xref: /openbmc/linux/drivers/infiniband/ulp/rtrs/rtrs-clt.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/rculist.h>
15 #include <linux/random.h>
16 
17 #include "rtrs-clt.h"
18 #include "rtrs-log.h"
19 
20 #define RTRS_CONNECT_TIMEOUT_MS 30000
21 /*
22  * Wait a bit before trying to reconnect after a failure
23  * in order to give server time to finish clean up which
24  * leads to "false positives" failed reconnect attempts
25  */
26 #define RTRS_RECONNECT_BACKOFF 1000
27 /*
28  * Wait for additional random time between 0 and 8 seconds
29  * before starting to reconnect to avoid clients reconnecting
30  * all at once in case of a major network outage
31  */
32 #define RTRS_RECONNECT_SEED 8
33 
34 #define FIRST_CONN 0x01
35 
36 MODULE_DESCRIPTION("RDMA Transport Client");
37 MODULE_LICENSE("GPL");
38 
39 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
40 static struct rtrs_rdma_dev_pd dev_pd = {
41 	.ops = &dev_pd_ops
42 };
43 
44 static struct workqueue_struct *rtrs_wq;
45 static struct class *rtrs_clt_dev_class;
46 
47 static inline bool rtrs_clt_is_connected(const struct rtrs_clt *clt)
48 {
49 	struct rtrs_clt_sess *sess;
50 	bool connected = false;
51 
52 	rcu_read_lock();
53 	list_for_each_entry_rcu(sess, &clt->paths_list, s.entry)
54 		connected |= READ_ONCE(sess->state) == RTRS_CLT_CONNECTED;
55 	rcu_read_unlock();
56 
57 	return connected;
58 }
59 
60 static struct rtrs_permit *
61 __rtrs_get_permit(struct rtrs_clt *clt, enum rtrs_clt_con_type con_type)
62 {
63 	size_t max_depth = clt->queue_depth;
64 	struct rtrs_permit *permit;
65 	int bit;
66 
67 	/*
68 	 * Adapted from null_blk get_tag(). Callers from different cpus may
69 	 * grab the same bit, since find_first_zero_bit is not atomic.
70 	 * But then the test_and_set_bit_lock will fail for all the
71 	 * callers but one, so that they will loop again.
72 	 * This way an explicit spinlock is not required.
73 	 */
74 	do {
75 		bit = find_first_zero_bit(clt->permits_map, max_depth);
76 		if (unlikely(bit >= max_depth))
77 			return NULL;
78 	} while (unlikely(test_and_set_bit_lock(bit, clt->permits_map)));
79 
80 	permit = get_permit(clt, bit);
81 	WARN_ON(permit->mem_id != bit);
82 	permit->cpu_id = raw_smp_processor_id();
83 	permit->con_type = con_type;
84 
85 	return permit;
86 }
87 
88 static inline void __rtrs_put_permit(struct rtrs_clt *clt,
89 				      struct rtrs_permit *permit)
90 {
91 	clear_bit_unlock(permit->mem_id, clt->permits_map);
92 }
93 
94 /**
95  * rtrs_clt_get_permit() - allocates permit for future RDMA operation
96  * @clt:	Current session
97  * @con_type:	Type of connection to use with the permit
98  * @can_wait:	Wait type
99  *
100  * Description:
101  *    Allocates permit for the following RDMA operation.  Permit is used
102  *    to preallocate all resources and to propagate memory pressure
103  *    up earlier.
104  *
105  * Context:
106  *    Can sleep if @wait == RTRS_TAG_WAIT
107  */
108 struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt *clt,
109 					  enum rtrs_clt_con_type con_type,
110 					  int can_wait)
111 {
112 	struct rtrs_permit *permit;
113 	DEFINE_WAIT(wait);
114 
115 	permit = __rtrs_get_permit(clt, con_type);
116 	if (likely(permit) || !can_wait)
117 		return permit;
118 
119 	do {
120 		prepare_to_wait(&clt->permits_wait, &wait,
121 				TASK_UNINTERRUPTIBLE);
122 		permit = __rtrs_get_permit(clt, con_type);
123 		if (likely(permit))
124 			break;
125 
126 		io_schedule();
127 	} while (1);
128 
129 	finish_wait(&clt->permits_wait, &wait);
130 
131 	return permit;
132 }
133 EXPORT_SYMBOL(rtrs_clt_get_permit);
134 
135 /**
136  * rtrs_clt_put_permit() - puts allocated permit
137  * @clt:	Current session
138  * @permit:	Permit to be freed
139  *
140  * Context:
141  *    Does not matter
142  */
143 void rtrs_clt_put_permit(struct rtrs_clt *clt, struct rtrs_permit *permit)
144 {
145 	if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
146 		return;
147 
148 	__rtrs_put_permit(clt, permit);
149 
150 	/*
151 	 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
152 	 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
153 	 * it must have added itself to &clt->permits_wait before
154 	 * __rtrs_put_permit() finished.
155 	 * Hence it is safe to guard wake_up() with a waitqueue_active() test.
156 	 */
157 	if (waitqueue_active(&clt->permits_wait))
158 		wake_up(&clt->permits_wait);
159 }
160 EXPORT_SYMBOL(rtrs_clt_put_permit);
161 
162 /**
163  * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
164  * @sess: client session pointer
165  * @permit: permit for the allocation of the RDMA buffer
166  * Note:
167  *     IO connection starts from 1.
168  *     0 connection is for user messages.
169  */
170 static
171 struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_sess *sess,
172 					    struct rtrs_permit *permit)
173 {
174 	int id = 0;
175 
176 	if (likely(permit->con_type == RTRS_IO_CON))
177 		id = (permit->cpu_id % (sess->s.con_num - 1)) + 1;
178 
179 	return to_clt_con(sess->s.con[id]);
180 }
181 
182 /**
183  * rtrs_clt_change_state() - change the session state through session state
184  * machine.
185  *
186  * @sess: client session to change the state of.
187  * @new_state: state to change to.
188  *
189  * returns true if sess's state is changed to new state, otherwise return false.
190  *
191  * Locks:
192  * state_wq lock must be hold.
193  */
194 static bool rtrs_clt_change_state(struct rtrs_clt_sess *sess,
195 				     enum rtrs_clt_state new_state)
196 {
197 	enum rtrs_clt_state old_state;
198 	bool changed = false;
199 
200 	lockdep_assert_held(&sess->state_wq.lock);
201 
202 	old_state = sess->state;
203 	switch (new_state) {
204 	case RTRS_CLT_CONNECTING:
205 		switch (old_state) {
206 		case RTRS_CLT_RECONNECTING:
207 			changed = true;
208 			fallthrough;
209 		default:
210 			break;
211 		}
212 		break;
213 	case RTRS_CLT_RECONNECTING:
214 		switch (old_state) {
215 		case RTRS_CLT_CONNECTED:
216 		case RTRS_CLT_CONNECTING_ERR:
217 		case RTRS_CLT_CLOSED:
218 			changed = true;
219 			fallthrough;
220 		default:
221 			break;
222 		}
223 		break;
224 	case RTRS_CLT_CONNECTED:
225 		switch (old_state) {
226 		case RTRS_CLT_CONNECTING:
227 			changed = true;
228 			fallthrough;
229 		default:
230 			break;
231 		}
232 		break;
233 	case RTRS_CLT_CONNECTING_ERR:
234 		switch (old_state) {
235 		case RTRS_CLT_CONNECTING:
236 			changed = true;
237 			fallthrough;
238 		default:
239 			break;
240 		}
241 		break;
242 	case RTRS_CLT_CLOSING:
243 		switch (old_state) {
244 		case RTRS_CLT_CONNECTING:
245 		case RTRS_CLT_CONNECTING_ERR:
246 		case RTRS_CLT_RECONNECTING:
247 		case RTRS_CLT_CONNECTED:
248 			changed = true;
249 			fallthrough;
250 		default:
251 			break;
252 		}
253 		break;
254 	case RTRS_CLT_CLOSED:
255 		switch (old_state) {
256 		case RTRS_CLT_CLOSING:
257 			changed = true;
258 			fallthrough;
259 		default:
260 			break;
261 		}
262 		break;
263 	case RTRS_CLT_DEAD:
264 		switch (old_state) {
265 		case RTRS_CLT_CLOSED:
266 			changed = true;
267 			fallthrough;
268 		default:
269 			break;
270 		}
271 		break;
272 	default:
273 		break;
274 	}
275 	if (changed) {
276 		sess->state = new_state;
277 		wake_up_locked(&sess->state_wq);
278 	}
279 
280 	return changed;
281 }
282 
283 static bool rtrs_clt_change_state_from_to(struct rtrs_clt_sess *sess,
284 					   enum rtrs_clt_state old_state,
285 					   enum rtrs_clt_state new_state)
286 {
287 	bool changed = false;
288 
289 	spin_lock_irq(&sess->state_wq.lock);
290 	if (sess->state == old_state)
291 		changed = rtrs_clt_change_state(sess, new_state);
292 	spin_unlock_irq(&sess->state_wq.lock);
293 
294 	return changed;
295 }
296 
297 static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
298 {
299 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
300 
301 	if (rtrs_clt_change_state_from_to(sess,
302 					   RTRS_CLT_CONNECTED,
303 					   RTRS_CLT_RECONNECTING)) {
304 		struct rtrs_clt *clt = sess->clt;
305 		unsigned int delay_ms;
306 
307 		/*
308 		 * Normal scenario, reconnect if we were successfully connected
309 		 */
310 		delay_ms = clt->reconnect_delay_sec * 1000;
311 		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
312 				   msecs_to_jiffies(delay_ms +
313 						    prandom_u32() % RTRS_RECONNECT_SEED));
314 	} else {
315 		/*
316 		 * Error can happen just on establishing new connection,
317 		 * so notify waiter with error state, waiter is responsible
318 		 * for cleaning the rest and reconnect if needed.
319 		 */
320 		rtrs_clt_change_state_from_to(sess,
321 					       RTRS_CLT_CONNECTING,
322 					       RTRS_CLT_CONNECTING_ERR);
323 	}
324 }
325 
326 static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
327 {
328 	struct rtrs_clt_con *con = cq->cq_context;
329 
330 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
331 		rtrs_err(con->c.sess, "Failed IB_WR_REG_MR: %s\n",
332 			  ib_wc_status_msg(wc->status));
333 		rtrs_rdma_error_recovery(con);
334 	}
335 }
336 
337 static struct ib_cqe fast_reg_cqe = {
338 	.done = rtrs_clt_fast_reg_done
339 };
340 
341 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
342 			      bool notify, bool can_wait);
343 
344 static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
345 {
346 	struct rtrs_clt_io_req *req =
347 		container_of(wc->wr_cqe, typeof(*req), inv_cqe);
348 	struct rtrs_clt_con *con = cq->cq_context;
349 
350 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
351 		rtrs_err(con->c.sess, "Failed IB_WR_LOCAL_INV: %s\n",
352 			  ib_wc_status_msg(wc->status));
353 		rtrs_rdma_error_recovery(con);
354 	}
355 	req->need_inv = false;
356 	if (likely(req->need_inv_comp))
357 		complete(&req->inv_comp);
358 	else
359 		/* Complete request from INV callback */
360 		complete_rdma_req(req, req->inv_errno, true, false);
361 }
362 
363 static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
364 {
365 	struct rtrs_clt_con *con = req->con;
366 	struct ib_send_wr wr = {
367 		.opcode		    = IB_WR_LOCAL_INV,
368 		.wr_cqe		    = &req->inv_cqe,
369 		.send_flags	    = IB_SEND_SIGNALED,
370 		.ex.invalidate_rkey = req->mr->rkey,
371 	};
372 	req->inv_cqe.done = rtrs_clt_inv_rkey_done;
373 
374 	return ib_post_send(con->c.qp, &wr, NULL);
375 }
376 
377 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
378 			      bool notify, bool can_wait)
379 {
380 	struct rtrs_clt_con *con = req->con;
381 	struct rtrs_clt_sess *sess;
382 	int err;
383 
384 	if (WARN_ON(!req->in_use))
385 		return;
386 	if (WARN_ON(!req->con))
387 		return;
388 	sess = to_clt_sess(con->c.sess);
389 
390 	if (req->sg_cnt) {
391 		if (unlikely(req->dir == DMA_FROM_DEVICE && req->need_inv)) {
392 			/*
393 			 * We are here to invalidate read requests
394 			 * ourselves.  In normal scenario server should
395 			 * send INV for all read requests, but
396 			 * we are here, thus two things could happen:
397 			 *
398 			 *    1.  this is failover, when errno != 0
399 			 *        and can_wait == 1,
400 			 *
401 			 *    2.  something totally bad happened and
402 			 *        server forgot to send INV, so we
403 			 *        should do that ourselves.
404 			 */
405 
406 			if (likely(can_wait)) {
407 				req->need_inv_comp = true;
408 			} else {
409 				/* This should be IO path, so always notify */
410 				WARN_ON(!notify);
411 				/* Save errno for INV callback */
412 				req->inv_errno = errno;
413 			}
414 
415 			err = rtrs_inv_rkey(req);
416 			if (unlikely(err)) {
417 				rtrs_err(con->c.sess, "Send INV WR key=%#x: %d\n",
418 					  req->mr->rkey, err);
419 			} else if (likely(can_wait)) {
420 				wait_for_completion(&req->inv_comp);
421 			} else {
422 				/*
423 				 * Something went wrong, so request will be
424 				 * completed from INV callback.
