast reg. data, err: %d\n",
1213 				     ret);
1214 			ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1215 					req->dir);
1216 			return ret;
1217 		}
1218 		rwr = (struct ib_reg_wr) {
1219 			.wr.opcode = IB_WR_REG_MR,
1220 			.wr.wr_cqe = &fast_reg_cqe,
1221 			.mr = req->mr,
1222 			.key = req->mr->rkey,
1223 			.access = (IB_ACCESS_LOCAL_WRITE |
1224 				   IB_ACCESS_REMOTE_WRITE),
1225 		};
1226 		wr = &rwr.wr;
1227 
1228 		msg->sg_cnt = cpu_to_le16(1);
1229 		msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
1230 
1231 		msg->desc[0].addr = cpu_to_le64(req->mr->iova);
1232 		msg->desc[0].key = cpu_to_le32(req->mr->rkey);
1233 		msg->desc[0].len = cpu_to_le32(req->mr->length);
1234 
1235 		/* Further invalidation is required */
1236 		req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
1237 
1238 	} else {
1239 		msg->sg_cnt = 0;
1240 		msg->flags = 0;
1241 	}
1242 	/*
1243 	 * rtrs message will be after the space reserved for disk data and
1244 	 * user message
1245 	 */
1246 	imm = req->permit->mem_off + req->data_len + req->usr_len;
1247 	imm = rtrs_to_io_req_imm(imm);
1248 	buf_id = req->permit->mem_id;
1249 
1250 	req->sg_size  = sizeof(*msg);
1251 	req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
1252 	req->sg_size += req->usr_len;
1253 
1254 	/*
1255 	 * Update stats now, after request is successfully sent it is not
1256 	 * safe anymore to touch it.
1257 	 */
1258 	rtrs_clt_update_all_stats(req, READ);
1259 
1260 	ret = rtrs_post_send_rdma(req->con, req, &clt_path->rbufs[buf_id],
1261 				   req->data_len, imm, wr);
1262 	if (ret) {
1263 		rtrs_err_rl(s,
1264 			    "Read request failed: error=%d path=%s [%s:%u]\n",
1265 			    ret, kobject_name(&clt_path->kobj), clt_path->hca_name,
1266 			    clt_path->hca_port);
1267 		if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
1268 			atomic_dec(&clt_path->stats->inflight);
1269 		req->need_inv = false;
1270 		if (req->sg_cnt)
1271 			ib_dma_unmap_sg(dev->ib_dev, req->sglist,
1272 					req->sg_cnt, req->dir);
1273 	}
1274 
1275 	return ret;
1276 }
1277 
1278 /**
1279  * rtrs_clt_failover_req() - Try to find an active path for a failed request
1280  * @clt: clt context
1281  * @fail_req: a failed io request.
1282  */
1283 static int rtrs_clt_failover_req(struct rtrs_clt_sess *clt,
1284 				 struct rtrs_clt_io_req *fail_req)
1285 {
1286 	struct rtrs_clt_path *alive_path;
1287 	struct rtrs_clt_io_req *req;
1288 	int err = -ECONNABORTED;
1289 	struct path_it it;
1290 
1291 	rcu_read_lock();
1292 	for (path_it_init(&it, clt);
1293 	     (alive_path = it.next_path(&it)) && it.i < it.clt->paths_num;
1294 	     it.i++) {
1295 		if (READ_ONCE(alive_path->state) != RTRS_CLT_CONNECTED)
1296 			continue;
1297 		req = rtrs_clt_get_copy_req(alive_path, fail_req);
1298 		if (req->dir == DMA_TO_DEVICE)
1299 			err = rtrs_clt_write_req(req);
1300 		else
1301 			err = rtrs_clt_read_req(req);
1302 		if (err) {
1303 			req->in_use = false;
1304 			continue;
1305 		}
1306 		/* Success path */
1307 		rtrs_clt_inc_failover_cnt(alive_path->stats);
1308 		break;
1309 	}
1310 	path_it_deinit(&it);
1311 	rcu_read_unlock();
1312 
1313 	return err;
1314 }
1315 
1316 static void fail_all_outstanding_reqs(struct rtrs_clt_path *clt_path)
1317 {
1318 	struct rtrs_clt_sess *clt = clt_path->clt;
1319 	struct rtrs_clt_io_req *req;
1320 	int i, err;
1321 
1322 	if (!clt_path->reqs)
1323 		return;
1324 	for (i = 0; i < clt_path->queue_depth; ++i) {
1325 		req = &clt_path->reqs[i];
1326 		if (!req->in_use)
1327 			continue;
1328 
1329 		/*
1330 		 * Safely (without notification) complete failed request.
1331 		 * After completion this request is still useble and can
1332 		 * be failovered to another path.
1333 		 */
1334 		complete_rdma_req(req, -ECONNABORTED, false, true);
1335 
1336 		err = rtrs_clt_failover_req(clt, req);
1337 		if (err)
1338 			/* Failover failed, notify anyway */
1339 			req->conf(req->priv, err);
1340 	}
1341 }
1342 
1343 static void free_path_reqs(struct rtrs_clt_path *clt_path)
1344 {
1345 	struct rtrs_clt_io_req *req;
1346 	int i;
1347 
1348 	if (!clt_path->reqs)
1349 		return;
1350 	for (i = 0; i < clt_path->queue_depth; ++i) {
1351 		req = &clt_path->reqs[i];
1352 		if (req->mr)
1353 			ib_dereg_mr(req->mr);
1354 		kfree(req->sge);
1355 		rtrs_iu_free(req->iu, clt_path->s.dev->ib_dev, 1);
1356 	}
1357 	kfree(clt_path->reqs);
1358 	clt_path->reqs = NULL;
1359 }
1360 
1361 static int alloc_path_reqs(struct rtrs_clt_path *clt_path)
1362 {
1363 	struct rtrs_clt_io_req *req;
1364 	int i, err = -ENOMEM;
1365 
1366 	clt_path->reqs = kcalloc(clt_path->queue_depth,
1367 				 sizeof(*clt_path->reqs),
1368 				 GFP_KERNEL);
1369 	if (!clt_path->reqs)
1370 		return -ENOMEM;
1371 
1372 	for (i = 0; i < clt_path->queue_depth; ++i) {
1373 		req = &clt_path->reqs[i];
1374 		req->iu = rtrs_iu_alloc(1, clt_path->max_hdr_size, GFP_KERNEL,
1375 					 clt_path->s.dev->ib_dev,
1376 					 DMA_TO_DEVICE,
1377 					 rtrs_clt_rdma_done);
1378 		if (!req->iu)
1379 			goto out;
1380 
1381 		req->sge = kcalloc(2, sizeof(*req->sge), GFP_KERNEL);
1382 		if (!req->sge)
1383 			goto out;
1384 
1385 		req->mr = ib_alloc_mr(clt_path->s.dev->ib_pd,
1386 				      IB_MR_TYPE_MEM_REG,
1387 				      clt_path->max_pages_per_mr);
1388 		if (IS_ERR(req->mr)) {
1389 			err = PTR_ERR(req->mr);
1390 			req->mr = NULL;
1391 			pr_err("Failed to alloc clt_path->max_pages_per_mr %d\n",
1392 			       clt_path->max_pages_per_mr);
1393 			goto out;
1394 		}
1395 
1396 		init_completion(&req->inv_comp);
1397 	}
1398 
1399 	return 0;
1400 
1401 out:
1402 	free_path_reqs(clt_path);
1403 
1404 	return err;
1405 }
1406 
1407 static int alloc_permits(struct rtrs_clt_sess *clt)
1408 {
1409 	unsigned int chunk_bits;
1410 	int err, i;
1411 
1412 	clt->permits_map = bitmap_zalloc(clt->queue_depth, GFP_KERNEL);
1413 	if (!clt->permits_map) {
1414 		err = -ENOMEM;
1415 		goto out_err;
1416 	}
1417 	clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
1418 	if (!clt->permits) {
1419 		err = -ENOMEM;
1420 		goto err_map;
1421 	}
1422 	chunk_bits = ilog2(clt->queue_depth - 1) + 1;
1423 	for (i = 0; i < clt->queue_depth; i++) {
1424 		struct rtrs_permit *permit;
1425 
1426 		permit = get_permit(clt, i);
1427 		permit->mem_id = i;
1428 		permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
1429 	}
1430 
1431 	return 0;
1432 
1433 err_map:
1434 	bitmap_free(clt->permits_map);
1435 	clt->permits_map = NULL;
1436 out_err:
1437 	return err;
1438 }
1439 
1440 static void free_permits(struct rtrs_clt_sess *clt)
1441 {
1442 	if (clt->permits_map)
1443 		wait_event(clt->permits_wait,
1444 			   bitmap_empty(clt->permits_map, clt->queue_depth));
1445 
1446 	bitmap_free(clt->permits_map);
1447 	clt->permits_map = NULL;
1448 	kfree(clt->permits);
1449 	clt->permits = NULL;
1450 }
1451 
1452 static void query_fast_reg_mode(struct rtrs_clt_path *clt_path)
1453 {
1454 	struct ib_device *ib_dev;
1455 	u64 max_pages_per_mr;
1456 	int mr_page_shift;
1457 
1458 	ib_dev = clt_path->s.dev->ib_dev;
1459 
1460 	/*
1461 	 * Use the smallest page size supported by the HCA, down to a
1462 	 * minimum of 4096 bytes. We're unlikely to build large sglists
1463 	 * out of smaller entries.
