1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/rculist.h>
15 #include <linux/random.h>
16 
17 #include "rtrs-clt.h"
18 #include "rtrs-log.h"
19 
20 #define RTRS_CONNECT_TIMEOUT_MS 30000
21 /*
22  * Wait a bit before trying to reconnect after a failure
23  * in order to give server time to finish clean up which
24  * leads to "false positives" failed reconnect attempts
25  */
26 #define RTRS_RECONNECT_BACKOFF 1000
27 /*
28  * Wait for additional random time between 0 and 8 seconds
29  * before starting to reconnect to avoid clients reconnecting
30  * all at once in case of a major network outage
31  */
32 #define RTRS_RECONNECT_SEED 8
33 
34 MODULE_DESCRIPTION("RDMA Transport Client");
35 MODULE_LICENSE("GPL");
36 
37 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
38 static struct rtrs_rdma_dev_pd dev_pd = {
39 	.ops = &dev_pd_ops
40 };
41 
42 static struct workqueue_struct *rtrs_wq;
43 static struct class *rtrs_clt_dev_class;
44 
45 static inline bool rtrs_clt_is_connected(const struct rtrs_clt *clt)
46 {
47 	struct rtrs_clt_sess *sess;
48 	bool connected = false;
49 
50 	rcu_read_lock();
51 	list_for_each_entry_rcu(sess, &clt->paths_list, s.entry)
52 		connected |= READ_ONCE(sess->state) == RTRS_CLT_CONNECTED;
53 	rcu_read_unlock();
54 
55 	return connected;
56 }
57 
58 static struct rtrs_permit *
59 __rtrs_get_permit(struct rtrs_clt *clt, enum rtrs_clt_con_type con_type)
60 {
61 	size_t max_depth = clt->queue_depth;
62 	struct rtrs_permit *permit;
63 	int bit;
64 
65 	/*
66 	 * Adapted from null_blk get_tag(). Callers from different cpus may
67 	 * grab the same bit, since find_first_zero_bit is not atomic.
68 	 * But then the test_and_set_bit_lock will fail for all the
69 	 * callers but one, so that they will loop again.
70 	 * This way an explicit spinlock is not required.
71 	 */
72 	do {
73 		bit = find_first_zero_bit(clt->permits_map, max_depth);
74 		if (unlikely(bit >= max_depth))
75 			return NULL;
76 	} while (unlikely(test_and_set_bit_lock(bit, clt->permits_map)));
77 
78 	permit = get_permit(clt, bit);
79 	WARN_ON(permit->mem_id != bit);
80 	permit->cpu_id = raw_smp_processor_id();
81 	permit->con_type = con_type;
82 
83 	return permit;
84 }
85 
86 static inline void __rtrs_put_permit(struct rtrs_clt *clt,
87 				      struct rtrs_permit *permit)
88 {
89 	clear_bit_unlock(permit->mem_id, clt->permits_map);
90 }
91 
92 /**
93  * rtrs_clt_get_permit() - allocates permit for future RDMA operation
94  * @clt:	Current session
95  * @con_type:	Type of connection to use with the permit
96  * @can_wait:	Wait type
97  *
98  * Description:
99  *    Allocates permit for the following RDMA operation.  Permit is used
100  *    to preallocate all resources and to propagate memory pressure
101  *    up earlier.
102  *
103  * Context:
104  *    Can sleep if @wait == RTRS_TAG_WAIT
105  */
106 struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt *clt,
107 					  enum rtrs_clt_con_type con_type,
108 					  int can_wait)
109 {
110 	struct rtrs_permit *permit;
111 	DEFINE_WAIT(wait);
112 
113 	permit = __rtrs_get_permit(clt, con_type);
114 	if (likely(permit) || !can_wait)
115 		return permit;
116 
117 	do {
118 		prepare_to_wait(&clt->permits_wait, &wait,
119 				TASK_UNINTERRUPTIBLE);
120 		permit = __rtrs_get_permit(clt, con_type);
121 		if (likely(permit))
122 			break;
123 
124 		io_schedule();
125 	} while (1);
126 
127 	finish_wait(&clt->permits_wait, &wait);
128 
129 	return permit;
130 }
131 EXPORT_SYMBOL(rtrs_clt_get_permit);
132 
133 /**
134  * rtrs_clt_put_permit() - puts allocated permit
135  * @clt:	Current session
136  * @permit:	Permit to be freed
137  *
138  * Context:
139  *    Does not matter
140  */
141 void rtrs_clt_put_permit(struct rtrs_clt *clt, struct rtrs_permit *permit)
142 {
143 	if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
144 		return;
145 
146 	__rtrs_put_permit(clt, permit);
147 
148 	/*
149 	 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
150 	 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
151 	 * it must have added itself to &clt->permits_wait before
152 	 * __rtrs_put_permit() finished.
153 	 * Hence it is safe to guard wake_up() with a waitqueue_active() test.
154 	 */
155 	if (waitqueue_active(&clt->permits_wait))
156 		wake_up(&clt->permits_wait);
157 }
158 EXPORT_SYMBOL(rtrs_clt_put_permit);
159 
160 void *rtrs_permit_to_pdu(struct rtrs_permit *permit)
161 {
162 	return permit + 1;
163 }
164 EXPORT_SYMBOL(rtrs_permit_to_pdu);
165 
166 /**
167  * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
168  * @sess: client session pointer
169  * @permit: permit for the allocation of the RDMA buffer
170  * Note:
171  *     IO connection starts from 1.
172  *     0 connection is for user messages.
173  */
174 static
175 struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_sess *sess,
176 					    struct rtrs_permit *permit)
177 {
178 	int id = 0;
179 
180 	if (likely(permit->con_type == RTRS_IO_CON))
181 		id = (permit->cpu_id % (sess->s.con_num - 1)) + 1;
182 
183 	return to_clt_con(sess->s.con[id]);
184 }
185 
186 /**
187  * __rtrs_clt_change_state() - change the session state through session state
188  * machine.
189  *
190  * @sess: client session to change the state of.
191  * @new_state: state to change to.
192  *
193  * returns true if successful, false if the requested state can not be set.
194  *
195  * Locks:
196  * state_wq lock must be hold.
197  */
198 static bool __rtrs_clt_change_state(struct rtrs_clt_sess *sess,
199 				     enum rtrs_clt_state new_state)
200 {
201 	enum rtrs_clt_state old_state;
202 	bool changed = false;
203 
204 	lockdep_assert_held(&sess->state_wq.lock);
205 
206 	old_state = sess->state;
207 	switch (new_state) {
208 	case RTRS_CLT_CONNECTING:
209 		switch (old_state) {
210 		case RTRS_CLT_RECONNECTING:
211 			changed = true;
212 			fallthrough;
213 		default:
214 			break;
215 		}
216 		break;
217 	case RTRS_CLT_RECONNECTING:
218 		switch (old_state) {
219 		case RTRS_CLT_CONNECTED:
220 		case RTRS_CLT_CONNECTING_ERR:
221 		case RTRS_CLT_CLOSED:
222 			changed = true;
223 			fallthrough;
224 		default:
225 			break;
226 		}
227 		break;
228 	case RTRS_CLT_CONNECTED:
229 		switch (old_state) {
230 		case RTRS_CLT_CONNECTING:
231 			changed = true;
232 			fallthrough;
233 		default:
234 			break;
235 		}
236 		break;
237 	case RTRS_CLT_CONNECTING_ERR:
238 		switch (old_state) {
239 		case RTRS_CLT_CONNECTING:
240 			changed = true;
241 			fallthrough;
242 		default:
243 			break;
244 		}
245 		break;
246 	case RTRS_CLT_CLOSING:
247 		switch (old_state) {
248 		case RTRS_CLT_CONNECTING:
249 		case RTRS_CLT_CONNECTING_ERR:
250 		case RTRS_CLT_RECONNECTING:
251 		case RTRS_CLT_CONNECTED:
252 			changed = true;
253 			fallthrough;
254 		default:
255 			break;
256 		}
257 		break;
258 	case RTRS_CLT_CLOSED:
259 		switch (old_state) {
260 		case RTRS_CLT_CLOSING:
261 			changed = true;
262 			fallthrough;
263 		default:
264 			break;
265 		}
266 		break;
267 	case RTRS_CLT_DEAD:
268 		switch (old_state) {
269 		case RTRS_CLT_CLOSED:
270 			changed = true;
271 			fallthrough;
272 		default:
273 			break;
274 		}
275 		break;
276 	default:
277 		break;
278 	}
279 	if (changed) {
280 		sess->state = new_state;
281 		wake_up_locked(&sess->state_wq);
282 	}
283 
284 	return changed;
285 }
286 
287 static bool rtrs_clt_change_state_from_to(struct rtrs_clt_sess *sess,
288 					   enum rtrs_clt_state old_state,
289 					   enum rtrs_clt_state new_state)
290 {
291 	bool changed = false;
292 
293 	spin_lock_irq(&sess->state_wq.lock);
294 	if (sess->state == old_state)
295 		changed = __rtrs_clt_change_state(sess, new_state);
296 	spin_unlock_irq(&sess->state_wq.lock);
297 
298 	return changed;
299 }
300 
301 static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
302 {
303 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
304 
305 	if (rtrs_clt_change_state_from_to(sess,
306 					   RTRS_CLT_CONNECTED,
307 					   RTRS_CLT_RECONNECTING)) {
308 		struct rtrs_clt *clt = sess->clt;
309 		unsigned int delay_ms;
310 
311 		/*
312 		 * Normal scenario, reconnect if we were successfully connected
313 		 */
314 		delay_ms = clt->reconnect_delay_sec * 1000;
315 		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
316 				   msecs_to_jiffies(delay_ms +
317 						    prandom_u32() % RTRS_RECONNECT_SEED));
318 	} else {
319 		/*
320 		 * Error can happen just on establishing new connection,
321 		 * so notify waiter with error state, waiter is responsible
322 		 * for cleaning the rest and reconnect if needed.
323 		 */
324 		rtrs_clt_change_state_from_to(sess,
325 					       RTRS_CLT_CONNECTING,
326 					       RTRS_CLT_CONNECTING_ERR);
327 	}
328 }
329 
330 static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
331 {
332 	struct rtrs_clt_con *con = cq->cq_context;
333 
334 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
335 		rtrs_err(con->c.sess, "Failed IB_WR_REG_MR: %s\n",
336 			  ib_wc_status_msg(wc->status));
337 		rtrs_rdma_error_recovery(con);
338 	}
339 }
340 
341 static struct ib_cqe fast_reg_cqe = {
342 	.done = rtrs_clt_fast_reg_done
343 };
344 
345 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
346 			      bool notify, bool can_wait);
347 
348 static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
349 {
350 	struct rtrs_clt_io_req *req =
351 		container_of(wc->wr_cqe, typeof(*req), inv_cqe);
352 	struct rtrs_clt_con *con = cq->cq_context;
353 
354 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
355 		rtrs_err(con->c.sess, "Failed IB_WR_LOCAL_INV: %s\n",
356 			  ib_wc_status_msg(wc->status));
357 		rtrs_rdma_error_recovery(con);
358 	}
359 	req->need_inv = false;
360 	if (likely(req->need_inv_comp))
361 		complete(&req->inv_comp);
362 	else
363 		/* Complete request from INV callback */
364 		complete_rdma_req(req, req->inv_errno, true, false);
365 }
366 
367 static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
368 {
369 	struct rtrs_clt_con *con = req->con;
370 	struct ib_send_wr wr = {
371 		.opcode		    = IB_WR_LOCAL_INV,
372 		.wr_cqe		    = &req->inv_cqe,
373 		.send_flags	    = IB_SEND_SIGNALED,
374 		.ex.invalidate_rkey = req->mr->rkey,
375 	};
376 	req->inv_cqe.done = rtrs_clt_inv_rkey_done;
377 
378 	return ib_post_send(con->c.qp, &wr, NULL);
379 }
380 
381 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
382 			      bool notify, bool can_wait)
383 {
384 	struct rtrs_clt_con *con = req->con;
385 	struct rtrs_clt_sess *sess;
386 	int err;
387 
388 	if (WARN_ON(!req->in_use))
389 		return;
390 	if (WARN_ON(!req->con))
391 		return;
392 	sess = to_clt_sess(con->c.sess);
393 
394 	if (req->sg_cnt) {
395 		if (unlikely(req->dir == DMA_FROM_DEVICE && req->need_inv)) {
396 			/*
397 			 * We are here to invalidate read requests
398 			 * ourselves.  In normal scenario server should
399 			 * send INV for all read requests, but
400 			 * we are here, thus two things could happen:
401 			 *
402 			 *    1.  this is failover, when errno != 0
403 			 *        and can_wait == 1,
404 			 *
405 			 *    2.  something totally bad happened and
406 			 *        server forgot to send INV, so we
407 			 *        should do that ourselves.
408 			 */
409 
410 			if (likely(can_wait)) {
411 				req->need_inv_comp = true;
412 			} else {
413 				/* This should be IO path, so always notify */
414 				WARN_ON(!notify);
415 				/* Save errno for INV callback */
416 				req->inv_errno = errno;
417 			}
418 
419 			err = rtrs_inv_rkey(req);
420 			if (unlikely(err)) {
421 				rtrs_err(con->c.sess, "Send INV WR key=%#x: %d\n",
422 					  req->mr->rkey, err);
423 			} else if (likely(can_wait)) {
424 				wait_for_completion(&req->inv_comp);
425 			} else {
426 				/*
427 				 * Something went wrong, so request will be
428 				 * completed from INV callback.