425 				 */
426 				WARN_ON_ONCE(1);
427 
428 				return;
429 			}
430 		}
431 		ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
432 				req->sg_cnt, req->dir);
433 	}
434 	if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
435 		atomic_dec(&sess->stats->inflight);
436 
437 	req->in_use = false;
438 	req->con = NULL;
439 
440 	if (notify)
441 		req->conf(req->priv, errno);
442 }
443 
444 static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
445 				struct rtrs_clt_io_req *req,
446 				struct rtrs_rbuf *rbuf, u32 off,
447 				u32 imm, struct ib_send_wr *wr)
448 {
449 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
450 	enum ib_send_flags flags;
451 	struct ib_sge sge;
452 
453 	if (unlikely(!req->sg_size)) {
454 		rtrs_wrn(con->c.sess,
455 			 "Doing RDMA Write failed, no data supplied\n");
456 		return -EINVAL;
457 	}
458 
459 	/* user data and user message in the first list element */
460 	sge.addr   = req->iu->dma_addr;
461 	sge.length = req->sg_size;
462 	sge.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
463 
464 	/*
465 	 * From time to time we have to post signalled sends,
466 	 * or send queue will fill up and only QP reset can help.
467 	 */
468 	flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
469 			0 : IB_SEND_SIGNALED;
470 
471 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
472 				      req->sg_size, DMA_TO_DEVICE);
473 
474 	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
475 					    rbuf->rkey, rbuf->addr + off,
476 					    imm, flags, wr);
477 }
478 
479 static void process_io_rsp(struct rtrs_clt_sess *sess, u32 msg_id,
480 			   s16 errno, bool w_inval)
481 {
482 	struct rtrs_clt_io_req *req;
483 
484 	if (WARN_ON(msg_id >= sess->queue_depth))
485 		return;
486 
487 	req = &sess->reqs[msg_id];
488 	/* Drop need_inv if server responded with send with invalidation */
489 	req->need_inv &= !w_inval;
490 	complete_rdma_req(req, errno, true, false);
491 }
492 
493 static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
494 {
495 	struct rtrs_iu *iu;
496 	int err;
497 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
498 
499 	WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0);
500 	iu = container_of(wc->wr_cqe, struct rtrs_iu,
501 			  cqe);
502 	err = rtrs_iu_post_recv(&con->c, iu);
503 	if (unlikely(err)) {
504 		rtrs_err(con->c.sess, "post iu failed %d\n", err);
505 		rtrs_rdma_error_recovery(con);
506 	}
507 }
508 
509 static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
510 {
511 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
512 	struct rtrs_msg_rkey_rsp *msg;
513 	u32 imm_type, imm_payload;
514 	bool w_inval = false;
515 	struct rtrs_iu *iu;
516 	u32 buf_id;
517 	int err;
518 
519 	WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0);
520 
521 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
522 
523 	if (unlikely(wc->byte_len < sizeof(*msg))) {
524 		rtrs_err(con->c.sess, "rkey response is malformed: size %d\n",
525 			  wc->byte_len);
526 		goto out;
527 	}
528 	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
529 				   iu->size, DMA_FROM_DEVICE);
530 	msg = iu->buf;
531 	if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP)) {
532 		rtrs_err(sess->clt, "rkey response is malformed: type %d\n",
533 			  le16_to_cpu(msg->type));
534 		goto out;
535 	}
536 	buf_id = le16_to_cpu(msg->buf_id);
537 	if (WARN_ON(buf_id >= sess->queue_depth))
538 		goto out;
539 
540 	rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
541 	if (likely(imm_type == RTRS_IO_RSP_IMM ||
542 		   imm_type == RTRS_IO_RSP_W_INV_IMM)) {
543 		u32 msg_id;
544 
545 		w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
546 		rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
547 
548 		if (WARN_ON(buf_id != msg_id))
549 			goto out;
550 		sess->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
551 		process_io_rsp(sess, msg_id, err, w_inval);
552 	}
553 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, iu->dma_addr,
554 				      iu->size, DMA_FROM_DEVICE);
555 	return rtrs_clt_recv_done(con, wc);
556 out:
557 	rtrs_rdma_error_recovery(con);
558 }
559 
560 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
561 
562 static struct ib_cqe io_comp_cqe = {
563 	.done = rtrs_clt_rdma_done
564 };
565 
566 /*
567  * Post x2 empty WRs: first is for this RDMA with IMM,
568  * second is for RECV with INV, which happened earlier.
569  */
570 static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
571 {
572 	struct ib_recv_wr wr_arr[2], *wr;
573 	int i;
574 
575 	memset(wr_arr, 0, sizeof(wr_arr));
576 	for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
577 		wr = &wr_arr[i];
578 		wr->wr_cqe  = cqe;
579 		if (i)
580 			/* Chain backwards */
581 			wr->next = &wr_arr[i - 1];
582 	}
583 
584 	return ib_post_recv(con->qp, wr, NULL);
585 }
586 
587 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
588 {
589 	struct rtrs_clt_con *con = cq->cq_context;
590 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
591 	u32 imm_type, imm_payload;
592 	bool w_inval = false;
593 	int err;
594 
595 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
596 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
597 			rtrs_err(sess->clt, "RDMA failed: %s\n",
598 				  ib_wc_status_msg(wc->status));
599 			rtrs_rdma_error_recovery(con);
600 		}
601 		return;
602 	}
603 	rtrs_clt_update_wc_stats(con);
604 
605 	switch (wc->opcode) {
606 	case IB_WC_RECV_RDMA_WITH_IMM:
607 		/*
608 		 * post_recv() RDMA write completions of IO reqs (read/write)
609 		 * and hb
610 		 */
611 		if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
612 			return;
613 		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
614 			       &imm_type, &imm_payload);
615 		if (likely(imm_type == RTRS_IO_RSP_IMM ||
616 			   imm_type == RTRS_IO_RSP_W_INV_IMM)) {
617 			u32 msg_id;
618 
619 			w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
620 			rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
621 
622 			process_io_rsp(sess, msg_id, err, w_inval);
623 		} else if (imm_type == RTRS_HB_MSG_IMM) {
624 			WARN_ON(con->c.cid);
625 			rtrs_send_hb_ack(&sess->s);
626 			if (sess->flags & RTRS_MSG_NEW_RKEY_F)
627 				return  rtrs_clt_recv_done(con, wc);
628 		} else if (imm_type == RTRS_HB_ACK_IMM) {
629 			WARN_ON(con->c.cid);
630 			sess->s.hb_missed_cnt = 0;
631 			if (sess->flags & RTRS_MSG_NEW_RKEY_F)
632 				return  rtrs_clt_recv_done(con, wc);
633 		} else {
634 			rtrs_wrn(con->c.sess, "Unknown IMM type %u\n",
635 				  imm_type);
636 		}
637 		if (w_inval)
638 			/*
639 			 * Post x2 empty WRs: first is for this RDMA with IMM,
640 			 * second is for RECV with INV, which happened earlier.
641 			 */
642 			err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
643 		else
644 			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
645 		if (unlikely(err)) {
646 			rtrs_err(con->c.sess, "rtrs_post_recv_empty(): %d\n",
647 				  err);
648 			rtrs_rdma_error_recovery(con);
649 			break;
650 		}
651 		break;
652 	case IB_WC_RECV:
653 		/*
654 		 * Key invalidations from server side
655 		 */
656 		WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
657 			  wc->wc_flags & IB_WC_WITH_IMM));
658 		WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
659 		if (sess->flags & RTRS_MSG_NEW_RKEY_F) {
660 			if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
661 				return  rtrs_clt_recv_done(con, wc);
662 
663 			return  rtrs_clt_rkey_rsp_done(con, wc);
664 		}
665 		break;
666 	case IB_WC_RDMA_WRITE:
667 		/*
668 		 * post_send() RDMA write completions of IO reqs (read/write)
669 		 */
670 		break;
671 
672 	default:
673 		rtrs_wrn(sess->clt, "Unexpected WC type: %d\n", wc->opcode);
674 		return;
675 	}
676 }
677 
678 static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
679 {
680 	int err, i;
681 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
682 
683 	for (i = 0; i < q_size; i++) {
684 		if (sess->flags & RTRS_MSG_NEW_RKEY_F) {
685 			struct rtrs_iu *iu = &con->rsp_ius[i];
686 
687 			err = rtrs_iu_post_recv(&con->c, iu);
688 		} else {
689 			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
690 		}
691 		if (unlikely(err))
692 			return err;
693 	}
694 
695 	return 0;
696 }
697 
698 static int post_recv_sess(struct rtrs_clt_sess *sess)
699 {
700 	size_t q_size = 0;
701 	int err, cid;
702 
703 	for (cid = 0; cid < sess->s.con_num; cid++) {
704 		if (cid == 0)
705 			q_size = SERVICE_CON_QUEUE_DEPTH;
706 		else
707 			q_size = sess->queue_depth;
708 
709 		/*
710 		 * x2 for RDMA read responses + FR key invalidations,
711 		 * RDMA writes do not require any FR registrations.
712 		 */
713 		q_size *= 2;
714 
715 		err = post_recv_io(to_clt_con(sess->s.con[cid]), q_size);
716 		if (unlikely(err)) {
717 			rtrs_err(sess->clt, "post_recv_io(), err: %d\n", err);
718 			return err;
719 		}
720 	}
721 
722 	return 0;
723 }
724 
725 struct path_it {
726 	int i;
727 	struct list_head skip_list;
728 	struct rtrs_clt *clt;
729 	struct rtrs_clt_sess *(*next_path)(struct path_it *it);
730 };
731 
732 /**
733  * list_next_or_null_rr_rcu - get next list element in round-robin fashion.
734  * @head:	the head for the list.
735  * @ptr:        the list head to take the next element from.
736  * @type:       the type of the struct this is embedded in.
737  * @memb:       the name of the list_head within the struct.
738  *
739  * Next element returned in round-robin fashion, i.e. head will be skipped,
740  * but if list is observed as empty, NULL will be returned.
741  *
742  * This primitive may safely run concurrently with the _rcu list-mutation
743  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
744  */
745 #define list_next_or_null_rr_rcu(head, ptr, type, memb) \
746 ({ \
747 	list_next_or_null_rcu(head, ptr, type, memb) ?: \
748 		list_next_or_null_rcu(head, READ_ONCE((ptr)->next), \
749 				      type, memb); \
750 })
751 
752 /**
753  * get_next_path_rr() - Returns path in round-robin fashion.
754  * @it:	the path pointer
755  *
756  * Related to @MP_POLICY_RR
757  *
758  * Locks:
759  *    rcu_read_lock() must be hold.
760  */
761 static struct rtrs_clt_sess *get_next_path_rr(struct path_it *it)
762 {
763 	struct rtrs_clt_sess __rcu **ppcpu_path;
764 	struct rtrs_clt_sess *path;
765 	struct rtrs_clt *clt;
766 
767 	clt = it->clt;
768 
769 	/*
770 	 * Here we use two RCU objects: @paths_list and @pcpu_path
771 	 * pointer.  See rtrs_clt_remove_path_from_arr() for details
772 	 * how that is handled.
773 	 */
774 
775 	ppcpu_path = this_cpu_ptr(clt->pcpu_path);
776 	path = rcu_dereference(*ppcpu_path);
777 	if (unlikely(!path))
778 		path = list_first_or_null_rcu(&clt->paths_list,
779 					      typeof(*path), s.entry);
780 	else
781 		path = list_next_or_null_rr_rcu(&clt->paths_list,
782 						&path->s.entry,
783 						typeof(*path),
784 						s.entry);
785 	rcu_assign_pointer(*ppcpu_path, path);
786 
787 	return path;
788 }
789 
790 /**
791  * get_next_path_min_inflight() - Returns path with minimal inflight count.
792  * @it:	the path pointer
793  *
794  * Related to @MP_POLICY_MIN_INFLIGHT
795  *
796  * Locks:
797  *    rcu_read_lock() must be hold.
798  */
799 static struct rtrs_clt_sess *get_next_path_min_inflight(struct path_it *it)
800 {
801 	struct rtrs_clt_sess *min_path = NULL;
802 	struct rtrs_clt *clt = it->clt;
803 	struct rtrs_clt_sess *sess;
804 	int min_inflight = INT_MAX;
805 	int inflight;
806 
807 	list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) {
808 		if (unlikely(!list_empty(raw_cpu_ptr(sess->mp_skip_entry))))
809 			continue;
810 
811 		inflight = atomic_read(&sess->stats->inflight);
812 
813 		if (inflight < min_inflight) {
814 			min_inflight = inflight;
815 			min_path = sess;
816 		}
817 	}
818 
819 	/*
820 	 * add the path to the skip list, so that next time we can get
821 	 * a different one
822 	 */
823 	if (min_path)
824 		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
825 
826 	return min_path;
827 }
828 
829 static inline void path_it_init(struct path_it *it, struct rtrs_clt *clt)
830 {
831 	INIT_LIST_HEAD(&it->skip_list);
832 	it->clt = clt;
833 	it->i = 0;
834 
835 	if (clt->mp_policy == MP_POLICY_RR)
836 		it->next_path = get_next_path_rr;
837 	else
838 		it->next_path = get_next_path_min_inflight;
839 }
840 
841 static inline void path_it_deinit(struct path_it *it)
842 {
843 	struct list_head *skip, *tmp;
844 	/*
845 	 * The skip_list is used only for the MIN_INFLIGHT policy.
