1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * RDMA Transport Layer 4 * 5 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved. 6 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved. 7 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved. 8 */ 9 10 #undef pr_fmt 11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt 12 13 #include <linux/module.h> 14 #include <linux/rculist.h> 15 #include <linux/random.h> 16 17 #include "rtrs-clt.h" 18 #include "rtrs-log.h" 19 20 #define RTRS_CONNECT_TIMEOUT_MS 30000 21 /* 22 * Wait a bit before trying to reconnect after a failure 23 * in order to give server time to finish clean up which 24 * leads to "false positives" failed reconnect attempts 25 */ 26 #define RTRS_RECONNECT_BACKOFF 1000 27 /* 28 * Wait for additional random time between 0 and 8 seconds 29 * before starting to reconnect to avoid clients reconnecting 30 * all at once in case of a major network outage 31 */ 32 #define RTRS_RECONNECT_SEED 8 33 34 #define FIRST_CONN 0x01 35 36 MODULE_DESCRIPTION("RDMA Transport Client"); 37 MODULE_LICENSE("GPL"); 38 39 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops; 40 static struct rtrs_rdma_dev_pd dev_pd = { 41 .ops = &dev_pd_ops 42 }; 43 44 static struct workqueue_struct *rtrs_wq; 45 static struct class *rtrs_clt_dev_class; 46 47 static inline bool rtrs_clt_is_connected(const struct rtrs_clt *clt) 48 { 49 struct rtrs_clt_sess *sess; 50 bool connected = false; 51 52 rcu_read_lock(); 53 list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) 54 connected |= READ_ONCE(sess->state) == RTRS_CLT_CONNECTED; 55 rcu_read_unlock(); 56 57 return connected; 58 } 59 60 static struct rtrs_permit * 61 __rtrs_get_permit(struct rtrs_clt *clt, enum rtrs_clt_con_type con_type) 62 { 63 size_t max_depth = clt->queue_depth; 64 struct rtrs_permit *permit; 65 int bit; 66 67 /* 68 * Adapted from null_blk get_tag(). Callers from different cpus may 69 * grab the same bit, since find_first_zero_bit is not atomic. 70 * But then the test_and_set_bit_lock will fail for all the 71 * callers but one, so that they will loop again. 72 * This way an explicit spinlock is not required. 73 */ 74 do { 75 bit = find_first_zero_bit(clt->permits_map, max_depth); 76 if (unlikely(bit >= max_depth)) 77 return NULL; 78 } while (unlikely(test_and_set_bit_lock(bit, clt->permits_map))); 79 80 permit = get_permit(clt, bit); 81 WARN_ON(permit->mem_id != bit); 82 permit->cpu_id = raw_smp_processor_id(); 83 permit->con_type = con_type; 84 85 return permit; 86 } 87 88 static inline void __rtrs_put_permit(struct rtrs_clt *clt, 89 struct rtrs_permit *permit) 90 { 91 clear_bit_unlock(permit->mem_id, clt->permits_map); 92 } 93 94 /** 95 * rtrs_clt_get_permit() - allocates permit for future RDMA operation 96 * @clt: Current session 97 * @con_type: Type of connection to use with the permit 98 * @can_wait: Wait type 99 * 100 * Description: 101 * Allocates permit for the following RDMA operation. Permit is used 102 * to preallocate all resources and to propagate memory pressure 103 * up earlier. 104 * 105 * Context: 106 * Can sleep if @wait == RTRS_PERMIT_WAIT 107 */ 108 struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt *clt, 109 enum rtrs_clt_con_type con_type, 110 enum wait_type can_wait) 111 { 112 struct rtrs_permit *permit; 113 DEFINE_WAIT(wait); 114 115 permit = __rtrs_get_permit(clt, con_type); 116 if (likely(permit) || !can_wait) 117 return permit; 118 119 do { 120 prepare_to_wait(&clt->permits_wait, &wait, 121 TASK_UNINTERRUPTIBLE); 122 permit = __rtrs_get_permit(clt, con_type); 123 if (likely(permit)) 124 break; 125 126 io_schedule(); 127 } while (1); 128 129 finish_wait(&clt->permits_wait, &wait); 130 131 return permit; 132 } 133 EXPORT_SYMBOL(rtrs_clt_get_permit); 134 135 /** 136 * rtrs_clt_put_permit() - puts allocated permit 137 * @clt: Current session 138 * @permit: Permit to be freed 139 * 140 * Context: 141 * Does not matter 142 */ 143 void rtrs_clt_put_permit(struct rtrs_clt *clt, struct rtrs_permit *permit) 144 { 145 if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map))) 146 return; 147 148 __rtrs_put_permit(clt, permit); 149 150 /* 151 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list 152 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping 153 * it must have added itself to &clt->permits_wait before 154 * __rtrs_put_permit() finished. 155 * Hence it is safe to guard wake_up() with a waitqueue_active() test. 156 */ 157 if (waitqueue_active(&clt->permits_wait)) 158 wake_up(&clt->permits_wait); 159 } 160 EXPORT_SYMBOL(rtrs_clt_put_permit); 161 162 /** 163 * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit 164 * @sess: client session pointer 165 * @permit: permit for the allocation of the RDMA buffer 166 * Note: 167 * IO connection starts from 1. 168 * 0 connection is for user messages. 169 */ 170 static 171 struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_sess *sess, 172 struct rtrs_permit *permit) 173 { 174 int id = 0; 175 176 if (likely(permit->con_type == RTRS_IO_CON)) 177 id = (permit->cpu_id % (sess->s.irq_con_num - 1)) + 1; 178 179 return to_clt_con(sess->s.con[id]); 180 } 181 182 /** 183 * rtrs_clt_change_state() - change the session state through session state 184 * machine. 185 * 186 * @sess: client session to change the state of. 187 * @new_state: state to change to. 188 * 189 * returns true if sess's state is changed to new state, otherwise return false. 190 * 191 * Locks: 192 * state_wq lock must be hold. 193 */ 194 static bool rtrs_clt_change_state(struct rtrs_clt_sess *sess, 195 enum rtrs_clt_state new_state) 196 { 197 enum rtrs_clt_state old_state; 198 bool changed = false; 199 200 lockdep_assert_held(&sess->state_wq.lock); 201 202 old_state = sess->state; 203 switch (new_state) { 204 case RTRS_CLT_CONNECTING: 205 switch (old_state) { 206 case RTRS_CLT_RECONNECTING: 207 changed = true; 208 fallthrough; 209 default: 210 break; 211 } 212 break; 213 case RTRS_CLT_RECONNECTING: 214 switch (old_state) { 215 case RTRS_CLT_CONNECTED: 216 case RTRS_CLT_CONNECTING_ERR: 217 case RTRS_CLT_CLOSED: 218 changed = true; 219 fallthrough; 220 default: 221 break; 222 } 223 break; 224 case RTRS_CLT_CONNECTED: 225 switch (old_state) { 226 case RTRS_CLT_CONNECTING: 227 changed = true; 228 fallthrough; 229 default: 230 break; 231 } 232 break; 233 case RTRS_CLT_CONNECTING_ERR: 234 switch (old_state) { 235 case RTRS_CLT_CONNECTING: 236 changed = true; 237 fallthrough; 238 default: 239 break; 240 } 241 break; 242 case RTRS_CLT_CLOSING: 243 switch (old_state) { 244 case RTRS_CLT_CONNECTING: 245 case RTRS_CLT_CONNECTING_ERR: 246 case RTRS_CLT_RECONNECTING: 247 case RTRS_CLT_CONNECTED: 248 changed = true; 249 fallthrough; 250 default: 251 break; 252 } 253 break; 254 case RTRS_CLT_CLOSED: 255 switch (old_state) { 256 case RTRS_CLT_CLOSING: 257 changed = true; 258 fallthrough; 259 default: 260 break; 261 } 262 break; 263 case RTRS_CLT_DEAD: 264 switch (old_state) { 265 case RTRS_CLT_CLOSED: 266 changed = true; 267 fallthrough; 268 default: 269 break; 270 } 271 break; 272 default: 273 break; 274 } 275 if (changed) { 276 sess->state = new_state; 277 wake_up_locked(&sess->state_wq); 278 } 279 280 return changed; 281 } 282 283 static bool rtrs_clt_change_state_from_to(struct rtrs_clt_sess *sess, 284 enum rtrs_clt_state old_state, 285 enum rtrs_clt_state new_state) 286 { 287 bool changed = false; 288 289 spin_lock_irq(&sess->state_wq.lock); 290 if (sess->state == old_state) 291 changed = rtrs_clt_change_state(sess, new_state); 292 spin_unlock_irq(&sess->state_wq.lock); 293 294 return changed; 295 } 296 297 static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con) 298 { 299 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 300 301 if (rtrs_clt_change_state_from_to(sess, 302 RTRS_CLT_CONNECTED, 303 RTRS_CLT_RECONNECTING)) { 304 struct rtrs_clt *clt = sess->clt; 305 unsigned int delay_ms; 306 307 /* 308 * Normal scenario, reconnect if we were successfully connected 309 */ 310 delay_ms = clt->reconnect_delay_sec * 1000; 311 queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 312 msecs_to_jiffies(delay_ms + 313 prandom_u32() % RTRS_RECONNECT_SEED)); 314 } else { 315 /* 316 * Error can happen just on establishing new connection, 317 * so notify waiter with error state, waiter is responsible 318 * for cleaning the rest and reconnect if needed. 319 */ 320 rtrs_clt_change_state_from_to(sess, 321 RTRS_CLT_CONNECTING, 322 RTRS_CLT_CONNECTING_ERR); 323 } 324 } 325 326 static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc) 327 { 328 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context); 329 330 if (unlikely(wc->status != IB_WC_SUCCESS)) { 331 rtrs_err(con->c.sess, "Failed IB_WR_REG_MR: %s\n", 332 ib_wc_status_msg(wc->status)); 333 rtrs_rdma_error_recovery(con); 334 } 335 } 336 337 static struct ib_cqe fast_reg_cqe = { 338 .done = rtrs_clt_fast_reg_done 339 }; 340 341 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno, 342 bool notify, bool can_wait); 343 344 static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 345 { 346 struct rtrs_clt_io_req *req = 347 container_of(wc->wr_cqe, typeof(*req), inv_cqe); 348 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context); 349 350 if (unlikely(wc->status != IB_WC_SUCCESS)) { 351 rtrs_err(con->c.sess, "Failed IB_WR_LOCAL_INV: %s\n", 352 ib_wc_status_msg(wc->status)); 353 rtrs_rdma_error_recovery(con); 354 } 355 req->need_inv = false; 356 if (likely(req->need_inv_comp)) 357 complete(&req->inv_comp); 358 else 359 /* Complete request from INV callback */ 360 complete_rdma_req(req, req->inv_errno, true, false); 361 } 362 363 static int rtrs_inv_rkey(struct rtrs_clt_io_req *req) 364 { 365 struct rtrs_clt_con *con = req->con; 366 struct ib_send_wr wr = { 367 .opcode = IB_WR_LOCAL_INV, 368 .wr_cqe = &req->inv_cqe, 369 .send_flags = IB_SEND_SIGNALED, 370 .ex.invalidate_rkey = req->mr->rkey, 371 }; 372 req->inv_cqe.done = rtrs_clt_inv_rkey_done; 373 374 return ib_post_send(con->c.qp, &wr, NULL); 375 } 376 377 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno, 378 bool notify, bool can_wait) 379 { 380 struct rtrs_clt_con *con = req->con; 381 struct rtrs_clt_sess *sess; 382 int err; 383 384 if (WARN_ON(!req->in_use)) 385 return; 386 if (WARN_ON(!req->con)) 387 return; 388 sess = to_clt_sess(con->c.sess); 389 390 if (req->sg_cnt) { 391 if (unlikely(req->dir == DMA_FROM_DEVICE && req->need_inv)) { 392 /* 393 * We are here to invalidate read requests 394 * ourselves. In normal scenario server should 395 * send INV for all read requests, but 396 * we are here, thus two things could happen: 397 * 398 * 1. this is failover, when errno != 0 399 * and can_wait == 1, 400 * 401 * 2. something totally bad happened and 402 * server forgot to send INV, so we 403 * should do that ourselves. 404 */ 405 406 if (likely(can_wait)) { 407 req->need_inv_comp = true; 408 } else { 409 /* This should be IO path, so always notify */ 410 WARN_ON(!notify); 411 /* Save errno for INV callback */ 412 req->inv_errno = errno; 413 } 414 415 err = rtrs_inv_rkey(req); 416 if (unlikely(err)) { 417 rtrs_err(con->c.sess, "Send INV WR key=%#x: %d\n", 418 req->mr->rkey, err); 419 } else if (likely(can_wait)) { 420 wait_for_completion(&req->inv_comp); 421 } else { 422 /* 423 * Something went wrong, so request will be 424 * completed from INV callback. 