1464 	 */
1465 	mr_page_shift      = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
1466 	max_pages_per_mr   = ib_dev->attrs.max_mr_size;
1467 	do_div(max_pages_per_mr, (1ull << mr_page_shift));
1468 	clt_path->max_pages_per_mr =
1469 		min3(clt_path->max_pages_per_mr, (u32)max_pages_per_mr,
1470 		     ib_dev->attrs.max_fast_reg_page_list_len);
1471 	clt_path->clt->max_segments =
1472 		min(clt_path->max_pages_per_mr, clt_path->clt->max_segments);
1473 }
1474 
1475 static bool rtrs_clt_change_state_get_old(struct rtrs_clt_path *clt_path,
1476 					   enum rtrs_clt_state new_state,
1477 					   enum rtrs_clt_state *old_state)
1478 {
1479 	bool changed;
1480 
1481 	spin_lock_irq(&clt_path->state_wq.lock);
1482 	if (old_state)
1483 		*old_state = clt_path->state;
1484 	changed = rtrs_clt_change_state(clt_path, new_state);
1485 	spin_unlock_irq(&clt_path->state_wq.lock);
1486 
1487 	return changed;
1488 }
1489 
1490 static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
1491 {
1492 	struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
1493 
1494 	rtrs_rdma_error_recovery(con);
1495 }
1496 
1497 static void rtrs_clt_init_hb(struct rtrs_clt_path *clt_path)
1498 {
1499 	rtrs_init_hb(&clt_path->s, &io_comp_cqe,
1500 		      RTRS_HB_INTERVAL_MS,
1501 		      RTRS_HB_MISSED_MAX,
1502 		      rtrs_clt_hb_err_handler,
1503 		      rtrs_wq);
1504 }
1505 
1506 static void rtrs_clt_reconnect_work(struct work_struct *work);
1507 static void rtrs_clt_close_work(struct work_struct *work);
1508 
1509 static void rtrs_clt_err_recovery_work(struct work_struct *work)
1510 {
1511 	struct rtrs_clt_path *clt_path;
1512 	struct rtrs_clt_sess *clt;
1513 	int delay_ms;
1514 
1515 	clt_path = container_of(work, struct rtrs_clt_path, err_recovery_work);
1516 	clt = clt_path->clt;
1517 	delay_ms = clt->reconnect_delay_sec * 1000;
1518 	rtrs_clt_stop_and_destroy_conns(clt_path);
1519 	queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork,
1520 			   msecs_to_jiffies(delay_ms +
1521 					    get_random_u32_below(RTRS_RECONNECT_SEED)));
1522 }
1523 
1524 static struct rtrs_clt_path *alloc_path(struct rtrs_clt_sess *clt,
1525 					const struct rtrs_addr *path,
1526 					size_t con_num, u32 nr_poll_queues)
1527 {
1528 	struct rtrs_clt_path *clt_path;
1529 	int err = -ENOMEM;
1530 	int cpu;
1531 	size_t total_con;
1532 
1533 	clt_path = kzalloc(sizeof(*clt_path), GFP_KERNEL);
1534 	if (!clt_path)
1535 		goto err;
1536 
1537 	/*
1538 	 * irqmode and poll
1539 	 * +1: Extra connection for user messages
1540 	 */
1541 	total_con = con_num + nr_poll_queues + 1;
1542 	clt_path->s.con = kcalloc(total_con, sizeof(*clt_path->s.con),
1543 				  GFP_KERNEL);
1544 	if (!clt_path->s.con)
1545 		goto err_free_path;
1546 
1547 	clt_path->s.con_num = total_con;
1548 	clt_path->s.irq_con_num = con_num + 1;
1549 
1550 	clt_path->stats = kzalloc(sizeof(*clt_path->stats), GFP_KERNEL);
1551 	if (!clt_path->stats)
1552 		goto err_free_con;
1553 
1554 	mutex_init(&clt_path->init_mutex);
1555 	uuid_gen(&clt_path->s.uuid);
1556 	memcpy(&clt_path->s.dst_addr, path->dst,
1557 	       rdma_addr_size((struct sockaddr *)path->dst));
1558 
1559 	/*
1560 	 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
1561 	 * checks the sa_family to be non-zero. If user passed src_addr=NULL
1562 	 * the sess->src_addr will contain only zeros, which is then fine.
1563 	 */
1564 	if (path->src)
1565 		memcpy(&clt_path->s.src_addr, path->src,
1566 		       rdma_addr_size((struct sockaddr *)path->src));
1567 	strscpy(clt_path->s.sessname, clt->sessname,
1568 		sizeof(clt_path->s.sessname));
1569 	clt_path->clt = clt;
1570 	clt_path->max_pages_per_mr = RTRS_MAX_SEGMENTS;
1571 	init_waitqueue_head(&clt_path->state_wq);
1572 	clt_path->state = RTRS_CLT_CONNECTING;
1573 	atomic_set(&clt_path->connected_cnt, 0);
1574 	INIT_WORK(&clt_path->close_work, rtrs_clt_close_work);
1575 	INIT_WORK(&clt_path->err_recovery_work, rtrs_clt_err_recovery_work);
1576 	INIT_DELAYED_WORK(&clt_path->reconnect_dwork, rtrs_clt_reconnect_work);
1577 	rtrs_clt_init_hb(clt_path);
1578 
1579 	clt_path->mp_skip_entry = alloc_percpu(typeof(*clt_path->mp_skip_entry));
1580 	if (!clt_path->mp_skip_entry)
1581 		goto err_free_stats;
1582 
1583 	for_each_possible_cpu(cpu)
1584 		INIT_LIST_HEAD(per_cpu_ptr(clt_path->mp_skip_entry, cpu));
1585 
1586 	err = rtrs_clt_init_stats(clt_path->stats);
1587 	if (err)
1588 		goto err_free_percpu;
1589 
1590 	return clt_path;
1591 
1592 err_free_percpu:
1593 	free_percpu(clt_path->mp_skip_entry);
1594 err_free_stats:
1595 	kfree(clt_path->stats);
1596 err_free_con:
1597 	kfree(clt_path->s.con);
1598 err_free_path:
1599 	kfree(clt_path);
1600 err:
1601 	return ERR_PTR(err);
1602 }
1603 
1604 void free_path(struct rtrs_clt_path *clt_path)
1605 {
1606 	free_percpu(clt_path->mp_skip_entry);
1607 	mutex_destroy(&clt_path->init_mutex);
1608 	kfree(clt_path->s.con);
1609 	kfree(clt_path->rbufs);
1610 	kfree(clt_path);
1611 }
1612 
1613 static int create_con(struct rtrs_clt_path *clt_path, unsigned int cid)
1614 {
1615 	struct rtrs_clt_con *con;
1616 
1617 	con = kzalloc(sizeof(*con), GFP_KERNEL);
1618 	if (!con)
1619 		return -ENOMEM;
1620 
1621 	/* Map first two connections to the first CPU */
1622 	con->cpu  = (cid ? cid - 1 : 0) % nr_cpu_ids;
1623 	con->c.cid = cid;
1624 	con->c.path = &clt_path->s;
1625 	/* Align with srv, init as 1 */
1626 	atomic_set(&con->c.wr_cnt, 1);
1627 	mutex_init(&con->con_mutex);
1628 
1629 	clt_path->s.con[cid] = &con->c;
1630 
1631 	return 0;
1632 }
1633 
1634 static void destroy_con(struct rtrs_clt_con *con)
1635 {
1636 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1637 
1638 	clt_path->s.con[con->c.cid] = NULL;
1639 	mutex_destroy(&con->con_mutex);
1640 	kfree(con);
1641 }
1642 
1643 static int create_con_cq_qp(struct rtrs_clt_con *con)
1644 {
1645 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1646 	u32 max_send_wr, max_recv_wr, cq_num, max_send_sge, wr_limit;
1647 	int err, cq_vector;
1648 	struct rtrs_msg_rkey_rsp *rsp;
1649 
1650 	lockdep_assert_held(&con->con_mutex);
1651 	if (con->c.cid == 0) {
1652 		max_send_sge = 1;
1653 		/* We must be the first here */
1654 		if (WARN_ON(clt_path->s.dev))
1655 			return -EINVAL;
1656 
1657 		/*
1658 		 * The whole session uses device from user connection.
1659 		 * Be careful not to close user connection before ib dev
1660 		 * is gracefully put.
1661 		 */
1662 		clt_path->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
1663 						       &dev_pd);
1664 		if (!clt_path->s.dev) {
1665 			rtrs_wrn(clt_path->clt,
1666 				  "rtrs_ib_dev_find_get_or_add(): no memory\n");
1667 			return -ENOMEM;
1668 		}
1669 		clt_path->s.dev_ref = 1;
1670 		query_fast_reg_mode(clt_path);
1671 		wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr;
1672 		/*
1673 		 * Two (request + registration) completion for send
1674 		 * Two for recv if always_invalidate is set on server
1675 		 * or one for recv.
1676 		 * + 2 for drain and heartbeat
1677 		 * in case qp gets into error state.
1678 		 */
1679 		max_send_wr =
1680 			min_t(int, wr_limit, SERVICE_CON_QUEUE_DEPTH * 2 + 2);
1681 		max_recv_wr = max_send_wr;
1682 	} else {
1683 		/*
1684 		 * Here we assume that session members are correctly set.
1685 		 * This is always true if user connection (cid == 0) is
1686 		 * established first.