846 	 * We need to remove paths from it, so that next IO can insert
847 	 * paths (->mp_skip_entry) into a skip_list again.
848 	 */
849 	list_for_each_safe(skip, tmp, &it->skip_list)
850 		list_del_init(skip);
851 }
852 
853 /**
854  * rtrs_clt_init_req() Initialize an rtrs_clt_io_req holding information
855  * about an inflight IO.
856  * The user buffer holding user control message (not data) is copied into
857  * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
858  * also hold the control message of rtrs.
859  * @req: an io request holding information about IO.
860  * @sess: client session
861  * @conf: conformation callback function to notify upper layer.
862  * @permit: permit for allocation of RDMA remote buffer
863  * @priv: private pointer
864  * @vec: kernel vector containing control message
865  * @usr_len: length of the user message
866  * @sg: scater list for IO data
867  * @sg_cnt: number of scater list entries
868  * @data_len: length of the IO data
869  * @dir: direction of the IO.
870  */
871 static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
872 			      struct rtrs_clt_sess *sess,
873 			      void (*conf)(void *priv, int errno),
874 			      struct rtrs_permit *permit, void *priv,
875 			      const struct kvec *vec, size_t usr_len,
876 			      struct scatterlist *sg, size_t sg_cnt,
877 			      size_t data_len, int dir)
878 {
879 	struct iov_iter iter;
880 	size_t len;
881 
882 	req->permit = permit;
883 	req->in_use = true;
884 	req->usr_len = usr_len;
885 	req->data_len = data_len;
886 	req->sglist = sg;
887 	req->sg_cnt = sg_cnt;
888 	req->priv = priv;
889 	req->dir = dir;
890 	req->con = rtrs_permit_to_clt_con(sess, permit);
891 	req->conf = conf;
892 	req->need_inv = false;
893 	req->need_inv_comp = false;
894 	req->inv_errno = 0;
895 
896 	iov_iter_kvec(&iter, READ, vec, 1, usr_len);
897 	len = _copy_from_iter(req->iu->buf, usr_len, &iter);
898 	WARN_ON(len != usr_len);
899 
900 	reinit_completion(&req->inv_comp);
901 }
902 
903 static struct rtrs_clt_io_req *
904 rtrs_clt_get_req(struct rtrs_clt_sess *sess,
905 		 void (*conf)(void *priv, int errno),
906 		 struct rtrs_permit *permit, void *priv,
907 		 const struct kvec *vec, size_t usr_len,
908 		 struct scatterlist *sg, size_t sg_cnt,
909 		 size_t data_len, int dir)
910 {
911 	struct rtrs_clt_io_req *req;
912 
913 	req = &sess->reqs[permit->mem_id];
914 	rtrs_clt_init_req(req, sess, conf, permit, priv, vec, usr_len,
915 			   sg, sg_cnt, data_len, dir);
916 	return req;
917 }
918 
919 static struct rtrs_clt_io_req *
920 rtrs_clt_get_copy_req(struct rtrs_clt_sess *alive_sess,
921 		       struct rtrs_clt_io_req *fail_req)
922 {
923 	struct rtrs_clt_io_req *req;
924 	struct kvec vec = {
925 		.iov_base = fail_req->iu->buf,
926 		.iov_len  = fail_req->usr_len
927 	};
928 
929 	req = &alive_sess->reqs[fail_req->permit->mem_id];
930 	rtrs_clt_init_req(req, alive_sess, fail_req->conf, fail_req->permit,
931 			   fail_req->priv, &vec, fail_req->usr_len,
932 			   fail_req->sglist, fail_req->sg_cnt,
933 			   fail_req->data_len, fail_req->dir);
934 	return req;
935 }
936 
937 static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
938 				    struct rtrs_clt_io_req *req,
939 				    struct rtrs_rbuf *rbuf,
940 				    u32 size, u32 imm)
941 {
942 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
943 	struct ib_sge *sge = req->sge;
944 	enum ib_send_flags flags;
945 	struct scatterlist *sg;
946 	size_t num_sge;
947 	int i;
948 
949 	for_each_sg(req->sglist, sg, req->sg_cnt, i) {
950 		sge[i].addr   = sg_dma_address(sg);
951 		sge[i].length = sg_dma_len(sg);
952 		sge[i].lkey   = sess->s.dev->ib_pd->local_dma_lkey;
953 	}
954 	sge[i].addr   = req->iu->dma_addr;
955 	sge[i].length = size;
956 	sge[i].lkey   = sess->s.dev->ib_pd->local_dma_lkey;
957 
958 	num_sge = 1 + req->sg_cnt;
959 
960 	/*
961 	 * From time to time we have to post signalled sends,
962 	 * or send queue will fill up and only QP reset can help.
963 	 */
964 	flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
965 			0 : IB_SEND_SIGNALED;
966 
967 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
968 				      size, DMA_TO_DEVICE);
969 
970 	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
971 					    rbuf->rkey, rbuf->addr, imm,
972 					    flags, NULL);
973 }
974 
975 static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
976 {
977 	struct rtrs_clt_con *con = req->con;
978 	struct rtrs_sess *s = con->c.sess;
979 	struct rtrs_clt_sess *sess = to_clt_sess(s);
980 	struct rtrs_msg_rdma_write *msg;
981 
982 	struct rtrs_rbuf *rbuf;
983 	int ret, count = 0;
984 	u32 imm, buf_id;
985 
986 	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
987 
988 	if (unlikely(tsize > sess->chunk_size)) {
989 		rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
990 			  tsize, sess->chunk_size);
991 		return -EMSGSIZE;
992 	}
993 	if (req->sg_cnt) {
994 		count = ib_dma_map_sg(sess->s.dev->ib_dev, req->sglist,
995 				      req->sg_cnt, req->dir);
996 		if (unlikely(!count)) {
997 			rtrs_wrn(s, "Write request failed, map failed\n");
998 			return -EINVAL;
999 		}
1000 	}
1001 	/* put rtrs msg after sg and user message */
1002 	msg = req->iu->buf + req->usr_len;
1003 	msg->type = cpu_to_le16(RTRS_MSG_WRITE);
1004 	msg->usr_len = cpu_to_le16(req->usr_len);
1005 
1006 	/* rtrs message on server side will be after user data and message */
1007 	imm = req->permit->mem_off + req->data_len + req->usr_len;
1008 	imm = rtrs_to_io_req_imm(imm);
1009 	buf_id = req->permit->mem_id;
1010 	req->sg_size = tsize;
1011 	rbuf = &sess->rbufs[buf_id];
1012 
1013 	/*
1014 	 * Update stats now, after request is successfully sent it is not
1015 	 * safe anymore to touch it.
1016 	 */
1017 	rtrs_clt_update_all_stats(req, WRITE);
1018 
1019 	ret = rtrs_post_rdma_write_sg(req->con, req, rbuf,
1020 				       req->usr_len + sizeof(*msg),
1021 				       imm);
1022 	if (unlikely(ret)) {
1023 		rtrs_err(s, "Write request failed: %d\n", ret);
1024 		if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
1025 			atomic_dec(&sess->stats->inflight);
1026 		if (req->sg_cnt)
1027 			ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
1028 					req->sg_cnt, req->dir);
1029 	}
1030 
1031 	return ret;
1032 }
1033 
1034 static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
1035 {
1036 	int nr;
1037 
1038 	/* Align the MR to a 4K page size to match the block virt boundary */
1039 	nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1040 	if (nr < 0)
1041 		return nr;
1042 	if (unlikely(nr < req->sg_cnt))
1043 		return -EINVAL;
1044 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1045 
1046 	return nr;
1047 }
1048 
1049 static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
1050 {
1051 	struct rtrs_clt_con *con = req->con;
1052 	struct rtrs_sess *s = con->c.sess;
1053 	struct rtrs_clt_sess *sess = to_clt_sess(s);
1054 	struct rtrs_msg_rdma_read *msg;
1055 	struct rtrs_ib_dev *dev;
1056 
1057 	struct ib_reg_wr rwr;
1058 	struct ib_send_wr *wr = NULL;
1059 
1060 	int ret, count = 0;
1061 	u32 imm, buf_id;
1062 
1063 	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1064 
1065 	s = &sess->s;
1066 	dev = sess->s.dev;
1067 
1068 	if (unlikely(tsize > sess->chunk_size)) {
1069 		rtrs_wrn(s,
1070 			  "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
1071 			  tsize, sess->chunk_size);
1072 		return -EMSGSIZE;
1073 	}
1074 
1075 	if (req->sg_cnt) {
1076 		count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1077 				      req->dir);
1078 		if (unlikely(!count)) {
1079 			rtrs_wrn(s,
1080 				  "Read request failed, dma map failed\n");
1081 			return -EINVAL;
1082 		}
1083 	}
1084 	/* put our message into req->buf after user message*/
1085 	msg = req->iu->buf + req->usr_len;
1086 	msg->type = cpu_to_le16(RTRS_MSG_READ);
1087 	msg->usr_len = cpu_to_le16(req->usr_len);
1088 
1089 	if (count) {
1090 		ret = rtrs_map_sg_fr(req, count);
1091 		if (ret < 0) {
1092 			rtrs_err_rl(s,
1093 				     "Read request failed, failed to map  fast reg. data, err: %d\n",
1094 				     ret);
1095 			ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1096 					req->dir);
1097 			return ret;
1098 		}
1099 		rwr = (struct ib_reg_wr) {
1100 			.wr.opcode = IB_WR_REG_MR,
1101 			.wr.wr_cqe = &fast_reg_cqe,
1102 			.mr = req->mr,
1103 			.key = req->mr->rkey,
1104 			.access = (IB_ACCESS_LOCAL_WRITE |
1105 				   IB_ACCESS_REMOTE_WRITE),
1106 		};
1107 		wr = &rwr.wr;
1108 
1109 		msg->sg_cnt = cpu_to_le16(1);
1110 		msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
1111 
1112 		msg->desc[0].addr = cpu_to_le64(req->mr->iova);
1113 		msg->desc[0].key = cpu_to_le32(req->mr->rkey);
1114 		msg->desc[0].len = cpu_to_le32(req->mr->length);
1115 
1116 		/* Further invalidation is required */
1117 		req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
1118 
1119 	} else {
1120 		msg->sg_cnt = 0;
1121 		msg->flags = 0;
1122 	}
1123 	/*
1124 	 * rtrs message will be after the space reserved for disk data and
1125 	 * user message
1126 	 */
1127 	imm = req->permit->mem_off + req->data_len + req->usr_len;
1128 	imm = rtrs_to_io_req_imm(imm);
1129 	buf_id = req->permit->mem_id;
1130 
1131 	req->sg_size  = sizeof(*msg);
1132 	req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
1133 	req->sg_size += req->usr_len;
1134 
1135 	/*
1136 	 * Update stats now, after request is successfully sent it is not
1137 	 * safe anymore to touch it.
1138 	 */
1139 	rtrs_clt_update_all_stats(req, READ);
1140 
1141 	ret = rtrs_post_send_rdma(req->con, req, &sess->rbufs[buf_id],
1142 				   req->data_len, imm, wr);
1143 	if (unlikely(ret)) {
1144 		rtrs_err(s, "Read request failed: %d\n", ret);
1145 		if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
1146 			atomic_dec(&sess->stats->inflight);
1147 		req->need_inv = false;
1148 		if (req->sg_cnt)
1149 			ib_dma_unmap_sg(dev->ib_dev, req->sglist,
1150 					req->sg_cnt, req->dir);
1151 	}
1152 
1153 	return ret;
1154 }
1155 
1156 /**
1157  * rtrs_clt_failover_req() Try to find an active path for a failed request
1158  * @clt: clt context
1159  * @fail_req: a failed io request.
1160  */
1161 static int rtrs_clt_failover_req(struct rtrs_clt *clt,
1162 				 struct rtrs_clt_io_req *fail_req)
1163 {
1164 	struct rtrs_clt_sess *alive_sess;
1165 	struct rtrs_clt_io_req *req;
1166 	int err = -ECONNABORTED;
1167 	struct path_it it;
1168 
1169 	rcu_read_lock();
1170 	for (path_it_init(&it, clt);
1171 	     (alive_sess = it.next_path(&it)) && it.i < it.clt->paths_num;
1172 	     it.i++) {
1173 		if (unlikely(READ_ONCE(alive_sess->state) !=
1174 			     RTRS_CLT_CONNECTED))
1175 			continue;
1176 		req = rtrs_clt_get_copy_req(alive_sess, fail_req);
1177 		if (req->dir == DMA_TO_DEVICE)
1178 			err = rtrs_clt_write_req(req);
1179 		else
1180 			err = rtrs_clt_read_req(req);
1181 		if (unlikely(err)) {
1182 			req->in_use = false;
1183 			continue;
1184 		}
1185 		/* Success path */
1186 		rtrs_clt_inc_failover_cnt(alive_sess->stats);
1187 		break;
1188 	}
1189 	path_it_deinit(&it);
1190 	rcu_read_unlock();
1191 
1192 	return err;
1193 }
1194 
1195 static void fail_all_outstanding_reqs(struct rtrs_clt_sess *sess)
1196 {
1197 	struct rtrs_clt *clt = sess->clt;
1198 	struct rtrs_clt_io_req *req;
1199 	int i, err;
1200 
1201 	if (!sess->reqs)
1202 		return;
1203 	for (i = 0; i < sess->queue_depth; ++i) {
1204 		req = &sess->reqs[i];
1205 		if (!req->in_use)
1206 			continue;
1207 
1208 		/*
1209 		 * Safely (without notification) complete failed request.