425 */ 426 WARN_ON_ONCE(1); 427 428 return; 429 } 430 } 431 ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist, 432 req->sg_cnt, req->dir); 433 } 434 if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT) 435 atomic_dec(&sess->stats->inflight); 436 437 req->in_use = false; 438 req->con = NULL; 439 440 if (errno) { 441 rtrs_err_rl(con->c.sess, 442 "IO request failed: error=%d path=%s [%s:%u]\n", 443 errno, kobject_name(&sess->kobj), sess->hca_name, 444 sess->hca_port); 445 } 446 447 if (notify) 448 req->conf(req->priv, errno); 449 } 450 451 static int rtrs_post_send_rdma(struct rtrs_clt_con *con, 452 struct rtrs_clt_io_req *req, 453 struct rtrs_rbuf *rbuf, u32 off, 454 u32 imm, struct ib_send_wr *wr) 455 { 456 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 457 enum ib_send_flags flags; 458 struct ib_sge sge; 459 460 if (unlikely(!req->sg_size)) { 461 rtrs_wrn(con->c.sess, 462 "Doing RDMA Write failed, no data supplied\n"); 463 return -EINVAL; 464 } 465 466 /* user data and user message in the first list element */ 467 sge.addr = req->iu->dma_addr; 468 sge.length = req->sg_size; 469 sge.lkey = sess->s.dev->ib_pd->local_dma_lkey; 470 471 /* 472 * From time to time we have to post signalled sends, 473 * or send queue will fill up and only QP reset can help. 474 */ 475 flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ? 476 0 : IB_SEND_SIGNALED; 477 478 ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr, 479 req->sg_size, DMA_TO_DEVICE); 480 481 return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1, 482 rbuf->rkey, rbuf->addr + off, 483 imm, flags, wr); 484 } 485 486 static void process_io_rsp(struct rtrs_clt_sess *sess, u32 msg_id, 487 s16 errno, bool w_inval) 488 { 489 struct rtrs_clt_io_req *req; 490 491 if (WARN_ON(msg_id >= sess->queue_depth)) 492 return; 493 494 req = &sess->reqs[msg_id]; 495 /* Drop need_inv if server responded with send with invalidation */ 496 req->need_inv &= !w_inval; 497 complete_rdma_req(req, errno, true, false); 498 } 499 500 static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc) 501 { 502 struct rtrs_iu *iu; 503 int err; 504 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 505 506 WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0); 507 iu = container_of(wc->wr_cqe, struct rtrs_iu, 508 cqe); 509 err = rtrs_iu_post_recv(&con->c, iu); 510 if (unlikely(err)) { 511 rtrs_err(con->c.sess, "post iu failed %d\n", err); 512 rtrs_rdma_error_recovery(con); 513 } 514 } 515 516 static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc) 517 { 518 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 519 struct rtrs_msg_rkey_rsp *msg; 520 u32 imm_type, imm_payload; 521 bool w_inval = false; 522 struct rtrs_iu *iu; 523 u32 buf_id; 524 int err; 525 526 WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0); 527 528 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); 529 530 if (unlikely(wc->byte_len < sizeof(*msg))) { 531 rtrs_err(con->c.sess, "rkey response is malformed: size %d\n", 532 wc->byte_len); 533 goto out; 534 } 535 ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr, 536 iu->size, DMA_FROM_DEVICE); 537 msg = iu->buf; 538 if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP)) { 539 rtrs_err(sess->clt, "rkey response is malformed: type %d\n", 540 le16_to_cpu(msg->type)); 541 goto out; 542 } 543 buf_id = le16_to_cpu(msg->buf_id); 544 if (WARN_ON(buf_id >= sess->queue_depth)) 545 goto out; 546 547 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload); 548 if (likely(imm_type == RTRS_IO_RSP_IMM || 549 imm_type == RTRS_IO_RSP_W_INV_IMM)) { 550 u32 msg_id; 551 552 w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM); 553 rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err); 554 555 if (WARN_ON(buf_id != msg_id)) 556 goto out; 557 sess->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey); 558 process_io_rsp(sess, msg_id, err, w_inval); 559 } 560 ib_dma_sync_single_for_device(sess->s.dev->ib_dev, iu->dma_addr, 561 iu->size, DMA_FROM_DEVICE); 562 return rtrs_clt_recv_done(con, wc); 563 out: 564 rtrs_rdma_error_recovery(con); 565 } 566 567 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc); 568 569 static struct ib_cqe io_comp_cqe = { 570 .done = rtrs_clt_rdma_done 571 }; 572 573 /* 574 * Post x2 empty WRs: first is for this RDMA with IMM, 575 * second is for RECV with INV, which happened earlier. 576 */ 577 static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe) 578 { 579 struct ib_recv_wr wr_arr[2], *wr; 580 int i; 581 582 memset(wr_arr, 0, sizeof(wr_arr)); 583 for (i = 0; i < ARRAY_SIZE(wr_arr); i++) { 584 wr = &wr_arr[i]; 585 wr->wr_cqe = cqe; 586 if (i) 587 /* Chain backwards */ 588 wr->next = &wr_arr[i - 1]; 589 } 590 591 return ib_post_recv(con->qp, wr, NULL); 592 } 593 594 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc) 595 { 596 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context); 597 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 598 u32 imm_type, imm_payload; 599 bool w_inval = false; 600 int err; 601 602 if (unlikely(wc->status != IB_WC_SUCCESS)) { 603 if (wc->status != IB_WC_WR_FLUSH_ERR) { 604 rtrs_err(sess->clt, "RDMA failed: %s\n", 605 ib_wc_status_msg(wc->status)); 606 rtrs_rdma_error_recovery(con); 607 } 608 return; 609 } 610 rtrs_clt_update_wc_stats(con); 611 612 switch (wc->opcode) { 613 case IB_WC_RECV_RDMA_WITH_IMM: 614 /* 615 * post_recv() RDMA write completions of IO reqs (read/write) 616 * and hb 617 */ 618 if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done)) 619 return; 620 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), 621 &imm_type, &imm_payload); 622 if (likely(imm_type == RTRS_IO_RSP_IMM || 623 imm_type == RTRS_IO_RSP_W_INV_IMM)) { 624 u32 msg_id; 625 626 w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM); 627 rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err); 628 629 process_io_rsp(sess, msg_id, err, w_inval); 630 } else if (imm_type == RTRS_HB_MSG_IMM) { 631 WARN_ON(con->c.cid); 632 rtrs_send_hb_ack(&sess->s); 633 if (sess->flags & RTRS_MSG_NEW_RKEY_F) 634 return rtrs_clt_recv_done(con, wc); 635 } else if (imm_type == RTRS_HB_ACK_IMM) { 636 WARN_ON(con->c.cid); 637 sess->s.hb_missed_cnt = 0; 638 sess->s.hb_cur_latency = 639 ktime_sub(ktime_get(), sess->s.hb_last_sent); 640 if (sess->flags & RTRS_MSG_NEW_RKEY_F) 641 return rtrs_clt_recv_done(con, wc); 642 } else { 643 rtrs_wrn(con->c.sess, "Unknown IMM type %u\n", 644 imm_type); 645 } 646 if (w_inval) 647 /* 648 * Post x2 empty WRs: first is for this RDMA with IMM, 649 * second is for RECV with INV, which happened earlier. 650 */ 651 err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe); 652 else 653 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe); 654 if (unlikely(err)) { 655 rtrs_err(con->c.sess, "rtrs_post_recv_empty(): %d\n", 656 err); 657 rtrs_rdma_error_recovery(con); 658 break; 659 } 660 break; 661 case IB_WC_RECV: 662 /* 663 * Key invalidations from server side 664 */ 665 WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE || 666 wc->wc_flags & IB_WC_WITH_IMM)); 667 WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done); 668 if (sess->flags & RTRS_MSG_NEW_RKEY_F) { 669 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) 670 return rtrs_clt_recv_done(con, wc); 671 672 return rtrs_clt_rkey_rsp_done(con, wc); 673 } 674 break; 675 case IB_WC_RDMA_WRITE: 676 /* 677 * post_send() RDMA write completions of IO reqs (read/write) 678 */ 679 break; 680 681 default: 682 rtrs_wrn(sess->clt, "Unexpected WC type: %d\n", wc->opcode); 683 return; 684 } 685 } 686 687 static int post_recv_io(struct rtrs_clt_con *con, size_t q_size) 688 { 689 int err, i; 690 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 691 692 for (i = 0; i < q_size; i++) { 693 if (sess->flags & RTRS_MSG_NEW_RKEY_F) { 694 struct rtrs_iu *iu = &con->rsp_ius[i]; 695 696 err = rtrs_iu_post_recv(&con->c, iu); 697 } else { 698 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe); 699 } 700 if (unlikely(err)) 701 return err; 702 } 703 704 return 0; 705 } 706 707 static int post_recv_sess(struct rtrs_clt_sess *sess) 708 { 709 size_t q_size = 0; 710 int err, cid; 711 712 for (cid = 0; cid < sess->s.con_num; cid++) { 713 if (cid == 0) 714 q_size = SERVICE_CON_QUEUE_DEPTH; 715 else 716 q_size = sess->queue_depth; 717 718 /* 719 * x2 for RDMA read responses + FR key invalidations, 720 * RDMA writes do not require any FR registrations. 721 */ 722 q_size *= 2; 723 724 err = post_recv_io(to_clt_con(sess->s.con[cid]), q_size); 725 if (unlikely(err)) { 726 rtrs_err(sess->clt, "post_recv_io(), err: %d\n", err); 727 return err; 728 } 729 } 730 731 return 0; 732 } 733 734 struct path_it { 735 int i; 736 struct list_head skip_list; 737 struct rtrs_clt *clt; 738 struct rtrs_clt_sess *(*next_path)(struct path_it *it); 739 }; 740 741 /** 742 * list_next_or_null_rr_rcu - get next list element in round-robin fashion. 743 * @head: the head for the list. 744 * @ptr: the list head to take the next element from. 745 * @type: the type of the struct this is embedded in. 746 * @memb: the name of the list_head within the struct. 747 * 748 * Next element returned in round-robin fashion, i.e. head will be skipped, 749 * but if list is observed as empty, NULL will be returned. 750 * 751 * This primitive may safely run concurrently with the _rcu list-mutation 752 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 753 */ 754 #define list_next_or_null_rr_rcu(head, ptr, type, memb) \ 755 ({ \ 756 list_next_or_null_rcu(head, ptr, type, memb) ?: \ 757 list_next_or_null_rcu(head, READ_ONCE((ptr)->next), \ 758 type, memb); \ 759 }) 760 761 /** 762 * get_next_path_rr() - Returns path in round-robin fashion. 763 * @it: the path pointer 764 * 765 * Related to @MP_POLICY_RR 766 * 767 * Locks: 768 * rcu_read_lock() must be hold. 769 */ 770 static struct rtrs_clt_sess *get_next_path_rr(struct path_it *it) 771 { 772 struct rtrs_clt_sess __rcu **ppcpu_path; 773 struct rtrs_clt_sess *path; 774 struct rtrs_clt *clt; 775 776 clt = it->clt; 777 778 /* 779 * Here we use two RCU objects: @paths_list and @pcpu_path 780 * pointer. See rtrs_clt_remove_path_from_arr() for details 781 * how that is handled. 782 */ 783 784 ppcpu_path = this_cpu_ptr(clt->pcpu_path); 785 path = rcu_dereference(*ppcpu_path); 786 if (unlikely(!path)) 787 path = list_first_or_null_rcu(&clt->paths_list, 788 typeof(*path), s.entry); 789 else 790 path = list_next_or_null_rr_rcu(&clt->paths_list, 791 &path->s.entry, 792 typeof(*path), 793 s.entry); 794 rcu_assign_pointer(*ppcpu_path, path); 795 796 return path; 797 } 798 799 /** 800 * get_next_path_min_inflight() - Returns path with minimal inflight count. 801 * @it: the path pointer 802 * 803 * Related to @MP_POLICY_MIN_INFLIGHT 804 * 805 * Locks: 806 * rcu_read_lock() must be hold. 807 */ 808 static struct rtrs_clt_sess *get_next_path_min_inflight(struct path_it *it) 809 { 810 struct rtrs_clt_sess *min_path = NULL; 811 struct rtrs_clt *clt = it->clt; 812 struct rtrs_clt_sess *sess; 813 int min_inflight = INT_MAX; 814 int inflight; 815 816 list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) { 817 if (unlikely(!list_empty(raw_cpu_ptr(sess->mp_skip_entry)))) 818 continue; 819 820 inflight = atomic_read(&sess->stats->inflight); 821 822 if (inflight < min_inflight) { 823 min_inflight = inflight; 824 min_path = sess; 825 } 826 } 827 828 /* 829 * add the path to the skip list, so that next time we can get 830 * a different one 831 */ 832 if (min_path) 833 list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list); 834 835 return min_path; 836 } 837 838 /** 839 * get_next_path_min_latency() - Returns path with minimal latency. 