1687 		 */
1688 		if (WARN_ON(!clt_path->s.dev))
1689 			return -EINVAL;
1690 		if (WARN_ON(!clt_path->queue_depth))
1691 			return -EINVAL;
1692 
1693 		wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr;
1694 		/* Shared between connections */
1695 		clt_path->s.dev_ref++;
1696 		max_send_wr = min_t(int, wr_limit,
1697 			      /* QD * (REQ + RSP + FR REGS or INVS) + drain */
1698 			      clt_path->queue_depth * 4 + 1);
1699 		max_recv_wr = min_t(int, wr_limit,
1700 			      clt_path->queue_depth * 3 + 1);
1701 		max_send_sge = 2;
1702 	}
1703 	atomic_set(&con->c.sq_wr_avail, max_send_wr);
1704 	cq_num = max_send_wr + max_recv_wr;
1705 	/* alloc iu to recv new rkey reply when server reports flags set */
1706 	if (clt_path->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1707 		con->rsp_ius = rtrs_iu_alloc(cq_num, sizeof(*rsp),
1708 					      GFP_KERNEL,
1709 					      clt_path->s.dev->ib_dev,
1710 					      DMA_FROM_DEVICE,
1711 					      rtrs_clt_rdma_done);
1712 		if (!con->rsp_ius)
1713 			return -ENOMEM;
1714 		con->queue_num = cq_num;
1715 	}
1716 	cq_vector = con->cpu % clt_path->s.dev->ib_dev->num_comp_vectors;
1717 	if (con->c.cid >= clt_path->s.irq_con_num)
1718 		err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge,
1719 					cq_vector, cq_num, max_send_wr,
1720 					max_recv_wr, IB_POLL_DIRECT);
1721 	else
1722 		err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge,
1723 					cq_vector, cq_num, max_send_wr,
1724 					max_recv_wr, IB_POLL_SOFTIRQ);
1725 	/*
1726 	 * In case of error we do not bother to clean previous allocations,
1727 	 * since destroy_con_cq_qp() must be called.
1728 	 */
1729 	return err;
1730 }
1731 
1732 static void destroy_con_cq_qp(struct rtrs_clt_con *con)
1733 {
1734 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1735 
1736 	/*
1737 	 * Be careful here: destroy_con_cq_qp() can be called even
1738 	 * create_con_cq_qp() failed, see comments there.
1739 	 */
1740 	lockdep_assert_held(&con->con_mutex);
1741 	rtrs_cq_qp_destroy(&con->c);
1742 	if (con->rsp_ius) {
1743 		rtrs_iu_free(con->rsp_ius, clt_path->s.dev->ib_dev,
1744 			     con->queue_num);
1745 		con->rsp_ius = NULL;
1746 		con->queue_num = 0;
1747 	}
1748 	if (clt_path->s.dev_ref && !--clt_path->s.dev_ref) {
1749 		rtrs_ib_dev_put(clt_path->s.dev);
1750 		clt_path->s.dev = NULL;
1751 	}
1752 }
1753 
1754 static void stop_cm(struct rtrs_clt_con *con)
1755 {
1756 	rdma_disconnect(con->c.cm_id);
1757 	if (con->c.qp)
1758 		ib_drain_qp(con->c.qp);
1759 }
1760 
1761 static void destroy_cm(struct rtrs_clt_con *con)
1762 {
1763 	rdma_destroy_id(con->c.cm_id);
1764 	con->c.cm_id = NULL;
1765 }
1766 
1767 static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
1768 {
1769 	struct rtrs_path *s = con->c.path;
1770 	int err;
1771 
1772 	mutex_lock(&con->con_mutex);
1773 	err = create_con_cq_qp(con);
1774 	mutex_unlock(&con->con_mutex);
1775 	if (err) {
1776 		rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
1777 		return err;
1778 	}
1779 	err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1780 	if (err)
1781 		rtrs_err(s, "Resolving route failed, err: %d\n", err);
1782 
1783 	return err;
1784 }
1785 
1786 static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
1787 {
1788 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1789 	struct rtrs_clt_sess *clt = clt_path->clt;
1790 	struct rtrs_msg_conn_req msg;
1791 	struct rdma_conn_param param;
1792 
1793 	int err;
1794 
1795 	param = (struct rdma_conn_param) {
1796 		.retry_count = 7,
1797 		.rnr_retry_count = 7,
1798 		.private_data = &msg,
1799 		.private_data_len = sizeof(msg),
1800 	};
1801 
1802 	msg = (struct rtrs_msg_conn_req) {
1803 		.magic = cpu_to_le16(RTRS_MAGIC),
1804 		.version = cpu_to_le16(RTRS_PROTO_VER),
1805 		.cid = cpu_to_le16(con->c.cid),
1806 		.cid_num = cpu_to_le16(clt_path->s.con_num),
1807 		.recon_cnt = cpu_to_le16(clt_path->s.recon_cnt),
1808 	};
1809 	msg.first_conn = clt_path->for_new_clt ? FIRST_CONN : 0;
1810 	uuid_copy(&msg.sess_uuid, &clt_path->s.uuid);
1811 	uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
1812 
1813 	err = rdma_connect_locked(con->c.cm_id, &param);
1814 	if (err)
1815 		rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
1816 
1817 	return err;
1818 }
1819 
1820 static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
1821 				       struct rdma_cm_event *ev)
1822 {
1823 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1824 	struct rtrs_clt_sess *clt = clt_path->clt;
1825 	const struct rtrs_msg_conn_rsp *msg;
1826 	u16 version, queue_depth;
1827 	int errno;
1828 	u8 len;
1829 
1830 	msg = ev->param.conn.private_data;
1831 	len = ev->param.conn.private_data_len;
1832 	if (len < sizeof(*msg)) {
1833 		rtrs_err(clt, "Invalid RTRS connection response\n");
1834 		return -ECONNRESET;
1835 	}
1836 	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1837 		rtrs_err(clt, "Invalid RTRS magic\n");
1838 		return -ECONNRESET;
1839 	}
1840 	version = le16_to_cpu(msg->version);
1841 	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1842 		rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
1843 			  version >> 8, RTRS_PROTO_VER_MAJOR);
1844 		return -ECONNRESET;
1845 	}
1846 	errno = le16_to_cpu(msg->errno);
1847 	if (errno) {
1848 		rtrs_err(clt, "Invalid RTRS message: errno %d\n",
1849 			  errno);
1850 		return -ECONNRESET;
1851 	}
1852 	if (con->c.cid == 0) {
1853 		queue_depth = le16_to_cpu(msg->queue_depth);
1854 
1855 		if (clt_path->queue_depth > 0 && queue_depth != clt_path->queue_depth) {
1856 			rtrs_err(clt, "Error: queue depth changed\n");
1857 
1858 			/*
1859 			 * Stop any more reconnection attempts
1860 			 */
1861 			clt_path->reconnect_attempts = -1;
1862 			rtrs_err(clt,
1863 				"Disabling auto-reconnect. Trigger a manual reconnect after issue is resolved\n");
1864 			return -ECONNRESET;
1865 		}
1866 
1867 		if (!clt_path->rbufs) {
1868 			clt_path->rbufs = kcalloc(queue_depth,
1869 						  sizeof(*clt_path->rbufs),
1870 						  GFP_KERNEL);
1871 			if (!clt_path->rbufs)
1872 				return -ENOMEM;
1873 		}
1874 		clt_path->queue_depth = queue_depth;
1875 		clt_path->s.signal_interval = min_not_zero(queue_depth,
1876 						(unsigned short) SERVICE_CON_QUEUE_DEPTH);
1877 		clt_path->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
1878 		clt_path->max_io_size = le32_to_cpu(msg->max_io_size);
1879 		clt_path->flags = le32_to_cpu(msg->flags);
1880 		clt_path->chunk_size = clt_path->max_io_size + clt_path->max_hdr_size;
1881 
1882 		/*
1883 		 * Global IO size is always a minimum.
1884 		 * If while a reconnection server sends us a value a bit
1885 		 * higher - client does not care and uses cached minimum.
1886 		 *
1887 		 * Since we can have several sessions (paths) restablishing
1888 		 * connections in parallel, use lock.