1210 		 * After completion this request is still useble and can
1211 		 * be failovered to another path.
1212 		 */
1213 		complete_rdma_req(req, -ECONNABORTED, false, true);
1214 
1215 		err = rtrs_clt_failover_req(clt, req);
1216 		if (unlikely(err))
1217 			/* Failover failed, notify anyway */
1218 			req->conf(req->priv, err);
1219 	}
1220 }
1221 
1222 static void free_sess_reqs(struct rtrs_clt_sess *sess)
1223 {
1224 	struct rtrs_clt_io_req *req;
1225 	int i;
1226 
1227 	if (!sess->reqs)
1228 		return;
1229 	for (i = 0; i < sess->queue_depth; ++i) {
1230 		req = &sess->reqs[i];
1231 		if (req->mr)
1232 			ib_dereg_mr(req->mr);
1233 		kfree(req->sge);
1234 		rtrs_iu_free(req->iu, sess->s.dev->ib_dev, 1);
1235 	}
1236 	kfree(sess->reqs);
1237 	sess->reqs = NULL;
1238 }
1239 
1240 static int alloc_sess_reqs(struct rtrs_clt_sess *sess)
1241 {
1242 	struct rtrs_clt_io_req *req;
1243 	struct rtrs_clt *clt = sess->clt;
1244 	int i, err = -ENOMEM;
1245 
1246 	sess->reqs = kcalloc(sess->queue_depth, sizeof(*sess->reqs),
1247 			     GFP_KERNEL);
1248 	if (!sess->reqs)
1249 		return -ENOMEM;
1250 
1251 	for (i = 0; i < sess->queue_depth; ++i) {
1252 		req = &sess->reqs[i];
1253 		req->iu = rtrs_iu_alloc(1, sess->max_hdr_size, GFP_KERNEL,
1254 					 sess->s.dev->ib_dev,
1255 					 DMA_TO_DEVICE,
1256 					 rtrs_clt_rdma_done);
1257 		if (!req->iu)
1258 			goto out;
1259 
1260 		req->sge = kmalloc_array(clt->max_segments + 1,
1261 					 sizeof(*req->sge), GFP_KERNEL);
1262 		if (!req->sge)
1263 			goto out;
1264 
1265 		req->mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
1266 				      sess->max_pages_per_mr);
1267 		if (IS_ERR(req->mr)) {
1268 			err = PTR_ERR(req->mr);
1269 			req->mr = NULL;
1270 			pr_err("Failed to alloc sess->max_pages_per_mr %d\n",
1271 			       sess->max_pages_per_mr);
1272 			goto out;
1273 		}
1274 
1275 		init_completion(&req->inv_comp);
1276 	}
1277 
1278 	return 0;
1279 
1280 out:
1281 	free_sess_reqs(sess);
1282 
1283 	return err;
1284 }
1285 
1286 static int alloc_permits(struct rtrs_clt *clt)
1287 {
1288 	unsigned int chunk_bits;
1289 	int err, i;
1290 
1291 	clt->permits_map = kcalloc(BITS_TO_LONGS(clt->queue_depth),
1292 				   sizeof(long), GFP_KERNEL);
1293 	if (!clt->permits_map) {
1294 		err = -ENOMEM;
1295 		goto out_err;
1296 	}
1297 	clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
1298 	if (!clt->permits) {
1299 		err = -ENOMEM;
1300 		goto err_map;
1301 	}
1302 	chunk_bits = ilog2(clt->queue_depth - 1) + 1;
1303 	for (i = 0; i < clt->queue_depth; i++) {
1304 		struct rtrs_permit *permit;
1305 
1306 		permit = get_permit(clt, i);
1307 		permit->mem_id = i;
1308 		permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
1309 	}
1310 
1311 	return 0;
1312 
1313 err_map:
1314 	kfree(clt->permits_map);
1315 	clt->permits_map = NULL;
1316 out_err:
1317 	return err;
1318 }
1319 
1320 static void free_permits(struct rtrs_clt *clt)
1321 {
1322 	if (clt->permits_map) {
1323 		size_t sz = clt->queue_depth;
1324 
1325 		wait_event(clt->permits_wait,
1326 			   find_first_bit(clt->permits_map, sz) >= sz);
1327 	}
1328 	kfree(clt->permits_map);
1329 	clt->permits_map = NULL;
1330 	kfree(clt->permits);
1331 	clt->permits = NULL;
1332 }
1333 
1334 static void query_fast_reg_mode(struct rtrs_clt_sess *sess)
1335 {
1336 	struct ib_device *ib_dev;
1337 	u64 max_pages_per_mr;
1338 	int mr_page_shift;
1339 
1340 	ib_dev = sess->s.dev->ib_dev;
1341 
1342 	/*
1343 	 * Use the smallest page size supported by the HCA, down to a
1344 	 * minimum of 4096 bytes. We're unlikely to build large sglists
1345 	 * out of smaller entries.
1346 	 */
1347 	mr_page_shift      = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
1348 	max_pages_per_mr   = ib_dev->attrs.max_mr_size;
1349 	do_div(max_pages_per_mr, (1ull << mr_page_shift));
1350 	sess->max_pages_per_mr =
1351 		min3(sess->max_pages_per_mr, (u32)max_pages_per_mr,
1352 		     ib_dev->attrs.max_fast_reg_page_list_len);
1353 	sess->max_send_sge = ib_dev->attrs.max_send_sge;
1354 }
1355 
1356 static bool rtrs_clt_change_state_get_old(struct rtrs_clt_sess *sess,
1357 					   enum rtrs_clt_state new_state,
1358 					   enum rtrs_clt_state *old_state)
1359 {
1360 	bool changed;
1361 
1362 	spin_lock_irq(&sess->state_wq.lock);
1363 	if (old_state)
1364 		*old_state = sess->state;
1365 	changed = rtrs_clt_change_state(sess, new_state);
1366 	spin_unlock_irq(&sess->state_wq.lock);
1367 
1368 	return changed;
1369 }
1370 
1371 static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
1372 {
1373 	struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
1374 
1375 	rtrs_rdma_error_recovery(con);
1376 }
1377 
1378 static void rtrs_clt_init_hb(struct rtrs_clt_sess *sess)
1379 {
1380 	rtrs_init_hb(&sess->s, &io_comp_cqe,
1381 		      RTRS_HB_INTERVAL_MS,
1382 		      RTRS_HB_MISSED_MAX,
1383 		      rtrs_clt_hb_err_handler,
1384 		      rtrs_wq);
1385 }
1386 
1387 static void rtrs_clt_start_hb(struct rtrs_clt_sess *sess)
1388 {
1389 	rtrs_start_hb(&sess->s);
1390 }
1391 
1392 static void rtrs_clt_stop_hb(struct rtrs_clt_sess *sess)
1393 {
1394 	rtrs_stop_hb(&sess->s);
1395 }
1396 
1397 static void rtrs_clt_reconnect_work(struct work_struct *work);
1398 static void rtrs_clt_close_work(struct work_struct *work);
1399 
1400 static struct rtrs_clt_sess *alloc_sess(struct rtrs_clt *clt,
1401 					 const struct rtrs_addr *path,
1402 					 size_t con_num, u16 max_segments,
1403 					 size_t max_segment_size)
1404 {
1405 	struct rtrs_clt_sess *sess;
1406 	int err = -ENOMEM;
1407 	int cpu;
1408 
1409 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
1410 	if (!sess)
1411 		goto err;
1412 
1413 	/* Extra connection for user messages */
1414 	con_num += 1;
1415 
1416 	sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
1417 	if (!sess->s.con)
1418 		goto err_free_sess;
1419 
1420 	sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
1421 	if (!sess->stats)
1422 		goto err_free_con;
1423 
1424 	mutex_init(&sess->init_mutex);
1425 	uuid_gen(&sess->s.uuid);
1426 	memcpy(&sess->s.dst_addr, path->dst,
1427 	       rdma_addr_size((struct sockaddr *)path->dst));
1428 
1429 	/*
1430 	 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
1431 	 * checks the sa_family to be non-zero. If user passed src_addr=NULL
1432 	 * the sess->src_addr will contain only zeros, which is then fine.
1433 	 */
1434 	if (path->src)
1435 		memcpy(&sess->s.src_addr, path->src,
1436 		       rdma_addr_size((struct sockaddr *)path->src));
1437 	strlcpy(sess->s.sessname, clt->sessname, sizeof(sess->s.sessname));
1438 	sess->s.con_num = con_num;
1439 	sess->clt = clt;
1440 	sess->max_pages_per_mr = max_segments * max_segment_size >> 12;
1441 	init_waitqueue_head(&sess->state_wq);
1442 	sess->state = RTRS_CLT_CONNECTING;
1443 	atomic_set(&sess->connected_cnt, 0);
1444 	INIT_WORK(&sess->close_work, rtrs_clt_close_work);
1445 	INIT_DELAYED_WORK(&sess->reconnect_dwork, rtrs_clt_reconnect_work);
1446 	rtrs_clt_init_hb(sess);
1447 
1448 	sess->mp_skip_entry = alloc_percpu(typeof(*sess->mp_skip_entry));
1449 	if (!sess->mp_skip_entry)
1450 		goto err_free_stats;
1451 
1452 	for_each_possible_cpu(cpu)
1453 		INIT_LIST_HEAD(per_cpu_ptr(sess->mp_skip_entry, cpu));
1454 
1455 	err = rtrs_clt_init_stats(sess->stats);
1456 	if (err)
1457 		goto err_free_percpu;
1458 
1459 	return sess;
1460 
1461 err_free_percpu:
1462 	free_percpu(sess->mp_skip_entry);
1463 err_free_stats:
1464 	kfree(sess->stats);
1465 err_free_con:
1466 	kfree(sess->s.con);
1467 err_free_sess:
1468 	kfree(sess);
1469 err:
1470 	return ERR_PTR(err);
1471 }
1472 
1473 void free_sess(struct rtrs_clt_sess *sess)
1474 {
1475 	free_percpu(sess->mp_skip_entry);
1476 	mutex_destroy(&sess->init_mutex);
1477 	kfree(sess->s.con);
1478 	kfree(sess->rbufs);
1479 	kfree(sess);
1480 }
1481 
1482 static int create_con(struct rtrs_clt_sess *sess, unsigned int cid)
1483 {
1484 	struct rtrs_clt_con *con;
1485 
1486 	con = kzalloc(sizeof(*con), GFP_KERNEL);
1487 	if (!con)
1488 		return -ENOMEM;
1489 
1490 	/* Map first two connections to the first CPU */
1491 	con->cpu  = (cid ? cid - 1 : 0) % nr_cpu_ids;
1492 	con->c.cid = cid;
1493 	con->c.sess = &sess->s;
1494 	atomic_set(&con->io_cnt, 0);
1495 	mutex_init(&con->con_mutex);
1496 
1497 	sess->s.con[cid] = &con->c;
1498 
1499 	return 0;
1500 }
1501 
1502 static void destroy_con(struct rtrs_clt_con *con)
1503 {
1504 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1505 
1506 	sess->s.con[con->c.cid] = NULL;
1507 	mutex_destroy(&con->con_mutex);
1508 	kfree(con);
1509 }
1510 
1511 static int create_con_cq_qp(struct rtrs_clt_con *con)
1512 {
1513 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1514 	u32 max_send_wr, max_recv_wr, cq_size;
1515 	int err, cq_vector;
1516 	struct rtrs_msg_rkey_rsp *rsp;
1517 
1518 	lockdep_assert_held(&con->con_mutex);
1519 	if (con->c.cid == 0) {
1520 		/*
1521 		 * One completion for each receive and two for each send
1522 		 * (send request + registration)
1523 		 * + 2 for drain and heartbeat
1524 		 * in case qp gets into error state
1525 		 */
1526 		max_send_wr = SERVICE_CON_QUEUE_DEPTH * 2 + 2;
1527 		max_recv_wr = SERVICE_CON_QUEUE_DEPTH * 2 + 2;
1528 		/* We must be the first here */
1529 		if (WARN_ON(sess->s.dev))
1530 			return -EINVAL;
1531 
1532 		/*
1533 		 * The whole session uses device from user connection.
1534 		 * Be careful not to close user connection before ib dev
1535 		 * is gracefully put.
1536 		 */
1537 		sess->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
1538 						       &dev_pd);
1539 		if (!sess->s.dev) {
1540 			rtrs_wrn(sess->clt,
1541 				  "rtrs_ib_dev_find_get_or_add(): no memory\n");
1542 			return -ENOMEM;
1543 		}
1544 		sess->s.dev_ref = 1;
1545 		query_fast_reg_mode(sess);
1546 	} else {
1547 		/*
1548 		 * Here we assume that session members are correctly set.
1549 		 * This is always true if user connection (cid == 0) is
1550 		 * established first.