840 * @it: the path pointer 841 * 842 * Return: a path with the lowest latency or NULL if all paths are tried 843 * 844 * Locks: 845 * rcu_read_lock() must be hold. 846 * 847 * Related to @MP_POLICY_MIN_LATENCY 848 * 849 * This DOES skip an already-tried path. 850 * There is a skip-list to skip a path if the path has tried but failed. 851 * It will try the minimum latency path and then the second minimum latency 852 * path and so on. Finally it will return NULL if all paths are tried. 853 * Therefore the caller MUST check the returned 854 * path is NULL and trigger the IO error. 855 */ 856 static struct rtrs_clt_sess *get_next_path_min_latency(struct path_it *it) 857 { 858 struct rtrs_clt_sess *min_path = NULL; 859 struct rtrs_clt *clt = it->clt; 860 struct rtrs_clt_sess *sess; 861 ktime_t min_latency = INT_MAX; 862 ktime_t latency; 863 864 list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) { 865 if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)) 866 continue; 867 868 if (unlikely(!list_empty(raw_cpu_ptr(sess->mp_skip_entry)))) 869 continue; 870 871 latency = sess->s.hb_cur_latency; 872 873 if (latency < min_latency) { 874 min_latency = latency; 875 min_path = sess; 876 } 877 } 878 879 /* 880 * add the path to the skip list, so that next time we can get 881 * a different one 882 */ 883 if (min_path) 884 list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list); 885 886 return min_path; 887 } 888 889 static inline void path_it_init(struct path_it *it, struct rtrs_clt *clt) 890 { 891 INIT_LIST_HEAD(&it->skip_list); 892 it->clt = clt; 893 it->i = 0; 894 895 if (clt->mp_policy == MP_POLICY_RR) 896 it->next_path = get_next_path_rr; 897 else if (clt->mp_policy == MP_POLICY_MIN_INFLIGHT) 898 it->next_path = get_next_path_min_inflight; 899 else 900 it->next_path = get_next_path_min_latency; 901 } 902 903 static inline void path_it_deinit(struct path_it *it) 904 { 905 struct list_head *skip, *tmp; 906 /* 907 * The skip_list is used only for the MIN_INFLIGHT policy. 908 * We need to remove paths from it, so that next IO can insert 909 * paths (->mp_skip_entry) into a skip_list again. 910 */ 911 list_for_each_safe(skip, tmp, &it->skip_list) 912 list_del_init(skip); 913 } 914 915 /** 916 * rtrs_clt_init_req() Initialize an rtrs_clt_io_req holding information 917 * about an inflight IO. 918 * The user buffer holding user control message (not data) is copied into 919 * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will 920 * also hold the control message of rtrs. 921 * @req: an io request holding information about IO. 922 * @sess: client session 923 * @conf: conformation callback function to notify upper layer. 924 * @permit: permit for allocation of RDMA remote buffer 925 * @priv: private pointer 926 * @vec: kernel vector containing control message 927 * @usr_len: length of the user message 928 * @sg: scater list for IO data 929 * @sg_cnt: number of scater list entries 930 * @data_len: length of the IO data 931 * @dir: direction of the IO. 932 */ 933 static void rtrs_clt_init_req(struct rtrs_clt_io_req *req, 934 struct rtrs_clt_sess *sess, 935 void (*conf)(void *priv, int errno), 936 struct rtrs_permit *permit, void *priv, 937 const struct kvec *vec, size_t usr_len, 938 struct scatterlist *sg, size_t sg_cnt, 939 size_t data_len, int dir) 940 { 941 struct iov_iter iter; 942 size_t len; 943 944 req->permit = permit; 945 req->in_use = true; 946 req->usr_len = usr_len; 947 req->data_len = data_len; 948 req->sglist = sg; 949 req->sg_cnt = sg_cnt; 950 req->priv = priv; 951 req->dir = dir; 952 req->con = rtrs_permit_to_clt_con(sess, permit); 953 req->conf = conf; 954 req->need_inv = false; 955 req->need_inv_comp = false; 956 req->inv_errno = 0; 957 958 iov_iter_kvec(&iter, READ, vec, 1, usr_len); 959 len = _copy_from_iter(req->iu->buf, usr_len, &iter); 960 WARN_ON(len != usr_len); 961 962 reinit_completion(&req->inv_comp); 963 } 964 965 static struct rtrs_clt_io_req * 966 rtrs_clt_get_req(struct rtrs_clt_sess *sess, 967 void (*conf)(void *priv, int errno), 968 struct rtrs_permit *permit, void *priv, 969 const struct kvec *vec, size_t usr_len, 970 struct scatterlist *sg, size_t sg_cnt, 971 size_t data_len, int dir) 972 { 973 struct rtrs_clt_io_req *req; 974 975 req = &sess->reqs[permit->mem_id]; 976 rtrs_clt_init_req(req, sess, conf, permit, priv, vec, usr_len, 977 sg, sg_cnt, data_len, dir); 978 return req; 979 } 980 981 static struct rtrs_clt_io_req * 982 rtrs_clt_get_copy_req(struct rtrs_clt_sess *alive_sess, 983 struct rtrs_clt_io_req *fail_req) 984 { 985 struct rtrs_clt_io_req *req; 986 struct kvec vec = { 987 .iov_base = fail_req->iu->buf, 988 .iov_len = fail_req->usr_len 989 }; 990 991 req = &alive_sess->reqs[fail_req->permit->mem_id]; 992 rtrs_clt_init_req(req, alive_sess, fail_req->conf, fail_req->permit, 993 fail_req->priv, &vec, fail_req->usr_len, 994 fail_req->sglist, fail_req->sg_cnt, 995 fail_req->data_len, fail_req->dir); 996 return req; 997 } 998 999 static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con, 1000 struct rtrs_clt_io_req *req, 1001 struct rtrs_rbuf *rbuf, 1002 u32 size, u32 imm) 1003 { 1004 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 1005 struct ib_sge *sge = req->sge; 1006 enum ib_send_flags flags; 1007 struct scatterlist *sg; 1008 size_t num_sge; 1009 int i; 1010 1011 for_each_sg(req->sglist, sg, req->sg_cnt, i) { 1012 sge[i].addr = sg_dma_address(sg); 1013 sge[i].length = sg_dma_len(sg); 1014 sge[i].lkey = sess->s.dev->ib_pd->local_dma_lkey; 1015 } 1016 sge[i].addr = req->iu->dma_addr; 1017 sge[i].length = size; 1018 sge[i].lkey = sess->s.dev->ib_pd->local_dma_lkey; 1019 1020 num_sge = 1 + req->sg_cnt; 1021 1022 /* 1023 * From time to time we have to post signalled sends, 1024 * or send queue will fill up and only QP reset can help. 1025 */ 1026 flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ? 1027 0 : IB_SEND_SIGNALED; 1028 1029 ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr, 1030 size, DMA_TO_DEVICE); 1031 1032 return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge, 1033 rbuf->rkey, rbuf->addr, imm, 1034 flags, NULL); 1035 } 1036 1037 static int rtrs_clt_write_req(struct rtrs_clt_io_req *req) 1038 { 1039 struct rtrs_clt_con *con = req->con; 1040 struct rtrs_sess *s = con->c.sess; 1041 struct rtrs_clt_sess *sess = to_clt_sess(s); 1042 struct rtrs_msg_rdma_write *msg; 1043 1044 struct rtrs_rbuf *rbuf; 1045 int ret, count = 0; 1046 u32 imm, buf_id; 1047 1048 const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len; 1049 1050 if (unlikely(tsize > sess->chunk_size)) { 1051 rtrs_wrn(s, "Write request failed, size too big %zu > %d\n", 1052 tsize, sess->chunk_size); 1053 return -EMSGSIZE; 1054 } 1055 if (req->sg_cnt) { 1056 count = ib_dma_map_sg(sess->s.dev->ib_dev, req->sglist, 1057 req->sg_cnt, req->dir); 1058 if (unlikely(!count)) { 1059 rtrs_wrn(s, "Write request failed, map failed\n"); 1060 return -EINVAL; 1061 } 1062 } 1063 /* put rtrs msg after sg and user message */ 1064 msg = req->iu->buf + req->usr_len; 1065 msg->type = cpu_to_le16(RTRS_MSG_WRITE); 1066 msg->usr_len = cpu_to_le16(req->usr_len); 1067 1068 /* rtrs message on server side will be after user data and message */ 1069 imm = req->permit->mem_off + req->data_len + req->usr_len; 1070 imm = rtrs_to_io_req_imm(imm); 1071 buf_id = req->permit->mem_id; 1072 req->sg_size = tsize; 1073 rbuf = &sess->rbufs[buf_id]; 1074 1075 /* 1076 * Update stats now, after request is successfully sent it is not 1077 * safe anymore to touch it. 1078 */ 1079 rtrs_clt_update_all_stats(req, WRITE); 1080 1081 ret = rtrs_post_rdma_write_sg(req->con, req, rbuf, 1082 req->usr_len + sizeof(*msg), 1083 imm); 1084 if (unlikely(ret)) { 1085 rtrs_err_rl(s, 1086 "Write request failed: error=%d path=%s [%s:%u]\n", 1087 ret, kobject_name(&sess->kobj), sess->hca_name, 1088 sess->hca_port); 1089 if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT) 1090 atomic_dec(&sess->stats->inflight); 1091 if (req->sg_cnt) 1092 ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist, 1093 req->sg_cnt, req->dir); 1094 } 1095 1096 return ret; 1097 } 1098 1099 static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count) 1100 { 1101 int nr; 1102 1103 /* Align the MR to a 4K page size to match the block virt boundary */ 1104 nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K); 1105 if (nr < 0) 1106 return nr; 1107 if (unlikely(nr < req->sg_cnt)) 1108 return -EINVAL; 1109 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1110 1111 return nr; 1112 } 1113 1114 static int rtrs_clt_read_req(struct rtrs_clt_io_req *req) 1115 { 1116 struct rtrs_clt_con *con = req->con; 1117 struct rtrs_sess *s = con->c.sess; 1118 struct rtrs_clt_sess *sess = to_clt_sess(s); 1119 struct rtrs_msg_rdma_read *msg; 1120 struct rtrs_ib_dev *dev = sess->s.dev; 1121 1122 struct ib_reg_wr rwr; 1123 struct ib_send_wr *wr = NULL; 1124 1125 int ret, count = 0; 1126 u32 imm, buf_id; 1127 1128 const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len; 1129 1130 if (unlikely(tsize > sess->chunk_size)) { 1131 rtrs_wrn(s, 1132 "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n", 1133 tsize, sess->chunk_size); 1134 return -EMSGSIZE; 1135 } 1136 1137 if (req->sg_cnt) { 1138 count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt, 1139 req->dir); 1140 if (unlikely(!count)) { 1141 rtrs_wrn(s, 1142 "Read request failed, dma map failed\n"); 1143 return -EINVAL; 1144 } 1145 } 1146 /* put our message into req->buf after user message*/ 1147 msg = req->iu->buf + req->usr_len; 1148 msg->type = cpu_to_le16(RTRS_MSG_READ); 1149 msg->usr_len = cpu_to_le16(req->usr_len); 1150 1151 if (count) { 1152 ret = rtrs_map_sg_fr(req, count); 1153 if (ret < 0) { 1154 rtrs_err_rl(s, 1155 "Read request failed, failed to map fast reg. data, err: %d\n", 1156 ret); 1157 ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt, 1158 req->dir); 1159 return ret; 1160 } 1161 rwr = (struct ib_reg_wr) { 1162 .wr.opcode = IB_WR_REG_MR, 1163 .wr.wr_cqe = &fast_reg_cqe, 1164 .mr = req->mr, 1165 .key = req->mr->rkey, 1166 .access = (IB_ACCESS_LOCAL_WRITE | 1167 IB_ACCESS_REMOTE_WRITE), 1168 }; 1169 wr = &rwr.wr; 1170 1171 msg->sg_cnt = cpu_to_le16(1); 1172 msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F); 1173 1174 msg->desc[0].addr = cpu_to_le64(req->mr->iova); 1175 msg->desc[0].key = cpu_to_le32(req->mr->rkey); 1176 msg->desc[0].len = cpu_to_le32(req->mr->length); 1177 1178 /* Further invalidation is required */ 1179 req->need_inv = !!RTRS_MSG_NEED_INVAL_F; 1180 1181 } else { 1182 msg->sg_cnt = 0; 1183 msg->flags = 0; 1184 } 1185 /* 1186 * rtrs message will be after the space reserved for disk data and 1187 * user message 1188 */ 1189 imm = req->permit->mem_off + req->data_len + req->usr_len; 1190 imm = rtrs_to_io_req_imm(imm); 1191 buf_id = req->permit->mem_id; 1192 1193 req->sg_size = sizeof(*msg); 1194 req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc); 1195 req->sg_size += req->usr_len; 1196 1197 /* 1198 * Update stats now, after request is successfully sent it is not 1199 * safe anymore to touch it. 1200 */ 1201 rtrs_clt_update_all_stats(req, READ); 1202 1203 ret = rtrs_post_send_rdma(req->con, req, &sess->rbufs[buf_id], 1204 req->data_len, imm, wr); 1205 if (unlikely(ret)) { 1206 rtrs_err_rl(s, 1207 "Read request failed: error=%d path=%s [%s:%u]\n", 1208 ret, kobject_name(&sess->kobj), sess->hca_name, 1209 sess->hca_port); 1210 if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT) 1211 atomic_dec(&sess->stats->inflight); 1212 req->need_inv = false; 1213 if (req->sg_cnt) 1214 ib_dma_unmap_sg(dev->ib_dev, req->sglist, 1215 req->sg_cnt, req->dir); 1216 } 1217 1218 return ret; 1219 } 1220 1221 /** 1222 * rtrs_clt_failover_req() Try to find an active path for a failed request 1223 * @clt: clt context 1224 * @fail_req: a failed io request. 