429 				 */
430 				WARN_ON_ONCE(1);
431 
432 				return;
433 			}
434 		}
435 		ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
436 				req->sg_cnt, req->dir);
437 	}
438 	if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
439 		atomic_dec(&sess->stats->inflight);
440 
441 	req->in_use = false;
442 	req->con = NULL;
443 
444 	if (notify)
445 		req->conf(req->priv, errno);
446 }
447 
448 static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
449 				struct rtrs_clt_io_req *req,
450 				struct rtrs_rbuf *rbuf, u32 off,
451 				u32 imm, struct ib_send_wr *wr)
452 {
453 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
454 	enum ib_send_flags flags;
455 	struct ib_sge sge;
456 
457 	if (unlikely(!req->sg_size)) {
458 		rtrs_wrn(con->c.sess,
459 			 "Doing RDMA Write failed, no data supplied\n");
460 		return -EINVAL;
461 	}
462 
463 	/* user data and user message in the first list element */
464 	sge.addr   = req->iu->dma_addr;
465 	sge.length = req->sg_size;
466 	sge.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
467 
468 	/*
469 	 * From time to time we have to post signalled sends,
470 	 * or send queue will fill up and only QP reset can help.
471 	 */
472 	flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
473 			0 : IB_SEND_SIGNALED;
474 
475 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
476 				      req->sg_size, DMA_TO_DEVICE);
477 
478 	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
479 					    rbuf->rkey, rbuf->addr + off,
480 					    imm, flags, wr);
481 }
482 
483 static void process_io_rsp(struct rtrs_clt_sess *sess, u32 msg_id,
484 			   s16 errno, bool w_inval)
485 {
486 	struct rtrs_clt_io_req *req;
487 
488 	if (WARN_ON(msg_id >= sess->queue_depth))
489 		return;
490 
491 	req = &sess->reqs[msg_id];
492 	/* Drop need_inv if server responded with send with invalidation */
493 	req->need_inv &= !w_inval;
494 	complete_rdma_req(req, errno, true, false);
495 }
496 
497 static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
498 {
499 	struct rtrs_iu *iu;
500 	int err;
501 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
502 
503 	WARN_ON(sess->flags != RTRS_MSG_NEW_RKEY_F);
504 	iu = container_of(wc->wr_cqe, struct rtrs_iu,
505 			  cqe);
506 	err = rtrs_iu_post_recv(&con->c, iu);
507 	if (unlikely(err)) {
508 		rtrs_err(con->c.sess, "post iu failed %d\n", err);
509 		rtrs_rdma_error_recovery(con);
510 	}
511 }
512 
513 static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
514 {
515 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
516 	struct rtrs_msg_rkey_rsp *msg;
517 	u32 imm_type, imm_payload;
518 	bool w_inval = false;
519 	struct rtrs_iu *iu;
520 	u32 buf_id;
521 	int err;
522 
523 	WARN_ON(sess->flags != RTRS_MSG_NEW_RKEY_F);
524 
525 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
526 
527 	if (unlikely(wc->byte_len < sizeof(*msg))) {
528 		rtrs_err(con->c.sess, "rkey response is malformed: size %d\n",
529 			  wc->byte_len);
530 		goto out;
531 	}
532 	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
533 				   iu->size, DMA_FROM_DEVICE);
534 	msg = iu->buf;
535 	if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP)) {
536 		rtrs_err(sess->clt, "rkey response is malformed: type %d\n",
537 			  le16_to_cpu(msg->type));
538 		goto out;
539 	}
540 	buf_id = le16_to_cpu(msg->buf_id);
541 	if (WARN_ON(buf_id >= sess->queue_depth))
542 		goto out;
543 
544 	rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
545 	if (likely(imm_type == RTRS_IO_RSP_IMM ||
546 		   imm_type == RTRS_IO_RSP_W_INV_IMM)) {
547 		u32 msg_id;
548 
549 		w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
550 		rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
551 
552 		if (WARN_ON(buf_id != msg_id))
553 			goto out;
554 		sess->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
555 		process_io_rsp(sess, msg_id, err, w_inval);
556 	}
557 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, iu->dma_addr,
558 				      iu->size, DMA_FROM_DEVICE);
559 	return rtrs_clt_recv_done(con, wc);
560 out:
561 	rtrs_rdma_error_recovery(con);
562 }
563 
564 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
565 
566 static struct ib_cqe io_comp_cqe = {
567 	.done = rtrs_clt_rdma_done
568 };
569 
570 /*
571  * Post x2 empty WRs: first is for this RDMA with IMM,
572  * second is for RECV with INV, which happened earlier.
573  */
574 static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
575 {
576 	struct ib_recv_wr wr_arr[2], *wr;
577 	int i;
578 
579 	memset(wr_arr, 0, sizeof(wr_arr));
580 	for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
581 		wr = &wr_arr[i];
582 		wr->wr_cqe  = cqe;
583 		if (i)
584 			/* Chain backwards */
585 			wr->next = &wr_arr[i - 1];
586 	}
587 
588 	return ib_post_recv(con->qp, wr, NULL);
589 }
590 
591 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
592 {
593 	struct rtrs_clt_con *con = cq->cq_context;
594 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
595 	u32 imm_type, imm_payload;
596 	bool w_inval = false;
597 	int err;
598 
599 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
600 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
601 			rtrs_err(sess->clt, "RDMA failed: %s\n",
602 				  ib_wc_status_msg(wc->status));
603 			rtrs_rdma_error_recovery(con);
604 		}
605 		return;
606 	}
607 	rtrs_clt_update_wc_stats(con);
608 
609 	switch (wc->opcode) {
610 	case IB_WC_RECV_RDMA_WITH_IMM:
611 		/*
612 		 * post_recv() RDMA write completions of IO reqs (read/write)
613 		 * and hb
614 		 */
615 		if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
616 			return;
617 		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
618 			       &imm_type, &imm_payload);
619 		if (likely(imm_type == RTRS_IO_RSP_IMM ||
620 			   imm_type == RTRS_IO_RSP_W_INV_IMM)) {
621 			u32 msg_id;
622 
623 			w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
624 			rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
625 
626 			process_io_rsp(sess, msg_id, err, w_inval);
627 		} else if (imm_type == RTRS_HB_MSG_IMM) {
628 			WARN_ON(con->c.cid);
629 			rtrs_send_hb_ack(&sess->s);
630 			if (sess->flags == RTRS_MSG_NEW_RKEY_F)
631 				return  rtrs_clt_recv_done(con, wc);
632 		} else if (imm_type == RTRS_HB_ACK_IMM) {
633 			WARN_ON(con->c.cid);
634 			sess->s.hb_missed_cnt = 0;
635 			if (sess->flags == RTRS_MSG_NEW_RKEY_F)
636 				return  rtrs_clt_recv_done(con, wc);
637 		} else {
638 			rtrs_wrn(con->c.sess, "Unknown IMM type %u\n",
639 				  imm_type);
640 		}
641 		if (w_inval)
642 			/*
643 			 * Post x2 empty WRs: first is for this RDMA with IMM,
644 			 * second is for RECV with INV, which happened earlier.
645 			 */
646 			err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
647 		else
648 			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
649 		if (unlikely(err)) {
650 			rtrs_err(con->c.sess, "rtrs_post_recv_empty(): %d\n",
651 				  err);
652 			rtrs_rdma_error_recovery(con);
653 			break;
654 		}
655 		break;
656 	case IB_WC_RECV:
657 		/*
658 		 * Key invalidations from server side
659 		 */
660 		WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
661 			  wc->wc_flags & IB_WC_WITH_IMM));
662 		WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
663 		if (sess->flags == RTRS_MSG_NEW_RKEY_F) {
664 			if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
665 				return  rtrs_clt_recv_done(con, wc);
666 
667 			return  rtrs_clt_rkey_rsp_done(con, wc);
668 		}
669 		break;
670 	case IB_WC_RDMA_WRITE:
671 		/*
672 		 * post_send() RDMA write completions of IO reqs (read/write)
673 		 * and hb
674 		 */
675 		break;
676 
677 	default:
678 		rtrs_wrn(sess->clt, "Unexpected WC type: %d\n", wc->opcode);
679 		return;
680 	}
681 }
682 
683 static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
684 {
685 	int err, i;
686 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
687 
688 	for (i = 0; i < q_size; i++) {
689 		if (sess->flags == RTRS_MSG_NEW_RKEY_F) {
690 			struct rtrs_iu *iu = &con->rsp_ius[i];
691 
692 			err = rtrs_iu_post_recv(&con->c, iu);
693 		} else {
694 			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
695 		}
696 		if (unlikely(err))
697 			return err;
698 	}
699 
700 	return 0;
701 }
702 
703 static int post_recv_sess(struct rtrs_clt_sess *sess)
704 {
705 	size_t q_size = 0;
706 	int err, cid;
707 
708 	for (cid = 0; cid < sess->s.con_num; cid++) {
709 		if (cid == 0)
710 			q_size = SERVICE_CON_QUEUE_DEPTH;
711 		else
712 			q_size = sess->queue_depth;
713 
714 		/*
715 		 * x2 for RDMA read responses + FR key invalidations,
716 		 * RDMA writes do not require any FR registrations.
717 		 */
718 		q_size *= 2;
719 
720 		err = post_recv_io(to_clt_con(sess->s.con[cid]), q_size);
721 		if (unlikely(err)) {
722 			rtrs_err(sess->clt, "post_recv_io(), err: %d\n", err);
723 			return err;
724 		}
725 	}
726 
727 	return 0;
728 }
729 
730 struct path_it {
731 	int i;
732 	struct list_head skip_list;
733 	struct rtrs_clt *clt;
734 	struct rtrs_clt_sess *(*next_path)(struct path_it *it);
735 };
736 
737 /**
738  * list_next_or_null_rr_rcu - get next list element in round-robin fashion.
739  * @head:	the head for the list.
740  * @ptr:        the list head to take the next element from.
741  * @type:       the type of the struct this is embedded in.
742  * @memb:       the name of the list_head within the struct.
743  *
744  * Next element returned in round-robin fashion, i.e. head will be skipped,
745  * but if list is observed as empty, NULL will be returned.
746  *
747  * This primitive may safely run concurrently with the _rcu list-mutation
748  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
749  */
750 #define list_next_or_null_rr_rcu(head, ptr, type, memb) \
751 ({ \
752 	list_next_or_null_rcu(head, ptr, type, memb) ?: \
753 		list_next_or_null_rcu(head, READ_ONCE((ptr)->next), \
754 				      type, memb); \
755 })
756 
757 /**
758  * get_next_path_rr() - Returns path in round-robin fashion.
759  * @it:	the path pointer
760  *
761  * Related to @MP_POLICY_RR
762  *
763  * Locks:
764  *    rcu_read_lock() must be hold.
765  */
766 static struct rtrs_clt_sess *get_next_path_rr(struct path_it *it)
767 {
768 	struct rtrs_clt_sess __rcu **ppcpu_path;
769 	struct rtrs_clt_sess *path;
770 	struct rtrs_clt *clt;
771 
772 	clt = it->clt;
773 
774 	/*
775 	 * Here we use two RCU objects: @paths_list and @pcpu_path
776 	 * pointer.  See rtrs_clt_remove_path_from_arr() for details
777 	 * how that is handled.
778 	 */
779 
780 	ppcpu_path = this_cpu_ptr(clt->pcpu_path);
781 	path = rcu_dereference(*ppcpu_path);
782 	if (unlikely(!path))
783 		path = list_first_or_null_rcu(&clt->paths_list,
784 					      typeof(*path), s.entry);
785 	else
786 		path = list_next_or_null_rr_rcu(&clt->paths_list,
787 						&path->s.entry,
788 						typeof(*path),
789 						s.entry);
790 	rcu_assign_pointer(*ppcpu_path, path);
791 
792 	return path;
793 }
794 
795 /**
796  * get_next_path_min_inflight() - Returns path with minimal inflight count.
797  * @it:	the path pointer
798  *
799  * Related to @MP_POLICY_MIN_INFLIGHT
800  *
801  * Locks:
802  *    rcu_read_lock() must be hold.
803  */
804 static struct rtrs_clt_sess *get_next_path_min_inflight(struct path_it *it)
805 {
806 	struct rtrs_clt_sess *min_path = NULL;
807 	struct rtrs_clt *clt = it->clt;
808 	struct rtrs_clt_sess *sess;
809 	int min_inflight = INT_MAX;
810 	int inflight;
811 
812 	list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) {
813 		if (unlikely(!list_empty(raw_cpu_ptr(sess->mp_skip_entry))))
814 			continue;
815 
816 		inflight = atomic_read(&sess->stats->inflight);
817 
818 		if (inflight < min_inflight) {
819 			min_inflight = inflight;
820 			min_path = sess;
821 		}
822 	}
823 
824 	/*
825 	 * add the path to the skip list, so that next time we can get
826 	 * a different one
827 	 */
828 	if (min_path)
829 		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
830 
831 	return min_path;
832 }
833 
834 static inline void path_it_init(struct path_it *it, struct rtrs_clt *clt)
835 {
836 	INIT_LIST_HEAD(&it->skip_list);
837 	it->clt = clt;
838 	it->i = 0;
839 
840 	if (clt->mp_policy == MP_POLICY_RR)
841 		it->next_path = get_next_path_rr;
842 	else
843 		it->next_path = get_next_path_min_inflight;
844 }
845 
846 static inline void path_it_deinit(struct path_it *it)
847 {
848 	struct list_head *skip, *tmp;
849 	/*
850 	 * The skip_list is used only for the MIN_INFLIGHT policy.