1551 		 */
1552 		if (WARN_ON(!sess->s.dev))
1553 			return -EINVAL;
1554 		if (WARN_ON(!sess->queue_depth))
1555 			return -EINVAL;
1556 
1557 		/* Shared between connections */
1558 		sess->s.dev_ref++;
1559 		max_send_wr =
1560 			min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr,
1561 			      /* QD * (REQ + RSP + FR REGS or INVS) + drain */
1562 			      sess->queue_depth * 3 + 1);
1563 		max_recv_wr =
1564 			min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr,
1565 			      sess->queue_depth * 3 + 1);
1566 	}
1567 	/* alloc iu to recv new rkey reply when server reports flags set */
1568 	if (sess->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1569 		con->rsp_ius = rtrs_iu_alloc(max_recv_wr, sizeof(*rsp),
1570 					      GFP_KERNEL, sess->s.dev->ib_dev,
1571 					      DMA_FROM_DEVICE,
1572 					      rtrs_clt_rdma_done);
1573 		if (!con->rsp_ius)
1574 			return -ENOMEM;
1575 		con->queue_size = max_recv_wr;
1576 	}
1577 	cq_size = max_send_wr + max_recv_wr;
1578 	cq_vector = con->cpu % sess->s.dev->ib_dev->num_comp_vectors;
1579 	err = rtrs_cq_qp_create(&sess->s, &con->c, sess->max_send_sge,
1580 				 cq_vector, cq_size, max_send_wr,
1581 				 max_recv_wr, IB_POLL_SOFTIRQ);
1582 	/*
1583 	 * In case of error we do not bother to clean previous allocations,
1584 	 * since destroy_con_cq_qp() must be called.
1585 	 */
1586 	return err;
1587 }
1588 
1589 static void destroy_con_cq_qp(struct rtrs_clt_con *con)
1590 {
1591 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1592 
1593 	/*
1594 	 * Be careful here: destroy_con_cq_qp() can be called even
1595 	 * create_con_cq_qp() failed, see comments there.
1596 	 */
1597 	lockdep_assert_held(&con->con_mutex);
1598 	rtrs_cq_qp_destroy(&con->c);
1599 	if (con->rsp_ius) {
1600 		rtrs_iu_free(con->rsp_ius, sess->s.dev->ib_dev, con->queue_size);
1601 		con->rsp_ius = NULL;
1602 		con->queue_size = 0;
1603 	}
1604 	if (sess->s.dev_ref && !--sess->s.dev_ref) {
1605 		rtrs_ib_dev_put(sess->s.dev);
1606 		sess->s.dev = NULL;
1607 	}
1608 }
1609 
1610 static void stop_cm(struct rtrs_clt_con *con)
1611 {
1612 	rdma_disconnect(con->c.cm_id);
1613 	if (con->c.qp)
1614 		ib_drain_qp(con->c.qp);
1615 }
1616 
1617 static void destroy_cm(struct rtrs_clt_con *con)
1618 {
1619 	rdma_destroy_id(con->c.cm_id);
1620 	con->c.cm_id = NULL;
1621 }
1622 
1623 static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
1624 {
1625 	struct rtrs_sess *s = con->c.sess;
1626 	int err;
1627 
1628 	mutex_lock(&con->con_mutex);
1629 	err = create_con_cq_qp(con);
1630 	mutex_unlock(&con->con_mutex);
1631 	if (err) {
1632 		rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
1633 		return err;
1634 	}
1635 	err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1636 	if (err)
1637 		rtrs_err(s, "Resolving route failed, err: %d\n", err);
1638 
1639 	return err;
1640 }
1641 
1642 static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
1643 {
1644 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1645 	struct rtrs_clt *clt = sess->clt;
1646 	struct rtrs_msg_conn_req msg;
1647 	struct rdma_conn_param param;
1648 
1649 	int err;
1650 
1651 	param = (struct rdma_conn_param) {
1652 		.retry_count = 7,
1653 		.rnr_retry_count = 7,
1654 		.private_data = &msg,
1655 		.private_data_len = sizeof(msg),
1656 	};
1657 
1658 	msg = (struct rtrs_msg_conn_req) {
1659 		.magic = cpu_to_le16(RTRS_MAGIC),
1660 		.version = cpu_to_le16(RTRS_PROTO_VER),
1661 		.cid = cpu_to_le16(con->c.cid),
1662 		.cid_num = cpu_to_le16(sess->s.con_num),
1663 		.recon_cnt = cpu_to_le16(sess->s.recon_cnt),
1664 	};
1665 	msg.first_conn = sess->for_new_clt ? FIRST_CONN : 0;
1666 	uuid_copy(&msg.sess_uuid, &sess->s.uuid);
1667 	uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
1668 
1669 	err = rdma_connect_locked(con->c.cm_id, &param);
1670 	if (err)
1671 		rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
1672 
1673 	return err;
1674 }
1675 
1676 static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
1677 				       struct rdma_cm_event *ev)
1678 {
1679 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1680 	struct rtrs_clt *clt = sess->clt;
1681 	const struct rtrs_msg_conn_rsp *msg;
1682 	u16 version, queue_depth;
1683 	int errno;
1684 	u8 len;
1685 
1686 	msg = ev->param.conn.private_data;
1687 	len = ev->param.conn.private_data_len;
1688 	if (len < sizeof(*msg)) {
1689 		rtrs_err(clt, "Invalid RTRS connection response\n");
1690 		return -ECONNRESET;
1691 	}
1692 	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1693 		rtrs_err(clt, "Invalid RTRS magic\n");
1694 		return -ECONNRESET;
1695 	}
1696 	version = le16_to_cpu(msg->version);
1697 	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1698 		rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
1699 			  version >> 8, RTRS_PROTO_VER_MAJOR);
1700 		return -ECONNRESET;
1701 	}
1702 	errno = le16_to_cpu(msg->errno);
1703 	if (errno) {
1704 		rtrs_err(clt, "Invalid RTRS message: errno %d\n",
1705 			  errno);
1706 		return -ECONNRESET;
1707 	}
1708 	if (con->c.cid == 0) {
1709 		queue_depth = le16_to_cpu(msg->queue_depth);
1710 
1711 		if (queue_depth > MAX_SESS_QUEUE_DEPTH) {
1712 			rtrs_err(clt, "Invalid RTRS message: queue=%d\n",
1713 				  queue_depth);
1714 			return -ECONNRESET;
1715 		}
1716 		if (!sess->rbufs || sess->queue_depth < queue_depth) {
1717 			kfree(sess->rbufs);
1718 			sess->rbufs = kcalloc(queue_depth, sizeof(*sess->rbufs),
1719 					      GFP_KERNEL);
1720 			if (!sess->rbufs)
1721 				return -ENOMEM;
1722 		}
1723 		sess->queue_depth = queue_depth;
1724 		sess->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
1725 		sess->max_io_size = le32_to_cpu(msg->max_io_size);
1726 		sess->flags = le32_to_cpu(msg->flags);
1727 		sess->chunk_size = sess->max_io_size + sess->max_hdr_size;
1728 
1729 		/*
1730 		 * Global queue depth and IO size is always a minimum.
1731 		 * If while a reconnection server sends us a value a bit
1732 		 * higher - client does not care and uses cached minimum.
1733 		 *
1734 		 * Since we can have several sessions (paths) restablishing
1735 		 * connections in parallel, use lock.
1736 		 */
1737 		mutex_lock(&clt->paths_mutex);
1738 		clt->queue_depth = min_not_zero(sess->queue_depth,
1739 						clt->queue_depth);
1740 		clt->max_io_size = min_not_zero(sess->max_io_size,
1741 						clt->max_io_size);
1742 		mutex_unlock(&clt->paths_mutex);
1743 
1744 		/*
1745 		 * Cache the hca_port and hca_name for sysfs
1746 		 */
1747 		sess->hca_port = con->c.cm_id->port_num;
1748 		scnprintf(sess->hca_name, sizeof(sess->hca_name),
1749 			  sess->s.dev->ib_dev->name);
1750 		sess->s.src_addr = con->c.cm_id->route.addr.src_addr;
1751 		/* set for_new_clt, to allow future reconnect on any path */
1752 		sess->for_new_clt = 1;
1753 	}
1754 
1755 	return 0;
1756 }
1757 
1758 static inline void flag_success_on_conn(struct rtrs_clt_con *con)
1759 {
1760 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1761 
1762 	atomic_inc(&sess->connected_cnt);
1763 	con->cm_err = 1;
1764 }
1765 
1766 static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
1767 				    struct rdma_cm_event *ev)
1768 {
1769 	struct rtrs_sess *s = con->c.sess;
1770 	const struct rtrs_msg_conn_rsp *msg;
1771 	const char *rej_msg;
1772 	int status, errno;
1773 	u8 data_len;
1774 
1775 	status = ev->status;
1776 	rej_msg = rdma_reject_msg(con->c.cm_id, status);
1777 	msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
1778 
1779 	if (msg && data_len >= sizeof(*msg)) {
1780 		errno = (int16_t)le16_to_cpu(msg->errno);
1781 		if (errno == -EBUSY)
1782 			rtrs_err(s,
1783 				  "Previous session is still exists on the server, please reconnect later\n");
1784 		else
1785 			rtrs_err(s,
1786 				  "Connect rejected: status %d (%s), rtrs errno %d\n",
1787 				  status, rej_msg, errno);
1788 	} else {
1789 		rtrs_err(s,
1790 			  "Connect rejected but with malformed message: status %d (%s)\n",
1791 			  status, rej_msg);
1792 	}
1793 
1794 	return -ECONNRESET;
1795 }
1796 
1797 static void rtrs_clt_close_conns(struct rtrs_clt_sess *sess, bool wait)
1798 {
1799 	if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_CLOSING, NULL))
1800 		queue_work(rtrs_wq, &sess->close_work);
1801 	if (wait)
1802 		flush_work(&sess->close_work);
1803 }
1804 
1805 static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
1806 {
1807 	if (con->cm_err == 1) {
1808 		struct rtrs_clt_sess *sess;
1809 
1810 		sess = to_clt_sess(con->c.sess);
1811 		if (atomic_dec_and_test(&sess->connected_cnt))
1812 
1813 			wake_up(&sess->state_wq);
1814 	}
1815 	con->cm_err = cm_err;
1816 }
1817 
1818 static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
1819 				     struct rdma_cm_event *ev)
1820 {
1821 	struct rtrs_clt_con *con = cm_id->context;
1822 	struct rtrs_sess *s = con->c.sess;
1823 	struct rtrs_clt_sess *sess = to_clt_sess(s);
1824 	int cm_err = 0;
1825 
1826 	switch (ev->event) {
1827 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1828 		cm_err = rtrs_rdma_addr_resolved(con);
1829 		break;
1830 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1831 		cm_err = rtrs_rdma_route_resolved(con);
1832 		break;
1833 	case RDMA_CM_EVENT_ESTABLISHED:
1834 		cm_err = rtrs_rdma_conn_established(con, ev);
1835 		if (likely(!cm_err)) {
1836 			/*
1837 			 * Report success and wake up. Here we abuse state_wq,
1838 			 * i.e. wake up without state change, but we set cm_err.
1839 			 */
1840 			flag_success_on_conn(con);
1841 			wake_up(&sess->state_wq);
1842 			return 0;
1843 		}
1844 		break;
1845 	case RDMA_CM_EVENT_REJECTED:
1846 		cm_err = rtrs_rdma_conn_rejected(con, ev);
1847 		break;
1848 	case RDMA_CM_EVENT_DISCONNECTED:
1849 		/* No message for disconnecting */
1850 		cm_err = -ECONNRESET;
1851 		break;
1852 	case RDMA_CM_EVENT_CONNECT_ERROR:
1853 	case RDMA_CM_EVENT_UNREACHABLE:
1854 	case RDMA_CM_EVENT_ADDR_CHANGE:
1855 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1856 		rtrs_wrn(s, "CM error event %d\n", ev->event);
1857 		cm_err = -ECONNRESET;
1858 		break;
1859 	case RDMA_CM_EVENT_ADDR_ERROR:
1860 	case RDMA_CM_EVENT_ROUTE_ERROR:
1861 		rtrs_wrn(s, "CM error event %d\n", ev->event);
1862 		cm_err = -EHOSTUNREACH;
1863 		break;
1864 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1865 		/*
1866 		 * Device removal is a special case.  Queue close and return 0.
1867 		 */
1868 		rtrs_clt_close_conns(sess, false);
1869 		return 0;
1870 	default:
1871 		rtrs_err(s, "Unexpected RDMA CM event (%d)\n", ev->event);
1872 		cm_err = -ECONNRESET;
1873 		break;
1874 	}
1875 
1876 	if (cm_err) {
1877 		/*
1878 		 * cm error makes sense only on connection establishing,
1879 		 * in other cases we rely on normal procedure of reconnecting.
1880 		 */
1881 		flag_error_on_conn(con, cm_err);
1882 		rtrs_rdma_error_recovery(con);
1883 	}
1884 
1885 	return 0;
1886 }
1887 
1888 static int create_cm(struct rtrs_clt_con *con)
1889 {
1890 	struct rtrs_sess *s = con->c.sess;
1891 	struct rtrs_clt_sess *sess = to_clt_sess(s);
1892 	struct rdma_cm_id *cm_id;
1893 	int err;
1894 
1895 	cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
1896 			       sess->s.dst_addr.ss_family == AF_IB ?