1225 */ 1226 static int rtrs_clt_failover_req(struct rtrs_clt *clt, 1227 struct rtrs_clt_io_req *fail_req) 1228 { 1229 struct rtrs_clt_sess *alive_sess; 1230 struct rtrs_clt_io_req *req; 1231 int err = -ECONNABORTED; 1232 struct path_it it; 1233 1234 rcu_read_lock(); 1235 for (path_it_init(&it, clt); 1236 (alive_sess = it.next_path(&it)) && it.i < it.clt->paths_num; 1237 it.i++) { 1238 if (unlikely(READ_ONCE(alive_sess->state) != 1239 RTRS_CLT_CONNECTED)) 1240 continue; 1241 req = rtrs_clt_get_copy_req(alive_sess, fail_req); 1242 if (req->dir == DMA_TO_DEVICE) 1243 err = rtrs_clt_write_req(req); 1244 else 1245 err = rtrs_clt_read_req(req); 1246 if (unlikely(err)) { 1247 req->in_use = false; 1248 continue; 1249 } 1250 /* Success path */ 1251 rtrs_clt_inc_failover_cnt(alive_sess->stats); 1252 break; 1253 } 1254 path_it_deinit(&it); 1255 rcu_read_unlock(); 1256 1257 return err; 1258 } 1259 1260 static void fail_all_outstanding_reqs(struct rtrs_clt_sess *sess) 1261 { 1262 struct rtrs_clt *clt = sess->clt; 1263 struct rtrs_clt_io_req *req; 1264 int i, err; 1265 1266 if (!sess->reqs) 1267 return; 1268 for (i = 0; i < sess->queue_depth; ++i) { 1269 req = &sess->reqs[i]; 1270 if (!req->in_use) 1271 continue; 1272 1273 /* 1274 * Safely (without notification) complete failed request. 1275 * After completion this request is still useble and can 1276 * be failovered to another path. 1277 */ 1278 complete_rdma_req(req, -ECONNABORTED, false, true); 1279 1280 err = rtrs_clt_failover_req(clt, req); 1281 if (unlikely(err)) 1282 /* Failover failed, notify anyway */ 1283 req->conf(req->priv, err); 1284 } 1285 } 1286 1287 static void free_sess_reqs(struct rtrs_clt_sess *sess) 1288 { 1289 struct rtrs_clt_io_req *req; 1290 int i; 1291 1292 if (!sess->reqs) 1293 return; 1294 for (i = 0; i < sess->queue_depth; ++i) { 1295 req = &sess->reqs[i]; 1296 if (req->mr) 1297 ib_dereg_mr(req->mr); 1298 kfree(req->sge); 1299 rtrs_iu_free(req->iu, sess->s.dev->ib_dev, 1); 1300 } 1301 kfree(sess->reqs); 1302 sess->reqs = NULL; 1303 } 1304 1305 static int alloc_sess_reqs(struct rtrs_clt_sess *sess) 1306 { 1307 struct rtrs_clt_io_req *req; 1308 struct rtrs_clt *clt = sess->clt; 1309 int i, err = -ENOMEM; 1310 1311 sess->reqs = kcalloc(sess->queue_depth, sizeof(*sess->reqs), 1312 GFP_KERNEL); 1313 if (!sess->reqs) 1314 return -ENOMEM; 1315 1316 for (i = 0; i < sess->queue_depth; ++i) { 1317 req = &sess->reqs[i]; 1318 req->iu = rtrs_iu_alloc(1, sess->max_hdr_size, GFP_KERNEL, 1319 sess->s.dev->ib_dev, 1320 DMA_TO_DEVICE, 1321 rtrs_clt_rdma_done); 1322 if (!req->iu) 1323 goto out; 1324 1325 req->sge = kmalloc_array(clt->max_segments + 1, 1326 sizeof(*req->sge), GFP_KERNEL); 1327 if (!req->sge) 1328 goto out; 1329 1330 req->mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG, 1331 sess->max_pages_per_mr); 1332 if (IS_ERR(req->mr)) { 1333 err = PTR_ERR(req->mr); 1334 req->mr = NULL; 1335 pr_err("Failed to alloc sess->max_pages_per_mr %d\n", 1336 sess->max_pages_per_mr); 1337 goto out; 1338 } 1339 1340 init_completion(&req->inv_comp); 1341 } 1342 1343 return 0; 1344 1345 out: 1346 free_sess_reqs(sess); 1347 1348 return err; 1349 } 1350 1351 static int alloc_permits(struct rtrs_clt *clt) 1352 { 1353 unsigned int chunk_bits; 1354 int err, i; 1355 1356 clt->permits_map = kcalloc(BITS_TO_LONGS(clt->queue_depth), 1357 sizeof(long), GFP_KERNEL); 1358 if (!clt->permits_map) { 1359 err = -ENOMEM; 1360 goto out_err; 1361 } 1362 clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL); 1363 if (!clt->permits) { 1364 err = -ENOMEM; 1365 goto err_map; 1366 } 1367 chunk_bits = ilog2(clt->queue_depth - 1) + 1; 1368 for (i = 0; i < clt->queue_depth; i++) { 1369 struct rtrs_permit *permit; 1370 1371 permit = get_permit(clt, i); 1372 permit->mem_id = i; 1373 permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits); 1374 } 1375 1376 return 0; 1377 1378 err_map: 1379 kfree(clt->permits_map); 1380 clt->permits_map = NULL; 1381 out_err: 1382 return err; 1383 } 1384 1385 static void free_permits(struct rtrs_clt *clt) 1386 { 1387 if (clt->permits_map) { 1388 size_t sz = clt->queue_depth; 1389 1390 wait_event(clt->permits_wait, 1391 find_first_bit(clt->permits_map, sz) >= sz); 1392 } 1393 kfree(clt->permits_map); 1394 clt->permits_map = NULL; 1395 kfree(clt->permits); 1396 clt->permits = NULL; 1397 } 1398 1399 static void query_fast_reg_mode(struct rtrs_clt_sess *sess) 1400 { 1401 struct ib_device *ib_dev; 1402 u64 max_pages_per_mr; 1403 int mr_page_shift; 1404 1405 ib_dev = sess->s.dev->ib_dev; 1406 1407 /* 1408 * Use the smallest page size supported by the HCA, down to a 1409 * minimum of 4096 bytes. We're unlikely to build large sglists 1410 * out of smaller entries. 1411 */ 1412 mr_page_shift = max(12, ffs(ib_dev->attrs.page_size_cap) - 1); 1413 max_pages_per_mr = ib_dev->attrs.max_mr_size; 1414 do_div(max_pages_per_mr, (1ull << mr_page_shift)); 1415 sess->max_pages_per_mr = 1416 min3(sess->max_pages_per_mr, (u32)max_pages_per_mr, 1417 ib_dev->attrs.max_fast_reg_page_list_len); 1418 sess->max_send_sge = ib_dev->attrs.max_send_sge; 1419 } 1420 1421 static bool rtrs_clt_change_state_get_old(struct rtrs_clt_sess *sess, 1422 enum rtrs_clt_state new_state, 1423 enum rtrs_clt_state *old_state) 1424 { 1425 bool changed; 1426 1427 spin_lock_irq(&sess->state_wq.lock); 1428 if (old_state) 1429 *old_state = sess->state; 1430 changed = rtrs_clt_change_state(sess, new_state); 1431 spin_unlock_irq(&sess->state_wq.lock); 1432 1433 return changed; 1434 } 1435 1436 static void rtrs_clt_hb_err_handler(struct rtrs_con *c) 1437 { 1438 struct rtrs_clt_con *con = container_of(c, typeof(*con), c); 1439 1440 rtrs_rdma_error_recovery(con); 1441 } 1442 1443 static void rtrs_clt_init_hb(struct rtrs_clt_sess *sess) 1444 { 1445 rtrs_init_hb(&sess->s, &io_comp_cqe, 1446 RTRS_HB_INTERVAL_MS, 1447 RTRS_HB_MISSED_MAX, 1448 rtrs_clt_hb_err_handler, 1449 rtrs_wq); 1450 } 1451 1452 static void rtrs_clt_start_hb(struct rtrs_clt_sess *sess) 1453 { 1454 rtrs_start_hb(&sess->s); 1455 } 1456 1457 static void rtrs_clt_stop_hb(struct rtrs_clt_sess *sess) 1458 { 1459 rtrs_stop_hb(&sess->s); 1460 } 1461 1462 static void rtrs_clt_reconnect_work(struct work_struct *work); 1463 static void rtrs_clt_close_work(struct work_struct *work); 1464 1465 static struct rtrs_clt_sess *alloc_sess(struct rtrs_clt *clt, 1466 const struct rtrs_addr *path, 1467 size_t con_num, u16 max_segments, 1468 u32 nr_poll_queues) 1469 { 1470 struct rtrs_clt_sess *sess; 1471 int err = -ENOMEM; 1472 int cpu; 1473 size_t total_con; 1474 1475 sess = kzalloc(sizeof(*sess), GFP_KERNEL); 1476 if (!sess) 1477 goto err; 1478 1479 /* 1480 * irqmode and poll 1481 * +1: Extra connection for user messages 1482 */ 1483 total_con = con_num + nr_poll_queues + 1; 1484 sess->s.con = kcalloc(total_con, sizeof(*sess->s.con), GFP_KERNEL); 1485 if (!sess->s.con) 1486 goto err_free_sess; 1487 1488 sess->s.con_num = total_con; 1489 sess->s.irq_con_num = con_num + 1; 1490 1491 sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL); 1492 if (!sess->stats) 1493 goto err_free_con; 1494 1495 mutex_init(&sess->init_mutex); 1496 uuid_gen(&sess->s.uuid); 1497 memcpy(&sess->s.dst_addr, path->dst, 1498 rdma_addr_size((struct sockaddr *)path->dst)); 1499 1500 /* 1501 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which 1502 * checks the sa_family to be non-zero. If user passed src_addr=NULL 1503 * the sess->src_addr will contain only zeros, which is then fine. 1504 */ 1505 if (path->src) 1506 memcpy(&sess->s.src_addr, path->src, 1507 rdma_addr_size((struct sockaddr *)path->src)); 1508 strlcpy(sess->s.sessname, clt->sessname, sizeof(sess->s.sessname)); 1509 sess->clt = clt; 1510 sess->max_pages_per_mr = max_segments; 1511 init_waitqueue_head(&sess->state_wq); 1512 sess->state = RTRS_CLT_CONNECTING; 1513 atomic_set(&sess->connected_cnt, 0); 1514 INIT_WORK(&sess->close_work, rtrs_clt_close_work); 1515 INIT_DELAYED_WORK(&sess->reconnect_dwork, rtrs_clt_reconnect_work); 1516 rtrs_clt_init_hb(sess); 1517 1518 sess->mp_skip_entry = alloc_percpu(typeof(*sess->mp_skip_entry)); 1519 if (!sess->mp_skip_entry) 1520 goto err_free_stats; 1521 1522 for_each_possible_cpu(cpu) 1523 INIT_LIST_HEAD(per_cpu_ptr(sess->mp_skip_entry, cpu)); 1524 1525 err = rtrs_clt_init_stats(sess->stats); 1526 if (err) 1527 goto err_free_percpu; 1528 1529 return sess; 1530 1531 err_free_percpu: 1532 free_percpu(sess->mp_skip_entry); 1533 err_free_stats: 1534 kfree(sess->stats); 1535 err_free_con: 1536 kfree(sess->s.con); 1537 err_free_sess: 1538 kfree(sess); 1539 err: 1540 return ERR_PTR(err); 1541 } 1542 1543 void free_sess(struct rtrs_clt_sess *sess) 1544 { 1545 free_percpu(sess->mp_skip_entry); 1546 mutex_destroy(&sess->init_mutex); 1547 kfree(sess->s.con); 1548 kfree(sess->rbufs); 1549 kfree(sess); 1550 } 1551 1552 static int create_con(struct rtrs_clt_sess *sess, unsigned int cid) 1553 { 1554 struct rtrs_clt_con *con; 1555 1556 con = kzalloc(sizeof(*con), GFP_KERNEL); 1557 if (!con) 1558 return -ENOMEM; 1559 1560 /* Map first two connections to the first CPU */ 1561 con->cpu = (cid ? cid - 1 : 0) % nr_cpu_ids; 1562 con->c.cid = cid; 1563 con->c.sess = &sess->s; 1564 atomic_set(&con->io_cnt, 0); 1565 mutex_init(&con->con_mutex); 1566 1567 sess->s.con[cid] = &con->c; 1568 1569 return 0; 1570 } 1571 1572 static void destroy_con(struct rtrs_clt_con *con) 1573 { 1574 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 1575 1576 sess->s.con[con->c.cid] = NULL; 1577 mutex_destroy(&con->con_mutex); 1578 kfree(con); 1579 } 1580 1581 static int create_con_cq_qp(struct rtrs_clt_con *con) 1582 { 1583 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 1584 u32 max_send_wr, max_recv_wr, cq_size; 1585 int err, cq_vector; 1586 struct rtrs_msg_rkey_rsp *rsp; 1587 1588 lockdep_assert_held(&con->con_mutex); 1589 if (con->c.cid == 0) { 1590 /* 1591 * One completion for each receive and two for each send 1592 * (send request + registration) 1593 * + 2 for drain and heartbeat 1594 * in case qp gets into error state 1595 */ 1596 max_send_wr = SERVICE_CON_QUEUE_DEPTH * 2 + 2; 1597 max_recv_wr = SERVICE_CON_QUEUE_DEPTH * 2 + 2; 1598 /* We must be the first here */ 1599 if (WARN_ON(sess->s.dev)) 1600 return -EINVAL; 1601 1602 /* 1603 * The whole session uses device from user connection. 