851 	 * We need to remove paths from it, so that next IO can insert
852 	 * paths (->mp_skip_entry) into a skip_list again.
853 	 */
854 	list_for_each_safe(skip, tmp, &it->skip_list)
855 		list_del_init(skip);
856 }
857 
858 /**
859  * rtrs_clt_init_req() Initialize an rtrs_clt_io_req holding information
860  * about an inflight IO.
861  * The user buffer holding user control message (not data) is copied into
862  * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
863  * also hold the control message of rtrs.
864  * @req: an io request holding information about IO.
865  * @sess: client session
866  * @conf: conformation callback function to notify upper layer.
867  * @permit: permit for allocation of RDMA remote buffer
868  * @priv: private pointer
869  * @vec: kernel vector containing control message
870  * @usr_len: length of the user message
871  * @sg: scater list for IO data
872  * @sg_cnt: number of scater list entries
873  * @data_len: length of the IO data
874  * @dir: direction of the IO.
875  */
876 static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
877 			      struct rtrs_clt_sess *sess,
878 			      void (*conf)(void *priv, int errno),
879 			      struct rtrs_permit *permit, void *priv,
880 			      const struct kvec *vec, size_t usr_len,
881 			      struct scatterlist *sg, size_t sg_cnt,
882 			      size_t data_len, int dir)
883 {
884 	struct iov_iter iter;
885 	size_t len;
886 
887 	req->permit = permit;
888 	req->in_use = true;
889 	req->usr_len = usr_len;
890 	req->data_len = data_len;
891 	req->sglist = sg;
892 	req->sg_cnt = sg_cnt;
893 	req->priv = priv;
894 	req->dir = dir;
895 	req->con = rtrs_permit_to_clt_con(sess, permit);
896 	req->conf = conf;
897 	req->need_inv = false;
898 	req->need_inv_comp = false;
899 	req->inv_errno = 0;
900 
901 	iov_iter_kvec(&iter, READ, vec, 1, usr_len);
902 	len = _copy_from_iter(req->iu->buf, usr_len, &iter);
903 	WARN_ON(len != usr_len);
904 
905 	reinit_completion(&req->inv_comp);
906 }
907 
908 static struct rtrs_clt_io_req *
909 rtrs_clt_get_req(struct rtrs_clt_sess *sess,
910 		 void (*conf)(void *priv, int errno),
911 		 struct rtrs_permit *permit, void *priv,
912 		 const struct kvec *vec, size_t usr_len,
913 		 struct scatterlist *sg, size_t sg_cnt,
914 		 size_t data_len, int dir)
915 {
916 	struct rtrs_clt_io_req *req;
917 
918 	req = &sess->reqs[permit->mem_id];
919 	rtrs_clt_init_req(req, sess, conf, permit, priv, vec, usr_len,
920 			   sg, sg_cnt, data_len, dir);
921 	return req;
922 }
923 
924 static struct rtrs_clt_io_req *
925 rtrs_clt_get_copy_req(struct rtrs_clt_sess *alive_sess,
926 		       struct rtrs_clt_io_req *fail_req)
927 {
928 	struct rtrs_clt_io_req *req;
929 	struct kvec vec = {
930 		.iov_base = fail_req->iu->buf,
931 		.iov_len  = fail_req->usr_len
932 	};
933 
934 	req = &alive_sess->reqs[fail_req->permit->mem_id];
935 	rtrs_clt_init_req(req, alive_sess, fail_req->conf, fail_req->permit,
936 			   fail_req->priv, &vec, fail_req->usr_len,
937 			   fail_req->sglist, fail_req->sg_cnt,
938 			   fail_req->data_len, fail_req->dir);
939 	return req;
940 }
941 
942 static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
943 				    struct rtrs_clt_io_req *req,
944 				    struct rtrs_rbuf *rbuf,
945 				    u32 size, u32 imm)
946 {
947 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
948 	struct ib_sge *sge = req->sge;
949 	enum ib_send_flags flags;
950 	struct scatterlist *sg;
951 	size_t num_sge;
952 	int i;
953 
954 	for_each_sg(req->sglist, sg, req->sg_cnt, i) {
955 		sge[i].addr   = sg_dma_address(sg);
956 		sge[i].length = sg_dma_len(sg);
957 		sge[i].lkey   = sess->s.dev->ib_pd->local_dma_lkey;
958 	}
959 	sge[i].addr   = req->iu->dma_addr;
960 	sge[i].length = size;
961 	sge[i].lkey   = sess->s.dev->ib_pd->local_dma_lkey;
962 
963 	num_sge = 1 + req->sg_cnt;
964 
965 	/*
966 	 * From time to time we have to post signalled sends,
967 	 * or send queue will fill up and only QP reset can help.
968 	 */
969 	flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
970 			0 : IB_SEND_SIGNALED;
971 
972 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
973 				      size, DMA_TO_DEVICE);
974 
975 	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
976 					    rbuf->rkey, rbuf->addr, imm,
977 					    flags, NULL);
978 }
979 
980 static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
981 {
982 	struct rtrs_clt_con *con = req->con;
983 	struct rtrs_sess *s = con->c.sess;
984 	struct rtrs_clt_sess *sess = to_clt_sess(s);
985 	struct rtrs_msg_rdma_write *msg;
986 
987 	struct rtrs_rbuf *rbuf;
988 	int ret, count = 0;
989 	u32 imm, buf_id;
990 
991 	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
992 
993 	if (unlikely(tsize > sess->chunk_size)) {
994 		rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
995 			  tsize, sess->chunk_size);
996 		return -EMSGSIZE;
997 	}
998 	if (req->sg_cnt) {
999 		count = ib_dma_map_sg(sess->s.dev->ib_dev, req->sglist,
1000 				      req->sg_cnt, req->dir);
1001 		if (unlikely(!count)) {
1002 			rtrs_wrn(s, "Write request failed, map failed\n");
1003 			return -EINVAL;
1004 		}
1005 	}
1006 	/* put rtrs msg after sg and user message */
1007 	msg = req->iu->buf + req->usr_len;
1008 	msg->type = cpu_to_le16(RTRS_MSG_WRITE);
1009 	msg->usr_len = cpu_to_le16(req->usr_len);
1010 
1011 	/* rtrs message on server side will be after user data and message */
1012 	imm = req->permit->mem_off + req->data_len + req->usr_len;
1013 	imm = rtrs_to_io_req_imm(imm);
1014 	buf_id = req->permit->mem_id;
1015 	req->sg_size = tsize;
1016 	rbuf = &sess->rbufs[buf_id];
1017 
1018 	/*
1019 	 * Update stats now, after request is successfully sent it is not
1020 	 * safe anymore to touch it.
1021 	 */
1022 	rtrs_clt_update_all_stats(req, WRITE);
1023 
1024 	ret = rtrs_post_rdma_write_sg(req->con, req, rbuf,
1025 				       req->usr_len + sizeof(*msg),
1026 				       imm);
1027 	if (unlikely(ret)) {
1028 		rtrs_err(s, "Write request failed: %d\n", ret);
1029 		if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
1030 			atomic_dec(&sess->stats->inflight);
1031 		if (req->sg_cnt)
1032 			ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
1033 					req->sg_cnt, req->dir);
1034 	}
1035 
1036 	return ret;
1037 }
1038 
1039 static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
1040 {
1041 	int nr;
1042 
1043 	/* Align the MR to a 4K page size to match the block virt boundary */
1044 	nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1045 	if (nr < 0)
1046 		return nr;
1047 	if (unlikely(nr < req->sg_cnt))
1048 		return -EINVAL;
1049 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1050 
1051 	return nr;
1052 }
1053 
1054 static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
1055 {
1056 	struct rtrs_clt_con *con = req->con;
1057 	struct rtrs_sess *s = con->c.sess;
1058 	struct rtrs_clt_sess *sess = to_clt_sess(s);
1059 	struct rtrs_msg_rdma_read *msg;
1060 	struct rtrs_ib_dev *dev;
1061 
1062 	struct ib_reg_wr rwr;
1063 	struct ib_send_wr *wr = NULL;
1064 
1065 	int ret, count = 0;
1066 	u32 imm, buf_id;
1067 
1068 	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1069 
1070 	s = &sess->s;
1071 	dev = sess->s.dev;
1072 
1073 	if (unlikely(tsize > sess->chunk_size)) {
1074 		rtrs_wrn(s,
1075 			  "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
1076 			  tsize, sess->chunk_size);
1077 		return -EMSGSIZE;
1078 	}
1079 
1080 	if (req->sg_cnt) {
1081 		count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1082 				      req->dir);
1083 		if (unlikely(!count)) {
1084 			rtrs_wrn(s,
1085 				  "Read request failed, dma map failed\n");
1086 			return -EINVAL;
1087 		}
1088 	}
1089 	/* put our message into req->buf after user message*/
1090 	msg = req->iu->buf + req->usr_len;
1091 	msg->type = cpu_to_le16(RTRS_MSG_READ);
1092 	msg->usr_len = cpu_to_le16(req->usr_len);
1093 
1094 	if (count) {
1095 		ret = rtrs_map_sg_fr(req, count);
1096 		if (ret < 0) {
1097 			rtrs_err_rl(s,
1098 				     "Read request failed, failed to map  fast reg. data, err: %d\n",
1099 				     ret);
1100 			ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1101 					req->dir);
1102 			return ret;
1103 		}
1104 		rwr = (struct ib_reg_wr) {
1105 			.wr.opcode = IB_WR_REG_MR,
1106 			.wr.wr_cqe = &fast_reg_cqe,
1107 			.mr = req->mr,
1108 			.key = req->mr->rkey,
1109 			.access = (IB_ACCESS_LOCAL_WRITE |
1110 				   IB_ACCESS_REMOTE_WRITE),
1111 		};
1112 		wr = &rwr.wr;
1113 
1114 		msg->sg_cnt = cpu_to_le16(1);
1115 		msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
1116 
1117 		msg->desc[0].addr = cpu_to_le64(req->mr->iova);
1118 		msg->desc[0].key = cpu_to_le32(req->mr->rkey);
1119 		msg->desc[0].len = cpu_to_le32(req->mr->length);
1120 
1121 		/* Further invalidation is required */
1122 		req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
1123 
1124 	} else {
1125 		msg->sg_cnt = 0;
1126 		msg->flags = 0;
1127 	}
1128 	/*
1129 	 * rtrs message will be after the space reserved for disk data and
1130 	 * user message
1131 	 */
1132 	imm = req->permit->mem_off + req->data_len + req->usr_len;
1133 	imm = rtrs_to_io_req_imm(imm);
1134 	buf_id = req->permit->mem_id;
1135 
1136 	req->sg_size  = sizeof(*msg);
1137 	req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
1138 	req->sg_size += req->usr_len;
1139 
1140 	/*
1141 	 * Update stats now, after request is successfully sent it is not
1142 	 * safe anymore to touch it.
1143 	 */
1144 	rtrs_clt_update_all_stats(req, READ);
1145 
1146 	ret = rtrs_post_send_rdma(req->con, req, &sess->rbufs[buf_id],
1147 				   req->data_len, imm, wr);
1148 	if (unlikely(ret)) {
1149 		rtrs_err(s, "Read request failed: %d\n", ret);
1150 		if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
1151 			atomic_dec(&sess->stats->inflight);
1152 		req->need_inv = false;
1153 		if (req->sg_cnt)
1154 			ib_dma_unmap_sg(dev->ib_dev, req->sglist,
1155 					req->sg_cnt, req->dir);
1156 	}
1157 
1158 	return ret;
1159 }
1160 
1161 /**
1162  * rtrs_clt_failover_req() Try to find an active path for a failed request
1163  * @clt: clt context
1164  * @fail_req: a failed io request.
1165  */
1166 static int rtrs_clt_failover_req(struct rtrs_clt *clt,
1167 				 struct rtrs_clt_io_req *fail_req)
1168 {
1169 	struct rtrs_clt_sess *alive_sess;
1170 	struct rtrs_clt_io_req *req;
1171 	int err = -ECONNABORTED;
1172 	struct path_it it;
1173 
1174 	rcu_read_lock();
1175 	for (path_it_init(&it, clt);
1176 	     (alive_sess = it.next_path(&it)) && it.i < it.clt->paths_num;
1177 	     it.i++) {
1178 		if (unlikely(READ_ONCE(alive_sess->state) !=
1179 			     RTRS_CLT_CONNECTED))
1180 			continue;
1181 		req = rtrs_clt_get_copy_req(alive_sess, fail_req);
1182 		if (req->dir == DMA_TO_DEVICE)
1183 			err = rtrs_clt_write_req(req);
1184 		else
1185 			err = rtrs_clt_read_req(req);
1186 		if (unlikely(err)) {
1187 			req->in_use = false;
1188 			continue;
1189 		}
1190 		/* Success path */
1191 		rtrs_clt_inc_failover_cnt(alive_sess->stats);
1192 		break;
1193 	}
1194 	path_it_deinit(&it);
1195 	rcu_read_unlock();
1196 
1197 	return err;
1198 }
1199 
1200 static void fail_all_outstanding_reqs(struct rtrs_clt_sess *sess)
1201 {
1202 	struct rtrs_clt *clt = sess->clt;
1203 	struct rtrs_clt_io_req *req;
1204 	int i, err;
1205 
1206 	if (!sess->reqs)
1207 		return;
1208 	for (i = 0; i < sess->queue_depth; ++i) {
1209 		req = &sess->reqs[i];
1210 		if (!req->in_use)
1211 			continue;
1212 
1213 		/*
1214 		 * Safely (without notification) complete failed request.