1897 			       RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
1898 	if (IS_ERR(cm_id)) {
1899 		err = PTR_ERR(cm_id);
1900 		rtrs_err(s, "Failed to create CM ID, err: %d\n", err);
1901 
1902 		return err;
1903 	}
1904 	con->c.cm_id = cm_id;
1905 	con->cm_err = 0;
1906 	/* allow the port to be reused */
1907 	err = rdma_set_reuseaddr(cm_id, 1);
1908 	if (err != 0) {
1909 		rtrs_err(s, "Set address reuse failed, err: %d\n", err);
1910 		goto destroy_cm;
1911 	}
1912 	err = rdma_resolve_addr(cm_id, (struct sockaddr *)&sess->s.src_addr,
1913 				(struct sockaddr *)&sess->s.dst_addr,
1914 				RTRS_CONNECT_TIMEOUT_MS);
1915 	if (err) {
1916 		rtrs_err(s, "Failed to resolve address, err: %d\n", err);
1917 		goto destroy_cm;
1918 	}
1919 	/*
1920 	 * Combine connection status and session events. This is needed
1921 	 * for waiting two possible cases: cm_err has something meaningful
1922 	 * or session state was really changed to error by device removal.
1923 	 */
1924 	err = wait_event_interruptible_timeout(
1925 			sess->state_wq,
1926 			con->cm_err || sess->state != RTRS_CLT_CONNECTING,
1927 			msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
1928 	if (err == 0 || err == -ERESTARTSYS) {
1929 		if (err == 0)
1930 			err = -ETIMEDOUT;
1931 		/* Timedout or interrupted */
1932 		goto errr;
1933 	}
1934 	if (con->cm_err < 0) {
1935 		err = con->cm_err;
1936 		goto errr;
1937 	}
1938 	if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTING) {
1939 		/* Device removal */
1940 		err = -ECONNABORTED;
1941 		goto errr;
1942 	}
1943 
1944 	return 0;
1945 
1946 errr:
1947 	stop_cm(con);
1948 	mutex_lock(&con->con_mutex);
1949 	destroy_con_cq_qp(con);
1950 	mutex_unlock(&con->con_mutex);
1951 destroy_cm:
1952 	destroy_cm(con);
1953 
1954 	return err;
1955 }
1956 
1957 static void rtrs_clt_sess_up(struct rtrs_clt_sess *sess)
1958 {
1959 	struct rtrs_clt *clt = sess->clt;
1960 	int up;
1961 
1962 	/*
1963 	 * We can fire RECONNECTED event only when all paths were
1964 	 * connected on rtrs_clt_open(), then each was disconnected
1965 	 * and the first one connected again.  That's why this nasty
1966 	 * game with counter value.
1967 	 */
1968 
1969 	mutex_lock(&clt->paths_ev_mutex);
1970 	up = ++clt->paths_up;
1971 	/*
1972 	 * Here it is safe to access paths num directly since up counter
1973 	 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
1974 	 * in progress, thus paths removals are impossible.
1975 	 */
1976 	if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
1977 		clt->paths_up = clt->paths_num;
1978 	else if (up == 1)
1979 		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
1980 	mutex_unlock(&clt->paths_ev_mutex);
1981 
1982 	/* Mark session as established */
1983 	sess->established = true;
1984 	sess->reconnect_attempts = 0;
1985 	sess->stats->reconnects.successful_cnt++;
1986 }
1987 
1988 static void rtrs_clt_sess_down(struct rtrs_clt_sess *sess)
1989 {
1990 	struct rtrs_clt *clt = sess->clt;
1991 
1992 	if (!sess->established)
1993 		return;
1994 
1995 	sess->established = false;
1996 	mutex_lock(&clt->paths_ev_mutex);
1997 	WARN_ON(!clt->paths_up);
1998 	if (--clt->paths_up == 0)
1999 		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
2000 	mutex_unlock(&clt->paths_ev_mutex);
2001 }
2002 
2003 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_sess *sess)
2004 {
2005 	struct rtrs_clt_con *con;
2006 	unsigned int cid;
2007 
2008 	WARN_ON(READ_ONCE(sess->state) == RTRS_CLT_CONNECTED);
2009 
2010 	/*
2011 	 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
2012 	 * exactly in between.  Start destroying after it finishes.
2013 	 */
2014 	mutex_lock(&sess->init_mutex);
2015 	mutex_unlock(&sess->init_mutex);
2016 
2017 	/*
2018 	 * All IO paths must observe !CONNECTED state before we
2019 	 * free everything.
2020 	 */
2021 	synchronize_rcu();
2022 
2023 	rtrs_clt_stop_hb(sess);
2024 
2025 	/*
2026 	 * The order it utterly crucial: firstly disconnect and complete all
2027 	 * rdma requests with error (thus set in_use=false for requests),
2028 	 * then fail outstanding requests checking in_use for each, and
2029 	 * eventually notify upper layer about session disconnection.
2030 	 */
2031 
2032 	for (cid = 0; cid < sess->s.con_num; cid++) {
2033 		if (!sess->s.con[cid])
2034 			break;
2035 		con = to_clt_con(sess->s.con[cid]);
2036 		stop_cm(con);
2037 	}
2038 	fail_all_outstanding_reqs(sess);
2039 	free_sess_reqs(sess);
2040 	rtrs_clt_sess_down(sess);
2041 
2042 	/*
2043 	 * Wait for graceful shutdown, namely when peer side invokes
2044 	 * rdma_disconnect(). 'connected_cnt' is decremented only on
2045 	 * CM events, thus if other side had crashed and hb has detected
2046 	 * something is wrong, here we will stuck for exactly timeout ms,
2047 	 * since CM does not fire anything.  That is fine, we are not in
2048 	 * hurry.
2049 	 */
2050 	wait_event_timeout(sess->state_wq, !atomic_read(&sess->connected_cnt),
2051 			   msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2052 
2053 	for (cid = 0; cid < sess->s.con_num; cid++) {
2054 		if (!sess->s.con[cid])
2055 			break;
2056 		con = to_clt_con(sess->s.con[cid]);
2057 		mutex_lock(&con->con_mutex);
2058 		destroy_con_cq_qp(con);
2059 		mutex_unlock(&con->con_mutex);
2060 		destroy_cm(con);
2061 		destroy_con(con);
2062 	}
2063 }
2064 
2065 static inline bool xchg_sessions(struct rtrs_clt_sess __rcu **rcu_ppcpu_path,
2066 				 struct rtrs_clt_sess *sess,
2067 				 struct rtrs_clt_sess *next)
2068 {
2069 	struct rtrs_clt_sess **ppcpu_path;
2070 
2071 	/* Call cmpxchg() without sparse warnings */
2072 	ppcpu_path = (typeof(ppcpu_path))rcu_ppcpu_path;
2073 	return sess == cmpxchg(ppcpu_path, sess, next);
2074 }
2075 
2076 static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_sess *sess)
2077 {
2078 	struct rtrs_clt *clt = sess->clt;
2079 	struct rtrs_clt_sess *next;
2080 	bool wait_for_grace = false;
2081 	int cpu;
2082 
2083 	mutex_lock(&clt->paths_mutex);
2084 	list_del_rcu(&sess->s.entry);
2085 
2086 	/* Make sure everybody observes path removal. */
2087 	synchronize_rcu();
2088 
2089 	/*
2090 	 * At this point nobody sees @sess in the list, but still we have
2091 	 * dangling pointer @pcpu_path which _can_ point to @sess.  Since
2092 	 * nobody can observe @sess in the list, we guarantee that IO path
2093 	 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
2094 	 * to @sess, but can never again become @sess.
2095 	 */
2096 
2097 	/*
2098 	 * Decrement paths number only after grace period, because
2099 	 * caller of do_each_path() must firstly observe list without
2100 	 * path and only then decremented paths number.
2101 	 *
2102 	 * Otherwise there can be the following situation:
2103 	 *    o Two paths exist and IO is coming.
2104 	 *    o One path is removed:
2105 	 *      CPU#0                          CPU#1
2106 	 *      do_each_path():                rtrs_clt_remove_path_from_arr():
2107 	 *          path = get_next_path()
2108 	 *          ^^^                            list_del_rcu(path)
2109 	 *          [!CONNECTED path]              clt->paths_num--
2110 	 *                                              ^^^^^^^^^
2111 	 *          load clt->paths_num                 from 2 to 1
2112 	 *                    ^^^^^^^^^
2113 	 *                    sees 1
2114 	 *
2115 	 *      path is observed as !CONNECTED, but do_each_path() loop
2116 	 *      ends, because expression i < clt->paths_num is false.
2117 	 */
2118 	clt->paths_num--;
2119 
2120 	/*
2121 	 * Get @next connection from current @sess which is going to be
2122 	 * removed.  If @sess is the last element, then @next is NULL.
2123 	 */
2124 	rcu_read_lock();
2125 	next = list_next_or_null_rr_rcu(&clt->paths_list, &sess->s.entry,
2126 					typeof(*next), s.entry);
2127 	rcu_read_unlock();
2128 
2129 	/*
2130 	 * @pcpu paths can still point to the path which is going to be
2131 	 * removed, so change the pointer manually.
2132 	 */
2133 	for_each_possible_cpu(cpu) {
2134 		struct rtrs_clt_sess __rcu **ppcpu_path;
2135 
2136 		ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
2137 		if (rcu_dereference_protected(*ppcpu_path,
2138 			lockdep_is_held(&clt->paths_mutex)) != sess)
2139 			/*
2140 			 * synchronize_rcu() was called just after deleting
2141 			 * entry from the list, thus IO code path cannot
2142 			 * change pointer back to the pointer which is going
2143 			 * to be removed, we are safe here.
2144 			 */
2145 			continue;
2146 
2147 		/*
2148 		 * We race with IO code path, which also changes pointer,
2149 		 * thus we have to be careful not to overwrite it.
2150 		 */
2151 		if (xchg_sessions(ppcpu_path, sess, next))
2152 			/*
2153 			 * @ppcpu_path was successfully replaced with @next,
2154 			 * that means that someone could also pick up the
2155 			 * @sess and dereferencing it right now, so wait for
2156 			 * a grace period is required.
2157 			 */
2158 			wait_for_grace = true;
2159 	}
2160 	if (wait_for_grace)
2161 		synchronize_rcu();
2162 
2163 	mutex_unlock(&clt->paths_mutex);
2164 }
2165 
2166 static void rtrs_clt_add_path_to_arr(struct rtrs_clt_sess *sess)
2167 {
2168 	struct rtrs_clt *clt = sess->clt;
2169 
2170 	mutex_lock(&clt->paths_mutex);
2171 	clt->paths_num++;
2172 
2173 	list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
2174 	mutex_unlock(&clt->paths_mutex);
2175 }
2176 
2177 static void rtrs_clt_close_work(struct work_struct *work)
2178 {
2179 	struct rtrs_clt_sess *sess;
2180 
2181 	sess = container_of(work, struct rtrs_clt_sess, close_work);
2182 
2183 	cancel_delayed_work_sync(&sess->reconnect_dwork);
2184 	rtrs_clt_stop_and_destroy_conns(sess);
2185 	rtrs_clt_change_state_get_old(sess, RTRS_CLT_CLOSED, NULL);
2186 }
2187 
2188 static int init_conns(struct rtrs_clt_sess *sess)
2189 {
2190 	unsigned int cid;
2191 	int err;
2192 
2193 	/*
2194 	 * On every new session connections increase reconnect counter
2195 	 * to avoid clashes with previous sessions not yet closed
2196 	 * sessions on a server side.
2197 	 */
2198 	sess->s.recon_cnt++;
2199 
2200 	/* Establish all RDMA connections  */
2201 	for (cid = 0; cid < sess->s.con_num; cid++) {
2202 		err = create_con(sess, cid);
2203 		if (err)
2204 			goto destroy;
2205 
2206 		err = create_cm(to_clt_con(sess->s.con[cid]));
2207 		if (err) {
2208 			destroy_con(to_clt_con(sess->s.con[cid]));
2209 			goto destroy;
2210 		}
2211 	}
2212 	err = alloc_sess_reqs(sess);
2213 	if (err)
2214 		goto destroy;
2215 
2216 	rtrs_clt_start_hb(sess);
2217 
2218 	return 0;
2219 
2220 destroy:
2221 	while (cid--) {
2222 		struct rtrs_clt_con *con = to_clt_con(sess->s.con[cid]);
2223 
2224 		stop_cm(con);
2225 
2226 		mutex_lock(&con->con_mutex);
2227 		destroy_con_cq_qp(con);
2228 		mutex_unlock(&con->con_mutex);
2229 		destroy_cm(con);
2230 		destroy_con(con);
2231 	}
2232 	/*
2233 	 * If we've never taken async path and got an error, say,
2234 	 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
2235 	 * manually to keep reconnecting.
2236 	 */
2237 	rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL);
2238 
2239 	return err;
2240 }
2241 
2242 static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
2243 {
2244 	struct rtrs_clt_con *con = cq->cq_context;
2245 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
2246 	struct rtrs_iu *iu;
2247 
2248 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2249 	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
2250 
2251 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
2252 		rtrs_err(sess->clt, "Sess info request send failed: %s\n",
2253 			  ib_wc_status_msg(wc->status));
2254 		rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL);
2255 		return;
2256 	}
2257 
2258 	rtrs_clt_update_wc_stats(con);
2259 }
2260 
2261 static int process_info_rsp(struct rtrs_clt_sess *sess,
2262 			    const struct rtrs_msg_info_rsp *msg)
2263 {
2264 	unsigned int sg_cnt, total_len;
2265 	int i, sgi;
2266 
2267 	sg_cnt = le16_to_cpu(msg->sg_cnt);
2268 	if (unlikely(!sg_cnt || (sess->queue_depth % sg_cnt))) {
2269 		rtrs_err(sess->clt, "Incorrect sg_cnt %d, is not multiple\n",
2270 			  sg_cnt);
2271 		return -EINVAL;
2272 	}
2273 
2274 	/*
2275 	 * Check if IB immediate data size is enough to hold the mem_id and
2276 	 * the offset inside the memory chunk.