1889 		 */
1890 		mutex_lock(&clt->paths_mutex);
1891 		clt->queue_depth = clt_path->queue_depth;
1892 		clt->max_io_size = min_not_zero(clt_path->max_io_size,
1893 						clt->max_io_size);
1894 		mutex_unlock(&clt->paths_mutex);
1895 
1896 		/*
1897 		 * Cache the hca_port and hca_name for sysfs
1898 		 */
1899 		clt_path->hca_port = con->c.cm_id->port_num;
1900 		scnprintf(clt_path->hca_name, sizeof(clt_path->hca_name),
1901 			  clt_path->s.dev->ib_dev->name);
1902 		clt_path->s.src_addr = con->c.cm_id->route.addr.src_addr;
1903 		/* set for_new_clt, to allow future reconnect on any path */
1904 		clt_path->for_new_clt = 1;
1905 	}
1906 
1907 	return 0;
1908 }
1909 
1910 static inline void flag_success_on_conn(struct rtrs_clt_con *con)
1911 {
1912 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1913 
1914 	atomic_inc(&clt_path->connected_cnt);
1915 	con->cm_err = 1;
1916 }
1917 
1918 static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
1919 				    struct rdma_cm_event *ev)
1920 {
1921 	struct rtrs_path *s = con->c.path;
1922 	const struct rtrs_msg_conn_rsp *msg;
1923 	const char *rej_msg;
1924 	int status, errno;
1925 	u8 data_len;
1926 
1927 	status = ev->status;
1928 	rej_msg = rdma_reject_msg(con->c.cm_id, status);
1929 	msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
1930 
1931 	if (msg && data_len >= sizeof(*msg)) {
1932 		errno = (int16_t)le16_to_cpu(msg->errno);
1933 		if (errno == -EBUSY)
1934 			rtrs_err(s,
1935 				  "Previous session is still exists on the server, please reconnect later\n");
1936 		else
1937 			rtrs_err(s,
1938 				  "Connect rejected: status %d (%s), rtrs errno %d\n",
1939 				  status, rej_msg, errno);
1940 	} else {
1941 		rtrs_err(s,
1942 			  "Connect rejected but with malformed message: status %d (%s)\n",
1943 			  status, rej_msg);
1944 	}
1945 
1946 	return -ECONNRESET;
1947 }
1948 
1949 void rtrs_clt_close_conns(struct rtrs_clt_path *clt_path, bool wait)
1950 {
1951 	trace_rtrs_clt_close_conns(clt_path);
1952 
1953 	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSING, NULL))
1954 		queue_work(rtrs_wq, &clt_path->close_work);
1955 	if (wait)
1956 		flush_work(&clt_path->close_work);
1957 }
1958 
1959 static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
1960 {
1961 	if (con->cm_err == 1) {
1962 		struct rtrs_clt_path *clt_path;
1963 
1964 		clt_path = to_clt_path(con->c.path);
1965 		if (atomic_dec_and_test(&clt_path->connected_cnt))
1966 
1967 			wake_up(&clt_path->state_wq);
1968 	}
1969 	con->cm_err = cm_err;
1970 }
1971 
1972 static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
1973 				     struct rdma_cm_event *ev)
1974 {
1975 	struct rtrs_clt_con *con = cm_id->context;
1976 	struct rtrs_path *s = con->c.path;
1977 	struct rtrs_clt_path *clt_path = to_clt_path(s);
1978 	int cm_err = 0;
1979 
1980 	switch (ev->event) {
1981 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1982 		cm_err = rtrs_rdma_addr_resolved(con);
1983 		break;
1984 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1985 		cm_err = rtrs_rdma_route_resolved(con);
1986 		break;
1987 	case RDMA_CM_EVENT_ESTABLISHED:
1988 		cm_err = rtrs_rdma_conn_established(con, ev);
1989 		if (!cm_err) {
1990 			/*
1991 			 * Report success and wake up. Here we abuse state_wq,
1992 			 * i.e. wake up without state change, but we set cm_err.
1993 			 */
1994 			flag_success_on_conn(con);
1995 			wake_up(&clt_path->state_wq);
1996 			return 0;
1997 		}
1998 		break;
1999 	case RDMA_CM_EVENT_REJECTED:
2000 		cm_err = rtrs_rdma_conn_rejected(con, ev);
2001 		break;
2002 	case RDMA_CM_EVENT_DISCONNECTED:
2003 		/* No message for disconnecting */
2004 		cm_err = -ECONNRESET;
2005 		break;
2006 	case RDMA_CM_EVENT_CONNECT_ERROR:
2007 	case RDMA_CM_EVENT_UNREACHABLE:
2008 	case RDMA_CM_EVENT_ADDR_CHANGE:
2009 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2010 		rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
2011 			 rdma_event_msg(ev->event), ev->status);
2012 		cm_err = -ECONNRESET;
2013 		break;
2014 	case RDMA_CM_EVENT_ADDR_ERROR:
2015 	case RDMA_CM_EVENT_ROUTE_ERROR:
2016 		rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
2017 			 rdma_event_msg(ev->event), ev->status);
2018 		cm_err = -EHOSTUNREACH;
2019 		break;
2020 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
2021 		/*
2022 		 * Device removal is a special case.  Queue close and return 0.
2023 		 */
2024 		rtrs_clt_close_conns(clt_path, false);
2025 		return 0;
2026 	default:
2027 		rtrs_err(s, "Unexpected RDMA CM error (CM event: %s, err: %d)\n",
2028 			 rdma_event_msg(ev->event), ev->status);
2029 		cm_err = -ECONNRESET;
2030 		break;
2031 	}
2032 
2033 	if (cm_err) {
2034 		/*
2035 		 * cm error makes sense only on connection establishing,
2036 		 * in other cases we rely on normal procedure of reconnecting.
2037 		 */
2038 		flag_error_on_conn(con, cm_err);
2039 		rtrs_rdma_error_recovery(con);
2040 	}
2041 
2042 	return 0;
2043 }
2044 
2045 /* The caller should do the cleanup in case of error */
2046 static int create_cm(struct rtrs_clt_con *con)
2047 {
2048 	struct rtrs_path *s = con->c.path;
2049 	struct rtrs_clt_path *clt_path = to_clt_path(s);
2050 	struct rdma_cm_id *cm_id;
2051 	int err;
2052 
2053 	cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
2054 			       clt_path->s.dst_addr.ss_family == AF_IB ?
2055 			       RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
2056 	if (IS_ERR(cm_id)) {
2057 		err = PTR_ERR(cm_id);
2058 		rtrs_err(s, "Failed to create CM ID, err: %d\n", err);
2059 
2060 		return err;
2061 	}
2062 	con->c.cm_id = cm_id;
2063 	con->cm_err = 0;
2064 	/* allow the port to be reused */
2065 	err = rdma_set_reuseaddr(cm_id, 1);
2066 	if (err != 0) {
2067 		rtrs_err(s, "Set address reuse failed, err: %d\n", err);
2068 		return err;
2069 	}
2070 	err = rdma_resolve_addr(cm_id, (struct sockaddr *)&clt_path->s.src_addr,
2071 				(struct sockaddr *)&clt_path->s.dst_addr,
2072 				RTRS_CONNECT_TIMEOUT_MS);
2073 	if (err) {
2074 		rtrs_err(s, "Failed to resolve address, err: %d\n", err);
2075 		return err;
2076 	}
2077 	/*
2078 	 * Combine connection status and session events. This is needed
2079 	 * for waiting two possible cases: cm_err has something meaningful
2080 	 * or session state was really changed to error by device removal.
2081 	 */
2082 	err = wait_event_interruptible_timeout(
2083 			clt_path->state_wq,
2084 			con->cm_err || clt_path->state != RTRS_CLT_CONNECTING,
2085 			msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2086 	if (err == 0 || err == -ERESTARTSYS) {
2087 		if (err == 0)
2088 			err = -ETIMEDOUT;
2089 		/* Timedout or interrupted */
2090 		return err;
2091 	}
2092 	if (con->cm_err < 0)
2093 		return con->cm_err;
2094 	if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTING)
2095 		/* Device removal */
2096 		return -ECONNABORTED;
2097 
2098 	return 0;
2099 }
2100 
2101 static void rtrs_clt_path_up(struct rtrs_clt_path *clt_path)
2102 {
2103 	struct rtrs_clt_sess *clt = clt_path->clt;
2104 	int up;
2105 
2106 	/*
2107 	 * We can fire RECONNECTED event only when all paths were
2108 	 * connected on rtrs_clt_open(), then each was disconnected
2109 	 * and the first one connected again.  That's why this nasty
2110 	 * game with counter value.
2111 	 */
2112 
2113 	mutex_lock(&clt->paths_ev_mutex);
2114 	up = ++clt->paths_up;
2115 	/*
2116 	 * Here it is safe to access paths num directly since up counter
2117 	 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
2118 	 * in progress, thus paths removals are impossible.
2119 	 */
2120 	if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
2121 		clt->paths_up = clt->paths_num;
2122 	else if (up == 1)
2123 		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
2124 	mutex_unlock(&clt->paths_ev_mutex);
2125 
2126 	/* Mark session as established */
2127 	clt_path->established = true;
2128 	clt_path->reconnect_attempts = 0;
2129 	clt_path->stats->reconnects.successful_cnt++;
2130 }
2131 
2132 static void rtrs_clt_path_down(struct rtrs_clt_path *clt_path)
2133 {
2134 	struct rtrs_clt_sess *clt = clt_path->clt;
2135 
2136 	if (!clt_path->established)
2137 		return;
2138 
2139 	clt_path->established = false;
2140 	mutex_lock(&clt->paths_ev_mutex);
2141 	WARN_ON(!clt->paths_up);
2142 	if (--clt->paths_up == 0)
2143 		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
2144 	mutex_unlock(&clt->paths_ev_mutex);
2145 }
2146 
2147 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path)
2148 {
2149 	struct rtrs_clt_con *con;
2150 	unsigned int cid;
2151 
2152 	WARN_ON(READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED);
2153 
2154 	/*
2155 	 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
2156 	 * exactly in between.  Start destroying after it finishes.
2157 	 */
2158 	mutex_lock(&clt_path->init_mutex);
2159 	mutex_unlock(&clt_path->init_mutex);
2160 
2161 	/*
2162 	 * All IO paths must observe !CONNECTED state before we
2163 	 * free everything.
2164 	 */
2165 	synchronize_rcu();
2166 
2167 	rtrs_stop_hb(&clt_path->s);
2168 
2169 	/*
2170 	 * The order it utterly crucial: firstly disconnect and complete all
2171 	 * rdma requests with error (thus set in_use=false for requests),
2172 	 * then fail outstanding requests checking in_use for each, and
2173 	 * eventually notify upper layer about session disconnection.