1215 		 * After completion this request is still useble and can
1216 		 * be failovered to another path.
1217 		 */
1218 		complete_rdma_req(req, -ECONNABORTED, false, true);
1219 
1220 		err = rtrs_clt_failover_req(clt, req);
1221 		if (unlikely(err))
1222 			/* Failover failed, notify anyway */
1223 			req->conf(req->priv, err);
1224 	}
1225 }
1226 
1227 static void free_sess_reqs(struct rtrs_clt_sess *sess)
1228 {
1229 	struct rtrs_clt_io_req *req;
1230 	int i;
1231 
1232 	if (!sess->reqs)
1233 		return;
1234 	for (i = 0; i < sess->queue_depth; ++i) {
1235 		req = &sess->reqs[i];
1236 		if (req->mr)
1237 			ib_dereg_mr(req->mr);
1238 		kfree(req->sge);
1239 		rtrs_iu_free(req->iu, sess->s.dev->ib_dev, 1);
1240 	}
1241 	kfree(sess->reqs);
1242 	sess->reqs = NULL;
1243 }
1244 
1245 static int alloc_sess_reqs(struct rtrs_clt_sess *sess)
1246 {
1247 	struct rtrs_clt_io_req *req;
1248 	struct rtrs_clt *clt = sess->clt;
1249 	int i, err = -ENOMEM;
1250 
1251 	sess->reqs = kcalloc(sess->queue_depth, sizeof(*sess->reqs),
1252 			     GFP_KERNEL);
1253 	if (!sess->reqs)
1254 		return -ENOMEM;
1255 
1256 	for (i = 0; i < sess->queue_depth; ++i) {
1257 		req = &sess->reqs[i];
1258 		req->iu = rtrs_iu_alloc(1, sess->max_hdr_size, GFP_KERNEL,
1259 					 sess->s.dev->ib_dev,
1260 					 DMA_TO_DEVICE,
1261 					 rtrs_clt_rdma_done);
1262 		if (!req->iu)
1263 			goto out;
1264 
1265 		req->sge = kmalloc_array(clt->max_segments + 1,
1266 					 sizeof(*req->sge), GFP_KERNEL);
1267 		if (!req->sge)
1268 			goto out;
1269 
1270 		req->mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
1271 				      sess->max_pages_per_mr);
1272 		if (IS_ERR(req->mr)) {
1273 			err = PTR_ERR(req->mr);
1274 			req->mr = NULL;
1275 			pr_err("Failed to alloc sess->max_pages_per_mr %d\n",
1276 			       sess->max_pages_per_mr);
1277 			goto out;
1278 		}
1279 
1280 		init_completion(&req->inv_comp);
1281 	}
1282 
1283 	return 0;
1284 
1285 out:
1286 	free_sess_reqs(sess);
1287 
1288 	return err;
1289 }
1290 
1291 static int alloc_permits(struct rtrs_clt *clt)
1292 {
1293 	unsigned int chunk_bits;
1294 	int err, i;
1295 
1296 	clt->permits_map = kcalloc(BITS_TO_LONGS(clt->queue_depth),
1297 				   sizeof(long), GFP_KERNEL);
1298 	if (!clt->permits_map) {
1299 		err = -ENOMEM;
1300 		goto out_err;
1301 	}
1302 	clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
1303 	if (!clt->permits) {
1304 		err = -ENOMEM;
1305 		goto err_map;
1306 	}
1307 	chunk_bits = ilog2(clt->queue_depth - 1) + 1;
1308 	for (i = 0; i < clt->queue_depth; i++) {
1309 		struct rtrs_permit *permit;
1310 
1311 		permit = get_permit(clt, i);
1312 		permit->mem_id = i;
1313 		permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
1314 	}
1315 
1316 	return 0;
1317 
1318 err_map:
1319 	kfree(clt->permits_map);
1320 	clt->permits_map = NULL;
1321 out_err:
1322 	return err;
1323 }
1324 
1325 static void free_permits(struct rtrs_clt *clt)
1326 {
1327 	kfree(clt->permits_map);
1328 	clt->permits_map = NULL;
1329 	kfree(clt->permits);
1330 	clt->permits = NULL;
1331 }
1332 
1333 static void query_fast_reg_mode(struct rtrs_clt_sess *sess)
1334 {
1335 	struct ib_device *ib_dev;
1336 	u64 max_pages_per_mr;
1337 	int mr_page_shift;
1338 
1339 	ib_dev = sess->s.dev->ib_dev;
1340 
1341 	/*
1342 	 * Use the smallest page size supported by the HCA, down to a
1343 	 * minimum of 4096 bytes. We're unlikely to build large sglists
1344 	 * out of smaller entries.
1345 	 */
1346 	mr_page_shift      = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
1347 	max_pages_per_mr   = ib_dev->attrs.max_mr_size;
1348 	do_div(max_pages_per_mr, (1ull << mr_page_shift));
1349 	sess->max_pages_per_mr =
1350 		min3(sess->max_pages_per_mr, (u32)max_pages_per_mr,
1351 		     ib_dev->attrs.max_fast_reg_page_list_len);
1352 	sess->max_send_sge = ib_dev->attrs.max_send_sge;
1353 }
1354 
1355 static bool rtrs_clt_change_state_get_old(struct rtrs_clt_sess *sess,
1356 					   enum rtrs_clt_state new_state,
1357 					   enum rtrs_clt_state *old_state)
1358 {
1359 	bool changed;
1360 
1361 	spin_lock_irq(&sess->state_wq.lock);
1362 	*old_state = sess->state;
1363 	changed = __rtrs_clt_change_state(sess, new_state);
1364 	spin_unlock_irq(&sess->state_wq.lock);
1365 
1366 	return changed;
1367 }
1368 
1369 static bool rtrs_clt_change_state(struct rtrs_clt_sess *sess,
1370 				   enum rtrs_clt_state new_state)
1371 {
1372 	enum rtrs_clt_state old_state;
1373 
1374 	return rtrs_clt_change_state_get_old(sess, new_state, &old_state);
1375 }
1376 
1377 static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
1378 {
1379 	struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
1380 
1381 	rtrs_rdma_error_recovery(con);
1382 }
1383 
1384 static void rtrs_clt_init_hb(struct rtrs_clt_sess *sess)
1385 {
1386 	rtrs_init_hb(&sess->s, &io_comp_cqe,
1387 		      RTRS_HB_INTERVAL_MS,
1388 		      RTRS_HB_MISSED_MAX,
1389 		      rtrs_clt_hb_err_handler,
1390 		      rtrs_wq);
1391 }
1392 
1393 static void rtrs_clt_start_hb(struct rtrs_clt_sess *sess)
1394 {
1395 	rtrs_start_hb(&sess->s);
1396 }
1397 
1398 static void rtrs_clt_stop_hb(struct rtrs_clt_sess *sess)
1399 {
1400 	rtrs_stop_hb(&sess->s);
1401 }
1402 
1403 static void rtrs_clt_reconnect_work(struct work_struct *work);
1404 static void rtrs_clt_close_work(struct work_struct *work);
1405 
1406 static struct rtrs_clt_sess *alloc_sess(struct rtrs_clt *clt,
1407 					 const struct rtrs_addr *path,
1408 					 size_t con_num, u16 max_segments,
1409 					 size_t max_segment_size)
1410 {
1411 	struct rtrs_clt_sess *sess;
1412 	int err = -ENOMEM;
1413 	int cpu;
1414 
1415 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
1416 	if (!sess)
1417 		goto err;
1418 
1419 	/* Extra connection for user messages */
1420 	con_num += 1;
1421 
1422 	sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
1423 	if (!sess->s.con)
1424 		goto err_free_sess;
1425 
1426 	sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
1427 	if (!sess->stats)
1428 		goto err_free_con;
1429 
1430 	mutex_init(&sess->init_mutex);
1431 	uuid_gen(&sess->s.uuid);
1432 	memcpy(&sess->s.dst_addr, path->dst,
1433 	       rdma_addr_size((struct sockaddr *)path->dst));
1434 
1435 	/*
1436 	 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
1437 	 * checks the sa_family to be non-zero. If user passed src_addr=NULL
1438 	 * the sess->src_addr will contain only zeros, which is then fine.
1439 	 */
1440 	if (path->src)
1441 		memcpy(&sess->s.src_addr, path->src,
1442 		       rdma_addr_size((struct sockaddr *)path->src));
1443 	strlcpy(sess->s.sessname, clt->sessname, sizeof(sess->s.sessname));
1444 	sess->s.con_num = con_num;
1445 	sess->clt = clt;
1446 	sess->max_pages_per_mr = max_segments * max_segment_size >> 12;
1447 	init_waitqueue_head(&sess->state_wq);
1448 	sess->state = RTRS_CLT_CONNECTING;
1449 	atomic_set(&sess->connected_cnt, 0);
1450 	INIT_WORK(&sess->close_work, rtrs_clt_close_work);
1451 	INIT_DELAYED_WORK(&sess->reconnect_dwork, rtrs_clt_reconnect_work);
1452 	rtrs_clt_init_hb(sess);
1453 
1454 	sess->mp_skip_entry = alloc_percpu(typeof(*sess->mp_skip_entry));
1455 	if (!sess->mp_skip_entry)
1456 		goto err_free_stats;
1457 
1458 	for_each_possible_cpu(cpu)
1459 		INIT_LIST_HEAD(per_cpu_ptr(sess->mp_skip_entry, cpu));
1460 
1461 	err = rtrs_clt_init_stats(sess->stats);
1462 	if (err)
1463 		goto err_free_percpu;
1464 
1465 	return sess;
1466 
1467 err_free_percpu:
1468 	free_percpu(sess->mp_skip_entry);
1469 err_free_stats:
1470 	kfree(sess->stats);
1471 err_free_con:
1472 	kfree(sess->s.con);
1473 err_free_sess:
1474 	kfree(sess);
1475 err:
1476 	return ERR_PTR(err);
1477 }
1478 
1479 void free_sess(struct rtrs_clt_sess *sess)
1480 {
1481 	free_percpu(sess->mp_skip_entry);
1482 	mutex_destroy(&sess->init_mutex);
1483 	kfree(sess->s.con);
1484 	kfree(sess->rbufs);
1485 	kfree(sess);
1486 }
1487 
1488 static int create_con(struct rtrs_clt_sess *sess, unsigned int cid)
1489 {
1490 	struct rtrs_clt_con *con;
1491 
1492 	con = kzalloc(sizeof(*con), GFP_KERNEL);
1493 	if (!con)
1494 		return -ENOMEM;
1495 
1496 	/* Map first two connections to the first CPU */
1497 	con->cpu  = (cid ? cid - 1 : 0) % nr_cpu_ids;
1498 	con->c.cid = cid;
1499 	con->c.sess = &sess->s;
1500 	atomic_set(&con->io_cnt, 0);
1501 	mutex_init(&con->con_mutex);
1502 
1503 	sess->s.con[cid] = &con->c;
1504 
1505 	return 0;
1506 }
1507 
1508 static void destroy_con(struct rtrs_clt_con *con)
1509 {
1510 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1511 
1512 	sess->s.con[con->c.cid] = NULL;
1513 	mutex_destroy(&con->con_mutex);
1514 	kfree(con);
1515 }
1516 
1517 static int create_con_cq_qp(struct rtrs_clt_con *con)
1518 {
1519 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1520 	u16 wr_queue_size;
1521 	int err, cq_vector;
1522 	struct rtrs_msg_rkey_rsp *rsp;
1523 
1524 	lockdep_assert_held(&con->con_mutex);
1525 	if (con->c.cid == 0) {
1526 		/*
1527 		 * One completion for each receive and two for each send
1528 		 * (send request + registration)
1529 		 * + 2 for drain and heartbeat
1530 		 * in case qp gets into error state
1531 		 */
1532 		wr_queue_size = SERVICE_CON_QUEUE_DEPTH * 3 + 2;
1533 		/* We must be the first here */
1534 		if (WARN_ON(sess->s.dev))
1535 			return -EINVAL;
1536 
1537 		/*
1538 		 * The whole session uses device from user connection.
1539 		 * Be careful not to close user connection before ib dev
1540 		 * is gracefully put.
1541 		 */
1542 		sess->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
1543 						       &dev_pd);
1544 		if (!sess->s.dev) {
1545 			rtrs_wrn(sess->clt,
1546 				  "rtrs_ib_dev_find_get_or_add(): no memory\n");
1547 			return -ENOMEM;
1548 		}
1549 		sess->s.dev_ref = 1;
1550 		query_fast_reg_mode(sess);
1551 	} else {
1552 		/*
1553 		 * Here we assume that session members are correctly set.
1554 		 * This is always true if user connection (cid == 0) is
1555 		 * established first.