2277 	 */
2278 	if (unlikely((ilog2(sg_cnt - 1) + 1) +
2279 		     (ilog2(sess->chunk_size - 1) + 1) >
2280 		     MAX_IMM_PAYL_BITS)) {
2281 		rtrs_err(sess->clt,
2282 			  "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
2283 			  MAX_IMM_PAYL_BITS, sg_cnt, sess->chunk_size);
2284 		return -EINVAL;
2285 	}
2286 	total_len = 0;
2287 	for (sgi = 0, i = 0; sgi < sg_cnt && i < sess->queue_depth; sgi++) {
2288 		const struct rtrs_sg_desc *desc = &msg->desc[sgi];
2289 		u32 len, rkey;
2290 		u64 addr;
2291 
2292 		addr = le64_to_cpu(desc->addr);
2293 		rkey = le32_to_cpu(desc->key);
2294 		len  = le32_to_cpu(desc->len);
2295 
2296 		total_len += len;
2297 
2298 		if (unlikely(!len || (len % sess->chunk_size))) {
2299 			rtrs_err(sess->clt, "Incorrect [%d].len %d\n", sgi,
2300 				  len);
2301 			return -EINVAL;
2302 		}
2303 		for ( ; len && i < sess->queue_depth; i++) {
2304 			sess->rbufs[i].addr = addr;
2305 			sess->rbufs[i].rkey = rkey;
2306 
2307 			len  -= sess->chunk_size;
2308 			addr += sess->chunk_size;
2309 		}
2310 	}
2311 	/* Sanity check */
2312 	if (unlikely(sgi != sg_cnt || i != sess->queue_depth)) {
2313 		rtrs_err(sess->clt, "Incorrect sg vector, not fully mapped\n");
2314 		return -EINVAL;
2315 	}
2316 	if (unlikely(total_len != sess->chunk_size * sess->queue_depth)) {
2317 		rtrs_err(sess->clt, "Incorrect total_len %d\n", total_len);
2318 		return -EINVAL;
2319 	}
2320 
2321 	return 0;
2322 }
2323 
2324 static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
2325 {
2326 	struct rtrs_clt_con *con = cq->cq_context;
2327 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
2328 	struct rtrs_msg_info_rsp *msg;
2329 	enum rtrs_clt_state state;
2330 	struct rtrs_iu *iu;
2331 	size_t rx_sz;
2332 	int err;
2333 
2334 	state = RTRS_CLT_CONNECTING_ERR;
2335 
2336 	WARN_ON(con->c.cid);
2337 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2338 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
2339 		rtrs_err(sess->clt, "Sess info response recv failed: %s\n",
2340 			  ib_wc_status_msg(wc->status));
2341 		goto out;
2342 	}
2343 	WARN_ON(wc->opcode != IB_WC_RECV);
2344 
2345 	if (unlikely(wc->byte_len < sizeof(*msg))) {
2346 		rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
2347 			  wc->byte_len);
2348 		goto out;
2349 	}
2350 	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
2351 				   iu->size, DMA_FROM_DEVICE);
2352 	msg = iu->buf;
2353 	if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP)) {
2354 		rtrs_err(sess->clt, "Sess info response is malformed: type %d\n",
2355 			  le16_to_cpu(msg->type));
2356 		goto out;
2357 	}
2358 	rx_sz  = sizeof(*msg);
2359 	rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
2360 	if (unlikely(wc->byte_len < rx_sz)) {
2361 		rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
2362 			  wc->byte_len);
2363 		goto out;
2364 	}
2365 	err = process_info_rsp(sess, msg);
2366 	if (unlikely(err))
2367 		goto out;
2368 
2369 	err = post_recv_sess(sess);
2370 	if (unlikely(err))
2371 		goto out;
2372 
2373 	state = RTRS_CLT_CONNECTED;
2374 
2375 out:
2376 	rtrs_clt_update_wc_stats(con);
2377 	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
2378 	rtrs_clt_change_state_get_old(sess, state, NULL);
2379 }
2380 
2381 static int rtrs_send_sess_info(struct rtrs_clt_sess *sess)
2382 {
2383 	struct rtrs_clt_con *usr_con = to_clt_con(sess->s.con[0]);
2384 	struct rtrs_msg_info_req *msg;
2385 	struct rtrs_iu *tx_iu, *rx_iu;
2386 	size_t rx_sz;
2387 	int err;
2388 
2389 	rx_sz  = sizeof(struct rtrs_msg_info_rsp);
2390 	rx_sz += sizeof(u64) * MAX_SESS_QUEUE_DEPTH;
2391 
2392 	tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
2393 			       sess->s.dev->ib_dev, DMA_TO_DEVICE,
2394 			       rtrs_clt_info_req_done);
2395 	rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
2396 			       DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
2397 	if (unlikely(!tx_iu || !rx_iu)) {
2398 		err = -ENOMEM;
2399 		goto out;
2400 	}
2401 	/* Prepare for getting info response */
2402 	err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
2403 	if (unlikely(err)) {
2404 		rtrs_err(sess->clt, "rtrs_iu_post_recv(), err: %d\n", err);
2405 		goto out;
2406 	}
2407 	rx_iu = NULL;
2408 
2409 	msg = tx_iu->buf;
2410 	msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
2411 	memcpy(msg->sessname, sess->s.sessname, sizeof(msg->sessname));
2412 
2413 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
2414 				      tx_iu->size, DMA_TO_DEVICE);
2415 
2416 	/* Send info request */
2417 	err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
2418 	if (unlikely(err)) {
2419 		rtrs_err(sess->clt, "rtrs_iu_post_send(), err: %d\n", err);
2420 		goto out;
2421 	}
2422 	tx_iu = NULL;
2423 
2424 	/* Wait for state change */
2425 	wait_event_interruptible_timeout(sess->state_wq,
2426 					 sess->state != RTRS_CLT_CONNECTING,
2427 					 msecs_to_jiffies(
2428 						 RTRS_CONNECT_TIMEOUT_MS));
2429 	if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)) {
2430 		if (READ_ONCE(sess->state) == RTRS_CLT_CONNECTING_ERR)
2431 			err = -ECONNRESET;
2432 		else
2433 			err = -ETIMEDOUT;
2434 	}
2435 
2436 out:
2437 	if (tx_iu)
2438 		rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1);
2439 	if (rx_iu)
2440 		rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1);
2441 	if (unlikely(err))
2442 		/* If we've never taken async path because of malloc problems */
2443 		rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL);
2444 
2445 	return err;
2446 }
2447 
2448 /**
2449  * init_sess() - establishes all session connections and does handshake
2450  * @sess: client session.
2451  * In case of error full close or reconnect procedure should be taken,
2452  * because reconnect or close async works can be started.
2453  */
2454 static int init_sess(struct rtrs_clt_sess *sess)
2455 {
2456 	int err;
2457 
2458 	mutex_lock(&sess->init_mutex);
2459 	err = init_conns(sess);
2460 	if (err) {
2461 		rtrs_err(sess->clt, "init_conns(), err: %d\n", err);
2462 		goto out;
2463 	}
2464 	err = rtrs_send_sess_info(sess);
2465 	if (err) {
2466 		rtrs_err(sess->clt, "rtrs_send_sess_info(), err: %d\n", err);
2467 		goto out;
2468 	}
2469 	rtrs_clt_sess_up(sess);
2470 out:
2471 	mutex_unlock(&sess->init_mutex);
2472 
2473 	return err;
2474 }
2475 
2476 static void rtrs_clt_reconnect_work(struct work_struct *work)
2477 {
2478 	struct rtrs_clt_sess *sess;
2479 	struct rtrs_clt *clt;
2480 	unsigned int delay_ms;
2481 	int err;
2482 
2483 	sess = container_of(to_delayed_work(work), struct rtrs_clt_sess,
2484 			    reconnect_dwork);
2485 	clt = sess->clt;
2486 
2487 	if (READ_ONCE(sess->state) != RTRS_CLT_RECONNECTING)
2488 		return;
2489 
2490 	if (sess->reconnect_attempts >= clt->max_reconnect_attempts) {
2491 		/* Close a session completely if max attempts is reached */
2492 		rtrs_clt_close_conns(sess, false);
2493 		return;
2494 	}
2495 	sess->reconnect_attempts++;
2496 
2497 	/* Stop everything */
2498 	rtrs_clt_stop_and_destroy_conns(sess);
2499 	msleep(RTRS_RECONNECT_BACKOFF);
2500 	if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING, NULL)) {
2501 		err = init_sess(sess);
2502 		if (err)
2503 			goto reconnect_again;
2504 	}
2505 
2506 	return;
2507 
2508 reconnect_again:
2509 	if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING, NULL)) {
2510 		sess->stats->reconnects.fail_cnt++;
2511 		delay_ms = clt->reconnect_delay_sec * 1000;
2512 		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
2513 				   msecs_to_jiffies(delay_ms +
2514 						    prandom_u32() %
2515 						    RTRS_RECONNECT_SEED));
2516 	}
2517 }
2518 
2519 static void rtrs_clt_dev_release(struct device *dev)
2520 {
2521 	struct rtrs_clt *clt = container_of(dev, struct rtrs_clt, dev);
2522 
2523 	kfree(clt);
2524 }
2525 
2526 static struct rtrs_clt *alloc_clt(const char *sessname, size_t paths_num,
2527 				  u16 port, size_t pdu_sz, void *priv,
2528 				  void	(*link_ev)(void *priv,
2529 						   enum rtrs_clt_link_ev ev),
2530 				  unsigned int max_segments,
2531 				  size_t max_segment_size,
2532 				  unsigned int reconnect_delay_sec,
2533 				  unsigned int max_reconnect_attempts)
2534 {
2535 	struct rtrs_clt *clt;
2536 	int err;
2537 
2538 	if (!paths_num || paths_num > MAX_PATHS_NUM)
2539 		return ERR_PTR(-EINVAL);
2540 
2541 	if (strlen(sessname) >= sizeof(clt->sessname))
2542 		return ERR_PTR(-EINVAL);
2543 
2544 	clt = kzalloc(sizeof(*clt), GFP_KERNEL);
2545 	if (!clt)
2546 		return ERR_PTR(-ENOMEM);
2547 
2548 	clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
2549 	if (!clt->pcpu_path) {
2550 		kfree(clt);
2551 		return ERR_PTR(-ENOMEM);
2552 	}
2553 
2554 	uuid_gen(&clt->paths_uuid);
2555 	INIT_LIST_HEAD_RCU(&clt->paths_list);
2556 	clt->paths_num = paths_num;
2557 	clt->paths_up = MAX_PATHS_NUM;
2558 	clt->port = port;
2559 	clt->pdu_sz = pdu_sz;
2560 	clt->max_segments = max_segments;
2561 	clt->max_segment_size = max_segment_size;
2562 	clt->reconnect_delay_sec = reconnect_delay_sec;
2563 	clt->max_reconnect_attempts = max_reconnect_attempts;
2564 	clt->priv = priv;
2565 	clt->link_ev = link_ev;
2566 	clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2567 	strlcpy(clt->sessname, sessname, sizeof(clt->sessname));
2568 	init_waitqueue_head(&clt->permits_wait);
2569 	mutex_init(&clt->paths_ev_mutex);
2570 	mutex_init(&clt->paths_mutex);
2571 
2572 	clt->dev.class = rtrs_clt_dev_class;
2573 	clt->dev.release = rtrs_clt_dev_release;
2574 	err = dev_set_name(&clt->dev, "%s", sessname);
2575 	if (err)
2576 		goto err;
2577 	/*
2578 	 * Suppress user space notification until
2579 	 * sysfs files are created
2580 	 */
2581 	dev_set_uevent_suppress(&clt->dev, true);
2582 	err = device_register(&clt->dev);
2583 	if (err) {
2584 		put_device(&clt->dev);
2585 		goto err;
2586 	}
2587 
2588 	clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
2589 	if (!clt->kobj_paths) {
2590 		err = -ENOMEM;
2591 		goto err_dev;
2592 	}
2593 	err = rtrs_clt_create_sysfs_root_files(clt);
2594 	if (err) {
2595 		kobject_del(clt->kobj_paths);
2596 		kobject_put(clt->kobj_paths);
2597 		goto err_dev;
2598 	}
2599 	dev_set_uevent_suppress(&clt->dev, false);
2600 	kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
2601 
2602 	return clt;
2603 err_dev:
2604 	device_unregister(&clt->dev);
2605 err:
2606 	free_percpu(clt->pcpu_path);
2607 	kfree(clt);
2608 	return ERR_PTR(err);
2609 }
2610 
2611 static void free_clt(struct rtrs_clt *clt)
2612 {
2613 	free_permits(clt);
2614 	free_percpu(clt->pcpu_path);
2615 	mutex_destroy(&clt->paths_ev_mutex);
2616 	mutex_destroy(&clt->paths_mutex);
2617 	/* release callback will free clt in last put */
2618 	device_unregister(&clt->dev);
2619 }
2620 
2621 /**
2622  * rtrs_clt_open() - Open a session to an RTRS server
2623  * @ops: holds the link event callback and the private pointer.