2174 	 */
2175 
2176 	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2177 		if (!clt_path->s.con[cid])
2178 			break;
2179 		con = to_clt_con(clt_path->s.con[cid]);
2180 		stop_cm(con);
2181 	}
2182 	fail_all_outstanding_reqs(clt_path);
2183 	free_path_reqs(clt_path);
2184 	rtrs_clt_path_down(clt_path);
2185 
2186 	/*
2187 	 * Wait for graceful shutdown, namely when peer side invokes
2188 	 * rdma_disconnect(). 'connected_cnt' is decremented only on
2189 	 * CM events, thus if other side had crashed and hb has detected
2190 	 * something is wrong, here we will stuck for exactly timeout ms,
2191 	 * since CM does not fire anything.  That is fine, we are not in
2192 	 * hurry.
2193 	 */
2194 	wait_event_timeout(clt_path->state_wq,
2195 			   !atomic_read(&clt_path->connected_cnt),
2196 			   msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2197 
2198 	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2199 		if (!clt_path->s.con[cid])
2200 			break;
2201 		con = to_clt_con(clt_path->s.con[cid]);
2202 		mutex_lock(&con->con_mutex);
2203 		destroy_con_cq_qp(con);
2204 		mutex_unlock(&con->con_mutex);
2205 		destroy_cm(con);
2206 		destroy_con(con);
2207 	}
2208 }
2209 
2210 static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_path *clt_path)
2211 {
2212 	struct rtrs_clt_sess *clt = clt_path->clt;
2213 	struct rtrs_clt_path *next;
2214 	bool wait_for_grace = false;
2215 	int cpu;
2216 
2217 	mutex_lock(&clt->paths_mutex);
2218 	list_del_rcu(&clt_path->s.entry);
2219 
2220 	/* Make sure everybody observes path removal. */
2221 	synchronize_rcu();
2222 
2223 	/*
2224 	 * At this point nobody sees @sess in the list, but still we have
2225 	 * dangling pointer @pcpu_path which _can_ point to @sess.  Since
2226 	 * nobody can observe @sess in the list, we guarantee that IO path
2227 	 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
2228 	 * to @sess, but can never again become @sess.
2229 	 */
2230 
2231 	/*
2232 	 * Decrement paths number only after grace period, because
2233 	 * caller of do_each_path() must firstly observe list without
2234 	 * path and only then decremented paths number.
2235 	 *
2236 	 * Otherwise there can be the following situation:
2237 	 *    o Two paths exist and IO is coming.
2238 	 *    o One path is removed:
2239 	 *      CPU#0                          CPU#1
2240 	 *      do_each_path():                rtrs_clt_remove_path_from_arr():
2241 	 *          path = get_next_path()
2242 	 *          ^^^                            list_del_rcu(path)
2243 	 *          [!CONNECTED path]              clt->paths_num--
2244 	 *                                              ^^^^^^^^^
2245 	 *          load clt->paths_num                 from 2 to 1
2246 	 *                    ^^^^^^^^^
2247 	 *                    sees 1
2248 	 *
2249 	 *      path is observed as !CONNECTED, but do_each_path() loop
2250 	 *      ends, because expression i < clt->paths_num is false.
2251 	 */
2252 	clt->paths_num--;
2253 
2254 	/*
2255 	 * Get @next connection from current @sess which is going to be
2256 	 * removed.  If @sess is the last element, then @next is NULL.
2257 	 */
2258 	rcu_read_lock();
2259 	next = rtrs_clt_get_next_path_or_null(&clt->paths_list, clt_path);
2260 	rcu_read_unlock();
2261 
2262 	/*
2263 	 * @pcpu paths can still point to the path which is going to be
2264 	 * removed, so change the pointer manually.
2265 	 */
2266 	for_each_possible_cpu(cpu) {
2267 		struct rtrs_clt_path __rcu **ppcpu_path;
2268 
2269 		ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
2270 		if (rcu_dereference_protected(*ppcpu_path,
2271 			lockdep_is_held(&clt->paths_mutex)) != clt_path)
2272 			/*
2273 			 * synchronize_rcu() was called just after deleting
2274 			 * entry from the list, thus IO code path cannot
2275 			 * change pointer back to the pointer which is going
2276 			 * to be removed, we are safe here.
2277 			 */
2278 			continue;
2279 
2280 		/*
2281 		 * We race with IO code path, which also changes pointer,
2282 		 * thus we have to be careful not to overwrite it.
2283 		 */
2284 		if (try_cmpxchg((struct rtrs_clt_path **)ppcpu_path, &clt_path,
2285 				next))
2286 			/*
2287 			 * @ppcpu_path was successfully replaced with @next,
2288 			 * that means that someone could also pick up the
2289 			 * @sess and dereferencing it right now, so wait for
2290 			 * a grace period is required.
2291 			 */
2292 			wait_for_grace = true;
2293 	}
2294 	if (wait_for_grace)
2295 		synchronize_rcu();
2296 
2297 	mutex_unlock(&clt->paths_mutex);
2298 }
2299 
2300 static void rtrs_clt_add_path_to_arr(struct rtrs_clt_path *clt_path)
2301 {
2302 	struct rtrs_clt_sess *clt = clt_path->clt;
2303 
2304 	mutex_lock(&clt->paths_mutex);
2305 	clt->paths_num++;
2306 
2307 	list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list);
2308 	mutex_unlock(&clt->paths_mutex);
2309 }
2310 
2311 static void rtrs_clt_close_work(struct work_struct *work)
2312 {
2313 	struct rtrs_clt_path *clt_path;
2314 
2315 	clt_path = container_of(work, struct rtrs_clt_path, close_work);
2316 
2317 	cancel_work_sync(&clt_path->err_recovery_work);
2318 	cancel_delayed_work_sync(&clt_path->reconnect_dwork);
2319 	rtrs_clt_stop_and_destroy_conns(clt_path);
2320 	rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSED, NULL);
2321 }
2322 
2323 static int init_conns(struct rtrs_clt_path *clt_path)
2324 {
2325 	unsigned int cid;
2326 	int err, i;
2327 
2328 	/*
2329 	 * On every new session connections increase reconnect counter
2330 	 * to avoid clashes with previous sessions not yet closed
2331 	 * sessions on a server side.
2332 	 */
2333 	clt_path->s.recon_cnt++;
2334 
2335 	/* Establish all RDMA connections  */
2336 	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2337 		err = create_con(clt_path, cid);
2338 		if (err)
2339 			goto destroy;
2340 
2341 		err = create_cm(to_clt_con(clt_path->s.con[cid]));
2342 		if (err)
2343 			goto destroy;
2344 	}
2345 
2346 	/*
2347 	 * Set the cid to con_num - 1, since if we fail later, we want to stay in bounds.
2348 	 */
2349 	cid = clt_path->s.con_num - 1;
2350 
2351 	err = alloc_path_reqs(clt_path);
2352 	if (err)
2353 		goto destroy;
2354 
2355 	return 0;
2356 
2357 destroy:
2358 	/* Make sure we do the cleanup in the order they are created */
2359 	for (i = 0; i <= cid; i++) {
2360 		struct rtrs_clt_con *con;
2361 
2362 		if (!clt_path->s.con[i])
2363 			break;
2364 
2365 		con = to_clt_con(clt_path->s.con[i]);
2366 		if (con->c.cm_id) {
2367 			stop_cm(con);
2368 			mutex_lock(&con->con_mutex);
2369 			destroy_con_cq_qp(con);
2370 			mutex_unlock(&con->con_mutex);
2371 			destroy_cm(con);
2372 		}
2373 		destroy_con(con);
2374 	}
2375 	/*
2376 	 * If we've never taken async path and got an error, say,
2377 	 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
2378 	 * manually to keep reconnecting.
2379 	 */
2380 	rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL);
2381 
2382 	return err;
2383 }
2384 
2385 static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
2386 {
2387 	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2388 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
2389 	struct rtrs_iu *iu;
2390 
2391 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2392 	rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1);
2393 
2394 	if (wc->status != IB_WC_SUCCESS) {
2395 		rtrs_err(clt_path->clt, "Path info request send failed: %s\n",
2396 			  ib_wc_status_msg(wc->status));
2397 		rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL);
2398 		return;
2399 	}
2400 
2401 	rtrs_clt_update_wc_stats(con);
2402 }
2403 
2404 static int process_info_rsp(struct rtrs_clt_path *clt_path,
2405 			    const struct rtrs_msg_info_rsp *msg)
2406 {
2407 	unsigned int sg_cnt, total_len;
2408 	int i, sgi;
2409 
2410 	sg_cnt = le16_to_cpu(msg->sg_cnt);
2411 	if (!sg_cnt || (clt_path->queue_depth % sg_cnt)) {
2412 		rtrs_err(clt_path->clt,
2413 			  "Incorrect sg_cnt %d, is not multiple\n",
2414 			  sg_cnt);
2415 		return -EINVAL;
2416 	}
2417 
2418 	/*
2419 	 * Check if IB immediate data size is enough to hold the mem_id and
2420 	 * the offset inside the memory chunk.