1556 		 */
1557 		if (WARN_ON(!sess->s.dev))
1558 			return -EINVAL;
1559 		if (WARN_ON(!sess->queue_depth))
1560 			return -EINVAL;
1561 
1562 		/* Shared between connections */
1563 		sess->s.dev_ref++;
1564 		wr_queue_size =
1565 			min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr,
1566 			      /* QD * (REQ + RSP + FR REGS or INVS) + drain */
1567 			      sess->queue_depth * 3 + 1);
1568 	}
1569 	/* alloc iu to recv new rkey reply when server reports flags set */
1570 	if (sess->flags == RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1571 		con->rsp_ius = rtrs_iu_alloc(wr_queue_size, sizeof(*rsp),
1572 					      GFP_KERNEL, sess->s.dev->ib_dev,
1573 					      DMA_FROM_DEVICE,
1574 					      rtrs_clt_rdma_done);
1575 		if (!con->rsp_ius)
1576 			return -ENOMEM;
1577 		con->queue_size = wr_queue_size;
1578 	}
1579 	cq_vector = con->cpu % sess->s.dev->ib_dev->num_comp_vectors;
1580 	err = rtrs_cq_qp_create(&sess->s, &con->c, sess->max_send_sge,
1581 				 cq_vector, wr_queue_size, wr_queue_size,
1582 				 IB_POLL_SOFTIRQ);
1583 	/*
1584 	 * In case of error we do not bother to clean previous allocations,
1585 	 * since destroy_con_cq_qp() must be called.
1586 	 */
1587 	return err;
1588 }
1589 
1590 static void destroy_con_cq_qp(struct rtrs_clt_con *con)
1591 {
1592 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1593 
1594 	/*
1595 	 * Be careful here: destroy_con_cq_qp() can be called even
1596 	 * create_con_cq_qp() failed, see comments there.
1597 	 */
1598 	lockdep_assert_held(&con->con_mutex);
1599 	rtrs_cq_qp_destroy(&con->c);
1600 	if (con->rsp_ius) {
1601 		rtrs_iu_free(con->rsp_ius, sess->s.dev->ib_dev, con->queue_size);
1602 		con->rsp_ius = NULL;
1603 		con->queue_size = 0;
1604 	}
1605 	if (sess->s.dev_ref && !--sess->s.dev_ref) {
1606 		rtrs_ib_dev_put(sess->s.dev);
1607 		sess->s.dev = NULL;
1608 	}
1609 }
1610 
1611 static void stop_cm(struct rtrs_clt_con *con)
1612 {
1613 	rdma_disconnect(con->c.cm_id);
1614 	if (con->c.qp)
1615 		ib_drain_qp(con->c.qp);
1616 }
1617 
1618 static void destroy_cm(struct rtrs_clt_con *con)
1619 {
1620 	rdma_destroy_id(con->c.cm_id);
1621 	con->c.cm_id = NULL;
1622 }
1623 
1624 static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
1625 {
1626 	struct rtrs_sess *s = con->c.sess;
1627 	int err;
1628 
1629 	mutex_lock(&con->con_mutex);
1630 	err = create_con_cq_qp(con);
1631 	mutex_unlock(&con->con_mutex);
1632 	if (err) {
1633 		rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
1634 		return err;
1635 	}
1636 	err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1637 	if (err)
1638 		rtrs_err(s, "Resolving route failed, err: %d\n", err);
1639 
1640 	return err;
1641 }
1642 
1643 static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
1644 {
1645 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1646 	struct rtrs_clt *clt = sess->clt;
1647 	struct rtrs_msg_conn_req msg;
1648 	struct rdma_conn_param param;
1649 
1650 	int err;
1651 
1652 	param = (struct rdma_conn_param) {
1653 		.retry_count = 7,
1654 		.rnr_retry_count = 7,
1655 		.private_data = &msg,
1656 		.private_data_len = sizeof(msg),
1657 	};
1658 
1659 	msg = (struct rtrs_msg_conn_req) {
1660 		.magic = cpu_to_le16(RTRS_MAGIC),
1661 		.version = cpu_to_le16(RTRS_PROTO_VER),
1662 		.cid = cpu_to_le16(con->c.cid),
1663 		.cid_num = cpu_to_le16(sess->s.con_num),
1664 		.recon_cnt = cpu_to_le16(sess->s.recon_cnt),
1665 	};
1666 	uuid_copy(&msg.sess_uuid, &sess->s.uuid);
1667 	uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
1668 
1669 	err = rdma_connect_locked(con->c.cm_id, &param);
1670 	if (err)
1671 		rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
1672 
1673 	return err;
1674 }
1675 
1676 static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
1677 				       struct rdma_cm_event *ev)
1678 {
1679 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1680 	struct rtrs_clt *clt = sess->clt;
1681 	const struct rtrs_msg_conn_rsp *msg;
1682 	u16 version, queue_depth;
1683 	int errno;
1684 	u8 len;
1685 
1686 	msg = ev->param.conn.private_data;
1687 	len = ev->param.conn.private_data_len;
1688 	if (len < sizeof(*msg)) {
1689 		rtrs_err(clt, "Invalid RTRS connection response\n");
1690 		return -ECONNRESET;
1691 	}
1692 	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1693 		rtrs_err(clt, "Invalid RTRS magic\n");
1694 		return -ECONNRESET;
1695 	}
1696 	version = le16_to_cpu(msg->version);
1697 	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1698 		rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
1699 			  version >> 8, RTRS_PROTO_VER_MAJOR);
1700 		return -ECONNRESET;
1701 	}
1702 	errno = le16_to_cpu(msg->errno);
1703 	if (errno) {
1704 		rtrs_err(clt, "Invalid RTRS message: errno %d\n",
1705 			  errno);
1706 		return -ECONNRESET;
1707 	}
1708 	if (con->c.cid == 0) {
1709 		queue_depth = le16_to_cpu(msg->queue_depth);
1710 
1711 		if (queue_depth > MAX_SESS_QUEUE_DEPTH) {
1712 			rtrs_err(clt, "Invalid RTRS message: queue=%d\n",
1713 				  queue_depth);
1714 			return -ECONNRESET;
1715 		}
1716 		if (!sess->rbufs || sess->queue_depth < queue_depth) {
1717 			kfree(sess->rbufs);
1718 			sess->rbufs = kcalloc(queue_depth, sizeof(*sess->rbufs),
1719 					      GFP_KERNEL);
1720 			if (!sess->rbufs)
1721 				return -ENOMEM;
1722 		}
1723 		sess->queue_depth = queue_depth;
1724 		sess->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
1725 		sess->max_io_size = le32_to_cpu(msg->max_io_size);
1726 		sess->flags = le32_to_cpu(msg->flags);
1727 		sess->chunk_size = sess->max_io_size + sess->max_hdr_size;
1728 
1729 		/*
1730 		 * Global queue depth and IO size is always a minimum.
1731 		 * If while a reconnection server sends us a value a bit
1732 		 * higher - client does not care and uses cached minimum.
1733 		 *
1734 		 * Since we can have several sessions (paths) restablishing
1735 		 * connections in parallel, use lock.
1736 		 */
1737 		mutex_lock(&clt->paths_mutex);
1738 		clt->queue_depth = min_not_zero(sess->queue_depth,
1739 						clt->queue_depth);
1740 		clt->max_io_size = min_not_zero(sess->max_io_size,
1741 						clt->max_io_size);
1742 		mutex_unlock(&clt->paths_mutex);
1743 
1744 		/*
1745 		 * Cache the hca_port and hca_name for sysfs
1746 		 */
1747 		sess->hca_port = con->c.cm_id->port_num;
1748 		scnprintf(sess->hca_name, sizeof(sess->hca_name),
1749 			  sess->s.dev->ib_dev->name);
1750 		sess->s.src_addr = con->c.cm_id->route.addr.src_addr;
1751 	}
1752 
1753 	return 0;
1754 }
1755 
1756 static inline void flag_success_on_conn(struct rtrs_clt_con *con)
1757 {
1758 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1759 
1760 	atomic_inc(&sess->connected_cnt);
1761 	con->cm_err = 1;
1762 }
1763 
1764 static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
1765 				    struct rdma_cm_event *ev)
1766 {
1767 	struct rtrs_sess *s = con->c.sess;
1768 	const struct rtrs_msg_conn_rsp *msg;
1769 	const char *rej_msg;
1770 	int status, errno;
1771 	u8 data_len;
1772 
1773 	status = ev->status;
1774 	rej_msg = rdma_reject_msg(con->c.cm_id, status);
1775 	msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
1776 
1777 	if (msg && data_len >= sizeof(*msg)) {
1778 		errno = (int16_t)le16_to_cpu(msg->errno);
1779 		if (errno == -EBUSY)
1780 			rtrs_err(s,
1781 				  "Previous session is still exists on the server, please reconnect later\n");
1782 		else
1783 			rtrs_err(s,
1784 				  "Connect rejected: status %d (%s), rtrs errno %d\n",
1785 				  status, rej_msg, errno);
1786 	} else {
1787 		rtrs_err(s,
1788 			  "Connect rejected but with malformed message: status %d (%s)\n",
1789 			  status, rej_msg);
1790 	}
1791 
1792 	return -ECONNRESET;
1793 }
1794 
1795 static void rtrs_clt_close_conns(struct rtrs_clt_sess *sess, bool wait)
1796 {
1797 	if (rtrs_clt_change_state(sess, RTRS_CLT_CLOSING))
1798 		queue_work(rtrs_wq, &sess->close_work);
1799 	if (wait)
1800 		flush_work(&sess->close_work);
1801 }
1802 
1803 static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
1804 {
1805 	if (con->cm_err == 1) {
1806 		struct rtrs_clt_sess *sess;
1807 
1808 		sess = to_clt_sess(con->c.sess);
1809 		if (atomic_dec_and_test(&sess->connected_cnt))
1810 
1811 			wake_up(&sess->state_wq);
1812 	}
1813 	con->cm_err = cm_err;
1814 }
1815 
1816 static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
1817 				     struct rdma_cm_event *ev)
1818 {
1819 	struct rtrs_clt_con *con = cm_id->context;
1820 	struct rtrs_sess *s = con->c.sess;
1821 	struct rtrs_clt_sess *sess = to_clt_sess(s);
1822 	int cm_err = 0;
1823 
1824 	switch (ev->event) {
1825 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1826 		cm_err = rtrs_rdma_addr_resolved(con);
1827 		break;
1828 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1829 		cm_err = rtrs_rdma_route_resolved(con);
1830 		break;
1831 	case RDMA_CM_EVENT_ESTABLISHED:
1832 		cm_err = rtrs_rdma_conn_established(con, ev);
1833 		if (likely(!cm_err)) {
1834 			/*
1835 			 * Report success and wake up. Here we abuse state_wq,
1836 			 * i.e. wake up without state change, but we set cm_err.
1837 			 */
1838 			flag_success_on_conn(con);
1839 			wake_up(&sess->state_wq);
1840 			return 0;
1841 		}
1842 		break;
1843 	case RDMA_CM_EVENT_REJECTED:
1844 		cm_err = rtrs_rdma_conn_rejected(con, ev);
1845 		break;
1846 	case RDMA_CM_EVENT_DISCONNECTED:
1847 		/* No message for disconnecting */
1848 		cm_err = -ECONNRESET;
1849 		break;
1850 	case RDMA_CM_EVENT_CONNECT_ERROR:
1851 	case RDMA_CM_EVENT_UNREACHABLE:
1852 	case RDMA_CM_EVENT_ADDR_CHANGE:
1853 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1854 		rtrs_wrn(s, "CM error event %d\n", ev->event);
1855 		cm_err = -ECONNRESET;
1856 		break;
1857 	case RDMA_CM_EVENT_ADDR_ERROR:
1858 	case RDMA_CM_EVENT_ROUTE_ERROR:
1859 		rtrs_wrn(s, "CM error event %d\n", ev->event);
1860 		cm_err = -EHOSTUNREACH;
1861 		break;
1862 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1863 		/*
1864 		 * Device removal is a special case.  Queue close and return 0.
1865 		 */
1866 		rtrs_clt_close_conns(sess, false);
1867 		return 0;
1868 	default:
1869 		rtrs_err(s, "Unexpected RDMA CM event (%d)\n", ev->event);
1870 		cm_err = -ECONNRESET;
1871 		break;
1872 	}
1873 
1874 	if (cm_err) {
1875 		/*
1876 		 * cm error makes sense only on connection establishing,
1877 		 * in other cases we rely on normal procedure of reconnecting.
1878 		 */
1879 		flag_error_on_conn(con, cm_err);
1880 		rtrs_rdma_error_recovery(con);
1881 	}
1882 
1883 	return 0;
1884 }
1885 
1886 static int create_cm(struct rtrs_clt_con *con)
1887 {
1888 	struct rtrs_sess *s = con->c.sess;
1889 	struct rtrs_clt_sess *sess = to_clt_sess(s);
1890 	struct rdma_cm_id *cm_id;
1891 	int err;
1892 
1893 	cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
1894 			       sess->s.dst_addr.ss_family == AF_IB ?
1895 			       RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
1896 	if (IS_ERR(cm_id)) {
1897 		err = PTR_ERR(cm_id);
1898 		rtrs_err(s, "Failed to create CM ID, err: %d\n", err);
1899 
1900 		return err;
1901 	}
1902 	con->c.cm_id = cm_id;
1903 	con->cm_err = 0;
1904 	/* allow the port to be reused */
1905 	err = rdma_set_reuseaddr(cm_id, 1);
1906 	if (err != 0) {
1907 		rtrs_err(s, "Set address reuse failed, err: %d\n", err);
1908 		goto destroy_cm;
1909 	}
1910 	err = rdma_resolve_addr(cm_id, (struct sockaddr *)&sess->s.src_addr,
1911 				(struct sockaddr *)&sess->s.dst_addr,
1912 				RTRS_CONNECT_TIMEOUT_MS);
1913 	if (err) {
1914 		rtrs_err(s, "Failed to resolve address, err: %d\n", err);
1915 		goto destroy_cm;
1916 	}
1917 	/*
1918 	 * Combine connection status and session events. This is needed
1919 	 * for waiting two possible cases: cm_err has something meaningful
1920 	 * or session state was really changed to error by device removal.