1604 * Be careful not to close user connection before ib dev 1605 * is gracefully put. 1606 */ 1607 sess->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device, 1608 &dev_pd); 1609 if (!sess->s.dev) { 1610 rtrs_wrn(sess->clt, 1611 "rtrs_ib_dev_find_get_or_add(): no memory\n"); 1612 return -ENOMEM; 1613 } 1614 sess->s.dev_ref = 1; 1615 query_fast_reg_mode(sess); 1616 } else { 1617 /* 1618 * Here we assume that session members are correctly set. 1619 * This is always true if user connection (cid == 0) is 1620 * established first. 1621 */ 1622 if (WARN_ON(!sess->s.dev)) 1623 return -EINVAL; 1624 if (WARN_ON(!sess->queue_depth)) 1625 return -EINVAL; 1626 1627 /* Shared between connections */ 1628 sess->s.dev_ref++; 1629 max_send_wr = 1630 min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr, 1631 /* QD * (REQ + RSP + FR REGS or INVS) + drain */ 1632 sess->queue_depth * 3 + 1); 1633 max_recv_wr = 1634 min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr, 1635 sess->queue_depth * 3 + 1); 1636 } 1637 /* alloc iu to recv new rkey reply when server reports flags set */ 1638 if (sess->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) { 1639 con->rsp_ius = rtrs_iu_alloc(max_recv_wr, sizeof(*rsp), 1640 GFP_KERNEL, sess->s.dev->ib_dev, 1641 DMA_FROM_DEVICE, 1642 rtrs_clt_rdma_done); 1643 if (!con->rsp_ius) 1644 return -ENOMEM; 1645 con->queue_size = max_recv_wr; 1646 } 1647 cq_size = max_send_wr + max_recv_wr; 1648 cq_vector = con->cpu % sess->s.dev->ib_dev->num_comp_vectors; 1649 if (con->c.cid >= sess->s.irq_con_num) 1650 err = rtrs_cq_qp_create(&sess->s, &con->c, sess->max_send_sge, 1651 cq_vector, cq_size, max_send_wr, 1652 max_recv_wr, IB_POLL_DIRECT); 1653 else 1654 err = rtrs_cq_qp_create(&sess->s, &con->c, sess->max_send_sge, 1655 cq_vector, cq_size, max_send_wr, 1656 max_recv_wr, IB_POLL_SOFTIRQ); 1657 /* 1658 * In case of error we do not bother to clean previous allocations, 1659 * since destroy_con_cq_qp() must be called. 1660 */ 1661 return err; 1662 } 1663 1664 static void destroy_con_cq_qp(struct rtrs_clt_con *con) 1665 { 1666 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 1667 1668 /* 1669 * Be careful here: destroy_con_cq_qp() can be called even 1670 * create_con_cq_qp() failed, see comments there. 1671 */ 1672 lockdep_assert_held(&con->con_mutex); 1673 rtrs_cq_qp_destroy(&con->c); 1674 if (con->rsp_ius) { 1675 rtrs_iu_free(con->rsp_ius, sess->s.dev->ib_dev, con->queue_size); 1676 con->rsp_ius = NULL; 1677 con->queue_size = 0; 1678 } 1679 if (sess->s.dev_ref && !--sess->s.dev_ref) { 1680 rtrs_ib_dev_put(sess->s.dev); 1681 sess->s.dev = NULL; 1682 } 1683 } 1684 1685 static void stop_cm(struct rtrs_clt_con *con) 1686 { 1687 rdma_disconnect(con->c.cm_id); 1688 if (con->c.qp) 1689 ib_drain_qp(con->c.qp); 1690 } 1691 1692 static void destroy_cm(struct rtrs_clt_con *con) 1693 { 1694 rdma_destroy_id(con->c.cm_id); 1695 con->c.cm_id = NULL; 1696 } 1697 1698 static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con) 1699 { 1700 struct rtrs_sess *s = con->c.sess; 1701 int err; 1702 1703 mutex_lock(&con->con_mutex); 1704 err = create_con_cq_qp(con); 1705 mutex_unlock(&con->con_mutex); 1706 if (err) { 1707 rtrs_err(s, "create_con_cq_qp(), err: %d\n", err); 1708 return err; 1709 } 1710 err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS); 1711 if (err) 1712 rtrs_err(s, "Resolving route failed, err: %d\n", err); 1713 1714 return err; 1715 } 1716 1717 static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con) 1718 { 1719 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 1720 struct rtrs_clt *clt = sess->clt; 1721 struct rtrs_msg_conn_req msg; 1722 struct rdma_conn_param param; 1723 1724 int err; 1725 1726 param = (struct rdma_conn_param) { 1727 .retry_count = 7, 1728 .rnr_retry_count = 7, 1729 .private_data = &msg, 1730 .private_data_len = sizeof(msg), 1731 }; 1732 1733 msg = (struct rtrs_msg_conn_req) { 1734 .magic = cpu_to_le16(RTRS_MAGIC), 1735 .version = cpu_to_le16(RTRS_PROTO_VER), 1736 .cid = cpu_to_le16(con->c.cid), 1737 .cid_num = cpu_to_le16(sess->s.con_num), 1738 .recon_cnt = cpu_to_le16(sess->s.recon_cnt), 1739 }; 1740 msg.first_conn = sess->for_new_clt ? FIRST_CONN : 0; 1741 uuid_copy(&msg.sess_uuid, &sess->s.uuid); 1742 uuid_copy(&msg.paths_uuid, &clt->paths_uuid); 1743 1744 err = rdma_connect_locked(con->c.cm_id, ¶m); 1745 if (err) 1746 rtrs_err(clt, "rdma_connect_locked(): %d\n", err); 1747 1748 return err; 1749 } 1750 1751 static int rtrs_rdma_conn_established(struct rtrs_clt_con *con, 1752 struct rdma_cm_event *ev) 1753 { 1754 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 1755 struct rtrs_clt *clt = sess->clt; 1756 const struct rtrs_msg_conn_rsp *msg; 1757 u16 version, queue_depth; 1758 int errno; 1759 u8 len; 1760 1761 msg = ev->param.conn.private_data; 1762 len = ev->param.conn.private_data_len; 1763 if (len < sizeof(*msg)) { 1764 rtrs_err(clt, "Invalid RTRS connection response\n"); 1765 return -ECONNRESET; 1766 } 1767 if (le16_to_cpu(msg->magic) != RTRS_MAGIC) { 1768 rtrs_err(clt, "Invalid RTRS magic\n"); 1769 return -ECONNRESET; 1770 } 1771 version = le16_to_cpu(msg->version); 1772 if (version >> 8 != RTRS_PROTO_VER_MAJOR) { 1773 rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n", 1774 version >> 8, RTRS_PROTO_VER_MAJOR); 1775 return -ECONNRESET; 1776 } 1777 errno = le16_to_cpu(msg->errno); 1778 if (errno) { 1779 rtrs_err(clt, "Invalid RTRS message: errno %d\n", 1780 errno); 1781 return -ECONNRESET; 1782 } 1783 if (con->c.cid == 0) { 1784 queue_depth = le16_to_cpu(msg->queue_depth); 1785 1786 if (queue_depth > MAX_SESS_QUEUE_DEPTH) { 1787 rtrs_err(clt, "Invalid RTRS message: queue=%d\n", 1788 queue_depth); 1789 return -ECONNRESET; 1790 } 1791 if (!sess->rbufs || sess->queue_depth < queue_depth) { 1792 kfree(sess->rbufs); 1793 sess->rbufs = kcalloc(queue_depth, sizeof(*sess->rbufs), 1794 GFP_KERNEL); 1795 if (!sess->rbufs) 1796 return -ENOMEM; 1797 } 1798 sess->queue_depth = queue_depth; 1799 sess->max_hdr_size = le32_to_cpu(msg->max_hdr_size); 1800 sess->max_io_size = le32_to_cpu(msg->max_io_size); 1801 sess->flags = le32_to_cpu(msg->flags); 1802 sess->chunk_size = sess->max_io_size + sess->max_hdr_size; 1803 1804 /* 1805 * Global queue depth and IO size is always a minimum. 1806 * If while a reconnection server sends us a value a bit 1807 * higher - client does not care and uses cached minimum. 1808 * 1809 * Since we can have several sessions (paths) restablishing 1810 * connections in parallel, use lock. 1811 */ 1812 mutex_lock(&clt->paths_mutex); 1813 clt->queue_depth = min_not_zero(sess->queue_depth, 1814 clt->queue_depth); 1815 clt->max_io_size = min_not_zero(sess->max_io_size, 1816 clt->max_io_size); 1817 mutex_unlock(&clt->paths_mutex); 1818 1819 /* 1820 * Cache the hca_port and hca_name for sysfs 1821 */ 1822 sess->hca_port = con->c.cm_id->port_num; 1823 scnprintf(sess->hca_name, sizeof(sess->hca_name), 1824 sess->s.dev->ib_dev->name); 1825 sess->s.src_addr = con->c.cm_id->route.addr.src_addr; 1826 /* set for_new_clt, to allow future reconnect on any path */ 1827 sess->for_new_clt = 1; 1828 } 1829 1830 return 0; 1831 } 1832 1833 static inline void flag_success_on_conn(struct rtrs_clt_con *con) 1834 { 1835 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 1836 1837 atomic_inc(&sess->connected_cnt); 1838 con->cm_err = 1; 1839 } 1840 1841 static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con, 1842 struct rdma_cm_event *ev) 1843 { 1844 struct rtrs_sess *s = con->c.sess; 1845 const struct rtrs_msg_conn_rsp *msg; 1846 const char *rej_msg; 1847 int status, errno; 1848 u8 data_len; 1849 1850 status = ev->status; 1851 rej_msg = rdma_reject_msg(con->c.cm_id, status); 1852 msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len); 1853 1854 if (msg && data_len >= sizeof(*msg)) { 1855 errno = (int16_t)le16_to_cpu(msg->errno); 1856 if (errno == -EBUSY) 1857 rtrs_err(s, 1858 "Previous session is still exists on the server, please reconnect later\n"); 1859 else 1860 rtrs_err(s, 1861 "Connect rejected: status %d (%s), rtrs errno %d\n", 1862 status, rej_msg, errno); 1863 } else { 1864 rtrs_err(s, 1865 "Connect rejected but with malformed message: status %d (%s)\n", 1866 status, rej_msg); 1867 } 1868 1869 return -ECONNRESET; 1870 } 1871 1872 static void rtrs_clt_close_conns(struct rtrs_clt_sess *sess, bool wait) 1873 { 1874 if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_CLOSING, NULL)) 1875 queue_work(rtrs_wq, &sess->close_work); 1876 if (wait) 1877 flush_work(&sess->close_work); 1878 } 1879 1880 static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err) 1881 { 1882 if (con->cm_err == 1) { 1883 struct rtrs_clt_sess *sess; 1884 1885 sess = to_clt_sess(con->c.sess); 1886 if (atomic_dec_and_test(&sess->connected_cnt)) 1887 1888 wake_up(&sess->state_wq); 1889 } 1890 con->cm_err = cm_err; 1891 } 1892 1893 static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id, 1894 struct rdma_cm_event *ev) 1895 { 1896 struct rtrs_clt_con *con = cm_id->context; 1897 struct rtrs_sess *s = con->c.sess; 1898 struct rtrs_clt_sess *sess = to_clt_sess(s); 1899 int cm_err = 0; 1900 1901 switch (ev->event) { 1902 case RDMA_CM_EVENT_ADDR_RESOLVED: 1903 cm_err = rtrs_rdma_addr_resolved(con); 1904 break; 1905 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1906 cm_err = rtrs_rdma_route_resolved(con); 1907 break; 1908 case RDMA_CM_EVENT_ESTABLISHED: 1909 cm_err = rtrs_rdma_conn_established(con, ev); 1910 if (likely(!cm_err)) { 1911 /* 1912 * Report success and wake up. Here we abuse state_wq, 1913 * i.e. wake up without state change, but we set cm_err. 1914 */ 1915 flag_success_on_conn(con); 1916 wake_up(&sess->state_wq); 1917 return 0; 1918 } 1919 break; 1920 case RDMA_CM_EVENT_REJECTED: 1921 cm_err = rtrs_rdma_conn_rejected(con, ev); 1922 break; 1923 case RDMA_CM_EVENT_DISCONNECTED: 1924 /* No message for disconnecting */ 1925 cm_err = -ECONNRESET; 1926 break; 1927 case RDMA_CM_EVENT_CONNECT_ERROR: 1928 case RDMA_CM_EVENT_UNREACHABLE: 1929 case RDMA_CM_EVENT_ADDR_CHANGE: 1930 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1931 rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n", 1932 rdma_event_msg(ev->event), ev->status); 1933 cm_err = -ECONNRESET; 1934 break; 1935 case RDMA_CM_EVENT_ADDR_ERROR: 1936 case RDMA_CM_EVENT_ROUTE_ERROR: 1937 rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n", 1938 rdma_event_msg(ev->event), ev->status); 1939 cm_err = -EHOSTUNREACH; 1940 break; 1941 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1942 /* 1943 * Device removal is a special case. Queue close and return 0. 1944 */ 1945 rtrs_clt_close_conns(sess, false); 1946 return 0; 1947 default: 1948 rtrs_err(s, "Unexpected RDMA CM error (CM event: %s, err: %d)\n", 1949 rdma_event_msg(ev->event), ev->status); 1950 cm_err = -ECONNRESET; 1951 break; 1952 } 1953 1954 if (cm_err) { 1955 /* 1956 * cm error makes sense only on connection establishing, 1957 * in other cases we rely on normal procedure of reconnecting. 1958 */ 1959 flag_error_on_conn(con, cm_err); 1960 rtrs_rdma_error_recovery(con); 1961 } 1962 1963 return 0; 1964 } 1965 1966 static int create_cm(struct rtrs_clt_con *con) 1967 { 1968 struct rtrs_sess *s = con->c.sess; 1969 struct rtrs_clt_sess *sess = to_clt_sess(s); 1970 struct rdma_cm_id *cm_id; 1971 int err; 1972 1973 cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con, 1974 sess->s.dst_addr.ss_family == AF_IB ? 