2624  * @sessname: name of the session
2625  * @paths: Paths to be established defined by their src and dst addresses
2626  * @paths_num: Number of elements in the @paths array
2627  * @port: port to be used by the RTRS session
2628  * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
2629  * @reconnect_delay_sec: time between reconnect tries
2630  * @max_segments: Max. number of segments per IO request
2631  * @max_segment_size: Max. size of one segment
2632  * @max_reconnect_attempts: Number of times to reconnect on error before giving
2633  *			    up, 0 for * disabled, -1 for forever
2634  *
2635  * Starts session establishment with the rtrs_server. The function can block
2636  * up to ~2000ms before it returns.
2637  *
2638  * Return a valid pointer on success otherwise PTR_ERR.
2639  */
2640 struct rtrs_clt *rtrs_clt_open(struct rtrs_clt_ops *ops,
2641 				 const char *sessname,
2642 				 const struct rtrs_addr *paths,
2643 				 size_t paths_num, u16 port,
2644 				 size_t pdu_sz, u8 reconnect_delay_sec,
2645 				 u16 max_segments,
2646 				 size_t max_segment_size,
2647 				 s16 max_reconnect_attempts)
2648 {
2649 	struct rtrs_clt_sess *sess, *tmp;
2650 	struct rtrs_clt *clt;
2651 	int err, i;
2652 
2653 	clt = alloc_clt(sessname, paths_num, port, pdu_sz, ops->priv,
2654 			ops->link_ev,
2655 			max_segments, max_segment_size, reconnect_delay_sec,
2656 			max_reconnect_attempts);
2657 	if (IS_ERR(clt)) {
2658 		err = PTR_ERR(clt);
2659 		goto out;
2660 	}
2661 	for (i = 0; i < paths_num; i++) {
2662 		struct rtrs_clt_sess *sess;
2663 
2664 		sess = alloc_sess(clt, &paths[i], nr_cpu_ids,
2665 				  max_segments, max_segment_size);
2666 		if (IS_ERR(sess)) {
2667 			err = PTR_ERR(sess);
2668 			goto close_all_sess;
2669 		}
2670 		if (!i)
2671 			sess->for_new_clt = 1;
2672 		list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
2673 
2674 		err = init_sess(sess);
2675 		if (err) {
2676 			list_del_rcu(&sess->s.entry);
2677 			rtrs_clt_close_conns(sess, true);
2678 			free_sess(sess);
2679 			goto close_all_sess;
2680 		}
2681 
2682 		err = rtrs_clt_create_sess_files(sess);
2683 		if (err) {
2684 			list_del_rcu(&sess->s.entry);
2685 			rtrs_clt_close_conns(sess, true);
2686 			free_sess(sess);
2687 			goto close_all_sess;
2688 		}
2689 	}
2690 	err = alloc_permits(clt);
2691 	if (err)
2692 		goto close_all_sess;
2693 
2694 	return clt;
2695 
2696 close_all_sess:
2697 	list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
2698 		rtrs_clt_destroy_sess_files(sess, NULL);
2699 		rtrs_clt_close_conns(sess, true);
2700 		kobject_put(&sess->kobj);
2701 	}
2702 	rtrs_clt_destroy_sysfs_root(clt);
2703 	free_clt(clt);
2704 
2705 out:
2706 	return ERR_PTR(err);
2707 }
2708 EXPORT_SYMBOL(rtrs_clt_open);
2709 
2710 /**
2711  * rtrs_clt_close() - Close a session
2712  * @clt: Session handle. Session is freed upon return.
2713  */
2714 void rtrs_clt_close(struct rtrs_clt *clt)
2715 {
2716 	struct rtrs_clt_sess *sess, *tmp;
2717 
2718 	/* Firstly forbid sysfs access */
2719 	rtrs_clt_destroy_sysfs_root(clt);
2720 
2721 	/* Now it is safe to iterate over all paths without locks */
2722 	list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
2723 		rtrs_clt_destroy_sess_files(sess, NULL);
2724 		rtrs_clt_close_conns(sess, true);
2725 		kobject_put(&sess->kobj);
2726 	}
2727 	free_clt(clt);
2728 }
2729 EXPORT_SYMBOL(rtrs_clt_close);
2730 
2731 int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_sess *sess)
2732 {
2733 	enum rtrs_clt_state old_state;
2734 	int err = -EBUSY;
2735 	bool changed;
2736 
2737 	changed = rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING,
2738 						 &old_state);
2739 	if (changed) {
2740 		sess->reconnect_attempts = 0;
2741 		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 0);
2742 	}
2743 	if (changed || old_state == RTRS_CLT_RECONNECTING) {
2744 		/*
2745 		 * flush_delayed_work() queues pending work for immediate
2746 		 * execution, so do the flush if we have queued something
2747 		 * right now or work is pending.
2748 		 */
2749 		flush_delayed_work(&sess->reconnect_dwork);
2750 		err = (READ_ONCE(sess->state) ==
2751 		       RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
2752 	}
2753 
2754 	return err;
2755 }
2756 
2757 int rtrs_clt_disconnect_from_sysfs(struct rtrs_clt_sess *sess)
2758 {
2759 	rtrs_clt_close_conns(sess, true);
2760 
2761 	return 0;
2762 }
2763 
2764 int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_sess *sess,
2765 				     const struct attribute *sysfs_self)
2766 {
2767 	enum rtrs_clt_state old_state;
2768 	bool changed;
2769 
2770 	/*
2771 	 * Continue stopping path till state was changed to DEAD or
2772 	 * state was observed as DEAD:
2773 	 * 1. State was changed to DEAD - we were fast and nobody
2774 	 *    invoked rtrs_clt_reconnect(), which can again start
2775 	 *    reconnecting.
2776 	 * 2. State was observed as DEAD - we have someone in parallel
2777 	 *    removing the path.
2778 	 */
2779 	do {
2780 		rtrs_clt_close_conns(sess, true);
2781 		changed = rtrs_clt_change_state_get_old(sess,
2782 							RTRS_CLT_DEAD,
2783 							&old_state);
2784 	} while (!changed && old_state != RTRS_CLT_DEAD);
2785 
2786 	if (likely(changed)) {
2787 		rtrs_clt_destroy_sess_files(sess, sysfs_self);
2788 		rtrs_clt_remove_path_from_arr(sess);
2789 		kobject_put(&sess->kobj);
2790 	}
2791 
2792 	return 0;
2793 }
2794 
2795 void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt *clt, int value)
2796 {
2797 	clt->max_reconnect_attempts = (unsigned int)value;
2798 }
2799 
2800 int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt *clt)
2801 {
2802 	return (int)clt->max_reconnect_attempts;
2803 }
2804 
2805 /**
2806  * rtrs_clt_request() - Request data transfer to/from server via RDMA.
2807  *
2808  * @dir:	READ/WRITE
2809  * @ops:	callback function to be called as confirmation, and the pointer.
2810  * @clt:	Session
2811  * @permit:	Preallocated permit
2812  * @vec:	Message that is sent to server together with the request.
2813  *		Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
2814  *		Since the msg is copied internally it can be allocated on stack.
2815  * @nr:		Number of elements in @vec.
2816  * @data_len:	length of data sent to/from server
2817  * @sg:		Pages to be sent/received to/from server.
2818  * @sg_cnt:	Number of elements in the @sg
2819  *
2820  * Return:
2821  * 0:		Success
2822  * <0:		Error
2823  *
2824  * On dir=READ rtrs client will request a data transfer from Server to client.
2825  * The data that the server will respond with will be stored in @sg when
2826  * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
2827  * On dir=WRITE rtrs client will rdma write data in sg to server side.
2828  */
2829 int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
2830 		     struct rtrs_clt *clt, struct rtrs_permit *permit,
2831 		      const struct kvec *vec, size_t nr, size_t data_len,
2832 		      struct scatterlist *sg, unsigned int sg_cnt)
2833 {
2834 	struct rtrs_clt_io_req *req;
2835 	struct rtrs_clt_sess *sess;
2836 
2837 	enum dma_data_direction dma_dir;
2838 	int err = -ECONNABORTED, i;
2839 	size_t usr_len, hdr_len;
2840 	struct path_it it;
2841 
2842 	/* Get kvec length */
2843 	for (i = 0, usr_len = 0; i < nr; i++)
2844 		usr_len += vec[i].iov_len;
2845 
2846 	if (dir == READ) {
2847 		hdr_len = sizeof(struct rtrs_msg_rdma_read) +
2848 			  sg_cnt * sizeof(struct rtrs_sg_desc);
2849 		dma_dir = DMA_FROM_DEVICE;
2850 	} else {
2851 		hdr_len = sizeof(struct rtrs_msg_rdma_write);
2852 		dma_dir = DMA_TO_DEVICE;
2853 	}
2854 
2855 	rcu_read_lock();
2856 	for (path_it_init(&it, clt);
2857 	     (sess = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
2858 		if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED))
2859 			continue;
2860 
2861 		if (unlikely(usr_len + hdr_len > sess->max_hdr_size)) {
2862 			rtrs_wrn_rl(sess->clt,
2863 				     "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
2864 				     dir == READ ? "Read" : "Write",
2865 				     usr_len, hdr_len, sess->max_hdr_size);
2866 			err = -EMSGSIZE;
2867 			break;
2868 		}
2869 		req = rtrs_clt_get_req(sess, ops->conf_fn, permit, ops->priv,
2870 				       vec, usr_len, sg, sg_cnt, data_len,
2871 				       dma_dir);
2872 		if (dir == READ)
2873 			err = rtrs_clt_read_req(req);
2874 		else
2875 			err = rtrs_clt_write_req(req);
2876 		if (unlikely(err)) {
2877 			req->in_use = false;
2878 			continue;
2879 		}
2880 		/* Success path */
2881 		break;
2882 	}
2883 	path_it_deinit(&it);
2884 	rcu_read_unlock();
2885 
2886 	return err;
2887 }
2888 EXPORT_SYMBOL(rtrs_clt_request);
2889 
2890 /**
2891  * rtrs_clt_query() - queries RTRS session attributes
2892  *@clt: session pointer
2893  *@attr: query results for session attributes.
2894  * Returns:
2895  *    0 on success
2896  *    -ECOMM		no connection to the server
2897  */
2898 int rtrs_clt_query(struct rtrs_clt *clt, struct rtrs_attrs *attr)
2899 {
2900 	if (!rtrs_clt_is_connected(clt))
2901 		return -ECOMM;
2902 
2903 	attr->queue_depth      = clt->queue_depth;
2904 	attr->max_io_size      = clt->max_io_size;
2905 	attr->sess_kobj	       = &clt->dev.kobj;
2906 	strlcpy(attr->sessname, clt->sessname, sizeof(attr->sessname));
2907 
2908 	return 0;
2909 }
2910 EXPORT_SYMBOL(rtrs_clt_query);
2911 
2912 int rtrs_clt_create_path_from_sysfs(struct rtrs_clt *clt,
2913 				     struct rtrs_addr *addr)
2914 {
2915 	struct rtrs_clt_sess *sess;
2916 	int err;
2917 
2918 	sess = alloc_sess(clt, addr, nr_cpu_ids, clt->max_segments,
2919 			  clt->max_segment_size);
2920 	if (IS_ERR(sess))
2921 		return PTR_ERR(sess);
2922 
2923 	/*
2924 	 * It is totally safe to add path in CONNECTING state: coming
2925 	 * IO will never grab it.  Also it is very important to add
2926 	 * path before init, since init fires LINK_CONNECTED event.
2927 	 */
2928 	rtrs_clt_add_path_to_arr(sess);
2929 
2930 	err = init_sess(sess);
2931 	if (err)
2932 		goto close_sess;
2933 
2934 	err = rtrs_clt_create_sess_files(sess);
2935 	if (err)
2936 		goto close_sess;
2937 
2938 	return 0;
2939 
2940 close_sess:
2941 	rtrs_clt_remove_path_from_arr(sess);
2942 	rtrs_clt_close_conns(sess, true);
2943 	free_sess(sess);
2944 
2945 	return err;
2946 }
2947 
2948 static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
2949 {
2950 	if (!(dev->ib_dev->attrs.device_cap_flags &
2951 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
2952 		pr_err("Memory registrations not supported.\n");
2953 		return -ENOTSUPP;
2954 	}
2955 
2956 	return 0;
2957 }
2958 
2959 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
2960 	.init = rtrs_clt_ib_dev_init
2961 };
2962 
2963 static int __init rtrs_client_init(void)
2964 {
2965 	rtrs_rdma_dev_pd_init(0, &dev_pd);
2966 
2967 	rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client");
2968 	if (IS_ERR(rtrs_clt_dev_class)) {
2969 		pr_err("Failed to create rtrs-client dev class\n");
2970 		return PTR_ERR(rtrs_clt_dev_class);
2971 	}
2972 	rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0);
2973 	if (!rtrs_wq) {
2974 		class_destroy(rtrs_clt_dev_class);
2975 		return -ENOMEM;
2976 	}
2977 
2978 	return 0;
2979 }
2980 
2981 static void __exit rtrs_client_exit(void)
2982 {
2983 	destroy_workqueue(rtrs_wq);
2984 	class_destroy(rtrs_clt_dev_class);
2985 	rtrs_rdma_dev_pd_deinit(&dev_pd);
2986 }
2987 
2988 module_init(rtrs_client_init);
2989 module_exit(rtrs_client_exit);
2990