1921 	 */
1922 	err = wait_event_interruptible_timeout(
1923 			sess->state_wq,
1924 			con->cm_err || sess->state != RTRS_CLT_CONNECTING,
1925 			msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
1926 	if (err == 0 || err == -ERESTARTSYS) {
1927 		if (err == 0)
1928 			err = -ETIMEDOUT;
1929 		/* Timedout or interrupted */
1930 		goto errr;
1931 	}
1932 	if (con->cm_err < 0) {
1933 		err = con->cm_err;
1934 		goto errr;
1935 	}
1936 	if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTING) {
1937 		/* Device removal */
1938 		err = -ECONNABORTED;
1939 		goto errr;
1940 	}
1941 
1942 	return 0;
1943 
1944 errr:
1945 	stop_cm(con);
1946 	mutex_lock(&con->con_mutex);
1947 	destroy_con_cq_qp(con);
1948 	mutex_unlock(&con->con_mutex);
1949 destroy_cm:
1950 	destroy_cm(con);
1951 
1952 	return err;
1953 }
1954 
1955 static void rtrs_clt_sess_up(struct rtrs_clt_sess *sess)
1956 {
1957 	struct rtrs_clt *clt = sess->clt;
1958 	int up;
1959 
1960 	/*
1961 	 * We can fire RECONNECTED event only when all paths were
1962 	 * connected on rtrs_clt_open(), then each was disconnected
1963 	 * and the first one connected again.  That's why this nasty
1964 	 * game with counter value.
1965 	 */
1966 
1967 	mutex_lock(&clt->paths_ev_mutex);
1968 	up = ++clt->paths_up;
1969 	/*
1970 	 * Here it is safe to access paths num directly since up counter
1971 	 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
1972 	 * in progress, thus paths removals are impossible.
1973 	 */
1974 	if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
1975 		clt->paths_up = clt->paths_num;
1976 	else if (up == 1)
1977 		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
1978 	mutex_unlock(&clt->paths_ev_mutex);
1979 
1980 	/* Mark session as established */
1981 	sess->established = true;
1982 	sess->reconnect_attempts = 0;
1983 	sess->stats->reconnects.successful_cnt++;
1984 }
1985 
1986 static void rtrs_clt_sess_down(struct rtrs_clt_sess *sess)
1987 {
1988 	struct rtrs_clt *clt = sess->clt;
1989 
1990 	if (!sess->established)
1991 		return;
1992 
1993 	sess->established = false;
1994 	mutex_lock(&clt->paths_ev_mutex);
1995 	WARN_ON(!clt->paths_up);
1996 	if (--clt->paths_up == 0)
1997 		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
1998 	mutex_unlock(&clt->paths_ev_mutex);
1999 }
2000 
2001 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_sess *sess)
2002 {
2003 	struct rtrs_clt_con *con;
2004 	unsigned int cid;
2005 
2006 	WARN_ON(READ_ONCE(sess->state) == RTRS_CLT_CONNECTED);
2007 
2008 	/*
2009 	 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
2010 	 * exactly in between.  Start destroying after it finishes.
2011 	 */
2012 	mutex_lock(&sess->init_mutex);
2013 	mutex_unlock(&sess->init_mutex);
2014 
2015 	/*
2016 	 * All IO paths must observe !CONNECTED state before we
2017 	 * free everything.
2018 	 */
2019 	synchronize_rcu();
2020 
2021 	rtrs_clt_stop_hb(sess);
2022 
2023 	/*
2024 	 * The order it utterly crucial: firstly disconnect and complete all
2025 	 * rdma requests with error (thus set in_use=false for requests),
2026 	 * then fail outstanding requests checking in_use for each, and
2027 	 * eventually notify upper layer about session disconnection.
2028 	 */
2029 
2030 	for (cid = 0; cid < sess->s.con_num; cid++) {
2031 		if (!sess->s.con[cid])
2032 			break;
2033 		con = to_clt_con(sess->s.con[cid]);
2034 		stop_cm(con);
2035 	}
2036 	fail_all_outstanding_reqs(sess);
2037 	free_sess_reqs(sess);
2038 	rtrs_clt_sess_down(sess);
2039 
2040 	/*
2041 	 * Wait for graceful shutdown, namely when peer side invokes
2042 	 * rdma_disconnect(). 'connected_cnt' is decremented only on
2043 	 * CM events, thus if other side had crashed and hb has detected
2044 	 * something is wrong, here we will stuck for exactly timeout ms,
2045 	 * since CM does not fire anything.  That is fine, we are not in
2046 	 * hurry.
2047 	 */
2048 	wait_event_timeout(sess->state_wq, !atomic_read(&sess->connected_cnt),
2049 			   msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2050 
2051 	for (cid = 0; cid < sess->s.con_num; cid++) {
2052 		if (!sess->s.con[cid])
2053 			break;
2054 		con = to_clt_con(sess->s.con[cid]);
2055 		mutex_lock(&con->con_mutex);
2056 		destroy_con_cq_qp(con);
2057 		mutex_unlock(&con->con_mutex);
2058 		destroy_cm(con);
2059 		destroy_con(con);
2060 	}
2061 }
2062 
2063 static inline bool xchg_sessions(struct rtrs_clt_sess __rcu **rcu_ppcpu_path,
2064 				 struct rtrs_clt_sess *sess,
2065 				 struct rtrs_clt_sess *next)
2066 {
2067 	struct rtrs_clt_sess **ppcpu_path;
2068 
2069 	/* Call cmpxchg() without sparse warnings */
2070 	ppcpu_path = (typeof(ppcpu_path))rcu_ppcpu_path;
2071 	return sess == cmpxchg(ppcpu_path, sess, next);
2072 }
2073 
2074 static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_sess *sess)
2075 {
2076 	struct rtrs_clt *clt = sess->clt;
2077 	struct rtrs_clt_sess *next;
2078 	bool wait_for_grace = false;
2079 	int cpu;
2080 
2081 	mutex_lock(&clt->paths_mutex);
2082 	list_del_rcu(&sess->s.entry);
2083 
2084 	/* Make sure everybody observes path removal. */
2085 	synchronize_rcu();
2086 
2087 	/*
2088 	 * At this point nobody sees @sess in the list, but still we have
2089 	 * dangling pointer @pcpu_path which _can_ point to @sess.  Since
2090 	 * nobody can observe @sess in the list, we guarantee that IO path
2091 	 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
2092 	 * to @sess, but can never again become @sess.
2093 	 */
2094 
2095 	/*
2096 	 * Decrement paths number only after grace period, because
2097 	 * caller of do_each_path() must firstly observe list without
2098 	 * path and only then decremented paths number.
2099 	 *
2100 	 * Otherwise there can be the following situation:
2101 	 *    o Two paths exist and IO is coming.
2102 	 *    o One path is removed:
2103 	 *      CPU#0                          CPU#1
2104 	 *      do_each_path():                rtrs_clt_remove_path_from_arr():
2105 	 *          path = get_next_path()
2106 	 *          ^^^                            list_del_rcu(path)
2107 	 *          [!CONNECTED path]              clt->paths_num--
2108 	 *                                              ^^^^^^^^^
2109 	 *          load clt->paths_num                 from 2 to 1
2110 	 *                    ^^^^^^^^^
2111 	 *                    sees 1
2112 	 *
2113 	 *      path is observed as !CONNECTED, but do_each_path() loop
2114 	 *      ends, because expression i < clt->paths_num is false.
2115 	 */
2116 	clt->paths_num--;
2117 
2118 	/*
2119 	 * Get @next connection from current @sess which is going to be
2120 	 * removed.  If @sess is the last element, then @next is NULL.
2121 	 */
2122 	rcu_read_lock();
2123 	next = list_next_or_null_rr_rcu(&clt->paths_list, &sess->s.entry,
2124 					typeof(*next), s.entry);
2125 	rcu_read_unlock();
2126 
2127 	/*
2128 	 * @pcpu paths can still point to the path which is going to be
2129 	 * removed, so change the pointer manually.
2130 	 */
2131 	for_each_possible_cpu(cpu) {
2132 		struct rtrs_clt_sess __rcu **ppcpu_path;
2133 
2134 		ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
2135 		if (rcu_dereference_protected(*ppcpu_path,
2136 			lockdep_is_held(&clt->paths_mutex)) != sess)
2137 			/*
2138 			 * synchronize_rcu() was called just after deleting
2139 			 * entry from the list, thus IO code path cannot
2140 			 * change pointer back to the pointer which is going
2141 			 * to be removed, we are safe here.
2142 			 */
2143 			continue;
2144 
2145 		/*
2146 		 * We race with IO code path, which also changes pointer,
2147 		 * thus we have to be careful not to overwrite it.
2148 		 */
2149 		if (xchg_sessions(ppcpu_path, sess, next))
2150 			/*
2151 			 * @ppcpu_path was successfully replaced with @next,
2152 			 * that means that someone could also pick up the
2153 			 * @sess and dereferencing it right now, so wait for
2154 			 * a grace period is required.
2155 			 */
2156 			wait_for_grace = true;
2157 	}
2158 	if (wait_for_grace)
2159 		synchronize_rcu();
2160 
2161 	mutex_unlock(&clt->paths_mutex);
2162 }
2163 
2164 static void rtrs_clt_add_path_to_arr(struct rtrs_clt_sess *sess)
2165 {
2166 	struct rtrs_clt *clt = sess->clt;
2167 
2168 	mutex_lock(&clt->paths_mutex);
2169 	clt->paths_num++;
2170 
2171 	list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
2172 	mutex_unlock(&clt->paths_mutex);
2173 }
2174 
2175 static void rtrs_clt_close_work(struct work_struct *work)
2176 {
2177 	struct rtrs_clt_sess *sess;
2178 
2179 	sess = container_of(work, struct rtrs_clt_sess, close_work);
2180 
2181 	cancel_delayed_work_sync(&sess->reconnect_dwork);
2182 	rtrs_clt_stop_and_destroy_conns(sess);
2183 	rtrs_clt_change_state(sess, RTRS_CLT_CLOSED);
2184 }
2185 
2186 static int init_conns(struct rtrs_clt_sess *sess)
2187 {
2188 	unsigned int cid;
2189 	int err;
2190 
2191 	/*
2192 	 * On every new session connections increase reconnect counter
2193 	 * to avoid clashes with previous sessions not yet closed
2194 	 * sessions on a server side.
2195 	 */
2196 	sess->s.recon_cnt++;
2197 
2198 	/* Establish all RDMA connections  */
2199 	for (cid = 0; cid < sess->s.con_num; cid++) {
2200 		err = create_con(sess, cid);
2201 		if (err)
2202 			goto destroy;
2203 
2204 		err = create_cm(to_clt_con(sess->s.con[cid]));
2205 		if (err) {
2206 			destroy_con(to_clt_con(sess->s.con[cid]));
2207 			goto destroy;
2208 		}
2209 	}
2210 	err = alloc_sess_reqs(sess);
2211 	if (err)
2212 		goto destroy;
2213 
2214 	rtrs_clt_start_hb(sess);
2215 
2216 	return 0;
2217 
2218 destroy:
2219 	while (cid--) {
2220 		struct rtrs_clt_con *con = to_clt_con(sess->s.con[cid]);
2221 
2222 		stop_cm(con);
2223 
2224 		mutex_lock(&con->con_mutex);
2225 		destroy_con_cq_qp(con);
2226 		mutex_unlock(&con->con_mutex);
2227 		destroy_cm(con);
2228 		destroy_con(con);
2229 	}
2230 	/*
2231 	 * If we've never taken async path and got an error, say,
2232 	 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
2233 	 * manually to keep reconnecting.
2234 	 */
2235 	rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
2236 
2237 	return err;
2238 }
2239 
2240 static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
2241 {
2242 	struct rtrs_clt_con *con = cq->cq_context;
2243 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
2244 	struct rtrs_iu *iu;
2245 
2246 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2247 	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
2248 
2249 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
2250 		rtrs_err(sess->clt, "Sess info request send failed: %s\n",
2251 			  ib_wc_status_msg(wc->status));
2252 		rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
2253 		return;
2254 	}
2255 
2256 	rtrs_clt_update_wc_stats(con);
2257 }
2258 
2259 static int process_info_rsp(struct rtrs_clt_sess *sess,
2260 			    const struct rtrs_msg_info_rsp *msg)
2261 {
2262 	unsigned int sg_cnt, total_len;
2263 	int i, sgi;
2264 
2265 	sg_cnt = le16_to_cpu(msg->sg_cnt);
2266 	if (unlikely(!sg_cnt || (sess->queue_depth % sg_cnt))) {
2267 		rtrs_err(sess->clt, "Incorrect sg_cnt %d, is not multiple\n",
2268 			  sg_cnt);
2269 		return -EINVAL;
2270 	}
2271 
2272 	/*
2273 	 * Check if IB immediate data size is enough to hold the mem_id and
2274 	 * the offset inside the memory chunk.