1975 RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC); 1976 if (IS_ERR(cm_id)) { 1977 err = PTR_ERR(cm_id); 1978 rtrs_err(s, "Failed to create CM ID, err: %d\n", err); 1979 1980 return err; 1981 } 1982 con->c.cm_id = cm_id; 1983 con->cm_err = 0; 1984 /* allow the port to be reused */ 1985 err = rdma_set_reuseaddr(cm_id, 1); 1986 if (err != 0) { 1987 rtrs_err(s, "Set address reuse failed, err: %d\n", err); 1988 goto destroy_cm; 1989 } 1990 err = rdma_resolve_addr(cm_id, (struct sockaddr *)&sess->s.src_addr, 1991 (struct sockaddr *)&sess->s.dst_addr, 1992 RTRS_CONNECT_TIMEOUT_MS); 1993 if (err) { 1994 rtrs_err(s, "Failed to resolve address, err: %d\n", err); 1995 goto destroy_cm; 1996 } 1997 /* 1998 * Combine connection status and session events. This is needed 1999 * for waiting two possible cases: cm_err has something meaningful 2000 * or session state was really changed to error by device removal. 2001 */ 2002 err = wait_event_interruptible_timeout( 2003 sess->state_wq, 2004 con->cm_err || sess->state != RTRS_CLT_CONNECTING, 2005 msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS)); 2006 if (err == 0 || err == -ERESTARTSYS) { 2007 if (err == 0) 2008 err = -ETIMEDOUT; 2009 /* Timedout or interrupted */ 2010 goto errr; 2011 } 2012 if (con->cm_err < 0) { 2013 err = con->cm_err; 2014 goto errr; 2015 } 2016 if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTING) { 2017 /* Device removal */ 2018 err = -ECONNABORTED; 2019 goto errr; 2020 } 2021 2022 return 0; 2023 2024 errr: 2025 stop_cm(con); 2026 mutex_lock(&con->con_mutex); 2027 destroy_con_cq_qp(con); 2028 mutex_unlock(&con->con_mutex); 2029 destroy_cm: 2030 destroy_cm(con); 2031 2032 return err; 2033 } 2034 2035 static void rtrs_clt_sess_up(struct rtrs_clt_sess *sess) 2036 { 2037 struct rtrs_clt *clt = sess->clt; 2038 int up; 2039 2040 /* 2041 * We can fire RECONNECTED event only when all paths were 2042 * connected on rtrs_clt_open(), then each was disconnected 2043 * and the first one connected again. That's why this nasty 2044 * game with counter value. 2045 */ 2046 2047 mutex_lock(&clt->paths_ev_mutex); 2048 up = ++clt->paths_up; 2049 /* 2050 * Here it is safe to access paths num directly since up counter 2051 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is 2052 * in progress, thus paths removals are impossible. 2053 */ 2054 if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num) 2055 clt->paths_up = clt->paths_num; 2056 else if (up == 1) 2057 clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED); 2058 mutex_unlock(&clt->paths_ev_mutex); 2059 2060 /* Mark session as established */ 2061 sess->established = true; 2062 sess->reconnect_attempts = 0; 2063 sess->stats->reconnects.successful_cnt++; 2064 } 2065 2066 static void rtrs_clt_sess_down(struct rtrs_clt_sess *sess) 2067 { 2068 struct rtrs_clt *clt = sess->clt; 2069 2070 if (!sess->established) 2071 return; 2072 2073 sess->established = false; 2074 mutex_lock(&clt->paths_ev_mutex); 2075 WARN_ON(!clt->paths_up); 2076 if (--clt->paths_up == 0) 2077 clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED); 2078 mutex_unlock(&clt->paths_ev_mutex); 2079 } 2080 2081 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_sess *sess) 2082 { 2083 struct rtrs_clt_con *con; 2084 unsigned int cid; 2085 2086 WARN_ON(READ_ONCE(sess->state) == RTRS_CLT_CONNECTED); 2087 2088 /* 2089 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes 2090 * exactly in between. Start destroying after it finishes. 2091 */ 2092 mutex_lock(&sess->init_mutex); 2093 mutex_unlock(&sess->init_mutex); 2094 2095 /* 2096 * All IO paths must observe !CONNECTED state before we 2097 * free everything. 2098 */ 2099 synchronize_rcu(); 2100 2101 rtrs_clt_stop_hb(sess); 2102 2103 /* 2104 * The order it utterly crucial: firstly disconnect and complete all 2105 * rdma requests with error (thus set in_use=false for requests), 2106 * then fail outstanding requests checking in_use for each, and 2107 * eventually notify upper layer about session disconnection. 2108 */ 2109 2110 for (cid = 0; cid < sess->s.con_num; cid++) { 2111 if (!sess->s.con[cid]) 2112 break; 2113 con = to_clt_con(sess->s.con[cid]); 2114 stop_cm(con); 2115 } 2116 fail_all_outstanding_reqs(sess); 2117 free_sess_reqs(sess); 2118 rtrs_clt_sess_down(sess); 2119 2120 /* 2121 * Wait for graceful shutdown, namely when peer side invokes 2122 * rdma_disconnect(). 'connected_cnt' is decremented only on 2123 * CM events, thus if other side had crashed and hb has detected 2124 * something is wrong, here we will stuck for exactly timeout ms, 2125 * since CM does not fire anything. That is fine, we are not in 2126 * hurry. 2127 */ 2128 wait_event_timeout(sess->state_wq, !atomic_read(&sess->connected_cnt), 2129 msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS)); 2130 2131 for (cid = 0; cid < sess->s.con_num; cid++) { 2132 if (!sess->s.con[cid]) 2133 break; 2134 con = to_clt_con(sess->s.con[cid]); 2135 mutex_lock(&con->con_mutex); 2136 destroy_con_cq_qp(con); 2137 mutex_unlock(&con->con_mutex); 2138 destroy_cm(con); 2139 destroy_con(con); 2140 } 2141 } 2142 2143 static inline bool xchg_sessions(struct rtrs_clt_sess __rcu **rcu_ppcpu_path, 2144 struct rtrs_clt_sess *sess, 2145 struct rtrs_clt_sess *next) 2146 { 2147 struct rtrs_clt_sess **ppcpu_path; 2148 2149 /* Call cmpxchg() without sparse warnings */ 2150 ppcpu_path = (typeof(ppcpu_path))rcu_ppcpu_path; 2151 return sess == cmpxchg(ppcpu_path, sess, next); 2152 } 2153 2154 static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_sess *sess) 2155 { 2156 struct rtrs_clt *clt = sess->clt; 2157 struct rtrs_clt_sess *next; 2158 bool wait_for_grace = false; 2159 int cpu; 2160 2161 mutex_lock(&clt->paths_mutex); 2162 list_del_rcu(&sess->s.entry); 2163 2164 /* Make sure everybody observes path removal. */ 2165 synchronize_rcu(); 2166 2167 /* 2168 * At this point nobody sees @sess in the list, but still we have 2169 * dangling pointer @pcpu_path which _can_ point to @sess. Since 2170 * nobody can observe @sess in the list, we guarantee that IO path 2171 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal 2172 * to @sess, but can never again become @sess. 2173 */ 2174 2175 /* 2176 * Decrement paths number only after grace period, because 2177 * caller of do_each_path() must firstly observe list without 2178 * path and only then decremented paths number. 2179 * 2180 * Otherwise there can be the following situation: 2181 * o Two paths exist and IO is coming. 2182 * o One path is removed: 2183 * CPU#0 CPU#1 2184 * do_each_path(): rtrs_clt_remove_path_from_arr(): 2185 * path = get_next_path() 2186 * ^^^ list_del_rcu(path) 2187 * [!CONNECTED path] clt->paths_num-- 2188 * ^^^^^^^^^ 2189 * load clt->paths_num from 2 to 1 2190 * ^^^^^^^^^ 2191 * sees 1 2192 * 2193 * path is observed as !CONNECTED, but do_each_path() loop 2194 * ends, because expression i < clt->paths_num is false. 2195 */ 2196 clt->paths_num--; 2197 2198 /* 2199 * Get @next connection from current @sess which is going to be 2200 * removed. If @sess is the last element, then @next is NULL. 2201 */ 2202 rcu_read_lock(); 2203 next = list_next_or_null_rr_rcu(&clt->paths_list, &sess->s.entry, 2204 typeof(*next), s.entry); 2205 rcu_read_unlock(); 2206 2207 /* 2208 * @pcpu paths can still point to the path which is going to be 2209 * removed, so change the pointer manually. 2210 */ 2211 for_each_possible_cpu(cpu) { 2212 struct rtrs_clt_sess __rcu **ppcpu_path; 2213 2214 ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu); 2215 if (rcu_dereference_protected(*ppcpu_path, 2216 lockdep_is_held(&clt->paths_mutex)) != sess) 2217 /* 2218 * synchronize_rcu() was called just after deleting 2219 * entry from the list, thus IO code path cannot 2220 * change pointer back to the pointer which is going 2221 * to be removed, we are safe here. 2222 */ 2223 continue; 2224 2225 /* 2226 * We race with IO code path, which also changes pointer, 2227 * thus we have to be careful not to overwrite it. 2228 */ 2229 if (xchg_sessions(ppcpu_path, sess, next)) 2230 /* 2231 * @ppcpu_path was successfully replaced with @next, 2232 * that means that someone could also pick up the 2233 * @sess and dereferencing it right now, so wait for 2234 * a grace period is required. 2235 */ 2236 wait_for_grace = true; 2237 } 2238 if (wait_for_grace) 2239 synchronize_rcu(); 2240 2241 mutex_unlock(&clt->paths_mutex); 2242 } 2243 2244 static void rtrs_clt_add_path_to_arr(struct rtrs_clt_sess *sess) 2245 { 2246 struct rtrs_clt *clt = sess->clt; 2247 2248 mutex_lock(&clt->paths_mutex); 2249 clt->paths_num++; 2250 2251 list_add_tail_rcu(&sess->s.entry, &clt->paths_list); 2252 mutex_unlock(&clt->paths_mutex); 2253 } 2254 2255 static void rtrs_clt_close_work(struct work_struct *work) 2256 { 2257 struct rtrs_clt_sess *sess; 2258 2259 sess = container_of(work, struct rtrs_clt_sess, close_work); 2260 2261 cancel_delayed_work_sync(&sess->reconnect_dwork); 2262 rtrs_clt_stop_and_destroy_conns(sess); 2263 rtrs_clt_change_state_get_old(sess, RTRS_CLT_CLOSED, NULL); 2264 } 2265 2266 static int init_conns(struct rtrs_clt_sess *sess) 2267 { 2268 unsigned int cid; 2269 int err; 2270 2271 /* 2272 * On every new session connections increase reconnect counter 2273 * to avoid clashes with previous sessions not yet closed 2274 * sessions on a server side. 2275 */ 2276 sess->s.recon_cnt++; 2277 2278 /* Establish all RDMA connections */ 2279 for (cid = 0; cid < sess->s.con_num; cid++) { 2280 err = create_con(sess, cid); 2281 if (err) 2282 goto destroy; 2283 2284 err = create_cm(to_clt_con(sess->s.con[cid])); 2285 if (err) { 2286 destroy_con(to_clt_con(sess->s.con[cid])); 2287 goto destroy; 2288 } 2289 } 2290 err = alloc_sess_reqs(sess); 2291 if (err) 2292 goto destroy; 2293 2294 rtrs_clt_start_hb(sess); 2295 2296 return 0; 2297 2298 destroy: 2299 while (cid--) { 2300 struct rtrs_clt_con *con = to_clt_con(sess->s.con[cid]); 2301 2302 stop_cm(con); 2303 2304 mutex_lock(&con->con_mutex); 2305 destroy_con_cq_qp(con); 2306 mutex_unlock(&con->con_mutex); 2307 destroy_cm(con); 2308 destroy_con(con); 2309 } 2310 /* 2311 * If we've never taken async path and got an error, say, 2312 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state 2313 * manually to keep reconnecting. 2314 */ 2315 rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL); 2316 2317 return err; 2318 } 2319 2320 static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc) 2321 { 2322 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context); 2323 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 2324 struct rtrs_iu *iu; 2325 2326 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); 2327 rtrs_iu_free(iu, sess->s.dev->ib_dev, 1); 2328 2329 if (unlikely(wc->status != IB_WC_SUCCESS)) { 2330 rtrs_err(sess->clt, "Sess info request send failed: %s\n", 2331 ib_wc_status_msg(wc->status)); 2332 rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL); 2333 return; 2334 } 2335 2336 rtrs_clt_update_wc_stats(con); 2337 } 2338 2339 static int process_info_rsp(struct rtrs_clt_sess *sess, 2340 const struct rtrs_msg_info_rsp *msg) 2341 { 2342 unsigned int sg_cnt, total_len; 2343 int i, sgi; 2344 2345 sg_cnt = le16_to_cpu(msg->sg_cnt); 2346 if (unlikely(!sg_cnt || (sess->queue_depth % sg_cnt))) { 2347 rtrs_err(sess->clt, "Incorrect sg_cnt %d, is not multiple\n", 2348 sg_cnt); 2349 return -EINVAL; 2350 } 2351 2352 /* 2353 * Check if IB immediate data size is enough to hold the mem_id and 2354 * the offset inside the memory chunk. 