2421 	 */
2422 	if ((ilog2(sg_cnt - 1) + 1) + (ilog2(clt_path->chunk_size - 1) + 1) >
2423 	    MAX_IMM_PAYL_BITS) {
2424 		rtrs_err(clt_path->clt,
2425 			  "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
2426 			  MAX_IMM_PAYL_BITS, sg_cnt, clt_path->chunk_size);
2427 		return -EINVAL;
2428 	}
2429 	total_len = 0;
2430 	for (sgi = 0, i = 0; sgi < sg_cnt && i < clt_path->queue_depth; sgi++) {
2431 		const struct rtrs_sg_desc *desc = &msg->desc[sgi];
2432 		u32 len, rkey;
2433 		u64 addr;
2434 
2435 		addr = le64_to_cpu(desc->addr);
2436 		rkey = le32_to_cpu(desc->key);
2437 		len  = le32_to_cpu(desc->len);
2438 
2439 		total_len += len;
2440 
2441 		if (!len || (len % clt_path->chunk_size)) {
2442 			rtrs_err(clt_path->clt, "Incorrect [%d].len %d\n",
2443 				  sgi,
2444 				  len);
2445 			return -EINVAL;
2446 		}
2447 		for ( ; len && i < clt_path->queue_depth; i++) {
2448 			clt_path->rbufs[i].addr = addr;
2449 			clt_path->rbufs[i].rkey = rkey;
2450 
2451 			len  -= clt_path->chunk_size;
2452 			addr += clt_path->chunk_size;
2453 		}
2454 	}
2455 	/* Sanity check */
2456 	if (sgi != sg_cnt || i != clt_path->queue_depth) {
2457 		rtrs_err(clt_path->clt,
2458 			 "Incorrect sg vector, not fully mapped\n");
2459 		return -EINVAL;
2460 	}
2461 	if (total_len != clt_path->chunk_size * clt_path->queue_depth) {
2462 		rtrs_err(clt_path->clt, "Incorrect total_len %d\n", total_len);
2463 		return -EINVAL;
2464 	}
2465 
2466 	return 0;
2467 }
2468 
2469 static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
2470 {
2471 	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2472 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
2473 	struct rtrs_msg_info_rsp *msg;
2474 	enum rtrs_clt_state state;
2475 	struct rtrs_iu *iu;
2476 	size_t rx_sz;
2477 	int err;
2478 
2479 	state = RTRS_CLT_CONNECTING_ERR;
2480 
2481 	WARN_ON(con->c.cid);
2482 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2483 	if (wc->status != IB_WC_SUCCESS) {
2484 		rtrs_err(clt_path->clt, "Path info response recv failed: %s\n",
2485 			  ib_wc_status_msg(wc->status));
2486 		goto out;
2487 	}
2488 	WARN_ON(wc->opcode != IB_WC_RECV);
2489 
2490 	if (wc->byte_len < sizeof(*msg)) {
2491 		rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n",
2492 			  wc->byte_len);
2493 		goto out;
2494 	}
2495 	ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr,
2496 				   iu->size, DMA_FROM_DEVICE);
2497 	msg = iu->buf;
2498 	if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP) {
2499 		rtrs_err(clt_path->clt, "Path info response is malformed: type %d\n",
2500 			  le16_to_cpu(msg->type));
2501 		goto out;
2502 	}
2503 	rx_sz  = sizeof(*msg);
2504 	rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
2505 	if (wc->byte_len < rx_sz) {
2506 		rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n",
2507 			  wc->byte_len);
2508 		goto out;
2509 	}
2510 	err = process_info_rsp(clt_path, msg);
2511 	if (err)
2512 		goto out;
2513 
2514 	err = post_recv_path(clt_path);
2515 	if (err)
2516 		goto out;
2517 
2518 	state = RTRS_CLT_CONNECTED;
2519 
2520 out:
2521 	rtrs_clt_update_wc_stats(con);
2522 	rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1);
2523 	rtrs_clt_change_state_get_old(clt_path, state, NULL);
2524 }
2525 
2526 static int rtrs_send_path_info(struct rtrs_clt_path *clt_path)
2527 {
2528 	struct rtrs_clt_con *usr_con = to_clt_con(clt_path->s.con[0]);
2529 	struct rtrs_msg_info_req *msg;
2530 	struct rtrs_iu *tx_iu, *rx_iu;
2531 	size_t rx_sz;
2532 	int err;
2533 
2534 	rx_sz  = sizeof(struct rtrs_msg_info_rsp);
2535 	rx_sz += sizeof(struct rtrs_sg_desc) * clt_path->queue_depth;
2536 
2537 	tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
2538 			       clt_path->s.dev->ib_dev, DMA_TO_DEVICE,
2539 			       rtrs_clt_info_req_done);
2540 	rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, clt_path->s.dev->ib_dev,
2541 			       DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
2542 	if (!tx_iu || !rx_iu) {
2543 		err = -ENOMEM;
2544 		goto out;
2545 	}
2546 	/* Prepare for getting info response */
2547 	err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
2548 	if (err) {
2549 		rtrs_err(clt_path->clt, "rtrs_iu_post_recv(), err: %d\n", err);
2550 		goto out;
2551 	}
2552 	rx_iu = NULL;
2553 
2554 	msg = tx_iu->buf;
2555 	msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
2556 	memcpy(msg->pathname, clt_path->s.sessname, sizeof(msg->pathname));
2557 
2558 	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
2559 				      tx_iu->dma_addr,
2560 				      tx_iu->size, DMA_TO_DEVICE);
2561 
2562 	/* Send info request */
2563 	err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
2564 	if (err) {
2565 		rtrs_err(clt_path->clt, "rtrs_iu_post_send(), err: %d\n", err);
2566 		goto out;
2567 	}
2568 	tx_iu = NULL;
2569 
2570 	/* Wait for state change */
2571 	wait_event_interruptible_timeout(clt_path->state_wq,
2572 					 clt_path->state != RTRS_CLT_CONNECTING,
2573 					 msecs_to_jiffies(
2574 						 RTRS_CONNECT_TIMEOUT_MS));
2575 	if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED) {
2576 		if (READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTING_ERR)
2577 			err = -ECONNRESET;
2578 		else
2579 			err = -ETIMEDOUT;
2580 	}
2581 
2582 out:
2583 	if (tx_iu)
2584 		rtrs_iu_free(tx_iu, clt_path->s.dev->ib_dev, 1);
2585 	if (rx_iu)
2586 		rtrs_iu_free(rx_iu, clt_path->s.dev->ib_dev, 1);
2587 	if (err)
2588 		/* If we've never taken async path because of malloc problems */
2589 		rtrs_clt_change_state_get_old(clt_path,
2590 					      RTRS_CLT_CONNECTING_ERR, NULL);
2591 
2592 	return err;
2593 }
2594 
2595 /**
2596  * init_path() - establishes all path connections and does handshake
2597  * @clt_path: client path.
2598  * In case of error full close or reconnect procedure should be taken,
2599  * because reconnect or close async works can be started.
2600  */
2601 static int init_path(struct rtrs_clt_path *clt_path)
2602 {
2603 	int err;
2604 	char str[NAME_MAX];
2605 	struct rtrs_addr path = {
2606 		.src = &clt_path->s.src_addr,
2607 		.dst = &clt_path->s.dst_addr,
2608 	};
2609 
2610 	rtrs_addr_to_str(&path, str, sizeof(str));
2611 
2612 	mutex_lock(&clt_path->init_mutex);
2613 	err = init_conns(clt_path);
2614 	if (err) {
2615 		rtrs_err(clt_path->clt,
2616 			 "init_conns() failed: err=%d path=%s [%s:%u]\n", err,
2617 			 str, clt_path->hca_name, clt_path->hca_port);
2618 		goto out;
2619 	}
2620 	err = rtrs_send_path_info(clt_path);
2621 	if (err) {
2622 		rtrs_err(clt_path->clt,
2623 			 "rtrs_send_path_info() failed: err=%d path=%s [%s:%u]\n",
2624 			 err, str, clt_path->hca_name, clt_path->hca_port);
2625 		goto out;
2626 	}
2627 	rtrs_clt_path_up(clt_path);
2628 	rtrs_start_hb(&clt_path->s);
2629 out:
2630 	mutex_unlock(&clt_path->init_mutex);
2631 
2632 	return err;
2633 }
2634 
2635 static void rtrs_clt_reconnect_work(struct work_struct *work)
2636 {
2637 	struct rtrs_clt_path *clt_path;
2638 	struct rtrs_clt_sess *clt;
2639 	int err;
2640 
2641 	clt_path = container_of(to_delayed_work(work), struct rtrs_clt_path,
2642 				reconnect_dwork);
2643 	clt = clt_path->clt;
2644 
2645 	trace_rtrs_clt_reconnect_work(clt_path);
2646 
2647 	if (READ_ONCE(clt_path->state) != RTRS_CLT_RECONNECTING)
2648 		return;
2649 
2650 	if (clt_path->reconnect_attempts >= clt->max_reconnect_attempts) {
2651 		/* Close a path completely if max attempts is reached */
2652 		rtrs_clt_close_conns(clt_path, false);
2653 		return;
2654 	}
2655 	clt_path->reconnect_attempts++;
2656 
2657 	msleep(RTRS_RECONNECT_BACKOFF);
2658 	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING, NULL)) {
2659 		err = init_path(clt_path);
2660 		if (err)
2661 			goto reconnect_again;
2662 	}
2663 
2664 	return;
2665 
2666 reconnect_again:
2667 	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_RECONNECTING, NULL)) {
2668 		clt_path->stats->reconnects.fail_cnt++;
2669 		queue_work(rtrs_wq, &clt_path->err_recovery_work);
2670 	}
2671 }
2672 
2673 static void rtrs_clt_dev_release(struct device *dev)
2674 {
2675 	struct rtrs_clt_sess *clt = container_of(dev, struct rtrs_clt_sess,
2676 						 dev);
2677 