2275 	 */
2276 	if (unlikely((ilog2(sg_cnt - 1) + 1) +
2277 		     (ilog2(sess->chunk_size - 1) + 1) >
2278 		     MAX_IMM_PAYL_BITS)) {
2279 		rtrs_err(sess->clt,
2280 			  "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
2281 			  MAX_IMM_PAYL_BITS, sg_cnt, sess->chunk_size);
2282 		return -EINVAL;
2283 	}
2284 	total_len = 0;
2285 	for (sgi = 0, i = 0; sgi < sg_cnt && i < sess->queue_depth; sgi++) {
2286 		const struct rtrs_sg_desc *desc = &msg->desc[sgi];
2287 		u32 len, rkey;
2288 		u64 addr;
2289 
2290 		addr = le64_to_cpu(desc->addr);
2291 		rkey = le32_to_cpu(desc->key);
2292 		len  = le32_to_cpu(desc->len);
2293 
2294 		total_len += len;
2295 
2296 		if (unlikely(!len || (len % sess->chunk_size))) {
2297 			rtrs_err(sess->clt, "Incorrect [%d].len %d\n", sgi,
2298 				  len);
2299 			return -EINVAL;
2300 		}
2301 		for ( ; len && i < sess->queue_depth; i++) {
2302 			sess->rbufs[i].addr = addr;
2303 			sess->rbufs[i].rkey = rkey;
2304 
2305 			len  -= sess->chunk_size;
2306 			addr += sess->chunk_size;
2307 		}
2308 	}
2309 	/* Sanity check */
2310 	if (unlikely(sgi != sg_cnt || i != sess->queue_depth)) {
2311 		rtrs_err(sess->clt, "Incorrect sg vector, not fully mapped\n");
2312 		return -EINVAL;
2313 	}
2314 	if (unlikely(total_len != sess->chunk_size * sess->queue_depth)) {
2315 		rtrs_err(sess->clt, "Incorrect total_len %d\n", total_len);
2316 		return -EINVAL;
2317 	}
2318 
2319 	return 0;
2320 }
2321 
2322 static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
2323 {
2324 	struct rtrs_clt_con *con = cq->cq_context;
2325 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
2326 	struct rtrs_msg_info_rsp *msg;
2327 	enum rtrs_clt_state state;
2328 	struct rtrs_iu *iu;
2329 	size_t rx_sz;
2330 	int err;
2331 
2332 	state = RTRS_CLT_CONNECTING_ERR;
2333 
2334 	WARN_ON(con->c.cid);
2335 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2336 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
2337 		rtrs_err(sess->clt, "Sess info response recv failed: %s\n",
2338 			  ib_wc_status_msg(wc->status));
2339 		goto out;
2340 	}
2341 	WARN_ON(wc->opcode != IB_WC_RECV);
2342 
2343 	if (unlikely(wc->byte_len < sizeof(*msg))) {
2344 		rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
2345 			  wc->byte_len);
2346 		goto out;
2347 	}
2348 	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
2349 				   iu->size, DMA_FROM_DEVICE);
2350 	msg = iu->buf;
2351 	if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP)) {
2352 		rtrs_err(sess->clt, "Sess info response is malformed: type %d\n",
2353 			  le16_to_cpu(msg->type));
2354 		goto out;
2355 	}
2356 	rx_sz  = sizeof(*msg);
2357 	rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
2358 	if (unlikely(wc->byte_len < rx_sz)) {
2359 		rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
2360 			  wc->byte_len);
2361 		goto out;
2362 	}
2363 	err = process_info_rsp(sess, msg);
2364 	if (unlikely(err))
2365 		goto out;
2366 
2367 	err = post_recv_sess(sess);
2368 	if (unlikely(err))
2369 		goto out;
2370 
2371 	state = RTRS_CLT_CONNECTED;
2372 
2373 out:
2374 	rtrs_clt_update_wc_stats(con);
2375 	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
2376 	rtrs_clt_change_state(sess, state);
2377 }
2378 
2379 static int rtrs_send_sess_info(struct rtrs_clt_sess *sess)
2380 {
2381 	struct rtrs_clt_con *usr_con = to_clt_con(sess->s.con[0]);
2382 	struct rtrs_msg_info_req *msg;
2383 	struct rtrs_iu *tx_iu, *rx_iu;
2384 	size_t rx_sz;
2385 	int err;
2386 
2387 	rx_sz  = sizeof(struct rtrs_msg_info_rsp);
2388 	rx_sz += sizeof(u64) * MAX_SESS_QUEUE_DEPTH;
2389 
2390 	tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
2391 			       sess->s.dev->ib_dev, DMA_TO_DEVICE,
2392 			       rtrs_clt_info_req_done);
2393 	rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
2394 			       DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
2395 	if (unlikely(!tx_iu || !rx_iu)) {
2396 		err = -ENOMEM;
2397 		goto out;
2398 	}
2399 	/* Prepare for getting info response */
2400 	err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
2401 	if (unlikely(err)) {
2402 		rtrs_err(sess->clt, "rtrs_iu_post_recv(), err: %d\n", err);
2403 		goto out;
2404 	}
2405 	rx_iu = NULL;
2406 
2407 	msg = tx_iu->buf;
2408 	msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
2409 	memcpy(msg->sessname, sess->s.sessname, sizeof(msg->sessname));
2410 
2411 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
2412 				      tx_iu->size, DMA_TO_DEVICE);
2413 
2414 	/* Send info request */
2415 	err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
2416 	if (unlikely(err)) {
2417 		rtrs_err(sess->clt, "rtrs_iu_post_send(), err: %d\n", err);
2418 		goto out;
2419 	}
2420 	tx_iu = NULL;
2421 
2422 	/* Wait for state change */
2423 	wait_event_interruptible_timeout(sess->state_wq,
2424 					 sess->state != RTRS_CLT_CONNECTING,
2425 					 msecs_to_jiffies(
2426 						 RTRS_CONNECT_TIMEOUT_MS));
2427 	if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)) {
2428 		if (READ_ONCE(sess->state) == RTRS_CLT_CONNECTING_ERR)
2429 			err = -ECONNRESET;
2430 		else
2431 			err = -ETIMEDOUT;
2432 		goto out;
2433 	}
2434 
2435 out:
2436 	if (tx_iu)
2437 		rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1);
2438 	if (rx_iu)
2439 		rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1);
2440 	if (unlikely(err))
2441 		/* If we've never taken async path because of malloc problems */
2442 		rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
2443 
2444 	return err;
2445 }
2446 
2447 /**
2448  * init_sess() - establishes all session connections and does handshake
2449  * @sess: client session.
2450  * In case of error full close or reconnect procedure should be taken,
2451  * because reconnect or close async works can be started.
2452  */
2453 static int init_sess(struct rtrs_clt_sess *sess)
2454 {
2455 	int err;
2456 
2457 	mutex_lock(&sess->init_mutex);
2458 	err = init_conns(sess);
2459 	if (err) {
2460 		rtrs_err(sess->clt, "init_conns(), err: %d\n", err);
2461 		goto out;
2462 	}
2463 	err = rtrs_send_sess_info(sess);
2464 	if (err) {
2465 		rtrs_err(sess->clt, "rtrs_send_sess_info(), err: %d\n", err);
2466 		goto out;
2467 	}
2468 	rtrs_clt_sess_up(sess);
2469 out:
2470 	mutex_unlock(&sess->init_mutex);
2471 
2472 	return err;
2473 }
2474 
2475 static void rtrs_clt_reconnect_work(struct work_struct *work)
2476 {
2477 	struct rtrs_clt_sess *sess;
2478 	struct rtrs_clt *clt;
2479 	unsigned int delay_ms;
2480 	int err;
2481 
2482 	sess = container_of(to_delayed_work(work), struct rtrs_clt_sess,
2483 			    reconnect_dwork);
2484 	clt = sess->clt;
2485 
2486 	if (READ_ONCE(sess->state) != RTRS_CLT_RECONNECTING)
2487 		return;
2488 
2489 	if (sess->reconnect_attempts >= clt->max_reconnect_attempts) {
2490 		/* Close a session completely if max attempts is reached */
2491 		rtrs_clt_close_conns(sess, false);
2492 		return;
2493 	}
2494 	sess->reconnect_attempts++;
2495 
2496 	/* Stop everything */
2497 	rtrs_clt_stop_and_destroy_conns(sess);
2498 	msleep(RTRS_RECONNECT_BACKOFF);
2499 	if (rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING)) {
2500 		err = init_sess(sess);
2501 		if (err)
2502 			goto reconnect_again;
2503 	}
2504 
2505 	return;
2506 
2507 reconnect_again:
2508 	if (rtrs_clt_change_state(sess, RTRS_CLT_RECONNECTING)) {
2509 		sess->stats->reconnects.fail_cnt++;
2510 		delay_ms = clt->reconnect_delay_sec * 1000;
2511 		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
2512 				   msecs_to_jiffies(delay_ms +
2513 						    prandom_u32() %
2514 						    RTRS_RECONNECT_SEED));
2515 	}
2516 }
2517 
2518 static void rtrs_clt_dev_release(struct device *dev)
2519 {
2520 	struct rtrs_clt *clt = container_of(dev, struct rtrs_clt, dev);
2521 
2522 	kfree(clt);
2523 }
2524 
2525 static struct rtrs_clt *alloc_clt(const char *sessname, size_t paths_num,
2526 				  u16 port, size_t pdu_sz, void *priv,
2527 				  void	(*link_ev)(void *priv,
2528 						   enum rtrs_clt_link_ev ev),
2529 				  unsigned int max_segments,
2530 				  size_t max_segment_size,
2531 				  unsigned int reconnect_delay_sec,
2532 				  unsigned int max_reconnect_attempts)
2533 {
2534 	struct rtrs_clt *clt;
2535 	int err;
2536 
2537 	if (!paths_num || paths_num > MAX_PATHS_NUM)
2538 		return ERR_PTR(-EINVAL);
2539 
2540 	if (strlen(sessname) >= sizeof(clt->sessname))
2541 		return ERR_PTR(-EINVAL);
2542 
2543 	clt = kzalloc(sizeof(*clt), GFP_KERNEL);
2544 	if (!clt)
2545 		return ERR_PTR(-ENOMEM);
2546 
2547 	clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
2548 	if (!clt->pcpu_path) {
2549 		kfree(clt);
2550 		return ERR_PTR(-ENOMEM);
2551 	}
2552 
2553 	uuid_gen(&clt->paths_uuid);
2554 	INIT_LIST_HEAD_RCU(&clt->paths_list);
2555 	clt->paths_num = paths_num;
2556 	clt->paths_up = MAX_PATHS_NUM;
2557 	clt->port = port;
2558 	clt->pdu_sz = pdu_sz;
2559 	clt->max_segments = max_segments;
2560 	clt->max_segment_size = max_segment_size;
2561 	clt->reconnect_delay_sec = reconnect_delay_sec;
2562 	clt->max_reconnect_attempts = max_reconnect_attempts;
2563 	clt->priv = priv;
2564 	clt->link_ev = link_ev;
2565 	clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2566 	strlcpy(clt->sessname, sessname, sizeof(clt->sessname));
2567 	init_waitqueue_head(&clt->permits_wait);
2568 	mutex_init(&clt->paths_ev_mutex);
2569 	mutex_init(&clt->paths_mutex);
2570 
2571 	clt->dev.class = rtrs_clt_dev_class;
2572 	clt->dev.release = rtrs_clt_dev_release;
2573 	err = dev_set_name(&clt->dev, "%s", sessname);
2574 	if (err) {
2575 		free_percpu(clt->pcpu_path);
2576 		kfree(clt);
2577 		return ERR_PTR(err);
2578 	}
2579 	/*
2580 	 * Suppress user space notification until
2581 	 * sysfs files are created
2582 	 */
2583 	dev_set_uevent_suppress(&clt->dev, true);
2584 	err = device_register(&clt->dev);
2585 	if (err) {
2586 		free_percpu(clt->pcpu_path);
2587 		put_device(&clt->dev);
2588 		return ERR_PTR(err);
2589 	}
2590 
2591 	clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
2592 	if (!clt->kobj_paths) {
2593 		free_percpu(clt->pcpu_path);
2594 		device_unregister(&clt->dev);
2595 		return NULL;
2596 	}
2597 	err = rtrs_clt_create_sysfs_root_files(clt);
2598 	if (err) {
2599 		free_percpu(clt->pcpu_path);
2600 		kobject_del(clt->kobj_paths);
2601 		kobject_put(clt->kobj_paths);
2602 		device_unregister(&clt->dev);
2603 		return ERR_PTR(err);
2604 	}
2605 	dev_set_uevent_suppress(&clt->dev, false);
2606 	kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
2607 
2608 	return clt;
2609 }
2610 
2611 static void wait_for_inflight_permits(struct rtrs_clt *clt)
2612 {
2613 	if (clt->permits_map) {
2614 		size_t sz = clt->queue_depth;
2615 
2616 		wait_event(clt->permits_wait,
2617 			   find_first_bit(clt->permits_map, sz) >= sz);
2618 	}
2619 }
2620 
2621 static void free_clt(struct rtrs_clt *clt)
2622 {
2623 	wait_for_inflight_permits(clt);
2624 	free_permits(clt);
2625 	free_percpu(clt->pcpu_path);
2626 	mutex_destroy(&clt->paths_ev_mutex);
2627 	mutex_destroy(&clt->paths_mutex);
2628 	/* release callback will free clt in last put */
2629 	device_unregister(&clt->dev);
2630 }
2631 
2632 /**
2633  * rtrs_clt_open() - Open a session to an RTRS server
2634  * @ops: holds the link event callback and the private pointer.