2355 */ 2356 if (unlikely((ilog2(sg_cnt - 1) + 1) + 2357 (ilog2(sess->chunk_size - 1) + 1) > 2358 MAX_IMM_PAYL_BITS)) { 2359 rtrs_err(sess->clt, 2360 "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n", 2361 MAX_IMM_PAYL_BITS, sg_cnt, sess->chunk_size); 2362 return -EINVAL; 2363 } 2364 total_len = 0; 2365 for (sgi = 0, i = 0; sgi < sg_cnt && i < sess->queue_depth; sgi++) { 2366 const struct rtrs_sg_desc *desc = &msg->desc[sgi]; 2367 u32 len, rkey; 2368 u64 addr; 2369 2370 addr = le64_to_cpu(desc->addr); 2371 rkey = le32_to_cpu(desc->key); 2372 len = le32_to_cpu(desc->len); 2373 2374 total_len += len; 2375 2376 if (unlikely(!len || (len % sess->chunk_size))) { 2377 rtrs_err(sess->clt, "Incorrect [%d].len %d\n", sgi, 2378 len); 2379 return -EINVAL; 2380 } 2381 for ( ; len && i < sess->queue_depth; i++) { 2382 sess->rbufs[i].addr = addr; 2383 sess->rbufs[i].rkey = rkey; 2384 2385 len -= sess->chunk_size; 2386 addr += sess->chunk_size; 2387 } 2388 } 2389 /* Sanity check */ 2390 if (unlikely(sgi != sg_cnt || i != sess->queue_depth)) { 2391 rtrs_err(sess->clt, "Incorrect sg vector, not fully mapped\n"); 2392 return -EINVAL; 2393 } 2394 if (unlikely(total_len != sess->chunk_size * sess->queue_depth)) { 2395 rtrs_err(sess->clt, "Incorrect total_len %d\n", total_len); 2396 return -EINVAL; 2397 } 2398 2399 return 0; 2400 } 2401 2402 static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc) 2403 { 2404 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context); 2405 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 2406 struct rtrs_msg_info_rsp *msg; 2407 enum rtrs_clt_state state; 2408 struct rtrs_iu *iu; 2409 size_t rx_sz; 2410 int err; 2411 2412 state = RTRS_CLT_CONNECTING_ERR; 2413 2414 WARN_ON(con->c.cid); 2415 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); 2416 if (unlikely(wc->status != IB_WC_SUCCESS)) { 2417 rtrs_err(sess->clt, "Sess info response recv failed: %s\n", 2418 ib_wc_status_msg(wc->status)); 2419 goto out; 2420 } 2421 WARN_ON(wc->opcode != IB_WC_RECV); 2422 2423 if (unlikely(wc->byte_len < sizeof(*msg))) { 2424 rtrs_err(sess->clt, "Sess info response is malformed: size %d\n", 2425 wc->byte_len); 2426 goto out; 2427 } 2428 ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr, 2429 iu->size, DMA_FROM_DEVICE); 2430 msg = iu->buf; 2431 if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP)) { 2432 rtrs_err(sess->clt, "Sess info response is malformed: type %d\n", 2433 le16_to_cpu(msg->type)); 2434 goto out; 2435 } 2436 rx_sz = sizeof(*msg); 2437 rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt); 2438 if (unlikely(wc->byte_len < rx_sz)) { 2439 rtrs_err(sess->clt, "Sess info response is malformed: size %d\n", 2440 wc->byte_len); 2441 goto out; 2442 } 2443 err = process_info_rsp(sess, msg); 2444 if (unlikely(err)) 2445 goto out; 2446 2447 err = post_recv_sess(sess); 2448 if (unlikely(err)) 2449 goto out; 2450 2451 state = RTRS_CLT_CONNECTED; 2452 2453 out: 2454 rtrs_clt_update_wc_stats(con); 2455 rtrs_iu_free(iu, sess->s.dev->ib_dev, 1); 2456 rtrs_clt_change_state_get_old(sess, state, NULL); 2457 } 2458 2459 static int rtrs_send_sess_info(struct rtrs_clt_sess *sess) 2460 { 2461 struct rtrs_clt_con *usr_con = to_clt_con(sess->s.con[0]); 2462 struct rtrs_msg_info_req *msg; 2463 struct rtrs_iu *tx_iu, *rx_iu; 2464 size_t rx_sz; 2465 int err; 2466 2467 rx_sz = sizeof(struct rtrs_msg_info_rsp); 2468 rx_sz += sizeof(u64) * MAX_SESS_QUEUE_DEPTH; 2469 2470 tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL, 2471 sess->s.dev->ib_dev, DMA_TO_DEVICE, 2472 rtrs_clt_info_req_done); 2473 rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, sess->s.dev->ib_dev, 2474 DMA_FROM_DEVICE, rtrs_clt_info_rsp_done); 2475 if (unlikely(!tx_iu || !rx_iu)) { 2476 err = -ENOMEM; 2477 goto out; 2478 } 2479 /* Prepare for getting info response */ 2480 err = rtrs_iu_post_recv(&usr_con->c, rx_iu); 2481 if (unlikely(err)) { 2482 rtrs_err(sess->clt, "rtrs_iu_post_recv(), err: %d\n", err); 2483 goto out; 2484 } 2485 rx_iu = NULL; 2486 2487 msg = tx_iu->buf; 2488 msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ); 2489 memcpy(msg->sessname, sess->s.sessname, sizeof(msg->sessname)); 2490 2491 ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr, 2492 tx_iu->size, DMA_TO_DEVICE); 2493 2494 /* Send info request */ 2495 err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL); 2496 if (unlikely(err)) { 2497 rtrs_err(sess->clt, "rtrs_iu_post_send(), err: %d\n", err); 2498 goto out; 2499 } 2500 tx_iu = NULL; 2501 2502 /* Wait for state change */ 2503 wait_event_interruptible_timeout(sess->state_wq, 2504 sess->state != RTRS_CLT_CONNECTING, 2505 msecs_to_jiffies( 2506 RTRS_CONNECT_TIMEOUT_MS)); 2507 if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)) { 2508 if (READ_ONCE(sess->state) == RTRS_CLT_CONNECTING_ERR) 2509 err = -ECONNRESET; 2510 else 2511 err = -ETIMEDOUT; 2512 } 2513 2514 out: 2515 if (tx_iu) 2516 rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1); 2517 if (rx_iu) 2518 rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1); 2519 if (unlikely(err)) 2520 /* If we've never taken async path because of malloc problems */ 2521 rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL); 2522 2523 return err; 2524 } 2525 2526 /** 2527 * init_sess() - establishes all session connections and does handshake 2528 * @sess: client session. 2529 * In case of error full close or reconnect procedure should be taken, 2530 * because reconnect or close async works can be started. 2531 */ 2532 static int init_sess(struct rtrs_clt_sess *sess) 2533 { 2534 int err; 2535 char str[NAME_MAX]; 2536 struct rtrs_addr path = { 2537 .src = &sess->s.src_addr, 2538 .dst = &sess->s.dst_addr, 2539 }; 2540 2541 rtrs_addr_to_str(&path, str, sizeof(str)); 2542 2543 mutex_lock(&sess->init_mutex); 2544 err = init_conns(sess); 2545 if (err) { 2546 rtrs_err(sess->clt, 2547 "init_conns() failed: err=%d path=%s [%s:%u]\n", err, 2548 str, sess->hca_name, sess->hca_port); 2549 goto out; 2550 } 2551 err = rtrs_send_sess_info(sess); 2552 if (err) { 2553 rtrs_err( 2554 sess->clt, 2555 "rtrs_send_sess_info() failed: err=%d path=%s [%s:%u]\n", 2556 err, str, sess->hca_name, sess->hca_port); 2557 goto out; 2558 } 2559 rtrs_clt_sess_up(sess); 2560 out: 2561 mutex_unlock(&sess->init_mutex); 2562 2563 return err; 2564 } 2565 2566 static void rtrs_clt_reconnect_work(struct work_struct *work) 2567 { 2568 struct rtrs_clt_sess *sess; 2569 struct rtrs_clt *clt; 2570 unsigned int delay_ms; 2571 int err; 2572 2573 sess = container_of(to_delayed_work(work), struct rtrs_clt_sess, 2574 reconnect_dwork); 2575 clt = sess->clt; 2576 2577 if (READ_ONCE(sess->state) != RTRS_CLT_RECONNECTING) 2578 return; 2579 2580 if (sess->reconnect_attempts >= clt->max_reconnect_attempts) { 2581 /* Close a session completely if max attempts is reached */ 2582 rtrs_clt_close_conns(sess, false); 2583 return; 2584 } 2585 sess->reconnect_attempts++; 2586 2587 /* Stop everything */ 2588 rtrs_clt_stop_and_destroy_conns(sess); 2589 msleep(RTRS_RECONNECT_BACKOFF); 2590 if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING, NULL)) { 2591 err = init_sess(sess); 2592 if (err) 2593 goto reconnect_again; 2594 } 2595 2596 return; 2597 2598 reconnect_again: 2599 if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING, NULL)) { 2600 sess->stats->reconnects.fail_cnt++; 2601 delay_ms = clt->reconnect_delay_sec * 1000; 2602 queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 2603 msecs_to_jiffies(delay_ms + 2604 prandom_u32() % 2605 RTRS_RECONNECT_SEED)); 2606 } 2607 } 2608 2609 static void rtrs_clt_dev_release(struct device *dev) 2610 { 2611 struct rtrs_clt *clt = container_of(dev, struct rtrs_clt, dev); 2612 2613 kfree(clt); 2614 } 2615 2616 static struct rtrs_clt *alloc_clt(const char *sessname, size_t paths_num, 2617 u16 port, size_t pdu_sz, void *priv, 2618 void (*link_ev)(void *priv, 2619 enum rtrs_clt_link_ev ev), 2620 unsigned int max_segments, 2621 unsigned int reconnect_delay_sec, 2622 unsigned int max_reconnect_attempts) 2623 { 2624 struct rtrs_clt *clt; 2625 int err; 2626 2627 if (!paths_num || paths_num > MAX_PATHS_NUM) 2628 return ERR_PTR(-EINVAL); 2629 2630 if (strlen(sessname) >= sizeof(clt->sessname)) 2631 return ERR_PTR(-EINVAL); 2632 2633 clt = kzalloc(sizeof(*clt), GFP_KERNEL); 2634 if (!clt) 2635 return ERR_PTR(-ENOMEM); 2636 2637 clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path)); 2638 if (!clt->pcpu_path) { 2639 kfree(clt); 2640 return ERR_PTR(-ENOMEM); 2641 } 2642 2643 uuid_gen(&clt->paths_uuid); 2644 INIT_LIST_HEAD_RCU(&clt->paths_list); 2645 clt->paths_num = paths_num; 2646 clt->paths_up = MAX_PATHS_NUM; 2647 clt->port = port; 2648 clt->pdu_sz = pdu_sz; 2649 clt->max_segments = max_segments; 2650 clt->reconnect_delay_sec = reconnect_delay_sec; 2651 clt->max_reconnect_attempts = max_reconnect_attempts; 2652 clt->priv = priv; 2653 clt->link_ev = link_ev; 2654 clt->mp_policy = MP_POLICY_MIN_INFLIGHT; 2655 strlcpy(clt->sessname, sessname, sizeof(clt->sessname)); 2656 init_waitqueue_head(&clt->permits_wait); 2657 mutex_init(&clt->paths_ev_mutex); 2658 mutex_init(&clt->paths_mutex); 2659 2660 clt->dev.class = rtrs_clt_dev_class; 2661 clt->dev.release = rtrs_clt_dev_release; 2662 err = dev_set_name(&clt->dev, "%s", sessname); 2663 if (err) 2664 goto err; 2665 /* 2666 * Suppress user space notification until 2667 * sysfs files are created 2668 */ 2669 dev_set_uevent_suppress(&clt->dev, true); 2670 err = device_register(&clt->dev); 2671 if (err) { 2672 put_device(&clt->dev); 2673 goto err; 2674 } 2675 2676 clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj); 2677 if (!clt->kobj_paths) { 2678 err = -ENOMEM; 2679 goto err_dev; 2680 } 2681 err = rtrs_clt_create_sysfs_root_files(clt); 2682 if (err) { 2683 kobject_del(clt->kobj_paths); 2684 kobject_put(clt->kobj_paths); 2685 goto err_dev; 2686 } 2687 dev_set_uevent_suppress(&clt->dev, false); 2688 kobject_uevent(&clt->dev.kobj, KOBJ_ADD); 2689 2690 return clt; 2691 err_dev: 2692 device_unregister(&clt->dev); 2693 err: 2694 free_percpu(clt->pcpu_path); 2695 kfree(clt); 2696 return ERR_PTR(err); 2697 } 2698 2699 static void free_clt(struct rtrs_clt *clt) 2700 { 2701 free_permits(clt); 2702 free_percpu(clt->pcpu_path); 2703 mutex_destroy(&clt->paths_ev_mutex); 2704 mutex_destroy(&clt->paths_mutex); 2705 /* release callback will free clt in last put */ 2706 device_unregister(&clt->dev); 2707 } 2708 2709 /** 2710 * rtrs_clt_open() - Open a session to an RTRS server 2711 * @ops: holds the link event callback and the private pointer. 2712 * @sessname: name of the session 2713 * @paths: Paths to be established defined by their src and dst addresses 2714 * @paths_num: Number of elements in the @paths array 2715 * @port: port to be used by the RTRS session 2716 * @pdu_sz: Size of extra payload which can be accessed after permit allocation. 