2678 	mutex_destroy(&clt->paths_ev_mutex);
2679 	mutex_destroy(&clt->paths_mutex);
2680 	kfree(clt);
2681 }
2682 
2683 static struct rtrs_clt_sess *alloc_clt(const char *sessname, size_t paths_num,
2684 				  u16 port, size_t pdu_sz, void *priv,
2685 				  void	(*link_ev)(void *priv,
2686 						   enum rtrs_clt_link_ev ev),
2687 				  unsigned int reconnect_delay_sec,
2688 				  unsigned int max_reconnect_attempts)
2689 {
2690 	struct rtrs_clt_sess *clt;
2691 	int err;
2692 
2693 	if (!paths_num || paths_num > MAX_PATHS_NUM)
2694 		return ERR_PTR(-EINVAL);
2695 
2696 	if (strlen(sessname) >= sizeof(clt->sessname))
2697 		return ERR_PTR(-EINVAL);
2698 
2699 	clt = kzalloc(sizeof(*clt), GFP_KERNEL);
2700 	if (!clt)
2701 		return ERR_PTR(-ENOMEM);
2702 
2703 	clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
2704 	if (!clt->pcpu_path) {
2705 		kfree(clt);
2706 		return ERR_PTR(-ENOMEM);
2707 	}
2708 
2709 	clt->dev.class = &rtrs_clt_dev_class;
2710 	clt->dev.release = rtrs_clt_dev_release;
2711 	uuid_gen(&clt->paths_uuid);
2712 	INIT_LIST_HEAD_RCU(&clt->paths_list);
2713 	clt->paths_num = paths_num;
2714 	clt->paths_up = MAX_PATHS_NUM;
2715 	clt->port = port;
2716 	clt->pdu_sz = pdu_sz;
2717 	clt->max_segments = RTRS_MAX_SEGMENTS;
2718 	clt->reconnect_delay_sec = reconnect_delay_sec;
2719 	clt->max_reconnect_attempts = max_reconnect_attempts;
2720 	clt->priv = priv;
2721 	clt->link_ev = link_ev;
2722 	clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2723 	strscpy(clt->sessname, sessname, sizeof(clt->sessname));
2724 	init_waitqueue_head(&clt->permits_wait);
2725 	mutex_init(&clt->paths_ev_mutex);
2726 	mutex_init(&clt->paths_mutex);
2727 	device_initialize(&clt->dev);
2728 
2729 	err = dev_set_name(&clt->dev, "%s", sessname);
2730 	if (err)
2731 		goto err_put;
2732 
2733 	/*
2734 	 * Suppress user space notification until
2735 	 * sysfs files are created
2736 	 */
2737 	dev_set_uevent_suppress(&clt->dev, true);
2738 	err = device_add(&clt->dev);
2739 	if (err)
2740 		goto err_put;
2741 
2742 	clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
2743 	if (!clt->kobj_paths) {
2744 		err = -ENOMEM;
2745 		goto err_del;
2746 	}
2747 	err = rtrs_clt_create_sysfs_root_files(clt);
2748 	if (err) {
2749 		kobject_del(clt->kobj_paths);
2750 		kobject_put(clt->kobj_paths);
2751 		goto err_del;
2752 	}
2753 	dev_set_uevent_suppress(&clt->dev, false);
2754 	kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
2755 
2756 	return clt;
2757 err_del:
2758 	device_del(&clt->dev);
2759 err_put:
2760 	free_percpu(clt->pcpu_path);
2761 	put_device(&clt->dev);
2762 	return ERR_PTR(err);
2763 }
2764 
2765 static void free_clt(struct rtrs_clt_sess *clt)
2766 {
2767 	free_percpu(clt->pcpu_path);
2768 
2769 	/*
2770 	 * release callback will free clt and destroy mutexes in last put
2771 	 */
2772 	device_unregister(&clt->dev);
2773 }
2774 
2775 /**
2776  * rtrs_clt_open() - Open a path to an RTRS server
2777  * @ops: holds the link event callback and the private pointer.
2778  * @pathname: name of the path to an RTRS server
2779  * @paths: Paths to be established defined by their src and dst addresses
2780  * @paths_num: Number of elements in the @paths array
2781  * @port: port to be used by the RTRS session
2782  * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
2783  * @reconnect_delay_sec: time between reconnect tries
2784  * @max_reconnect_attempts: Number of times to reconnect on error before giving
2785  *			    up, 0 for * disabled, -1 for forever
2786  * @nr_poll_queues: number of polling mode connection using IB_POLL_DIRECT flag
2787  *
2788  * Starts session establishment with the rtrs_server. The function can block
2789  * up to ~2000ms before it returns.
2790  *
2791  * Return a valid pointer on success otherwise PTR_ERR.
2792  */
2793 struct rtrs_clt_sess *rtrs_clt_open(struct rtrs_clt_ops *ops,
2794 				 const char *pathname,
2795 				 const struct rtrs_addr *paths,
2796 				 size_t paths_num, u16 port,
2797 				 size_t pdu_sz, u8 reconnect_delay_sec,
2798 				 s16 max_reconnect_attempts, u32 nr_poll_queues)
2799 {
2800 	struct rtrs_clt_path *clt_path, *tmp;
2801 	struct rtrs_clt_sess *clt;
2802 	int err, i;
2803 
2804 	if (strchr(pathname, '/') || strchr(pathname, '.')) {
2805 		pr_err("pathname cannot contain / and .\n");
2806 		err = -EINVAL;
2807 		goto out;
2808 	}
2809 
2810 	clt = alloc_clt(pathname, paths_num, port, pdu_sz, ops->priv,
2811 			ops->link_ev,
2812 			reconnect_delay_sec,
2813 			max_reconnect_attempts);
2814 	if (IS_ERR(clt)) {
2815 		err = PTR_ERR(clt);
2816 		goto out;
2817 	}
2818 	for (i = 0; i < paths_num; i++) {
2819 		struct rtrs_clt_path *clt_path;
2820 
2821 		clt_path = alloc_path(clt, &paths[i], nr_cpu_ids,
2822 				  nr_poll_queues);
2823 		if (IS_ERR(clt_path)) {
2824 			err = PTR_ERR(clt_path);
2825 			goto close_all_path;
2826 		}
2827 		if (!i)
2828 			clt_path->for_new_clt = 1;
2829 		list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list);
2830 
2831 		err = init_path(clt_path);
2832 		if (err) {
2833 			list_del_rcu(&clt_path->s.entry);
2834 			rtrs_clt_close_conns(clt_path, true);
2835 			free_percpu(clt_path->stats->pcpu_stats);
2836 			kfree(clt_path->stats);
2837 			free_path(clt_path);
2838 			goto close_all_path;
2839 		}
2840 
2841 		err = rtrs_clt_create_path_files(clt_path);
2842 		if (err) {
2843 			list_del_rcu(&clt_path->s.entry);
2844 			rtrs_clt_close_conns(clt_path, true);
2845 			free_percpu(clt_path->stats->pcpu_stats);
2846 			kfree(clt_path->stats);
2847 			free_path(clt_path);
2848 			goto close_all_path;
2849 		}
2850 	}
2851 	err = alloc_permits(clt);
2852 	if (err)
2853 		goto close_all_path;
2854 
2855 	return clt;
2856 
2857 close_all_path:
2858 	list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) {
2859 		rtrs_clt_destroy_path_files(clt_path, NULL);
2860 		rtrs_clt_close_conns(clt_path, true);
2861 		kobject_put(&clt_path->kobj);
2862 	}
2863 	rtrs_clt_destroy_sysfs_root(clt);
2864 	free_clt(clt);
2865 
2866 out:
2867 	return ERR_PTR(err);
2868 }
2869 EXPORT_SYMBOL(rtrs_clt_open);
2870 
2871 /**
2872  * rtrs_clt_close() - Close a path
2873  * @clt: Session handle. Session is freed upon return.
2874  */
2875 void rtrs_clt_close(struct rtrs_clt_sess *clt)
2876 {
2877 	struct rtrs_clt_path *clt_path, *tmp;
2878 
2879 	/* Firstly forbid sysfs access */
2880 	rtrs_clt_destroy_sysfs_root(clt);
2881 
2882 	/* Now it is safe to iterate over all paths without locks */
2883 	list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) {
2884 		rtrs_clt_close_conns(clt_path, true);
2885 		rtrs_clt_destroy_path_files(clt_path, NULL);
2886 		kobject_put(&clt_path->kobj);
2887 	}
2888 	free_permits(clt);
2889 	free_clt(clt);
2890 }
2891 EXPORT_SYMBOL(rtrs_clt_close);
2892 
2893 int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_path *clt_path)
2894 {
2895 	enum rtrs_clt_state old_state;
2896 	int err = -EBUSY;
2897 	bool changed;
2898 
2899 	changed = rtrs_clt_change_state_get_old(clt_path,
2900 						 RTRS_CLT_RECONNECTING,
2901 						 &old_state);
2902 	if (changed) {
2903 		clt_path->reconnect_attempts = 0;
2904 		rtrs_clt_stop_and_destroy_conns(clt_path);
2905 		queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork, 0);
2906 	}
2907 	if (changed || old_state == RTRS_CLT_RECONNECTING) {
2908 		/*
2909 		 * flush_delayed_work() queues pending work for immediate
2910 		 * execution, so do the flush if we have queued something
2911 		 * right now or work is pending.
2912 		 */
2913 		flush_delayed_work(&clt_path->reconnect_dwork);
2914 		err = (READ_ONCE(clt_path->state) ==
2915 		       RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
2916 	}
2917 
2918 	return err;
2919 }
2920 
2921 int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_path *clt_path,
2922 				     const struct attribute *sysfs_self)
2923 {
2924 	enum rtrs_clt_state old_state;
2925 	bool changed;
2926 
2927 	/*
2928 	 * Continue stopping path till state was changed to DEAD or
2929 	 * state was observed as DEAD:
2930 	 * 1. State was changed to DEAD - we were fast and nobody
2931 	 *    invoked rtrs_clt_reconnect(), which can again start
2932 	 *    reconnecting.