2635  * @sessname: name of the session
2636  * @paths: Paths to be established defined by their src and dst addresses
2637  * @paths_num: Number of elements in the @paths array
2638  * @port: port to be used by the RTRS session
2639  * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
2640  * @reconnect_delay_sec: time between reconnect tries
2641  * @max_segments: Max. number of segments per IO request
2642  * @max_segment_size: Max. size of one segment
2643  * @max_reconnect_attempts: Number of times to reconnect on error before giving
2644  *			    up, 0 for * disabled, -1 for forever
2645  *
2646  * Starts session establishment with the rtrs_server. The function can block
2647  * up to ~2000ms before it returns.
2648  *
2649  * Return a valid pointer on success otherwise PTR_ERR.
2650  */
2651 struct rtrs_clt *rtrs_clt_open(struct rtrs_clt_ops *ops,
2652 				 const char *sessname,
2653 				 const struct rtrs_addr *paths,
2654 				 size_t paths_num, u16 port,
2655 				 size_t pdu_sz, u8 reconnect_delay_sec,
2656 				 u16 max_segments,
2657 				 size_t max_segment_size,
2658 				 s16 max_reconnect_attempts)
2659 {
2660 	struct rtrs_clt_sess *sess, *tmp;
2661 	struct rtrs_clt *clt;
2662 	int err, i;
2663 
2664 	clt = alloc_clt(sessname, paths_num, port, pdu_sz, ops->priv,
2665 			ops->link_ev,
2666 			max_segments, max_segment_size, reconnect_delay_sec,
2667 			max_reconnect_attempts);
2668 	if (IS_ERR(clt)) {
2669 		err = PTR_ERR(clt);
2670 		goto out;
2671 	}
2672 	for (i = 0; i < paths_num; i++) {
2673 		struct rtrs_clt_sess *sess;
2674 
2675 		sess = alloc_sess(clt, &paths[i], nr_cpu_ids,
2676 				  max_segments, max_segment_size);
2677 		if (IS_ERR(sess)) {
2678 			err = PTR_ERR(sess);
2679 			goto close_all_sess;
2680 		}
2681 		list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
2682 
2683 		err = init_sess(sess);
2684 		if (err) {
2685 			list_del_rcu(&sess->s.entry);
2686 			rtrs_clt_close_conns(sess, true);
2687 			free_sess(sess);
2688 			goto close_all_sess;
2689 		}
2690 
2691 		err = rtrs_clt_create_sess_files(sess);
2692 		if (err) {
2693 			list_del_rcu(&sess->s.entry);
2694 			rtrs_clt_close_conns(sess, true);
2695 			free_sess(sess);
2696 			goto close_all_sess;
2697 		}
2698 	}
2699 	err = alloc_permits(clt);
2700 	if (err)
2701 		goto close_all_sess;
2702 
2703 	return clt;
2704 
2705 close_all_sess:
2706 	list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
2707 		rtrs_clt_destroy_sess_files(sess, NULL);
2708 		rtrs_clt_close_conns(sess, true);
2709 		kobject_put(&sess->kobj);
2710 	}
2711 	rtrs_clt_destroy_sysfs_root_files(clt);
2712 	rtrs_clt_destroy_sysfs_root_folders(clt);
2713 	free_clt(clt);
2714 
2715 out:
2716 	return ERR_PTR(err);
2717 }
2718 EXPORT_SYMBOL(rtrs_clt_open);
2719 
2720 /**
2721  * rtrs_clt_close() - Close a session
2722  * @clt: Session handle. Session is freed upon return.
2723  */
2724 void rtrs_clt_close(struct rtrs_clt *clt)
2725 {
2726 	struct rtrs_clt_sess *sess, *tmp;
2727 
2728 	/* Firstly forbid sysfs access */
2729 	rtrs_clt_destroy_sysfs_root_files(clt);
2730 	rtrs_clt_destroy_sysfs_root_folders(clt);
2731 
2732 	/* Now it is safe to iterate over all paths without locks */
2733 	list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
2734 		rtrs_clt_destroy_sess_files(sess, NULL);
2735 		rtrs_clt_close_conns(sess, true);
2736 		kobject_put(&sess->kobj);
2737 	}
2738 	free_clt(clt);
2739 }
2740 EXPORT_SYMBOL(rtrs_clt_close);
2741 
2742 int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_sess *sess)
2743 {
2744 	enum rtrs_clt_state old_state;
2745 	int err = -EBUSY;
2746 	bool changed;
2747 
2748 	changed = rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING,
2749 						 &old_state);
2750 	if (changed) {
2751 		sess->reconnect_attempts = 0;
2752 		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 0);
2753 	}
2754 	if (changed || old_state == RTRS_CLT_RECONNECTING) {
2755 		/*
2756 		 * flush_delayed_work() queues pending work for immediate
2757 		 * execution, so do the flush if we have queued something
2758 		 * right now or work is pending.
2759 		 */
2760 		flush_delayed_work(&sess->reconnect_dwork);
2761 		err = (READ_ONCE(sess->state) ==
2762 		       RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
2763 	}
2764 
2765 	return err;
2766 }
2767 
2768 int rtrs_clt_disconnect_from_sysfs(struct rtrs_clt_sess *sess)
2769 {
2770 	rtrs_clt_close_conns(sess, true);
2771 
2772 	return 0;
2773 }
2774 
2775 int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_sess *sess,
2776 				     const struct attribute *sysfs_self)
2777 {
2778 	enum rtrs_clt_state old_state;
2779 	bool changed;
2780 
2781 	/*
2782 	 * Continue stopping path till state was changed to DEAD or
2783 	 * state was observed as DEAD:
2784 	 * 1. State was changed to DEAD - we were fast and nobody
2785 	 *    invoked rtrs_clt_reconnect(), which can again start
2786 	 *    reconnecting.
2787 	 * 2. State was observed as DEAD - we have someone in parallel
2788 	 *    removing the path.
2789 	 */
2790 	do {
2791 		rtrs_clt_close_conns(sess, true);
2792 		changed = rtrs_clt_change_state_get_old(sess,
2793 							RTRS_CLT_DEAD,
2794 							&old_state);
2795 	} while (!changed && old_state != RTRS_CLT_DEAD);
2796 
2797 	if (likely(changed)) {
2798 		rtrs_clt_destroy_sess_files(sess, sysfs_self);
2799 		rtrs_clt_remove_path_from_arr(sess);
2800 		kobject_put(&sess->kobj);
2801 	}
2802 
2803 	return 0;
2804 }
2805 
2806 void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt *clt, int value)
2807 {
2808 	clt->max_reconnect_attempts = (unsigned int)value;
2809 }
2810 
2811 int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt *clt)
2812 {
2813 	return (int)clt->max_reconnect_attempts;
2814 }
2815 
2816 /**
2817  * rtrs_clt_request() - Request data transfer to/from server via RDMA.
2818  *
2819  * @dir:	READ/WRITE
2820  * @ops:	callback function to be called as confirmation, and the pointer.
2821  * @clt:	Session
2822  * @permit:	Preallocated permit
2823  * @vec:	Message that is sent to server together with the request.
2824  *		Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
2825  *		Since the msg is copied internally it can be allocated on stack.
2826  * @nr:		Number of elements in @vec.
2827  * @data_len:	length of data sent to/from server
2828  * @sg:		Pages to be sent/received to/from server.
2829  * @sg_cnt:	Number of elements in the @sg
2830  *
2831  * Return:
2832  * 0:		Success
2833  * <0:		Error
2834  *
2835  * On dir=READ rtrs client will request a data transfer from Server to client.
2836  * The data that the server will respond with will be stored in @sg when
2837  * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
2838  * On dir=WRITE rtrs client will rdma write data in sg to server side.
2839  */
2840 int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
2841 		     struct rtrs_clt *clt, struct rtrs_permit *permit,
2842 		      const struct kvec *vec, size_t nr, size_t data_len,
2843 		      struct scatterlist *sg, unsigned int sg_cnt)
2844 {
2845 	struct rtrs_clt_io_req *req;
2846 	struct rtrs_clt_sess *sess;
2847 
2848 	enum dma_data_direction dma_dir;
2849 	int err = -ECONNABORTED, i;
2850 	size_t usr_len, hdr_len;
2851 	struct path_it it;
2852 
2853 	/* Get kvec length */
2854 	for (i = 0, usr_len = 0; i < nr; i++)
2855 		usr_len += vec[i].iov_len;
2856 
2857 	if (dir == READ) {
2858 		hdr_len = sizeof(struct rtrs_msg_rdma_read) +
2859 			  sg_cnt * sizeof(struct rtrs_sg_desc);
2860 		dma_dir = DMA_FROM_DEVICE;
2861 	} else {
2862 		hdr_len = sizeof(struct rtrs_msg_rdma_write);
2863 		dma_dir = DMA_TO_DEVICE;
2864 	}
2865 
2866 	rcu_read_lock();
2867 	for (path_it_init(&it, clt);
2868 	     (sess = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
2869 		if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED))
2870 			continue;
2871 
2872 		if (unlikely(usr_len + hdr_len > sess->max_hdr_size)) {
2873 			rtrs_wrn_rl(sess->clt,
2874 				     "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
2875 				     dir == READ ? "Read" : "Write",
2876 				     usr_len, hdr_len, sess->max_hdr_size);
2877 			err = -EMSGSIZE;
2878 			break;
2879 		}
2880 		req = rtrs_clt_get_req(sess, ops->conf_fn, permit, ops->priv,
2881 				       vec, usr_len, sg, sg_cnt, data_len,
2882 				       dma_dir);
2883 		if (dir == READ)
2884 			err = rtrs_clt_read_req(req);
2885 		else
2886 			err = rtrs_clt_write_req(req);
2887 		if (unlikely(err)) {
2888 			req->in_use = false;
2889 			continue;
2890 		}
2891 		/* Success path */
2892 		break;
2893 	}
2894 	path_it_deinit(&it);
2895 	rcu_read_unlock();
2896 
2897 	return err;
2898 }
2899 EXPORT_SYMBOL(rtrs_clt_request);
2900 
2901 /**
2902  * rtrs_clt_query() - queries RTRS session attributes
2903  *@clt: session pointer
2904  *@attr: query results for session attributes.
2905  * Returns:
2906  *    0 on success
2907  *    -ECOMM		no connection to the server
2908  */
2909 int rtrs_clt_query(struct rtrs_clt *clt, struct rtrs_attrs *attr)
2910 {
2911 	if (!rtrs_clt_is_connected(clt))
2912 		return -ECOMM;
2913 
2914 	attr->queue_depth      = clt->queue_depth;
2915 	attr->max_io_size      = clt->max_io_size;
2916 	attr->sess_kobj	       = &clt->dev.kobj;
2917 	strlcpy(attr->sessname, clt->sessname, sizeof(attr->sessname));
2918 
2919 	return 0;
2920 }
2921 EXPORT_SYMBOL(rtrs_clt_query);
2922 
2923 int rtrs_clt_create_path_from_sysfs(struct rtrs_clt *clt,
2924 				     struct rtrs_addr *addr)
2925 {
2926 	struct rtrs_clt_sess *sess;
2927 	int err;
2928 
2929 	sess = alloc_sess(clt, addr, nr_cpu_ids, clt->max_segments,
2930 			  clt->max_segment_size);
2931 	if (IS_ERR(sess))
2932 		return PTR_ERR(sess);
2933 
2934 	/*
2935 	 * It is totally safe to add path in CONNECTING state: coming
2936 	 * IO will never grab it.  Also it is very important to add
2937 	 * path before init, since init fires LINK_CONNECTED event.
2938 	 */
2939 	rtrs_clt_add_path_to_arr(sess);
2940 
2941 	err = init_sess(sess);
2942 	if (err)
2943 		goto close_sess;
2944 
2945 	err = rtrs_clt_create_sess_files(sess);
2946 	if (err)
2947 		goto close_sess;
2948 
2949 	return 0;
2950 
2951 close_sess:
2952 	rtrs_clt_remove_path_from_arr(sess);
2953 	rtrs_clt_close_conns(sess, true);
2954 	free_sess(sess);
2955 
2956 	return err;
2957 }
2958 
2959 static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
2960 {
2961 	if (!(dev->ib_dev->attrs.device_cap_flags &
2962 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
2963 		pr_err("Memory registrations not supported.\n");
2964 		return -ENOTSUPP;
2965 	}
2966 
2967 	return 0;
2968 }
2969 
2970 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
2971 	.init = rtrs_clt_ib_dev_init
2972 };
2973 
2974 static int __init rtrs_client_init(void)
2975 {
2976 	rtrs_rdma_dev_pd_init(0, &dev_pd);
2977 
2978 	rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client");
2979 	if (IS_ERR(rtrs_clt_dev_class)) {
2980 		pr_err("Failed to create rtrs-client dev class\n");
2981 		return PTR_ERR(rtrs_clt_dev_class);
2982 	}
2983 	rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0);
2984 	if (!rtrs_wq) {
2985 		class_destroy(rtrs_clt_dev_class);
2986 		return -ENOMEM;
2987 	}
2988 
2989 	return 0;
2990 }
2991 
2992 static void __exit rtrs_client_exit(void)
2993 {
2994 	destroy_workqueue(rtrs_wq);
2995 	class_destroy(rtrs_clt_dev_class);
2996 	rtrs_rdma_dev_pd_deinit(&dev_pd);
2997 }
2998 
2999 module_init(rtrs_client_init);
3000 module_exit(rtrs_client_exit);
3001