2717 * @reconnect_delay_sec: time between reconnect tries 2718 * @max_segments: Max. number of segments per IO request 2719 * @max_reconnect_attempts: Number of times to reconnect on error before giving 2720 * up, 0 for * disabled, -1 for forever 2721 * @nr_poll_queues: number of polling mode connection using IB_POLL_DIRECT flag 2722 * 2723 * Starts session establishment with the rtrs_server. The function can block 2724 * up to ~2000ms before it returns. 2725 * 2726 * Return a valid pointer on success otherwise PTR_ERR. 2727 */ 2728 struct rtrs_clt *rtrs_clt_open(struct rtrs_clt_ops *ops, 2729 const char *sessname, 2730 const struct rtrs_addr *paths, 2731 size_t paths_num, u16 port, 2732 size_t pdu_sz, u8 reconnect_delay_sec, 2733 u16 max_segments, 2734 s16 max_reconnect_attempts, u32 nr_poll_queues) 2735 { 2736 struct rtrs_clt_sess *sess, *tmp; 2737 struct rtrs_clt *clt; 2738 int err, i; 2739 2740 clt = alloc_clt(sessname, paths_num, port, pdu_sz, ops->priv, 2741 ops->link_ev, 2742 max_segments, reconnect_delay_sec, 2743 max_reconnect_attempts); 2744 if (IS_ERR(clt)) { 2745 err = PTR_ERR(clt); 2746 goto out; 2747 } 2748 for (i = 0; i < paths_num; i++) { 2749 struct rtrs_clt_sess *sess; 2750 2751 sess = alloc_sess(clt, &paths[i], nr_cpu_ids, 2752 max_segments, nr_poll_queues); 2753 if (IS_ERR(sess)) { 2754 err = PTR_ERR(sess); 2755 goto close_all_sess; 2756 } 2757 if (!i) 2758 sess->for_new_clt = 1; 2759 list_add_tail_rcu(&sess->s.entry, &clt->paths_list); 2760 2761 err = init_sess(sess); 2762 if (err) { 2763 list_del_rcu(&sess->s.entry); 2764 rtrs_clt_close_conns(sess, true); 2765 free_sess(sess); 2766 goto close_all_sess; 2767 } 2768 2769 err = rtrs_clt_create_sess_files(sess); 2770 if (err) { 2771 list_del_rcu(&sess->s.entry); 2772 rtrs_clt_close_conns(sess, true); 2773 free_sess(sess); 2774 goto close_all_sess; 2775 } 2776 } 2777 err = alloc_permits(clt); 2778 if (err) 2779 goto close_all_sess; 2780 2781 return clt; 2782 2783 close_all_sess: 2784 list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) { 2785 rtrs_clt_destroy_sess_files(sess, NULL); 2786 rtrs_clt_close_conns(sess, true); 2787 kobject_put(&sess->kobj); 2788 } 2789 rtrs_clt_destroy_sysfs_root(clt); 2790 free_clt(clt); 2791 2792 out: 2793 return ERR_PTR(err); 2794 } 2795 EXPORT_SYMBOL(rtrs_clt_open); 2796 2797 /** 2798 * rtrs_clt_close() - Close a session 2799 * @clt: Session handle. Session is freed upon return. 2800 */ 2801 void rtrs_clt_close(struct rtrs_clt *clt) 2802 { 2803 struct rtrs_clt_sess *sess, *tmp; 2804 2805 /* Firstly forbid sysfs access */ 2806 rtrs_clt_destroy_sysfs_root(clt); 2807 2808 /* Now it is safe to iterate over all paths without locks */ 2809 list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) { 2810 rtrs_clt_close_conns(sess, true); 2811 rtrs_clt_destroy_sess_files(sess, NULL); 2812 kobject_put(&sess->kobj); 2813 } 2814 free_clt(clt); 2815 } 2816 EXPORT_SYMBOL(rtrs_clt_close); 2817 2818 int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_sess *sess) 2819 { 2820 enum rtrs_clt_state old_state; 2821 int err = -EBUSY; 2822 bool changed; 2823 2824 changed = rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING, 2825 &old_state); 2826 if (changed) { 2827 sess->reconnect_attempts = 0; 2828 queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 0); 2829 } 2830 if (changed || old_state == RTRS_CLT_RECONNECTING) { 2831 /* 2832 * flush_delayed_work() queues pending work for immediate 2833 * execution, so do the flush if we have queued something 2834 * right now or work is pending. 2835 */ 2836 flush_delayed_work(&sess->reconnect_dwork); 2837 err = (READ_ONCE(sess->state) == 2838 RTRS_CLT_CONNECTED ? 0 : -ENOTCONN); 2839 } 2840 2841 return err; 2842 } 2843 2844 int rtrs_clt_disconnect_from_sysfs(struct rtrs_clt_sess *sess) 2845 { 2846 rtrs_clt_close_conns(sess, true); 2847 2848 return 0; 2849 } 2850 2851 int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_sess *sess, 2852 const struct attribute *sysfs_self) 2853 { 2854 enum rtrs_clt_state old_state; 2855 bool changed; 2856 2857 /* 2858 * Continue stopping path till state was changed to DEAD or 2859 * state was observed as DEAD: 2860 * 1. State was changed to DEAD - we were fast and nobody 2861 * invoked rtrs_clt_reconnect(), which can again start 2862 * reconnecting. 2863 * 2. State was observed as DEAD - we have someone in parallel 2864 * removing the path. 2865 */ 2866 do { 2867 rtrs_clt_close_conns(sess, true); 2868 changed = rtrs_clt_change_state_get_old(sess, 2869 RTRS_CLT_DEAD, 2870 &old_state); 2871 } while (!changed && old_state != RTRS_CLT_DEAD); 2872 2873 if (likely(changed)) { 2874 rtrs_clt_remove_path_from_arr(sess); 2875 rtrs_clt_destroy_sess_files(sess, sysfs_self); 2876 kobject_put(&sess->kobj); 2877 } 2878 2879 return 0; 2880 } 2881 2882 void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt *clt, int value) 2883 { 2884 clt->max_reconnect_attempts = (unsigned int)value; 2885 } 2886 2887 int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt *clt) 2888 { 2889 return (int)clt->max_reconnect_attempts; 2890 } 2891 2892 /** 2893 * rtrs_clt_request() - Request data transfer to/from server via RDMA. 2894 * 2895 * @dir: READ/WRITE 2896 * @ops: callback function to be called as confirmation, and the pointer. 2897 * @clt: Session 2898 * @permit: Preallocated permit 2899 * @vec: Message that is sent to server together with the request. 2900 * Sum of len of all @vec elements limited to <= IO_MSG_SIZE. 2901 * Since the msg is copied internally it can be allocated on stack. 2902 * @nr: Number of elements in @vec. 2903 * @data_len: length of data sent to/from server 2904 * @sg: Pages to be sent/received to/from server. 2905 * @sg_cnt: Number of elements in the @sg 2906 * 2907 * Return: 2908 * 0: Success 2909 * <0: Error 2910 * 2911 * On dir=READ rtrs client will request a data transfer from Server to client. 2912 * The data that the server will respond with will be stored in @sg when 2913 * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event. 2914 * On dir=WRITE rtrs client will rdma write data in sg to server side. 2915 */ 2916 int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops, 2917 struct rtrs_clt *clt, struct rtrs_permit *permit, 2918 const struct kvec *vec, size_t nr, size_t data_len, 2919 struct scatterlist *sg, unsigned int sg_cnt) 2920 { 2921 struct rtrs_clt_io_req *req; 2922 struct rtrs_clt_sess *sess; 2923 2924 enum dma_data_direction dma_dir; 2925 int err = -ECONNABORTED, i; 2926 size_t usr_len, hdr_len; 2927 struct path_it it; 2928 2929 /* Get kvec length */ 2930 for (i = 0, usr_len = 0; i < nr; i++) 2931 usr_len += vec[i].iov_len; 2932 2933 if (dir == READ) { 2934 hdr_len = sizeof(struct rtrs_msg_rdma_read) + 2935 sg_cnt * sizeof(struct rtrs_sg_desc); 2936 dma_dir = DMA_FROM_DEVICE; 2937 } else { 2938 hdr_len = sizeof(struct rtrs_msg_rdma_write); 2939 dma_dir = DMA_TO_DEVICE; 2940 } 2941 2942 rcu_read_lock(); 2943 for (path_it_init(&it, clt); 2944 (sess = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) { 2945 if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)) 2946 continue; 2947 2948 if (unlikely(usr_len + hdr_len > sess->max_hdr_size)) { 2949 rtrs_wrn_rl(sess->clt, 2950 "%s request failed, user message size is %zu and header length %zu, but max size is %u\n", 2951 dir == READ ? "Read" : "Write", 2952 usr_len, hdr_len, sess->max_hdr_size); 2953 err = -EMSGSIZE; 2954 break; 2955 } 2956 req = rtrs_clt_get_req(sess, ops->conf_fn, permit, ops->priv, 2957 vec, usr_len, sg, sg_cnt, data_len, 2958 dma_dir); 2959 if (dir == READ) 2960 err = rtrs_clt_read_req(req); 2961 else 2962 err = rtrs_clt_write_req(req); 2963 if (unlikely(err)) { 2964 req->in_use = false; 2965 continue; 2966 } 2967 /* Success path */ 2968 break; 2969 } 2970 path_it_deinit(&it); 2971 rcu_read_unlock(); 2972 2973 return err; 2974 } 2975 EXPORT_SYMBOL(rtrs_clt_request); 2976 2977 int rtrs_clt_rdma_cq_direct(struct rtrs_clt *clt, unsigned int index) 2978 { 2979 /* If no path, return -1 for block layer not to try again */ 2980 int cnt = -1; 2981 struct rtrs_con *con; 2982 struct rtrs_clt_sess *sess; 2983 struct path_it it; 2984 2985 rcu_read_lock(); 2986 for (path_it_init(&it, clt); 2987 (sess = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) { 2988 if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTED) 2989 continue; 2990 2991 con = sess->s.con[index + 1]; 2992 cnt = ib_process_cq_direct(con->cq, -1); 2993 if (cnt) 2994 break; 2995 } 2996 path_it_deinit(&it); 2997 rcu_read_unlock(); 2998 2999 return cnt; 3000 } 3001 EXPORT_SYMBOL(rtrs_clt_rdma_cq_direct); 3002 3003 /** 3004 * rtrs_clt_query() - queries RTRS session attributes 3005 *@clt: session pointer 3006 *@attr: query results for session attributes. 3007 * Returns: 3008 * 0 on success 3009 * -ECOMM no connection to the server 3010 */ 3011 int rtrs_clt_query(struct rtrs_clt *clt, struct rtrs_attrs *attr) 3012 { 3013 if (!rtrs_clt_is_connected(clt)) 3014 return -ECOMM; 3015 3016 attr->queue_depth = clt->queue_depth; 3017 /* Cap max_io_size to min of remote buffer size and the fr pages */ 3018 attr->max_io_size = min_t(int, clt->max_io_size, 3019 clt->max_segments * SZ_4K); 3020 3021 return 0; 3022 } 3023 EXPORT_SYMBOL(rtrs_clt_query); 3024 3025 int rtrs_clt_create_path_from_sysfs(struct rtrs_clt *clt, 3026 struct rtrs_addr *addr) 3027 { 3028 struct rtrs_clt_sess *sess; 3029 int err; 3030 3031 sess = alloc_sess(clt, addr, nr_cpu_ids, clt->max_segments, 0); 3032 if (IS_ERR(sess)) 3033 return PTR_ERR(sess); 3034 3035 /* 3036 * It is totally safe to add path in CONNECTING state: coming 3037 * IO will never grab it. Also it is very important to add 3038 * path before init, since init fires LINK_CONNECTED event. 3039 */ 3040 rtrs_clt_add_path_to_arr(sess); 3041 3042 err = init_sess(sess); 3043 if (err) 3044 goto close_sess; 3045 3046 err = rtrs_clt_create_sess_files(sess); 3047 if (err) 3048 goto close_sess; 3049 3050 return 0; 3051 3052 close_sess: 3053 rtrs_clt_remove_path_from_arr(sess); 3054 rtrs_clt_close_conns(sess, true); 3055 free_sess(sess); 3056 3057 return err; 3058 } 3059 3060 static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev) 3061 { 3062 if (!(dev->ib_dev->attrs.device_cap_flags & 3063 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 3064 pr_err("Memory registrations not supported.\n"); 3065 return -ENOTSUPP; 3066 } 3067 3068 return 0; 3069 } 3070 3071 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = { 3072 .init = rtrs_clt_ib_dev_init 3073 }; 3074 3075 static int __init rtrs_client_init(void) 3076 { 3077 rtrs_rdma_dev_pd_init(0, &dev_pd); 3078 3079 rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client"); 3080 if (IS_ERR(rtrs_clt_dev_class)) { 3081 pr_err("Failed to create rtrs-client dev class\n"); 3082 return PTR_ERR(rtrs_clt_dev_class); 3083 } 3084 rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0); 3085 if (!rtrs_wq) { 3086 class_destroy(rtrs_clt_dev_class); 3087 return -ENOMEM; 3088 } 3089 3090 return 0; 3091 } 3092 3093 static void __exit rtrs_client_exit(void) 3094 { 3095 destroy_workqueue(rtrs_wq); 3096 class_destroy(rtrs_clt_dev_class); 3097 rtrs_rdma_dev_pd_deinit(&dev_pd); 3098 } 3099 3100 module_init(rtrs_client_init); 3101 module_exit(rtrs_client_exit); 3102