2933 	 * 2. State was observed as DEAD - we have someone in parallel
2934 	 *    removing the path.
2935 	 */
2936 	do {
2937 		rtrs_clt_close_conns(clt_path, true);
2938 		changed = rtrs_clt_change_state_get_old(clt_path,
2939 							RTRS_CLT_DEAD,
2940 							&old_state);
2941 	} while (!changed && old_state != RTRS_CLT_DEAD);
2942 
2943 	if (changed) {
2944 		rtrs_clt_remove_path_from_arr(clt_path);
2945 		rtrs_clt_destroy_path_files(clt_path, sysfs_self);
2946 		kobject_put(&clt_path->kobj);
2947 	}
2948 
2949 	return 0;
2950 }
2951 
2952 void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt_sess *clt, int value)
2953 {
2954 	clt->max_reconnect_attempts = (unsigned int)value;
2955 }
2956 
2957 int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt_sess *clt)
2958 {
2959 	return (int)clt->max_reconnect_attempts;
2960 }
2961 
2962 /**
2963  * rtrs_clt_request() - Request data transfer to/from server via RDMA.
2964  *
2965  * @dir:	READ/WRITE
2966  * @ops:	callback function to be called as confirmation, and the pointer.
2967  * @clt:	Session
2968  * @permit:	Preallocated permit
2969  * @vec:	Message that is sent to server together with the request.
2970  *		Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
2971  *		Since the msg is copied internally it can be allocated on stack.
2972  * @nr:		Number of elements in @vec.
2973  * @data_len:	length of data sent to/from server
2974  * @sg:		Pages to be sent/received to/from server.
2975  * @sg_cnt:	Number of elements in the @sg
2976  *
2977  * Return:
2978  * 0:		Success
2979  * <0:		Error
2980  *
2981  * On dir=READ rtrs client will request a data transfer from Server to client.
2982  * The data that the server will respond with will be stored in @sg when
2983  * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
2984  * On dir=WRITE rtrs client will rdma write data in sg to server side.
2985  */
2986 int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
2987 		     struct rtrs_clt_sess *clt, struct rtrs_permit *permit,
2988 		     const struct kvec *vec, size_t nr, size_t data_len,
2989 		     struct scatterlist *sg, unsigned int sg_cnt)
2990 {
2991 	struct rtrs_clt_io_req *req;
2992 	struct rtrs_clt_path *clt_path;
2993 
2994 	enum dma_data_direction dma_dir;
2995 	int err = -ECONNABORTED, i;
2996 	size_t usr_len, hdr_len;
2997 	struct path_it it;
2998 
2999 	/* Get kvec length */
3000 	for (i = 0, usr_len = 0; i < nr; i++)
3001 		usr_len += vec[i].iov_len;
3002 
3003 	if (dir == READ) {
3004 		hdr_len = sizeof(struct rtrs_msg_rdma_read) +
3005 			  sg_cnt * sizeof(struct rtrs_sg_desc);
3006 		dma_dir = DMA_FROM_DEVICE;
3007 	} else {
3008 		hdr_len = sizeof(struct rtrs_msg_rdma_write);
3009 		dma_dir = DMA_TO_DEVICE;
3010 	}
3011 
3012 	rcu_read_lock();
3013 	for (path_it_init(&it, clt);
3014 	     (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
3015 		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
3016 			continue;
3017 
3018 		if (usr_len + hdr_len > clt_path->max_hdr_size) {
3019 			rtrs_wrn_rl(clt_path->clt,
3020 				     "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
3021 				     dir == READ ? "Read" : "Write",
3022 				     usr_len, hdr_len, clt_path->max_hdr_size);
3023 			err = -EMSGSIZE;
3024 			break;
3025 		}
3026 		req = rtrs_clt_get_req(clt_path, ops->conf_fn, permit, ops->priv,
3027 				       vec, usr_len, sg, sg_cnt, data_len,
3028 				       dma_dir);
3029 		if (dir == READ)
3030 			err = rtrs_clt_read_req(req);
3031 		else
3032 			err = rtrs_clt_write_req(req);
3033 		if (err) {
3034 			req->in_use = false;
3035 			continue;
3036 		}
3037 		/* Success path */
3038 		break;
3039 	}
3040 	path_it_deinit(&it);
3041 	rcu_read_unlock();
3042 
3043 	return err;
3044 }
3045 EXPORT_SYMBOL(rtrs_clt_request);
3046 
3047 int rtrs_clt_rdma_cq_direct(struct rtrs_clt_sess *clt, unsigned int index)
3048 {
3049 	/* If no path, return -1 for block layer not to try again */
3050 	int cnt = -1;
3051 	struct rtrs_con *con;
3052 	struct rtrs_clt_path *clt_path;
3053 	struct path_it it;
3054 
3055 	rcu_read_lock();
3056 	for (path_it_init(&it, clt);
3057 	     (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
3058 		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
3059 			continue;
3060 
3061 		con = clt_path->s.con[index + 1];
3062 		cnt = ib_process_cq_direct(con->cq, -1);
3063 		if (cnt)
3064 			break;
3065 	}
3066 	path_it_deinit(&it);
3067 	rcu_read_unlock();
3068 
3069 	return cnt;
3070 }
3071 EXPORT_SYMBOL(rtrs_clt_rdma_cq_direct);
3072 
3073 /**
3074  * rtrs_clt_query() - queries RTRS session attributes
3075  *@clt: session pointer
3076  *@attr: query results for session attributes.
3077  * Returns:
3078  *    0 on success
3079  *    -ECOMM		no connection to the server
3080  */
3081 int rtrs_clt_query(struct rtrs_clt_sess *clt, struct rtrs_attrs *attr)
3082 {
3083 	if (!rtrs_clt_is_connected(clt))
3084 		return -ECOMM;
3085 
3086 	attr->queue_depth      = clt->queue_depth;
3087 	attr->max_segments     = clt->max_segments;
3088 	/* Cap max_io_size to min of remote buffer size and the fr pages */
3089 	attr->max_io_size = min_t(int, clt->max_io_size,
3090 				  clt->max_segments * SZ_4K);
3091 
3092 	return 0;
3093 }
3094 EXPORT_SYMBOL(rtrs_clt_query);
3095 
3096 int rtrs_clt_create_path_from_sysfs(struct rtrs_clt_sess *clt,
3097 				     struct rtrs_addr *addr)
3098 {
3099 	struct rtrs_clt_path *clt_path;
3100 	int err;
3101 
3102 	clt_path = alloc_path(clt, addr, nr_cpu_ids, 0);
3103 	if (IS_ERR(clt_path))
3104 		return PTR_ERR(clt_path);
3105 
3106 	mutex_lock(&clt->paths_mutex);
3107 	if (clt->paths_num == 0) {
3108 		/*
3109 		 * When all the paths are removed for a session,
3110 		 * the addition of the first path is like a new session for
3111 		 * the storage server
3112 		 */
3113 		clt_path->for_new_clt = 1;
3114 	}
3115 
3116 	mutex_unlock(&clt->paths_mutex);
3117 
3118 	/*
3119 	 * It is totally safe to add path in CONNECTING state: coming
3120 	 * IO will never grab it.  Also it is very important to add
3121 	 * path before init, since init fires LINK_CONNECTED event.
3122 	 */
3123 	rtrs_clt_add_path_to_arr(clt_path);
3124 
3125 	err = init_path(clt_path);
3126 	if (err)
3127 		goto close_path;
3128 
3129 	err = rtrs_clt_create_path_files(clt_path);
3130 	if (err)
3131 		goto close_path;
3132 
3133 	return 0;
3134 
3135 close_path:
3136 	rtrs_clt_remove_path_from_arr(clt_path);
3137 	rtrs_clt_close_conns(clt_path, true);
3138 	free_percpu(clt_path->stats->pcpu_stats);
3139 	kfree(clt_path->stats);
3140 	free_path(clt_path);
3141 
3142 	return err;
3143 }
3144 
3145 static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
3146 {
3147 	if (!(dev->ib_dev->attrs.device_cap_flags &
3148 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
3149 		pr_err("Memory registrations not supported.\n");
3150 		return -ENOTSUPP;
3151 	}
3152 
3153 	return 0;
3154 }
3155 
3156 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
3157 	.init = rtrs_clt_ib_dev_init
3158 };
3159 
3160 static int __init rtrs_client_init(void)
3161 {
3162 	int ret = 0;
3163 
3164 	rtrs_rdma_dev_pd_init(0, &dev_pd);
3165 	ret = class_register(&rtrs_clt_dev_class);
3166 	if (ret) {
3167 		pr_err("Failed to create rtrs-client dev class\n");
3168 		return ret;
3169 	}
3170 	rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0);
3171 	if (!rtrs_wq) {
3172 		class_unregister(&rtrs_clt_dev_class);
3173 		return -ENOMEM;
3174 	}
3175 
3176 	return 0;
3177 }
3178 
3179 static void __exit rtrs_client_exit(void)
3180 {
3181 	destroy_workqueue(rtrs_wq);
3182 	class_unregister(&rtrs_clt_dev_class);
3183 	rtrs_rdma_dev_pd_deinit(&dev_pd);
3184 }
3185 
3186 module_init(rtrs_client_init);
3187 module_exit(rtrs_client_exit);
3188